WO2018090434A1 - 一种宽带高效集成本振的t形太赫兹混频器 - Google Patents

一种宽带高效集成本振的t形太赫兹混频器 Download PDF

Info

Publication number
WO2018090434A1
WO2018090434A1 PCT/CN2016/111775 CN2016111775W WO2018090434A1 WO 2018090434 A1 WO2018090434 A1 WO 2018090434A1 CN 2016111775 W CN2016111775 W CN 2016111775W WO 2018090434 A1 WO2018090434 A1 WO 2018090434A1
Authority
WO
WIPO (PCT)
Prior art keywords
local oscillator
signal
frequency
shaped
intermediate frequency
Prior art date
Application number
PCT/CN2016/111775
Other languages
English (en)
French (fr)
Inventor
陈卓
邓建钦
年夫顺
姜万顺
张文兴
Original Assignee
中国电子科技集团公司第四十一研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电子科技集团公司第四十一研究所 filed Critical 中国电子科技集团公司第四十一研究所
Publication of WO2018090434A1 publication Critical patent/WO2018090434A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/16Multiple-frequency-changing

Definitions

  • the invention relates to the technical field of terahertz spectrum, in particular to a T-shaped terahertz mixer with broadband integrated high-efficiency local oscillator.
  • the terahertz spectrum is located between the microwave and the infrared and is a very important cross-cutting frontier. Due to its wide frequency band, narrow pulse, strong penetrability and good confidentiality, it has wide application potential in military applications such as radar, RCS characteristic reduction test, radio astronomy, satellite communication, safety detection and non-destructive testing. And value. With the deepening of terahertz theory and applied research, the scientific and systematic completion of the reception and analysis of terahertz electromagnetic wave signals is the cornerstone of terahertz theory and applied research.
  • the solid-state terahertz signal receiver comprehensively considers the performance index and the difficulty of the local oscillator, and mainly adopts a harmonic mixing scheme, and this scheme requires a high-performance local oscillator source to provide the local oscillator signal, and the local oscillator signal passes the frequency multiplication.
  • the amplifier and amplifier are up-converted to the terahertz band, and the signal requires coaxial to microstrip conversion, microstrip-to-waveguide conversion, and waveguide interconnection transmission in this transformation, so the loss is large and bulky throughout the process. The cost is high and the implementation is difficult.
  • the noise figure of the harmonic mixer has a close correlation with the harmonic order. The smaller the harmonic number is theoretically, the smaller the conversion loss is, the lower the noise figure is.
  • the schematic diagram of the current solid-state terahertz signal receiver uses the harmonic mixer 1 plus the local oscillator source link 2, wherein the harmonic mixer 1 circuit implementation scheme is shown in Figure 2.
  • the RF matching circuit 2-3 is transmitted to the anti-parallel diode 2-4, and the local oscillator signal 1-2 is doubled and amplified by the local oscillator source link 2, and becomes the local oscillator signal 1-5 after the multiplication and amplification.
  • the local oscillator is reduced by the waveguide 2-5, transmitted to the anti-parallel diode 2-4 via the local oscillator duplex probe 2-6 and the local oscillator filter 2-7, and is operated by the anti-parallel diode 2-4.
  • the intermediate frequency signal is output to the intermediate frequency output port 2-9 through the intermediate frequency filter 2-8, and the high performance frequency doubled amplified local oscillator signal 1-5 provided in the solution, for example, needs the local oscillator source link 2 to provide,
  • the oscillating signal 1-2 is upconverted to the terahertz band by frequency multipliers 1-6, 1-7 and amplifiers 1-4, and the signal requires a coaxial to microstrip transform in this transformation, microstrip to The waveguide transforms and the waveguide interconnects the transmission, so the loss is large in the whole process, and the volume is large, the cost is high, and the implementation is difficult.
  • the object of the present invention is to solve the above-mentioned deficiencies, and propose a wide-band and high-efficiency integrated T-type terahertz mixer which integrates the local oscillator source link and the harmonic mixer to greatly reduce signal loss.
  • a wide-band, high-efficiency integrated local oscillator T-shaped terahertz mixer includes an upper cavity and a lower cavity, the upper cavity and the lower cavity are butted to form a waveguide structure, and the upper cavity is provided with a T-shaped circuit.
  • the T-shaped circuit includes a radio frequency signal path, a local oscillator signal path and an intermediate frequency signal path.
  • the radio frequency signal and the local oscillator signal merge at opposite parallel diodes through respective paths, and the local oscillator signal path includes a local oscillator input port connected in sequence, and the local oscillator is low.
  • the pass filter, the frequency multiplier, the local high-pass filter, and the local oscillator duplexer, the output terminals of the anti-parallel diodes are sequentially connected to the intermediate frequency filter and the intermediate frequency output port.
  • the radio frequency path comprises a radio frequency reducing waveguide, a radio frequency probe and a radio frequency matching circuit which are sequentially connected.
  • the upper cavity is provided with an intermediate frequency input port and a local oscillator input port.
  • the upper cavity is provided with a radio frequency input waveguide at a central axis after the lower cavity is butted.
  • the lower surface of the upper cavity is provided with a sinking groove, and the T-shaped circuit is located in the sinking groove.
  • the radio frequency signal is input to the anti-parallel diode via the radio frequency reducing waveguide input through the radio frequency probe and the radio frequency matching circuit;
  • the local oscillator signal is input through the local oscillator input port, and transmitted to the frequency multiplier through the local low-pass filter. After the frequency multiplier processes, the multiplied signal is output, and the multiplied signal is transmitted through the local high-pass filter and the local oscillator duplexer.
  • the intermediate frequency signal is output through the down-conversion of the anti-parallel diode, and the intermediate frequency signal is output to the intermediate frequency output port via the intermediate frequency filter.
  • the invention has the beneficial effects that the integrated design of the local oscillator source link and the harmonic mixer can greatly reduce the loss caused by the coaxial microstrip conversion and the waveguide interconnection, improve the efficiency, and can effectively reduce
  • the size of the small solid-state receiving link, cost reduction, reliability and manufacturability can also be improved.
  • a local low-pass filter is added to the local oscillator path to ensure the purity of the signal; the original multi-frequency link is directly integrated into the local oscillator channel, and the entire local oscillator link is replaced by a frequency multiplier, which can be reduced.
  • the volume of the entire receiving link reduces the cost; the entire local oscillator link signal is converted from a coaxial to microstrip-microstrip to waveguide-waveguide interconnection-waveguide to microstrip, which directly becomes a process of coaxial microstrip.
  • the intermediate process of multiple conversions of different transmission media is completely eliminated, which can greatly reduce the loss caused by the transition of the transmission form and improve the efficiency.
  • FIG. 1 is a schematic structural diagram of a solid-state terahertz signal receiver
  • 2 is a schematic diagram of a harmonic mixer circuit
  • FIG. 3 is a schematic structural view of a T-shaped terahertz mixer of the broadband integrated high-frequency local oscillator
  • FIG. 4 is a hierarchical diagram of a T-shaped terahertz mixer of the broadband integrated local oscillator
  • FIG. 5 is a schematic diagram of an upper cavity of a T-shaped terahertz mixer of the broadband integrated high-frequency local oscillator
  • FIG. 6 is a schematic diagram of a lower cavity of a T-shaped terahertz mixer of the broadband integrated high-frequency local oscillator
  • Figure 7 is a schematic diagram of a T-shaped terahertz mixer circuit.
  • 1 is a harmonic mixer
  • 1-1 is a radio frequency signal
  • 1-2 is a local oscillator signal
  • 1-3 is a mixer
  • 1-4 is an amplifier
  • 1-5 is a local oscillator after frequency doubling amplification.
  • Signal 1-6 is the double frequency multiplier
  • 2 is the local oscillator source link
  • 2-2 is RF probe
  • 2-3 is RF matching circuit
  • 2-4 is reverse parallel diode
  • 2-5 is vibration reduction waveguide
  • 2-6 is vibration double probe Pin
  • 2-7 is the local oscillator filter
  • 2-8 is the IF filter
  • 2-9 is the IF output port
  • 3-1 is the IF input port
  • 3-2 is the local oscillator input port
  • 3-3 is the upper cavity Body
  • 3-4 is the lower cavity
  • 3-5 is the RF input waveguide
  • 4 is the T-shaped circuit
  • 5 is the sinking slot
  • 6 is the local oscillator duplexer
  • 7 is the local high
  • a wide-band high-efficiency integrated local oscillator T-shaped terahertz mixer includes an upper cavity 3-3 and a lower cavity 3-4, an upper cavity 3-3 and a lower cavity.
  • the 3-4 is butted to form a waveguide structure
  • the lower surface of the upper cavity 3-3 is provided with a sinking groove 5
  • the T-shaped circuit 4 is located in the sinking slot 5.
  • the T-shaped circuit 4 includes a radio frequency signal path, a local oscillator signal path and an intermediate frequency signal path. The RF signal and the local oscillator converge through the respective paths at the anti-parallel diodes 2-4.
  • the RF path includes the RF-reduction waveguide 2-1, the RF probe 2-2, and the RF matching circuit 2-3, which are sequentially connected.
  • the signal path includes a local oscillator input port 3-2, a local oscillator low-pass filter 9, a frequency multiplier 8, a local high-voltage filter 7 and a local oscillator duplexer 6, and an output of the anti-parallel diode 2-4.
  • the terminal is connected to the intermediate frequency filter 2-8 and the intermediate frequency output port 2-9 in sequence.
  • the upper cavity 3-3 is provided with an intermediate frequency input port 3-1 and a local oscillator input port 3-2, and the upper cavity 3-3 is connected with the lower cavity 3-4 to be provided with a radio frequency input waveguide 3- 5.
  • the RF signal is input through the RF-reduction waveguide 2-1, and is sequentially transmitted to the anti-parallel diode 2-4 via the RF probe 2-2 and the RF matching circuit 2-3.
  • the RF signal is concentrated by the RF-reduced waveguide, and directly acts. On the RF probe, the energy loss is reduced by reducing the distance of the RF probe to the mixer.
  • the local oscillator signal is directly applied to the triple frequency diode through the coaxial microstrip transmission line, and the signal is multiplied to the millimeter wave. In the frequency band, the local oscillator signal directly acts on the mixing diode to generate an intermediate frequency signal, which is output to the intermediate frequency interface through the intermediate frequency filter.
  • the local oscillator signal is input through the local oscillator input port 3-2, and is transmitted to the frequency multiplier 8 through the local low-pass filter 9. After being processed by the frequency multiplier 8, the multiplied signal is output, and the multiplied signal passes through the local high-pass filter 7 And the local oscillator duplexer 6 is transmitted to the anti-parallel diode 2-4, and the intermediate frequency signal is output through the down-conversion of the anti-parallel diode 2-4, and the intermediate frequency signal is output to the intermediate frequency output port 2-9 via the intermediate frequency filter 2-8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

本发明公开了一种宽带高效集成本振的T形太赫兹混频器,具体涉及太赫兹频谱技术领域。该宽带高效集成本振的T形太赫兹混频器,包括上腔体和下腔体,上腔体和下腔体对接形成波导结构,上腔体内设有T形电路,T形电路包括射频信号通路、本振信号通路和中频信号通路,射频信号与本振信号经过各自通路在反向并联二极管处汇合,本振信号通路包括依次连接的本振输入端口、本振低通滤波器、倍频器、本振高通滤波器和本振双工器,反向并联二极管的输出端依次连接中频滤波器和中频输出端口。

Description

一种宽带高效集成本振的T形太赫兹混频器 技术领域
本发明涉及太赫兹频谱技术领域,具体涉及一种宽带高效集成本振的T形太赫兹混频器。
背景技术
太赫兹频谱位于微波和红外之间,是一个非常重要的交叉前沿领域。由于其具有宽频带、窄脉冲、强穿透性及保密性好等特点,在雷达、RCS特性缩比测试、射电天文、卫星通讯、安全检测和无损检测等军事应用中,具有广泛的应用潜力和价值。随着太赫兹理论及应用研究的不断深入,科学、系统地完成太赫兹电磁波信号的接收和分析,是太赫兹理论和应用研究的基石。目前固态太赫兹信号接收机,综合考虑性能指标和本振实现难度,主要采用谐波混频的方案,而这种方案需要高性能的本振源来提供本振信号,本振信号通过倍频器和放大器上变频至太赫兹频段,而信号在这种变换中需要同轴至微带的变换,微带至波导的变换,波导互联传输,因此在整个过程中损耗较大,同时体积大,成本高,实现难度大。谐波混频器的噪声系数与谐波次数有着紧密的相关性,理论上谐波次数越小,变频损耗越小噪声系数越低,但对本振要求较高,实现难度比较大,它们相互制约,因此要实现高性能的太赫兹接收机,一方面要解决大功率输出的高本振问题,从方案上降低谐波次数,提高混频器的性能指标,另一方面降低混频器自身的变频损耗,提高变频的效率。
如图1所示,为目前固态太赫兹信号接收机示意图,均采用谐波混频器1加本振源链路2的方案,其中谐波混频器1电路实现方案如图2所示,主要采用射频探针2-2、本振双工探针2-6相结合的电路形式,具体的,射频信号1-1经过射频减高波导2-1输入,经射频探针2-2,射频匹配电路2-3传输至反向并联二极管2-4处,本振信号1-2经过本振源链路2倍频和放大作用,成为倍频放大后的本振信号1-5,通过本振减高波导2-5,经过本振双工探针2-6和本振滤波器2-7传输至反向并联二极管2-4,通过反向并联二极管2-4作用,下变频出的中频信号经过中频滤波器2-8输出至中频输出端口2-9,该方案中提供的高性能倍频放大后的本振信号1-5,例如需要本振源链路2来提供,本振信号1-2通过倍频器1-6、1-7和放大器1-4上变频至太赫兹频段,而信号在这种变换中需要同轴至微带的变换,微带至波导的变换,波导互联传输,因此在整个过程中损耗较大,同时体积大,成本高,实现难度大。
发明内容
本发明的目的是针对上述不足,提出了一种将本振源链路和谐波混频器进行一体化设计,大大降低信号的损耗的宽带高效集成本振的T形太赫兹混频器。
本发明具体采用如下技术方案:
一种宽带高效集成本振的T形太赫兹混频器,包括上腔体和下腔体,所述上腔体和下腔体对接形成波导结构,所述上腔体内设有T形电路,T形电路包括射频信号通路、本振信号通路和中频信号通路,射频信号与本振信号经过各自通路在反向并联二极管处汇合,本振信号通路包括依次连接的本振输入端口、本振低通滤波器、倍频器、本振高通滤波器和本振双工器,反向并联二极管的输出端依次连接中频滤波器和中频输出端口。
优选地,所述射频通路包括依次连接的射频减高波导、射频探针和射频匹配电路。
优选地,所述上腔体上设有中频输入端口和本振输入端口。
优选地,所述上腔体与下腔体对接后的中心轴线处设有射频输入波导。
优选地,所述上腔体的下表面设有沉槽,T形电路位于沉槽内。
优选地,射频信号经射频减高波导输入,依次经过射频探针和射频匹配电路传输至反向并联二极管;
本振信号经本振输入端口输入,经过本振低通滤波器传输至倍频器,经倍频器处理后输出倍频信号,倍频信号经过本振高通滤波器和本振双工器传输至反向并联二极管,通过反向并联二极管的下变频作用输出中频信号,中频信号经中频滤波器输出至中频输出端口。
本发明具有的有益效果是:将本振源链路和谐波混频器进行一体化设计,可以大大降低信号因同轴微带转换和波导互联带来的损耗,提高效率,同时能够有效减小固态接收链路的体积,降低成本,可靠性和可生产性也能得到提高。在本振通路上增加了本振低通滤波器,保证了信号的纯度;直接将原来的倍频链路集成到本振通道上,将整个本振链路由倍频器代替,可减小整个接收链路的体积,降低成本;整个本振链路信号由同轴转微带-微带转波导-波导互联-波导转微带的复杂过程,直接变成同轴换微带的过程,彻底消除了不同传输介质多次转换的中间过程,可大大降低信号因传输形式的转变而带来的损耗,提高效率。
附图说明
图1为固态太赫兹信号接收机结构示意图;
图2为谐波混频器电路示意图;
图3为该宽带高效集成本振的T形太赫兹混频器结构示意图;
图4为该宽带高效集成本振的T形太赫兹混频器分层示意图;
图5为该宽带高效集成本振的T形太赫兹混频器上腔示意图;
图6为该宽带高效集成本振的T形太赫兹混频器下腔示意图;
图7为T形太赫兹混频电路示意图。
其中,1为谐波混频器,1-1为射频信号,1-2为本振信号,1-3为混频器,1-4为放大器,1-5为倍频放大后的本振信号,1-6为二倍频器,1-7三倍频器,2为本振源链路,2-1 为射频减高波导,2-2为射频探针,2-3为射频匹配电路,2-4为反向并联二极管,2-5为本振减高波导,2-6为本振双工探针,2-7为本振滤波器,2-8为中频滤波器,2-9为中频输出端口,3-1为中频输入端口,3-2为本振输入端口,3-3为上腔体,3-4为下腔体,3-5为射频输入波导,4为T形电路,5为沉槽,6为本振双工器,7为本振高通滤波器,8为倍频器,9为本振低通滤波器。
具体实施方式
下面结合附图和具体实施例对本发明的具体实施方式做进一步说明:
如图3至图7所示,一种宽带高效集成本振的T形太赫兹混频器,包括上腔体3-3和下腔体3-4,上腔体3-3和下腔体3-4对接形成波导结构,上腔体3-3的下表面设有沉槽5,T形电路4位于沉槽5内,T形电路4包括射频信号通路、本振信号通路和中频信号通路,射频信号与本振经过各自通路在反向并联二极管2-4处汇合,射频通路包括依次连接的射频减高波导2-1、射频探针2-2和射频匹配电路2-3,本振信号通路包括依次连接的本振输入端口3-2、本振低通滤波器9、倍频器8、本振高通滤波器7和本振双工器6,反向并联二极管2-4的输出端依次连接中频滤波器2-8和中频输出端口2-9。
上腔体3-3上设有中频输入端口3-1和本振输入端口3-2,上腔体3-3与下腔体3-4对接后的中心轴线处设有射频输入波导3-5。
射频信号经射频减高波导2-1输入,依次经过射频探针2-2和射频匹配电路2-3传输至反向并联二极管2-4,射频信号通过射频减高波导将能量汇聚,直接作用在射频探针上,通过减小射频探针到混频器的距离来减小能量损失,本振信号通过同轴转微带传输线,直接作用在三倍频二极管,将信号倍频至毫米波频段,本振信号直接作用在混频二极管上,产生中频信号,经过中频滤波器,输出到中频接口。
本振信号经本振输入端口3-2输入,经过本振低通滤波器9传输至倍频器8,经倍频器8处理后输出倍频信号,倍频信号经过本振高通滤波器7和本振双工器6传输至反向并联二极管2-4,通过反向并联二极管2-4的下变频作用输出中频信号,中频信号经中频滤波器2-8输出至中频输出端口2-9。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (6)

  1. 一种宽带高效集成本振的T形太赫兹混频器,包括上腔体和下腔体,所述上腔体和下腔体对接形成波导结构,其特征在于,所述上腔体内设有T形电路,T形电路包括射频信号通路、本振信号通路和中频信号通路,射频信号与本振信号经过各自通路在反向并联二极管处汇合,本振信号通路包括依次连接的本振输入端口、本振低通滤波器、倍频器、本振高通滤波器和本振双工器,反向并联二极管的输出端依次连接中频滤波器和中频输出端口。
  2. 如权利要求1所述的一种宽带高效集成本振的T形太赫兹混频器,其特征在于,所述射频通路包括依次连接的射频减高波导、射频探针和射频匹配电路。
  3. 如权利要求1或2所述的一种宽带高效集成本振的T形太赫兹混频器,其特征在于,所述上腔体上设有中频输入端口和本振输入端口。
  4. 如权利要求3所述的一种宽带高效集成本振的T形太赫兹混频器,其特征在于,所述上腔体与下腔体对接后的中心轴线处设有射频输入波导。
  5. 如权利要求4所述的一种宽带高效集成本振的T形太赫兹混频器,其特征在于,所述上腔体的下表面设有沉槽,T形电路位于沉槽内。
  6. 如权利要求4所述的一种宽带高效集成本振的T形太赫兹混频器,其特征在于,射频信号经射频减高波导输入,依次经过射频探针和射频匹配电路传输至反向并联二极管;
    本振信号经本振输入端口输入,经过本振低通滤波器传输至倍频器,经倍频器处理后输出倍频信号,倍频信号经过本振高通滤波器和本振双工器传输至反向并联二极管,通过反向并联二极管的下变频作用输出中频信号,中频信号经中频滤波器输出至中频输出端口。
PCT/CN2016/111775 2016-11-16 2016-12-23 一种宽带高效集成本振的t形太赫兹混频器 WO2018090434A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611007413.8A CN106533365B (zh) 2016-11-16 2016-11-16 一种宽带高效集成本振的t形太赫兹混频器
CN2016110074138 2016-11-16

Publications (1)

Publication Number Publication Date
WO2018090434A1 true WO2018090434A1 (zh) 2018-05-24

Family

ID=58353286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111775 WO2018090434A1 (zh) 2016-11-16 2016-12-23 一种宽带高效集成本振的t形太赫兹混频器

Country Status (2)

Country Link
CN (1) CN106533365B (zh)
WO (1) WO2018090434A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398691A (zh) * 2018-05-25 2018-08-14 中国工程物理研究院流体物理研究所 一种差频信号产生装置及方法
CN109150218A (zh) * 2018-10-12 2019-01-04 南京屹信航天科技有限公司 一种小型化odu接收通道模块
CN109787562A (zh) * 2019-01-10 2019-05-21 青岛海洋科学与技术国家实验室发展中心 超宽带毫米波变频模块及组件
CN109818683A (zh) * 2019-01-10 2019-05-28 北京理工大学 用于太赫兹频段空间波混频的体硅mems波导合路方法
CN111030600A (zh) * 2018-10-09 2020-04-17 中国科学院国家空间科学中心 一种有源偏置太赫兹谐波混频器
CN113098401A (zh) * 2021-04-14 2021-07-09 中国电子科技集团公司第三十八研究所 一种太赫兹d波段四次谐波混频器
CN113381779A (zh) * 2021-06-15 2021-09-10 中国科学院上海微系统与信息技术研究所 超宽带接收机
CN113572431A (zh) * 2021-07-27 2021-10-29 中国科学院国家空间科学中心 一种太赫兹固态基波混频器电路
CN116914391A (zh) * 2023-09-13 2023-10-20 电子科技大学 一种适用于二维阵列布局的太赫兹波导混频器
CN116996025A (zh) * 2023-09-27 2023-11-03 四川太赫兹通信有限公司 一种太赫兹镜像抑制混频器、通信电路及通信设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107911177B (zh) * 2017-12-21 2024-05-10 四川众为创通科技有限公司 太赫兹小型化多功能集成接收机前端
CN108832239B (zh) * 2018-06-06 2019-08-20 中国科学院国家空间科学中心 一种基于悬置微带电路的跨f-g频段的太赫兹双工器
CN109194347B (zh) * 2018-10-12 2024-01-23 南京屹信航天科技有限公司 一种用于小型化odu接收通道的中频电路
CN111880013B (zh) * 2020-08-18 2021-10-26 中电科思仪科技股份有限公司 消除射频源影响的太赫兹混频器变频损耗测试方法及系统
CN111969955B (zh) * 2020-08-27 2023-05-09 中电科思仪科技股份有限公司 基于波导传输线0.5THz~0.75THz宽带高效固态源及其工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611390A (zh) * 2012-03-12 2012-07-25 东南大学 W波段二次分谐波混频器
CN103684269A (zh) * 2013-12-16 2014-03-26 中国电子科技集团公司第四十一研究所 一种宽带可调谐1毫米次谐波混频器
CN104362421A (zh) * 2014-11-06 2015-02-18 电子科技大学 一种单基片集成的太赫兹前端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6009251B2 (ja) * 2012-07-13 2016-10-19 シャープ株式会社 ミリ波送信モジュール、およびミリ波送信装置
CN102843100B (zh) * 2012-08-15 2015-08-26 中国电子科技集团公司第四十一研究所 高效宽频全金属结构1毫米二倍频器
CN104377418B (zh) * 2014-11-06 2017-08-25 电子科技大学 基于集成技术的太赫兹多功能器件
CN104767490B (zh) * 2015-04-30 2017-11-14 中国电子科技集团公司第四十一研究所 一种宽带太赫兹偶次谐波混频电路及工作方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102611390A (zh) * 2012-03-12 2012-07-25 东南大学 W波段二次分谐波混频器
CN103684269A (zh) * 2013-12-16 2014-03-26 中国电子科技集团公司第四十一研究所 一种宽带可调谐1毫米次谐波混频器
CN104362421A (zh) * 2014-11-06 2015-02-18 电子科技大学 一种单基片集成的太赫兹前端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG JIANQUIN ET AL.: "The Technology of Terahertz Signal Generating and Receiving", JOURNAL MICROWAVES, no. S1, 15 March 2015 (2015-03-15) *
ZHUO CHEN ET AL.: "Design of a novel 170GHz-260GHz sub-harmonic mixer based on planar Schottky diodes", 2016 IEEE 9TH UK - EUROPE - CHINA WORKSHOP ON MILLIMETRE WAVES AND TERAHERTZ TE- CHNOLOGIES (UCMMT, 7 September 2016 (2016-09-07) *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398691A (zh) * 2018-05-25 2018-08-14 中国工程物理研究院流体物理研究所 一种差频信号产生装置及方法
CN108398691B (zh) * 2018-05-25 2023-10-17 中国工程物理研究院流体物理研究所 一种差频信号产生装置及方法
CN111030600A (zh) * 2018-10-09 2020-04-17 中国科学院国家空间科学中心 一种有源偏置太赫兹谐波混频器
CN111030600B (zh) * 2018-10-09 2023-05-16 中国科学院国家空间科学中心 一种有源偏置太赫兹谐波混频器
CN109150218A (zh) * 2018-10-12 2019-01-04 南京屹信航天科技有限公司 一种小型化odu接收通道模块
CN109150218B (zh) * 2018-10-12 2024-02-23 南京屹信航天科技有限公司 一种小型化odu接收通道模块
CN109818683A (zh) * 2019-01-10 2019-05-28 北京理工大学 用于太赫兹频段空间波混频的体硅mems波导合路方法
CN109787562A (zh) * 2019-01-10 2019-05-21 青岛海洋科学与技术国家实验室发展中心 超宽带毫米波变频模块及组件
CN109787562B (zh) * 2019-01-10 2023-06-20 青岛海洋科技中心 超宽带毫米波变频模块及组件
CN113098401A (zh) * 2021-04-14 2021-07-09 中国电子科技集团公司第三十八研究所 一种太赫兹d波段四次谐波混频器
CN113098401B (zh) * 2021-04-14 2022-09-30 中国电子科技集团公司第三十八研究所 一种太赫兹d波段四次谐波混频器
CN113381779B (zh) * 2021-06-15 2023-07-21 中国科学院上海微系统与信息技术研究所 超宽带接收机
CN113381779A (zh) * 2021-06-15 2021-09-10 中国科学院上海微系统与信息技术研究所 超宽带接收机
CN113572431A (zh) * 2021-07-27 2021-10-29 中国科学院国家空间科学中心 一种太赫兹固态基波混频器电路
CN116914391A (zh) * 2023-09-13 2023-10-20 电子科技大学 一种适用于二维阵列布局的太赫兹波导混频器
CN116914391B (zh) * 2023-09-13 2023-11-28 电子科技大学 一种适用于二维阵列布局的太赫兹波导混频器
CN116996025A (zh) * 2023-09-27 2023-11-03 四川太赫兹通信有限公司 一种太赫兹镜像抑制混频器、通信电路及通信设备
CN116996025B (zh) * 2023-09-27 2023-12-01 四川太赫兹通信有限公司 一种太赫兹镜像抑制混频器、通信电路及通信设备

Also Published As

Publication number Publication date
CN106533365B (zh) 2019-07-30
CN106533365A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
WO2018090434A1 (zh) 一种宽带高效集成本振的t形太赫兹混频器
CN107196608B (zh) 一种新型太赫兹频段宽带单片集成次谐波混频器
WO2018019311A1 (zh) 耐功率太赫兹二倍频非平衡式电路
CN104377418A (zh) 基于集成技术的太赫兹多功能器件
CN1331310C (zh) 基于三支线合成网络的高功率毫米波上变频功放组件
CN105048967A (zh) 一种340GHz八次谐波混频器
CN107342780B (zh) 一种新型的全固态太赫兹接收机前端
CN111371410B (zh) 一种太赫兹四次谐波混频器
CN103633943A (zh) 一种超宽带混频器
CN104142447A (zh) 一种高稳定大动态1毫米s参数测试系统
CN101510629A (zh) 半模基片集成波导双平衡混频器及其实现方法
CN109617621A (zh) 可调式的太赫兹小型化多功能集成射频前端
He et al. A broadband 630–720 GHz Schottky based sub-harmonic mixer using intrinsic resonances of hammer-head filter
CN107911177B (zh) 太赫兹小型化多功能集成接收机前端
Bryerton et al. A compact integrated 675–693 GHz polarimeter
CN111384898B (zh) 一种多模的肖特基倍频结构
CN110932672A (zh) 全频段太赫兹四倍频模块
WO2018214426A1 (zh) 一种Ka波段同轴波导内空间功率分配/合成器
CN107888149B (zh) 一种谐波混频倍频电路
US20230238998A1 (en) Hetero-integrated terahertz low-noise miniaturized image frequency rejection transceiver front-end
CN107941333B (zh) 基于单片集成技术的太赫兹低噪声辐射计前端
CN113534056B (zh) 一种宽带毫米波二次谐波混频器
CN201364941Y (zh) 半模基片集成波导双平衡混频器
CN203368402U (zh) 一种三毫米波四倍频器
CN114123979B (zh) 一种太赫兹全双工共本振固态前端发射电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921978

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921978

Country of ref document: EP

Kind code of ref document: A1