WO2018088496A1 - ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法 - Google Patents

ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法 Download PDF

Info

Publication number
WO2018088496A1
WO2018088496A1 PCT/JP2017/040478 JP2017040478W WO2018088496A1 WO 2018088496 A1 WO2018088496 A1 WO 2018088496A1 JP 2017040478 W JP2017040478 W JP 2017040478W WO 2018088496 A1 WO2018088496 A1 WO 2018088496A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
polyamide
group
represented
formula
Prior art date
Application number
PCT/JP2017/040478
Other languages
English (en)
French (fr)
Inventor
加藤 隆之
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2018550268A priority Critical patent/JP7013386B2/ja
Priority to US16/348,011 priority patent/US11326024B2/en
Publication of WO2018088496A1 publication Critical patent/WO2018088496A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/36Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/14Lactams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines

Definitions

  • the present invention includes at least one of a polyamide-based resin, a molded body including the polyamide-based resin, a laminate including a film or sheet including the polyamide-based resin, the above-described molded body, and the above-described stacked body.
  • the present invention relates to a medical device and a method for producing the aforementioned polyamide-based resin.
  • Polyamide-based resins such as polyamide elastomers are resin compounds that are widely used in various fields such as packaging materials for foods, medical device members, electrical / mechanical precision device members, automobile members, and the like.
  • a member for medical equipment it is used as constituent materials, such as a medical tube and a balloon for catheters, for example.
  • the polyamide elastomer has an extrudability that can be precisely molded into a desired shape, a moldability such as blow moldability, a flexibility that can withstand breakage due to pressure and bending during use, and fracture Mechanical properties such as elongation and breaking strength are required.
  • Patent Document 1 discloses a block polyether amide obtained by polycondensation of a polyamide having carboxyl groups at both predetermined ends, aminopolyoxyalkylene at both ends having an alkylene group having 3 or more carbon atoms, and a predetermined diamine.
  • Patent Document 2 discloses a polyether amide obtained by polycondensation of a polyamide-forming monomer, an aminopolyoxyalkylene at both ends having an alkylene group having 3 or more carbon atoms, a predetermined diamine and a specific amount of dicarboxylic acid. It is disclosed.
  • the polyether amides described in Patent Document 1 and Patent Document 2 are considered to have a certain degree of flexibility and impact resistance.
  • Patent Document 3 includes (A) a polyamide-forming monomer selected from a predetermined aminocarboxylic acid compound and a predetermined lactam compound, (B) a polyether diamine having a PTMO (polytetramethylene oxide) skeleton, a branched diamine, and a branched diamine.
  • a polyamide elastomer obtained by polymerizing at least one diamine compound selected from alicyclic diamine and norbornanediamine and (C) a predetermined dicarboxylic acid compound is disclosed.
  • these diamine compounds used in the invention described in Patent Document 3 are poor in reactivity and require a long polymerization time.
  • Patent Document 4 discloses a copolymer polyether polyamide resin for coating or impregnation on a flexible woven or knitted fabric having a breaking elongation of 1000% or more and an elastic modulus of 15 MPa or less. Further, as a specific configuration, a soft segment composed of a polyether polyamide composed of a polyetherdiamine compound having an alkylene group having 2 to 3 carbon atoms and a predetermined dicarboxylic acid compound, and a predetermined aminocarboxylic acid and / or Alternatively, a polyether polyamide resin is disclosed in which hard segments made of polyamide composed of a predetermined lactam compound are bonded. However, the polyether polyamide resin described in Patent Document 4 has a problem that the reactivity of the polyether component is low and the breaking strength of the resin is not sufficient.
  • an object of the present invention is to provide a polyamide-based resin excellent in the balance of mechanical properties such as breaking strength and elongation at break in a solid state, a molded body including the polyamide-based resin, and the polyamide-based resin. It is providing the laminated body provided with the film or sheet
  • the present invention provides the following polyamide resins [1] to [10], [11] and [12] molded articles, [13] laminates, [14] medical devices, [15] and [16]
  • the present invention relates to a method for producing a polyamide-based resin.
  • a polyamide-based resin comprising a unit (a), a unit (b), a unit (c) and / or a unit (d), and a unit (e),
  • the unit (a) is represented by the following formula (A): —CO—R 1 (—NH—CO—R 1 ) m —NH— (A) (In Formula (A), R 1 is independently a linear saturated hydrocarbon group having 6 to 18 carbon atoms, m is an integer of 0 to 100, and m is an integer of 1 or more.
  • the plurality of R 1 may be the same or different.
  • Is a unit represented by The unit (b) is the following formula (B): —CO—R 2 —CO— (B) (In Formula (B), R 2 is a single bond or a linear saturated hydrocarbon group having 1 to 20 carbon atoms.
  • Is a unit represented by The unit (c) is represented by the following formula (C): —NH—R 3 —NH— (C) (In Formula (C), R 3 is a saturated hydrocarbon group having 2 to 12 carbon atoms.
  • Is a unit represented by The unit (d) is represented by the following formula (D): —NH— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH— ..
  • (D) (In the formula (D), x + z is an integer of 1 to 6, and y is an integer of 1 to 20.)
  • Is a unit represented by The unit (e) is represented by the following formula (E): (In Formula (E), R 4 is a hydrocarbon group that may contain one or more selected from N, O, and S as a hetero atom, and A is independently a carbonyl group (—CO -), Or an amino group (-NH-).)
  • Is a unit represented by The total content of units (a), units (b), units (c), units (d), and units (e) in the polyamide-based resin is 90% by mass or more, Polyamide resin in which the ratio of carbonyl end group molar amount (Ac) to amino (Aa) end group molar amount is 80/100 to 100/80 as Ac / Aa in all units constituting the polyamide resin .
  • the unit (e) is represented by the following formula (E-1): And a unit represented by the following formula (E-2) (In Formula (E-2), R 5 is a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, s is an integer of 0 to 3 and p, q, and r Is an integer from 0 to 5, and p + q + r is an integer from 3 to 15.)
  • the polyamide resin according to any one of [1] to [3], which is at least one selected from units represented by:
  • R 3 in formula (C) is ethane-1,2-diyl, propane-1,3-diyl, butane-1,4-diyl, hexane-1, 6-diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group, 2,2,4-trimethylhexane-1,6-diyl group, and 2,4,4-trimethylhexane-1
  • the polyamide resin according to any one of [1] to [5], which is at least one selected from, 6-diyl groups.
  • the ratio Ma / Mb is 95/100 to 100 /
  • the content of the unit (a) is 50 to 97.9% by mass, the content of the unit (b) is 1 to 20% by mass, and the content of the unit (c) is 1 to 10% by mass.
  • the polyamide resin according to any one of [1] to [7].
  • the content of the unit (a) is 50 to 97.9% by mass, the content of the unit (b) is 1 to 20% by mass, and the content of the unit (d) is 1 to 10%.
  • the polyamide-based resin according to any one of [1] to [8], wherein the polyamide-based resin is in mass%.
  • a medical device comprising at least one selected from the group consisting of the molded body according to [12] and the laminate according to [13].
  • the plurality of R 1 may be the same or different.
  • the prepolymer is represented by the following formula (C1): H 2 N—R 3 —NH 2 (C1) (In formula (C1), R 3 is a saturated hydrocarbon group having 2 to 12 carbon atoms.)
  • diamines (D1) (In the formula (D1), x + z is an integer of 1 or more, and y is an integer of 1 or more and 20 or less.)
  • a process for producing a polyamide resin according to [1], comprising reacting with a trifunctional compound (e1) represented by the formula (I1) or an amide-forming derivative thereof to produce a polyamide resin.
  • a polyamide-based resin having an excellent balance of mechanical properties such as breaking strength and elongation at break in a solid state, a polyamide-based resin having an excellent balance of mechanical properties such as breaking strength and elongation at break, a molded body including the polyamide-based resin, and a film or sheet including the polyamide-based resin are provided.
  • a laminate there can be provided a laminate, a medical device including at least one of the above-described molded body, and the above-described laminate, and a method for producing the above-described polyamide-based resin.
  • the polyamide-based resin includes a unit (a), a unit (b), a unit (c) and / or a unit (d), and a unit (e). Each unit will be described in detail later.
  • the total content of units (a), units (b), units (c), units (d), and units (e) in the polyamide-based resin is 90% by mass or more, and 95% by mass or more. Preferably, 98 mass% or more is more preferable, and 100 mass% is particularly preferable. If the polyamide-based resin contains a predetermined amount of a predetermined type of unit (a), an ester bond (—CO—O—), a urethane bond (—NH—CO—O—), and a carbonate bond (—O—) It may contain a small amount of bonds such as O—CO—.
  • the ratio of the carbonyl end group molar amount (Ac) to the amino (Aa) end group molar amount in all units constituting the polyamide-based resin is 80/100 to 100/80 as Ac / Aa. To 100/90 is preferable, 95/100 to 100/95 is more preferable, and 100/100 is particularly preferable.
  • the polyamide resin includes a unit (a), a unit (b), a unit (c) and / or a unit (d), and a unit (e) each having a predetermined structure. Is excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
  • the polyamide-based resin that satisfies the above predetermined requirements exhibits elastomeric characteristics and is preferably used as a polyamide elastomer.
  • the unit (a) is represented by the following formula (A): —CO—R 1 (—NH—CO—R 1 ) m —NH— (A) (In Formula (A), R 1 is independently a linear saturated hydrocarbon group having 6 to 18 carbon atoms, m is an integer of 0 to 100, and m is an integer of 1 or more. In some cases, the plurality of R 1 may be the same or different.) It is a unit represented by.
  • each R 1 is independently a linear saturated hydrocarbon group. Since it is easy to obtain a polyamide-based resin having good mechanical properties, the number of carbon atoms of R 1 is 6 or more and 18 or less, preferably 8 or more and 16 or less, and more preferably 10 or more and 14 or less.
  • the unit (a) functions as a hard segment in the polyamide-based resin. Then, as the number of carbon atoms of R 1 is greater, there is a tendency to increase the toughness of the polyamide resin.
  • R 1 examples include hexane-1,6-diyl group, heptane-1,7-diyl group, octane-1,8-diyl group, nonane-1,9-diyl group, decane-1,10- Diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group, tridecane-1,13-diyl group, tetradecane-1,14-diyl group, pentadecane-1,15-diyl group, hexadecane- 1,16-diyl group, heptadecane-1,17-diyl group, and octadecane-1,18-diyl group.
  • the value of m is 0 or more and 100 or less, preferably 1 or more and 100 or less, more preferably 10 or more and 50 or less, and more preferably 20 or more in terms of good polymerization reactivity and mechanical properties of the resulting polyamide-based resin. 40 or less is particularly preferable.
  • Unit (a) usually comprises various units having different values of m. The average value of m can be determined by the number average molecular weight obtained by gel permeation chromatography (GPC).
  • suitable monomers that give unit (a) when m is 0 include 6-aminohexanoic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 10-aminodecane. Acid, 11-aminoundecanoic acid, 12-aminododecanoic acid, 13-aminotridecanoic acid, 14-aminotetradecanoic acid, 15-aminopentadecanoic acid, 16-aminohexadecanoic acid, 17-aminoheptadecanoic acid, 18-aminooctadecane Acid, and 19-aminononadecanoic acid.
  • the monomer giving the unit (a) is obtained by condensing a predetermined amount of the above aminoalkanoic acid.
  • different types of aminoalkanoic acids may be condensed to obtain a monomer wherein m is 1 or more.
  • the content of the unit (a) in the polyamide resin is preferably 1 to 99% by mass, more preferably 50 to 97.9% by mass, and more preferably 70 to 97% in terms of easily obtaining a polyamide resin having good mechanical properties. .9% by mass is particularly preferred.
  • the ratio Ma / Mb is 95/100 to 100/95 when the number of moles of the unit (a) in all units constituting the polyamide-based resin is Ma and the number of moles of the unit (b) is Mb. Is preferred.
  • the polyamide-based resin preferably contains a dicarbonyl unit derived from a prepolymer composed of a composite unit in which the unit (b) is bonded to the terminal of the amino group of the unit (a). When the ratio Ma / Mb is within the above range, dicarbonyl units derived from a prepolymer having a desired structure are favorably generated.
  • the unit (b) is represented by the following formula (B): —CO—R 2 —CO— (B) (In Formula (B), R 2 is a single bond or a linear saturated hydrocarbon group having 1 to 20 carbon atoms.) It is a unit represented by.
  • R 2 is a single bond or a linear saturated hydrocarbon group having 1 to 20 carbon atoms.
  • R 2 is preferably a straight-chain saturated hydrocarbon group having 2 to 20 carbon atoms because a polyamide-based resin having good mechanical properties can be easily obtained.
  • the number of carbon atoms of R 2 is preferably 4 or more and 12 or less, and more preferably 6 or more and 10 or less. Incidentally, as the number of carbon atoms of R 2 is large, there is a tendency to increase the toughness of the polyamide resin.
  • R 2 examples include methylene group, ethane-1,2-diyl group, propane-1,3-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane A 1,6-diyl group, a heptane-1,7-diyl group, an octane-1,8-diyl group, a nonane-1,9-diyl group, and a decane-1,10-diyl group.
  • Suitable monomers that give the unit (b) are succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, and dodecanedioic acid.
  • the content of the unit (b) in the polyamide-based resin is preferably from 0.1 to 50% by mass, and most preferably from 1 to 20% by mass from the viewpoint of easily obtaining a polyamide-based resin having good mechanical properties.
  • the polyamide-based resin includes the following unit (c) and / or unit (d) as a diamino unit.
  • the unit (d) will be described later.
  • the unit (c) is represented by the following formula (C): —NH—R 3 —NH— (C) (In Formula (C), R 3 is a saturated hydrocarbon group having 2 to 12 carbon atoms.) It is a unit represented by.
  • R 3 is a saturated hydrocarbon group having 2 to 12 carbon atoms.
  • R 3 may be a divalent chain saturated hydrocarbon group or a divalent saturated hydrocarbon group containing a saturated hydrocarbon ring.
  • R 3 is preferably a divalent chain saturated hydrocarbon group, more preferably a divalent straight chain saturated hydrocarbon group, because a polyamide-based resin having good mechanical properties can be easily obtained.
  • the number of carbon atoms of R 3 is 2 or more and 12 or less, preferably 2 or more and 10 or less, and more preferably 2 or more and 8 or less because a polyamide-based resin having good mechanical properties can be easily obtained. Incidentally, as the number of carbon atoms of R 3 is large, there is a tendency to increase the toughness of the polyamide resin.
  • R 3 examples include ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2-diyl group, propane-1, 1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7-diyl group, Octane-1,8-diyl group, nonane-1,9-diyl group, 2,2,4-trimethylhexane-1,6-diyl group, 2,4,4-trimethylhexane-1,6-diyl group, Examples include a decane-1,10-diyl group, an undecane-1,11-diyl group, and a dodecane-1,12-diyl group.
  • ethane-1,2-diyl group propane-1,3-diyl group, butane-1,4-diyl group, hexane-1,6-diyl group, undecane-1,11-diyl group,
  • a dodecane-1,12-diyl group, a 2,2,4-trimethylhexane-1,6-diyl group, and a 2,4,4-trimethylhexane-1,6-diyl group are preferred.
  • Preferred examples of the monomer that provides the unit (c) include diaminomethane, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, nonamethylenediamine, Examples include 1,6-diamino-2,2,4-trimethylhexane, 1,6-diamino-2,4,4-trimethylhexane, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine.
  • the content of the unit (c) in the polyamide resin is preferably from 0.1 to 50% by mass, particularly preferably from 0.1 to 20% by mass, from the viewpoint of easily obtaining a polyamide resin having good mechanical properties. ⁇ 10% by weight is most preferred.
  • the unit (d) is the following formula (D): —NH— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH— ⁇ ⁇ (C) (In the formula (D), x + z is an integer of 1 to 6, and y is an integer of 1 to 20.) It is a unit represented by.
  • x, y and z are x + z is a real number from 1 to 6, and y is a real number from 1 to 20.
  • x + z is preferably 1 or more and 5 or less, more preferably 1 or more and 3.8 or less.
  • y is preferably 1 or more and 15 or less, more preferably 1 or more and 9.2 or less.
  • x + z is preferably a real number of 1 to 6, and y is preferably a real number of 1 to 15.
  • x, y, and z can be determined by GPC measurement, for example, as in the examples described later.
  • Examples of the monomer compound that gives the unit (d) include polyoxyethylene, 1,2-polyoxypropylene, 1,3-polyoxypropylene, and amino-modified products of polyoxyalkylene that are copolymers thereof.
  • the polyether diamine compound is mentioned.
  • Jeffamine ED series manufactured by HUNTSMAN, USA can be preferably used.
  • x + z is 1 or more and 6 or less
  • y is 1 or more and 20 or less, which are ED600 and ED900.
  • ED900 is used when x + z is 1 or more and 6 or less
  • ED600 is used when x + z is 1 or more and 3.8 or less
  • ED900 is used when y is 1 or more and 15 or less
  • y is 1 or more and 9.2.
  • the following is ED600.
  • the number average molecular weight of ED600 is preferably 500 to 700
  • the number average molecular weight of ED900 is preferably 800 to 1000.
  • the number average molecular weight in this case is a numerical value calculated by a proton ratio by a nuclear magnetic resonance method using a deuterated chloroform solvent.
  • the molecular weight of the monomer compound giving the unit (d) is excellent in the balance of mechanical properties such as breaking strength and breaking elongation, and easily obtains a polyamide-based resin having a desired molecular weight. preferable.
  • the content of the unit (d) in the polyamide resin is preferably from 0.1 to 50% by mass, particularly preferably from 0.1 to 20% by mass, from the viewpoint of easily obtaining a polyamide resin having good mechanical properties. ⁇ 10% by weight is most preferred.
  • the unit (e) is represented by the following formula (E): (In Formula (E), R 4 is a hydrocarbon group that may contain one or more selected from N, O, and S as a hetero atom, and A is independently a carbonyl group (—CO -), Or an amino group (-NH-).) It is a unit represented by.
  • the unit (e) is a tricarbonyl unit, an aminodicarbonyl unit, a diaminocarbonyl unit, or a triamino unit, preferably a tricarbonyl unit or a triamino unit, and a triamino unit because a branched structure is easily generated in a polyamide-based resin. Is more preferable.
  • the polyamide resin contains the unit (e) which is a trivalent unit, a polyamide resin having an excellent balance of mechanical properties such as breaking strength and breaking elongation can be obtained.
  • R 4 is a hydrocarbon group that may contain one or more selected from N, O, and S as a hetero atom.
  • the number of atoms constituting the trivalent group as R 4 is not particularly limited as long as the object of the present invention is not impaired.
  • the number of atoms constituting the trivalent group as R 4 is preferably 200 or less, more preferably 100 or less, as the total number of C, N, O and S.
  • the molecular weight of the unit (e) is preferably 50 or more and more preferably 100 or more with respect to the lower limit.
  • the upper limit of the molecular weight of the unit (e) is preferably less than 1,000, and more preferably less than 500.
  • R 4 is preferably a trivalent hydrocarbon group.
  • R 4 is preferably a trivalent chain aliphatic hydrocarbon group, a trivalent cycloaliphatic hydrocarbon group, or a trivalent aromatic hydrocarbon group.
  • R 4 is a trivalent chain aliphatic hydrocarbon group
  • R 4 is a trivalent cycloaliphatic hydrocarbon group
  • Preferred examples when R 4 is a trivalent cycloaliphatic hydrocarbon group include cyclopentane-1,2,3-triyl group, cyclopentane-1,2,4-triyl group, cyclohexane- Examples include 1,2,3-triyl group, cyclohexane-1,2,4-triyl group, cyclohexane-1,2,5-triyl group, and cyclohexane-1,3,5-triyl group.
  • R 4 is a trivalent aromatic hydrocarbon group
  • R 4 is a trivalent aromatic hydrocarbon group
  • the unit (e) is a tricarbonyl unit
  • preferred specific examples of the monomer giving the unit (e) include propane-1,2,3-tricarboxylic acid, butane-1,2,3-tricarboxylic acid. 2-methylpropane-1,2,3-tricarboxylic acid, pentane-1,2,3-tricarboxylic acid, pentane-1,3,5-tricarboxylic acid, hexane-1,2,5-tricarboxylic acid, etc.
  • Alkanetricarboxylic acid Alkanetricarboxylic acid; clopentane-1,2,3-tricarboxylic acid, cyclopentane-1,2,4-tricarboxylic acid, cyclohexane-1,2,3-tricarboxylic acid, cyclohexane-1,2,4-tricarboxylic acid, cyclohexane -Cycloalkanetricarboxylic acids such as 1,2,5-tricarboxylic acid and cyclohexane-1,3,5-tricarboxylic acid; Benzenetricarboxylic acids such as acids, trimesic acid, and 1,2,3-benzenetricarboxylic acid; 1,2,4-naphthalenetricarboxylic acid, 1,2,5-naphthalenetricarboxylic acid, 1,4,5-naphthalenetricarboxylic acid 2,3,6-naphthalenetricarboxylic acid and naphthalenetricarboxylic
  • R 4 When R 4 is a triamino unit, R 4 may be the above-described trivalent chain aliphatic hydrocarbon group, trivalent cyclic aliphatic hydrocarbon group, or trivalent aromatic hydrocarbon group. preferable.
  • the polyamide-based resin is represented by the following formula (E-1): And a unit represented by the following formula (E-2): (In Formula (E-2), R 5 is a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms, s is an integer of 0 to 3 and p, q, and r Is an integer from 0 to 5, and p + q + r is an integer from 3 to 15.) It is also preferable to include one or more selected from the units represented by the unit (e).
  • the content of the unit (e) in the polyamide resin is preferably 0.1% by mass or more and less than 10% by mass, and is preferably 0.1% by mass or more and 4% by mass in terms of easily obtaining a polyamide resin having good mechanical properties. Less than is particularly preferred.
  • the polyamide-based resin described above may contain a phosphorus compound.
  • the breaking elongation and breaking stress of the molded object containing a polyamide-type resin can be improved more. Therefore, the polyamide resin composition containing a phosphorus compound is suitable for medical balloons, for example. Further, as will be described later, in the production process of the polyamide-based resin, it is possible to prevent coloration due to stabilization of the polymerization reaction or oxidation.
  • Examples of such phosphorus compounds include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, and alkali metal salts and alkaline earth metal salts thereof.
  • phosphorous acid, hypophosphorous acid, and alkali metal salts thereof are used from the viewpoint of improving the stability of the polymerization reaction, imparting heat stability to the polyamide-based resin, and improving the mechanical properties of the molded body.
  • Alkaline earth metal salts are preferred.
  • the content of the phosphorus compound is preferably 5 mass ppm or more and 5000 mass ppm or less, more preferably 20 mass ppm or more and 4000 mass ppm or less, and more preferably 30 mass ppm or more and 3000 mass ppm or less as the phosphorus element with respect to the mass of the polyamide-based resin. Further preferred.
  • various additives can be blended with the polyamide-based resin in accordance with the purpose within a range that does not impair the characteristics. Specifically, heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, mold release agents, plasticizers, pigments, dyes, Flame retardants, reinforcing materials, inorganic fillers, fine fibers, radiopaque agents and the like can be added.
  • the polyamide-based resin can be prepared by polycondensing the monomer giving the above units in a desired ratio according to a known method.
  • the melt viscosity (melt flow rate, MFR) of the polyamide-based resin is preferably 0.1 to 20 (g / 10 min) at 230 ° C. and 2.16 kgf (21.2 N). Thereby, extrusion moldability becomes favorable.
  • the reaction temperature, the reaction time, the solution concentration, etc. at the time of polymerization may be appropriately adjusted.
  • the Shore D hardness of the polyamide resin is preferably 50 to 100, more preferably 60 to 80. Thereby, the softness
  • the Shore D hardness can be adjusted by appropriately changing the composition ratio of the monomer giving each unit.
  • the number average molecular weight of the polyamide-based resin is preferably 10,000 or more and 150,000 or less, and more preferably 20,000 or more and 100,000 or less. By setting the number average molecular weight in such a range, the processability and mechanical properties are excellent.
  • the elongation at break in the tensile test of the molded product is preferably from 100% to 600%, more preferably from 200% to 600%, particularly preferably from 400% to 600%.
  • the breaking stress is preferably 20 MPa or more and 100 MPa or less, more preferably 30 MPa or more and 90 MPa or less, and particularly preferably 70 MPa or more and 90 MPa or less. Note that the tensile test is performed, for example, by a method described later.
  • the content of the unit (a) is 50 to 97.9% by mass
  • the content of the unit (b) is 1 to 20% by mass
  • the content of the unit (c) is It is preferably 1 to 10% by mass.
  • the content of the unit (a) is 50 to 97.9% by mass
  • the content of the unit (b) is 1 to 20% by mass
  • the content of the unit (d) is 1 It is preferably ⁇ 10% by mass.
  • the polyamide-based resin described above has an excellent balance of mechanical properties such as breaking strength and breaking elongation, it is suitably used in various applications.
  • the polyamide-based resin described above includes a monomer that provides the unit (a), a monomer that provides the unit (b), a monomer that provides the unit (c), and a monomer that provides the unit (d). It can manufacture by making at least 1 sort (s) selected from and the monomer which gives a unit (e) react.
  • the reaction method is selected from a monomer giving unit (a), a monomer giving unit (b), a monomer giving unit (c), and a monomer giving unit (d).
  • step (i) a monomer that gives a unit (a), a unit ( a step of mixing and reacting with a monomer to give b) to obtain a prepolymer (hereinafter referred to as “step (i)”), and a unit (c) in the prepolymer obtained in step (i).
  • step (i) a step of mixing and reacting at least one selected from a monomer to give and a monomer to give unit (d) with a monomer to give unit (e) (hereinafter referred to as “step (ii)”)
  • step (ii) a method comprising:
  • the polyamide resin described above is (I) The following formula (A1): HOOC-R 1 (—NH—CO—R 1 ) m —NH 2 (A) (In Formula (A1), R 1 is independently a linear saturated hydrocarbon group having 6 to 18 carbon atoms, m is an integer of 0 to 100, and m is an integer of 1 or more.
  • the plurality of R 1 may be the same or different.
  • the prepolymer is represented by the following formula (C1): H 2 N—R 3 —NH 2 (C1) (In formula (C1), R 3 is a saturated hydrocarbon group having 2 to 12 carbon atoms.)
  • diamines (D1) (In the formula (D1), x + z is an integer of 1 or more, and y is an integer of 1 or more and 20 or less.)
  • the aminocarboxylic acid (a1) or an amide-forming derivative thereof is a monomer that gives the unit (a).
  • the dicarboxylic acid (b1) or its amide-forming derivative is a monomer that gives the above-mentioned unit (b).
  • Diamine (c1) is a monomer that provides the unit (c) described above.
  • Diamine (d1) is a monomer that provides the above-mentioned unit (d).
  • the trifunctional compound (e1) or its amide-forming derivative is a monomer that provides the unit (e).
  • Examples of amide-forming derivatives include acid halides and lactams. Examples of the acid halide include acid chlorides and acid bromides, and acid chlorides are preferable.
  • the amount of each monomer used is appropriately adjusted so that the content of each unit is a desired value.
  • the monomer that can cause the equimolarity of the amino group and the carboxylic acid group to be added to an extent that does not deteriorate the desired physical properties.
  • the monomer polycondensation reaction in steps (i) and (ii) can be performed in a solvent or without a solvent. It is preferable to carry out the reaction without using a solvent without using a solvent, because no purification or the like is required and the desired polyamide-based resin can be easily obtained.
  • a solvent-free reaction can be performed by a melt-kneading method. Therefore, when synthesizing the prepolymer in step (i) or synthesizing the polyamide-based resin in step (ii), it is preferable to react the monomer by a melt-kneading method.
  • an atmospheric pressure melt polycondensation reaction a reduced pressure melt polycondensation reaction, or a combination thereof can be employed.
  • the pressure in the reaction vessel is preferably set to 0.1 to 0.01 (MPa) in a nitrogen gas atmosphere from the viewpoint of polymerization reactivity.
  • the temperature at which the monomer is reacted in the step (i) and the step (ii) is not particularly limited as long as the polycondensation reaction occurs. 300 ° C. is preferable, and it is more preferable to carry out at 200 to 280 ° C.
  • the reaction temperatures in steps (i) and (ii) may be the same or different.
  • the polycondensation reaction time in steps (i) and (ii) in the method for producing a polyamide-based resin is preferably 3 to 10 hours from the viewpoint of increasing the molecular weight and suppressing coloring.
  • the polycondensation reaction times in steps (i) and (ii) may be the same or different.
  • the production method of the polyamide-based resin may be a batch type or a continuous type.
  • a batch type using a batch type reaction kettle or the like, or a continuous type using a single tank type or multi tank type continuous reaction apparatus, a tubular continuous reaction apparatus or the like alone or in combination may be used.
  • a phosphorus compound can be used as a catalyst as necessary.
  • phosphorus compounds include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, and alkali metal salts and alkaline earth metal salts thereof.
  • Inorganic phosphorus compounds such as alkaline earth metal salts are preferably used.
  • the weight at the time of preparation of such a phosphorus compound is preferably 10 mass ppm or more and 10000 mass ppm or less with respect to the total weight of the monomers in at least one of step (i) and step (ii). More preferably, it is 100 mass ppm or more and 5000 mass ppm or less.
  • a phosphorus compound may be discharged
  • the amount of phosphorus element in the obtained polyamide-based resin is preferably 5 mass ppm or more and 5000 mass ppm or less, more preferably 20 mass ppm or more and 4000 mass ppm or less, and 30 mass ppm or more and 3000 mass ppm or less. Is more preferable.
  • a molten polymer After reacting each component in the step (ii), for example, a molten polymer can be drawn out in a string shape and cooled, and can be obtained as pellets or the like, if necessary.
  • the above polyamide-based resin is excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
  • the molded object which consists of a polyamide-type resin or the polyamide-type resin which mix
  • molded bodies are not particularly limited. What are polyamide-based resins and polyamide-based resin compositions? By various known molding methods, spinning methods, fabric manufacturing methods, etc., they are processed into molded products of various forms. As the molding method, for example, extrusion molding, blow molding, injection molding or the like can be applied. Suitable molded products include films, sheets, tubes, powders, fibers, woven fabrics, nonwoven fabrics, balloons for catheters, and the like.
  • the molded body made of the polyamide-based resin and the polyamide-based resin composition is, for example, a film, a sheet, or a tube. Is preferred.
  • a film or sheet made of a polyamide-based resin and a polyamide-based resin composition is included in the laminate, good rupture strength and elongation at break are also imparted to the laminate.
  • seat which consists of a polyamide-type resin and a polyamide-type resin composition is also preferable.
  • the above-mentioned polyamide-based resin is excellent in extrusion moldability and take-off moldability due to the melting characteristics of the resin, excellent in blow moldability, and excellent in toughness. Therefore, it can be used for manufacturing molded articles in various fields.
  • a member such as a tube, a hose, or a medical tube can be manufactured by extrusion molding using a polyamide-based resin.
  • members such as bottles, containers, catheter balloons and the like can be produced by blow molding a polyamide-based resin.
  • the polyamide-based resin is suitable as a constituent material for medical members used in medical devices. Examples of medical members include catheter balloons, medical tubes, and laminates.
  • the medical member is a catheter balloon
  • the molded body used as the medical member is not limited thereto.
  • a tube (hereinafter sometimes referred to as “parison”) is manufactured using a polyamide-based resin, and then the obtained parison is further produced. It can be manufactured by processing.
  • a method for producing a parison using a polyamide-based resin a general known molding method can be used. For example, extrusion molding, injection molding, melt spinning molding and the like can be mentioned.
  • the parison generally has a cylindrical shape whose diameter is constant in the major axis direction.
  • a general known molding method can be used as a method for producing a balloon from a parison.
  • a balloon having a desired shape can be produced by biaxial stretching by blow molding such as air blowing or die blowing, vacuum molding, or the like.
  • the molding temperature is generally 95 to 165 ° C.
  • the inner diameter expansion rate of the balloon from the parison is preferably 400% to 900%, more preferably 500% to 800%.
  • the inner diameter expansion rate in the present invention is a value calculated by the following equation.
  • Inner diameter expansion rate (%) (inner diameter during balloon expansion during molding / parison inner diameter) ⁇ 100
  • Appearance inspection or the like is performed on the balloon obtained as described above, and only those that pass the inspection can be used as medical members of medical devices such as balloon catheters. In the appearance inspection, diamond-shaped scratches, fish eyes, and cracks observed on the surface of the balloon are regarded as defective.
  • polyamide-based resins have an excellent balance of mechanical properties such as elongation at break and strength at break. Therefore, in addition to medical device components, packaging materials such as food, and electrical / mechanical precision devices Of course, it can be used for various applications such as members, automobile members and the like.
  • the number average molecular weight Mn was calculated by gel permeation chromatography (GPC). GPC measurement is performed using a GPC measurement apparatus equipped with a GPC unit (system unit: SCL-10Avp, liquid feeding unit: LC-10ADvp, and column oven: CTO-10Avp, detector: RID-10A) manufactured by Shimadzu Corporation. went. As the column, LF-404 manufactured by SHODEX was used. Hexafluoroisopropanol was used as a solvent. The number average molecular weight was calculated as a PMMA equivalent molecular weight from the obtained molecular weight distribution using a calibration curve with a PMMA (polymethyl methacrylate) standard substance. In addition, the number average molecular weight has a measurement variation of about 10%, and the average value measured three times was used as the value of the number average molecular weight.
  • GPC gel permeation chromatography
  • Test test In the tensile test, a test piece conforming to ASTM-D638 (TYPE 5) was used. The test piece was obtained by pressing the polyamide resin pellets obtained in Examples and Comparative Examples at 190 ° C. using a small press machine (product name: MP-2FH, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and cooling the thickness 1 A (mm) film was prepared and punched with a punching blade of the above standard. And the drying process of the test piece was 80 degreeC and 4 hours. The tensile test was performed at a speed of 200 (mm / min).
  • the Shore D hardness was measured according to ASTM-D2240 using a 6 mm thick sheet in a 23 ° C. constant temperature room. A sheet having a thickness of 6 mm was produced by using the above-described press machine using the polyamide resin pellets of Examples and Comparative Examples. As a measuring device, a rubber hardness meter load tester D type manufactured by Kobunshi Keiki Co., Ltd. was used.
  • Example 1 1200 g of 12-aminododecanoic acid (PA12) and 0.6 g of hypophosphorous acid were charged into a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. . After the inside of the container is sufficiently substituted with nitrogen, in order to melt the monomer, the temperature is raised to 280 ° C. in 1 hour, and polymerization is performed until the number average molecular weight becomes 5,000 to form an aminocarboxylic acid (a1 )
  • adipic acid (AA) as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • R 5 is an ethyl group, s is 1, and p + q + r is 5 or more and 6 or less, Jeffamine T403 (T40 manufactured by HUNTSMAN) 3), 13) (0.03 mol) was charged.
  • the usage-amount of a trifunctional compound (e1) is the quantity whose quantity of the unit derived from the trifunctional compound (e1) in a polyamide-type resin is 1 mass%.
  • the prepolymer, diamine (c1), diamine (d1), and trifunctional compound (e1) were polycondensed at 260 ° C. for 4 hours to obtain a polyamide resin (step (ii)).
  • Example 2 1200 g of 12-aminododecanoic acid (PA12) and 0.6 g of hypophosphorous acid were charged into a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. . After the inside of the container is sufficiently substituted with nitrogen, in order to melt the monomer, the temperature is raised to 280 ° C. in 1 hour, and polymerization is performed until the number average molecular weight becomes 5,000 to form an aminocarboxylic acid (a1 )
  • adipic acid (AA) as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • HMD hexamethylenediamine
  • diamine (c1) diamine (c1)
  • polyethertriamine (JEFFER manufactured by HUNTSMAN) as trifunctional compound (e1) 26 g (0.07 mol) of Min T403 (T403) was charged in.
  • the amount of the trifunctional compound (e1) used was 2 units derived from the trifunctional compound (e1) in the polyamide resin.
  • Example 3 1200 g of 12-aminododecanoic acid (PA12) and 0.6 g of hypophosphorous acid were charged into a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. . After the inside of the container is sufficiently substituted with nitrogen, in order to melt the monomer, the temperature is raised to 280 ° C. in 1 hour, and polymerization is performed until the number average molecular weight becomes 5,000 to form an aminocarboxylic acid (a1 )
  • adipic acid (AA) as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • HMD hexamethylenediamine
  • Example 4 1200 g of 12-aminododecanoic acid (PA12) and 0.6 g of hypophosphorous acid were charged into a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. . After the inside of the container is sufficiently substituted with nitrogen, in order to melt the monomer, the temperature is raised to 280 ° C. in 1 hour, and polymerization is performed until the number average molecular weight becomes 5,000 to form an aminocarboxylic acid (a1 )
  • adipic acid as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • Example 5 1200 g of 12-aminododecanoic acid (PA12) and 0.6 g of hypophosphorous acid were charged into a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. . After the inside of the container is sufficiently substituted with nitrogen, in order to melt the monomer, the temperature is raised to 280 ° C. in 1 hour, and polymerization is performed until the number average molecular weight becomes 5,000 to form an aminocarboxylic acid (a1 )
  • adipic acid as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • HMD hexamethylenediamine
  • diamine (c1) diamine (c1) was added so that the terminal carboxylic acid groups of the obtained prepolymer and the amino groups of the remaining monomers were equimolar. 0.02 mol) and 72 g (0.12 mol) of polyetherdiamine (JEFAMINE ED600 (ED600) manufactured by HUNTSMAN) as diamine (d1), 2,2 ′, 2 ′′ ⁇ as trifunctional compound (e1) Triaminotriethylamine (TAEA) 15.5 g (0.11 mol) was charged.
  • HMD hexamethylenediamine
  • TAEA Triaminotriethylamine
  • the usage-amount of a trifunctional compound (e1) is the quantity whose quantity of the unit derived from the trifunctional compound (e1) in a polyamide-type resin is 1 mass%.
  • the prepolymer, diamine (c1), diamine (d1), and trifunctional compound (e1) were polycondensed at 260 ° C. for 4 hours to obtain a polyamide resin (step (ii)).
  • adipic acid as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • adipic acid as dicarboxylic acid (b1) was added to the reaction vessel in an amount equivalent to the molar amount of the terminal amine group of aminocarboxylic acid (a1) (0.24 mol, 35 g).
  • the aminocarboxylic acid (a1) and the dicarboxylic acid (b1) were reacted at 220 ° C. for 1 hour to obtain a prepolymer (step (i)).
  • Comparative Examples 3 and 4 As the polyamide resins of Comparative Examples 3 and 4, the following linear polyamide resins, which are commercially available, were used. Comparative Example 3: PEBAX 7233 (manufactured by Arkema) Comparative Example 4: UBESTA (manufactured by Ube Industries, Ltd.)
  • the polyamide resins of Examples 1 to 5 in which a branched structure is introduced into the molecular chain by the trifunctional compound (e1) show a similar Shore D hardness, It can be seen that the elongation at break and the breaking strength are excellent and the balance of mechanical properties is good as compared with the polyamide resins of Comparative Examples 1 to 4 having no branched structure.
  • the polyamide-based resin of this example can be particularly suitably used for the production of medical tubes and balloons.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Polyamides (AREA)
  • Materials For Medical Uses (AREA)

Abstract

固体状態において、破断強度や破断伸び等の機械的特性のバランスに優れるポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とを提供すること。 ポリアミド系樹脂として、単位(a)として直鎖状脂肪族ジカルボニル単位と、単位(b)として直鎖状脂肪族ジアミノ単位と、それぞれ所定の構造の単位(c)と単位(b)との少なくとも1つと、3価の単位(e)とを含む樹脂を用いる。

Description

ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
 本発明は、ポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とに関する。
 ポリアミドエラストマー等のポリアミド系樹脂は、食品等の包装材料、医療機器用部材、電気・機械精密機器用部材、自動車用部材等の様々な分野で幅広く用いられている樹脂化合物である。これらのうち、医療機器用部材としては、例えば医療用チューブ、カテーテル用バルーン等の構成材料として用いられている。医療機器用部材に用いる場合は、ポリアミドエラストマーには、所望の形状に精密に成形できる押出成形性、ブロー成形性等の成形性や使用時の圧力や屈曲等による破壊に耐えうる柔軟性、破断伸度、破断強度等の力学的特性が求められている。
 特許文献1には、所定の両末端にカルボキシル基を有するポリアミド、炭素数が3以上のアルキレン基を持つ両末端アミノポリオキシアルキレン及び所定のジアミンを縮重合させて得られるブロックポリエーテルアミドが開示されている。また、特許文献2には、ポリアミド形成性モノマー、炭素数が3以上のアルキレン基を持つ両末端アミノポリオキシアルキレン、所定のジアミン及び特定量のジカルボン酸を重縮合させて得られるポリエーテルアミドが開示されている。特許文献1及び特許文献2に記載のポリエーテルアミドは、ある程度の柔軟性や耐衝撃性を有すると考えらえる。
 しかしながら、特許文献1及び2に記載の成分構成のポリーテルアミドでは、炭素数が3以上のアルキレン基を持つポリエーテルを用いても、柔軟性、破断伸度や破断強度等の機械的強度が不十分であり、更なる向上が求められていた。
 特許文献3には、(A)所定のアミノカルボン酸化合物及び所定のラクタム化合物から選ばれるポリアミド形成性モノマー、(B)PTMO(ポリテトラメチレンオキサイド)骨格を有するポリエーテルジアミン並びに分岐型ジアミン、分岐脂環式ジアミン、ノルボルナンジアミンから選ばれる少なくとも1種のジアミン化合物、(C)所定のジカルボン酸化合物を重合して得られるポリアミドエラストマーが開示されている。しかしながら、特許文献3に記載の発明で用いられるこれらのジアミン化合物は反応性に乏しく、長い重合時間を要する。そのため、重合中に重合物の一部が熱分解し、得られるエラストマーが着色したり、十分に反応しない等により得られたエラストマーの破断伸び、破断強度等の強度が十分ではないという問題がある。
 特許文献4には、破断伸度が1000%以上、弾性率が15MPa以下の柔軟な織編物へのコーティングもしくは含浸用共重合ポリエーテルポリアミド樹脂が開示されている。また、具体的な構成として、炭素数2~3のアルキレン基を有するポリエーテルジアミン化合物と所定のジカルボン酸化合物とから構成されたポリエーテルポリアミドからなるソフトセグメント、並びに、所定のアミノカルボン酸及び/又は所定のラクタム化合物から構成されたポリアミドからなるハードセグメントが結合されてなるポリエーテルポリアミド樹脂が開示されている。しかしながら、特許文献4に記載のポリエーテルポリアミド樹脂は、ポリエーテル成分の反応性が低く、樹脂の破断強度が十分ではないという問題がある。
特開昭59-193923号公報 特開昭59-131628号公報 国際公開第2007/145324号 国際公開第2009/139087号
 上記の問題点に鑑みて、本発明の目的は、固体状態において、破断強度や破断伸び等の機械的特性のバランスに優れるポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とを提供することにある。
 本発明者は、前述の課題解決のために鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は、下記[1]~[10]のポリアミド系樹脂、[11]及び[12]の成形体、[13]の積層体、[14]の医療機器、[15]及び[16]のポリアミド系樹脂を製造する方法に関する。
 [1]単位(a)と、単位(b)と、単位(c)及び/又は単位(d)と、単位(e)とを含むポリアミド系樹脂であって、
 単位(a)が、下記式(A):
-CO-R(-NH-CO-R-NH-・・・(A)
(式(A)中、Rは、独立に、炭素原子数6以上18以下の直鎖状飽和炭化水素基であり、mは0以上100以下の整数であり、mが1以上の整数である場合、複数のRは、同一であっても異なっていてもよい。)
で表される単位であり、
 単位(b)が下記式(B):
-CO-R-CO-・・・(B)
(式(B)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。)
で表される単位であり、
 単位(c)が下記式(C):
-NH-R-NH-・・・(C)
(式(C)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。)
で表される単位であり、
 単位(d)が下記式(D):
-NH-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH-・・・(D)
(式(D)中、x+zは1以上6以下の整数であり、yは1以上20以下の整数である。)
で表される単位であり、
 単位(e)が下記式(E):
Figure JPOXMLDOC01-appb-C000005
(式(E)中、Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基であり、Aは、独立に、カルボニル基(-CO-)、又はアミノ基(-NH-)である。)
で表される単位であり、
 ポリアミド系樹脂中の、単位(a)、単位(b)、単位(c)、単位(d)、及び単位(e)の含有量の合計が、90質量%以上であり、
 ポリアミド系樹脂を構成する全単位における、カルボニル末端基モル量(Ac)と、アミノ(Aa)末端基モル量との比率が、Ac/Aaとして80/100~100/80である、ポリアミド系樹脂。
 [2]ポリアミド系樹脂中の、単位(e)の含有量が0.1質量%以上4質量%未満である、[1]に記載のポリアミド系樹脂。
 [3]単位(e)の分子量が、50以上1,000未満である、[1]又は[2]に記載のポリアミド系樹脂。
 [4]単位(e)が、下記式(E-1):
Figure JPOXMLDOC01-appb-C000006
で表される単位、及び下記式(E-2)
Figure JPOXMLDOC01-appb-C000007
(式(E-2)中、Rは、水素原子、又は炭素原子数1以上5以下の脂肪族炭化水素基であり、sは0以上3以下の整数であり、p、q、及びrは0以上5以下の整数であり、p+q+rは3以上15以下の整数である。)
で表される単位から選択される1種以上である、[1]~[3]のいずれか1つに記載のポリアミド系樹脂。
 [5]数平均分子量が10,000以上150,000以下である、[1]~[4]のいずれか1つに記載のポリアミド系樹脂。
 [6]単位(c)について、式(C)中のRが、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ヘキサン-1,6-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、2,2,4-トリメチルヘキサン-1,6-ジイル基、及び2,4,4-トリメチルヘキサン-1,6-ジイル基から選択される1種以上である、[1]~[5]のいずれか1つに記載のポリアミド系樹脂。
 [7]ポリアミド系樹脂を構成する全単位における、単位(a)のモル数をMaとし、単位(b)のモル数をMbとする場合に、比率Ma/Mbが、95/100~100/95である、[1]~[6]のいずれか1つに記載のポリアミド系樹脂。
 [8]単位(a)の含有量が50~97.9質量%であり、単位(b)の含有量が1~20質量%であり、単位(c)の含有量が1~10質量%である、[1]~[7]のいずれか1つに記載のポリアミド系樹脂。
 [9]単位(a)の含有量が50~97.9質量%であり、前記単位(b)の含有量が1~20質量%であり、前記単位(d)の含有量が1~10質量%である、請求項[1]~[8]のいずれか1つに記載のポリアミド系樹脂。
 [10]ショア硬度が50~100、破断伸びが100%以上600%以下、破断応力が20MPa以上100MPa以下である、[1]~[9]のいずれか1つに記載のポリアミド系樹脂
 [11][1]~[10]のいずれか1つに記載のポリアミド系樹脂を含む材料からなる成形体。
 [12]成形体が、フィルム、シート、チューブ、粉末、繊維、織布、不織布、又はカテーテル用バルーンである、[11]に記載の成形体。
 [13][12]に記載のフィルム、又はシートを含む、積層体。
 [14][12]に記載の成形体、及び[13]に記載の積層体からなる群より選択される少なくとも1種を備える医療機器。
 [15](i)下記式(A1):
HOOC-R(-NH-CO-R-NH・・・(A1)
(式(A1)中、Rは、独立に、炭素原子数6以上18以下の直鎖状飽和炭化水素基であり、mは0以上100以下の整数であり、mが1以上の整数である場合、複数のRは、同一であっても異なっていてもよい。)
で表されるアミノカルボン酸(a1)、又はそのアミド形成性誘導体と、
 下記式(B1):
HOOC-R-COOH・・・(B1)
(式(B1)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。)
で表されるジカルボン酸(b1)、又はそのアミド形成性誘導体と、を反応させてプレポリマーを得ることと、
 (ii)プレポリマーを、下記式(C1):
N-R-NH・・・(C1)
(式(C1)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。)
で表されるジアミン(c1)、及び下記式(D1)で:
N-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH・・・(D1)
(式(D1)中、x+zは1以上の整数であり、yは1以上20以下の整数である。)
で表されるジアミン(d1)からなる群より選択される1種以上のジアミンと、下記式(E1):
Figure JPOXMLDOC01-appb-C000008
(式(E1)中、Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基であり、Aは、独立に、カルボキシ基(-COOH)、又はアミノ基(-NH)である。)
で表される3官能性化合物(e1)、又はそのアミド形成性誘導体と、反応させてポリアミド系樹脂を生成させることと、を含む[1]に記載のポリアミド系樹脂を製造する方法。
 [16]
 プレポリマーを生成させる反応と、ポリアミド系樹脂を生成させる反応とが、溶融混練法で行われる、[15]に記載の方法。
 本発明によれば、固体状態において、破断強度や破断伸び等の機械的特性のバランスに優れるポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とを提供することができる。
≪ポリアミド系樹脂≫
 ポリアミド系樹脂は、単位(a)と、単位(b)と、単位(c)及び/又は単位(d)と、単位(e)とを含む。各単位については詳細に後述する。
 ポリアミド系樹脂中の、単位(a)、単位(b)、単位(c)、単位(d)、及び単位(e)の含有量の合計は、90質量%以上であり、95質量%以上が好ましく、98質量%以上がより好ましく、100質量%が特に好ましい。
 ポリアミド系樹脂は、所定の種類の単位(a)を所定量含んでいれば、エステル結合(-CO-O-)、ウレタン結合(-NH-CO-O-)、及びカーボネート結合(-O-O-CO-等の結合を少量含んでいてもよい。
 ポリアミド系樹脂を構成する全単位における、カルボニル末端基モル量(Ac)と、アミノ(Aa)末端基モル量との比率は、Ac/Aaとして80/100~100/80であり、90/100~100/90が好ましく、95/100~100/95がより好ましく、100/100が特に好ましい。
 ポリアミド系樹脂が、それぞれ所定の構造を有する、単位(a)と、単位(b)と、単位(c)及び/又は単位(d)と、単位(e)とを含むことにより、ポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに優れる。
 上記の所定の要件を満たすポリアミド系樹脂は、エラストマー的な特性を示し、ポリアミドエラストマーとして好適に用いられる。
 以下、ポリアミド系樹脂に含まれる各単位について説明する。
<単位(a)>
 単位(a)は、下記式(A):
-CO-R(-NH-CO-R-NH-・・・(A)
(式(A)中、Rは、独立に、炭素原子数6以上18以下の直鎖状飽和炭化水素基であり、mは0以上100以下の整数であり、mが1以上の整数である場合、複数のRは、同一であっても異なっていてもよい。)
で表される単位である。
 式(A)中、Rは、各々独立に、直鎖状飽和炭化水素基である。機械的特性が良好なポリアミド系樹脂を得やすいことからRの炭素原子数は、6以上18以下であり、8以上16以下が好ましく、10以上14以下がより好ましい。
 なお、単位(a)は、ポリアミド系樹脂中で、ハードセグメントとしての機能を奏する。そして、Rの炭素原子数が大きいほど、ポリアミド系樹脂の靱性が向上する傾向がある。
 Rの具体例としては、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基、及びオクタデカン-1,18-ジイル基である。
 mの値は、0以上100以下であり、重合反応性、及び得られるポリアミド系樹脂の力学的特性が良好である点で、1以上100以下が好ましく、10以上50以下がより好ましく、20以上40以下が特に好ましい。
 単位(a)は、通常、異なるmの値を有する種々の単位を含む。mの値の平均値は、ゲルパーミエーションクロマトグラフィー(GPC)により得られる数平均分子量により決定することができる。
 mが0である場合、単位(a)を与える好適な単量体の具体例としては、6-アミノヘキサン酸、7-アミノヘプタン酸、8-アミノオクタン酸、9-アミノノナン酸、10-アミノデカン酸、11-アミノウンデカン酸、12-アミノドデカン酸、13-アミノトリデカン酸、14-アミノテトラデカン酸、15-アミノペンタデカン酸、16-アミノヘキサデカン酸、17-アミノヘプタデカン酸、18-アミノオクタデカン酸、及び19-アミノノナデカン酸である。
 mが1以上である場合、単位(a)を与える単量体は、上記のアミノアルカン酸を所定量縮合させて得られる。その場合、異なる種類のアミノアルカン酸を縮合させて、mが1以上である単量体を得てもよい。
 ポリアミド系樹脂中の単位(a)の含有量は、機械特性が良好なポリアミド系樹脂を得やすい点で、1~99質量%が好ましく、50~97.9質量%がより好ましく、70~97.9質量%が特に好ましい。
 なお、ポリアミド系樹脂を構成する全単位における、単位(a)のモル数をMaとし、単位(b)のモル数をMbとする場合に、比率Ma/Mbが、95/100~100/95であるのが好ましい。
 ポリアミド系樹脂は、単位(a)のアミノ基末端に単位(b)が結合した複合単位からなるプレポリマーに由来するジカルボニル単位を含むのが好ましい。比率Ma/Mbが、上記の範囲内であると、所望する構造のプレポリマーに由来するジカルボニル単位が良好に生成する。
<単位(b)>
 単位(b)は下記式(B):
-CO-R-CO-・・・(B)
(式(B)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。)
で表される単位である。
 式(B)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。機械的特性が良好なポリアミド系樹脂を得やすいことから、Rは炭素原子数2以上20以下の直鎖状飽和炭化水素基であるのが好ましい。Rの炭素原子数は、4以上12以下が好ましく、6以上10以下がより好ましい。
 なお、Rの炭素原子数が大きいほど、ポリアミド系樹脂の靱性が向上する傾向がある。
 Rの好適な具体例としては、メチレン基、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、及びデカン-1,10-ジイル基である。
 単位(b)を与える好適な単量体の具体例としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、及びドデカン二酸である。
 ポリアミド系樹脂中の単位(b)の含有量は、機械特性が良好なポリアミド系樹脂を得やすい点で、0.1~50質量%が好ましく、1~20質量%が最も好ましい。
<単位(c)>
 ポリアミド系樹脂は、ジアミノ単位として下記単位(c)及び/又は単位(d)を含む。単位(d)については後述する。
 単位(c)は下記式(C):
-NH-R-NH-・・・(C)
(式(C)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。)
で表される単位である。
 式(C)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。Rは、2価の鎖状飽和炭化水素基であってもよく、飽和炭化水素環を含む2価の飽和炭化水素基であってもよい。
 機械的特性が良好なポリアミド系樹脂を得やすいことから、Rとしては、2価の鎖状飽和炭化水素基が好ましく、2価の直鎖状飽和炭化水素基がより好ましい。
 Rの炭素原子数は、機械的特性が良好なポリアミド系樹脂を得やすいことから2以上12以下であり、2以上10以下が好ましく、2以上8以下がより好ましい。
 なお、Rの炭素原子数が大きいほど、ポリアミド系樹脂の靱性が向上する傾向がある。
 Rの好適な具体例としては、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、2,2,4-トリメチルヘキサン-1,6-ジイル基、2,4,4-トリメチルヘキサン-1,6-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、及びドデカン-1,12-ジイル基が挙げられる。
 これらの中では、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ヘキサン-1,6-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、2,2,4-トリメチルヘキサン-1,6-ジイル基、及び2,4,4-トリメチルヘキサン-1,6-ジイル基が好ましい。
 単位(c)を与える単量体の好適な具体例としては、ジアミノメタン、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、1,6-ジアミノ-2,2,4-トリメチルヘキサン、1,6-ジアミノ-2,4,4-トリメチルヘキサン、デカメチレンジアミン、ウンデカメチレンジアミン、及びドデカメチレンジアミンが挙げられる。
 ポリアミド系樹脂中の単位(c)の含有量は、機械特性が良好なポリアミド系樹脂を得やすい点で、0.1~50質量%が好ましく、0.1~20質量%が特に好ましく、1~10質量%が最も好ましい。
<単位(d)>
 単位(d)は下記式(D):
-NH-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH-・・・(C)
(式(D)中、x+zは1以上6以下の整数であり、yは1以上20以下の整数である。)
で表される単位である。
 式(D)中、x、y及びzは、x+zは1以上6以下の実数で、yは1以上20以下の実数である。これにより、重合反応性と柔軟性の好適なバランスを取ることができる。x+zは、好ましくは1以上5以下、さらに好ましくは1以上3.8以下である。また、yは、好ましくは1以上15以下、より好ましくは1以上9.2以下である。さらに、x+zは1以上6以下の実数で、yは1以上15以下の実数であるのが好ましい。ここで、x、y、zは、例えば後述の実施例のようにしてGPC測定により決定することができる。
 単位(d)を与える単量体化合物としては、例えば、ポリオキシエチレン、1,2-ポリオキシプロピレン、1,3-ポリオキシプロピレンあるいはそれらの共重合物であるポリオキシアルキレンのアミノ変性体等のポリエーテルジアミン化合物が挙げられる。具体的には、米国HUNTSMAN社製のジェファーミンEDシリーズ等を好ましく用いることができる。このジェファーミンEDシリーズは、式(D)中、x+zは1以上6以下で、yは1以上20以下を示すものとしては、ED600とED900である。このうち、x+zが1以上6以下のものとしては、ED900、x+zが1以上3.8以下のものとしては、ED600、yが1以上15以下のものとしてはED900、yが1以上9.2以下のものとしては、ED600である。また、x+z及びyがこのような範囲のうち、ED600の数平均分子量は500~700が好ましく、ED900の数平均分子量は800~1000が好ましい。この場合の数平均分子量は、重クロロホルム溶媒を用いた核磁気共鳴法によるプロトン比により算出した数値である。
 単位(d)を与える単量体化合物の分子量は、破断強度や破断伸び等の機械的特性のバランスに優れ、且つ所望する分子量のポリアミド系樹脂を得やすいことから、100以上1,000以下が好ましい。
 ポリアミド系樹脂中の単位(d)の含有量は、機械特性が良好なポリアミド系樹脂を得やすい点で、0.1~50質量%が好ましく、0.1~20質量%が特に好ましく、1~10質量%が最も好ましい。
<単位(e)>
 単位(e)は下記式(E):
Figure JPOXMLDOC01-appb-C000009
(式(E)中、Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基であり、Aは、独立に、カルボニル基(-CO-)、又はアミノ基(-NH-)である。)
で表される単位である。
 単位(e)は、トリカルボニル単位、アミノジカルボニル単位、ジアミノカルボニル単位、又はトリアミノ単位であり、トリカルボニル単位、又はトリアミノ単位が好ましく、ポリアミド系樹脂中に分岐構造を生じさせやすいことからトリアミノ単位がより好ましい。
 ポリアミド系樹脂が、3価の単位である単位(e)を含むことにより、破断強度や破断伸び等の機械的特性のバランスに優れるポリアミド系樹脂が得られる。
 Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基である。Rとしての3価の基を構成する原子数は、本発明の目的を阻害しない範囲で特に限定されない。Rとしての3価の基を構成する原子数は、C、N、O、及びSの数の合計として200以下が好ましく、100以下がより好ましい。
 また、単位(e)の分子量は、下限について50以上が好ましく、100以上がより好ましい。単位(e)の分子量は、上限について、1,000未満が好ましく、500未満がより好ましい。
 例えば、Rは、3価の炭化水素基であるのが好ましい。例えば、Rとして、3価の鎖状脂肪族炭化水素基、3価の環式脂肪族炭化水素基、及び3価の芳香族炭化水素基が好ましい。
 Rが3価の鎖状脂肪族炭化水素基である場合の好適な具体例としては、プロパン-1,2,3-トリイル基、ブタン-1,2,3-トリイル基、2-メチルプロパン-1,2,3-トリイル基、ブタン-1,2,4-トリイル基、ペンタン-1,2,3-トリイル基、ペンタン-1,3,5-トリイル基、及びヘキサン-1,2,5-トリイル基が挙げられる。
 Rが3価の環式脂肪族炭化水素基である場合の好適な具体例としては、シクロペンタン-1,2,3-トリイル基、シクロペンタン-1,2,4-トリイル基、シクロヘキサン-1,2,3-トリイル基、シクロヘキサン-1,2,4-トリイル基、シクロヘキサン-1,2,5-トリイル基、及びシクロヘキサン-1,3,5-トリイル基等が挙げられる。
 Rが3価の芳香族炭化水素基である場合の好適な具体例としては、ベンゼン-1,2,3-トリイル基、ベンゼン-1,2,4-トリイル基、ベンゼン-1,2,5-トリイル基、及びベンゼン-1,3,5-トリイル基等のベンゼントリイル基;ナフタレン-1,2,3-トリイル基、ナフタレン-1,2,4-トリイル基、ナフタレン-1,2,5-トリイル基、ナフタレン-1,2,6-トリイル基、ナフタレン-1,2,7-トリイル基、ナフタレン-1,2,8-トリイル基、ナフタレン-1,3,5-トリイル基、ナフタレン-1,3,6-トリイル基、ナフタレン-1,3,7-トリイル基、ナフタレン-1,3,8-トリイル基、ナフタレン-1,4,5-トリイル基、ナフタレン-1,4,6-トリイル基、ナフタレン-1,6,7-トリイル基、及びナフタレン-2,3,6-トリイル基等のナフタレントリイル基;ビフェニル-3,4,4’-トリイル基、ビフェニル-2,4,4’-トリイル基、ビフェニル-2,3,4’-トリイル基、ビフェニル-2,5,4’-トリイル基、ビフェニル-2,6,4’-トリイル基、ビフェニル-3,5,4’-トリイル基、ビフェニル-3,4,3’-トリイル基、ビフェニル-2,4,3’-トリイル基、ビフェニル-2,3,3’-トリイル基、ビフェニル-2,5,3’-トリイル基、ビフェニル-2,6,3’-トリイル基、ビフェニル-3,5,3’-トリイル基、ビフェニル-3,4,2’-トリイル基、ビフェニル-2,4,2’-トリイル基、ビフェニル-2,3,2’-トリイル基、ビフェニル-2,5,2’-トリイル基、ビフェニル-2,6,2’-トリイル基、及びビフェニル-3,5,2’-トリイル基等のビフェニルトリイル基が挙げられる。
 単位(e)がトリカルボニル単位である場合、単位(e)を与える単量体の好適な具体例としては、プロパン-1,2,3-トリカルボン酸、ブタン-1,2,3-トリカルボン酸、2-メチルプロパン-1,2,3-トリカルボン酸、ペンタン-1,2,3-トリカルボン酸、ペンタン-1,3,5-トリカルボン酸、及びヘキサン-1,2,5-トリカルボン酸等のアルカントリカルボン酸;クロペンタン-1,2,3-トリカルボン酸、シクロペンタン-1,2,4-トリカルボン酸、シクロヘキサン-1,2,3-トリカルボン酸、シクロヘキサン-1,2,4-トリカルボン酸、シクロヘキサン-1,2,5-トリカルボン酸、及びシクロヘキサン-1,3,5-トリカルボン酸等のシクロアルカントリカルボン酸;トリメリット酸、トリメシン酸、及び1,2,3-ベンゼントリカルボン酸等のベンゼントリカルボン酸;1,2,4-ナフタレントリカルボン酸、1,2,5-ナフタレントリカルボン酸、1,4,5-ナフタレントリカルボン酸、2,3,6-ナフタレントリカルボン酸、及び1,3,6-ナフタレントリカルボン酸等のナフタレントリカルボン酸;が挙げられる。
 Rが、トリアミノ単位である場合、Rが上記の3価の鎖状脂肪族炭化水素基、3価の環式脂肪族炭化水素基、及び3価の芳香族炭化水素基であるのも好ましい。
 また、Rが、トリアミノ単位である場合、ポリアミド系樹脂が、下記式(E-1):
Figure JPOXMLDOC01-appb-C000010
で表される単位、及び下記式(E-2):
Figure JPOXMLDOC01-appb-C000011
(式(E-2)中、Rは、水素原子、又は炭素原子数1以上5以下の脂肪族炭化水素基であり、sは0以上3以下の整数であり、p、q、及びrは0以上5以下の整数であり、p+q+rは3以上15以下の整数である。)
で表される単位から選択される1種以上を単位(e)として含むのも好ましい。
 上記式(E-1)で表される単位を与える単量体としては、下記式(E1-1):
Figure JPOXMLDOC01-appb-C000012
で表されるトリアミン化合物が好ましい。
 上記式(E-2)で表される単位を与える単量体としては、下記式(E1-2):
Figure JPOXMLDOC01-appb-C000013
(式(E1-2)中、R、p、q、及びrは、式(E-2)と同様である。)
で表されるトリアミン化合物が好ましい。
 ポリアミド系樹脂中の単位(e)の含有量は、機械特性が良好なポリアミド系樹脂を得やすい点で、0.1質量%以上10質量%未満が好ましく、0.1質量%以上4質量%未満が特に好ましい。
<その他の成分>
 以上説明したポリアミド系樹脂に、リン化合物を含有させてもよい。これにより、ポリアミド系樹脂を含む成形体の破断伸びや破断応力をより向上させることができる。そのため、リン化合物を含むポリアミド系樹脂組成物は、例えば医療用バルーンに好適である。
 また、後述するように、ポリアミド系樹脂の製造工程においては、重合反応の安定化や酸化に起因する着色を防止することができる。
 このようなリン化合物としては、リン酸、ピロリン酸、ポリリン酸、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等が挙げられる。これらのうち、重合反応の安定性の向上、ポリアミド系樹脂に対する耐熱安定性の付与、成形体の力学的特性の向上の観点からは、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩が好ましい。
 リン化合物の含有量は、ポリアミド系樹脂の質量に対してリン元素として5質量ppm以上5000質量ppm以下が好ましく、20質量ppm以上4000質量ppm以下がより好ましく、30質量ppm以上3000質量ppm以下がさらに好ましい。
 ポリアミド系樹脂には、前述のリン化合物以外に、特性を損なわない範囲で、目的に応じて種々の添加剤を配合することができる。具体的には、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑材、スリップ剤、結晶核剤、粘着性付与剤、離型剤、可塑剤、顔料、染料、難燃剤、補強材、無機フィラー、微小繊維、X線不透過剤等を添加することができる。
 ポリアミド系樹脂は、上記の単位を与える単量体を、所望する比率で、公知の方法に従って重縮合させることによって調製できる。
 ポリアミド系樹脂の溶融粘度(メルトフローレート、MFR)は、230℃、2.16kgf(21.2N)において0.1~20(g/10min)であることが好ましい。これにより、押出し成形性が良好となる。溶融粘度をこの様な範囲とするためには、重合時の反応温度、反応時間、溶液濃度等を適宜調整すればよい。
 ポリアミド系樹脂のショアD硬度は、50~100が好ましく、60~80がより好ましい。これにより、成形体の柔軟性が得られる。例えば、各単位を与える単量体の組成比を適宜変更することにより、ショアD硬度を調整できる。
 ポリアミド系樹脂の数平均分子量は10,000以上150,000以下が好ましく、20,000以上100,000以下がより好ましい。数平均分子量をこのような範囲にすることで、加工性や機械的特性に優れる。
 ポリアミド系樹脂において、成形体の引張試験における破断伸びは100%以上600%以下が好ましく、200%以上600%以下がより好ましく、400%以上600%以下が特に好ましい。また破断応力は20MPa以上100MPa以下が好ましく、30MPa以上90MPa以下がより好ましく、70MPa以上90MP以下が特に好ましいい。尚、引張試験は、例えば、後述の方法により行う。
 以上説明したポリアミド系樹脂において、単位(a)の含有量が50~97.9質量%であり、単位(b)の含有量が1~20質量%であり、単位(c)の含有量が1~10質量%であるのが好ましい。
 また、ポリアミド系樹脂において、単位(a)の含有量が50~97.9質量%であり、単位(b)の含有量が1~20質量%であり、単位(d)の含有量が1~10質量%であるのが好ましい。
 以上説明したポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに優れるため、種々の用途において好適に用いられる。
≪ポリアミド系樹脂の製造方法≫
 以上説明したポリアミド系樹脂は、単位(a)を与える単量体と、単位(b)を与える単量体と、単位(c)を与える単量体、及び単位(d)を与える単量体から選択される少なくとも1種と、単位(e)を与える単量体とを反応させることにより製造できる。
 反応方法としては、単位(a)を与える単量体と、単位(b)を与える単量体と、単位(c)を与える単量体、及び単位(d)を与える単量体から選択される少なくとも1種と、単位(e)を与える単量体とを同時に混合して反応させる方法や、単位(a)を与える単量体と、単位(b)を与える単量体とを反応させた後に、残りの単量体を添加して、反応させる方法等が挙げられる。
 上記の反応方法のうち、ポリアミド系樹脂を所望のハードセグメントとソフトセグメントを有するブロック共重合体として効率的に合成する観点からは、(i)単位(a)を与える単量体と、単位(b)を与える単量体とを混合し反応させてプレポリマーを得る工程(以下、「工程(i)」と称する。)と、工程(i)で得られたプレポリマーに単位(c)を与える単量体、及び単位(d)を与える単量体から選択される少なくとも1種と、単位(e)を与える単量体とを混合し反応させる工程(以下、「工程(ii)」と称する。)と、を含む方法が好ましい。
 つまり、以上説明したポリアミド系樹脂は、
 (i)下記式(A1):
HOOC-R(-NH-CO-R-NH・・・(A)
(式(A1)中、Rは、独立に、炭素原子数6以上18以下の直鎖状飽和炭化水素基であり、mは0以上100以下の整数であり、mが1以上の整数である場合、複数のRは、同一であっても異なっていてもよい。)
で表されるアミノカルボン酸(a1)、又はそのアミド形成性誘導体と、
 下記式(B1):
HOOC-R-COOH・・・(B1)
(式(B1)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。)
で表されるジカルボン酸(b1)、又はそのアミド形成性誘導体と、を反応させてプレポリマーを得ることと、
 (ii)前記プレポリマーを、下記式(C1):
N-R-NH・・・(C1)
(式(C1)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。)
で表されるジアミン(c1)、及び下記式(D1)で:
N-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH・・・(D1)
(式(D1)中、x+zは1以上の整数であり、yは1以上20以下の整数である。)
で表されるジアミン(d1)からなる群より選択される1種以上のジアミンと、下記式(E1):
Figure JPOXMLDOC01-appb-C000014
(式(E1)中、Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基であり、Aは、独立に、カルボキシ基(-COOH)、又はアミノ基(-NH)である。)
で表される3官能性化合物(e1)、又はそのアミド形成性誘導体と、反応させてポリアミド系樹脂を生成させることと、を含む方法により製造されるのが好ましい。
 アミノカルボン酸(a1)、又はそのアミド形成性誘導体は、前述の単位(a)を与える単量体である。
 ジカルボン酸(b1)又はそのアミド形成性誘導体は、前述の単位(b)を与える単量体である。
 ジアミン(c1)は、前述の単位(c)を与える単量体である。
 ジアミン(d1)は、前述の単位(d)を与える単量体である。
 3官能性化合物(e1)、又はそのアミド形成性誘導体は、前述の単位(e)を与える単量体である。
 なお、アミド形成性誘導体は、例えば、酸ハライド、及びラクタムが挙げられる。酸ハライドとしては、例えば、酸塩化物や酸臭化物であり、酸塩化物が好ましい。
 ポリアミド系樹脂を合成するに当たって、各単量体の使用量は、各単位の含有量がそれぞれ所望する値であるように適宜調整される。
 ポリアミド系樹脂を製造するに際して、アミノ基とカルボン酸基の等モル性を崩す要因となり得る単量体の添加は、所望の物性を低下させない程度にすることが望ましい。
 ポリアミド系樹脂の製造方法においては、工程(i)及び(ii)における単量体の重縮合反応は、溶媒中で、あるいは溶媒を用いずに無溶媒の状態で行うことが出来る。精製等が必要なく、簡便に目的のポリアミド系樹脂が得られやすい点で、溶媒を用いずに無溶媒で反応させることが好ましい。このような無溶媒での反応は、溶融混練法により行うことができる。
 従って、工程(i)においてプレポリマーを合成する際、又は工程(ii)においてポリアミド系樹脂を合成する際に、単量体を溶融混練法で反応させるのが好ましい。
 ポリアミド系樹脂の製造方法において、重縮合反応としては、常圧溶融重縮合反応又は減圧溶融重縮合反応、あるいはその組み合わせを採用することができる。減圧溶融重縮合の場合は、重合反応性の点で、窒素ガス雰囲気で、反応容器内の圧力を0.1~0.01(MPa)とするのが好ましい。これらの溶融重縮合反応は、無溶媒の状態で溶融混練法により行うことができる。
 ポリアミド系樹脂の製造方法において工程(i)及び工程(ii)において単量体を反応させる温度は、重縮合反応が起これば特に制限されないが、反応速度と熱分解の抑制のバランスから160~300℃が好ましく、200~280℃で行うことがより好ましい。なお、工程(i)及び(ii)の反応温度は同一でも異なっていてもよい。
 ポリアミド系樹脂の製造方法における工程(i)及び(ii)の重縮合反応時間は、分子量の高分子量化や着色の抑制等の観点から、3~10時間であることが好ましい。なお、工程(i)及び(ii)の重縮合反応時間は同一でも異なっていてもよい。
 ポリアミド系樹脂の製造方法は、回分式でも、連続式であってもよい。例えば、バッチ式反応釜等を用いた回分式でもよいし、一槽式又は多槽式の連続反応装置、管状連続反応装置等を単独又は組み合わせて用いた連続式でもよい。
 ポリアミド系樹脂の製造において、必要に応じて触媒として、リン化合物を用いることができる。このようなリン化合物としては、例えば、リン酸、ピロリン酸、ポリリン酸、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等が挙げられる。このうち、重合反応の安定性の向上、ポリアミド系樹脂に対する耐熱安定性の付与、成形体の力学的特性の向上の観点からは、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等の無機リン化合物を用いるのが好ましい。
 このようなリン化合物の仕込み時の重量は、工程(i)及び工程(ii)のうち少なくとも1方において、単量体の合計重量に対して、好ましくは10質量ppm以上10000質量ppm以下であり、より好ましくは100質量ppm以上5000質量ppm以下である。
 なお、反応で発生する副生成物によって、リン化合物が反応系外へ排出されることがあるため、仕込み重量とポリアミド系樹脂中のリン元素含有量は同じでなくてもよい。得られるポリアミド系樹脂中のリン元素量が、5質量ppm以上5000質量ppm以下となるように含有させるのが好ましく、20質量ppm以上4000質量ppm以下がより好ましく、30質量ppm以上3000質量ppm以下がさらに好ましい。
 工程(ii)において各成分を反応させた後は、例えば溶融状態の重合体をひも状に引き出して冷却し、必要に応じて、ペレット等として得ることができる。
≪成形体≫
 前述の通り、上述のポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに優れる。このため、ポリアミド系樹脂、又はポリアミド系樹脂に種々の添加剤が配合されたポリアミド系樹脂からなる成形体は、種々の用途において好適に用いられる。
 成形体他の形状は特に限定されない。ポリアミド系樹脂、及びポリアミド系樹脂組成物は。公知の種々の成形方法、紡糸法、布帛製造方法等によって、種々の形態の成形品に加工される。成形方法としては、例えば、押出成形、ブロー成形、射出成形等を適用可能である。
 好適な成形体としては、フィルム、シート、チューブ、粉末、繊維、織布、不織布、又はカテーテル用バルーン等が挙げられる。
 ポリアミド系樹脂、及びポリアミド系樹脂組成物は、破断強度や破断伸びに優れることから、ポリアミド系樹脂、及びポリアミド系樹脂組成物からなる成形体としては、例えば、フィルム、シート、又はチューブであるのが好ましい。
 ポリアミド系樹脂、及びポリアミド系樹脂組成物からなるフィルム、又はシートを、積層体に含める場合、積層体にも、良好な破断強度や破断伸びが付与される。
 このため、ポリアミド系樹脂、及びポリアミド系樹脂組成物からなるフィルム、又はシートを含む積層体も好ましい。
 前述のポリアミド系樹脂は、樹脂の溶融特性により押出し成形性及び引取り成形性に優れ、ブロー成形性に優れ、強靭性に優れている。そのため、様々な分野の成形品の製造に用いることが出来る。例えば、ポリアミド系樹脂を用いて押出成形し、チューブ、ホース、医療用チューブ等の部材を製造することができる。また、ポリアミド系樹脂をブロー成形し、ボトル、容器、カテーテル用バルーン等の部材を製造することが出来る。
 特に、ポリアミド系樹脂は、医療機器に用いられる医療用部材の構成材料として好適である。医療用部材としては、例えば、カテーテル用バルーン、医療用チューブ、積層体等が挙げられる。
 以下では、ポリアミド系樹脂を用いて作製された医療用部材について、医療用部材がカテーテル用バルーンである場合を例に説明するが、医療用部材として用いられる成形体はこれに限定されない。
 カテーテル用バルーン(以下、単に「バルーン」と称する。)は、まず、ポリアミド系樹脂を用いてチューブ(以下、「パリソン」と称することがある。)を製造し、次いで、得られたパリソンをさらに加工することにより製造することが出来る。
 ポリアミド系樹脂を用いてパリソンを製造する方法としては、一般的な公知の成型方法を用いることができる。例えば、押出成形、射出成形、溶融紡糸成形等が挙げられる。パリソンの形状は、一般的には、径が長軸方向に一定の円筒形状を有する。
 パリソンからバルーンを製造する方法としては、一般的な公知の成形方法を用いることができる。例えば、宙吹法や型吹法等のブロー成形、真空成形等により二軸延伸成形して所望の形状のバルーンを作製することができる。成形温度は、一般的には、95~165℃である。
 パリソンからバルーンの内径拡張率は400%以上900%以下が好ましく、500%以上800%以下がより好ましい。尚、本発明における内径拡張率とは、下記式で算出される値である。
 内径拡張率(%)=(成形時バルーン拡張時の内径/パリソン内径)×100
 以上のようにして得られたバルーンに対して外観検査等を行い、検査に合格したもののみがバルーンカテーテル等の医療機器の医療用部材として用いることができる。外観検査により、バルーンの表面に、菱型の傷やフィッシュアイ、クラックが観察されたものは不良とみなされる。
 以上のように、ポリアミド系樹脂は、破断伸度、破断強度等の力学的特性のバランスに優れているため、医療機器用部材の他にも、食品等の包装材料、電気・機械精密機器用部材、自動車用部材等様々な用途に用いることが出来ることは勿論のことである。
 以下、本発明をより一層明らかにするために具体的な実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
 以下、実施例、及び比較例のポリアミド系樹脂の評価について、数平均分子量Mnの測定方法と、引張試験の方法と、ショアD硬度の測定方法とについて説明する。
(数平均分子量Mnの測定)
 数平均分子量Mnは、ゲルパーミエーションクロマトグラフィー(GPC)により算出した。GPCの測定は、島津製作所社製GPCユニット(システムユニット:SCL-10Avp、送液ユニット:LC-10ADvp、及びカラムオーブン:CTO-10Avp、検出器:RID-10A)を備えるGPC測定装置を用いて行った。カラムとしてSHODEX社製LF-404を用いた。溶媒としてヘキサフルオロイソプロパノールを用い行いた。数平均分子量は、得られた分子量分布からPMMA(ポリメチルメタクリレート)標準物質による検量線で、PMMA換算分子量として算出した。
 なお、数平均分子量は、10%程度の測定のバラツキがあり、3回測定した平均値を数平均分子量の値とした。
(引張試験)
 引張試験は、ASTM-D638(TYPE5)に準拠した試験片を使用した。試験片は、実施例及び比較例で得られたポリアミド系樹脂のペレットを小型プレス機(東洋精機製作所社製、製品名MP-2FH)を用いて190℃にてプレスし、冷却させた厚み1(mm)のフィルムを用意し、上記規格の打抜き刃により打ち抜いて作製した。そして、試験片の乾燥処理は80℃、4時間とした。引張試験は速度200(mm/min)で行った。
(ショアD硬度の測定)
 ショアD硬度の測定は、ASTM-D2240に準拠し、厚み6mmのシートを用いて、23℃恒温室で実施した。厚み6mmのシートは、実施例及び比較例のポリアミド系樹脂のペレットを用いて、前述のプレス機により作製した。測定装置として、高分子計器社製、ゴム硬度計荷重検査器D型を用いた。
〔実施例1〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸(AA)を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)11.4g(0.1mol)と、ジアミン(d1)としてポリエーテルジアミン(下記式(2)で表されるジアミン。式(2)中y=9であり、x+z=3.6である。HUNTSMAN社製のジェファーミンED600(ED600)。数平均分子量は500~700である。)72g(0.12mol)と、3官能性化合物(e1)としてポリエーテルトリアミン(下記式(E1-2)で表されるトリアミン。式(E1-2)中、Rはエチル基であり、sは1であり、p+q+rは5以上6以下である。HUNTSMAN社製のジェファーミンT403(T403)、)を13g(0.03mol)とを仕込んだ。なお、3官能性化合物(e1)の使用量は、ポリアミド系樹脂中の3官能性化合物(e1)に由来する単位の量が1質量%である量である。プレポリマーと、ジアミン(c1)と、ジアミン(d1)と、3官能性化合物(e1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
N-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH・・・(2)
Figure JPOXMLDOC01-appb-C000015
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔実施例2〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸(AA)を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)8.1g(0.07mol)と、ジアミン(d1)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))72g(0.12mol)と、3官能性化合物(e1)としてポリエーテルトリアミン(HUNTSMAN社製のジェファーミンT403(T403)26g(0.07mol)とを仕込んだ。なお、3官能性化合物(e1)の使用量は、ポリアミド系樹脂中の3官能性化合物(e1)に由来する単位の量が2質量%である量である。プレポリマーと、ジアミン(c1)と、ジアミン(d1)と、3官能性化合物(e1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔実施例3〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸(AA)を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)3.5g(0.03mol)と、ジアミン(d1)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))72g(0.12mol)と、3官能性化合物(e1)としてポリエーテルトリアミン(HUNTSMAN社製のジェファーミンT403(T403)37g(0.09mol)とを仕込んだ。なお、3官能性化合物(e1)の使用量は、ポリアミド系樹脂中の3官能性化合物(e1)に由来する単位の量が3質量%である量である。プレポリマーと、ジアミン(c1)と、ジアミン(d1)と、3官能性化合物(e1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔実施例4〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)14g(0.12mol)と、ジアミン(d1)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))28.8g(0.05mol)と、3官能性化合物(e1)としてポリエーテルトリアミン(HUNTSMAN社製のジェファーミンT403(T403)26g(0.07mol)とを仕込んだ。なお、3官能性化合物(e1)の使用量は、ポリアミド系樹脂中の3官能性化合物(e1)に由来する単位の量が2質量%である量である。プレポリマーと、ジアミン(c1)と、ジアミン(d1)と、3官能性化合物(e1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔実施例5〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)2.3g(0.02mol)と、ジアミン(d1)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))72g(0.12mol)を、3官能性化合物(e1)として2,2’,2’’-トリアミノトリエチルアミン(TAEA)15.5g(0.11mol)とを仕込んだ。なお、3官能性化合物(e1)の使用量は、ポリアミド系樹脂中の3官能性化合物(e1)に由来する単位の量が1質量%である量である。プレポリマーと、ジアミン(c1)と、ジアミン(d1)と、3官能性化合物(e1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔比較例1〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)14g(0.12mol)と、ジアミン(d1)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))72g(0.12mol)とを仕込んだ。プレポリマーと、ジアミン(c1)と、ジアミン(d1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔比較例2〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12-アミノドデカン酸(PA12)1200g、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、単量体を溶融させるために、280℃まで1時間で昇温し、数平均分子量が5,000となるまで重合させてハードセグメントとなるアミノカルボン酸(a1)を得た。
 次いで、反応容器に、ジカルボン酸(b1)としてのアジピン酸を、アミノカルボン酸(a1)の末端アミン基のモル量と等モル(0.24mol、35g)加えた。220℃で1時間、アミノカルボン酸(a1)と、ジカルボン酸(b1)とを反応させて、プレポリマーを得た(工程(i))。
 得られたプレポリマーの両末端カルボン酸基と、残りの単量体のアミノ基とが等モルになるように、反応容器に、ジアミン(c1)としてヘキサメチレンジアミン(HMD)22.3g(0.19mol)と、ジアミン(d1)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))28.8g(0.048mol)とを仕込んだ。プレポリマーと、ジアミン(c1)と、ジアミン(d1)とを260℃で4時間重縮合させて、ポリアミド系樹脂を得た(工程(ii))。
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。
 また、得られたペレットを用いて、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
〔比較例3、及び4〕
 比較例3、及び4のポリアミド系樹脂として、市販品である以下の直鎖状ポリアミド樹脂を用いた。
比較例3:PEBAX7233(Arkema社製)
比較例4:UBESTA(宇部興産(株)社製)
 上記の市販のポリアミド樹脂について、前述の方法に従って数平均分子量Mnと、引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 表1及び表2から、3官能性化合物(e1)により分子鎖中に分岐構造が導入された実施例1~5のポリアミド系樹脂は、同程度のショアD硬度を示すが、分子鎖中に分岐構造を持たない比較例1~4のポリアミド系樹脂に比べ、破断伸びや破断強度が優れ、機械的特性のバランスが良いことが分かる。
 かかる実施例のポリアミド系樹脂は、医療用のチューブやバルーンの製造に特に好適に用いることができる。

Claims (16)

  1.  単位(a)と、単位(b)と、単位(c)及び/又は単位(d)と、単位(e)とを含むポリアミド系樹脂であって、
     前記単位(a)が、下記式(A):
    -CO-R(-NH-CO-R-NH-・・・(A)
    (式(A)中、Rは、独立に、炭素原子数6以上18以下の直鎖状飽和炭化水素基であり、mは0以上100以下の整数であり、mが1以上の整数である場合、複数のRは、同一であっても異なっていてもよい。)
    で表される単位であり、
     前記単位(b)が下記式(B):
    -CO-R-CO-・・・(B)
    (式(B)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。)
    で表される単位であり、
     前記単位(c)が下記式(C):
    -NH-R-NH-・・・(C)
    (式(C)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。)
    で表される単位であり、
     前記単位(d)が下記式(D):
    -NH-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH-・・・(D)
    (式(D)中、x+zは1以上6以下の整数であり、yは1以上20以下の整数である。)
    で表される単位であり、
     前記単位(e)が下記式(E):
    Figure JPOXMLDOC01-appb-C000001
    (式(E)中、Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基であり、Aは、独立に、カルボニル基(-CO-)、又はアミノ基(-NH-)である。)
    で表される単位であり、
     前記ポリアミド系樹脂中の、前記単位(a)、前記単位(b)、前記単位(c)、前記単位(d)、及び前記単位(e)の含有量の合計が、90質量%以上であり、
     前記ポリアミド系樹脂を構成する全単位における、カルボニル末端基モル量(Ac)と、アミノ(Aa)末端基モル量との比率が、Ac/Aaとして80/100~100/80である、ポリアミド系樹脂。
  2.  前記ポリアミド系樹脂中の、前記単位(e)の含有量が0.1質量%以上4質量%未満である、請求項1に記載のポリアミド系樹脂。
  3.  前記単位(e)の分子量が、50以上1,000未満である、請求項1又は2に記載のポリアミド系樹脂。
  4.  前記単位(e)が、下記式(E-1):
    Figure JPOXMLDOC01-appb-C000002
    で表される単位、及び下記式(E-2)
    Figure JPOXMLDOC01-appb-C000003
    (式(E-2)中、Rは、水素原子、又は炭素原子数1以上5以下の脂肪族炭化水素基であり、sは0以上3以下の整数であり、p、q、及びrは0以上5以下の整数であり、p+q+rは3以上15以下の整数である。)
    で表される単位から選択される1種以上である、請求項1~3のいずれか1項に記載のポリアミド系樹脂。
  5.  数平均分子量が10,000以上150,000以下である、請求項1~4のいずれか1項に記載のポリアミド系樹脂。
  6.  前記単位(c)について、前記式(C)中のRが、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ヘキサン-1,6-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、2,2,4-トリメチルヘキサン-1,6-ジイル基、及び2,4,4-トリメチルヘキサン-1,6-ジイル基から選択される1種以上である、請求項1~5のいずれか1項に記載のポリアミド系樹脂。
  7.  前記ポリアミド系樹脂を構成する全単位における、前記単位(a)のモル数をMaとし、前記単位(b)のモル数をMbとする場合に、比率Ma/Mbが、95/100~100/95である、請求項1~6のいずれか1項に記載のポリアミド系樹脂。
  8.  前記単位(a)の含有量が50~97.9質量%であり、前記単位(b)の含有量が1~20質量%であり、前記単位(c)の含有量が1~10質量%である、請求項1~7のいずれか1項に記載のポリアミド系樹脂。
  9.  前記単位(a)の含有量が50~97.9質量%であり、前記単位(b)の含有量が1~20質量%であり、前記単位(d)の含有量が1~10質量%である、請求項1~8のいずれか1項に記載のポリアミド系樹脂。
  10.  ショア硬度が50~100、破断伸びが100%以上600%以下、破断応力が20MPa以上100MPa以下である、請求項1~9のいずれか1項に記載のポリアミド系樹脂
  11.  請求項1~10のいずれか1項に記載のポリアミド系樹脂を含む材料からなる成形体。
  12.  成形体が、フィルム、シート、チューブ、粉末、繊維、織布、又は不織布、又はカテーテル用バルーンである、請求項11に記載の成形体。
  13.  請求項12に記載の前記フィルム、又は前記シートを含む、積層体。
  14.  請求項12に記載の成形体、及び請求項13に記載の積層体からなる群より選択される少なくとも1種を備える医療機器。
  15.  (i)下記式(A1):
    HOOC-R(-NH-CO-R-NH・・・(A)
    (式(A1)中、Rは、独立に、炭素原子数6以上18以下の直鎖状飽和炭化水素基であり、mは0以上100以下の整数であり、mが1以上の整数である場合、複数のRは、同一であっても異なっていてもよい。る。)
    で表されるアミノカルボン酸(a1)、又はそのアミド形成性誘導体と、
     下記式(B1):
    HOOC-R-COOH・・・(B1)
    (式(B1)中、Rは、単結合、又は炭素原子数1以上20以下の直鎖状飽和炭化水素基である。)
    で表されるジカルボン酸(b1)、又はそのアミド形成性誘導体と、を反応させてプレポリマーを得ることと、
     (ii)前記プレポリマーを、下記式(C1):
    N-R-NH・・・(C1)
    (式(C1)中、Rは、炭素原子数2以上12以下の飽和炭化水素基である。)
    で表されるジアミン(c1)、及び下記式(D1)で:
    N-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH・・・(D1)
    (式(D1)中、x+zは1以上の整数であり、yは1以上20以下の整数である。)
    で表されるジアミン(d1)からなる群より選択される1種以上のジアミンと、下記式(E1):
    Figure JPOXMLDOC01-appb-C000004
    (式(E1)中、Rは、ヘテロ原子としてN、O、及びSから選択される1種以上を含んでいてもよい炭化水素基であり、Aは、独立に、カルボキシ基(-COOH)、又はアミノ基(-NH)である。)
    で表される3官能性化合物(e1)、又はそのアミド形成性誘導体と、反応させてポリアミド系樹脂を生成させることと、を含む請求項1に記載のポリアミド系樹脂を製造する方法。
  16.  前記プレポリマーを生成させる反応と、前記ポリアミド系樹脂を生成させる反応とが、溶融混練法で行われる、請求項15に記載の方法。
PCT/JP2017/040478 2016-11-10 2017-11-09 ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法 WO2018088496A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018550268A JP7013386B2 (ja) 2016-11-10 2017-11-09 ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
US16/348,011 US11326024B2 (en) 2016-11-10 2017-11-09 Polyamide resin, molded body, laminate, medical device, and polyamide resin production method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016220057 2016-11-10
JP2016-220057 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018088496A1 true WO2018088496A1 (ja) 2018-05-17

Family

ID=62109876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040478 WO2018088496A1 (ja) 2016-11-10 2017-11-09 ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法

Country Status (3)

Country Link
US (1) US11326024B2 (ja)
JP (1) JP7013386B2 (ja)
WO (1) WO2018088496A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7480449B2 (ja) 2020-11-27 2024-05-10 大成建設株式会社 気体貯蔵放出化合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399663A (en) * 1993-04-15 1995-03-21 Huntsman Corporation Poly(etheramide) segmented block copolymers
WO2009139087A1 (ja) * 2008-05-15 2009-11-19 東洋紡績株式会社 共重合ポリエーテルポリアミド樹脂
WO2015155489A1 (fr) * 2014-04-11 2015-10-15 Arkema France Utilisation de peba à blocs longs pour la fabrication de tout ou partie d'un cathéter
WO2016047707A1 (ja) * 2014-09-24 2016-03-31 株式会社ブリヂストン タイヤ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131628A (ja) 1983-01-18 1984-07-28 Ube Ind Ltd ポリエ−テルアミドの製法
JPS59193923A (ja) 1983-04-19 1984-11-02 Ube Ind Ltd ブロツクポリエ−テルアミドの製法
DE10002948A1 (de) * 2000-01-25 2001-07-26 Degussa Leichtfließende transparente Polyamid-Formmasse
CN101052682A (zh) * 2004-11-08 2007-10-10 纳幕尔杜邦公司 用于食品包装和护理应用的增韧聚酰胺
EP2036939A1 (en) 2006-06-16 2009-03-18 Ube Industries, Ltd. Polyether polyamide elastomer
CN104428346B (zh) * 2012-07-09 2017-09-26 旭化成株式会社 聚酰胺、聚酰胺组合物及成形品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5399663A (en) * 1993-04-15 1995-03-21 Huntsman Corporation Poly(etheramide) segmented block copolymers
WO2009139087A1 (ja) * 2008-05-15 2009-11-19 東洋紡績株式会社 共重合ポリエーテルポリアミド樹脂
WO2015155489A1 (fr) * 2014-04-11 2015-10-15 Arkema France Utilisation de peba à blocs longs pour la fabrication de tout ou partie d'un cathéter
WO2016047707A1 (ja) * 2014-09-24 2016-03-31 株式会社ブリヂストン タイヤ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7480449B2 (ja) 2020-11-27 2024-05-10 大成建設株式会社 気体貯蔵放出化合物

Also Published As

Publication number Publication date
US11326024B2 (en) 2022-05-10
JP7013386B2 (ja) 2022-01-31
US20210277183A1 (en) 2021-09-09
JPWO2018088496A1 (ja) 2019-10-03

Similar Documents

Publication Publication Date Title
JP4193588B2 (ja) ポリアミド系エラストマー
US20100098893A1 (en) Polyamide resin
EP3395856B1 (en) End-modified polyamide resin and method for producing same
US10400068B2 (en) Polyamide elastomer, medical device, and method for producing polyamide elastomer
JP2003286341A (ja) ポリアミド系エラストマー
JP7033075B2 (ja) ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
JP7013386B2 (ja) ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
EP3816232B1 (en) Resin composition and molded article
JP6778678B2 (ja) ポリアミドエラストマー、医療機器及びポリアミドエラストマーの製造方法
JP6273882B2 (ja) ポリアミドエラストマー及びそれを用いて製造される成形品
KR101570562B1 (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
JP7118891B2 (ja) ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
JP6451082B2 (ja) ポリアミド樹脂
JP6905327B2 (ja) ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法
JP2016204489A (ja) プラスチックマグネット用ポリアミドエラストマー、それかなる組成物および成形品
JP2013095803A (ja) ポリアミド樹脂組成物及びそれを成形して得た耐熱性成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868686

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550268

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868686

Country of ref document: EP

Kind code of ref document: A1