WO2018088701A1 - Separation plate for fuel cell and fuel cell using same - Google Patents

Separation plate for fuel cell and fuel cell using same Download PDF

Info

Publication number
WO2018088701A1
WO2018088701A1 PCT/KR2017/011212 KR2017011212W WO2018088701A1 WO 2018088701 A1 WO2018088701 A1 WO 2018088701A1 KR 2017011212 W KR2017011212 W KR 2017011212W WO 2018088701 A1 WO2018088701 A1 WO 2018088701A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
fuel cell
flow path
separator
flow
Prior art date
Application number
PCT/KR2017/011212
Other languages
French (fr)
Korean (ko)
Inventor
김봉수
정지훈
강경문
양재춘
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170033061A external-priority patent/KR102140126B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201780045685.3A priority Critical patent/CN109565059B/en
Priority to JP2018566369A priority patent/JP6744007B2/en
Priority to EP17868565.7A priority patent/EP3474358A4/en
Priority to US16/314,120 priority patent/US11121383B2/en
Publication of WO2018088701A1 publication Critical patent/WO2018088701A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell separator and a fuel cell using the same that can increase the efficiency of the fuel cell by changing the shape of the flow path formed in the fuel cell separator.
  • Fuel cell is a power generation device that converts chemical energy of fuel directly into electric energy by electrochemical reaction. It is more energy efficient than existing combustion engines and has no emission of pollutants. Very wide In other words, fuel cells are not subject to the thermodynamic limitations (Carnot efficiency) of heat engines in principle, resulting in higher power generation efficiency than existing power generation equipments, and no environmental problems with no pollution and noise. It is a high-tech energy generator that has high expectations in terms of power system operation, such as easy installation inside, which can reduce transmission and transmission facilities.
  • the basic concept of a fuel cell can be explained by the use of electrons generated by the reaction of hydrogen and oxygen. Hydrogen passes through the anode and oxygen passes through the cathode. Hydrogen reacts with oxygen electrochemically to generate water, generating current at the electrode. As the electrons pass through the electrolyte, direct current power is generated, which in turn generates heat. DC current is used as the power of a DC motor or converted into alternating current by an inverter. The heat generated from the fuel cell can be used to generate steam for reforming or to be used for heating and cooling. If not used, it is discharged as exhaust heat. Hydrogen, the fuel of a fuel cell, uses hydrogen produced through a process called reforming using pure hydrogen or hydrocarbons such as methane or ethanol. Pure oxygen can increase the efficiency of fuel cells, but there is a problem in that cost and weight increase due to oxygen storage. Therefore, the air contains a lot of oxygen, so the efficiency is slightly lower, but also directly use the air.
  • the separator of such a fuel cell has a function of maintaining the shape of the fuel cell, transferring electrons, and supplying gas.
  • materials such as graphite and metal having electrical conductivity are used for shape maintenance and electron transfer.
  • non-conductor a material having electrical conductivity is applied.
  • the gas flow path formed in a part of the separation plate is a passage through which the reactor body flows, and gas is supplied to the electrode of the electrolyte-electrode assembly located between the two separation plates through the gas flow path to generate an electrochemical reaction, thereby generating electricity.
  • the separator for fuel cells must be stable in both the cathode oxidation atmosphere and the anode reduction atmosphere of the fuel cell, and must be compact to prevent mixing of each fuel gas, and have sufficient electrical conductivity.
  • a gas flow path must be formed in the fuel cell separation plate, and the depth, width, and pattern of the gas flow channel of the separation plate are very important for smooth gas flow.
  • the flow path of the conventional separation plate is mainly used in the straight form, in this case, there is a problem that a large amount of fuel flowing out without participating in the reaction is generated by the gas flow without circulation due to the laminar flow generation In addition, some problems were alleviated by creating a cycle of reuse of the spent fuel. However, there is a problem in that a separate device and cost are consumed in order to have a circulation cycle for fuel reuse.
  • the separation plate (Patent Document 001) that can adjust the concentration of the fluid by adjusting the distance of each pattern, and to form an island-shaped pattern at the rear end of the flow path
  • Patent Document 002 A fuel cell separator (patent document 002) has been developed that allows the formation of vortices when passing through a fluid.
  • the flow path of the separator plate for fuel cells is higher. Precise structural improvement is needed.
  • Patent Document 1 Korean Unexamined Patent Publication No. 2014-0078904, "Solid Oxide Fuel Cell Having Vertical and Lateral Channels"
  • Patent Document 2 Korean Unexamined Patent Publication No. 2010-0082501, "Separation plate for fuel cell with improved flow structure and fuel cell using the same"
  • the inventors have conducted various studies to solve the above problems, and as a result, when an island-shaped pattern is formed in the flow path in a fuel cell separator formed with a flow path, irregular flow velocity distribution of the fluid in the flow path is formed. And by inducing a uniform flow rate distribution to improve the efficiency of the fuel cell, it was confirmed that the drying of the membrane during low-humidity operation to complete the present invention.
  • Another object of the present invention is to provide a fuel cell including a separator having an improved flow path structure.
  • the separation plate for a fuel cell formed with a flow path comprising a transverse channel and a longitudinal channel
  • It includes a first pattern and a second pattern arranged alternately spaced in the transverse channel,
  • the first pattern and the second pattern is a three-dimensional structure of a columnar cross-section polygonal
  • the first pattern and the second pattern are arranged such that the cross section is rotated by 180 ° to each other,
  • a separator for a fuel cell characterized in that the distance from which the first pattern and the second pattern are spaced apart from the side wall of the transverse channel, respectively.
  • the first pattern is different from the distance from each side wall of the transverse channel, respectively.
  • the second pattern is a separation plate for a fuel cell, characterized in that different distances from both side walls of the transverse channel.
  • the polygon may be at least one selected from a trapezoid, a triangle, a parallelogram, a rectangle, a pentagon, and a hexagon.
  • the present invention provides a fuel cell including the separator.
  • the flow rate is uniformly distributed while the flow rate is uniformly maintained throughout the flow path, thereby improving the performance and efficiency of the fuel cell.
  • a wide cross-sectional flow passage and a narrow cross-sectional flow passage are distributed together, and the pressure increases at the point where the cross-sectional flow passage enters the narrow passage improves the efficiency of the fuel cell. Turbulence is generated and the concentration of fuel can be uniformly mixed to improve performance.
  • the pattern formed in the flow path is a columnar three-dimensional structure having a trapezoidal cross section
  • water droplets which may be stagnant due to the slow flow rate in the flow path having a large cross-sectional area, meet a high flow rate as they ride on the trapezoidal slope, through the wide flow path. It is discharged, and part of it is formed in the flow path, so that drying of the membrane can be prevented during low-humidity operation of the fuel cell.
  • FIG. 1 is a schematic diagram of a flow path formed in a separator for a fuel cell according to the prior art.
  • FIG 2 is a schematic view of a flow path formed in the separator plate for a fuel cell according to the present invention.
  • Figure 3 is a schematic diagram showing the shape of the flow path that can be formed in the separator for fuel cell according to the present invention.
  • FIG. 4 is a schematic view showing a pattern in which the pattern is arranged in the transverse channel of the flow path in the separator plate for a fuel cell according to the present invention.
  • FIG. 5 is a schematic view of a flow path formed in the separator according to the first embodiment, a perspective view (a) of the fuel cell separator and a flow diagram (b) when the first and second separators have a trapezoidal cross section. .
  • FIG. 6 is a schematic view of a flow path formed in the separator according to the second embodiment, a perspective view (a) of the fuel cell separator and a flow diagram (b) when the first and second separators are columnar having a triangular cross section. .
  • FIG. 7 is a schematic view of a flow path formed in the separator according to the third embodiment, a perspective view (a) of the fuel cell separator and a flow path (b) in the case where the first and second separators are columnar having a parallelogram cross section. to be.
  • FIG. 8 is a schematic view of a flow path formed in the separator according to Comparative Example 1.
  • FIG. 9 is a schematic view of a flow path formed in the separator according to Comparative Example 2.
  • 10A to 10C illustrate CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 1;
  • FIG. 11A and 11B are results of Computational Fluid Dynamics (CFD) analysis of a flow path formed in a separator for a fuel cell according to Example 2.
  • FIG. 11A and 11B are results of Computational Fluid Dynamics (CFD) analysis of a flow path formed in a separator for a fuel cell according to Example 2.
  • FIG. 12A and 12B show CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 3.
  • FIG. 12A and 12B show CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 3.
  • FIG. 13 is a CFD analysis result of a flow path formed in the separator for fuel cell according to Comparative Example 1.
  • FIG. 14 is a CFD analysis result of a flow path formed in the separator for fuel cell according to Comparative Example 2.
  • FIG. 15 is a graph illustrating a correlation between current density and cell voltage of separator plates for fuel cells of Example 1 and Comparative Example 1.
  • FIG. 15 is a graph illustrating a correlation between current density and cell voltage of separator plates for fuel cells of Example 1 and Comparative Example 1.
  • the term 'lateral channel' refers to a straight channel formed in the transverse direction in the flow path
  • the 'vertical channel' refers to a straight channel formed in the longitudinal direction
  • side wall means a wall surface of both sides of a straight flow path.
  • FIG 2 is a schematic view of a flow path formed in the separator plate for a fuel cell according to the present invention.
  • the present invention relates to a separator 1 for a fuel cell in which a flow path 100 including a transverse channel 110 and a longitudinal channel 120 is formed. And a first pattern 141 and a second pattern 142 that are alternately spaced apart from each other in the transverse channel 110, wherein the first pattern 141 and the second pattern 142 have a polygonal cross section. It is a three-dimensional structure of the shape, the first pattern 141 and the second pattern 142 is arranged so that the cross-section is rotated by 180 ° to each other, the first pattern 141 and from the side wall of the transverse channel 110
  • the separation plate 1 for a fuel cell is characterized in that the distance from which the second pattern 142 is separated from each other is different.
  • Figure 3 is a schematic diagram showing the shape of the flow path that can be formed in the separator for fuel cell according to the present invention.
  • the flow path 100 of the separator plate 1 for a fuel cell may have a shape including a horizontal channel 110 and a vertical channel 120.
  • a serpentine (FIG. 3A) may be one or more selected from an intergrated (b) of FIG. 3 and a parallel (c) of FIG. 3.
  • island-shaped first patterns 141 and second patterns 142 may be alternately spaced apart at regular intervals.
  • a columnar pattern having a rectangular cross section may be formed in the vertical channel 120.
  • the first pattern 141 and the second pattern 142 are columnar three-dimensional structures having a polygonal cross section, and the cross section of the polygon may be one of a trapezoid, a triangle, a rectangle, a pentagon, and a hexagon, and the first pattern ( Considering the irregular flow rate distribution and the uniform flow rate distribution in the flow path 100 by the second pattern 142 and 142, the cross section of the polygon is preferably trapezoidal.
  • the width of such polygons can be from 0.1 mm to 5 mm, and the height can be from 0.1 mm to 5 mm. If the width and height are less than the lower limit, it is impossible to process, which can increase the cost burden for manufacturing a practically usable fuel cell. If the size is larger than the upper limit, a large polygon can provide efficient fuel transfer between the flow path and the electrolyte membrane. As a result, the practicality may be reduced.
  • FIG. 4 is a schematic view showing a pattern in which a pattern is arranged in a transverse channel of a flow path in the separator plate for a fuel cell according to the present invention, wherein the cross section of the pattern is trapezoidal.
  • the first pattern 141 and the second pattern 142 may be arranged to be spaced apart from each other by a distance between the patterns Dw at a predetermined interval inside the flow path 100.
  • the first pattern 141 and the second pattern 142 may be a three-dimensional structure having the same size and shape, or when arranged in the flow path 100 may be arranged to be rotated by 180 ° to each other, a polygon as described above By alternately arranged so as to be rotated 180 ° to each other, it is possible to provide an irregular flow rate distribution, a constant flow rate distribution to provide a fuel cell separation plate that can improve the performance and efficiency of the fuel cell.
  • the first pattern 141 and the second pattern 142 may be arranged to be spaced apart from both sidewalls 130 of the horizontal channel 110 in the horizontal channel 110, respectively.
  • both sidewalls 130 of the lateral channel 110 are referred to as a first sidewall 131 and a second sidewall 132, respectively.
  • first pattern separation distance 1 (1a) and the first pattern 141 the distance between the first pattern 141 and the first sidewall 131 of the lateral channel 110 is referred to as a first pattern separation distance 1 (1a) and the first pattern 141.
  • first pattern separation distance 2 (1b) the distance between the second sidewall 132 of the flow path 100 is referred to as a first pattern separation distance 2 (1b).
  • the separation distance refers to a straight line which is the shortest distance between the pattern and the sidewall 130 of the lateral channel 110 of the flow path 100.
  • the distance between the second pattern 142 and the first wall surface 101w of the flow path 100 is referred to as a second pattern separation distance 1 (2a), and the second pattern ( The distance between the 142 and the second sidewall 132 of the flow path 100 is referred to as a second pattern separation distance 2 (2b).
  • the first pattern separation distance 1 (1a) and the first pattern separation distance 2 (1b) are different, and in the second pattern 142, the second pattern separation distance 1 (2a) and the second pattern The separation distance 2 (b) is different.
  • the first pattern 141 As the distances 1a and 1b spaced apart from both sidewalls 131 and 132 of the horizontal channel 130 are different from each other, the first pattern 141 is formed in the channel 100 horizontal channel ( 130 is not located at the center, and thus, the cross-sectional area of the two flow paths formed on both sides of the first pattern 141 is different, and thus the flow velocity is different.
  • the second pattern 141 is centered in the flow path 100. Since the cross-sectional area of the two flow paths formed on both sides of the second pattern 142 is different from each other, the flow rate is different.
  • first pattern separation distance 1 (1a) and the second pattern separation distance 1 (the distance from which the first pattern 141 and the second pattern 142 are separated from the first sidewall 131 of the flow path 100, respectively) 2a) is different, and the first pattern separation distance 2 (1b) and the second pattern separation distance 2 (2b), which are distances from the second sidewall 132, are also different.
  • a flow path having a different cross-sectional area may be formed.
  • a bottleneck area is formed where local pressure is generated and turbulence occurs, and the high pressure in the bottleneck area can improve the efficiency of the fuel cell.
  • the present invention also provides a fuel cell comprising the separator for the fuel cell.
  • the fuel cell including the fuel cell separator may have a nonuniform flow velocity distribution and uniform flow rate due to the pattern shape of the passage formed on the separator, thereby improving efficiency and performance, and operating in low-humidity conditions. Even drying can be prevented.
  • Example 1 Example 2 Example 3 Comparative Example 1 Comparative Example 2 Euro Howitzer Howitzer Howitzer Howitzer Howitzer Howitzer Howitzer Howitzer Presence or absence of a pattern in the flow path U U U radish U Cross section of the pattern Trapezoid triangle Parallelogram - Trapezoid Shape of the first and second pattern Cross sections of the pattern are the same as rotated 180 ° to each other Cross sections of the pattern are the same as rotated 180 ° to each other Cross sections of the pattern are the same as rotated 180 ° to each other - Cross sections of the pattern are the same as rotated 180 ° to each other First pattern tooth distance 1 (1a) 500 ⁇ m 500 ⁇ m 500 ⁇ m 500 ⁇ m - 750 ⁇ m 1st pattern separation distance 2 (1b) 1000 ⁇ m 1000 ⁇ m 1000 ⁇ m 1000 ⁇ m - 750 ⁇ m 2nd pattern separation distance 1 (2a) 1000 ⁇ m 1000 ⁇ m 1000 ⁇ m 1000 ⁇ m - 750 ⁇ m 2nd pattern separation distance 2 (2b)
  • Example 1 Separation plate for fuel cell in which a columnar pattern having a trapezoidal cross section is arranged at regular intervals in the center of the passage.
  • a fuel cell separation plate having a pattern formed in the flow path was prepared, (a) is a perspective view of the separation plate for fuel cell, and (b) is a schematic view of the flow path formed in the separation plate.
  • columnar patterns having a trapezoidal cross section are arranged at regular intervals in the transverse channel 110 of the flow path 100, and two adjacent patterns, that is, The first pattern 141 and the second pattern 142 are arranged such that the cross sections are rotated 180 ° from each other.
  • the first pattern spacing distance 1 (the first pattern 141 is a distance spaced from the first side wall 131 and the second side wall 132 of the flow channel 100, the transverse channel 110, respectively) 1 a) and the first pattern separation distance 2 (1 b) are 50 ⁇ m and 1000 ⁇ m
  • the second pattern 142 is formed from the first sidewall 131 and the second sidewall 132 of the channel 100 transverse channel 110.
  • the second pattern separation distance 1 (2a) and the second pattern separation distance 2 (2b) which are spaced apart from each other, are 1000 ⁇ m and 50 ⁇ m, respectively, and the distance between the two adjacent patterns Dw is 700 ⁇ m.
  • Example 2 Separation plate for fuel cell in which columnar patterns having a triangular cross section are arranged at regular intervals in the center of the passage.
  • a fuel cell separation plate having the same shape as in Example 1 but having a triangle formed instead of a trapezoid was prepared.
  • FIG. 6 is a schematic view of a flow path formed in the separator according to the second embodiment, a perspective view (a) of the fuel cell separator and a flow diagram (b) when the first and second separators are columnar having a triangular cross section. .
  • Example 3 Separation plate for fuel cell in which columnar patterns having a triangular cross section are arranged at regular intervals in the center of the passage.
  • a fuel cell separation plate having the same shape as in Example 1 but having a parallelogram instead of a trapezoidal pattern formed in the flow path was prepared.
  • FIG. 7 is a schematic view of a flow path formed in the separator according to the third embodiment, a perspective view (a) of the fuel cell separator and a flow path (b) in the case where the first and second separators are columnar having a parallelogram cross section. to be.
  • Comparative Example 1 Separation Plate for Fuel Cell Formed with Straight Passage Curve
  • Comparative example 2 Separation plate for fuel cell in which columnar patterns having a trapezoidal cross section are arranged at regular intervals in the center of the passage.
  • a fuel cell separation plate formed by arranging patterns in the center of the flow path was prepared, (a) is a schematic diagram of a fuel cell separation plate, and (b) is a schematic diagram of a flow path formed in the separation plate.
  • a separator for a fuel cell including a flow path 100 in which the first pattern 141 and the second pattern 142 are arranged in the same shape as in the first embodiment, except that the first pattern 141 and the second pattern 142 are provided. ) Is arranged in the center of the flow path (100).
  • the first pattern 141 and the second pattern 142 are spaced apart from the first side wall 131 and the second side wall 132 of the flow channel 100, the transverse channel 110, respectively.
  • the first pattern separation distance 1 (1a), the first pattern separation distance 2 (1b), the second pattern separation distance 1 (2a), and the second pattern separation distance 2 (2b), which are distances, are all equal to 750 ⁇ m
  • the separation distance Dw between the two patterns is 700 ⁇ m.
  • 10A to 10C illustrate CFD analysis results of flow paths formed in a separator for a fuel cell according to Example 1 of the present invention.
  • FIG. 10A illustrates a flow rate distribution in a flow path formed in a fuel cell separator.
  • flow paths having different cross-sectional areas are formed by arranging first and second patterns in the flow passage. It can be seen that vortices occur at intersections A and B where flow paths having different cross-sectional areas meet. As vortices occur in the flow path, an improvement in flow characteristics can be expected.
  • FIG. 10B illustrates the flow rate distribution in the flow path formed in the separator for fuel cell.
  • flow paths having different cross-sectional areas are formed by arranging the first and second patterns in the flow path. It is understood that the flow velocity is high in the small cross-sectional flow path and the flow velocity is small in the flow-path having a large cross-sectional area, thus exhibiting a non-uniform flow velocity distribution throughout the flow path.
  • FIG. 10C illustrates the flow rate distribution in the flow path formed in the separator for fuel cell in more detail.
  • the flow rate is faster in the flow path F1 having a smaller cross-sectional area, and the flow velocity is relatively higher in the flow path F2 having a larger cross-sectional area.
  • This slow, but trapezoidal hypotenuse of the patterns showed that the flow of the fluid was concentrated and the flow rate was increased.In order to show a uniform flow distribution throughout the flow path, the parts with the high flow rate could be alternated on both sides of the pattern. You can arrange the patterns.
  • FIG. 11A and 11B illustrate CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 2.
  • the triangular pattern of Example 2 has a tendency to decrease the average flow rate of the entire flow path since the area of the individual patterns is relatively reduced compared to the trapezoidal pattern of Example 1.
  • FIG. it can be seen that flow paths having different cross-sectional areas are formed due to the arrangement of the triangular patterns in the flow path, and vortices due to turbulence and flow velocity change occur at the points where the flow paths having different cross-sectional areas meet. As vortices occur in the flow path, an improvement in flow characteristics can be expected.
  • FIG. 12A and 12B show CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 3.
  • FIG. 12A and 12B show CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 3.
  • FIG. 13 is a CFD analysis result of the flow path formed in the separator for fuel cell according to Comparative Example 1
  • FIG. 14 is a CFD analysis result of the flow path formed in the separator for fuel cell according to Comparative Example 2.
  • the flow path formed in the separator for fuel cell according to Comparative Example 2 has a laminar flow in the flow path formed on both sides of the patterns, so that there is no change in flow velocity on the same streamline. It can be seen that it does not appear.
  • FIG. 15 is a graph (I-V Curve) showing a correlation between current density and cell voltage of the separator plates for fuel cells of Example 1 and Comparative Example 1.
  • FIG. 15 is a graph (I-V Curve) showing a correlation between current density and cell voltage of the separator plates for fuel cells of Example 1 and Comparative Example 1.
  • Example 1 it can be seen that the voltage drop phenomenon due to the material movement is significantly improved compared to Comparative Example 1.
  • Table 1 below shows the results of measuring the current cell density at specific cell voltages, that is, 0.6 V and 0.7 V, for the separator plates for fuel cells of Example 1 and Comparative Example 1.
  • Example 1 showed a higher amount of current than in Comparative Example 1, whereby Example 1 is more than Comparative Example 1 It can be seen that it shows high efficiency and power.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention relates to a separation plate for a fuel cell and a fuel cell comprising the same and, more specifically, can improve the efficiency and performance of the fuel cell and prevent a drying phenomenon when the fuel is operated, by forming an island-shaped pattern inside a flow path formed on a separation plate for the fuel cell so as to induce distribution of irregular flow velocity and distribution of a constant flow quantity in the flow path.

Description

연료전지용 분리판 및 이를 이용한 연료전지 Separator for fuel cell and fuel cell using same
본 출원은 2016년 11월 14일자 한국 특허 출원 제10-2016-0151351호 및 2017년 3월 16일자 한국 특허 출원 제10-2017-0033061호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0151351 dated November 14, 2016 and Korean Patent Application No. 10-2017-0033061 dated March 16, 2017, and the All content disclosed in the literature is included as part of this specification.
본 발명은 연료전지용 분리판에 형성된 유로의 형태 변화를 통해 연료전지의 효율을 상승시킬 수 있는 연료전지용 분리판 및 이를 이용한 연료전지에 관한 것이다.The present invention relates to a fuel cell separator and a fuel cell using the same that can increase the efficiency of the fuel cell by changing the shape of the flow path formed in the fuel cell separator.
연료전지는 전기화학 반응에 의해서 연료가 갖고 있는 화학에너지를 직접 전기에너지로 변환시키는 발전장치로서 기존의 연소기관에 비하여 에너지 효율이 높고, 공해물질의 배출이 없기 때문에 소형에서 대규모 시스템까지 적용범위가 매우 넓다. 즉, 연료전지는 원리상 열기관이 갖는 열역학적인 제한(Carnot 효율)을 받지 않기 때문에 기존의 발전장치보다 발전효율이 높고, 무공해, 무소음으로 환경문제가 거의 없으며, 다양한 용량으로 제작이 가능하고 전력 수요지 내에 설치가 용이하여 송변전 설비를 절감할 수 있는 등 전력계통의 운영 측면에서도 기대가 큰 첨단 에너지 발전장치이다.Fuel cell is a power generation device that converts chemical energy of fuel directly into electric energy by electrochemical reaction. It is more energy efficient than existing combustion engines and has no emission of pollutants. Very wide In other words, fuel cells are not subject to the thermodynamic limitations (Carnot efficiency) of heat engines in principle, resulting in higher power generation efficiency than existing power generation equipments, and no environmental problems with no pollution and noise. It is a high-tech energy generator that has high expectations in terms of power system operation, such as easy installation inside, which can reduce transmission and transmission facilities.
연료전지의 기본 개념은 수소와 산소의 반응에 의하여 생성되는 전자의 이용으로 설명할 수 있다. 수소는 연료극을 통과하고 산소는 공기극을 통과한다. 수소는 전기 화학적으로 산소와 반응하여 물을 생성하면서 전극에 전류를 발생시킨다. 전자가 전해질을 통과하면서 직류 전력이 발생하며, 부수적으로 열도 생산된다. 직류 전류는 직류 전동기의 동력으로 사용되거나 인버터에 의해 교류 전류로 바꾸어 사용된다. 연료전지에서 발생된 열은 개질을 위한 증기를 발생시키거나 냉난방 열로 사용될 수 있으며, 사용되지 않을 경우에는 배기열로 배출된다. 연료전지의 연료인 수소는 순수 수소를 이용하거나, 메탄이나 에탄올 같은 탄화수소를 이용하여 개질이라는 과정을 통해 생산된 수소를 이용한다. 순수한 산소는 연료전지의 효율을 높일 수 있지만 산소 저장에 따른 비용과 무게가 증가하는 문제가 있다. 따라서 공기 중에 산소가 많이 포함되어 있으므로 효율은 좀 떨어지지만 공기를 직접 이용하기도 한다.The basic concept of a fuel cell can be explained by the use of electrons generated by the reaction of hydrogen and oxygen. Hydrogen passes through the anode and oxygen passes through the cathode. Hydrogen reacts with oxygen electrochemically to generate water, generating current at the electrode. As the electrons pass through the electrolyte, direct current power is generated, which in turn generates heat. DC current is used as the power of a DC motor or converted into alternating current by an inverter. The heat generated from the fuel cell can be used to generate steam for reforming or to be used for heating and cooling. If not used, it is discharged as exhaust heat. Hydrogen, the fuel of a fuel cell, uses hydrogen produced through a process called reforming using pure hydrogen or hydrocarbons such as methane or ethanol. Pure oxygen can increase the efficiency of fuel cells, but there is a problem in that cost and weight increase due to oxygen storage. Therefore, the air contains a lot of oxygen, so the efficiency is slightly lower, but also directly use the air.
이와 같은 연료전지의 분리판은 연료전지의 형태유지, 전자를 이동시키는 역할, 기체를 공급하는 기능을 가진다. 분리판의 재료로는 형태 유지와 전자 이동을 위하여 전기 전도도가 있는 그라파이트, 금속과 같은 물질을 사용하나, 부도체인 경우에는 전기 전도도를 가지는 물질을 도포하여 사용한다. 분리판의 일부에 형성된 기체 유로는 반응기체가 흐르는 통로이며, 이 기체 유로를 통하여 2장의 분리판 사이에 위치한 전해질-전극 접합체의 전극에 기체가 공급됨으로써 전기화학반응이 일어나 전기가 발생된다.The separator of such a fuel cell has a function of maintaining the shape of the fuel cell, transferring electrons, and supplying gas. As the material of the separator, materials such as graphite and metal having electrical conductivity are used for shape maintenance and electron transfer. In the case of non-conductor, a material having electrical conductivity is applied. The gas flow path formed in a part of the separation plate is a passage through which the reactor body flows, and gas is supplied to the electrode of the electrolyte-electrode assembly located between the two separation plates through the gas flow path to generate an electrochemical reaction, thereby generating electricity.
따라서, 연료전지용 분리판은 연료전지의 공기극 산화분위기와 연료극 환원분위기에 모두 안정해야 하고, 각 연료가스의 혼합을 방지할 수 있도록 치밀해야 하며, 충분한 전기 전도도를 가져야 한다.Therefore, the separator for fuel cells must be stable in both the cathode oxidation atmosphere and the anode reduction atmosphere of the fuel cell, and must be compact to prevent mixing of each fuel gas, and have sufficient electrical conductivity.
또한, 연료전지용 분리판에는 기체가 흐르는 유로가 성형 되어져야 하는데, 이 때 분리판의 기체 유로 채널의 깊이와 폭 그리고 패턴은 기체의 유동을 원활하게 하는데 매우 중요하다. In addition, a gas flow path must be formed in the fuel cell separation plate, and the depth, width, and pattern of the gas flow channel of the separation plate are very important for smooth gas flow.
도 1에 도시된 바와 같이, 종래 분리판의 유로 형태는 직선형이 주로 사용되었으나, 이 경우, 층류 발생으로 인하여 순환 없이 가스 유동이 발생되어 반응에 참여하지 않고 흘러나가는 연료가 다량 발생하는 문제가 있어, 사용한 연료를 재사용하는 순환 사이클을 만들어 문제를 일부 완화시켰다. 그러나, 연료 재사용을 위한 순환 사이클을 구비하기 위하기 위해 별도의 장치와 비용이 소모되는 문제가 있었다.As shown in Figure 1, the flow path of the conventional separation plate is mainly used in the straight form, in this case, there is a problem that a large amount of fuel flowing out without participating in the reaction is generated by the gas flow without circulation due to the laminar flow generation In addition, some problems were alleviated by creating a cycle of reuse of the spent fuel. However, there is a problem in that a separate device and cost are consumed in order to have a circulation cycle for fuel reuse.
이에 연료전지용 분리판에 형성된 유로 구조를 개선하여 연료전지의 효율과 성능을 개선하고자 하는 연구가 지속되고 있다.Accordingly, research to improve the efficiency and performance of fuel cells by improving the flow path structure formed in the separator for fuel cells has been continued.
예컨대, 분리판에 형성된 유로에 패턴을 형성하되, 각 패턴의 거리를 조절하여 유체의 농도를 조절할 수 있는 분리판 (특허문헌 001), 및 유로의 후단에 섬(island) 형태의 패턴을 형성하여 유체 통과시 와류형성을 가능하게 한 연료전지용 분리판(특허문헌 002)이 개발된 바 있으나, 연료전지의 효율 및 성능과 관련하여 요구 조건이 더욱 높아짐에 따라, 연료전지용 분리판의 유로에 대하여 보다 정밀한 구조 개선이 필요한 실정이다.For example, while forming a pattern in the flow path formed in the separation plate, the separation plate (Patent Document 001) that can adjust the concentration of the fluid by adjusting the distance of each pattern, and to form an island-shaped pattern at the rear end of the flow path A fuel cell separator (patent document 002) has been developed that allows the formation of vortices when passing through a fluid. However, as the requirements for fuel cell efficiency and performance become higher, the flow path of the separator plate for fuel cells is higher. Precise structural improvement is needed.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 대한민국 공개특허 제2014-0078904호, "종채널과 횡채널을 가지는 고체 산화물 연료전지"(Patent Document 1) Korean Unexamined Patent Publication No. 2014-0078904, "Solid Oxide Fuel Cell Having Vertical and Lateral Channels"
(특허문헌 2) 대한민국 공개특허 제2010-0082501호, "유로 구조가 개선된 연료전지용 분리판 및 이를 이용한 연료전지"(Patent Document 2) Korean Unexamined Patent Publication No. 2010-0082501, "Separation plate for fuel cell with improved flow structure and fuel cell using the same"
본 발명자들은 상기 문제점을 해결하기 위해 다각적으로 연구를 수행한 결과, 유로가 형성된 연료전지용 분리판에서 유로의 내부에 섬(island) 형태의 패턴을 형성할 경우, 상기 유로 내부에서 유체의 불규칙한 유속분포 및 균일한 유량분포를 유도함으로써 연료전지의 효율을 향상시키고, 저가습 운전시 막의 건조를 막을 수 있다는 것을 확인하여 본 발명을 완성하였다.The inventors have conducted various studies to solve the above problems, and as a result, when an island-shaped pattern is formed in the flow path in a fuel cell separator formed with a flow path, irregular flow velocity distribution of the fluid in the flow path is formed. And by inducing a uniform flow rate distribution to improve the efficiency of the fuel cell, it was confirmed that the drying of the membrane during low-humidity operation to complete the present invention.
따라서, 본 발명의 목적은 유로 내에서의 불규칙한 유속분포 및 균일한 유량분포에 의해 연료전지의 효율을 향상시킬 수 있는 유로 구조를 가지는 연료전지용 분리판을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a separator for a fuel cell having a flow path structure capable of improving the efficiency of a fuel cell by irregular flow rate distribution and uniform flow rate distribution in the flow path.
또한, 본 발명의 다른 목적은 개선된 유로 구조를 가진 분리판을 포함하는 연료전지를 제공하는 것이다.Another object of the present invention is to provide a fuel cell including a separator having an improved flow path structure.
상기 목적을 달성하기 위해, 횡채널과 종채널을 포함하는 유로가 형성된 연료전지용 분리판에 있어서, In order to achieve the above object, in the separation plate for a fuel cell formed with a flow path comprising a transverse channel and a longitudinal channel,
상기 횡채널에 교호로 이격되어 배열된 제1 패턴 및 제2 패턴을 포함하되,It includes a first pattern and a second pattern arranged alternately spaced in the transverse channel,
상기 제1 패턴 및 제2 패턴은 횡단면이 다각형인 기둥 형상의 입체 구조물이며,The first pattern and the second pattern is a three-dimensional structure of a columnar cross-section polygonal,
상기 제1 패턴 및 제2 패턴은 횡단면이 서로 180°회전된 형상이 되도록 배열되고,The first pattern and the second pattern are arranged such that the cross section is rotated by 180 ° to each other,
상기 횡채널의 측벽으로부터 상기 제1 패턴 및 제2 패턴이 각각 이격된 거리가 상이한 것을 특징으로 하는 연료전지용 분리판을 제공한다.Provided is a separator for a fuel cell, characterized in that the distance from which the first pattern and the second pattern are spaced apart from the side wall of the transverse channel, respectively.
이때, 상기 제1 패턴은 상기 횡채널의 양 측벽으로부터 각각 이격된 거리가 상이하고,In this case, the first pattern is different from the distance from each side wall of the transverse channel, respectively,
상기 제2 패턴은 상기 횡채널의 양 측벽으로부터 각각 이격된 거리가 상이한 것을 특징으로 하는 연료전지용 분리판.The second pattern is a separation plate for a fuel cell, characterized in that different distances from both side walls of the transverse channel.
상기 다각형은 사다리꼴, 삼각형, 평행 사변형, 사각형, 오각형 및 육각형 중에서 선택된 1종 이상인 것일 수 있다.The polygon may be at least one selected from a trapezoid, a triangle, a parallelogram, a rectangle, a pentagon, and a hexagon.
또한, 본 발명은 상기 분리판을 포함하는 연료전지를 제공한다.In addition, the present invention provides a fuel cell including the separator.
본 발명에 따른 연료전지용 분리판에 형성된 패턴 배열에 의해 유로 구조가 개선됨에 따라, 유로 전체적으로 유속이 불균일하게 분포되는 반면 유량은 균일하게 유지되어 연료전지의 성능과 효율을 향상시킬 수 있다.As the flow path structure is improved by the pattern arrangement formed on the separator plate for fuel cells according to the present invention, the flow rate is uniformly distributed while the flow rate is uniformly maintained throughout the flow path, thereby improving the performance and efficiency of the fuel cell.
다시 말해, 단면적인 넓은 유로와 단면적인 좁은 유로들이 함께 분포되어, 단면적이 넓은 유로에서 좁은 유로로 들어가는 지점에는 압력이 높아져 연료전지의 효율을 향상시키고, 단면적인 좁은 유로에서 넓은 유로로 들어가는 지점에는 난류가 발생하여 연료의 농도를 균일하게 혼합하여 줄 수 있어 성능을 향상시킬 수 있다.In other words, a wide cross-sectional flow passage and a narrow cross-sectional flow passage are distributed together, and the pressure increases at the point where the cross-sectional flow passage enters the narrow passage improves the efficiency of the fuel cell. Turbulence is generated and the concentration of fuel can be uniformly mixed to improve performance.
또한, 유로 내에 형성된 패턴이 사다리꼴 횡단면을 가진 기둥형상의 입체 구조물일 경우, 단면적이 넓은 유로에서의 느린 유속으로 인해 정체될 수 있는 물방울이 사다리꼴의 빗면을 타면서 빠른 유속을 만나게 되면서 넓은 유로를 통해 배출되고, 일부는 유로에 맺히므로, 연료전지의 저가습 운전시 막의 건조를 막을 수 있다.In addition, when the pattern formed in the flow path is a columnar three-dimensional structure having a trapezoidal cross section, water droplets, which may be stagnant due to the slow flow rate in the flow path having a large cross-sectional area, meet a high flow rate as they ride on the trapezoidal slope, through the wide flow path. It is discharged, and part of it is formed in the flow path, so that drying of the membrane can be prevented during low-humidity operation of the fuel cell.
도 1은 종래기술에 따른 연료전지용 분리판에 형성된 유로의 모식도이다.1 is a schematic diagram of a flow path formed in a separator for a fuel cell according to the prior art.
도 2는 본 발명에 따른 연료전지용 분리판에 형성된 유로의 모식도이다.2 is a schematic view of a flow path formed in the separator plate for a fuel cell according to the present invention.
도 3은 본 발명에 따른 연료전지용 분리판에 형성될 수 있는 유로의 형태를 나타낸 모식도이다.Figure 3 is a schematic diagram showing the shape of the flow path that can be formed in the separator for fuel cell according to the present invention.
도 4는 본 발명에 따른 연료전지용 분리판에서 패턴이 유로의 횡채널 내에서 배열된 형태를 나타낸 모식도이다.4 is a schematic view showing a pattern in which the pattern is arranged in the transverse channel of the flow path in the separator plate for a fuel cell according to the present invention.
도 5는 실시예 1에 따른 분리판에 형성된 유로의 모식도로서, 제1 및 제2 분리판이 사다리꼴의 횡단면을 가지는 기둥형상인 경우 연료전지용 분리판의 사시도(a) 및 유로의 모식도(b)이다.5 is a schematic view of a flow path formed in the separator according to the first embodiment, a perspective view (a) of the fuel cell separator and a flow diagram (b) when the first and second separators have a trapezoidal cross section. .
도 6은 실시예 2에 따른 분리판에 형성된 유로의 모식도로서, 제1 및 제2 분리판이 삼각형의 횡단면을 가지는 기둥형상인 경우 연료전지용 분리판의 사시도(a) 및 유로의 모식도(b)이다.6 is a schematic view of a flow path formed in the separator according to the second embodiment, a perspective view (a) of the fuel cell separator and a flow diagram (b) when the first and second separators are columnar having a triangular cross section. .
도 7은 실시예 3에 따른 분리판에 형성된 유로의 모식도로서, 제1 및 제2 분리판이 평행 사변형의 횡단면을 가지는 기둥형상인 경우 연료전지용 분리판의 사시도(a) 및 유로의 모식도(b)이다.7 is a schematic view of a flow path formed in the separator according to the third embodiment, a perspective view (a) of the fuel cell separator and a flow path (b) in the case where the first and second separators are columnar having a parallelogram cross section. to be.
도 8은 비교예 1에 따른 분리판에 형성된 유로의 모식도이다.8 is a schematic view of a flow path formed in the separator according to Comparative Example 1. FIG.
도 9는 비교예 2에 따른 분리판에 형성된 유로의 모식도이다.9 is a schematic view of a flow path formed in the separator according to Comparative Example 2. FIG.
도 10a 내지 10c는 실시예 1에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다.10A to 10C illustrate CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 1;
도 11a 및 11b는 실시예 2에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD(Computational Fluid Dynamics) 분석 결과이다.11A and 11B are results of Computational Fluid Dynamics (CFD) analysis of a flow path formed in a separator for a fuel cell according to Example 2. FIG.
도 12a 및 12b는 실시예 3에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다.12A and 12B show CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 3. FIG.
도 13은 비교예 1에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다.FIG. 13 is a CFD analysis result of a flow path formed in the separator for fuel cell according to Comparative Example 1. FIG.
도 14는 비교예 2에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다. 14 is a CFD analysis result of a flow path formed in the separator for fuel cell according to Comparative Example 2. FIG.
도 15은 실시예 1 및 비교예 1의 연료전지용 분리판의 전류밀도(Current Density)와 셀 전압(Cell Voltage)의 상관관계를 나타낸 그래프이다.FIG. 15 is a graph illustrating a correlation between current density and cell voltage of separator plates for fuel cells of Example 1 and Comparative Example 1. FIG.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용된 용어 '횡채널'은 유로에서 횡 방향으로 형성된 직선 유로를 의미하고, '종채널'은 종 방향으로 형성된 직선 유로를 의미한다.As used herein, the term 'lateral channel' refers to a straight channel formed in the transverse direction in the flow path, and the 'vertical channel' refers to a straight channel formed in the longitudinal direction.
본 명세서에서 사용된 용어 유로의 '측벽'이란 직선형 유로 양 측면의 벽면을 의미한다.As used herein, the term "side wall" means a wall surface of both sides of a straight flow path.
연료전지용 분리판Separator for Fuel Cell
도 2는 본 발명에 따른 연료전지용 분리판에 형성된 유로의 모식도이다.2 is a schematic view of a flow path formed in the separator plate for a fuel cell according to the present invention.
도 2에 도시된 바와 같이, 본 발명은 횡채널(110)과 종채널(120)을 포함하는 유로(100)가 형성된 연료전지용 분리판(1)에 관한 것으로, 연료전지용 분리판(1)은, 상기 횡채널(110)에 교호로 이격되어 배열된 제1 패턴(141) 및 제2 패턴(142)을 포함하되, 제1 패턴(141) 및 제2 패턴(142)은 횡단면이 다각형인 기둥 형상의 입체 구조물이며, 제1 패턴(141) 및 제2 패턴(142)은 횡단면이 서로 180°회전된 형상이 되도록 배열되고, 상기 횡채널(110)의 측벽으로부터 상기 제1 패턴(141) 및 제2 패턴(142)이 각각 이격된 거리가 상이한 것을 특징으로 하는 연료전지용 분리판(1)을 제시한다.As shown in FIG. 2, the present invention relates to a separator 1 for a fuel cell in which a flow path 100 including a transverse channel 110 and a longitudinal channel 120 is formed. And a first pattern 141 and a second pattern 142 that are alternately spaced apart from each other in the transverse channel 110, wherein the first pattern 141 and the second pattern 142 have a polygonal cross section. It is a three-dimensional structure of the shape, the first pattern 141 and the second pattern 142 is arranged so that the cross-section is rotated by 180 ° to each other, the first pattern 141 and from the side wall of the transverse channel 110 The separation plate 1 for a fuel cell is characterized in that the distance from which the second pattern 142 is separated from each other is different.
도 3은 본 발명에 따른 연료전지용 분리판에 형성될 수 있는 유로의 형태를 나타낸 모식도이다.Figure 3 is a schematic diagram showing the shape of the flow path that can be formed in the separator for fuel cell according to the present invention.
연료전지용 분리판(1)의 유로(100)는 횡채널(110)과 종채널(120)을 포함하는 형태일 수 있으며, 구체적으로는, 곡사형(serpentine, 도 3의 (a)), 깍지형(intergrated, 도 3의 (b)) 및 평행형(parallel, 도 3의 (c)) 중에서 선택된 1종 이상인 것일 수 있다. The flow path 100 of the separator plate 1 for a fuel cell may have a shape including a horizontal channel 110 and a vertical channel 120. Specifically, a serpentine (FIG. 3A), a pod It may be one or more selected from an intergrated (b) of FIG. 3 and a parallel (c) of FIG. 3.
유로(100)의 횡채널(110) 내부에는 섬 형태의 제1 패턴(141) 및 제2 패턴(142)이 서로 번갈아 가면서 일정 간격으로 이격되어 배열될 수 있다.In the horizontal channel 110 of the flow path 100, island-shaped first patterns 141 and second patterns 142 may be alternately spaced apart at regular intervals.
또한, 종채널(120) 내부에는 횡단면이 직사각형인 기둥형상의 패턴이 형성될 수 있다.In addition, a columnar pattern having a rectangular cross section may be formed in the vertical channel 120.
제1 패턴(141) 및 제2 패턴(142)은 횡단면이 다각형인 기둥 형상의 입체 구조물로서, 상기 다각형의 횡단면은 사다리꼴, 삼각형, 사각형, 오각형 및 육각형 중에서 선택된 1종일 수 있으며, 제1 패턴(141) 및 제2 패턴(142)에 의한 유로(100) 내에서의 불규칙한 유속분포 및 균일한 유량분포를 고려하면 상기 다각형의 횡단면은 사다리꼴이 바람직하다.The first pattern 141 and the second pattern 142 are columnar three-dimensional structures having a polygonal cross section, and the cross section of the polygon may be one of a trapezoid, a triangle, a rectangle, a pentagon, and a hexagon, and the first pattern ( Considering the irregular flow rate distribution and the uniform flow rate distribution in the flow path 100 by the second pattern 142 and 142, the cross section of the polygon is preferably trapezoidal.
이와 같은 다각형의 너비는 0.1 mm 내지 5 mm일 수 있고, 높이는 0.1 mm 내지 5mm 가 될 수 있다. 상기 너비와 높이가 하한치 미만일 경우 가공이 불가능해 실제 사용 가능한 연료전지를 제작하는데 비용부담이 커질 수 있고, 상한치 초과로 크기가 큰 경우 크기가 큰 다각형이 유로와 전해질막 사이의 효율적인 연료의 전달을 막으므로 실용성이 저하될 수 있다.The width of such polygons can be from 0.1 mm to 5 mm, and the height can be from 0.1 mm to 5 mm. If the width and height are less than the lower limit, it is impossible to process, which can increase the cost burden for manufacturing a practically usable fuel cell.If the size is larger than the upper limit, a large polygon can provide efficient fuel transfer between the flow path and the electrolyte membrane. As a result, the practicality may be reduced.
도 4는 본 발명에 따른 연료전지용 분리판에서 패턴이 유로의 횡채널 내에서 배열된 형태를 나타낸 모식도로서, 패턴의 횡단면이 사다리꼴인 경우이다.FIG. 4 is a schematic view showing a pattern in which a pattern is arranged in a transverse channel of a flow path in the separator plate for a fuel cell according to the present invention, wherein the cross section of the pattern is trapezoidal.
도 4에 도시된 바와 같이, 제1 패턴(141) 및 제2 패턴(142)은 유로(100)의 내부에 일정 간격의 패턴간 이격 거리(Dw)만큼 이격되어 배열될 수 있다. As shown in FIG. 4, the first pattern 141 and the second pattern 142 may be arranged to be spaced apart from each other by a distance between the patterns Dw at a predetermined interval inside the flow path 100.
제1 패턴(141) 및 제2 패턴(142)은 동일한 크기와 형상을 가진 입체 구조물이나, 유로(100) 내에 배열될 때에는 서로 180°회전된 형상이 되도록 배열될 수 있으며, 상술한 바와 같은 다각형을 서로 180°회전된 형상이 되도록 교호로 배열되도록 함으로써 불규칙한 유속분포, 일정한 유량분포를 구현할 수 있도록 하여 연료전지의 성능 및 효율을 향상시킬 수 연료전지용 분리판을 제공할 수 있다.The first pattern 141 and the second pattern 142 may be a three-dimensional structure having the same size and shape, or when arranged in the flow path 100 may be arranged to be rotated by 180 ° to each other, a polygon as described above By alternately arranged so as to be rotated 180 ° to each other, it is possible to provide an irregular flow rate distribution, a constant flow rate distribution to provide a fuel cell separation plate that can improve the performance and efficiency of the fuel cell.
제1 패턴(141) 및 제2 패턴(142)은 각각 횡채널(110) 내에서 횡채널(110)의 양 측벽(130)으로부터 이격되어 배열되는 것일 수 있다. 이때, 횡채널(110)의 양 측벽(130)은 각각 제1 측벽(131) 및 제2 측벽(132)이라 한다.The first pattern 141 and the second pattern 142 may be arranged to be spaced apart from both sidewalls 130 of the horizontal channel 110 in the horizontal channel 110, respectively. In this case, both sidewalls 130 of the lateral channel 110 are referred to as a first sidewall 131 and a second sidewall 132, respectively.
제1 패턴(141)에서, 제1 패턴(141)과 횡채널(110)의 제1 측벽(131)과의 이격된 거리를 제1 패턴 이격 거리1(1a)라 하고, 제1 패턴(141)과 유로(100)의 제2 측벽(132)과의 거리를 제1 패턴 이격 거리2(1b)라고 한다. 이때, 이격 거리는 패턴과 유로(100)의 횡채널(110) 측벽(130) 사이의 최단거리인 직선거리를 의미한다.In the first pattern 141, the distance between the first pattern 141 and the first sidewall 131 of the lateral channel 110 is referred to as a first pattern separation distance 1 (1a) and the first pattern 141. ) And the distance between the second sidewall 132 of the flow path 100 is referred to as a first pattern separation distance 2 (1b). In this case, the separation distance refers to a straight line which is the shortest distance between the pattern and the sidewall 130 of the lateral channel 110 of the flow path 100.
또한, 제2 패턴(142)에서, 제2 패턴(142)과 유로(100)의 제1 벽면(101w)과의 이격된 거리를 제2 패턴 이격 거리1(2a)라 하고, 제2 패턴(142)과 유로(100)의 제2 측벽(132)과의 거리를 제2 패턴 이격 거리2(2b)라고 한다.Further, in the second pattern 142, the distance between the second pattern 142 and the first wall surface 101w of the flow path 100 is referred to as a second pattern separation distance 1 (2a), and the second pattern ( The distance between the 142 and the second sidewall 132 of the flow path 100 is referred to as a second pattern separation distance 2 (2b).
제1 패턴(141)에서 제1 패턴 이격 거리1(1a)과 제1 패턴 이격 거리2(1b)는 상이하고, 제2 패턴(142)에서 제2 패턴 이격 거리1(2a)과 제2 패턴 이격 거리2(2b)는 상이하다.In the first pattern 141, the first pattern separation distance 1 (1a) and the first pattern separation distance 2 (1b) are different, and in the second pattern 142, the second pattern separation distance 1 (2a) and the second pattern The separation distance 2 (b) is different.
제1 패턴(141)에서, 횡채널(130)의 양 측벽(131, 132)과의 이격된 거리(1a, 1b)가 상이함에 따라, 제1 패턴(141)이 유로(100) 횡채널(130)의 중앙에 위치하지 않게 되고, 이에 따라, 제1 패턴(141)의 양쪽으로 형성되는 두 개의 유로의 단면적이 상이하게 되므로, 유속도 상이하게 된다.In the first pattern 141, as the distances 1a and 1b spaced apart from both sidewalls 131 and 132 of the horizontal channel 130 are different from each other, the first pattern 141 is formed in the channel 100 horizontal channel ( 130 is not located at the center, and thus, the cross-sectional area of the two flow paths formed on both sides of the first pattern 141 is different, and thus the flow velocity is different.
제2 패턴(142)에서도 역시, 횡채널(130)의 양 측벽(131, 132)과의 이격된 거리(2a, 2b)가 상이함에 따라, 제2 패턴(141)이 유로(100)의 중앙에 위치하지 않게 되고, 이에 따라, 제2 패턴(142)의 양쪽으로 형성되는 두 개의 유로의 단면적이 상이하게 되므로, 유속도 상이하게 된다.Also in the second pattern 142, as the distances 2a and 2b spaced apart from both sidewalls 131 and 132 of the lateral channel 130 are different, the second pattern 141 is centered in the flow path 100. Since the cross-sectional area of the two flow paths formed on both sides of the second pattern 142 is different from each other, the flow rate is different.
또한, 제1 패턴(141)과 제2 패턴(142)이 각각 유로(100)의 제1 측벽(131)으로부터 이격된 거리인 제1 패턴 이격 거리1(1a) 및 제2 패턴 이격 거리1(2a)은 상이하고, 제2 측벽(132)로부터 이격된 거리인 제1 패턴 이격 거리2(1b) 및 제2 패턴 이격 거리2(2b) 역시 상이하다.In addition, the first pattern separation distance 1 (1a) and the second pattern separation distance 1 (the distance from which the first pattern 141 and the second pattern 142 are separated from the first sidewall 131 of the flow path 100, respectively) 2a) is different, and the first pattern separation distance 2 (1b) and the second pattern separation distance 2 (2b), which are distances from the second sidewall 132, are also different.
제1 패턴(141)과 제2 패턴(142)이 유로(100) 횡채널(130)의 제1 측벽(131)으로부터 이격된 거리가 상이함으로 인하여, 단면적이 상이한 유로가 형성될 수 있다. Due to the difference in distance between the first pattern 141 and the second pattern 142 from the first sidewall 131 of the transverse channel 130 of the flow path 100, a flow path having a different cross-sectional area may be formed.
예컨대, 단면적인 큰 유로에서 단면적이 작은 유로로 유체가 흐르는 지점에서는 국부적인 압력이 생성되고 난류가 발생하는 병목 지역이 형성되며, 병목 지역에서의 높은 압력으로 인하여 연료전지의 효율이 향상될 수 있다.For example, at the point where the fluid flows from the large cross-sectional flow passage to the small cross-sectional flow passage, a bottleneck area is formed where local pressure is generated and turbulence occurs, and the high pressure in the bottleneck area can improve the efficiency of the fuel cell. .
반대로, 단면적인 작은 유로에서 단면적이 큰 유로로 유체가 흐르는 지점에서는 유체가 흐르는 유동 방향의 차이로 인하여 난류가 발생하는 합류 지역이 형성되며, 난류는 연료의 농도가 균일하도록 섞어주는 역할을 할 수 있다.On the contrary, at the point where the fluid flows from the small cross-sectional flow passage to the large cross-sectional flow passage, a confluence zone in which turbulence occurs due to the difference in the flow direction of the fluid is formed, and the turbulence can play a role of mixing the fuel concentration uniformly. have.
또한, 유체가 흐르는 동안 물이 생성되면 대부분 단면적이 큰 유로로 배출되고 일부가 좁은 지역에 맺히므로, 연료전지의 저가습 운전시 분리판의 건조를 방지할 수 있다.In addition, when water is generated while the fluid is flowing, most of the cross-sectional area is discharged into a large flow path and forms a part in a narrow area, thereby preventing drying of the separator plate during low-humidity operation of the fuel cell.
본 발명은 또한 상기 연료전지용 분리판을 포함하는 연료전지를 제시한다.The present invention also provides a fuel cell comprising the separator for the fuel cell.
상기 연료전지용 분리판을 포함하는 연료전지는 분리판에 형성된 유로의 패턴 형상에 의하여, 유로 전체적으로 불균일한 유속분포를 가지면서도 유량은 균일하여 효율 및 성능이 향상될 수 있고, 저가습 조건에서 운전시에도 건조를 방지할 수 있다.The fuel cell including the fuel cell separator may have a nonuniform flow velocity distribution and uniform flow rate due to the pattern shape of the passage formed on the separator, thereby improving efficiency and performance, and operating in low-humidity conditions. Even drying can be prevented.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다Hereinafter, preferred examples are provided to help the understanding of the present invention, but the following examples are merely for exemplifying the present invention, and various changes and modifications within the scope and spirit of the present invention are apparent to those skilled in the art. No wonder the changes and modifications are within the scope of the appended claims.
하기 실시예 및 비교예의 연료전지용 분리판에 형성된 유로의 구체적인 형상 및 크기는 표 1에 기재된 바와 같다.Specific shapes and sizes of the flow paths formed in the separator plates for fuel cells of Examples and Comparative Examples are as described in Table 1.
실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 비교예 1Comparative Example 1 비교예 2Comparative Example 2
유로Euro 곡사형Howitzer 곡사형Howitzer 곡사형Howitzer 곡사형Howitzer 곡사형Howitzer
유로 내의 패턴 유무Presence or absence of a pattern in the flow path U U U radish U
패턴의 횡단면Cross section of the pattern 사다리꼴Trapezoid 삼각형triangle 평행 사변형Parallelogram -- 사다리꼴Trapezoid
제1 및 제2 패턴의 형상Shape of the first and second pattern 패턴의 횡단면이 서로180°회전한 형상과 동일 Cross sections of the pattern are the same as rotated 180 ° to each other 패턴의 횡단면이 서로180°회전한 형상과 동일Cross sections of the pattern are the same as rotated 180 ° to each other 패턴의 횡단면이 서로180°회전한 형상과 동일Cross sections of the pattern are the same as rotated 180 ° to each other -- 패턴의 횡단면이 서로180°회전한 형상과 동일Cross sections of the pattern are the same as rotated 180 ° to each other
제1 패턴 이 거리1 (1a)First pattern tooth distance 1 (1a) 500 ㎛500 μm 500 ㎛500 μm 500 ㎛500 μm -- 750 ㎛750 μm
제1 패턴 이격 거리2 (1b)1st pattern separation distance 2 (1b) 1000 ㎛1000 μm 1000 ㎛1000 μm 1000 ㎛1000 μm -- 750 ㎛750 μm
제2 패턴 이격 거리1 (2a)2nd pattern separation distance 1 (2a) 1000 ㎛1000 μm 1000 ㎛1000 μm 1000 ㎛1000 μm -- 750 ㎛750 μm
제2 패턴 이격 거리2 (2b)2nd pattern separation distance 2 (2b) 500 ㎛500 μm 500 ㎛500 μm 500 ㎛500 μm -- 750 ㎛750 μm
패턴간 이격 거리 (Dw)Distance between patterns (Dw) 700 ㎛700 μm 700 ㎛700 μm 700 ㎛700 μm -- 700 ㎛700 μm
실시예Example 1: 유로 내부의 중앙에 횡단면이 사다리꼴인 기둥형상의 패턴이 일정 간격으로 배열된 연료전지용 분리판 1: Separation plate for fuel cell in which a columnar pattern having a trapezoidal cross section is arranged at regular intervals in the center of the passage.
도 5에 도시된 바와 같이 유로에 패턴이 형성된 연료전지용 분리판을 준비하였으며, (a)는 연료전지용 분리판의 사시도, (b)는 분리판에 형성된 유로의 모식도이다.As shown in FIG. 5, a fuel cell separation plate having a pattern formed in the flow path was prepared, (a) is a perspective view of the separation plate for fuel cell, and (b) is a schematic view of the flow path formed in the separation plate.
직선 유로가 곡사형으로 형성된 연료전지용 분리판(1)에서, 유로(100)의 횡채널(110)에 횡단면이 사다리꼴인 기둥형상의 패턴이 일정 간격으로 이격되어 배열되며, 인접한 두 패턴, 즉, 제1 패턴(141)과 제2 패턴(142)은 횡단면이 서로 180°회전된 형상을 가지도록 배열된다.In the fuel cell separator 1 in which a straight flow path is formed in an curved shape, columnar patterns having a trapezoidal cross section are arranged at regular intervals in the transverse channel 110 of the flow path 100, and two adjacent patterns, that is, The first pattern 141 and the second pattern 142 are arranged such that the cross sections are rotated 180 ° from each other.
상기 표 1에 기재된 바와 같이, 제1 패턴(141)이 유로(100) 횡채널(110) 제1 측벽(131) 및 제2 측벽(132)로부터 각각 이격된 거리인 제1 패턴 이격 거리1(1a) 및 제1 패턴 이격 거리2(1b)는 50 ㎛ 및 1000 ㎛ 이고, 제2 패턴(142)이 유로(100) 횡채널(110) 제1 측벽(131) 및 제2 측벽(132)로부터 각각 이격된 거리인 제2 패턴 이격 거리1(2a) 및 제2 패턴 이격 거리2(2b)는 1000 ㎛ 및 50 ㎛ 이며, 인접한 두 패턴간 이격 거리(Dw) 700 ㎛ 이다.As shown in Table 1, the first pattern spacing distance 1 (the first pattern 141 is a distance spaced from the first side wall 131 and the second side wall 132 of the flow channel 100, the transverse channel 110, respectively) 1 a) and the first pattern separation distance 2 (1 b) are 50 μm and 1000 μm, and the second pattern 142 is formed from the first sidewall 131 and the second sidewall 132 of the channel 100 transverse channel 110. The second pattern separation distance 1 (2a) and the second pattern separation distance 2 (2b), which are spaced apart from each other, are 1000 μm and 50 μm, respectively, and the distance between the two adjacent patterns Dw is 700 μm.
실시예Example 2: 유로 내부의 중앙에 횡단면이 삼각형인 기둥형상의 패턴이 일정 간격으로 배열된 연료전지용 분리판 2: Separation plate for fuel cell in which columnar patterns having a triangular cross section are arranged at regular intervals in the center of the passage.
실시예 1과 동일한 형태를 가지되, 다만 유로에 형성된 패턴이 사다리꼴이 아닌 삼각형인 연료전지용 분리판을 준비하였다.A fuel cell separation plate having the same shape as in Example 1 but having a triangle formed instead of a trapezoid was prepared.
도 6은 실시예 2에 따른 분리판에 형성된 유로의 모식도로서, 제1 및 제2 분리판이 삼각형의 횡단면을 가지는 기둥형상인 경우 연료전지용 분리판의 사시도(a) 및 유로의 모식도(b)이다.6 is a schematic view of a flow path formed in the separator according to the second embodiment, a perspective view (a) of the fuel cell separator and a flow diagram (b) when the first and second separators are columnar having a triangular cross section. .
실시예Example 3: 유로 내부의 중앙에 횡단면이 삼각형인 기둥형상의 패턴이 일정 간격으로 배열된 연료전지용 분리판 3: Separation plate for fuel cell in which columnar patterns having a triangular cross section are arranged at regular intervals in the center of the passage.
실시예 1과 동일한 형태를 가지되, 다만 유로에 형성된 패턴이 사다리꼴이 아닌 평행 사변형인 연료전지용 분리판을 준비하였다.A fuel cell separation plate having the same shape as in Example 1 but having a parallelogram instead of a trapezoidal pattern formed in the flow path was prepared.
도 7은 실시예 3에 따른 분리판에 형성된 유로의 모식도로서, 제1 및 제2 분리판이 평행 사변형의 횡단면을 가지는 기둥형상인 경우 연료전지용 분리판의 사시도(a) 및 유로의 모식도(b)이다.7 is a schematic view of a flow path formed in the separator according to the third embodiment, a perspective view (a) of the fuel cell separator and a flow path (b) in the case where the first and second separators are columnar having a parallelogram cross section. to be.
비교예 1: 직선 유로 곡사형으로 형성된 연료전지용 분리판Comparative Example 1: Separation Plate for Fuel Cell Formed with Straight Passage Curve
도 8에 도시된 바와 같이, 직선 유로가 곡사형으로 형성된 연료전지용 분리판을 준비하였다.As shown in FIG. 8, a separator for a fuel cell in which a straight flow path is formed in an curved shape was prepared.
비교예Comparative example 2: 유로 내부의 중앙에 횡단면이 사다리꼴인 기둥형상의 패턴이 일정 간격으로 배열된 연료전지용 분리판 2: Separation plate for fuel cell in which columnar patterns having a trapezoidal cross section are arranged at regular intervals in the center of the passage.
도 9에 도시된 바와 같이 유로의 중앙에 패턴이 배열되어 형성된 연료전지용 분리판을 준비하였으며, (a)는 연료전지용 분리판의 모식도, (b)는 분리판에 형성된 유로의 모식도이다.As shown in FIG. 9, a fuel cell separation plate formed by arranging patterns in the center of the flow path was prepared, (a) is a schematic diagram of a fuel cell separation plate, and (b) is a schematic diagram of a flow path formed in the separation plate.
실시예 1과 동일한 형상으로 제1 패턴(141) 및 제2 패턴(142)이 배열된 유로(100)를 포함하는 연료전지용 분리판이며, 다만, 제1 패턴(141) 및 제2 패턴(142)이 유로(100)의 중앙에 배열되도록 하였다. A separator for a fuel cell including a flow path 100 in which the first pattern 141 and the second pattern 142 are arranged in the same shape as in the first embodiment, except that the first pattern 141 and the second pattern 142 are provided. ) Is arranged in the center of the flow path (100).
즉, 상기 표 1에 기재된 바와 같이, 제1 패턴(141)과 제2 패턴(142)이 유로(100) 횡채널(110) 제1 측벽(131) 및 제2 측벽(132)로부터 각각 이격된 거리인 제1 패턴 이격 거리1(1a), 제1 패턴 이격 거리2(1b), 제2 패턴 이격 거리1(2a) 및 제2 패턴 이격 거리2(2b)는 모두 동일하게 750 ㎛이며, 인접한 두 패턴간 이격 거리(Dw) 700 ㎛ 이다.That is, as shown in Table 1, the first pattern 141 and the second pattern 142 are spaced apart from the first side wall 131 and the second side wall 132 of the flow channel 100, the transverse channel 110, respectively. The first pattern separation distance 1 (1a), the first pattern separation distance 2 (1b), the second pattern separation distance 1 (2a), and the second pattern separation distance 2 (2b), which are distances, are all equal to 750 µm The separation distance Dw between the two patterns is 700 µm.
실험예 1: CFD(Computational Fluid Dynamics) 분석Experimental Example 1: CFD (Computational Fluid Dynamics) Analysis
실시예 1 내지 3 및 비교예 1의 연료전지용 분리판에 대한 CFD 분석을 실시하여, 유로 형태에 따른 유선형태 및 유속분포를 분석하였다.CFD analysis was performed on the separator plates for fuel cells of Examples 1 to 3 and Comparative Example 1 to analyze the streamline shape and the flow rate distribution according to the flow path shape.
도 10a 내지 10c는 본 발명의 실시예 1에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다.10A to 10C illustrate CFD analysis results of flow paths formed in a separator for a fuel cell according to Example 1 of the present invention.
도 10a는 연료전지용 분리판에 형성된 유로에서의 유량분포를 나타낸 것으로, 실시예 1에 따른 연료전지용 분리판에서는 유로 내에서 제1 및 제2 패턴의 배열에 의해, 단면적이 상이한 유로들이 형성되며, 단면적이 상이한 유로들이 만나는 교차점(A, B)에서 와류가 발생하는 것을 알 수 있다. 유로 내에서 와류가 발생함에 따라 유동 특성 개선 효과를 기대할 수 있다.10A illustrates a flow rate distribution in a flow path formed in a fuel cell separator. In the fuel cell separator according to Embodiment 1, flow paths having different cross-sectional areas are formed by arranging first and second patterns in the flow passage. It can be seen that vortices occur at intersections A and B where flow paths having different cross-sectional areas meet. As vortices occur in the flow path, an improvement in flow characteristics can be expected.
또한, 도 10b는 연료전지용 분리판에 형성된 유로에서의 유속분포를 나타낸 것으로, 실시예 1에 따른 연료전지용 분리판에서는 유로 내에서 제1 및 제2 패턴의 배열에 의해, 단면적이 상이한 유로들이 형성되며, 단면적인 작은 유로에서는 유속이 빠르고, 단면적이 큰 유로에서는 유속이 작으므로, 유로 전반에 걸쳐 균일하지 않은 유속분포를 나타내는 것을 알 수 있다.10B illustrates the flow rate distribution in the flow path formed in the separator for fuel cell. In the fuel cell separator according to the first embodiment, flow paths having different cross-sectional areas are formed by arranging the first and second patterns in the flow path. It is understood that the flow velocity is high in the small cross-sectional flow path and the flow velocity is small in the flow-path having a large cross-sectional area, thus exhibiting a non-uniform flow velocity distribution throughout the flow path.
또한, 도 10c는 연료전지용 분리판에 형성된 유로에서의 유속분포를 보다 구체적으로 나타낸 것으로, 단면적이 작은 유로(F1)에서 유속이 빠른 것으로 나타났으며, 단면적인 큰 유로(F2)에서는 상대적으로 유속이 느리지만 패턴들의 사다리꼴 빗변에 의해 유체의 흐름이 집중되어 유속이 빨라지는 것으로 나타났으며, 유로 전체적으로 균일한 유량분포를 나타낼 수 있도록 하기 위해서 빠른 유속이 나타나는 부분이 패턴의 양쪽에서 번갈아 나타날 수 있도록 패턴을 배열할 수 있다. 또한, 패턴들 사이에 형성된 유로(F3)에서 느린 유속으로 인해 정체될 수 있는 물방울은 중력으로 인하여 횡단면이 사다리꼴인 패턴의 빗변을 따라 흐르게 되며, 빠른 유속을 만나게 되면 신속히 흐름 방향으로 이동하여 배출될 수 있다. 다시 말해, 유로 내에서 물이 생성될 경우 대부분은 넓은 유로를 통해 배출되고, 일부는 좁은 유로에 맺히므로, 연료전지의 저가습 운전시 분리판의 건조를 방지할 수 있다.In addition, FIG. 10C illustrates the flow rate distribution in the flow path formed in the separator for fuel cell in more detail. The flow rate is faster in the flow path F1 having a smaller cross-sectional area, and the flow velocity is relatively higher in the flow path F2 having a larger cross-sectional area. This slow, but trapezoidal hypotenuse of the patterns showed that the flow of the fluid was concentrated and the flow rate was increased.In order to show a uniform flow distribution throughout the flow path, the parts with the high flow rate could be alternated on both sides of the pattern. You can arrange the patterns. In addition, water droplets that may be stagnant due to the slow flow rate in the flow path F3 formed between the patterns flow along the hypotenuse of the trapezoidal cross-section due to gravity, and when a high flow rate is encountered, the water flows quickly in the flow direction to be discharged. Can be. In other words, when water is generated in the flow path, most of the water is discharged through the wide flow path, and some are formed in the narrow flow path, thereby preventing drying of the separator plate during low-humidity operation of the fuel cell.
도 11a 및 11b는 실시예 2에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다.11A and 11B illustrate CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 2. FIG.
도 11a 및 11b를 참조하면, 실시예 2의 삼각형 패턴은 실시예 1의 사다리꼴 패턴에 비해 상대적으로 개별 패턴의 면적이 감소되므로, 유로 전반적으로 평균유속을 감소하는 경향을 나타낸다. 그러나, 실시예 1과 마찬가지로, 유로 내에 삼각형 패턴들의 배열로 인하여 단면적이 상이한 유로들이 형성되고, 이와 같이 단면적이 상이한 유로들이 만나는 지점에서 난류와 유속 변화에 의한 와류가 발생하는 것을 알 수 있다. 유로 내에서 와류가 발생함에 따라 유동 특성 개선 효과를 기대할 수 있다.Referring to FIGS. 11A and 11B, the triangular pattern of Example 2 has a tendency to decrease the average flow rate of the entire flow path since the area of the individual patterns is relatively reduced compared to the trapezoidal pattern of Example 1. FIG. However, as in the first embodiment, it can be seen that flow paths having different cross-sectional areas are formed due to the arrangement of the triangular patterns in the flow path, and vortices due to turbulence and flow velocity change occur at the points where the flow paths having different cross-sectional areas meet. As vortices occur in the flow path, an improvement in flow characteristics can be expected.
도 12a 및 12b는 실시예 3에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이다.12A and 12B show CFD analysis results of flow paths formed in the separator for a fuel cell according to Example 3. FIG.
도 12a 및 12b를 참조하면, 실시예 3의 평행 사변형 패턴은 실시예 1의 사다리꼴 패턴에 비해 상대적으로 개별 패턴의 면적이 증가되므로, 유로 전반적으로 평균유속이 증가하는 경향을 나타낸다. 그러나, 실시예 1과 마찬가지로, 유로 내에 평행 사변형 패턴들의 배열로 인하여 단면적이 상이한 유로들이 형성되고, 이와 같이 단면적이 상이한 유로들이 만나는 지점에서 난류와 유속 변화에 의한 와류가 발생하는 것을 알 수 있다. 유로 내에서 와류가 발생함에 따라 유동 특성 개선 효과를 기대할 수 있다.12A and 12B, since the parallelogram pattern of Example 3 increases the area of the individual pattern relative to the trapezoidal pattern of Example 1, the average flow velocity tends to increase throughout the flow path. However, as in Embodiment 1, it can be seen that due to the arrangement of parallelogram patterns in the flow path, flow paths having different cross-sectional areas are formed, and vortices due to turbulence and flow velocity change occur at the points where the flow paths having different cross-sectional areas meet. As vortices occur in the flow path, an improvement in flow characteristics can be expected.
도 13은 비교예 1에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석 결과이고, 도 14는 비교예 2에 따른 연료전지용 분리판에 형성된 유로에 대한 CFD 분석결과이다.FIG. 13 is a CFD analysis result of the flow path formed in the separator for fuel cell according to Comparative Example 1, and FIG. 14 is a CFD analysis result of the flow path formed in the separator for fuel cell according to Comparative Example 2. FIG.
도 13에 도시된 바와 같이, 비교예 1에 따른 연료전지용 분리판에 형성된 직선 유로에서는 유로 전체적으로 유속이 일정하고 와류가 발생하지 않은 것으로 나타났다.As shown in FIG. 13, in the straight flow path formed in the separator for fuel cell according to Comparative Example 1, the flow rate was constant and the vortex did not occur as a whole.
또한, 도 14에 도시된 바와 같이, 비교예 2에 따른 연료전지용 분리판에 형성된 유로는 패턴들의 양쪽으로 형성된 유로에서 층류(laminar flow)가 발달하여 동일 유선 상에서 유속변화가 없으며, 이에 따라 와류가 나타나지 않는 것을 알 수 있다.In addition, as shown in FIG. 14, the flow path formed in the separator for fuel cell according to Comparative Example 2 has a laminar flow in the flow path formed on both sides of the patterns, so that there is no change in flow velocity on the same streamline. It can be seen that it does not appear.
이와 같이, 실시예 1 내지 실시예 3에 따른 연료전지용 분리판에 대한 유동해석에 따르면, 패턴과 유로의 벽면 사이의 거리가 반복적으로 상이하게 나타나도록 유로 내부에 패턴이 배열될 경우, 즉, 상이한 단면적을 가지는 유로가 반복될 경우, 단면적인 넓은 유로에서 단면적이 작은 유로 쪽으로 유도하는 빗변이 존재하면 와류가 발생되어 유동 특성이 개선되는 효과를 기대할 수 있다는 것을 확인할 수 있다.As such, according to the flow analysis for the separator plates for fuel cells according to the first to third embodiments, when the patterns are arranged inside the flow path so that the distance between the pattern and the wall surface of the flow path is repeatedly different, that is, different When the flow passage having a cross-sectional area is repeated, it can be seen that if there is a hypotenuse that leads to a small cross-sectional area in a wide cross-sectional flow path, vortices are generated and an effect of improving flow characteristics can be expected.
실험예 2: 전류밀도(Current Density)와 셀 전압(Cell Voltage)의 상관관계Experimental Example 2: Correlation between Current Density and Cell Voltage
실시예 1 및 비교예 1의 연료전지용 분리판에 대하여 전류밀도(Current Density)와 셀 전압(Cell Voltage)의 상관관계를 측정하였다.The correlation between the current density and the cell voltage of the fuel cell separators of Example 1 and Comparative Example 1 was measured.
도 15는 실시예 1 및 비교예 1의 연료전지용 분리판의 전류밀도(Current Density)와 셀 전압(Cell Voltage)의 상관관계를 나타낸 그래프(I-V Curve)이다.FIG. 15 is a graph (I-V Curve) showing a correlation between current density and cell voltage of the separator plates for fuel cells of Example 1 and Comparative Example 1. FIG.
도 15에 도시된 바와 같이, 실시예 1 및 비교예 1의 연료전지용 분리판은 전류밀도가 증가함에 따라 전압이 감소하는 것을 알 수 있다. 전류밀도가 커짐에 따라 전압 강하량의 차이가 커지는 것은 많은 양의 전류를 생성할 때 산소 및 수소의 물질이동에 의한 현상으로 알려져 있다. As shown in FIG. 15, it can be seen that in the separator plates for fuel cells of Example 1 and Comparative Example 1, the voltage decreases as the current density increases. As the current density increases, the difference in voltage drop is known as a phenomenon due to mass transfer of oxygen and hydrogen when generating a large amount of current.
따라서, 실시예 1의 경우 비교예 1에 비해 물질이동에 의한 전압강하 현상이 상당량 개선된 것을 알 수 있다. Therefore, in the case of Example 1, it can be seen that the voltage drop phenomenon due to the material movement is significantly improved compared to Comparative Example 1.
하기 표 1은 실시예 1 및 비교예 1의 연료전지용 분리판에 대하여, 특정 셀 전압, 즉, 0.6 V 및 0.7 V에서의 전류밀도를 측정한 결과이다. Table 1 below shows the results of measuring the current cell density at specific cell voltages, that is, 0.6 V and 0.7 V, for the separator plates for fuel cells of Example 1 and Comparative Example 1.
셀 전압(Cell Voltage)Cell Voltage 실시예 1Example 1 비교예 1Comparative Example 1
OCV(Open-circuit voltage)Open-circuit voltage (OCV) 0.94 V0.94 V 0.942 V0.942 V
@ 0.6 V@ 0.6 V 1,346 (mA/㎠)1,346 (mA / ㎠) 1,134 (mA/㎠)1,134 (mA / ㎠)
@ 0.7 V@ 0.7 V 678 (mA/㎠)678 (mA / ㎠) 631 (mA/㎠)631 (mA / ㎠)
상기 표 1에 나타난 바와 같이 셀 전압이 0.6 V 및 0.7 V일 때, 실시예 1이 비교예 1에 비해 모두 더 높은 전류량을 나타낸 것을 알 수 있으며, 이로부터 실시예 1이 비교예 1에 비해 더 높은 효율과 출력을 나타냄을 알 수 있다. As shown in Table 1, when the cell voltage is 0.6 V and 0.7 V, it can be seen that Example 1 showed a higher amount of current than in Comparative Example 1, whereby Example 1 is more than Comparative Example 1 It can be seen that it shows high efficiency and power.
[부호의 설명][Description of the code]
1: 연료전지용 분리판1: Separator for fuel cell
100: 유로100: Euro
110: 횡채널110: transverse channel
120: 종채널120: vertical channel
130: 측벽130: sidewall
131: 제1 측벽 131: first sidewall
132: 제2 측벽132: second sidewall
140: 패턴140: pattern
141: 제1 패턴141: first pattern
142: 제2 패턴142: second pattern
1a: 제1 패턴 이격 거리11a: first pattern separation distance 1
1b: 제1 패턴 이격 거리21b: first pattern separation distance 2
2a: 제2 패턴 이격 거리12a: second pattern separation distance 1
2b: 제2 패턴 이격 거리22b: second pattern separation distance 2

Claims (5)

  1. 횡채널과 종채널을 포함하는 유로가 형성된 연료전지용 분리판에 있어서,In the separator for a fuel cell in which a flow path including a transverse channel and a longitudinal channel is formed,
    상기 횡채널에 교호로 이격되어 배열된 제1 패턴 및 제2 패턴을 포함하되,It includes a first pattern and a second pattern arranged alternately spaced in the transverse channel,
    상기 제1 패턴 및 제2 패턴은 횡단면이 다각형인 기둥 형상의 입체 구조물이며,The first pattern and the second pattern is a three-dimensional structure of a columnar cross-section polygonal,
    상기 제1 패턴 및 제2 패턴은 횡단면이 서로 180°회전된 형상이 되도록 배열되고, The first pattern and the second pattern are arranged such that the cross section is rotated by 180 ° to each other,
    상기 횡채널의 측벽으로부터 상기 제1 패턴 및 제2 패턴이 각각 이격된 거리가 상이한, 연료전지용 분리판.A separation plate for a fuel cell, the distance from which the first pattern and the second pattern are respectively separated from the sidewall of the lateral channel is different.
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 패턴은 상기 횡채널의 양 측벽으로부터 각각 이격된 거리가 상이하고,The first patterns have different distances from both sidewalls of the transverse channel, respectively,
    상기 제2 패턴은 상기 횡채널의 양 측벽으로부터 각각 이격된 거리가 상이한, 연료전지용 분리판.The second pattern is a separation plate for a fuel cell, the distance from each of both side walls of the transverse channel is different.
  3. 제1항에 있어서, The method of claim 1,
    상기 다각형은 사다리꼴, 삼각형, 평행 사변형, 사각형, 오각형 및 육각형 중에서 선택된 1종 이상인, 연료전지용 분리판.Wherein the polygon is one or more selected from trapezoidal, triangular, parallelogram, quadrilateral, pentagon and hexagon, fuel cell separator.
  4. 제1항에 있어서, The method of claim 1,
    상기 유로는 곡사형(serpentine), 깍지형(intergrated) 및 평행형(parallel) 중에서 선택된 1종 이상인, 연료전지용 분리판.The flow path is at least one selected from serpentine, intergrated and parallel, parallel separators for fuel cells.
  5. 제1항 내지 제4항 중 어느 한 항의 연료전지용 분리판을 포함하는, 연료전지.A fuel cell comprising the separator for fuel cell according to any one of claims 1 to 4.
PCT/KR2017/011212 2016-11-14 2017-10-12 Separation plate for fuel cell and fuel cell using same WO2018088701A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780045685.3A CN109565059B (en) 2016-11-14 2017-10-12 Separator plate for fuel cell and fuel cell using the same
JP2018566369A JP6744007B2 (en) 2016-11-14 2017-10-12 Separation plate for fuel cell and fuel cell using the same
EP17868565.7A EP3474358A4 (en) 2016-11-14 2017-10-12 Separation plate for fuel cell and fuel cell using same
US16/314,120 US11121383B2 (en) 2016-11-14 2017-10-12 Separator for fuel cell and fuel cell using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2016-0151351 2016-11-14
KR20160151351 2016-11-14
KR1020170033061A KR102140126B1 (en) 2016-11-14 2017-03-16 Separator for fuel cell and fuel cell using the same
KR10-2017-0033061 2017-03-16

Publications (1)

Publication Number Publication Date
WO2018088701A1 true WO2018088701A1 (en) 2018-05-17

Family

ID=62109883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011212 WO2018088701A1 (en) 2016-11-14 2017-10-12 Separation plate for fuel cell and fuel cell using same

Country Status (1)

Country Link
WO (1) WO2018088701A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276712A (en) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 Double-sided flow field for polar plate for improving material distribution uniformity of fuel cell
WO2020203897A1 (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Electrochemical element, electrochemical element stacked body, electrochemical module, electrochemical device, and energy system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340210A (en) * 2004-05-25 2005-12-08 Samsung Sdi Co Ltd Fuel cell system and stack
US20080318114A1 (en) * 2007-06-19 2008-12-25 Jae-Wook Lee Separator for fuel cell and its manufacturing method and fuel cell stack using the separator
KR101060275B1 (en) * 2010-06-04 2011-08-30 인제대학교 산학협력단 Bipolar plate for fuel cell with fin and serpentine
KR101162667B1 (en) * 2010-12-28 2012-07-05 주식회사 포스코 Seperator for fuel cell
KR20150134583A (en) * 2014-05-22 2015-12-02 주식회사 엘지화학 Separator for fuel cell and fuel cell comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340210A (en) * 2004-05-25 2005-12-08 Samsung Sdi Co Ltd Fuel cell system and stack
US20080318114A1 (en) * 2007-06-19 2008-12-25 Jae-Wook Lee Separator for fuel cell and its manufacturing method and fuel cell stack using the separator
KR101060275B1 (en) * 2010-06-04 2011-08-30 인제대학교 산학협력단 Bipolar plate for fuel cell with fin and serpentine
KR101162667B1 (en) * 2010-12-28 2012-07-05 주식회사 포스코 Seperator for fuel cell
KR20150134583A (en) * 2014-05-22 2015-12-02 주식회사 엘지화학 Separator for fuel cell and fuel cell comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3474358A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276712A (en) * 2018-12-05 2020-06-12 中国科学院大连化学物理研究所 Double-sided flow field for polar plate for improving material distribution uniformity of fuel cell
CN111276712B (en) * 2018-12-05 2021-06-29 中国科学院大连化学物理研究所 Double-sided flow field for polar plate for improving material distribution uniformity of fuel cell
WO2020203897A1 (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Electrochemical element, electrochemical element stacked body, electrochemical module, electrochemical device, and energy system
JP2020167130A (en) * 2019-03-29 2020-10-08 大阪瓦斯株式会社 Electrochemical element, electrochemical element laminate body, electrochemical module, electrochemical device, and energy system
JP7345267B2 (en) 2019-03-29 2023-09-15 大阪瓦斯株式会社 Electrochemical elements, electrochemical modules, electrochemical devices and energy systems
US11967740B2 (en) 2019-03-29 2024-04-23 Osaka Gas Co., Ltd. Electrochemical element, electrochemical element stack, electrochemical module, electrochemical device, and energy system

Similar Documents

Publication Publication Date Title
CA2048710C (en) Solid electrolytic fuel cell and method of dissipating heat therein
EP0442743B1 (en) Solid oxide fuel cells
WO2018088701A1 (en) Separation plate for fuel cell and fuel cell using same
CN101440499B (en) Electrochemical device and exhaust gas purification apparatus
WO2014168330A1 (en) Fuel cell having excellent clamping force
WO2014208869A1 (en) Solid oxide fuel cell stack
WO2014046450A1 (en) Hollow fiber membrane module
WO2011126289A2 (en) Flat tubular solid oxide fuel cell stack
WO2016105034A1 (en) Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same
JP5490134B2 (en) Repeating unit for fuel cell stack
WO2017003089A1 (en) Solid oxide fuel cell system heated by external heat source
WO2013100554A1 (en) Fuel cell stack using branch flow path
WO2020166960A1 (en) Dbd plasma air purifier and exhaust gas reducing device
WO2011090246A1 (en) Fuel cell separator including a sub-channel
WO2014104732A1 (en) Separator for fuel cell, and fuel cell comprising same
JPH01281682A (en) Fuel cell
KR102140126B1 (en) Separator for fuel cell and fuel cell using the same
WO2012091463A2 (en) Fuel cell system and stack
KR101052702B1 (en) Separator for fuel cell with zigzag flow path
WO2018026036A1 (en) Unit cell for redox flow battery, for reducing pressure drop caused by electrolyte flow in stack
WO2017146359A1 (en) Fuel cell separator plate and fuel cell stack having same
WO2017222265A1 (en) Fuel cell having heat-exchanging means for temperature control
KR20040018150A (en) Improved fluid passages for power generation equipment
WO2018038430A1 (en) Vertical electrolytic device
WO2023033402A1 (en) Pem fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868565

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566369

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017868565

Country of ref document: EP

Effective date: 20190115

NENP Non-entry into the national phase

Ref country code: DE