WO2018090631A1 - 一种通信的方法及终端设备 - Google Patents

一种通信的方法及终端设备 Download PDF

Info

Publication number
WO2018090631A1
WO2018090631A1 PCT/CN2017/090356 CN2017090356W WO2018090631A1 WO 2018090631 A1 WO2018090631 A1 WO 2018090631A1 CN 2017090356 W CN2017090356 W CN 2017090356W WO 2018090631 A1 WO2018090631 A1 WO 2018090631A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
ofdm symbol
block
index
indicating
Prior art date
Application number
PCT/CN2017/090356
Other languages
English (en)
French (fr)
Inventor
李赛楠
黄煌
刘亚林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710222042.3A external-priority patent/CN108092930B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020197010573A priority Critical patent/KR20190045358A/ko
Priority to EP17871910.0A priority patent/EP3506581A4/en
Publication of WO2018090631A1 publication Critical patent/WO2018090631A1/zh
Priority to US16/414,247 priority patent/US10756802B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to the field of wireless technologies, and in particular, to a communication method and a terminal device.
  • the base station In a high frequency communication system, beam alignment is required between the base station and the terminal device, and the base station needs to traverse the beams in all directions to ensure omnidirectional coverage of the high frequency communication system.
  • the base station sends a beam identifier of the beam to the terminal device through the beam (English name: beam identification, beam abbreviated as beam identification).
  • beam identification beam abbreviated as beam identification
  • the terminal device selects some beams of the base station by measurement, the selected beam is selected.
  • the beam ID is fed back to the base station, so that the base station and the terminal device can interact with each other through the beam selected by the terminal device. Due to the large number of beams in the coverage of the base station, the base station needs to number a large number of beams, so that the beam ID needs to occupy more resources.
  • the invention provides a communication method and a terminal device, which can solve the problem that the identification of the beam in the prior art occupies more resources.
  • the first aspect provides a method for communication, where the network side device generates at least one radio frame, where the radio frame includes at least one orthogonal frequency division multiplexing OFDM symbol, where the at least one of the at least one OFDM symbol
  • An OFDM symbol includes a synchronization signal and a physical broadcast channel PBCH field, the PBCH field including information for indicating a beam.
  • the information used to indicate the beam is index information of the first OFDM symbol
  • the index information of the first OFDM symbol includes a symbol identifier of the first OFDM symbol or a number of the first OFDM symbol.
  • the information used to indicate the beam includes index information of the beam, and the index information of the beam is an identifier of the beam or a number of the beam.
  • the index information of the beam may also be interpreted as a sync block time index SS block time index or a sync block index SS block index.
  • the information used to indicate the beam is a synchronization block time index SS block time index or a synchronization block index SS block index.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • the synchronization signal may include a primary synchronization signal and a secondary synchronization signal.
  • the radio frame is then transmitted to the terminal device by using a beam, so that the terminal device acquires information for indicating the beam by detecting the PBCH field in the radio frame, and then identifies the beam according to the obtained information for indicating the beam.
  • the present invention reduces the downlink system overhead by carrying information for indicating the beam in the PBCH domain without occupying additional subcarriers without extending the synchronization signal.
  • the second aspect provides a communication method, where the network side device sends the generated radio frame to the terminal device, where the terminal device receives the radio frame from the network side device, where the radio frame includes at least one orthogonal frequency division multiplexing OFDM.
  • the symbol, wherein the first OFDM symbol of the at least one OFDM symbol comprises a synchronization signal and a physical broadcast channel PBCH domain, the PBCH domain including information for indicating a beam.
  • the information used to indicate the beam may be a synchronization block time index SS block time index or a synchronization block index SS block index.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set.
  • the terminal device After detecting the information for indicating the beam, the terminal device acquires the identifier of the beam according to the information for indicating the beam, and then sends the identifier of the beam to the network side device, so that the network side device passes the subsequent The beam corresponding to the identifier of the beam interacts with the terminal device.
  • the terminal device may receive the index information of the first OFDM symbol detected from the radio frame, and receive the antenna port number of the first OFDM symbol. Obtaining an identifier of the beam.
  • the terminal device may directly obtain the identifier of the beam by using the index information of the beam.
  • the terminal device may obtain, according to the index information of the first OFDM symbol, an antenna port number of the first OFDM symbol, and a frame number of the radio frame. And obtaining a identifier of the beam by using a subframe number corresponding to the subframe in which the first OFDM symbol is located.
  • the terminal device only needs to have a targeted listening physical broadcast channel to directly demodulate the received PBCH domain, thereby simplifying the complexity of the terminal device demodulation, to a certain extent.
  • the blind detection can also be reduced, and receiving the physical broadcast channel information can also improve the reliability of the transmission.
  • the PBCH domain occupies less resources and can reduce the overhead of the downlink system.
  • a third aspect provides a communication method, where a network side device generates at least one radio frame, the radio frame includes at least one multiplex block, the multiplex block includes a physical broadcast channel PBCH domain and a synchronization signal, and the PBCH domain includes Information for indicating a beam, the synchronization signal including a primary synchronization signal and a secondary synchronization signal.
  • the information for indicating a beam may include at least one of index information of a first OFDM symbol, index information of a multiplexing block, and index information of a beam.
  • the network side device sends the generated radio frame to the terminal device by using a beam, where each of the multiplex blocks in the radio frame is carried in the same beam and sent to the terminal device.
  • the present invention occupies less space in the PBCH domain of the broadcast signal by using the information for indicating the beam, thereby reducing the resource occupation space of the information for indicating the beam. . And transmitting the information for indicating the beam through the PBCH domain, so that the terminal device directly demodulates the received PBCH domain, thereby simplifying the complexity of demodulation of the terminal device.
  • the broadcast signal may be set to be frequency division multiplexed or time division multiplexed with the synchronization signal, and the primary synchronization signal and the secondary synchronization signal may be set to be frequency division multiplexed or time division multiplexed.
  • the radio frame structure is not limited in the present invention.
  • the fourth aspect provides a communication method, in which the network side device sends the generated one or more radio frames to the terminal device in the downlink beam scanning process, and the terminal device receives the radio frame from the network side device.
  • the radio frame includes at least one multiplex block including a synchronization signal and a physical broadcast channel PBCH field, the PBCH field including information for indicating a beam.
  • the terminal device After detecting the information for indicating the beam, the terminal device acquires the identifier of the beam according to the information for indicating the beam, and then sends the identifier of the beam to the network side device, so that the network side device passes the subsequent The beam corresponding to the identifier of the beam interacts with the terminal device.
  • the terminal device may receive the index information of the first OFDM symbol detected from the radio frame, and receive the antenna port number of the first OFDM symbol. Obtaining an identifier of the beam.
  • the terminal device may directly obtain the index information of the beam. Take the identification of the beam.
  • the terminal device may obtain, according to the index information of the first OFDM symbol, an antenna port number of the first OFDM symbol, and a frame number of the radio frame. And obtaining a identifier of the beam by using a subframe number corresponding to the subframe in which the first OFDM symbol is located.
  • the terminal device may be configured according to the index information of the multiplex block and the antenna port number of the first OFDM symbol, the frame number of the radio frame, and Obtaining an identifier of the beam by using a subframe number corresponding to the subframe in which the first OFDM symbol is located.
  • the terminal device Compared with the existing mechanism, the terminal device only needs to have a targeted listening physical broadcast channel to directly demodulate the received PBCH domain, thereby simplifying the complexity of the terminal device demodulation, to a certain extent.
  • the blind detection can also be reduced, and receiving the physical broadcast channel information can also improve the reliability of the transmission.
  • the PBCH domain occupies less resources and can reduce resource overhead.
  • a fifth aspect of the present invention provides a network side device having a function of realizing a method corresponding to the communication provided by the above first aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the network side device includes:
  • a processing module configured to generate at least one radio frame, where the radio frame includes at least one orthogonal frequency division multiplexing OFDM symbol, where a first one of the at least one OFDM symbol includes a physical broadcast channel PBCH domain,
  • the PBCH field includes information for indicating a beam
  • transceiver module configured to send the radio frame generated by the processing module to the terminal device.
  • the information used to indicate the beam is index information of the first OFDM symbol or a synchronization block time index SS block time index or a synchronization block index SS block index, and the index information of the first OFDM symbol A symbol identifier of the first OFDM symbol or a number of the first OFDM symbol is included.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • the information used to indicate the beam is the index information of the beam or the synchronization block time index SS block time index or the synchronization block index SS block index
  • the index information of the beam is the identifier or beam of the beam.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal.
  • the network side device includes:
  • At least one processor, memory and transceiver At least one processor, memory and transceiver
  • the memory is used to store program code
  • the processor is configured to invoke program code in the memory to perform the following operations:
  • each radio frame comprising at least one orthogonal frequency division multiplexing OFDM symbol, wherein a first one of the at least one OFDM symbol comprises a physical broadcast channel PBCH domain, the PBCH domain comprising Information for indicating a beam;
  • the generated radio frame is transmitted to the terminal device by the transceiver.
  • a sixth aspect of the present invention provides a terminal device having a function of realizing a method corresponding to the communication provided by the above second aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the terminal device includes:
  • a transceiver module configured to receive at least one radio frame from a network side device, where each radio frame includes at least one orthogonal frequency division multiplexing OFDM symbol, where the first OFDM symbol of the at least one OFDM symbol includes a synchronization signal And a physical broadcast channel PBCH field, the PBCH field including information for indicating a beam;
  • a processing module configured to acquire an identifier of the beam according to the information used to indicate the beam acquired by the transceiver module
  • the information for indicating a beam includes index information of a first OFDM symbol
  • the index information of the first OFDM symbol includes a symbol identifier of the first OFDM symbol or a number of the first OFDM symbol.
  • the information used to indicate the beam is the index information of the beam or the synchronization block time index SS block time index or the synchronization block index SS block index
  • the index information of the beam is the identifier or beam of the beam.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal.
  • the terminal device includes:
  • At least one processor, memory and transceiver At least one processor, memory and transceiver
  • the memory is used to store program code
  • the processor is configured to invoke program code in the memory to perform the following operations:
  • the PBCH field includes information for indicating a beam
  • the identifier of the beam is sent to the network side device by a transceiver module.
  • a seventh aspect of the present invention provides a network side device having a function of implementing a method corresponding to the network side device provided by the above third aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the network side device includes:
  • each of the radio frames includes at least one multiplex block, the multiplex block including a synchronization signal and a physical broadcast channel PBCH field, the PBCH field including information for indicating a beam;
  • transceiver module configured to send the radio frame generated by the processing module to the terminal device.
  • the same multiplex block is carried in the same beam and sent to the terminal device.
  • the information for indicating the beam includes at least one of index information of the first OFDM symbol, index information of the multiplexing block, and index information of the beam.
  • the PBCH field is frequency division multiplexed or time division multiplexed with the synchronization signal.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal, and the primary synchronization signal
  • the secondary synchronization signal is frequency division multiplexed or time division multiplexed.
  • the network side device includes:
  • At least one processor, memory and transceiver At least one processor, memory and transceiver
  • the memory is used to store program code
  • the processor is configured to invoke program code in the memory to perform the following operations:
  • the radio frame includes at least one multiplex block
  • the multiplex block includes a synchronization signal and a physical broadcast channel PBCH field
  • the PBCH field includes information for indicating a beam
  • the generated radio frame is transmitted to the terminal device by the transceiver.
  • An eighth aspect of the present invention provides a terminal device having a function of realizing a method corresponding to the communication provided by the above fourth aspect.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above, which may be software and/or hardware.
  • the terminal device includes:
  • a transceiver module configured to receive at least one radio frame from a network side device, where each radio frame includes at least one multiplex block, where the multiplex block includes a synchronization signal and a physical broadcast channel PBCH domain, and the PBCH domain Including information for indicating a beam;
  • a processing module configured to acquire an identifier of the beam according to the information used to indicate the beam acquired by the transceiver module
  • the transceiver module is further configured to send the identifier of the beam acquired by the processing module to the network side device.
  • the same multiplex block is carried in the same beam and sent to the terminal device.
  • the information used to indicate the beam is index information of the first OFDM symbol, index information of the multiplexing block, index information of the beam, or a synchronization block time index SS block time index or a synchronization block index. At least one of the SS block indexes.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • the PBCH field is frequency division multiplexed or time division multiplexed with the synchronization signal.
  • the synchronization signal includes a primary synchronization signal and a secondary synchronization signal
  • the primary synchronization signal is frequency division multiplexed or time division multiplexed with the secondary synchronization signal.
  • the terminal device includes:
  • At least one processor, memory and transceiver At least one processor, memory and transceiver
  • the memory is used to store program code
  • the processor is configured to invoke program code in the memory to perform the following operations:
  • each of the radio frames includes at least one multiplex block, the multiplex block includes a synchronization signal and a physical broadcast channel PBCH domain, and the PBCH domain includes Information indicating the beam;
  • the transceiver module is further configured to send the acquired identifier of the beam to the network side device.
  • the two modes occupy fewer subcarriers. Can reduce the overhead of the downlink system.
  • FIG. 1 is a schematic diagram of an embodiment of a method for communication in the embodiment
  • FIG. 2 is a schematic structural diagram of a radio frame in the embodiment
  • FIG. 3 is another schematic structural diagram of a radio frame in the embodiment
  • FIG. 4 is a schematic structural diagram of a network side device in this embodiment
  • FIG. 5 is a schematic structural diagram of a terminal device in the embodiment.
  • FIG. 6 is a schematic structural diagram of a physical device of a method for performing communication in the embodiment.
  • the terms “comprises” and “comprises” and “the” and “the” are intended to cover a non-exclusive inclusion, for example, a process, method, system, product, or device that comprises a series of steps or modules is not necessarily limited to Those steps or modules, but may include other steps or modules not explicitly listed or inherent to such processes, methods, products or devices, the division of the modules presented herein is merely a logical division. There may be additional divisions in the implementation of the actual application, for example, multiple modules may be combined or integrated into another system, or some features may be ignored, or not executed, and the displayed or discussed mutual coupling.
  • the direct coupling or the communication connection may be through some interfaces, and the indirect coupling or communication connection between the modules may be electrical or the like, which is not limited herein.
  • the modules or sub-modules described as separate components may or may not be physically separated, may not be physical modules, or may be distributed to multiple circuit modules, and some or all of them may be selected according to actual needs.
  • the modules are used to achieve the objectives of the embodiments of the present invention.
  • the embodiment of the invention provides a communication method and a terminal device for authorizing a spectrum or an unlicensed spectrum. The details are described below.
  • the network side device in the embodiment of the present invention is a device for accessing a terminal device to a wireless network, and is also referred to as a base station, including but not limited to: an evolved Node B (English full name: evolved Node Base, English abbreviation: eNB) ), radio network controller (English name: Radio Network Controller, English abbreviation: RNC), node B (English full name: Node B, English abbreviation: NB), base station controller (English full name: Base Station Controller, English abbreviation: BSC ), base transceiver station (English full name: Base Transceiver Station, English abbreviation: BTS), home base station (for example, Home evolved NodeB, or Home Node B, English abbreviation: HNB), baseband unit (English full name: BaseBand Unit, English abbreviation :BBU).
  • an evolved Node B English full name: evolved Node Base, English abbreviation: eNB
  • RNC Radio Network Controller
  • node B English full name
  • the terminal device may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing device connected to a wireless modem.
  • the terminal device can communicate with one or more core networks via a radio access network (English name: Radio Access Network, English abbreviation: RAN), and the terminal device can be a mobile terminal, such as a mobile phone (or "cellular" phone).
  • a computer having a mobile terminal for example, can be a portable, pocket, handheld, computer built-in or in-vehicle mobile device that exchanges language and/or data with the wireless access network.
  • a wireless terminal may also be referred to as a system, a Subscriber Unit, and a Subscriber Station.
  • Mobile Station Mobile Station, Remote Station, Access Point, Remote Terminal, Access Terminal, User Terminal, Terminal device, User Agent, User Device, or User Equipment.
  • the network side device periodically sends a synchronization signal and a broadcast signal to the terminal device under the coverage, so that the terminal device synchronizes with the network side device according to the received synchronization signal, and prepares to receive the broadcast channel information.
  • the synchronization signal includes a primary synchronization signal (English name: Primary Synchronization Signal, English abbreviation: PSS) and a secondary synchronization signal (English full name: Secondary Synchronization Signal, English abbreviation: SSS), in the process of the terminal device accessing the network side device
  • PSS and the SSS need to be searched.
  • the PSS is generated by using a sequence of autocorrelation characteristics (English full name: zadoff-chu, English abbreviation: ZC) for distinguishing sectors
  • SSS is generated by using a pseudo-random sequence for distinguishing base stations.
  • the terminal device may also be a remote terminal device outside the coverage of the network side device. If the remote terminal device is to be connected to the network side device, the device may be implemented by using the relay device, and details are not described herein.
  • the embodiment of the present invention mainly provides the following technical solutions:
  • the first part of the OFDM symbol includes the synchronization signal and the physical part of the Orthogonal Frequency Division Multiplexing (OFDM) symbol in the radio frame.
  • the broadcast channel (English name: Physical Boardcast Channel, English abbreviation: PBCH) field, and then the radio frame is sent to the terminal device, and the PBCH domain is used to implement the beam information transmission without extending the OFDM symbol.
  • PBCH Physical Boardcast Channel
  • the additional subcarriers, the first scheme reduces the downlink system overhead, that is, the resource space occupied by the information carrying the beam is saved to some extent.
  • the radio frame may be: including at least two subframes, each subframe including multiple OFDM symbols.
  • the radio frame may also be: directly including a plurality of OFDM symbols.
  • the embodiment of the present invention is not limited to a specific frame format. For a place where the frame format is unclear, reference may be made to the time division multiplexing (English full name: Time Duplex Division, English abbreviation: TDD) frame of the existing LTE.
  • the broadcast signal and the synchronization signal are combined into a multiplex block, and the information for indicating the beam is carried in the PBCH domain of the broadcast signal, and then sent to the terminal device, where the PBCH domain and the synchronization signal can be frequency division multiplexed or time-divided. Multiplexing, the same multiplex block is sent to the terminal device using the same one or at least two beams. Since the coded modulation mode of the broadcast signal is different from the coded modulation mode of the synchronization signal, the broadcast is used compared to the coded modulation mode of the synchronization signal.
  • the PBCH field of the signal carries information for indicating the beam, and the resource occupied space for indicating the information of the beam can be reduced.
  • the multiplex block may also be referred to as a composite signal or a resource block, and the specific name is not limited in the present invention.
  • the resources required for carrying the information for indicating the beam can be reduced, and the reliability of the information can be improved to some extent due to the transmission characteristics of the PBCH domain.
  • the network side device needs to ensure that the coverage is in a certain range (including omnidirectional coverage or directional coverage) by traversing the beams in all directions.
  • the beam of the direction designs the beam ID, and sends the beam ID to each terminal device, so that the terminal device identifies the beam ID of the beam by means of beam scanning, monitoring the physical broadcast channel, and the like.
  • Embodiments of the invention include:
  • the network side device generates at least one radio frame.
  • Each of the radio frames includes at least one OFDM symbol, and at least a portion of the radio frame includes a synchronization signal and an OFDM symbol of a PBCH domain.
  • the network side device delivers information for indicating the information of the beam to the terminal device in two ways.
  • the information for indicating the beam is placed in the PBCH domain of the OFDM symbol including the synchronization signal.
  • the broadcast signal and the synchronization signal are combined into one multiplex block, and one multiplex block may include at least one OFDM symbol and carry information for indicating the beam in the PBCH domain of the broadcast signal.
  • each of the radio frames includes at least one multiplex block, where the multiplex block includes a broadcast signal and a synchronization signal, and the PBCH field of the broadcast signal includes information for indicating a beam, including When a plurality of multiplex blocks are used, at least two multiplex blocks that are consecutive in the time domain exist in the plurality of multiplex blocks.
  • the information for indicating a beam includes at least one of index information of a first OFDM symbol, index information of a multiplexing block, and index information of a beam.
  • Each of the multiplex blocks may be transmitted by using the same one beam or at least two beams, that is, each OFDM symbol in each multiplex block is transmitted by using the same one beam or at least two beams.
  • At least two multiplex blocks of the plurality of multiplex blocks are sent by different beams, that is, the beam numbers carried by the at least two multiplex blocks are different, and the at least two multiplex blocks are used to indicate the beam number.
  • the reference signal sequence is different, or the reference signal resource numbers carried by the at least two multiplex blocks for indicating the beam number are different.
  • the broadcast signal may be frequency division multiplexed or time division multiplexed with the synchronization signal
  • the synchronization signal includes a PSS and an SSS, and optionally, a PSS and an SSS included in each multiplex block.
  • the number is one.
  • (a) and (d) are a radio frame structure in which a broadcast signal and a synchronization signal are time-division multiplexed, and the multiplex block 1 and the multiplex block 2 are each composed of a PSS, an SSS, and a PBCH domain, and a multiplex block.
  • the PBCH field in 1 is frequency-multiplexed with PSS and SSS.
  • FIG. 3 are a radio frame structure in which a broadcast signal and a synchronization signal are time-division multiplexed
  • the multiplex block 1 and the multiplex block 2 are each composed of a PSS, an SSS, and a PBCH domain, and a multiplex block.
  • the PBCH field in 1 is
  • the PBCH field in block 1 is frequency-multiplexed with PSS and SSS.
  • the primary synchronization signal may be frequency division multiplexed or time division multiplexed with the secondary synchronization signal, as shown in (a) of FIG. (b) and (d) are a radio frame structure of PSS domain SSS time division multiplexing, and (c) in FIG. 3 is a radio frame structure of PSS and SSS frequency division multiplexing.
  • the mode 1 and the mode 2 may be used in combination, and the mode 1 may be used as a specific embodiment of the mode 2. The specific combination manner is not limited in the invention.
  • the network device is carried in the network device according to the frame number of the radio frame, the subframe number corresponding to the subframe in which the OFDM symbol is located, the antenna port number of the OFDM symbol, and the index information of the OFDM symbol.
  • the information used to indicate the beam in the PBCH domain is mainly divided into the following cases:
  • the index information of the beam is carried in the PBCH domain, and the index information of the beam is the identifier of the beam or the number of the beam.
  • the index information of the beam may be interpreted as a sync block time index SS block time index or a sync block index SS block index.
  • Carrying index information of the multiplex block in the PBCH domain, and the index information of the multiplex block is a block identifier of the multiplex block or a number of the multiplex block.
  • SS block time index Carry a synchronization block time index SS block time index or a synchronization block index SS block index in the PBCH domain.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • a and b and d are applicable to mode one and mode two, and c is only applicable to mode two.
  • the PBCH domain may carry at least one of a and b, d; in mode 2, the PBCH domain may carry at least one of a, b, c, and d.
  • each OFDM symbol of each subframe carries a synchronization signal and a PBCH domain, and is in the PBCH.
  • the domain carries the OFDM symbol ID.
  • the same OFDM symbol can transmit m beams, each subframe contains (n+1) OFDM symbols, and a total of two radio frames, that is, 4 subframes, are required to traverse the downlink beams in all directions, and the total number of beams is completed. 4*m*(n+1), and the OFDM symbol ID carried in the OFDM symbol of each subframe is 0, 1, ..., n.
  • the terminal device can be solved according to the The OFDM symbol ID, the antenna port number of the beam, the frame number of the radio frame, and the subframe number corresponding to the subframe in which the OFDM symbol is located obtain the number of the beam, and then report the number of the obtained beam to the network side device.
  • the beam number of the synchronized radio frame is even and the subframe number is 0, the beam number is i*m+p; if the frame number of the synchronized radio frame is even and the subframe number is 25; The number is (n+i+1)*m+p; if the frame number of the synchronized radio frame is odd and the subframe number is 0, the beam number is (2n+i+2)*m+p; if synchronization The frame number of the radio frame is odd and the subframe number is 25, and the beam number is (3n+i+3)*m+p.
  • the network side device sends at least one of the radio frames to the terminal device.
  • the terminal device receives at least one radio frame sent by the access network, and identifies the beam according to the information used to indicate the beam in the radio frame.
  • multiple beams transmitted by the same OFDM symbol can share index information of one OFDM symbol, since the OFDM symbol has unique Index information, so when the terminal device recognizes the beam, the beam from the same OFDM symbol can be distinguished by the antenna port number. Then, according to the number of radio frames required by the synchronization signal, the terminal device identifies the beam mainly according to the following types:
  • the synchronization signal only needs to be placed in one radio frame to traverse the beams in all directions.
  • the terminal device acquires the index information of the first OFDM symbol or the index information of the multiplex block by detecting the PBCH, acquires the antenna port number of the received beam by the receiving beam, acquires the frame number of the subframe in which the first OFDM symbol is located, and then, the terminal The device acquires index information of the beam according to the index information of the first OFDM symbol (or the index information of the multiplex block), the antenna port number, and the frame number of the subframe in which the first OFDM symbol is located, thereby identifying the receive beam.
  • the synchronization signal only needs to be placed in more than two radio frames to traverse the beams in all directions.
  • the terminal device needs to obtain the index information of the first OFDM symbol or the index information of the multiplex block, the antenna port number of the receiving beam, the frame number of the subframe in which the first OFDM symbol is located, and the radio frame where the first OFDM symbol is located.
  • the frame number, and then the terminal device can according to the index information of the first OFDM symbol (or the index information of the multiplex block), the antenna port number, the frame number of the subframe where the first OFDM symbol is located, and the first OFDM symbol
  • the frame number of the radio frame is used to obtain the index information of the beam, thereby identifying the receive beam.
  • the overhead of the downlink system can be reduced without occupying additional subcarriers without extending the synchronization signal.
  • the overhead of the downlink system can be further reduced. It can be seen that compared with the existing mechanism, the two parties The mode occupies fewer subcarriers, so the overhead of the downlink system can be reduced.
  • the terminal device can directly demodulate the received PBCH domain after receiving the radio frame, thereby simplifying the complexity of demodulation of the terminal device, and to some extent, It can reduce blind detection, and receiving physical broadcast channel information can also improve the reliability of transmission.
  • the PBCH domain occupies less resources, further reducing resource overhead.
  • the above describes a method of communication in the present invention.
  • the network side device and the terminal device that perform the above communication method will be separately described below.
  • the network side device 40 is described with reference to FIG. 4, and the network side device 40 includes:
  • the processing module 401 is configured to generate a radio frame, where the radio frame includes at least one orthogonal frequency division multiplexing OFDM symbol, where the first OFDM symbol in the at least one OFDM symbol includes a synchronization signal and a PBCH domain, the PBCH The domain includes information for indicating the beam.
  • the radio frame includes at least one multiplex block, the multiplex block includes a synchronization signal and a PBCH field, and the PBCH field includes information for indicating a beam.
  • the transceiver module 402 is configured to send the radio frame generated by the processing module 401 to the terminal device, so that the terminal device can identify the beam according to the information of the acquired beam, and communicate with the network side device by using the identified beam.
  • the information used to indicate the beam is index information of the first OFDM symbol or a synchronization block time index SS block time index or a synchronization block index SS block index, where the index information of the first OFDM symbol includes the first OFDM The symbolic identifier of the symbol or the number of the first OFDM symbol.
  • the information used to indicate the beam includes index information of the beam, and the index information of the beam is an identifier of the beam or a number of the beam.
  • the SS block time index may be used to indicate that the SS block belongs to the first block in the SS block burst set, and the SS block time index may also be used to indicate that the SS block belongs to the first block in the SS block burst. .
  • the information for indicating the beam includes at least one of index information of the first OFDM symbol, index information of the multiplex block, and index information of the beam.
  • the processing module 401 generates a radio frame including a first OFDM symbol having the PBCH domain, carries information for indicating a beam in the PBCH domain, or generates a radio frame including the multiplex block.
  • the PBCH domain of the block carries information for indicating the beam, and the information of the two indication beams can reduce the resources occupied by the information indicating the beam, and can also improve the stability of the information of the transmission beam.
  • the terminal device 50 is described with reference to FIG. 5.
  • the terminal device 50 includes a transceiver module 501 and a processing module 502. During the beam synchronization process of the terminal device 50, the transceiver module 501 receives a wireless frame from the network side device.
  • the identifier of the beam is obtained by the processing module 502 according to the information for indicating the beam acquired by the transceiver module 501. Then, the transceiver module 501 sends the identifier of the beam acquired by the processing module 502 to the network side device.
  • the radio frame may include at least one orthogonal frequency division multiplexing OFDM symbol, where the first OFDM symbol of the at least one OFDM symbol includes a synchronization signal and a physical broadcast channel PBCH field, and the PBCH field includes an indication Beam information.
  • the radio frame includes at least one multiplex block, the multiplex block includes a synchronization signal and a physical broadcast channel PBCH field, and the PBCH field includes information for indicating a beam.
  • the processing module 502 is specifically configured to:
  • the processing module 502 is specifically configured to:
  • the identifier of the beam can be obtained according to the index information of the beam.
  • the processing module 502 is specifically configured to:
  • the processing module 502 is specifically configured to:
  • the SS block time index as the identifier of the beam; or acquiring the identifier of the beam according to the SS block time index and the antenna port number receiving the SS block; or according to the SS block time index and the antenna port receiving the SS block.
  • the specific definitions of the synchronization signal, the PBCH domain, and the carried information included in the radio frame may be referred to the foregoing method embodiment, and
  • the network side device or the terminal device in the embodiment of the present invention can perform any of the foregoing descriptions of the method embodiments (including the embodiments shown in FIG. 1 to FIG. 3), and details are not described herein again.
  • the physical device corresponding to the transceiver module (including the receiving module and the sending module) in the embodiment corresponding to FIG. 4 or FIG. 5 may be a transceiver (including a receiver and a transmitter), and the corresponding entity of the processing module.
  • the device can be a processor.
  • the apparatus shown in FIG. 4 or FIG. 5 may have a structure as shown in FIG. 6.
  • the processor and the transceiver in FIG. 6 implement the device implementation of the corresponding device.
  • the processing module and the transceiver module provided by the example have the same or similar functions, and the memory storage processor in FIG. 6 needs to call the program code when executing the above communication method.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the modules is only a logical function division.
  • there may be another division manner for example, multiple modules or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or module, and may be electrical, mechanical or otherwise.
  • the modules described as separate components may or may not be physically separated.
  • the components displayed as modules may or may not be physical modules, that is, may be located in one place, or may be distributed to multiple network modules. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing module, or each module may exist physically separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium. , including a number of instructions to make a computer device (which can be a personal computer, The server, or network device, etc.) performs all or part of the steps of the method described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (English full name: Read-Only Memory, English abbreviation: ROM), a random access memory (English full name: Random Access Memory, English abbreviation: RAM), magnetic A variety of media that can store program code, such as a disc or a disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信的方法及终端设备,所述方法包括:生成一个或多个无线帧,所述每个无线帧包括至少一个复用块,每个复用块包括同步信号和PBCH域,所述PBCH域包括用于指示波束的信息,然后将所述无线帧发送至终端设备。通过采用本方案,能够减少下行系统的开销。

Description

一种通信的方法及终端设备 技术领域
本发明涉及无线技术领域,尤其涉及一种通信的方法及终端设备。
背景技术
在高频通信系统中,基站和终端设备之间需要进行波束对准,并且基站需要遍历所有方向的波束以保证高频通信系统的全向覆盖。在波束对准过程中,基站通过波束向终端设备发送波束的波束标识(英文全称:beam Identify,英文简称:beam ID),终端设备通过测量选择了基站的某些波束后,会将选择的波束的beam ID反馈给基站,使得基站与终端设备之间能够通过终端设备选择的波束进行交互。由于基站覆盖范围内的波束较多,基站需要对数量庞大的波束进行编号,从而导致下发beam ID需要占用较多资源。
发明内容
本发明提供了一种通信的方法及终端设备,能够解决现有技术中波束的标识占用资源较多的问题。
第一方面提供一种通信的方法,该方法为:网络侧设备生成至少一个无线帧,所述无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号中的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息。
可选地,其中,所述用于指示波束的信息为第一OFDM符号的索引信息,所述第一OFDM符号的索引信息包括第一OFDM符号的符号标识或者第一OFDM符号的编号。
或者,所述用于指示波束的信息包括波束的索引信息,所述波束的索引信息为波束的标识或者波束的编号。其中,波束的索引信息也可以解释为同步块时间索引SS block time index或者同步块索引SS block index。
或者,所述用于指示波束的信息为同步块时间索引SS block time index或者同步块索引SS block index。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
其中,同步信号可包括主同步信号和辅同步信号。
然后通过波束将所述无线帧发送至终端设备,使得终端设备通过检测无线帧中的PBCH域,获取到用于指示波束的信息,然后根据获取到的用于指示波束的信息识别波束。
与现有机制相比,本发明通过将用于指示波束的信息携带在PBCH域中,在不需要扩展同步信号的前提下,不需要占用额外的子载波,该方案减少了下行系统开销。
第二方面提供一种通信的方法,在网络侧设备将生成的无线帧下发给终端设备,终端设备接收来自网络侧设备的无线帧,所述无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息。
其中,用于指示波束的信息可以是同步块时间索引SS block time index或者同步块索引SS block index。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block。
在检测出用于指示波束的信息后,终端设备根据所述用于指示波束的信息,获取波束的标识,然后将所述波束的标识发送至所述网络侧设备,使得网络侧设备在后续通过该波束的标识对应的波束与该终端设备交互。
若所述用于指示波束的信息为第一OFDM符号的索引信息,则终端设备可根据从无线帧中检测出的第一OFDM符号的索引信息,以及接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
若所述用于指示波束的信息为波束的索引信息,则终端设备可直接通过波束的索引信息获取波束的标识。
若用于指示波束的信息为第一OFDM符号的索引信息,则终端设备可根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
与现有机制相比,终端设备在识别波束时,只需要有针对性的侦听物理广播信道即可直接对接收到的PBCH域进行解调,从而简化终端设备解调的复杂度,一定程度上也能减少盲检,并且接收物理广播信道信息也能提高传输的可靠性。此外,PBCH域所占用的资源比较少,能够减少下行系统的开销。
第三方面提供一种通信的方法,网络侧设备生成至少一个无线帧,所述无线帧包括至少一个复用块,所述复用块包括物理广播信道PBCH域和同步信号,所述PBCH域包括用于指示波束的信息,所述同步信号包括主同步信号和辅同步信号。所述用于指示波束的信息可包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息中的至少一项。
然后,网络侧设备将生成的无线帧通过波束发送至终端设备,其中,无线帧中的每一个所述复用块都承载在相同的波束发送至所述终端设备。
与现有机制相比,本发明通过将用于指示波束的信息携带在广播信号的PBCH域中,所占的资源空间更小,从而达到减少该用于指示波束的信息的资源占用空间的目的。并且通过PBCH域传输用于指示波束的信息,能够使得终端设备直接对接收到的PBCH域进行解调,从而简化终端设备解调的复杂度。
可选地,还可以设置所述广播信号与所述同步信号频分复用或时分复用,还可以设置所述主同步信号与所述辅同步信号频分复用或时分复用,具体的无线帧结构本发明不作限定。
第四方面提供一种通信的方法,在网络侧设备在下行波束扫描过程中,网络侧设备将生成的一个或多个无线帧下发给终端设备,终端设备接收来自网络侧设备的无线帧,所述无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息。
在检测出用于指示波束的信息后,终端设备根据所述用于指示波束的信息,获取波束的标识,然后将所述波束的标识发送至所述网络侧设备,使得网络侧设备在后续通过该波束的标识对应的波束与该终端设备交互。
若所述用于指示波束的信息为第一OFDM符号的索引信息,则终端设备可根据从无线帧中检测出的第一OFDM符号的索引信息,以及接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
若所述用于指示波束的信息为波束的索引信息,则终端设备可直接通过波束的索引信息获 取波束的标识。
若用于指示波束的信息为第一OFDM符号的索引信息,则终端设备可根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
若用于指示波束的信息为第一OFDM符号的索引信息,则终端设备可根据所述复用块的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
与现有机制相比,终端设备在识别波束时,只需要有针对性的侦听物理广播信道即可直接对接收到的PBCH域进行解调,从而简化终端设备解调的复杂度,一定程度上也能减少盲检,并且接收物理广播信道信息也能提高传输的可靠性。此外,PBCH域所占用的资源比较少,能够减少资源的开销。
本发明第五方面提供一种网络侧设备,具有实现对应于上述第一方面提供的通信的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
一种可能的设计中,所述网络侧设备包括:
处理模块,用于生成至少一个无线帧,所述无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号中的第一OFDM符号包括物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
收发模块,用于将所述处理模块生成的所述无线帧发送至终端设备。
另一种可能的设计中,所述用于指示波束的信息为第一OFDM符号的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index,所述第一OFDM符号的索引信息包括第一OFDM符号的符号标识或者第一OFDM符号的编号。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
另一种可能的设计中,所述用于指示波束的信息为波束的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index,所述波束的索引信息为波束的标识或者波束的编号。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
另一种可能的设计中,所述同步信号包括主同步信号和辅同步信号。
一种可能的设计中,所述网络侧设备包括:
至少一个处理器、存储器和收发器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行以下操作:
生成至少一个无线帧,所述每个无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号中的第一OFDM符号包括物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
利用所述收发器将生成的所述无线帧发送至终端设备。
本发明第六方面提供一种终端设备,具有实现对应于上述第二方面提供的通信的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
一种可能的设计中,所述终端设备包括:
收发模块,用于接收来自网络侧设备的至少一个无线帧,所述每个无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
处理模块,用于根据所述收发模块获取的所述用于指示波束的信息,获取波束的标识;
将所述波束的标识发送至所述网络侧设备。
另一种可能的设计中,所述用于指示波束的信息包括第一OFDM符号的索引信息,所述第一OFDM符号的索引信息包括第一OFDM符号的符号标识或者第一OFDM符号的编号。
另一种可能的设计中,所述用于指示波束的信息为波束的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index,所述波束的索引信息为波束的标识或者波束的编号。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
另一种可能的设计中,所述同步信号包括主同步信号和辅同步信号。
一种可能的设计中,所述终端设备包括:
至少一个处理器、存储器和收发器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行以下操作:
通过收发模块接收来自网络侧设备的无线帧,所述无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
根据所述收发模块获取的所述用于指示波束的信息,获取波束的标识;
通过收发模块将所述波束的标识发送至所述网络侧设备。
本发明第七方面提供一种网络侧设备,具有实现对应于上述第三方面提供的网络侧设备的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
一种可能的设计中,所述网络侧设备包括:
生成至少一个无线帧,其中,所述每个无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
收发模块,用于将所述处理模块生成的所述无线帧发送至终端设备。
另一种可能的设计中,同一个复用块承载在相同的波束发送至所述终端设备。
另一种可能的设计中,所述用于指示波束的信息包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息中的至少一项。
另一种可能的设计中,所述PBCH域与所述同步信号频分复用或时分复用。
另一种可能的设计中,所述同步信号包括主同步信号和辅同步信号,所述主同步信号与所 述辅同步信号频分复用或时分复用。
一种可能的设计中,所述网络侧设备包括:
至少一个处理器、存储器和收发器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行以下操作:
生成无线帧,其中,所述无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
利用所述收发器将生成的所述无线帧发送至终端设备。
本发明第八方面提供一种终端设备,具有实现对应于上述第四方面提供的通信的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块,所述模块可以是软件和/或硬件。
一种可能的设计中,所述终端设备包括:
收发模块,用于接收来自网络侧设备的至少一个无线帧,其中,所述每个无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
处理模块,用于根据所述收发模块获取的所述用于指示波束的信息,获取波束的标识;
所述收发模块还用于将所述处理模块获取的所述波束的标识发送至所述网络侧设备。
另一种可能的设计中,同一个复用块承载在相同的波束发送至所述终端设备。
另一种可能的设计中,所述用于指示波束的信息为第一OFDM符号的索引信息、复用块的索引信息、波束的索引信息,或者同步块时间索引SS block time index或者同步块索引SS block index中的至少一项。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
另一种可能的设计中,所述PBCH域与所述同步信号频分复用或时分复用。
另一种可能的设计中,所述同步信号包括主同步信号和辅同步信号,所述主同步信号与所述辅同步信号频分复用或时分复用。
一种可能的设计中,所述终端设备包括:
至少一个处理器、存储器和收发器;
其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行以下操作:
通过收发模块接收来自网络侧设备的至少一个无线帧,其中,所述每个无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
根据所述收发模块获取的所述用于指示波束的信息,获取波束的标识;
通过收发模块还用于将获取的所述波束的标识发送至所述网络侧设备。
相较于现有技术,本发明提供的方案中,通过将用于指示波束的信息携带在第一OFDM符号的PBCH域或者复用块的PBCH域中,两种方式所占用的子载波较少,能够减少下行系统的开销。
附图说明
图1为本实施例中通信的方法的一种实施例的示意图;
图2为本实施例中无线帧的一种结构示意图;
图3为本实施例中无线帧的另一种结构示意图;
图4为本实施例中网络侧设备的一种结构示意图;
图5为本实施例中终端设备的一种结构示意图;
图6为本实施例中执行通信的方法的实体装置的一种结构示意图。
具体实施方式
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块,本文中所出现的模块的划分,仅仅是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个模块可以结合成或集成在另一个系统中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,模块之间的间接耦合或通信连接可以是电性或其他类似的形式,本文中均不作限定。并且,作为分离部件说明的模块或子模块可以是也可以不是物理上的分离,可以是也可以不是物理模块,或者可以分布到多个电路模块中,可以根据实际的需要选择其中的部分或全部模块来实现本发明实施例方案的目的。
本发明实施例提供了一种通信的方法及终端设备,用于授权频谱或非授权频谱。以下进行详细说明。
本发明实施例中的网络侧设备为一种将终端设备接入到无线网络的设备,又称之为基站,包括但不限于:演进型节点B(英文全称:evolved Node Base,英文简称:eNB)、无线网络控制器(英文全称:Radio Network Controller,英文简称:RNC)、节点B(英文全称:Node B,英文简称:NB)、基站控制器(英文全称:Base Station Controller,英文简称:BSC)、基站收发台(英文全称:Base Transceiver Station,英文简称:BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,英文简称:HNB)、基带单元(英文全称:BaseBand Unit,英文简称:BBU)。
本发明实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(英文全称:Radio Access Network,英文简称:RAN)与一个或多个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(英文全称:Personal Communication Service,英文简称:PCS)电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(Wireless Local Loop,英文简称:WLL)站、个人数字助理(英文全称:Personal Digital Assistant,英文简称:PDA)等设备。无线终端也可以称为系统、订户单元(Subscriber Unit)、订户站(Subscriber Station), 移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点(Access Point)、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户终端(User Terminal)、终端设备、用户代理(User Agent)、用户设备(User Device)、或用户装备(User Equipment)。
网络侧设备会周期性的向覆盖范围下的终端设备发送同步信号和广播信号,使得终端设备根据接收到的同步信号与网络侧设备同步,并做好接收广播信道信息的准备。其中,同步信号包括主同步信号(英文全称:Primary Synchronization Signal,英文简称:PSS)和辅同步信号(英文全称:Secondary Synchronization Signal,英文简称:SSS),在终端设备接入网络侧设备的过程中,需要搜索PSS和SSS,其中,PSS使用自相关特性(英文全称:zadoff-chu,英文简称:ZC)序列产生,用于区别扇区,SSS使用伪随机序列产生,用于区别基站。
该终端设备也可以是网络侧设备覆盖范围之外的远端终端设备,若远端终端设备要接入该网络侧设备,可通过中继设备来实现,具体本发明不作赘述。
为解决上述技术问题,本发明实施例主要提供以下技术方案:
方案一、将用于指示波束的信息携带在无线帧中的部分正交频分复用(英文全称:Orthogonal Frequency Division Multiplexing,英文简称:OFDM)符号中,该部分的OFDM符号包括同步信号和物理广播信道(英文全称:Physical Boardcast Channel,英文简称:PBCH)域,然后将无线帧下发给终端设备,在不扩展OFDM符号的前提下,使用PBCH域实现波束的信息的下发,不需要占用额外的子载波,该方案一减少了下行系统开销,即一定程度上节约携带波束的信息所占的资源空间。
需要说明的是,无线帧可以是:包括至少两个子帧,每个子帧包括多个OFDM符号。无线帧还可以是:直接包括多个OFDM符号。本发明实施例不限于具体的帧格式,对帧格式不清楚的地方,可以参考现有LTE的时分复用(英文全称:Time Duplex Division,英文简称:TDD)帧。
方案二、将广播信号与同步信号组成一个复用块,在广播信号的PBCH域中携带用于指示波束的信息,然后下发给终端设备,该PBCH域与同步信号可以频分复用或者时分复用,同一个复用块使用相同的一个或至少两个波束发送给终端设备,由于广播信号的编码调制方式与同步信号的编码调制方式不同,相较于同步信号的编码调制方式,使用广播信号的PBCH域携带用于指示波束的信息,能够减少用于指示波束的信息的资源占用空间。由此可见,通过这种方式下发复用块,同样能节省资源,也能够降低终端设备解调的复杂度。此外,该复用块也可称之为合成信号或者资源块,具体名称本发明不作限定。
通过以上两种方案,既能减少携带用于指示波束的信息所需的资源,由于PBCH域的传输特性,一定程度上还能提高该信息的可靠性。
请参照图1,以下对本发明提供一种通信的方法进行举例说明,网络侧设备通过遍历各方向的波束以保证一定范围内的覆盖(包括全向覆盖或定向覆盖),网络侧设备需要为这些方向的波束设计波束ID,并将波束ID发送给各终端设备,以便终端设备通过波束扫描、监听物理广播信道等方式识别波束的波束ID。本发明实施例包括:
101、网络侧设备生成至少一个无线帧。
其中,每个所述无线帧包括至少一个OFDM符号,该无线帧至少存在部分包括同步信号和PBCH域的OFDM符号。
网络侧设备主要通过以下两种方式将用于指示波束的信息的信息下发给终端设备。
方式一中:将用于指示波束的信息放置于包含同步信号的OFDM符号的PBCH域中。
比如,如图2所示,第一OFDM符号为子帧号=0的子帧中的任意OFDM符号和子帧号=25的子帧中的OFDM符号,可分别在子帧号=0的子帧中的第一OFDM符号和索引号=25的子帧的第一OFDM符号中的PBCH域设置用于指示波束的信息。
方式二中:将广播信号与同步信号组成一个复用块,一个复用块可包括至少一个OFDM符号,并在该广播信号的PBCH域中携带用于指示波束的信息。
相应的,在方式二中,每个所述无线帧包括至少一个复用块,所述复用块包括广播信号和同步信号,所述广播信号的PBCH域包括用于指示波束的信息,在包括多个复用块时,多个复用块中至少存在两个在时域上连续的复用块。所述用于指示波束的信息包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息中的至少一项。其中,每一个复用块可通过相同的一个波束或者至少两个波束进行发送,即每个复用块中的每一个OFDM符号都采用相同的一个波束或至少两个波束进行发送。且多个复用块中至少存在两个复用块通过不同的波束发送,即所述至少两个复用块携带的波束编号不同,所述至少两个复用块携带的用于指示波束编号的参考信号序列不同,或所述至少两个复用块携带的用于指示波束编号的参考信号资源编号不同。
在实际应用场景中,所述广播信号可与所述同步信号可频分复用或时分复用,同步信号包括PSS及SSS,且可选的,每个复用块中的包括的PSS及SSS个数均为1个。如图3中的(a)和(d)为广播信号与同步信号时分复用的一种无线帧结构,复用块1和复用块2均由PSS、SSS和PBCH域组成,复用块1中的PBCH域与PSS、SSS频分复用。如图3中的(b)和(c)为广播信号与同步信号频分复用的一种无线帧结构,复用块1和复用块2均由PSS、SSS和PBCH域组成,复用块1中的PBCH域与PSS、SSS频分复用。
此外,由于所述同步信号包括主同步信号和辅同步信号,那么方式二中,所述主同步信号可与所述辅同步信号频分复用或时分复用,如图3中的(a)、(b)和(d)为PSS域SSS时分复用的一种无线帧结构,图3中的(c)则是PSS与SSS频分复用的一种无线帧结构。方式一和方式二可结合使用,也可将方式一作为方式二的一种具体的实施例,具体结合的方式本发明不作限定。
由于终端设备可根据该无线帧的帧号、OFDM符号所在的子帧对应的子帧号、接收该OFDM符号的天线端口号及OFDM符号的索引信息得到波束的信息,那么,网络侧设备携带在PBCH域中的用于指示波束的信息主要分下述几种情况:
a、在PBCH域中携带第一OFDM符号的索引信息,该第一OFDM符号的索引信息包括第一OFDM符号的符号标识或者第一OFDM符号的编号。
b、在PBCH域中携带波束的索引信息,该波束的索引信息为波束的标识或者波束的编号。其中,波束的索引信息可以解释为同步块时间索引SS block time index或者同步块索引SS block index。
c、在PBCH域中携带复用块的索引信息,该复用块的索引信息为复用块的块标识或者复用块的编号。
d、在PBCH域中携带同步块时间索引SS block time index或者同步块索引SS block index。 其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
其中,上述a和b和d适用于方式一和方式二,c仅适用于方式二。在方式一下,PBCH域可携带a和b、d中的至少一项;在方式二下,PBCH域可携带a、b和c、d中的至少一项。
举例来说,如图2所示,每个无线帧的0号子帧及25号子帧用来做下行同步扫描,每个子帧的每个OFDM符号携带同步信号和PBCH域,并在该PBCH域携带该OFDM符号ID。同一个OFDM符号可发射出m个波束,每个子帧包含(n+1)个OFDM符号,一共需要两个无线帧即4个子帧才可将所有方向的下行波束遍历完,则总共的波束数目为4*m*(n+1),而每个子帧的OFDM符号中携带的OFDM符号ID为0,1,…,n,若终端设备与某个波束同步,那么终端设备可以根据解得的OFDM符号ID、波束的天线端口号、无线帧的帧号及OFDM符号所在的子帧对应的子帧号得到该波束的编号,然后再将得到的波束的编号上报至网络侧设备。
其中,若同步的无线帧的帧号为偶数且子帧号为0,则波束的编号为i*m+p;若同步的无线帧的帧号为偶数且子帧号为25;则波束的编号为(n+i+1)*m+p;若同步的无线帧的帧号为奇数且子帧号为0,则波束的编号为(2n+i+2)*m+p;若同步的无线帧的帧号为奇数且子帧号为25,则波束的编号为(3n+i+3)*m+p。
102、网络侧设备将至少一个所述无线帧发送至终端设备。
103、终端设备接收接入网发送的至少一个无线帧,并根据无线帧中所述用于指示波束的信息来识别波束。
由于同一个OFDM符号可发射多个波束,不同的波束分别由不同的天线端口发射出,那么由同一个OFDM符号发射出的多个波束可共享一个OFDM符号的索引信息,由于OFDM符号具有唯一的索引信息,所以终端设备在识别波束时,可通过天线端口号区分来自同一个OFDM符号的波束。那么,根据同步信号需要的无线帧的数量,终端设备识别波束的情况主要分下述几种:
1、同步信号仅需要放在一个无线帧即可遍历所有方向的波束时。
终端设备通过检测PBCH获取第一OFDM符号的索引信息或复用块的索引信息,通过接收波束获取接收波束的天线端口号、获取所述第一OFDM符号所在的子帧的帧号,然后,终端设备根据所述第一OFDM符号的索引信息(或复用块的索引信息)、天线端口号和第一OFDM符号所在的子帧的帧号来获取波束的索引信息,从而识别接收波束。
2、同步信号仅需要放在两个以上的无线帧才可遍历所有方向的波束时。
终端设备则需要获取第一OFDM符号的索引信息或复用块的索引信息,接收波束的天线端口号、获取所述第一OFDM符号所在的子帧的帧号以及第一OFDM符号所在的无线帧的帧号,然后终端设备便可根据所述第一OFDM符号的索引信息(或复用块的索引信息)、天线端口号、第一OFDM符号所在的子帧的帧号和第一OFDM符号所在的无线帧的帧号来获取波束的索引信息,从而识别接收波束。
本发明实施例中,通过将用于指示波束的信息携带在PBCH域中,在不需要扩展同步信号的前提下,不需要占用额外的子载波,即可减少下行系统的开销。以及将用于指示波束的信息携带在广播信号的PBCH域中,由于编码调制到广播信号中的该信息相较于现有机制所占的资源空间更小,所以能够进一步减少下行系统的开销。由此可见,与现有机制相比,两种方 式所占用的子载波较少,所以能够减少下行系统的开销。
此外,由于采用PBCH域传输用于指示波束的信息,使得终端设备在接收到无线帧后,能够直接对接收到的PBCH域进行解调,从而简化终端设备解调的复杂度,一定程度上也能减少盲检,并且接收物理广播信道信息也能提高传输的可靠性。此外,PBCH域所占用的资源比较少,进一步减少资源的开销。
以上对本发明中一种通信的方法进行说明,以下对执行上述通信的方法的网络侧设备和终端设备分别进行描述。
一、参照图4,对网络侧设备40进行说明,网络侧设备40包括:
处理模块401,用于生成无线帧,所述无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号中的第一OFDM符号包括同步信号和PBCH域,所述PBCH域包括用于指示波束的信息。或者,所述无线帧包括至少一个复用块,所述复用块包括同步信号和PBCH域,所述PBCH域包括用于指示波束的信息。
收发模块402,用于将所述处理模块401生成的所述无线帧发送至终端设备,使得终端设备能够根据获取到的波束的信息识别波束,并通过识别的波束与网络侧设备通信。
可选地,所述用于指示波束的信息为第一OFDM符号的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index,所述第一OFDM符号的索引信息包括第一OFDM符号的符号标识或者第一OFDM符号的编号。或者,所述用于指示波束的信息包括波束的索引信息,所述波束的索引信息为波束的标识或者波束的编号。其中,SS block time index可以用于指示该SS block是属于SS block burst set中的第几个block,SS block time index也可以用于指示该SS block是属于该SS block burst中的第几个block。
可选地,所述用于指示波束的信息包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息中的至少一项。
本发明实施例中,处理模块401生成包括具有上述PBCH域的第一OFDM符号的无线帧,在上述PBCH域中携带用于指示波束的信息,或者生成包含上述复用块的无线帧,在复用块的PBCH域中携带用于指示波束的信息,通过这两种指示波束的信息的方式,都能减少指示波束的信息所占的资源,并且也能够提高传输波束的信息的稳定性。
二、参照图5,对终端设备50进行说明,终端设备50包括收发模块501和处理模块502,在终端设备50进行波束同步过程中,收发模块501接收来自网络侧设备的无线帧。
由处理模块502根据所述收发模块501获取的所述用于指示波束的信息,获取波束的标识。然后,所述收发模块501将所述处理模块502获取的所述波束的标识发送至所述网络侧设备。
其中,所述无线帧可包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息。或者,所述无线帧所述无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息。
若所述用于指示波束的信息为第一OFDM符号的索引信息,所述处理模块502具体用于:
根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
若所述用于指示波束的信息为波束的索引信息,所述处理模块502具体用于:
根据所述波束的索引信息即可获取所述波束的标识。
若所述用于指示波束的信息为第一OFDM符号的索引信息,所述处理模块502具体用于:
根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
若所述用于指示波束的信息为SS block time index,所述处理模块502具体用于:
将SS block time index作为波束的标识使用;或者根据SS block time index和接收该SS block的天线端口号,来获取波束的标识;或者根据所述SS block time index和接收所述SS block的天线端口号、所述无线帧的帧号以及所述SS block所在的子帧对应的子帧号,获取所述波束的标识。
在图4和图5对应的实施例中,无线帧中所包含的同步信号、PBCH域、以及所携带的信息,所携带的信息的等特征的具体定义均可参考前述方法实施例,且本发明实施例中的网络侧设备或终端设备能够执行前述各方法实施例(包括图1-图3所示的实施例)中的任意所描述的内容,此处不再赘述。
需要说明的是,在图4或图5所对应的实施例中的收发模块(包括接收模块和发送模块)对应的实体设备可以为收发器(包括接收器和发送器),处理模块对应的实体设备可以为处理器。图4或图5所示的装置可以具有如图6所示的结构,当有一种装置具有如图6所示的结构时,图6中的处理器和收发器实现前述对应该装置的装置实施例提供的处理模块和收发模块相同或相似的功能,图6中的存储器存储处理器执行上述通信的方法时需要调用的程序代码。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(英文全称:Read-Only Memory,英文简称:ROM)、随机存取存储器(英文全称:Random Access Memory,英文简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上对本发明所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (40)

  1. 一种通信的方法,其特征在于,所述方法包括:
    生成一个或多个无线帧,所述每一个无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号中的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    将所述无线帧发送至终端设备。
  2. 根据权利要求1所述的方法,其特征在于,所述用于指示波束的信息包括第一OFDM符号的索引信息,所述第一OFDM符号的索引信息包括第一OFDM符号的符号标识或者第一OFDM符号的编号。
  3. 根据权利要求1所述的方法,其特征在于,所述用于指示波束的信息为波束的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index,其中,所述波束的索引信息为波束的标识或者波束的编号。
  4. 根据权利要求1~3任意一项所述的方法,其特征在于,所述同步信号包括主同步信号和辅同步信号。
  5. 一种通信的方法,其特征在于,所述方法包括:
    接收来自网络侧设备的一个或多个无线帧,所述每一个无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    根据所述用于指示波束的信息,获取波束的标识;
    将所述波束的标识发送至所述网络侧设备。
  6. 根据权利要求5所述的方法,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;所述根据所述用于指示波束的信息,获取波束的标识,包括:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
  7. 根据权利要求5所述的方法,其特征在于,所述用于指示波束的信息为波束的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index。
  8. 根据权利要求5所述的方法,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;
    所述根据所述用于指示波束的信息,获取波束的标识,包括:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
  9. 一种通信的方法,其特征在于,所述方法包括:
    生成一个或多个无线帧,所述每一个无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    将所述无线帧发送至终端设备。
  10. 根据权利要求9所述的方法,其特征在于,同一个复用块承载在相同的波束发送至所述终端设备。
  11. 根据权利要求9或10所述的方法,其特征在于,所述用于指示波束的信息包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息、或者同步块时间索引SS block time index或者同步块索引SS block index中的至少一项。
  12. 根据权利要求9~11任意一项所述的方法,其特征在于,所述PBCH域与所述同步信号频分复用或时分复用。
  13. 根据权利要求9~12任意一项所述的方法,其特征在于,所述同步信号包括主同步信号和辅同步信号,所述主同步信号与所述辅同步信号频分复用或时分复用。
  14. 根据权利要求9所述的方法,其特征在于,当所述无线帧包括多个复用块时,所述多个复用块中至少存在两个复用块通过不同的波束发送。
  15. 根据权利要求9~14任意一项所述的方法,其特征在于,所述每个复用块中包括的主同步信号和辅同步信号的个数均为1。
  16. 一种通信的方法,其特征在于,所述方法包括:
    接收来自网络侧设备的一个或多个无线帧,所述每一个无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    根据所述用于指示波束的信息,获取波束的标识;
    将所述波束的标识发送至所述网络侧设备。
  17. 根据权利要求16所述的方法,其特征在于,所述用于指示波束的信息包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息、或者同步块时间索引SS block time index或者同步块索引SS block index中的至少一项。
  18. 根据权利要求17所述的方法,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;所述根据所述用于指示波束的信息,获取波束的标识,包括:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
  19. 根据权利要求17所述的方法,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;
    所述根据所述用于指示波束的信息,获取波束的标识,包括:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
  20. 根据权利要求17所述的方法,其特征在于,所述用于指示波束的信息为复用块的索引信息;
    所述根据所述用于指示波束的信息,获取波束的标识,包括:
    根据所述复用块的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
  21. 一种终端设备,其特征在于,所述终端设备包括:
    收发模块,用于接收来自网络侧设备的一个或多个无线帧,所述每一个无线帧包括至少一个正交频分复用OFDM符号,其中,所述至少一个OFDM符号的第一OFDM符号包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    处理模块,用于根据所述收发模块获取的所述用于指示波束的信息,获取波束的标识;
    所述收发模块还用于将所述处理模块获取的所述波束的标识发送至所述网络侧设备。
  22. 根据权利要求21所述的终端设备,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;所述处理模块具体用于:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
  23. 根据权利要求19所述的终端设备,其特征在于,所述用于指示波束的信息为波束的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index。
  24. 根据权利要求21所述的终端设备,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;
    所述处理模块具体用于:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
  25. 一种终端设备,其特征在于,所述终端设备包括:
    收发模块,用于接收来自网络侧设备的一个或多个无线帧,其中,所述每一个无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    处理模块,用于根据所述收发模块获取的所述用于指示波束的信息,获取波束的标识;
    所述收发模块还用于将所述处理模块获取的所述波束的标识发送至所述网络侧设备。
  26. 根据权利要求25所述的终端设备,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;所述处理模块具体用于:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号,获取所述波束的标识。
  27. 根据权利要求25所述的终端设备,其特征在于,所述用于指示波束的信息为波束的索引信息或者同步块时间索引SS block time index或者同步块索引SS block index。
  28. 根据权利要求25所述的终端设备,其特征在于,所述用于指示波束的信息为第一OFDM符号的索引信息;
    所述处理模块具体用于:
    根据所述第一OFDM符号的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
  29. 根据权利要求25所述的终端设备,其特征在于,所述用于指示波束的信息为复用块的索引信息;
    所述处理模块具体用于:
    根据所述复用块的索引信息和接收所述第一OFDM符号的天线端口号、所述无线帧的帧号以及所述第一OFDM符号所在的子帧对应的子帧号,获取所述波束的标识。
  30. 根据权利要求25~29所述的终端设备,其特征在于,所述每个复用块中包括的主同步信号和辅同步信号的个数均为1。
  31. 一种网络设备,其特征在于,包括:
    处理模块,用于生成至少一个无线帧,其中,所述每个无线帧包括至少一个复用块,所述 复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    收发模块,用于将所述处理模块生成的所述无线帧发送至终端设备。
  32. 一种网络设备,其特征在于,包括至少一个处理器、存储器和收发器;
    其中,所述存储器用于存储程序代码,所述处理器用于调用所述存储器中的程序代码来执行以下操作:
    生成无线帧,其中,所述无线帧包括至少一个复用块,所述复用块包括同步信号和物理广播信道PBCH域,所述PBCH域包括用于指示波束的信息;
    所述收发器,将生成的所述无线帧发送至终端设备。
  33. 根据权利要求31或32所述的网络设备,其特征在于,同一个复用块承载在相同的波束发送至所述终端设备。
  34. 根据权利要求31~33任意一项所述的网络设备,其特征在于,所述用于指示波束的信息包括第一OFDM符号的索引信息、复用块的索引信息和波束的索引信息、或者同步块时间索引SS block time index或者同步块索引SS block index中的至少一项。
  35. 根据权利要求31~34任意一项所述的网络设备,其特征在于,所述PBCH域与所述同步信号频分复用或时分复用。
  36. 根据权利要去31~35任意一项所述的网络设备,其特征在于,所述同步信号包括主同步信号和辅同步信号,所述主同步信号与所述辅同步信号频分复用或时分复用。
  37. 根据权利要求31~36任意一项所述的网络设备,其特征在于,当所述无线帧包括多个复用块时,所述多个复用块中至少存在两个复用块通过不同的波束发送。
  38. 根据权利要求31~37任意一项所述的网络设备,其特征在于,所述每个复用块中包括的主同步信号和辅同步信号的个数均为1。
  39. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行所述权利要求1~4任意一项所述的方法,或者执行所述权利要求5~8任意一项所述的方法,或者执行所述权利要求9~15任意一项所述的方法,或者执行权利要求16~20任意一项所述的方法。
  40. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储由指令,当其在计算机上运行时,使得所述计算机执行所述权利要求1~4任意一项所述的方法,或者执行所述权利要求5~8任意一项所述的方法,或者执行所述权利要求9~15任意一项所述的方法,或者执行权利要求16~20任意一项所述的方法。
PCT/CN2017/090356 2016-11-17 2017-06-27 一种通信的方法及终端设备 WO2018090631A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197010573A KR20190045358A (ko) 2016-11-17 2017-06-27 통신 방법 및 단말 기기
EP17871910.0A EP3506581A4 (en) 2016-11-17 2017-06-27 COMMUNICATION METHOD AND DEVICE DEVICE
US16/414,247 US10756802B2 (en) 2016-11-17 2019-05-16 Communication method and terminal device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201611013807 2016-11-17
CN201611013807.4 2016-11-17
CN201710222042.3 2017-04-06
CN201710222042.3A CN108092930B (zh) 2016-11-17 2017-04-06 一种通信的方法及终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/414,247 Continuation US10756802B2 (en) 2016-11-17 2019-05-16 Communication method and terminal device

Publications (1)

Publication Number Publication Date
WO2018090631A1 true WO2018090631A1 (zh) 2018-05-24

Family

ID=62146078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090356 WO2018090631A1 (zh) 2016-11-17 2017-06-27 一种通信的方法及终端设备

Country Status (1)

Country Link
WO (1) WO2018090631A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111208A (zh) * 2009-12-25 2011-06-29 中兴通讯股份有限公司 一种第一类中继站接收系统信息的系统及方法
WO2011136266A1 (ja) * 2010-04-30 2011-11-03 三菱電機株式会社 移動体通信システム
CN104081828A (zh) * 2012-01-30 2014-10-01 诺基亚通信公司 用于支持灵活的物理广播信道和公共参考信号配置的信令机制
CN104115419A (zh) * 2011-12-16 2014-10-22 三星电子株式会社 在毫米波宽带通信中增强可靠性的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111208A (zh) * 2009-12-25 2011-06-29 中兴通讯股份有限公司 一种第一类中继站接收系统信息的系统及方法
WO2011136266A1 (ja) * 2010-04-30 2011-11-03 三菱電機株式会社 移動体通信システム
CN104115419A (zh) * 2011-12-16 2014-10-22 三星电子株式会社 在毫米波宽带通信中增强可靠性的方法和装置
CN104081828A (zh) * 2012-01-30 2014-10-01 诺基亚通信公司 用于支持灵活的物理广播信道和公共参考信号配置的信令机制

Similar Documents

Publication Publication Date Title
CN108092930B (zh) 一种通信的方法及终端设备
US11677607B2 (en) Method for transmitting information in communication system, base station and user equipment
JP6567593B2 (ja) 無線伝送システムにおけるユーザ機器位置特定のための方法およびシステム
KR102301825B1 (ko) 셀룰러 사물 인터넷 네트워크에서의 동기화 동작을 위한 방법 및 장치
CN105684324B (zh) 用于传输同步信号的系统和方法
JP6275252B2 (ja) D2d信号の伝送方法及び装置
RU2638030C1 (ru) Способ и устройство для синхронизации связи усройство-устройство
CN107926020B (zh) 终端装置、基站装置以及通信方法
US20220182200A1 (en) Methods and apparatus for configuring 5g new radio uplink positioning reference signals
CN113206731B (zh) 传输参考信号的方法和通信设备
EP4093143A1 (en) Terminal apparatus, base station apparatus, and communication methods
EP3278487B1 (en) Methods and apparatus for multiplexing transmission control information
JP2020536429A (ja) 通信方法及び通信装置
US10411860B2 (en) Information transmission method, base station, and user equipment
CN107409368A (zh) 同步信号的系统及方法
WO2020166898A1 (en) Methods, and apparatus for transmitting and receiving a positioning reference signal in a wireless communication system
CN107258099B (zh) 基于参考信号的授权辅助接入的用户设备装置及其装备
WO2018028608A1 (zh) 数据传输的方法和系统
CN104158619A (zh) 一种基于crs的lte信号屏蔽方法和系统
WO2018049995A1 (zh) 信息配置方法及装置
KR20190039566A (ko) 동기 신호를 송신 및 검출하는 방법 및 장치
US10009828B2 (en) User terminal and inter-terminal communication method
WO2018090631A1 (zh) 一种通信的方法及终端设备
WO2009082953A1 (fr) Procédé, système et dispositif de transmission par un canal synchrone
CN107592668B (zh) 传输信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17871910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017871910

Country of ref document: EP

Effective date: 20190328

Ref document number: 20197010573

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE