WO2018088495A1 - Polyamide resin, molded body, laminate, medical device, and polyamide resin production method - Google Patents

Polyamide resin, molded body, laminate, medical device, and polyamide resin production method Download PDF

Info

Publication number
WO2018088495A1
WO2018088495A1 PCT/JP2017/040477 JP2017040477W WO2018088495A1 WO 2018088495 A1 WO2018088495 A1 WO 2018088495A1 JP 2017040477 W JP2017040477 W JP 2017040477W WO 2018088495 A1 WO2018088495 A1 WO 2018088495A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
polyamide
formula
represented
carbon atoms
Prior art date
Application number
PCT/JP2017/040477
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 隆之
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2018550267A priority Critical patent/JP7118891B2/en
Publication of WO2018088495A1 publication Critical patent/WO2018088495A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids

Definitions

  • the present invention includes at least one of a polyamide-based resin, a molded body including the polyamide-based resin, a laminate including a film or sheet including the polyamide-based resin, the above-described molded body, and the above-described stacked body.
  • the present invention relates to a medical device and a method for producing the aforementioned polyamide-based resin.
  • Polyamide-based resins such as polyamide elastomers are resin compounds that are widely used in various fields such as packaging materials for foods, medical device members, electrical / mechanical precision device members, automobile members, and the like.
  • a member for medical equipment it is used as constituent materials, such as a medical tube and a balloon for catheters, for example.
  • the polyamide elastomer has an extrudability that can be precisely molded into a desired shape, a moldability such as blow moldability, a flexibility that can withstand breakage due to pressure and bending during use, and fracture Mechanical properties such as elongation and breaking strength are required.
  • Patent Document 1 discloses a block polyether amide obtained by polycondensing a polyamide having a carboxy group at both ends, an aminopolyoxyalkylene at both ends having an alkylene group having 3 or more carbon atoms, and a predetermined diamine.
  • Patent Document 2 discloses a polyether amide obtained by polycondensation of a polyamide-forming monomer, an aminopolyoxyalkylene at both ends having an alkylene group having 3 or more carbon atoms, a predetermined diamine and a specific amount of dicarboxylic acid. It is disclosed.
  • the polyether amides described in Patent Document 1 and Patent Document 2 are considered to have a certain degree of flexibility and impact resistance.
  • Patent Document 3 includes (A) a polyamide-forming monomer selected from a predetermined aminocarboxylic acid compound and a predetermined lactam compound, (B) a polyether diamine having a PTMO (polytetramethylene oxide) skeleton, a branched diamine, and a branched diamine.
  • a polyamide elastomer obtained by polymerizing at least one diamine compound selected from alicyclic diamine and norbornanediamine and (C) a predetermined dicarboxylic acid compound is disclosed.
  • these diamine compounds used in the invention described in Patent Document 3 are poor in reactivity and require a long polymerization time.
  • Patent Document 4 discloses a copolymer polyether polyamide resin for coating or impregnation on a flexible woven or knitted fabric having a breaking elongation of 1000% or more and an elastic modulus of 15 MPa or less. Further, as a specific configuration, a soft segment composed of a polyether polyamide composed of a polyetherdiamine compound having an alkylene group having 2 to 3 carbon atoms and a predetermined dicarboxylic acid compound, and a predetermined aminocarboxylic acid and / or Alternatively, a polyether polyamide resin is disclosed in which hard segments made of polyamide composed of a predetermined lactam compound are bonded. However, the polyether polyamide resin described in Patent Document 4 has a problem that the reactivity of the polyether component is low and the breaking strength of the resin is not sufficient.
  • an object of the present invention is to provide a polyamide-based resin excellent in the balance of mechanical properties such as breaking strength and elongation at break in a solid state, a molded body including the polyamide-based resin, and the polyamide-based resin. It is providing the laminated body provided with the film or sheet
  • the present invention provides the following polyamide resins [1] to [7], [8] to [9] molded articles, [10] laminates, [11] medical devices, [12] to [14].
  • the present invention relates to a method for producing a polyamide-based resin.
  • a polyamide-based resin comprising at least one of the following:
  • the unit (a) is represented by the following formula (A): —CO—R 1 —CO— (A) (In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.)
  • Is a unit represented by The unit (b) is represented by the following formula (B): —NH—R 2 —NH— (B) (In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.)
  • the unit (cI) is represented by the following formula (CI): —CO—R 3 (—O—R 4 ) m —CO— (CI) (In the formula (CI), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon
  • the polyamide resin according to [1], comprising unit (a), unit (b), and at least one selected from unit (cI) and unit (c-II).
  • the unit (a) is a dodecandioyl unit
  • the unit (b) is a 1,12-diaminododecane unit
  • the unit (c-II) is an amino group (—NH at both ends of the triblock polyether.
  • the polyamide resin according to any one of [1] to [4], which is a diamino unit having-).
  • a molded body made of a material containing the polyamide-based resin according to any one of [1] to [7].
  • the molded article according to [8] which is a film, sheet, tube, powder, fiber, woven fabric, nonwoven fabric, or catheter balloon.
  • a medical device comprising at least one selected from the group consisting of the molded body according to [9] and the laminate according to [10].
  • a polyamide-based resin having an excellent balance of mechanical properties such as breaking strength and elongation at break in a solid state, a polyamide-based resin having an excellent balance of mechanical properties such as breaking strength and elongation at break, a molded body including the polyamide-based resin, and a film or sheet including the polyamide-based resin are provided.
  • a laminate there can be provided a laminate, a medical device including at least one of the above-described molded body, and the above-described laminate, and a method for producing the above-described polyamide-based resin.
  • the polyamide-based resin includes a unit (a) and a unit (b), and further includes a unit (cI), a unit (c-II), a unit (dI), and a unit (d-II). It contains at least one selected from more. Each unit will be described in detail later.
  • the content of the unit (a) and the content of the unit (b) in the polyamide resin are 1% by mass or more and 50% by mass or less, respectively.
  • the polyamide-based resin contains at least one selected from the unit (cI) and the unit (c-II)
  • the content of the unit (cI) in the polyamide-based resin and the unit (c-II) The total content of is 1% by mass or more and 50% by mass or less.
  • the content of the unit (dI) in the polyamide-based resin and the unit (d-II) is 1% by mass or more and 50% by mass or less.
  • the total content of units (a), units (b), units (c-I), units (c-II), units (d-I), and units (d-II) in the polyamide resin is 90 mass% or more, preferably 95 mass% or more, more preferably 98 mass% or more, and particularly preferably 100 mass%. If the polyamide-based resin contains a predetermined amount of a predetermined type of unit (a), an ester bond (—CO—O—), a urethane bond (—NH—CO—O—), and a carbonate bond (—O—) It may contain a small amount of bonds such as O—CO—.
  • the polyamide-based resin since the polyamide-based resin has various mechanical properties, it includes the unit (a), the unit (b), the unit (c-II), and the unit (d-II).
  • the unit (a), the unit (b), the unit (c-II), and the unit (d-II) are preferable.
  • the ratio of the carbonyl end group molar amount (Ac) to the amino (Aa) end group molar amount in all units constituting the polyamide-based resin is 80/100 to 100/80 as Ac / Aa. To 100/90 is preferable, 95/100 to 100/95 is more preferable, and 100/100 is particularly preferable.
  • Each of the polyamide-based resins has a predetermined structure, unit (a), unit (b), unit (cI), unit (c-II), unit (dI), and unit (d- By containing at least one selected from II) in a predetermined ratio, the polyamide-based resin is excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
  • the polyamide-based resin that satisfies the above predetermined requirements exhibits elastomeric characteristics and is preferably used as a polyamide elastomer.
  • the unit (a) is represented by the following formula (A): —CO—R 1 —CO— (A) (In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.) It is a unit represented by.
  • R 1 is a linear aliphatic group having 8 to 20 carbon atoms.
  • the upper limit of the number of carbon atoms of R 1 is 20, 18 is preferable, and 16 is more preferable in terms of the availability of the monomer that gives the unit (a) and the mechanical properties of the polyamide-based resin. 14 is more preferable, and 12 is particularly preferable.
  • R 1 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
  • R 1 is octane-1,8-diyl group, nonane-1,9-diyl group, decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12.
  • -Diyl group tridecane-1,13-diyl group, tetradecane-1,14-diyl group, pentadecane-1,15-diyl group, hexadecane-1,16-diyl group, heptadecane-1,17-diyl group, octadecane -1,18-diyl group, nonadecane-1,19-diyl group, and eicosane-1,20-diyl group.
  • Unit (a) has a carbonyl group at both ends.
  • the method for introducing the unit (a) into the polyamide resin is not particularly limited, but the unit (a) is usually introduced into the polyamide resin using a monomer such as alkanedicarboxylic acid or alkanedicarboxylic acid dihalide.
  • the carbonyl group in the unit (a) is derived from the carboxy group of the monomer or the carbonyl group in the halocarbonyl group.
  • the unit (a) is preferably an octane oil unit, a nonane oil unit, a decane oil unit, an undecane oil unit, or a dodecane oil unit, more preferably a decane oil unit, an undecane oil unit, or a dodecane oil unit.
  • dodecanedioyl units are particularly preferred.
  • the unit (b) described later is preferably a 1,12-diaminododecane unit.
  • the polyamide resin preferably contains diamino units having amino groups (—NH—) at both ends of the triblock polyether as the unit (c-II) described later.
  • Polyamide resins containing a combination of the above structural units are particularly excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
  • the unit (a) described above constitutes a hard segment in the polyamide resin together with the unit (b) described later.
  • a hard segment contributes to a good balance of mechanical properties such as breaking strength and breaking elongation of the polyamide-based resin.
  • the monomer that gives the unit (a) include decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid decane, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid. Acids, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, helicosyldioic acid, and docosanedioic acid. These acid halides such as acid chlorides or acid bromides can also be used as monomers.
  • the content of the unit (a) in the polyamide resin is 1% by mass or more and less than 50% by mass, preferably 10% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and 30% by mass. % Or more and less than 50% by mass is particularly preferable.
  • the unit (b) is represented by the following formula (B): —NH—R 2 —NH— (B) (In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.) It is a unit represented by.
  • R 2 is a linear aliphatic group having 10 to 20 carbon atoms.
  • the upper limit of the number of carbon atoms of R 2 is 20, 18 is preferable, and 16 is more preferable in terms of the availability of the monomer that gives the unit (b) and the mechanical properties of the polyamide-based resin. 14 is more preferable, and 12 is particularly preferable.
  • R 2 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
  • R 2 is decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group, tridecane-1,13-diyl group, tetradecane-1,14.
  • a diyl group a pentadecane-1,15-diyl group, a hexadecane-1,16-diyl group, a heptadecane-1,17-diyl group, an octadecane-1,18-diyl group, a nonadecane-1,19-diyl group, and Eicosane-1,20-diyl group.
  • the unit (b) has an amino group (—NH—) at both ends.
  • the method for introducing the unit (b) into the polyamide resin is not particularly limited, but the unit (b) is usually introduced into the polyamide resin using a monomer such as a linear aliphatic diamine.
  • the amino group (—NH—) in the unit (b) is derived from the amino group (—NH 2 —) of the monomer.
  • 1,10-diaminodecane unit, 1,11-diaminoundecane unit, 1,12-diaminododecane unit, 1,13-diaminotridecane unit and 1,14-diaminotetradecane unit are preferable.
  • 1,10-diaminodecane units and 1,12-diaminododecane units are more preferred, and 1,12-diaminododecane units are particularly preferred.
  • a combination of a dodecandioyl unit as the unit (a) and a 1,12-diaminododecane unit as the unit (b) is preferable.
  • the polyamide-based resin contains a combination of a dodecanedioyl unit as the unit (a) and a 1,12-diaminododecane unit as the unit (b)
  • the polyamide-based resin is a unit (c-II) described later.
  • the triblock polyether preferably contains diamino units having amino groups (—NH—) at both ends.
  • Polyamide resins containing a combination of the above structural units are particularly excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
  • the unit (b) described above constitutes a hard segment in the polyamide resin together with the unit (a) described later.
  • a hard segment contributes to a good balance of mechanical properties such as breaking strength and breaking elongation of the polyamide-based resin.
  • the monomer that gives the unit (b) include decane-1,10-diamine, undecane-1,11-diamine, dodecane-1,12-diamine, tridecane-1,13-diamine, and tetradecane-1. , 14-diamine, pentadecane-1,15-diamine, hexadecane-1,16-diamine, heptadecane-1,17-diamine, octadecane-1,18-diamine, nonadecane-1,19-diamine, and eicosane-1, 20-diamine.
  • the content of the unit (b) in the polyamide-based resin is 1% by mass or more and less than 50% by mass, preferably 10% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and 30% by mass. % Or more and less than 50% by mass is particularly preferable.
  • the polyamide-based resin essentially contains at least one unit selected from the group consisting of units (c-I), units (c-II), units (d-I), and units (d-II). .
  • units (c-I), units (c-II), units (d-I), and units (d-II) By adjusting the type and content of the unit (c-I), unit (c-II), unit (d-I), and unit (d-II), various physical properties of the polyamide resin can be adjusted.
  • the unit (cI), the unit (c-II), the unit (dI), and the unit (d-II) will be described.
  • the unit (cI) is represented by the following formula (CI): —CO—R 3 (—O—R 4 ) m —CO— (CI) (In the formula (CI), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, m is an integer of 1 to 30 and m is When it is an integer of 2 or more, the plurality of R 4 may be the same or different.) It is a unit represented by.
  • R 3 and R 4 may be a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, or a saturated aliphatic hydrocarbon group.
  • R 3 and R 4 may be a linear aliphatic group or a branched aliphatic group.
  • R 3 and R 4 include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2- And diyl group, propane-1,1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, and hexane-1,6-diyl group. It is done.
  • ethane-1,2-diyl group propane-1,3-diyl group, propane-1,2-diyl group, and butane-1,4-diyl group are preferable, and ethane-1,2- A diyl group and a propane-1,2-diyl group are more preferable.
  • the upper limit of m is, for example, 30 and 20 is preferable.
  • the unit (c-II) is represented by the following formula (C-II): —NH—R 5 (—O—R 6 ) n —NH— (C-II) (In the formula (C-II), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, n is an integer of 1 to 30 and n is When it is an integer of 2 or more, the plurality of R 6 may be the same or different.) It is a unit represented by.
  • R 5 and R 6 include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2- Examples include a diyl group, a propane-1,1-diyl group, and a propane-2,2-diyl group. Among these, ethane-1,2-diyl group, propane-1,3-diyl group, and propane-1,2-diyl group are preferable, and ethane-1,2-diyl group and propane-1,2 -Diyl groups are more preferred.
  • the unit (c-II) is preferably a diamino unit having amino groups (—NH—) at both ends of the triblock polyether.
  • a diamino unit is preferably a diamino unit represented by the following general formula (1). —NH— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH— (1)
  • x, y and z are x + z is a real number from 1 to 6, and y is a real number from 1 to 20.
  • x + z is preferably 1 or more and 5 or less, more preferably 1 or more and 3.8 or less.
  • y is preferably 1 or more and 15 or less, more preferably 1 or more and 9.2 or less.
  • x + z is preferably a real number of 1 to 6, and y is preferably a real number of 1 to 15.
  • x, y, and z can be determined by GPC measurement, for example, as in the examples described later.
  • Examples of the monomer compound that gives the diamino unit represented by the formula (1) include polyoxyethylene, 1,2-polyoxypropylene, 1,3-polyoxypropylene, and polyoxyethylene that is a copolymer thereof.
  • Examples include polyether diamine compounds such as amino-modified products of alkylene.
  • Jeffamine ED series manufactured by HUNTSMAN, USA can be preferably used. In the Jeffermin ED series, in formula (1), x + z is 1 or more and 6 or less, and y is 1 or more and 20 or less, which are ED600 and ED900.
  • ED900 is used when x + z is 1 or more and 6 or less
  • ED600 is used when x + z is 1 or more and 3.8 or less
  • ED900 is used when y is 1 or more and 15 or less
  • y is 1 or more and 9.2.
  • the following is ED600.
  • the number average molecular weight of ED600 is preferably 500 to 700
  • the number average molecular weight of ED900 is preferably 800 to 1,000.
  • the number average molecular weight in this case is a numerical value calculated by a proton ratio by a nuclear magnetic resonance method using a deuterated chloroform solvent.
  • the total of the content of the unit (cI) and the content of the unit (c-II) in the polyamide resin is 1% by mass or more and less than 50% by mass, and 1% by mass or more and less than 40% by mass. It is preferably 1% by mass or more and less than 30% by mass, more preferably 1% by mass or more and less than 20% by mass.
  • the unit (dI) is represented by the following formula (DI): —CO—R 7 —CO— (DI) (In the formula (DI), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.) It is a unit represented by.
  • R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms. However, R 7 is not a linear aliphatic group having 8 to 20 carbon atoms. That is, R 7 is a branched aliphatic group having 8 to 20 carbon atoms, or a linear or branched aliphatic group having 7 or less carbon atoms.
  • the upper limit of the number of carbon atoms of R 7 is 20 in terms of the availability of the monomer giving the unit (dI) and the mechanical properties of the polyamide-based resin, preferably 18 and more preferably 16 14 is more preferable, and 12 is particularly preferable.
  • R 7 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
  • R 7 is preferably a linear or branched aliphatic group having 7 or less carbon atoms.
  • aliphatic groups include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2-diyl group, propane -1,1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, and heptane-1,7 A diyl group.
  • Preferable specific examples of the monomer that gives the unit (dI) include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid.
  • the unit (d-II) is represented by the following formula (D-II): —NH—R 8 —NH— (D-II) (In the formula (D-II), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.) It is a unit represented by.
  • R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms. However, R 8 is not a linear aliphatic group having 10 to 20 carbon atoms. That is, R 8 is a branched aliphatic group having 10 to 20 carbon atoms, or a linear or branched aliphatic group having 9 or less carbon atoms.
  • the upper limit of the number of carbon atoms of R 8 is 20 in view of the availability of the monomer that gives the unit (d-II) and the mechanical properties of the polyamide-based resin, 18 is preferable, and 16 is more 14 is more preferable, and 12 is particularly preferable.
  • R 8 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
  • R 8 is preferably a linear or branched aliphatic group having 9 or less carbon atoms.
  • aliphatic groups include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2-diyl group, propane -1,1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7- Examples thereof include a diyl group, an octane-1,8-diyl group, and a nonane-1,9-diyl group.
  • the monomer that gives the unit (dI) include diaminomethane, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, and nona. And methylene diamine.
  • the total content of the unit (dI) and the content of the unit (d-II) in the polyamide resin is 1% by mass or more and less than 50% by mass, and 1% by mass or more and less than 40% by mass. It is preferably 1% by mass or more and less than 30% by mass, more preferably 1% by mass or more and less than 20% by mass.
  • the polyamide-based resin described above may contain a phosphorus compound.
  • the breaking elongation and breaking stress of the molded object containing a polyamide-type resin can be improved more. Therefore, the polyamide resin composition containing a phosphorus compound is suitable for medical balloons, for example. Further, as will be described later, in the production process of the polyamide-based resin, it is possible to prevent coloration due to stabilization of the polymerization reaction or oxidation.
  • Examples of such phosphorus compounds include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, and alkali metal salts and alkaline earth metal salts thereof.
  • phosphorous acid, hypophosphorous acid, and alkali metal salts thereof are used from the viewpoint of improving the stability of the polymerization reaction, imparting heat stability to the polyamide-based resin, and improving the mechanical properties of the molded body.
  • Alkaline earth metal salts are preferred.
  • the content of the phosphorus compound is preferably 5 mass ppm or more and 5000 mass ppm or less, more preferably 20 mass ppm or more and 4000 mass ppm or less, and more preferably 30 mass ppm or more and 3000 mass ppm or less as the phosphorus element with respect to the mass of the polyamide-based resin. Further preferred.
  • various additives can be blended with the polyamide-based resin in accordance with the purpose within a range that does not impair the characteristics. Specifically, heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, mold release agents, plasticizers, pigments, dyes, Flame retardants, reinforcing materials, inorganic fillers, fine fibers, radiopaque agents and the like can be added.
  • the polyamide-based resin can be prepared by polycondensing the monomer giving the above units in a desired ratio according to a known method.
  • the melt viscosity (melt flow rate, MFR) of the polyamide-based resin is preferably 0.1 to 20 (g / 10 min) at 230 ° C. and 2.16 kgf (21.2 N). Thereby, extrusion moldability becomes favorable.
  • the reaction temperature, the reaction time, the solution concentration, etc. at the time of polymerization may be appropriately adjusted.
  • the Shore D hardness of the polyamide resin is preferably 50 to 100, more preferably 60 to 80. Thereby, the softness
  • the Shore D hardness can be adjusted by appropriately changing the composition ratio of the monomer giving each unit.
  • the number average molecular weight of the polyamide-based resin is preferably 10,000 to 150,000, more preferably 20,000 to 100,000. By setting the number average molecular weight in such a range, the processability and mechanical properties are excellent.
  • the elongation at break in the tensile test of the molded product is preferably from 100% to 600%, more preferably from 200% to 600%.
  • the breaking stress is preferably 20 MPa or more and 100 MPa or less, and more preferably 30 MPa or more and 90 MPa or less. Note that the tensile test is performed, for example, by a method described later.
  • the polyamide-based resin described above has an excellent balance of mechanical properties such as breaking strength and breaking elongation, it is suitably used in various applications.
  • the polyamide-based resin described above is Formula (C-1) below: HOOC-R 3 (—O—R 4 ) m —COOH (C-1) (In Formula (C-1), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, m is an integer of 1 to 30 and m is When it is an integer of 2 or more, the plurality of R 4 may be the same or different.)
  • the dicarboxylic acid (a1) or an amide-forming derivative thereof is a monomer that gives the unit (a).
  • Diamine (b1) is a monomer that provides the above-mentioned unit (b).
  • the dicarboxylic acid (c-1) or its amide-forming derivative is a monomer that gives the unit (cI) described above.
  • Diamine (c-2) is a monomer that provides the aforementioned unit (c-II).
  • the dicarboxylic acid (d-1) or its amide-forming derivative is a monomer that gives the unit (dI).
  • Diamine (d-2) is a monomer that provides the aforementioned unit (d-II).
  • examples of the amide-forming derivative include an acid halide. Examples of the acid halide include acid chlorides and acid bromides, and acid chlorides are preferable.
  • the polyamide-based resin is obtained by reacting dicarboxylic acid (a1) or its amide-forming derivative with diamine (b1) to obtain a prepolymer,
  • the obtained prepolymer was mixed with dicarboxylic acid (c-1) or its amide-forming derivative, diamine (c-2), dicarboxylic acid (d-1) or its amide-forming derivative, and diamine (d -2), it is also preferable to produce by reacting with one or more selected from the group consisting of.
  • the amount of each monomer used is appropriately adjusted so that the content of each unit is a desired value.
  • the monomer that can cause the equimolarity of the amino group and the carboxylic acid group to be added to an extent that does not deteriorate the desired physical properties.
  • the monomer polycondensation reaction can be performed in a solvent or in the absence of a solvent without using a solvent. It is preferable to carry out the reaction without using a solvent without using a solvent, because no purification or the like is required and the desired polyamide-based resin can be easily obtained.
  • a solvent-free reaction can be performed by a melt-kneading method. Therefore, when synthesizing the prepolymer or synthesizing the polyamide-based resin, it is preferable to react the monomers by a melt-kneading method.
  • an atmospheric pressure melt polycondensation reaction a reduced pressure melt polycondensation reaction, or a combination thereof can be employed.
  • the pressure in the reaction vessel is preferably set to 0.1 to 0.01 (MPa) in a nitrogen gas atmosphere from the viewpoint of polymerization reactivity.
  • the temperature at which the monomer is reacted is not particularly limited as long as a polycondensation reaction occurs, but is preferably 160 to 300 ° C., and preferably 200 to 280 ° C. from the balance of reaction rate and suppression of thermal decomposition. More preferably.
  • the polycondensation reaction time in the method for producing a polyamide-based resin is preferably 3 to 10 hours from the viewpoint of increasing the molecular weight and suppressing coloring.
  • the reaction time for producing the prepolymer and the reaction time for producing the polyamide resin by reacting the prepolymer with other monomers are also 3 to 10 hours as described above. It is preferable.
  • the production method of the polyamide-based resin may be a batch type or a continuous type.
  • a batch type using a batch type reaction kettle or the like, or a continuous type using a single tank type or multi tank type continuous reaction apparatus, a tubular continuous reaction apparatus or the like alone or in combination may be used.
  • a phosphorus compound can be used as a catalyst as necessary.
  • phosphorus compounds include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, and alkali metal salts and alkaline earth metal salts thereof.
  • Inorganic phosphorus compounds such as alkaline earth metal salts are preferably used.
  • the weight when such a phosphorus compound is charged is preferably 10 mass ppm or more and 10000 mass ppm or less, more preferably 100 mass ppm or more and 5000 mass ppm or less with respect to the total weight of the monomers.
  • a phosphorus compound may be discharged
  • the amount of phosphorus element in the obtained polyamide-based resin is preferably 5 mass ppm or more and 5000 mass ppm or less, more preferably 20 mass ppm or more and 4000 mass ppm or less, and 30 mass ppm or more and 3000 mass ppm or less. Is more preferable.
  • a molten polyamide resin is drawn out in a string shape and cooled, and if necessary, obtained as pellets or the like be able to.
  • the above polyamide-based resin is excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
  • the molded object which consists of a polyamide-type resin or the polyamide-type resin which mix
  • molded bodies are not particularly limited. What are polyamide-based resins and polyamide-based resin compositions? By various known molding methods, spinning methods, fabric manufacturing methods, etc., they are processed into molded products of various forms. As the molding method, for example, extrusion molding, blow molding, injection molding or the like can be applied. Suitable shapes of the molded body include films, sheets, tubes, powders, fibers, woven fabrics, nonwoven fabrics, balloons for catheters, and the like.
  • the molded body made of the polyamide-based resin and the polyamide-based resin composition is, for example, a film, a sheet, or a tube. Is preferred.
  • a film or sheet made of a polyamide-based resin and a polyamide-based resin composition is included in the laminate, good rupture strength and elongation at break are also imparted to the laminate.
  • seat which consists of a polyamide-type resin and a polyamide-type resin composition is also preferable.
  • the above-mentioned polyamide-based resin is excellent in extrusion moldability and take-off moldability due to the melting characteristics of the resin, excellent in blow moldability, and excellent in toughness. Therefore, it can be used for manufacturing molded articles in various fields.
  • a member such as a tube, a hose, or a medical tube can be manufactured by extrusion molding using a polyamide-based resin.
  • members such as bottles, containers, catheter balloons and the like can be produced by blow molding a polyamide-based resin.
  • the polyamide-based resin is suitable as a constituent material for medical members used in medical devices. Examples of medical members include catheter balloons, medical tubes, and laminates.
  • the medical member is a catheter balloon
  • the molded body used as the medical member is not limited thereto.
  • a tube (hereinafter sometimes referred to as “parison”) is manufactured using a polyamide-based resin, and then the obtained parison is further produced. It can be manufactured by processing.
  • a method for producing a parison using a polyamide-based resin a general known molding method can be used. For example, extrusion molding, injection molding, melt spinning molding and the like can be mentioned.
  • the parison generally has a cylindrical shape whose diameter is constant in the major axis direction.
  • a general known molding method can be used as a method for producing a balloon from a parison.
  • a balloon having a desired shape can be produced by biaxial stretching by blow molding such as air blowing or die blowing, vacuum molding, or the like.
  • the molding temperature is generally 95 to 165 ° C.
  • the inner diameter expansion rate of the balloon from the parison is preferably 400% to 900%, more preferably 500% to 800%.
  • the inner diameter expansion rate in the present invention is a value calculated by the following equation.
  • Inner diameter expansion rate (%) (inner diameter during balloon expansion during molding / parison inner diameter) ⁇ 100
  • Appearance inspection or the like is performed on the balloon obtained as described above, and only those that pass the inspection can be used as medical members of medical devices such as balloon catheters. In the appearance inspection, diamond-shaped scratches, fish eyes, and cracks observed on the surface of the balloon are regarded as defective.
  • polyamide-based resins have an excellent balance of mechanical properties such as elongation at break and strength at break. Therefore, in addition to medical device components, packaging materials such as food, and electrical / mechanical precision devices Of course, it can be used for various applications such as members, automobile members and the like.
  • Test test In the tensile test, a test piece conforming to ASTM-D638 (TYPE 5) was used. The test piece was obtained by pressing the polyamide resin pellets obtained in Examples and Comparative Examples at 190 ° C. using a small press machine (product name: MP-2FH, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and cooling the thickness 1 A (mm) film was prepared and punched with a punching blade of the above standard. And the drying process of the test piece was 80 degreeC and 4 hours. The tensile test was performed at a speed of 200 (mm / min).
  • the Shore D hardness was measured according to ASTM-D2240 using a 6 mm thick sheet in a 23 ° C. constant temperature room. A sheet having a thickness of 6 mm was produced by using the above-described press machine using the polyamide resin pellets of Examples and Comparative Examples. As a measuring device, a rubber hardness meter load tester D type manufactured by Kobunshi Keiki Co., Ltd. was used.
  • Example 1 749 g (3.26 mol) of dodecanedioic acid (carbon number 12) as a dicarboxylic acid (a1) was added to a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet.
  • a diamine (b1) 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C.
  • a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
  • polyether diamine (diamine represented by the following formula (2) as diamine (c-2).
  • Jeffamine, manufactured by HUNTSMAN 78 g (0.13 mol) of ED600 (ED600)) and 15 g (0.13 mol) of hexamethylenediamine (HMD) as diamine (d-2) were added, followed by polymerization at the same temperature for about 4 hours to obtain a polyamide resin.
  • Example 2 In a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet, and condensed water outlet, 655 g (3.24 mol) of sebacic acid (carbon number 10) as dicarboxylic acid (a1), As diamine (b1), 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C.
  • a dicarboxylic acid polyamide having a molecular weight of about 5000 was obtained.
  • a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
  • JEFAMINE ED600 manufactured by HUNTSMAN
  • HMD hexamethylenediamine
  • Example 2 After the polymerization, about 1 kg of pellets was obtained in the same manner as in Example 1. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2. Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
  • Example 3 869 g (3.78 mol) of dodecanedioic acid (12 carbon atoms) as dicarboxylic acid (a1) in a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet As a diamine (b1), 600 g (3.5 mol) of decamethylenediamine (carbon number 10) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C.
  • a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
  • 87 g (0.145 mol) of polyetherdiamine (Jephamine ED600 (ED600) manufactured by HUNTSMAN) as diamine (c-2) and 16.8 g of hexamethylenediamine (HMD) as diamine (d-2) (0.145 mol) was further added, and polymerization was carried out at the same temperature for about 4 hours to obtain a polyamide resin.
  • Example 4 In a reaction vessel having a volume of 3 L equipped with a stirrer, a temperature controller, a pressure gauge, a nitrogen gas inlet, and a condensed water outlet, 760 g (3.76 mol) of sebacic acid (carbon number 10) as dicarboxylic acid (a1), As the diamine (b1), 600 g (3.5 mol) of decamethylenediamine (10 carbon atoms) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C.
  • a dicarboxylic acid polyamide having a molecular weight of about 5000 was obtained.
  • a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
  • 81 g (0.135 mol) of polyetherdiamine (JEFAMINE ED600 (ED600) manufactured by HUNTSMAN) as diamine (c-2) and 15.7 g of hexamethylenediamine (HMD) as diamine (d-2) (0.135 mol) was further added, and polymerization was carried out at the same temperature for about 4 hours to obtain a polyamide resin.
  • Example 5 749 g (3.26 mol) of dodecanedioic acid (carbon number 12) as a dicarboxylic acid (a1) was added to a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet.
  • a diamine (b1) 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C.
  • dicarboxylic acid polyamide having a molecular weight of about 5000 was obtained.
  • polyether diamine diamine represented by the following formula (3) as diamine (c-2).
  • HUNTSMAN 117 g (0.13 mol) of ED900 (ED900)
  • HMD hexamethylenediamine
  • Step (i) Hexamethylenediamine (HMD, carbon number 6) 13.9 g (0.12 mol) and polyether diamine (JEFARMIN manufactured by HUNTSMAN) so as to be equimolar with the both-terminal carboxylic acid groups of the obtained dicarboxylic acid oxidation hard segment ED600 (ED600)) was charged in 72 g (0.12 mol), heated to 260 ° C., and further polymerized for 4 hours to obtain a polymer (step (ii)).
  • HMD hydrogenatediamine
  • JEFARMIN manufactured by HUNTSMAN polyether diamine
  • Step (i) Hexamethylenediamine (HMD, carbon number 6) 13.9 g (0.12 mol) and polyether diamine (JEFARMIN manufactured by HUNTSMAN) so as to be equimolar with the both-terminal carboxylic acid groups of the obtained dicarboxylic acid oxidation hard segment 72 g (0.12 mol) of ED600 (ED600) was charged, the temperature was raised to 260 ° C., and polymerization was further performed for 4 hours to obtain a polymer (step (ii)).
  • HMD Hexamethylenediamine
  • JEFARMIN manufactured by HUNTSMAN polyether diamine
  • a dicarboxylic acid polyamide having a molecular weight of about 5000 was obtained.
  • 13 mol) of hexamethylenediamine (HMD) was added as the diamine (d-2), and polymerization was carried out at the same temperature for about 6 hours to obtain a polyamide resin.
  • HMD hexamethylenediamine
  • the polyamide-based resin containing units (a), units (b), units (c-II), and units (d-II) having the same structure has the same Shore D hardness, but the units (a), Compared with polyamide resin not containing unit (b) and at least one selected from unit (c-I), unit (c-II), unit (d-I), and unit (d-II) And it turns out that breaking elongation and breaking strength are excellent.
  • the polyamide-based resin of this example can be particularly suitably used for the production of medical tubes and balloons.

Abstract

A polyamide resin with excellent balance of mechanical characteristics such as breaking strength and breaking elongation in a solid state, a molded body containing said polyamide resin, a laminate provided with a film or sheet containing said polyamide resin, a medical device provided with the aforementioned molded body and or the aforementioned laminate, and a production method of the aforementioned polyamide resin are provided. A polyamide resin is used which contains a linear aliphatic dicarbonyl unit with a carbon number of 10-20 as unit (a), a linear aliphatic diamino unit with a carbon number of 10-20 as unit (b), and an aliphatic unit of a prescribed structure other than those of unit (a) and unit (b).

Description

ポリアミド系樹脂、成形体、積層体、医療機器、及びポリアミド系樹脂の製造方法POLYAMIDE RESIN, MOLDED BODY, LAMINATE, MEDICAL DEVICE, AND METHOD FOR PRODUCING POLYAMIDE RESIN
 本発明は、ポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とに関する。 The present invention includes at least one of a polyamide-based resin, a molded body including the polyamide-based resin, a laminate including a film or sheet including the polyamide-based resin, the above-described molded body, and the above-described stacked body. The present invention relates to a medical device and a method for producing the aforementioned polyamide-based resin.
 ポリアミドエラストマー等のポリアミド系樹脂は、食品等の包装材料、医療機器用部材、電気・機械精密機器用部材、自動車用部材等の様々な分野で幅広く用いられている樹脂化合物である。これらのうち、医療機器用部材としては、例えば医療用チューブ、カテーテル用バルーン等の構成材料として用いられている。医療機器用部材に用いる場合は、ポリアミドエラストマーには、所望の形状に精密に成形できる押出成形性、ブロー成形性等の成形性や使用時の圧力や屈曲等による破壊に耐えうる柔軟性、破断伸度、破断強度等の力学的特性が求められている。 Polyamide-based resins such as polyamide elastomers are resin compounds that are widely used in various fields such as packaging materials for foods, medical device members, electrical / mechanical precision device members, automobile members, and the like. Among these, as a member for medical equipment, it is used as constituent materials, such as a medical tube and a balloon for catheters, for example. When used as a medical device member, the polyamide elastomer has an extrudability that can be precisely molded into a desired shape, a moldability such as blow moldability, a flexibility that can withstand breakage due to pressure and bending during use, and fracture Mechanical properties such as elongation and breaking strength are required.
 特許文献1には、所定の両末端にカルボキシ基を有するポリアミド、炭素数が3以上のアルキレン基を持つ両末端アミノポリオキシアルキレン及び所定のジアミンを縮重合させて得られるブロックポリエーテルアミドが開示されている。また、特許文献2には、ポリアミド形成性モノマー、炭素数が3以上のアルキレン基を持つ両末端アミノポリオキシアルキレン、所定のジアミン及び特定量のジカルボン酸を重縮合させて得られるポリエーテルアミドが開示されている。特許文献1及び特許文献2に記載のポリエーテルアミドは、ある程度の柔軟性や耐衝撃性を有すると考えらえる。
 しかしながら、特許文献1及び2に記載の成分構成のポリーテルアミドでは、炭素数が3以上のアルキレン基を持つポリエーテルを用いても、柔軟性、破断伸度や破断強度等の機械的強度が不十分であり、更なる向上が求められていた。
Patent Document 1 discloses a block polyether amide obtained by polycondensing a polyamide having a carboxy group at both ends, an aminopolyoxyalkylene at both ends having an alkylene group having 3 or more carbon atoms, and a predetermined diamine. Has been. Patent Document 2 discloses a polyether amide obtained by polycondensation of a polyamide-forming monomer, an aminopolyoxyalkylene at both ends having an alkylene group having 3 or more carbon atoms, a predetermined diamine and a specific amount of dicarboxylic acid. It is disclosed. The polyether amides described in Patent Document 1 and Patent Document 2 are considered to have a certain degree of flexibility and impact resistance.
However, in the polyteramide having the component structure described in Patent Documents 1 and 2, even when a polyether having an alkylene group having 3 or more carbon atoms is used, the mechanical strength such as flexibility, elongation at break and strength at break is high. It was insufficient and further improvement was required.
 特許文献3には、(A)所定のアミノカルボン酸化合物及び所定のラクタム化合物から選ばれるポリアミド形成性モノマー、(B)PTMO(ポリテトラメチレンオキサイド)骨格を有するポリエーテルジアミン並びに分岐型ジアミン、分岐脂環式ジアミン、ノルボルナンジアミンから選ばれる少なくとも1種のジアミン化合物、(C)所定のジカルボン酸化合物を重合して得られるポリアミドエラストマーが開示されている。しかしながら、特許文献3に記載の発明で用いられるこれらのジアミン化合物は反応性に乏しく、長い重合時間を要する。そのため、重合中に重合物の一部が熱分解し、得られるエラストマーが着色したり、十分に反応しない等により得られたエラストマーの破断伸び、破断強度等の強度が十分ではないという問題がある。 Patent Document 3 includes (A) a polyamide-forming monomer selected from a predetermined aminocarboxylic acid compound and a predetermined lactam compound, (B) a polyether diamine having a PTMO (polytetramethylene oxide) skeleton, a branched diamine, and a branched diamine. A polyamide elastomer obtained by polymerizing at least one diamine compound selected from alicyclic diamine and norbornanediamine and (C) a predetermined dicarboxylic acid compound is disclosed. However, these diamine compounds used in the invention described in Patent Document 3 are poor in reactivity and require a long polymerization time. Therefore, there is a problem that a part of the polymer is thermally decomposed during the polymerization, and the resulting elastomer is colored or the strength such as breaking elongation and breaking strength of the obtained elastomer is not sufficient. .
 特許文献4には、破断伸度が1000%以上、弾性率が15MPa以下の柔軟な織編物へのコーティングもしくは含浸用共重合ポリエーテルポリアミド樹脂が開示されている。また、具体的な構成として、炭素数2~3のアルキレン基を有するポリエーテルジアミン化合物と所定のジカルボン酸化合物とから構成されたポリエーテルポリアミドからなるソフトセグメント、並びに、所定のアミノカルボン酸及び/又は所定のラクタム化合物から構成されたポリアミドからなるハードセグメントが結合されてなるポリエーテルポリアミド樹脂が開示されている。しかしながら、特許文献4に記載のポリエーテルポリアミド樹脂は、ポリエーテル成分の反応性が低く、樹脂の破断強度が十分ではないという問題がある。 Patent Document 4 discloses a copolymer polyether polyamide resin for coating or impregnation on a flexible woven or knitted fabric having a breaking elongation of 1000% or more and an elastic modulus of 15 MPa or less. Further, as a specific configuration, a soft segment composed of a polyether polyamide composed of a polyetherdiamine compound having an alkylene group having 2 to 3 carbon atoms and a predetermined dicarboxylic acid compound, and a predetermined aminocarboxylic acid and / or Alternatively, a polyether polyamide resin is disclosed in which hard segments made of polyamide composed of a predetermined lactam compound are bonded. However, the polyether polyamide resin described in Patent Document 4 has a problem that the reactivity of the polyether component is low and the breaking strength of the resin is not sufficient.
特開昭59-193923号公報JP 59-193923 A 特開昭59-131628号公報JP 59-131628 A 国際公開第2007/145324号International Publication No. 2007/145324 国際公開第2009/139087号International Publication No. 2009/139087
 上記の問題点に鑑みて、本発明の目的は、固体状態において、破断強度や破断伸び等の機械的特性のバランスに優れるポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とを提供することにある。 In view of the above problems, an object of the present invention is to provide a polyamide-based resin excellent in the balance of mechanical properties such as breaking strength and elongation at break in a solid state, a molded body including the polyamide-based resin, and the polyamide-based resin. It is providing the laminated body provided with the film or sheet | seat containing resin, the medical device provided with at least 1 of the above-mentioned molded object, and the above-mentioned laminated body, and the manufacturing method of the above-mentioned polyamide-type resin.
 本発明者は、前述の課題解決のために鋭意検討を行った結果、本発明を完成するに至った。すなわち本発明は、下記[1]~[7]のポリアミド系樹脂、[8]~[9]の成形体、[10]の積層体、[11]の医療機器、[12]~[14]のポリアミド系樹脂を製造する方法に関する。 As a result of intensive studies for solving the above-mentioned problems, the present inventors have completed the present invention. That is, the present invention provides the following polyamide resins [1] to [7], [8] to [9] molded articles, [10] laminates, [11] medical devices, [12] to [14]. The present invention relates to a method for producing a polyamide-based resin.
 [1]単位(a)と、単位(b)を含み、さらに単位(c-I)、単位(c―II)、単位(d-I)、及び単位(d-II)からなる群より選択される少なくとも1種を含むポリアミド系樹脂であって、
 単位(a)が、下記式(A):
-CO-R-CO-・・・(A)
(式(A)中、Rは、炭素原子数8以上20以下の直鎖脂肪族基である。)
で表される単位であり、
 単位(b)が、下記式(B):
-NH-R-NH-・・・(B)
(式(B)中、Rは、炭素原子数10以上20以下の直鎖脂肪族である。)
で表される単位(b)と、
 単位(c-I)が下記式(C-I):
-CO-R(-O-R-CO-・・・(C-I)
(式(C-I)中、R、及びRは、それぞれ独立に、炭素原子数1以上6以下の鎖状脂肪族基であり、mは1以上30以下の整数である。)
で表される単位であり、
 単位(c-II)が、下記式(C-II):
-NH-R(-O-R-NH-・・・(C-II)
(式(C-II)中、R、及びRは、それぞれ独立に、炭素原子数1以上3以下の鎖状脂肪族基であり、nは1以上30以下の整数である。)
で表される単位であり、
 単位(d-I)が、下記式(D-I):
-CO-R-CO-・・・(D-I)
(式(D-I)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数8以上20以下の直鎖脂肪族基ではない。)
で表される単位であり、
 単位(d-II)が、下記式(D-II):
-NH-R-NH-・・・(D-II)
(式(D-II)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数10以上20以下の直鎖脂肪族基ではない。)
で表される単位であり、
 ポリアミド系樹脂中の、単位(a)の含有量と、単位(b)の含有量とが、それぞれ1質量%以上50質量%以下であり、
 ポリアミド系樹脂が単位(c-I)及び単位(c-II)から選択される少なくとも1種を含む場合、ポリアミド系樹脂中の単位(c-I)の含有量と、単位(c-II)の含有量との合計が1質量%以上50質量%以下であり、
 ポリアミド系樹脂が単位(d-I)及び単位(d-II)から選択される少なくとも1種を含む場合、ポリアミド系樹脂中の単位(d-I)の含有量と、単位(d-II)の含有量との合計が1質量%以上50質量%以下であり、
 ポリアミド系樹脂中の、単位(a)、単位(b)、単位(c1)、単位(c2)、単位(d1)、及び単位(d2)の含有量の合計が、90質量%以上であり、
 ポリアミド系樹脂を構成する全単位における、カルボニル末端基モル量(Ac)と、アミノ(Aa)末端基モル量との比率が、Ac/Aaとして80/100~100/80である、ポリアミド系樹脂。
[1] selected from the group consisting of unit (a) and unit (b), and further comprising unit (cI), unit (c-II), unit (dI), and unit (d-II) A polyamide-based resin comprising at least one of the following:
The unit (a) is represented by the following formula (A):
—CO—R 1 —CO— (A)
(In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.)
Is a unit represented by
The unit (b) is represented by the following formula (B):
—NH—R 2 —NH— (B)
(In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.)
A unit (b) represented by:
The unit (cI) is represented by the following formula (CI):
—CO—R 3 (—O—R 4 ) m —CO— (CI)
(In the formula (CI), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, and m is an integer of 1 to 30.)
Is a unit represented by
The unit (c-II) is represented by the following formula (C-II):
—NH—R 5 (—O—R 6 ) n —NH— (C-II)
(In Formula (C-II), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, and n is an integer of 1 to 30.)
Is a unit represented by
The unit (dI) is represented by the following formula (DI):
—CO—R 7 —CO— (DI)
(In the formula (DI), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.)
Is a unit represented by
The unit (d-II) is represented by the following formula (D-II):
—NH—R 8 —NH— (D-II)
(In the formula (D-II), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.)
Is a unit represented by
In the polyamide-based resin, the content of the unit (a) and the content of the unit (b) are 1% by mass or more and 50% by mass or less,
When the polyamide-based resin contains at least one selected from the unit (cI) and the unit (c-II), the content of the unit (cI) in the polyamide-based resin and the unit (c-II) And the total content is 1 mass% or more and 50 mass% or less,
When the polyamide-based resin includes at least one selected from the unit (dI) and the unit (d-II), the content of the unit (dI) in the polyamide-based resin and the unit (d-II) And the total content is 1 mass% or more and 50 mass% or less,
The total content of the unit (a), the unit (b), the unit (c1), the unit (c2), the unit (d1), and the unit (d2) in the polyamide resin is 90% by mass or more.
Polyamide resin in which the ratio of carbonyl end group molar amount (Ac) to amino (Aa) end group molar amount is 80/100 to 100/80 as Ac / Aa in all units constituting the polyamide resin .
 [2]単位(a)と、単位(b)と、単位(c-I)及び単位(c-II)から選択される少なくとも1種と、を含む、[1]に記載のポリアミド系樹脂。 [2] The polyamide resin according to [1], comprising unit (a), unit (b), and at least one selected from unit (cI) and unit (c-II).
 [3]単位(c-II)が、下記一般式(1)で表される単位である、[1]又は[2]に記載のポリアミド系樹脂。
-NH-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH-・・・(1)
(式(1)中、x、y及びzは、x+zは1以上6以下の実数で、yは1以上20以下の実数である。)
[3] The polyamide resin according to [1] or [2], wherein the unit (c-II) is a unit represented by the following general formula (1).
—NH— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH— (1)
(In the formula (1), x, y and z are x + z is a real number from 1 to 6, and y is a real number from 1 to 20.)
 [4]単位(a)と単位(b)と単位(c-II)と単位(d-II)とを含む、[1]~[3]のいずれか1つに記載のポリアミド系樹脂。 [4] The polyamide resin according to any one of [1] to [3], comprising a unit (a), a unit (b), a unit (c-II), and a unit (d-II).
 [5]単位(a)がドデカンジオイル単位であり、単位(b)が1,12-ジアミノドデカン単位であり、単位(c-II)がトリブロックポリエーテルの両末端にアミノ基(-NH-)を有するジアミノ単位である、[1]~[4]のいずれか1つに記載のポリアミド系樹脂。 [5] The unit (a) is a dodecandioyl unit, the unit (b) is a 1,12-diaminododecane unit, and the unit (c-II) is an amino group (—NH at both ends of the triblock polyether. The polyamide resin according to any one of [1] to [4], which is a diamino unit having-).
 [6]単位(a)の含有量が、1質量%以上50質量%未満である、[1]~[5]のいずれか1つに記載のポリアミド系樹脂。 [6] The polyamide resin according to any one of [1] to [5], wherein the content of the unit (a) is 1% by mass or more and less than 50% by mass.
 [7]単位(b)の含有量が、1質量%以上50質量%未満である、[1]~[6]のいずれか1つに記載のポリアミド系樹脂。 [7] The polyamide resin according to any one of [1] to [6], wherein the content of the unit (b) is 1% by mass or more and less than 50% by mass.
 [8][1]~[7]のいずれか1つに記載のポリアミド系樹脂を含む材料からなる成形体。 [8] A molded body made of a material containing the polyamide-based resin according to any one of [1] to [7].
 [9]フィルム、シート、チューブ、粉末、繊維、織布、不織布、又はカテーテル用バルーンである、[8]に記載の成形体。 [9] The molded article according to [8], which is a film, sheet, tube, powder, fiber, woven fabric, nonwoven fabric, or catheter balloon.
 [10][9]に記載のフィルム、又はシートを含む、積層体。 [10] A laminate comprising the film or sheet according to [9].
 [11][9]に記載の成形体、及び[10]に記載の積層体からなる群より選択される少なくとも1種を備える医療機器。 [11] A medical device comprising at least one selected from the group consisting of the molded body according to [9] and the laminate according to [10].
 [12]
 下記式(C-1):
HOOC-R(-O-R-COOH・・・(C-1)
(式(C-1)中、R、及びRは、それぞれ独立に、炭素原子数1以上6以下の鎖状脂肪族基であり、mは1以上30以下の整数である。)
で表されるジカルボン酸(c-1)、又はそのアミド形成性誘導体、
 下記式(C-2):
N-R(-O-R-NH・・・(C-2)
(式(C-2)中、R、及びRは、それぞれ独立に、炭素原子数1以上3以下の鎖状脂肪族基であり、nは1以上30以下の整数である。)
で表されるジアミン(c-2)、
 下記式(D-1):
HOOC-R-COOH・・・(D-1)
(式(D-1)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数8以上20以下の直鎖脂肪族基ではない。)
で表されるジカルボン酸(d-1)、又はそのアミド形成性誘導体、及び、
 下記式(D-2):
N-R-NH・・・(D-2)
(式(D-2)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数10以上20以下の直鎖脂肪族基ではない。)
で表されるジアミン(d-2)、からなる群より選択される1種以上と、
 下記式(A1):
HOOC-R-COOH・・・(A1)
(式(A)中、Rは、炭素原子数8以上20以下の直鎖脂肪族基である。)
で表されるジカルボン酸(a1)、又はそのアミド形成性誘導体と、
 下記式(B1):
N-R-NH・・・(B1)
(式(B)中、Rは、炭素原子数10以上20以下の直鎖脂肪族である。)
で表されるジアミン(b1)と、
を反応させてポリアミド系樹脂を生成させることと、を含む[1]に記載のポリアミド系樹脂を製造する方法。
[12]
Formula (C-1) below:
HOOC-R 3 (—O—R 4 ) m —COOH (C-1)
(In formula (C-1), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, and m is an integer of 1 to 30.)
A dicarboxylic acid (c-1) represented by: or an amide-forming derivative thereof,
Formula (C-2) below:
H 2 N—R 5 (—O—R 6 ) n —NH 2 (C-2)
(In Formula (C-2), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, and n is an integer of 1 to 30.)
Diamine (c-2) represented by
Formula (D-1) below:
HOOC-R 7 -COOH (D-1)
(In the formula (D-1), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.)
A dicarboxylic acid (d-1) represented by: or an amide-forming derivative thereof, and
The following formula (D-2):
H 2 N—R 8 —NH 2 (D-2)
(In the formula (D-2), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.)
One or more selected from the group consisting of diamines (d-2) represented by:
The following formula (A1):
HOOC-R 1 -COOH (A1)
(In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.)
A dicarboxylic acid (a1) represented by the formula:
The following formula (B1):
H 2 N—R 2 —NH 2 (B1)
(In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.)
A diamine (b1) represented by:
To produce a polyamide-based resin, and producing the polyamide-based resin according to [1].
 [13]ジカルボン酸(a1)、又はそのアミド形成性誘導体と、ジアミン(b1)とを反応させてプレポリマーを得ることと、
 プレポリマーを、ジカルボン酸(c-1)、又はそのアミド形成性誘導体と、ジアミン(c-2)と、ジカルボン酸(d-1)、又はそのアミド形成性誘導体と、ジアミン(d-2)とからなる群より選択される1以上と反応させることと、を含む、[12]に記載の方法。
[13] reacting dicarboxylic acid (a1) or its amide-forming derivative with diamine (b1) to obtain a prepolymer;
A prepolymer is obtained by dicarboxylic acid (c-1) or its amide-forming derivative, diamine (c-2), dicarboxylic acid (d-1) or its amide-forming derivative, and diamine (d-2). Reacting with at least one selected from the group consisting of: and [12].
 [14]プレポリマーを生成させる反応と、ポリアミド系樹脂を生成させる反応とが、溶融混練法で行われる、[13]に記載の方法。 [14] The method according to [13], wherein the reaction for generating the prepolymer and the reaction for generating the polyamide resin are performed by a melt-kneading method.
 本発明によれば、固体状態において、破断強度や破断伸び等の機械的特性のバランスに優れるポリアミド系樹脂と、当該ポリアミド系樹脂を含む成形体と、当該ポリアミド系樹脂を含むフィルム又はシートを備える積層体と、前述の成形体、及び前述の積層体の少なくとも1つを備える医療機器と、前述のポリアミド系樹脂の製造方法とを提供することができる。 According to the present invention, in a solid state, a polyamide-based resin having an excellent balance of mechanical properties such as breaking strength and elongation at break, a molded body including the polyamide-based resin, and a film or sheet including the polyamide-based resin are provided. There can be provided a laminate, a medical device including at least one of the above-described molded body, and the above-described laminate, and a method for producing the above-described polyamide-based resin.
≪ポリアミド系樹脂≫
 ポリアミド系樹脂は、単位(a)と、単位(b)を含み、さらに単位(c-I)、単位(c―II)、単位(d-I)、及び単位(d-II)からなる群より選択される少なくとも1種を含む。各単位については詳細に後述する。
 ポリアミド系樹脂中の、単位(a)の含有量と、単位(b)の含有量とは、それぞれ1質量%以上50質量%以下である。
 ポリアミド系樹脂が単位(c-I)及び単位(c-II)から選択される少なくとも1種を含む場合、ポリアミド系樹脂中の単位(c-I)の含有量と、単位(c-II)の含有量との合計は1質量%以上50質量%以下である。
 ポリアミド系樹脂が単位(d1-I)及び単位(d-II)から選択される少なくとも1種を含む場合、ポリアミド系樹脂中の単位(d-I)の含有量と、単位(d-II)の含有量との合計は1質量%以上50質量%以下である。
≪Polyamide resin≫
The polyamide-based resin includes a unit (a) and a unit (b), and further includes a unit (cI), a unit (c-II), a unit (dI), and a unit (d-II). It contains at least one selected from more. Each unit will be described in detail later.
The content of the unit (a) and the content of the unit (b) in the polyamide resin are 1% by mass or more and 50% by mass or less, respectively.
When the polyamide-based resin contains at least one selected from the unit (cI) and the unit (c-II), the content of the unit (cI) in the polyamide-based resin and the unit (c-II) The total content of is 1% by mass or more and 50% by mass or less.
When the polyamide-based resin includes at least one selected from the unit (d1-I) and the unit (d-II), the content of the unit (dI) in the polyamide-based resin and the unit (d-II) The total content of is 1% by mass or more and 50% by mass or less.
 ポリアミド系樹脂中の、単位(a)、単位(b)、単位(c-I)、単位(c-II)、単位(d-I)、及び単位(d-II)の含有量の合計は、90質量%以上であり、95質量%以上が好ましく、98質量%以上がより好ましく、100質量%が特に好ましい。
 ポリアミド系樹脂は、所定の種類の単位(a)を所定量含んでいれば、エステル結合(-CO-O-)、ウレタン結合(-NH-CO-O-)、及びカーボネート結合(-O-O-CO-等の結合を少量含んでいてもよい。
The total content of units (a), units (b), units (c-I), units (c-II), units (d-I), and units (d-II) in the polyamide resin is 90 mass% or more, preferably 95 mass% or more, more preferably 98 mass% or more, and particularly preferably 100 mass%.
If the polyamide-based resin contains a predetermined amount of a predetermined type of unit (a), an ester bond (—CO—O—), a urethane bond (—NH—CO—O—), and a carbonate bond (—O—) It may contain a small amount of bonds such as O—CO—.
 ポリアミド系樹脂は、種々の機械的特性が良好であることから、上記の単位(a)と、単位(b)と、単位(c-II)と、単位(d-II)とを含むのが好ましく、単位(a)と、単位(b)と、単位(c-II)と、単位(d-II)とからなるのが好ましい。 Since the polyamide-based resin has various mechanical properties, it includes the unit (a), the unit (b), the unit (c-II), and the unit (d-II). The unit (a), the unit (b), the unit (c-II), and the unit (d-II) are preferable.
 ポリアミド系樹脂を構成する全単位における、カルボニル末端基モル量(Ac)と、アミノ(Aa)末端基モル量との比率は、Ac/Aaとして80/100~100/80であり、90/100~100/90が好ましく、95/100~100/95がより好ましく、100/100が特に好ましい。 The ratio of the carbonyl end group molar amount (Ac) to the amino (Aa) end group molar amount in all units constituting the polyamide-based resin is 80/100 to 100/80 as Ac / Aa. To 100/90 is preferable, 95/100 to 100/95 is more preferable, and 100/100 is particularly preferable.
 ポリアミド系樹脂が、それぞれ所定の構造を有する、単位(a)と、単位(b)と、単位(c-I)、単位(c―II)、単位(d-I)、及び単位(d-II)から選択される少なくとも1種と、を所定の比率で含むことにより、ポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに優れる。 Each of the polyamide-based resins has a predetermined structure, unit (a), unit (b), unit (cI), unit (c-II), unit (dI), and unit (d- By containing at least one selected from II) in a predetermined ratio, the polyamide-based resin is excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
 上記の所定の要件を満たすポリアミド系樹脂は、エラストマー的な特性を示し、ポリアミドエラストマーとして好適に用いられる。 The polyamide-based resin that satisfies the above predetermined requirements exhibits elastomeric characteristics and is preferably used as a polyamide elastomer.
 以下、ポリアミド系樹脂に含まれる各単位について説明する。 Hereinafter, each unit contained in the polyamide-based resin will be described.
<単位(a)>
 単位(a)は、下記式(A):
-CO-R-CO-・・・(A)
(式(A)中、Rは、炭素原子数8以上20以下の直鎖脂肪族基である。)
で表される単位である。
<Unit (a)>
The unit (a) is represented by the following formula (A):
—CO—R 1 —CO— (A)
(In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.)
It is a unit represented by.
 Rは炭素原子数8以上20以下の直鎖脂肪族基である。単位(a)を与える単量体の入手の容易性や、ポリアミド系樹脂の機械的特性の点で、Rの炭素原子数の上限は、20であり、18が好ましく、16がより好ましく、14がさらに好ましく、12が特に好ましい。
 Rは、飽和脂肪族基であっても、不飽和脂肪族基であってもよいが、飽和脂肪族基であるのが好ましい。
R 1 is a linear aliphatic group having 8 to 20 carbon atoms. The upper limit of the number of carbon atoms of R 1 is 20, 18 is preferable, and 16 is more preferable in terms of the availability of the monomer that gives the unit (a) and the mechanical properties of the polyamide-based resin. 14 is more preferable, and 12 is particularly preferable.
R 1 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
 Rは、具体的には、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基、オクタデカン-1,18-ジイル基、ノナデカン-1,19-ジイル基、及びエイコサン-1,20-ジイル基である。 Specifically, R 1 is octane-1,8-diyl group, nonane-1,9-diyl group, decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12. -Diyl group, tridecane-1,13-diyl group, tetradecane-1,14-diyl group, pentadecane-1,15-diyl group, hexadecane-1,16-diyl group, heptadecane-1,17-diyl group, octadecane -1,18-diyl group, nonadecane-1,19-diyl group, and eicosane-1,20-diyl group.
 単位(a)は、両末端にカルボニル基を有する。単位(a)をポリアミド系樹脂中に導入する方法は特に限定されないが、通常、単位(a)は、アルカンジカルボン酸、アルカンジカルボン酸ジハライド等の単量体を用いてポリアミド系樹脂中に導入される。
 単位(a)中のカルボニル基は、単量体の有するカルボキシ基や、ハロカルボニル基中のカルボニル基に由来する。
Unit (a) has a carbonyl group at both ends. The method for introducing the unit (a) into the polyamide resin is not particularly limited, but the unit (a) is usually introduced into the polyamide resin using a monomer such as alkanedicarboxylic acid or alkanedicarboxylic acid dihalide. The
The carbonyl group in the unit (a) is derived from the carboxy group of the monomer or the carbonyl group in the halocarbonyl group.
 単位(a)としては、オクタンジオイル単位、ノナンジオイル単位、デカンジオイル単位、ウンデカンジオイル単位、及びドデカンジオイル単位が好ましく、デカンジオイル単位、ウンデカンジオイル単位、及びドデカンジオイル単位がより好ましく、ドデカンジオイル単位が特に好ましい。 The unit (a) is preferably an octane oil unit, a nonane oil unit, a decane oil unit, an undecane oil unit, or a dodecane oil unit, more preferably a decane oil unit, an undecane oil unit, or a dodecane oil unit. Preferably, dodecanedioyl units are particularly preferred.
 単位(a)がドデカンジオイル単位である場合、後述する単位(b)は、1,12-ジアミノドデカン単位であるのが好ましい。また、この場合、ポリアミド系樹脂が、後述する単位(c-II)として、トリブロックポリエーテルの両末端にアミノ基(-NH-)を有するジアミノ単位を含むのが好ましい。
 以上の構成単位を組み合わせて含むポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに特に優れる。
When the unit (a) is a dodecanedioyl unit, the unit (b) described later is preferably a 1,12-diaminododecane unit. In this case, the polyamide resin preferably contains diamino units having amino groups (—NH—) at both ends of the triblock polyether as the unit (c-II) described later.
Polyamide resins containing a combination of the above structural units are particularly excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
 以上説明した単位(a)は、後述する単位(b)とともに、ポリアミド系樹脂中にハードセグメントを構成する。かかるハードセグメントは、ポリアミド系樹脂の、破断強度や破断伸び等の機械的特性の良好なバランスに寄与する。 The unit (a) described above constitutes a hard segment in the polyamide resin together with the unit (b) described later. Such a hard segment contributes to a good balance of mechanical properties such as breaking strength and breaking elongation of the polyamide-based resin.
 単位(a)を与える単量体の具体例としては、デカン二酸(セバシン酸)、ウンデカン二酸、ドデカン二酸デカン、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカン二酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸、ヘンイコシル二酸、及びドコサン二酸である。これらの酸ハライド、例えば、酸塩化物、又は酸臭化物を単量体として用いることもできる。 Specific examples of the monomer that gives the unit (a) include decanedioic acid (sebacic acid), undecanedioic acid, dodecanedioic acid decane, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid. Acids, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, helicosyldioic acid, and docosanedioic acid. These acid halides such as acid chlorides or acid bromides can also be used as monomers.
 ポリアミド系樹脂中の単位(a)の含有量は、1質量%以上50質量%未満であり、10質量%以上50質量%未満が好ましく、20質量%以上50質量%未満がより好ましく、30質量%以上50質量%未満が特に好ましい。 The content of the unit (a) in the polyamide resin is 1% by mass or more and less than 50% by mass, preferably 10% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and 30% by mass. % Or more and less than 50% by mass is particularly preferable.
<単位(b)>
 単位(b)は、下記式(B):
-NH-R-NH-・・・(B)
(式(B)中、Rは、炭素原子数10以上20以下の直鎖脂肪族である。)
で表される単位である。
<Unit (b)>
The unit (b) is represented by the following formula (B):
—NH—R 2 —NH— (B)
(In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.)
It is a unit represented by.
 Rは炭素原子数10以上20以下の直鎖脂肪族基である。単位(b)を与える単量体の入手の容易性や、ポリアミド系樹脂の機械的特性の点で、Rの炭素原子数の上限は、20であり、18が好ましく、16がより好ましく、14がさらに好ましく、12が特に好ましい。
 Rは、飽和脂肪族基であっても、不飽和脂肪族基であってもよいが、飽和脂肪族基であるのが好ましい。
R 2 is a linear aliphatic group having 10 to 20 carbon atoms. The upper limit of the number of carbon atoms of R 2 is 20, 18 is preferable, and 16 is more preferable in terms of the availability of the monomer that gives the unit (b) and the mechanical properties of the polyamide-based resin. 14 is more preferable, and 12 is particularly preferable.
R 2 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
 Rは、具体的には、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基、オクタデカン-1,18-ジイル基、ノナデカン-1,19-ジイル基、及びエイコサン-1,20-ジイル基である。 Specifically, R 2 is decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group, tridecane-1,13-diyl group, tetradecane-1,14. A diyl group, a pentadecane-1,15-diyl group, a hexadecane-1,16-diyl group, a heptadecane-1,17-diyl group, an octadecane-1,18-diyl group, a nonadecane-1,19-diyl group, and Eicosane-1,20-diyl group.
 単位(b)は、両末端にアミノ基(-NH-)を有する。単位(b)をポリアミド系樹脂中に導入する方法は特に限定されないが、通常、単位(b)は、直鎖脂肪族ジアミン等の単量体を用いてポリアミド系樹脂中に導入される。
 単位(b)中のアミノ基(-NH-)は、単量体の有するアミノ基(-NH-)に由来する。
The unit (b) has an amino group (—NH—) at both ends. The method for introducing the unit (b) into the polyamide resin is not particularly limited, but the unit (b) is usually introduced into the polyamide resin using a monomer such as a linear aliphatic diamine.
The amino group (—NH—) in the unit (b) is derived from the amino group (—NH 2 —) of the monomer.
 単位(b)としては、1,10-ジアミノデカン単位、1,11-ジアミノウンデカン単位、1,12-ジアミノドデカン単位、1,13-ジアミノトリデカン単位、及び1,14-ジアミノテトラデカン単位が好ましく、1,10-ジアミノデカン単位、及び1,12-ジアミノドデカン単位がより好ましく、1,12-ジアミノドデカン単位が特に好ましい。 As the unit (b), 1,10-diaminodecane unit, 1,11-diaminoundecane unit, 1,12-diaminododecane unit, 1,13-diaminotridecane unit and 1,14-diaminotetradecane unit are preferable. 1,10-diaminodecane units and 1,12-diaminododecane units are more preferred, and 1,12-diaminododecane units are particularly preferred.
 単位(a)及び単位(b)の組み合わせとしては、単位(a)としてのドデカンジオイル単位と、単位(b)としての1,12-ジアミノドデカン単位との組み合わせが好ましい。
 ポリアミド系樹脂が、単位(a)としてのドデカンジオイル単位と、単位(b)としての1,12-ジアミノドデカン単位とを組み合わせて含む場合、ポリアミド系樹脂が、後述する単位(c-II)として、トリブロックポリエーテルの両末端にアミノ基(-NH-)を有するジアミノ単位を含むのが好ましい。
 以上の構成単位を組み合わせて含むポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに特に優れる。
As a combination of the unit (a) and the unit (b), a combination of a dodecandioyl unit as the unit (a) and a 1,12-diaminododecane unit as the unit (b) is preferable.
When the polyamide-based resin contains a combination of a dodecanedioyl unit as the unit (a) and a 1,12-diaminododecane unit as the unit (b), the polyamide-based resin is a unit (c-II) described later. The triblock polyether preferably contains diamino units having amino groups (—NH—) at both ends.
Polyamide resins containing a combination of the above structural units are particularly excellent in the balance of mechanical properties such as breaking strength and breaking elongation.
 以上説明した単位(b)は、後述する単位(a)とともに、ポリアミド系樹脂中にハードセグメントを構成する。かかるハードセグメントは、ポリアミド系樹脂の、破断強度や破断伸び等の機械的特性の良好なバランスに寄与する。 The unit (b) described above constitutes a hard segment in the polyamide resin together with the unit (a) described later. Such a hard segment contributes to a good balance of mechanical properties such as breaking strength and breaking elongation of the polyamide-based resin.
 単位(b)を与える単量体の具体例としては、デカン-1,10-ジアミン、ウンデカン-1,11-ジアミン、ドデカン-1,12-ジアミン、トリデカン-1,13-ジアミン、テトラデカン-1,14-ジアミン、ペンタデカン-1,15-ジアミン、ヘキサデカン-1,16-ジアミン、ヘプタデカン-1,17-ジアミン、オクタデカン-1,18-ジアミン、ノナデカン-1,19-ジアミン、及びエイコサン-1,20-ジアミンである。 Specific examples of the monomer that gives the unit (b) include decane-1,10-diamine, undecane-1,11-diamine, dodecane-1,12-diamine, tridecane-1,13-diamine, and tetradecane-1. , 14-diamine, pentadecane-1,15-diamine, hexadecane-1,16-diamine, heptadecane-1,17-diamine, octadecane-1,18-diamine, nonadecane-1,19-diamine, and eicosane-1, 20-diamine.
 ポリアミド系樹脂中の単位(b)の含有量は、1質量%以上50質量%未満であり、10質量%以上50質量%未満が好ましく、20質量%以上50質量%未満がより好ましく、30質量%以上50質量%未満が特に好ましい。 The content of the unit (b) in the polyamide-based resin is 1% by mass or more and less than 50% by mass, preferably 10% by mass or more and less than 50% by mass, more preferably 20% by mass or more and less than 50% by mass, and 30% by mass. % Or more and less than 50% by mass is particularly preferable.
<単位(c-I)、単位(c-II)、単位(d-I)、及び単位(d-II)>
 ポリアミド系樹脂は、単位(c-I)、単位(c-II)、単位(d-I)、及び単位(d-II)からなる群より選択される1種以上の単位を必須に含有する。
 単位(c-I)、単位(c-II)、単位(d-I)、及び単位(d-II)の種類や、含有量を調整することにより、ポリアミド系樹脂の種々の物性が調整される。
 以下、単位(c-I)、単位(c-II)、単位(d-I)、及び単位(d-II)について説明する。
<Unit (cI), Unit (c-II), Unit (dI), and Unit (d-II)>
The polyamide-based resin essentially contains at least one unit selected from the group consisting of units (c-I), units (c-II), units (d-I), and units (d-II). .
By adjusting the type and content of the unit (c-I), unit (c-II), unit (d-I), and unit (d-II), various physical properties of the polyamide resin can be adjusted. The
Hereinafter, the unit (cI), the unit (c-II), the unit (dI), and the unit (d-II) will be described.
〔単位(c-I)〕
 単位(c-I)は下記式(C-I):
-CO-R(-O-R-CO-・・・(C-I)
(式(C-I)中、R、及びRは、それぞれ独立に、炭素原子数1以上6以下の鎖状脂肪族基であり、mは1以上30以下の整数であり、mが2以上の整数である場合、複数のRは同一であっても異なっていてもよい。)
で表される単位である。
[Unit (cI)]
The unit (cI) is represented by the following formula (CI):
—CO—R 3 (—O—R 4 ) m —CO— (CI)
(In the formula (CI), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, m is an integer of 1 to 30 and m is When it is an integer of 2 or more, the plurality of R 4 may be the same or different.)
It is a unit represented by.
 R、及びRは、飽和脂肪族炭化水素基であってもよく、不飽和脂肪族炭化水素基であってもよく、飽和脂肪族炭化水素基であるのが好ましい。
 R、及びRは、直鎖脂肪族基であっても、分岐鎖脂肪族基であってもよい。
R 3 and R 4 may be a saturated aliphatic hydrocarbon group, an unsaturated aliphatic hydrocarbon group, or a saturated aliphatic hydrocarbon group.
R 3 and R 4 may be a linear aliphatic group or a branched aliphatic group.
 R、及びRの好適な具体例としては、メチレン基、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、及びヘキサン-1,6-ジイル基が挙げられる。
 これらの中では、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、及びブタン-1,4-ジイル基が好ましく、エタン-1,2-ジイル基、及びプロパン-1,2-ジイル基がより好ましい。
Preferable specific examples of R 3 and R 4 include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2- And diyl group, propane-1,1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, and hexane-1,6-diyl group. It is done.
Of these, ethane-1,2-diyl group, propane-1,3-diyl group, propane-1,2-diyl group, and butane-1,4-diyl group are preferable, and ethane-1,2- A diyl group and a propane-1,2-diyl group are more preferable.
 式(C-I)中、mの上限は、例えば、30であり、20が好ましい。 In the formula (CI), the upper limit of m is, for example, 30 and 20 is preferable.
〔単位(c-II)〕
 単位(c-II)は、下記式(C-II):
-NH-R(-O-R-NH-・・・(C-II)
(式(C-II)中、R、及びRは、それぞれ独立に、炭素原子数1以上3以下の鎖状脂肪族基であり、nは1以上30以下の整数であり、nが2以上の整数である場合、複数のRは同一であっても異なっていてもよい。)
で表される単位である。
[Unit (c-II)]
The unit (c-II) is represented by the following formula (C-II):
—NH—R 5 (—O—R 6 ) n —NH— (C-II)
(In the formula (C-II), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, n is an integer of 1 to 30 and n is When it is an integer of 2 or more, the plurality of R 6 may be the same or different.)
It is a unit represented by.
 R、及びRの好適な具体例としては、メチレン基、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、及びプロパン-2,2-ジイル基が挙げられる。
 これらの中では、エタン-1,2-ジイル基、プロパン-1,3-ジイル基、及びプロパン-1,2-ジイル基が好ましく、エタン-1,2-ジイル基、及びプロパン-1,2-ジイル基がより好ましい。
Preferable specific examples of R 5 and R 6 include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2- Examples include a diyl group, a propane-1,1-diyl group, and a propane-2,2-diyl group.
Among these, ethane-1,2-diyl group, propane-1,3-diyl group, and propane-1,2-diyl group are preferable, and ethane-1,2-diyl group and propane-1,2 -Diyl groups are more preferred.
 単位(c-II)としては、トリブロックポリエーテルの両末端にアミノ基(-NH-)を有するジアミノ単位が好ましい。かかるジアミノ単位としては、下記一般式(1)で表されるジアミノ単位であるのが好ましい。
-NH-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH-・・・(1)
The unit (c-II) is preferably a diamino unit having amino groups (—NH—) at both ends of the triblock polyether. Such a diamino unit is preferably a diamino unit represented by the following general formula (1).
—NH— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH— (1)
 式(1)中、x、y及びzは、x+zは1以上6以下の実数で、yは1以上20以下の実数である。これにより、重合反応性と柔軟性の好適なバランスを取ることができる。x+zは、好ましくは1以上5以下、さらに好ましくは1以上3.8以下である。また、yは、好ましくは1以上15以下、より好ましくは1以上9.2以下である。さらに、x+zは1以上6以下の実数で、yは1以上15以下の実数であるのが好ましい。ここで、x、y、zは、例えば後述の実施例のようにしてGPC測定により決定することができる。 In the formula (1), x, y and z are x + z is a real number from 1 to 6, and y is a real number from 1 to 20. Thereby, the suitable balance of polymerization reactivity and a softness | flexibility can be taken. x + z is preferably 1 or more and 5 or less, more preferably 1 or more and 3.8 or less. Moreover, y is preferably 1 or more and 15 or less, more preferably 1 or more and 9.2 or less. Furthermore, x + z is preferably a real number of 1 to 6, and y is preferably a real number of 1 to 15. Here, x, y, and z can be determined by GPC measurement, for example, as in the examples described later.
 式(1)で表されるジアミノ単位を与える単量体化合物としては、例えば、ポリオキシエチレン、1,2-ポリオキシプロピレン、1,3-ポリオキシプロピレンあるいはそれらの共重合物であるポリオキシアルキレンのアミノ変性体等のポリエーテルジアミン化合物が挙げられる。具体的には、米国HUNTSMAN社製のジェファーミンEDシリーズ等を好ましく用いることができる。このジェファーミンEDシリーズは、式(1)中、x+zは1以上6以下で、yは1以上20以下を示すものとしては、ED600とED900である。このうち、x+zが1以上6以下のものとしては、ED900、x+zが1以上3.8以下のものとしては、ED600、yが1以上15以下のものとしてはED900、yが1以上9.2以下のものとしては、ED600である。また、x+z及びyがこのような範囲のうち、ED600の数平均分子量は500~700が好ましく、ED900の数平均分子量は800~1,000が好ましい。この場合の数平均分子量は、重クロロホルム溶媒を用いた核磁気共鳴法によるプロトン比により算出した数値である。 Examples of the monomer compound that gives the diamino unit represented by the formula (1) include polyoxyethylene, 1,2-polyoxypropylene, 1,3-polyoxypropylene, and polyoxyethylene that is a copolymer thereof. Examples include polyether diamine compounds such as amino-modified products of alkylene. Specifically, Jeffamine ED series manufactured by HUNTSMAN, USA can be preferably used. In the Jeffermin ED series, in formula (1), x + z is 1 or more and 6 or less, and y is 1 or more and 20 or less, which are ED600 and ED900. Of these, ED900 is used when x + z is 1 or more and 6 or less, ED600 is used when x + z is 1 or more and 3.8 or less, and ED900 is used when y is 1 or more and 15 or less, and y is 1 or more and 9.2. The following is ED600. Further, within such a range of x + z and y, the number average molecular weight of ED600 is preferably 500 to 700, and the number average molecular weight of ED900 is preferably 800 to 1,000. The number average molecular weight in this case is a numerical value calculated by a proton ratio by a nuclear magnetic resonance method using a deuterated chloroform solvent.
 ポリアミド系樹脂中の単位(c-I)の含有量と、単位(c-II)の含有量との合計は、1質量%以上50質量%未満であり、1質量%以上40質量%未満が好ましく、1質量%以上30質量%未満がより好ましく、1質量%以上20質量%未満が特に好ましい。 The total of the content of the unit (cI) and the content of the unit (c-II) in the polyamide resin is 1% by mass or more and less than 50% by mass, and 1% by mass or more and less than 40% by mass. It is preferably 1% by mass or more and less than 30% by mass, more preferably 1% by mass or more and less than 20% by mass.
〔単位(d-1)〕
 単位(d-I)が、下記式(D-I):
-CO-R-CO-・・・(D-I)
(式(D-I)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数8以上20以下の直鎖脂肪族基ではない。)
で表される単位である。
[Unit (d-1)]
The unit (dI) is represented by the following formula (DI):
—CO—R 7 —CO— (DI)
(In the formula (DI), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.)
It is a unit represented by.
 Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基である。ただし、Rは、炭素原子数8以上20以下の直鎖脂肪族基ではない。つまり、Rは、炭素原子8以上20以下の分岐鎖状の脂肪族基、又は炭素原子数7以下の直鎖状又は分岐鎖状の脂肪族基である。
 Rの炭素原子数の上限は、単位(d-I)を与える単量体の入手の容易性や、ポリアミド系樹脂の機械的特性の点で、20であり、18が好ましく、16がより好ましく、14がさらに好ましく、12が特に好ましい。
 Rは、飽和脂肪族基であっても、不飽和脂肪族基であってもよいが、飽和脂肪族基であるのが好ましい。
R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms. However, R 7 is not a linear aliphatic group having 8 to 20 carbon atoms. That is, R 7 is a branched aliphatic group having 8 to 20 carbon atoms, or a linear or branched aliphatic group having 7 or less carbon atoms.
The upper limit of the number of carbon atoms of R 7 is 20 in terms of the availability of the monomer giving the unit (dI) and the mechanical properties of the polyamide-based resin, preferably 18 and more preferably 16 14 is more preferable, and 12 is particularly preferable.
R 7 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
 Rとしては、炭素原子数7以下の、直鎖状、又は分岐鎖状の脂肪族基が好ましい。かかる脂肪族基の具体例としては、メチレン基、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、及びヘプタン-1,7-ジイル基が挙げられる。 R 7 is preferably a linear or branched aliphatic group having 7 or less carbon atoms. Specific examples of such aliphatic groups include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2-diyl group, propane -1,1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, and heptane-1,7 A diyl group.
 単位(d-I)を与える単量体の好適な具体例としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、及びアゼライン酸が挙げられる。 Preferable specific examples of the monomer that gives the unit (dI) include malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid.
〔単位(d-II)〕
 単位(d-II)が、下記式(D-II):
-NH-R-NH-・・・(D-II)
(式(D-II)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数10以上20以下の直鎖脂肪族基ではない。)
で表される単位である。
[Unit (d-II)]
The unit (d-II) is represented by the following formula (D-II):
—NH—R 8 —NH— (D-II)
(In the formula (D-II), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.)
It is a unit represented by.
 Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基である。ただし、Rは、炭素原子数10以上20以下の直鎖脂肪族基ではない。つまり、Rは、炭素原子10以上20以下の分岐鎖状の脂肪族基、又は炭素原子数9以下の直鎖状又は分岐鎖状の脂肪族基である。
 Rの炭素原子数の上限は、単位(d-II)を与える単量体の入手の容易性や、ポリアミド系樹脂の機械的特性の点で、20であり、18が好ましく、16がより好ましく、14がさらに好ましく、12が特に好ましい。
 Rは、飽和脂肪族基であっても、不飽和脂肪族基であってもよいが、飽和脂肪族基であるのが好ましい。
R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms. However, R 8 is not a linear aliphatic group having 10 to 20 carbon atoms. That is, R 8 is a branched aliphatic group having 10 to 20 carbon atoms, or a linear or branched aliphatic group having 9 or less carbon atoms.
The upper limit of the number of carbon atoms of R 8 is 20 in view of the availability of the monomer that gives the unit (d-II) and the mechanical properties of the polyamide-based resin, 18 is preferable, and 16 is more 14 is more preferable, and 12 is particularly preferable.
R 8 may be a saturated aliphatic group or an unsaturated aliphatic group, but is preferably a saturated aliphatic group.
 Rとしては、炭素原子数9以下の、直鎖状、又は分岐鎖状の脂肪族基が好ましい。かかる脂肪族基の具体例としては、メチレン基、エタン-1,2-ジイル基、エタン-1,1-ジイル基、プロパン-1,3-ジイル基、プロパン-1,2-ジイル基、プロパン-1,1-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、及びノナン-1,9-ジイル基が挙げられる。 R 8 is preferably a linear or branched aliphatic group having 9 or less carbon atoms. Specific examples of such aliphatic groups include methylene group, ethane-1,2-diyl group, ethane-1,1-diyl group, propane-1,3-diyl group, propane-1,2-diyl group, propane -1,1-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1,5-diyl group, hexane-1,6-diyl group, heptane-1,7- Examples thereof include a diyl group, an octane-1,8-diyl group, and a nonane-1,9-diyl group.
 単位(d-I)を与える単量体の好適な具体例としては、ジアミノメタン、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、及びノナメチレンジアミンが挙げられる。 Preferable specific examples of the monomer that gives the unit (dI) include diaminomethane, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, and nona. And methylene diamine.
 ポリアミド系樹脂中の単位(d-I)の含有量と、単位(d-II)の含有量との合計は、1質量%以上50質量%未満であり、1質量%以上40質量%未満が好ましく、1質量%以上30質量%未満がより好ましく、1質量%以上20質量%未満が特に好ましい。 The total content of the unit (dI) and the content of the unit (d-II) in the polyamide resin is 1% by mass or more and less than 50% by mass, and 1% by mass or more and less than 40% by mass. It is preferably 1% by mass or more and less than 30% by mass, more preferably 1% by mass or more and less than 20% by mass.
<その他の成分>
 以上説明したポリアミド系樹脂に、リン化合物を含有させてもよい。これにより、ポリアミド系樹脂を含む成形体の破断伸びや破断応力をより向上させることができる。そのため、リン化合物を含むポリアミド系樹脂組成物は、例えば医療用バルーンに好適である。
 また、後述するように、ポリアミド系樹脂の製造工程においては、重合反応の安定化や酸化に起因する着色を防止することができる。
 このようなリン化合物としては、リン酸、ピロリン酸、ポリリン酸、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等が挙げられる。これらのうち、重合反応の安定性の向上、ポリアミド系樹脂に対する耐熱安定性の付与、成形体の力学的特性の向上の観点からは、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩が好ましい。
 リン化合物の含有量は、ポリアミド系樹脂の質量に対してリン元素として5質量ppm以上5000質量ppm以下が好ましく、20質量ppm以上4000質量ppm以下がより好ましく、30質量ppm以上3000質量ppm以下がさらに好ましい。
<Other ingredients>
The polyamide-based resin described above may contain a phosphorus compound. Thereby, the breaking elongation and breaking stress of the molded object containing a polyamide-type resin can be improved more. Therefore, the polyamide resin composition containing a phosphorus compound is suitable for medical balloons, for example.
Further, as will be described later, in the production process of the polyamide-based resin, it is possible to prevent coloration due to stabilization of the polymerization reaction or oxidation.
Examples of such phosphorus compounds include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, and alkali metal salts and alkaline earth metal salts thereof. Among these, phosphorous acid, hypophosphorous acid, and alkali metal salts thereof are used from the viewpoint of improving the stability of the polymerization reaction, imparting heat stability to the polyamide-based resin, and improving the mechanical properties of the molded body. Alkaline earth metal salts are preferred.
The content of the phosphorus compound is preferably 5 mass ppm or more and 5000 mass ppm or less, more preferably 20 mass ppm or more and 4000 mass ppm or less, and more preferably 30 mass ppm or more and 3000 mass ppm or less as the phosphorus element with respect to the mass of the polyamide-based resin. Further preferred.
 ポリアミド系樹脂には、前述のリン化合物以外に、特性を損なわない範囲で、目的に応じて種々の添加剤を配合することができる。具体的には、耐熱剤、紫外線吸収剤、光安定剤、酸化防止剤、帯電防止剤、滑材、スリップ剤、結晶核剤、粘着性付与剤、離型剤、可塑剤、顔料、染料、難燃剤、補強材、無機フィラー、微小繊維、X線不透過剤等を添加することができる。 In addition to the above-mentioned phosphorus compounds, various additives can be blended with the polyamide-based resin in accordance with the purpose within a range that does not impair the characteristics. Specifically, heat-resistant agents, ultraviolet absorbers, light stabilizers, antioxidants, antistatic agents, lubricants, slip agents, crystal nucleating agents, tackifiers, mold release agents, plasticizers, pigments, dyes, Flame retardants, reinforcing materials, inorganic fillers, fine fibers, radiopaque agents and the like can be added.
 ポリアミド系樹脂は、上記の単位を与える単量体を、所望する比率で、公知の方法に従って重縮合させることによって調製できる。 The polyamide-based resin can be prepared by polycondensing the monomer giving the above units in a desired ratio according to a known method.
 ポリアミド系樹脂の溶融粘度(メルトフローレート、MFR)は、230℃、2.16kgf(21.2N)において0.1~20(g/10min)であることが好ましい。これにより、押出し成形性が良好となる。溶融粘度をこの様な範囲とするためには、重合時の反応温度、反応時間、溶液濃度等を適宜調整すればよい。 The melt viscosity (melt flow rate, MFR) of the polyamide-based resin is preferably 0.1 to 20 (g / 10 min) at 230 ° C. and 2.16 kgf (21.2 N). Thereby, extrusion moldability becomes favorable. In order to make the melt viscosity in such a range, the reaction temperature, the reaction time, the solution concentration, etc. at the time of polymerization may be appropriately adjusted.
 ポリアミド系樹脂のショアD硬度は、50~100が好ましく、60~80がより好ましい。これにより、成形体の柔軟性が得られる。例えば、各単位を与える単量体の組成比を適宜変更することにより、ショアD硬度を調整できる。 The Shore D hardness of the polyamide resin is preferably 50 to 100, more preferably 60 to 80. Thereby, the softness | flexibility of a molded object is obtained. For example, the Shore D hardness can be adjusted by appropriately changing the composition ratio of the monomer giving each unit.
 ポリアミド系樹脂の数平均分子量は10000以上150000以下が好ましく、20000以上100000以下がより好ましい。数平均分子量をこのような範囲にすることで、加工性や機械的特性に優れる。 The number average molecular weight of the polyamide-based resin is preferably 10,000 to 150,000, more preferably 20,000 to 100,000. By setting the number average molecular weight in such a range, the processability and mechanical properties are excellent.
 ポリアミド系樹脂において、成形体の引張試験における破断伸びは100%以上600%以下が好ましく、200%以上600%以下がより好ましい。また破断応力は20MPa以上100MPa以下が好ましく、30MPa以上90MPa以下がより好ましい。尚、引張試験は、例えば、後述の方法により行う。 In the polyamide-based resin, the elongation at break in the tensile test of the molded product is preferably from 100% to 600%, more preferably from 200% to 600%. The breaking stress is preferably 20 MPa or more and 100 MPa or less, and more preferably 30 MPa or more and 90 MPa or less. Note that the tensile test is performed, for example, by a method described later.
 以上説明したポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに優れるため、種々の用途において好適に用いられる。 Since the polyamide-based resin described above has an excellent balance of mechanical properties such as breaking strength and breaking elongation, it is suitably used in various applications.
≪ポリアミド系樹脂の製造方法≫
 以上説明したポリアミド系樹脂は、
 下記式(C-1):
HOOC-R(-O-R-COOH・・・(C-1)
(式(C-1)中、R、及びRは、それぞれ独立に、炭素原子数1以上6以下の鎖状脂肪族基であり、mは1以上30以下の整数であり、mが2以上の整数である場合、複数のRは同一であっても異なっていてもよい。)
で表されるジカルボン酸(c-1)、又はそのアミド形成性誘導体、
 下記式(C-2):
N-R(-O-R-NH・・・(C-2)
(式(C-2)中、R、及びRは、それぞれ独立に、炭素原子数1以上3以下の鎖状脂肪族基であり、nは1以上30以下の整数であり、nが2以上の整数である場合、複数のRは同一であっても異なっていてもよい。)
で表されるジアミン(c-2)、
 下記式(D-1):
HOOC-R-COOH・・・(D-1)
(式(D-1)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数8以上20以下の直鎖脂肪族基ではない。)
で表されるジカルボン酸(d-1)、又はそのアミド形成性誘導体、及び、
 下記式(D-2):
N-R-NH・・・(D-2)
(式(D-2)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数10以上20以下の直鎖脂肪族基ではない。)
で表されるジアミン(d-2)、からなる群より選択される1種以上と、
 下記式(A1):
HOOC-R-COOH・・・(A1)
(式(A)中、Rは、炭素原子数8以上20以下の直鎖脂肪族基である。)
で表されるジカルボン酸(a1)、又はそのアミド形成性誘導体と、
 下記式(B1):
N-R-NH・・・(B1)
(式(B)中、Rは、炭素原子数10以上20以下の直鎖脂肪族である。)
で表されるジアミン(b1)と、を反応させることにより製造される。
≪Method for producing polyamide resin≫
The polyamide-based resin described above is
Formula (C-1) below:
HOOC-R 3 (—O—R 4 ) m —COOH (C-1)
(In Formula (C-1), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, m is an integer of 1 to 30 and m is When it is an integer of 2 or more, the plurality of R 4 may be the same or different.)
A dicarboxylic acid (c-1) represented by: or an amide-forming derivative thereof,
Formula (C-2) below:
H 2 N—R 5 (—O—R 6 ) n —NH 2 (C-2)
(In Formula (C-2), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, n is an integer of 1 to 30 and n is When it is an integer of 2 or more, the plurality of R 6 may be the same or different.)
Diamine (c-2) represented by
Formula (D-1) below:
HOOC-R 7 -COOH (D-1)
(In the formula (D-1), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.)
A dicarboxylic acid (d-1) represented by: or an amide-forming derivative thereof, and
The following formula (D-2):
H 2 N—R 8 —NH 2 (D-2)
(In the formula (D-2), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.)
One or more selected from the group consisting of diamines (d-2) represented by:
The following formula (A1):
HOOC-R 1 -COOH (A1)
(In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.)
A dicarboxylic acid (a1) represented by the formula:
The following formula (B1):
H 2 N—R 2 —NH 2 (B1)
(In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.)
It is manufactured by making diamine (b1) represented by these react.
 ジカルボン酸(a1)、又はそのアミド形成性誘導体は、前述の単位(a)を与える単量体である。
 ジアミン(b1)は、前述の単位(b)を与える単量体である。
 ジカルボン酸(c-1)、又はそのアミド形成性誘導体は、前述の単位(c-I)を与える単量体である。
 ジアミン(c-2)は、前述の単位(c-II)を与える単量体である。
 ジカルボン酸(d-1)、又はそのアミド形成性誘導体は、前述の単位(d-I)を与える単量体である。
 ジアミン(d-2)は、前述の単位(d-II)を与える単量体である。
 なお、ジカルボン酸について、アミド形成性誘導体は、例えば、酸ハライドが挙げられる。酸ハライドとしては、例えば、酸塩化物や酸臭化物であり、酸塩化物が好ましい。
The dicarboxylic acid (a1) or an amide-forming derivative thereof is a monomer that gives the unit (a).
Diamine (b1) is a monomer that provides the above-mentioned unit (b).
The dicarboxylic acid (c-1) or its amide-forming derivative is a monomer that gives the unit (cI) described above.
Diamine (c-2) is a monomer that provides the aforementioned unit (c-II).
The dicarboxylic acid (d-1) or its amide-forming derivative is a monomer that gives the unit (dI).
Diamine (d-2) is a monomer that provides the aforementioned unit (d-II).
As for the dicarboxylic acid, examples of the amide-forming derivative include an acid halide. Examples of the acid halide include acid chlorides and acid bromides, and acid chlorides are preferable.
 ポリアミド系樹脂は、ジカルボン酸(a1)、又はそのアミド形成性誘導体と、ジアミン(b1)とを反応させてプレポリマーを得た後、
 得られたプレポリマーを、ジカルボン酸(c-1)、又はそのアミド形成性誘導体と、ジアミン(c-2)と、ジカルボン酸(d-1)、又はそのアミド形成性誘導体と、ジアミン(d-2)、からなる群より選択される1種以上と反応させることにより製造するのも好ましい。
The polyamide-based resin is obtained by reacting dicarboxylic acid (a1) or its amide-forming derivative with diamine (b1) to obtain a prepolymer,
The obtained prepolymer was mixed with dicarboxylic acid (c-1) or its amide-forming derivative, diamine (c-2), dicarboxylic acid (d-1) or its amide-forming derivative, and diamine (d -2), it is also preferable to produce by reacting with one or more selected from the group consisting of.
 ポリアミド系樹脂を合成するに当たって、各単量体の使用量は、各単位の含有量がそれぞれ所望する値であるように適宜調整される。
 ポリアミド系樹脂を製造するに際して、アミノ基とカルボン酸基の等モル性を崩す要因となり得る単量体の添加は、所望の物性を低下させない程度にすることが望ましい。
In synthesizing the polyamide-based resin, the amount of each monomer used is appropriately adjusted so that the content of each unit is a desired value.
In the production of a polyamide-based resin, it is desirable that the monomer that can cause the equimolarity of the amino group and the carboxylic acid group to be added to an extent that does not deteriorate the desired physical properties.
 ポリアミド系樹脂の製造方法においては、単量体の重縮合反応は、溶媒中で、あるいは溶媒を用いずに無溶媒の状態で行うことが出来る。精製等が必要なく、簡便に目的のポリアミド系樹脂が得られやすい点で、溶媒を用いずに無溶媒で反応させることが好ましい。このような無溶媒での反応は、溶融混練法により行うことができる。
 従って、プレポリマーを合成する際、又はポリアミド系樹脂を合成する際に、単量体を溶融混練法で反応させるのが好ましい。
In the method for producing a polyamide-based resin, the monomer polycondensation reaction can be performed in a solvent or in the absence of a solvent without using a solvent. It is preferable to carry out the reaction without using a solvent without using a solvent, because no purification or the like is required and the desired polyamide-based resin can be easily obtained. Such a solvent-free reaction can be performed by a melt-kneading method.
Therefore, when synthesizing the prepolymer or synthesizing the polyamide-based resin, it is preferable to react the monomers by a melt-kneading method.
 ポリアミド系樹脂の製造方法において、重縮合反応としては、常圧溶融重縮合反応又は減圧溶融重縮合反応、あるいはその組み合わせを採用することができる。減圧溶融重縮合の場合は、重合反応性の点で、窒素ガス雰囲気で、反応容器内の圧力を0.1~0.01(MPa)とするのが好ましい。これらの溶融重縮合反応は、無溶媒の状態で溶融混練法により行うことができる。 In the method for producing a polyamide-based resin, as the polycondensation reaction, an atmospheric pressure melt polycondensation reaction, a reduced pressure melt polycondensation reaction, or a combination thereof can be employed. In the case of reduced pressure melt polycondensation, the pressure in the reaction vessel is preferably set to 0.1 to 0.01 (MPa) in a nitrogen gas atmosphere from the viewpoint of polymerization reactivity. These melt polycondensation reactions can be performed by a melt-kneading method in a solvent-free state.
 ポリアミド系樹脂の製造方法において単量体を反応させる温度は、重縮合反応が起これば特に制限されないが、反応速度と熱分解の抑制のバランスから160~300℃が好ましく、200~280℃で行うことがより好ましい。 In the method for producing a polyamide-based resin, the temperature at which the monomer is reacted is not particularly limited as long as a polycondensation reaction occurs, but is preferably 160 to 300 ° C., and preferably 200 to 280 ° C. from the balance of reaction rate and suppression of thermal decomposition. More preferably.
 ポリアミド系樹脂の製造方法における重縮合反応時間は、分子量の高分子量化や着色の抑制等の観点から、3~10時間であることが好ましい。プレポリマーを製造する場合の、プレポリマーを生成させる反応時間と、プレポリマーと、他の単量体とを反応させてポリアミド系樹脂を生成させる反応時間も、上記と同様3~10時間であることが好ましい。 The polycondensation reaction time in the method for producing a polyamide-based resin is preferably 3 to 10 hours from the viewpoint of increasing the molecular weight and suppressing coloring. When producing the prepolymer, the reaction time for producing the prepolymer and the reaction time for producing the polyamide resin by reacting the prepolymer with other monomers are also 3 to 10 hours as described above. It is preferable.
 ポリアミド系樹脂の製造方法は、回分式でも、連続式であってもよい。例えば、バッチ式反応釜等を用いた回分式でもよいし、一槽式又は多槽式の連続反応装置、管状連続反応装置等を単独又は組み合わせて用いた連続式でもよい。 The production method of the polyamide-based resin may be a batch type or a continuous type. For example, a batch type using a batch type reaction kettle or the like, or a continuous type using a single tank type or multi tank type continuous reaction apparatus, a tubular continuous reaction apparatus or the like alone or in combination may be used.
 ポリアミド系樹脂の製造において、必要に応じて触媒として、リン化合物を用いることができる。このようなリン化合物としては、例えば、リン酸、ピロリン酸、ポリリン酸、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等が挙げられる。このうち、重合反応の安定性の向上、ポリアミド系樹脂に対する耐熱安定性の付与、成形体の力学的特性の向上の観点からは、亜リン酸、次亜リン酸、及びこれらのアルカリ金属塩、アルカリ土類金属塩等の無機リン化合物を用いるのが好ましい。
 このようなリン化合物の仕込み時の重量は、単量体の合計重量に対して、好ましくは10質量ppm以上10000質量ppm以下であり、より好ましくは100質量ppm以上5000質量ppm以下である。
 なお、反応で発生する副生成物によって、リン化合物が反応系外へ排出されることがあるため、仕込み重量とポリアミド系樹脂中のリン元素含有量は同じでなくてもよい。得られるポリアミド系樹脂中のリン元素量が、5質量ppm以上5000質量ppm以下となるように含有させるのが好ましく、20質量ppm以上4000質量ppm以下がより好ましく、30質量ppm以上3000質量ppm以下がさらに好ましい。
In the production of the polyamide-based resin, a phosphorus compound can be used as a catalyst as necessary. Examples of such phosphorus compounds include phosphoric acid, pyrophosphoric acid, polyphosphoric acid, phosphorous acid, hypophosphorous acid, and alkali metal salts and alkaline earth metal salts thereof. Among these, from the viewpoint of improving the stability of the polymerization reaction, imparting heat stability to the polyamide resin, and improving the mechanical properties of the molded article, phosphorous acid, hypophosphorous acid, and alkali metal salts thereof, Inorganic phosphorus compounds such as alkaline earth metal salts are preferably used.
The weight when such a phosphorus compound is charged is preferably 10 mass ppm or more and 10000 mass ppm or less, more preferably 100 mass ppm or more and 5000 mass ppm or less with respect to the total weight of the monomers.
In addition, since a phosphorus compound may be discharged | emitted out of a reaction system by the by-product generate | occur | produced by reaction, the preparation weight and phosphorus element content in a polyamide-type resin may not be the same. The amount of phosphorus element in the obtained polyamide-based resin is preferably 5 mass ppm or more and 5000 mass ppm or less, more preferably 20 mass ppm or more and 4000 mass ppm or less, and 30 mass ppm or more and 3000 mass ppm or less. Is more preferable.
 各単量体を反応させるか、プレポリマーと他の単量体とを反応させた後は、例えば溶融状態のポリアミド系樹脂をひも状に引き出して冷却し、必要に応じて、ペレット等として得ることができる。 After reacting each monomer or reacting the prepolymer and another monomer, for example, a molten polyamide resin is drawn out in a string shape and cooled, and if necessary, obtained as pellets or the like be able to.
≪成形体≫
 前述の通り、上述のポリアミド系樹脂は、破断強度や破断伸び等の機械的特性のバランスに優れる。このため、ポリアミド系樹脂、又はポリアミド系樹脂に種々の添加剤が配合されたポリアミド系樹脂からなる成形体は、種々の用途において好適に用いられる。
≪Molded body≫
As described above, the above polyamide-based resin is excellent in the balance of mechanical properties such as breaking strength and breaking elongation. For this reason, the molded object which consists of a polyamide-type resin or the polyamide-type resin which mix | blended various additives with the polyamide-type resin is used suitably in various uses.
 成形体他の形状は特に限定されない。ポリアミド系樹脂、及びポリアミド系樹脂組成物は。公知の種々の成形方法、紡糸法、布帛製造方法等によって、種々の形態の成形品に加工される。成形方法としては、例えば、押出成形、ブロー成形、射出成形等を適用可能である。
 好適な成形体の形状としては、フィルム、シート、チューブ、粉末、繊維、織布、不織布、又はカテーテル用バルーン等が挙げられる。
Other shapes of the molded body are not particularly limited. What are polyamide-based resins and polyamide-based resin compositions? By various known molding methods, spinning methods, fabric manufacturing methods, etc., they are processed into molded products of various forms. As the molding method, for example, extrusion molding, blow molding, injection molding or the like can be applied.
Suitable shapes of the molded body include films, sheets, tubes, powders, fibers, woven fabrics, nonwoven fabrics, balloons for catheters, and the like.
 ポリアミド系樹脂、及びポリアミド系樹脂組成物は、破断強度や破断伸びに優れることから、ポリアミド系樹脂、及びポリアミド系樹脂組成物からなる成形体としては、例えば、フィルム、シート、又はチューブであるのが好ましい。
 ポリアミド系樹脂、及びポリアミド系樹脂組成物からなるフィルム、又はシートを、積層体に含める場合、積層体にも、良好な破断強度や破断伸びが付与される。
 このため、ポリアミド系樹脂、及びポリアミド系樹脂組成物からなるフィルム、又はシートを含む積層体も好ましい。
Since the polyamide-based resin and the polyamide-based resin composition are excellent in breaking strength and elongation at break, the molded body made of the polyamide-based resin and the polyamide-based resin composition is, for example, a film, a sheet, or a tube. Is preferred.
When a film or sheet made of a polyamide-based resin and a polyamide-based resin composition is included in the laminate, good rupture strength and elongation at break are also imparted to the laminate.
For this reason, the laminated body containing the film or sheet | seat which consists of a polyamide-type resin and a polyamide-type resin composition is also preferable.
 前述のポリアミド系樹脂は、樹脂の溶融特性により押出し成形性及び引取り成形性に優れ、ブロー成形性に優れ、強靭性に優れている。そのため、様々な分野の成形品の製造に用いることが出来る。例えば、ポリアミド系樹脂を用いて押出成形し、チューブ、ホース、医療用チューブ等の部材を製造することができる。また、ポリアミド系樹脂をブロー成形し、ボトル、容器、カテーテル用バルーン等の部材を製造することが出来る。
 特に、ポリアミド系樹脂は、医療機器に用いられる医療用部材の構成材料として好適である。医療用部材としては、例えば、カテーテル用バルーン、医療用チューブ、積層体等が挙げられる。
The above-mentioned polyamide-based resin is excellent in extrusion moldability and take-off moldability due to the melting characteristics of the resin, excellent in blow moldability, and excellent in toughness. Therefore, it can be used for manufacturing molded articles in various fields. For example, a member such as a tube, a hose, or a medical tube can be manufactured by extrusion molding using a polyamide-based resin. Moreover, members such as bottles, containers, catheter balloons and the like can be produced by blow molding a polyamide-based resin.
In particular, the polyamide-based resin is suitable as a constituent material for medical members used in medical devices. Examples of medical members include catheter balloons, medical tubes, and laminates.
 以下では、ポリアミド系樹脂を用いて作製された医療用部材について、医療用部材がカテーテル用バルーンである場合を例に説明するが、医療用部材として用いられる成形体はこれに限定されない。 Hereinafter, the case where the medical member is a catheter balloon will be described as an example of the medical member manufactured using the polyamide-based resin, but the molded body used as the medical member is not limited thereto.
 カテーテル用バルーン(以下、単に「バルーン」と称する。)は、まず、ポリアミド系樹脂を用いてチューブ(以下、「パリソン」と称することがある。)を製造し、次いで、得られたパリソンをさらに加工することにより製造することが出来る。
 ポリアミド系樹脂を用いてパリソンを製造する方法としては、一般的な公知の成型方法を用いることができる。例えば、押出成形、射出成形、溶融紡糸成形等が挙げられる。パリソンの形状は、一般的には、径が長軸方向に一定の円筒形状を有する。
 パリソンからバルーンを製造する方法としては、一般的な公知の成形方法を用いることができる。例えば、宙吹法や型吹法等のブロー成形、真空成形等により二軸延伸成形して所望の形状のバルーンを作製することができる。成形温度は、一般的には、95~165℃である。
 パリソンからバルーンの内径拡張率は400%以上900%以下が好ましく、500%以上800%以下がより好ましい。尚、本発明における内径拡張率とは、下記式で算出される値である。
 内径拡張率(%)=(成形時バルーン拡張時の内径/パリソン内径)×100
 以上のようにして得られたバルーンに対して外観検査等を行い、検査に合格したもののみがバルーンカテーテル等の医療機器の医療用部材として用いることができる。外観検査により、バルーンの表面に、菱型の傷やフィッシュアイ、クラックが観察されたものは不良とみなされる。
For a balloon for a catheter (hereinafter simply referred to as “balloon”), first, a tube (hereinafter sometimes referred to as “parison”) is manufactured using a polyamide-based resin, and then the obtained parison is further produced. It can be manufactured by processing.
As a method for producing a parison using a polyamide-based resin, a general known molding method can be used. For example, extrusion molding, injection molding, melt spinning molding and the like can be mentioned. The parison generally has a cylindrical shape whose diameter is constant in the major axis direction.
As a method for producing a balloon from a parison, a general known molding method can be used. For example, a balloon having a desired shape can be produced by biaxial stretching by blow molding such as air blowing or die blowing, vacuum molding, or the like. The molding temperature is generally 95 to 165 ° C.
The inner diameter expansion rate of the balloon from the parison is preferably 400% to 900%, more preferably 500% to 800%. The inner diameter expansion rate in the present invention is a value calculated by the following equation.
Inner diameter expansion rate (%) = (inner diameter during balloon expansion during molding / parison inner diameter) × 100
Appearance inspection or the like is performed on the balloon obtained as described above, and only those that pass the inspection can be used as medical members of medical devices such as balloon catheters. In the appearance inspection, diamond-shaped scratches, fish eyes, and cracks observed on the surface of the balloon are regarded as defective.
 以上のように、ポリアミド系樹脂は、破断伸度、破断強度等の力学的特性のバランスに優れているため、医療機器用部材の他にも、食品等の包装材料、電気・機械精密機器用部材、自動車用部材等様々な用途に用いることが出来ることは勿論のことである。 As described above, polyamide-based resins have an excellent balance of mechanical properties such as elongation at break and strength at break. Therefore, in addition to medical device components, packaging materials such as food, and electrical / mechanical precision devices Of course, it can be used for various applications such as members, automobile members and the like.
 以下、本発明をより一層明らかにするために具体的な実施例を挙げて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, in order to further clarify the present invention, specific examples will be described. However, the present invention is not limited to these examples.
 以下、実施例、及び比較例のポリアミド系樹脂の評価について、引張試験の方法と、ショアD硬度の測定方法とについて説明する。 Hereinafter, with respect to the evaluation of the polyamide resins of Examples and Comparative Examples, a tensile test method and a Shore D hardness measurement method will be described.
(引張試験)
 引張試験は、ASTM-D638(TYPE5)に準拠した試験片を使用した。試験片は、実施例及び比較例で得られたポリアミド系樹脂のペレットを小型プレス機(東洋精機製作所社製、製品名MP-2FH)を用いて190℃にてプレスし、冷却させた厚み1(mm)のフィルムを用意し、上記規格の打抜き刃により打ち抜いて作製した。そして、試験片の乾燥処理は80℃、4時間とした。引張試験は速度200(mm/min)で行った。
(Tensile test)
In the tensile test, a test piece conforming to ASTM-D638 (TYPE 5) was used. The test piece was obtained by pressing the polyamide resin pellets obtained in Examples and Comparative Examples at 190 ° C. using a small press machine (product name: MP-2FH, manufactured by Toyo Seiki Seisakusho Co., Ltd.), and cooling the thickness 1 A (mm) film was prepared and punched with a punching blade of the above standard. And the drying process of the test piece was 80 degreeC and 4 hours. The tensile test was performed at a speed of 200 (mm / min).
(ショアD硬度の測定)
 ショアD硬度の測定は、ASTM-D2240に準拠し、厚み6mmのシートを用いて、23℃恒温室で実施した。厚み6mmのシートは、実施例及び比較例のポリアミド系樹脂のペレットを用いて、前述のプレス機により作製した。測定装置として、高分子計器社製、ゴム硬度計荷重検査器D型を用いた。
(Measurement of Shore D hardness)
The Shore D hardness was measured according to ASTM-D2240 using a 6 mm thick sheet in a 23 ° C. constant temperature room. A sheet having a thickness of 6 mm was produced by using the above-described press machine using the polyamide resin pellets of Examples and Comparative Examples. As a measuring device, a rubber hardness meter load tester D type manufactured by Kobunshi Keiki Co., Ltd. was used.
〔実施例1〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、ジカルボン酸(a1)としてドデカン二酸(炭素数12)を749g(3.26mol)、ジアミン(b1)としてドデカメチレンジアミン(炭素数12)を600g(3mol)、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、反応物を溶融させるために、280℃まで1時間で昇温し、その後260℃で重合を行った。約1時間後に分子量約5000であるジカルボン酸化ポリアミド(プレポリマー)を得た。
 そこへ、ジアミン(c-2)としてポリエーテルジアミン(下記式(2)で表されるジアミン。式(4)中y=9であり、x+z=3.6である。HUNTSMAN社製のジェファーミンED600(ED600))を78g(0.13mol)、ジアミン(d-2)としてヘキサメチレンジアミン(HMD)を15g(0.13mol)追加し、さらに同温度で約4時間重合を行ってポリアミド系樹脂を得た。
[Example 1]
749 g (3.26 mol) of dodecanedioic acid (carbon number 12) as a dicarboxylic acid (a1) was added to a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. As a diamine (b1), 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C. About 1 hour later, a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
There, polyether diamine (diamine represented by the following formula (2) as diamine (c-2). In formula (4), y = 9 and x + z = 3.6. Jeffamine, manufactured by HUNTSMAN 78 g (0.13 mol) of ED600 (ED600)) and 15 g (0.13 mol) of hexamethylenediamine (HMD) as diamine (d-2) were added, followed by polymerization at the same temperature for about 4 hours to obtain a polyamide resin. Got.
N-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH・・・(2) H 2 N— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH 2 ... (2)
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔実施例2〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、ジカルボン酸(a1)としてセバシン酸(炭素数10)を655g(3.24mol)、ジアミン(b1)としてドデカメチレンジアミン(炭素数12)を600g(3mol)、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、反応物を溶融させるために、280℃まで1時間で昇温し、その後260℃で重合を行った。約1時間後に分子量約5000であるジカルボン酸化ポリアミド(プレポリマー)を得た。
 そこへ、ジアミン(c-2)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))を75g(0.125mol)、ジアミン(d-2)としてヘキサメチレンジアミン(HMD)を14.5g(0.125mol)追加し、さらに同温度で約4時間重合を行ってポリアミド系樹脂を得た。
[Example 2]
In a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet, and condensed water outlet, 655 g (3.24 mol) of sebacic acid (carbon number 10) as dicarboxylic acid (a1), As diamine (b1), 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C. About 1 hour later, a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
Thereto, 75 g (0.125 mol) of polyetherdiamine (JEFAMINE ED600 (ED600) manufactured by HUNTSMAN) as diamine (c-2) and 14.5 g of hexamethylenediamine (HMD) as diamine (d-2) (0.125 mol) was further added, and polymerization was carried out at the same temperature for about 4 hours to obtain a polyamide resin.
 重合終了後、実施例1と同様にして約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After the polymerization, about 1 kg of pellets was obtained in the same manner as in Example 1. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔実施例3〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、ジカルボン酸(a1)としてドデカン二酸(炭素数12)を869g(3.78mol)、ジアミン(b1)としてデカメチレンジアミン(炭素数10)を600g(3.5mol)、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、反応物を溶融させるために、280℃まで1時間で昇温し、その後260℃で重合を行った。約1時間後に分子量約5000であるジカルボン酸化ポリアミド(プレポリマー)を得た。
 そこへ、ジアミン(c-2)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))を87g(0.145mol)、ジアミン(d-2)としてヘキサメチレンジアミン(HMD)を16.8g(0.145mol)追加し、さらに同温度で約4時間重合を行ってポリアミド系樹脂を得た。
Example 3
869 g (3.78 mol) of dodecanedioic acid (12 carbon atoms) as dicarboxylic acid (a1) in a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet As a diamine (b1), 600 g (3.5 mol) of decamethylenediamine (carbon number 10) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C. About 1 hour later, a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
Thereto, 87 g (0.145 mol) of polyetherdiamine (Jephamine ED600 (ED600) manufactured by HUNTSMAN) as diamine (c-2) and 16.8 g of hexamethylenediamine (HMD) as diamine (d-2) (0.145 mol) was further added, and polymerization was carried out at the same temperature for about 4 hours to obtain a polyamide resin.
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔実施例4〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、ジカルボン酸(a1)としてセバシン酸(炭素数10)を760g(3.76mol)、ジアミン(b1)としてデカメチレンジアミン(炭素数10)を600g(3.5mol)、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、反応物を溶融させるために、280℃まで1時間で昇温し、その後260℃で重合を行った。約1時間後に分子量約5000であるジカルボン酸化ポリアミド(プレポリマー)を得た。
 そこへ、ジアミン(c-2)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))を81g(0.135mol)、ジアミン(d-2)としてヘキサメチレンジアミン(HMD)を15.7g(0.135mol)追加し、さらに同温度で約4時間重合を行ってポリアミド系樹脂を得た。
Example 4
In a reaction vessel having a volume of 3 L equipped with a stirrer, a temperature controller, a pressure gauge, a nitrogen gas inlet, and a condensed water outlet, 760 g (3.76 mol) of sebacic acid (carbon number 10) as dicarboxylic acid (a1), As the diamine (b1), 600 g (3.5 mol) of decamethylenediamine (10 carbon atoms) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C. About 1 hour later, a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
Thereto, 81 g (0.135 mol) of polyetherdiamine (JEFAMINE ED600 (ED600) manufactured by HUNTSMAN) as diamine (c-2) and 15.7 g of hexamethylenediamine (HMD) as diamine (d-2) (0.135 mol) was further added, and polymerization was carried out at the same temperature for about 4 hours to obtain a polyamide resin.
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔実施例5〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、ジカルボン酸(a1)としてドデカン二酸(炭素数12)を749g(3.26mol)、ジアミン(b1)としてドデカメチレンジアミン(炭素数12)を600g(3mol)、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、反応物を溶融させるために、280℃まで1時間で昇温し、その後260℃で重合を行った。約1時間後に分子量約5000であるジカルボン酸化ポリアミド(プレポリマー)を得た。
 そこへ、ジアミン(c-2)としてポリエーテルジアミン(下記式(3)で表されるジアミン。式(3)中y=12.5であり、x+z=6である。HUNTSMAN社製のジェファーミンED900(ED900))を117g(0.13mol)、ジアミン(d-2)としてヘキサメチレンジアミン(HMD)を15g(0.13mol)追加し、さらに同温度で約5時間重合を行ってポリアミド系樹脂を得た。
Example 5
749 g (3.26 mol) of dodecanedioic acid (carbon number 12) as a dicarboxylic acid (a1) was added to a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. As a diamine (b1), 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C. About 1 hour later, a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
There, polyether diamine (diamine represented by the following formula (3) as diamine (c-2). In formula (3), y = 12.5 and x + z = 6. Jeffamine, manufactured by HUNTSMAN 117 g (0.13 mol) of ED900 (ED900)) and 15 g (0.13 mol) of hexamethylenediamine (HMD) as diamine (d-2) were added, and polymerization was performed at the same temperature for about 5 hours to obtain a polyamide resin. Got.
N-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH・・・(3) H 2 N— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH 2 ... (3)
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔比較例1〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、12アミノドデカン酸(炭素数12)1200g、及び次亜リン酸0.6gを仕込み、容器内を十分窒素置換し、溶融させるために280℃で1時間昇温し、数平均分子量が5000となるまで重合しハードセグメントを得た。
 そして、ハードセグメントの末端アミン基のモル量と等モルのアジピン酸(AA、炭素数8)35g(0.24mol)を添加し、220℃で1時間反応させハードセグメントのジカルボン酸化を行った(工程(i))。
 得られたジカルボン酸化ハードセグメントの両末端カルボン酸基と等モルになるように、ヘキサメチレンジアミン(HMD、炭素数6)13.9g(0.12mol)とポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600))を72g(0.12mol)仕込み、260℃まで昇温し、さらに4時間重合を行ってポリマーを得た(工程(ii))。
[Comparative Example 1]
Charged 1200 g of 12 aminododecanoic acid (12 carbon atoms) and 0.6 g of hypophosphorous acid into a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet, and condensed water outlet. The inside of the container was sufficiently replaced with nitrogen and heated at 280 ° C. for 1 hour in order to melt it, and polymerized until the number average molecular weight reached 5000 to obtain a hard segment.
Then, 35 g (0.24 mol) of adipic acid (AA, carbon number 8) equivalent to the molar amount of the terminal amine group of the hard segment was added and reacted at 220 ° C. for 1 hour to carry out dicarboxylic oxidation of the hard segment ( Step (i)).
Hexamethylenediamine (HMD, carbon number 6) 13.9 g (0.12 mol) and polyether diamine (JEFARMIN manufactured by HUNTSMAN) so as to be equimolar with the both-terminal carboxylic acid groups of the obtained dicarboxylic acid oxidation hard segment ED600 (ED600)) was charged in 72 g (0.12 mol), heated to 260 ° C., and further polymerized for 4 hours to obtain a polymer (step (ii)).
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔比較例2〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、10アミノデカン酸(炭素数10)1200g、及び次亜リン酸0.6gを仕込み、容器内を十分窒素置換し、溶融させるために280℃で1時間昇温し、数平均分子量が5000となるまで重合しハードセグメントを得た。
 そして、ハードセグメントの末端アミン基のモル量と等モルのアジピン酸(AA、炭素数8)35g(0.24mol)を添加し、220℃で1時間反応させハードセグメントのジカルボン酸化を行った(工程(i))。
 得られたジカルボン酸化ハードセグメントの両末端カルボン酸基と等モルになるように、ヘキサメチレンジアミン(HMD、炭素数6)13.9g(0.12mol)とポリエーテルジアミン(HUNTSMAN社製のジェファーミンED600(ED600)を72g(0.12mol)仕込み、260℃まで昇温し、さらに4時間重合を行ってポリマーを得た(工程(ii))。
[Comparative Example 2]
Into a reaction vessel having a volume of 3 L equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet, and condensed water outlet, was charged 1200 g of 10 aminodecanoic acid (10 carbon atoms) and 0.6 g of hypophosphorous acid, In order to sufficiently replace the inside of the container with nitrogen and melt it, the temperature was raised at 280 ° C. for 1 hour, and polymerization was performed until the number average molecular weight reached 5000, thereby obtaining a hard segment.
Then, 35 g (0.24 mol) of adipic acid (AA, carbon number 8) equivalent to the molar amount of the terminal amine group of the hard segment was added and reacted at 220 ° C. for 1 hour to carry out dicarboxylic oxidation of the hard segment ( Step (i)).
Hexamethylenediamine (HMD, carbon number 6) 13.9 g (0.12 mol) and polyether diamine (JEFARMIN manufactured by HUNTSMAN) so as to be equimolar with the both-terminal carboxylic acid groups of the obtained dicarboxylic acid oxidation hard segment 72 g (0.12 mol) of ED600 (ED600) was charged, the temperature was raised to 260 ° C., and polymerization was further performed for 4 hours to obtain a polymer (step (ii)).
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
〔比較例3〕
 撹拌機、温調計、圧力計、窒素ガス導入口、縮合水排出口を備えた容積3Lの反応容器に、ジカルボン酸(a1)としてドデカン二酸(炭素数12)を749g(3.26mol)、ジアミン(b1)としてドデカメチレンジアミン(炭素数12)を600g(3mol)、及び次亜リン酸0.6gを仕込んだ。容器内を十分窒素置換した後、反応物を溶融させるために、280℃まで1時間で昇温し、その後260℃で重合を行った。約1時間後に分子量約5000であるジカルボン酸化ポリアミド(プレポリマー)を得た。
 そこへ、ジアミン(c-2)としてポリエーテルジアミン(HUNTSMAN社製のジェファーミンTHF100、PTMEG[poly(tetramethylene ether glycol)]とPPG(polypropylene glycol)によるジアミンコポリマー、分子量約1000)を130g(0.13mol)、ジアミン(d-2)としてヘキサメチレンジアミン(HMD)を15g(0.13mol)追加し、さらに同温度で約6時間重合を行ってポリアミド系樹脂を得た。
[Comparative Example 3]
749 g (3.26 mol) of dodecanedioic acid (carbon number 12) as a dicarboxylic acid (a1) was added to a 3 L reaction vessel equipped with a stirrer, temperature controller, pressure gauge, nitrogen gas inlet and condensed water outlet. As a diamine (b1), 600 g (3 mol) of dodecamethylenediamine (carbon number 12) and 0.6 g of hypophosphorous acid were charged. After sufficiently purging the inside of the container with nitrogen, in order to melt the reaction product, the temperature was raised to 280 ° C. over 1 hour, and then polymerization was carried out at 260 ° C. About 1 hour later, a dicarboxylic acid polyamide (prepolymer) having a molecular weight of about 5000 was obtained.
Thereto, 130 g (0. 1) of diamine (c-2), a polyether diamine (Jefamine THF 100 manufactured by HUNTSMAN, PTMEG [poly (tetramethyl ether ether)] and PPG (polypropylene glycol), a molecular weight of about 1000). 13 mol), 15 g (0.13 mol) of hexamethylenediamine (HMD) was added as the diamine (d-2), and polymerization was carried out at the same temperature for about 6 hours to obtain a polyamide resin.
 重合終了後、撹拌を停止し、取り出し口から溶融状態の無色透明のポリアミド系樹脂をひも状に抜き出し、水冷した後、ペレタイズして、約1kgのペレットを得た。得られたペレットについて、数平均分子量Mnを測定した。Mnを表2に示した。
 また、得られたペレットを用いて、前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
 前述の方法に従って引張試験と、ショアD硬度の測定とを行った。これらの評価結果を表2に示した。
After completion of the polymerization, stirring was stopped, and a colorless and transparent polyamide-based resin in a molten state was drawn out from the takeout port in a string shape, cooled with water, and pelletized to obtain about 1 kg of pellets. The number average molecular weight Mn was measured about the obtained pellet. Mn is shown in Table 2.
Moreover, the tensile test and the measurement of Shore D hardness were performed according to the above-mentioned method using the obtained pellet. The evaluation results are shown in Table 2.
A tensile test and a measurement of Shore D hardness were performed according to the method described above. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1及び表2によれば、それぞれ所定の構造のジカルボン酸(a1)、ジアミン(b1)、ジアミン(c-2)、及びジアミン(d-2)を重縮合して得られた、それぞれ所定の構造の単位(a)、単位(b)、単位(c-II)、及び単位(d-II)を含むポリアミド系樹脂は、同程度のショアD硬度を有するが、単位(a)と、単位(b)と、単位(c-I)、単位(c―II)、単位(d-I)、及び単位(d-II)から選択される少なくとも1種とを含まないポリアミド系樹脂と比較して、破断伸びや破断強度が優れていることが分かる。
 かかる実施例のポリアミド系樹脂は、医療用のチューブやバルーンの製造に特に好適に用いることができる。
According to Table 1 and Table 2, respectively obtained by polycondensation of dicarboxylic acid (a1), diamine (b1), diamine (c-2), and diamine (d-2) having a predetermined structure. The polyamide-based resin containing units (a), units (b), units (c-II), and units (d-II) having the same structure has the same Shore D hardness, but the units (a), Compared with polyamide resin not containing unit (b) and at least one selected from unit (c-I), unit (c-II), unit (d-I), and unit (d-II) And it turns out that breaking elongation and breaking strength are excellent.
The polyamide-based resin of this example can be particularly suitably used for the production of medical tubes and balloons.

Claims (14)

  1.  単位(a)と、単位(b)を含み、さらに単位(c-I)、単位(c―II)、単位(d-I)、及び単位(d-II)からなる群より選択される少なくとも1種を含むポリアミド系樹脂であって、
     前記単位(a)が、下記式(A):
    -CO-R-CO-・・・(A)
    (式(A)中、Rは、炭素原子数8以上20以下の直鎖脂肪族基である。)
    で表される単位であり、
     前記単位(b)が、下記式(B):
    -NH-R-NH-・・・(B)
    (式(B)中、Rは、炭素原子数10以上20以下の直鎖脂肪族である。)
    で表される単位(b)と、
     前記単位(c-I)が下記式(C-I):
    -CO-R(-O-R-CO-・・・(C-I)
    (式(C-I)中、R、及びRは、それぞれ独立に、炭素原子数1以上6以下の鎖状脂肪族基であり、mは1以上30以下の整数である。)
    で表される単位であり、
     前記単位(c-II)が、下記式(C-II):
    -NH-R(-O-R-NH-・・・(C-II)
    (式(C-II)中、R、及びRは、それぞれ独立に、炭素原子数1以上3以下の鎖状脂肪族基であり、nは1以上30以下の整数である。)
    で表される単位であり、
     前記単位(d-I)が、下記式(D-I):
    -CO-R-CO-・・・(D-I)
    (式(D-I)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数8以上20以下の直鎖脂肪族基ではない。)
    で表される単位であり、
     前記単位(d-II)が、下記式(D-II):
    -NH-R-NH-・・・(D-II)
    (式(D-II)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数10以上20以下の直鎖脂肪族基ではない。)
    で表される単位であり、
     前記ポリアミド系樹脂中の、前記単位(a)の含有量と、前記単位(b)の含有量とが、それぞれ1質量%以上50質量%以下であり、
     前記ポリアミド系樹脂が前記単位(c-I)及び前記単位(c-II)から選択される少なくとも1種を含む場合、前記ポリアミド系樹脂中の前記単位(c-I)の含有量と、前記単位(c-II)の含有量との合計が1質量%以上50質量%以下であり、
     前記ポリアミド系樹脂が前記単位(d1-I)及び前記単位(d-II)から選択される少なくとも1種を含む場合、前記ポリアミド系樹脂中の前記単位(d-I)の含有量と、前記単位(d-II)の含有量との合計が1質量%以上50質量%以下であり、
     前記ポリアミド系樹脂中の、前記単位(a)、前記単位(b)、前記単位(c1)、前記単位(c2)、前記単位(d1)、及び前記単位(d2)の含有量の合計が、90質量%以上であり、
     前記ポリアミド系樹脂を構成する全単位における、カルボニル末端基モル量(Ac)と、アミノ(Aa)末端基モル量との比率が、Ac/Aaとして80/100~100/80である、ポリアミド系樹脂。
    At least selected from the group consisting of unit (a) and unit (b), further comprising unit (c-I), unit (c-II), unit (d-I), and unit (d-II) A polyamide-based resin containing one kind,
    The unit (a) is represented by the following formula (A):
    —CO—R 1 —CO— (A)
    (In Formula (A), R 1 is a linear aliphatic group having 8 to 20 carbon atoms.)
    Is a unit represented by
    The unit (b) is represented by the following formula (B):
    —NH—R 2 —NH— (B)
    (In the formula (B), R 2 is a linear aliphatic having 10 to 20 carbon atoms.)
    A unit (b) represented by:
    The unit (cI) is represented by the following formula (CI):
    —CO—R 3 (—O—R 4 ) m —CO— (CI)
    (In the formula (CI), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, and m is an integer of 1 to 30.)
    Is a unit represented by
    The unit (c-II) is represented by the following formula (C-II):
    —NH—R 5 (—O—R 6 ) n —NH— (C-II)
    (In Formula (C-II), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, and n is an integer of 1 to 30.)
    Is a unit represented by
    The unit (dI) is represented by the following formula (DI):
    —CO—R 7 —CO— (DI)
    (In the formula (DI), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.)
    Is a unit represented by
    The unit (d-II) is represented by the following formula (D-II):
    —NH—R 8 —NH— (D-II)
    (In the formula (D-II), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.)
    Is a unit represented by
    In the polyamide-based resin, the content of the unit (a) and the content of the unit (b) are 1% by mass or more and 50% by mass or less, respectively.
    When the polyamide-based resin contains at least one selected from the units (cI) and the units (c-II), the content of the units (cI) in the polyamide-based resin, The total of the content of the unit (c-II) is 1% by mass or more and 50% by mass or less,
    When the polyamide-based resin contains at least one selected from the unit (d1-I) and the unit (d-II), the content of the unit (dI) in the polyamide-based resin, The total of the content of the unit (d-II) is 1% by mass or more and 50% by mass or less,
    The total content of the unit (a), the unit (b), the unit (c1), the unit (c2), the unit (d1), and the unit (d2) in the polyamide resin is as follows. 90% by mass or more,
    The polyamide system wherein the ratio of the carbonyl end group molar amount (Ac) to the amino (Aa) end group molar amount is 80/100 to 100/80 as Ac / Aa in all units constituting the polyamide resin. resin.
  2.  前記単位(a)と、前記単位(b)と、前記単位(c-I)及び前記単位(c-II)から選択される少なくとも1種と、を含む、請求項1に記載のポリアミド系樹脂。 The polyamide-based resin according to claim 1, comprising the unit (a), the unit (b), and at least one selected from the unit (cI) and the unit (c-II). .
  3.  前記単位(c-II)が、下記一般式(1)で表される単位である、請求項1又は2に記載のポリアミド系樹脂。
    -NH-(CH(CH)CHO-)-(CHCHO-)-(CH(CH)CHO-)-CHCH(CH)-NH-・・・(1)
    (式(1)中、x、y及びzは、x+zは1以上6以下の実数で、yは1以上20以下の実数である。)
    The polyamide resin according to claim 1 or 2, wherein the unit (c-II) is a unit represented by the following general formula (1).
    —NH— (CH (CH 3 ) CH 2 O—) x — (CH 2 CH 2 O—) y — (CH (CH 3 ) CH 2 O—) z —CH 2 CH (CH 3 ) —NH— (1)
    (In the formula (1), x, y and z are x + z is a real number from 1 to 6, and y is a real number from 1 to 20.)
  4.  前記単位(a)と前記単位(b)と前記単位(c-II)と前記単位(d-II)とを含む、請求項1~3のいずれか1項に記載のポリアミド系樹脂。 The polyamide resin according to any one of claims 1 to 3, comprising the unit (a), the unit (b), the unit (c-II), and the unit (d-II).
  5.  前記単位(a)がドデカンジオイル単位であり、前記単位(b)が1,12-ジアミノドデカン単位であり、前記単位(c-II)がトリブロックポリエーテルの両末端にアミノ基(-NH-)を有するジアミノ単位である、請求項1~4のいずれか1項に記載のポリアミド系樹脂。 The unit (a) is a dodecanedioyl unit, the unit (b) is a 1,12-diaminododecane unit, and the unit (c-II) is an amino group (—NH at both ends of the triblock polyether. The polyamide resin according to any one of claims 1 to 4, which is a diamino unit having-).
  6.  前記単位(a)の含有量が、1質量%以上50質量%未満である、請求項1~5のいずれか1項に記載のポリアミド系樹脂。 The polyamide resin according to any one of claims 1 to 5, wherein the content of the unit (a) is 1% by mass or more and less than 50% by mass.
  7.  前記単位(b)の含有量が、1質量%以上50質量%未満である、請求項1~6のいずれか1項に記載のポリアミド系樹脂。 The polyamide resin according to any one of claims 1 to 6, wherein the content of the unit (b) is 1% by mass or more and less than 50% by mass.
  8.  請求項1~7のいずれか1項に記載のポリアミド系樹脂を含む材料からなる成形体。 A molded body made of a material containing the polyamide-based resin according to any one of claims 1 to 7.
  9.  フィルム、シート、チューブ、粉末、繊維、織布、不織布、又はカテーテル用バルーンである、請求項8に記載の成形体。 The molded article according to claim 8, which is a film, sheet, tube, powder, fiber, woven fabric, nonwoven fabric, or balloon for catheter.
  10.  請求項9に記載の前記フィルム、又は前記シートを含む、積層体。 A laminate comprising the film or the sheet according to claim 9.
  11.  請求項9に記載の成形体、及び請求項10に記載の積層体からなる群より選択される少なくとも1種を備える医療機器。 A medical device comprising at least one selected from the group consisting of the molded body according to claim 9 and the laminate according to claim 10.
  12.  下記式(C-1):
    HOOC-R(-O-R-COOH・・・(C-1)
    (式(C-1)中、R、及びRは、それぞれ独立に、炭素原子数1以上6以下の鎖状脂肪族基であり、mは1以上30以下の整数である。)
    で表されるジカルボン酸(c-1)、又はそのアミド形成性誘導体、
     下記式(C-2):
    N-R(-O-R-NH・・・(C-2)
    (式(C-2)中、R、及びRは、それぞれ独立に、炭素原子数1以上3以下の鎖状脂肪族基であり、nは1以上30以下の整数である。)
    で表されるジアミン(c-2)、
     下記式(D-1):
    HOOC-R-COOH・・・(D-1)
    (式(D-1)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数8以上20以下の直鎖脂肪族基ではない。)
    で表されるジカルボン酸(d-1)、又はそのアミド形成性誘導体、及び、
     下記式(D-2):
    N-R-NH・・・(D-2)
    (式(D-2)中、Rは、炭素原子数1以上20以下の直鎖状又は分岐鎖状の脂肪族基であるが、炭素原子数10以上20以下の直鎖脂肪族基ではない。)
    で表されるジアミン(d-2)、からなる群より選択される1種以上と、
     下記式(A1):
    HOOC-R-COOH・・・(A1)
    (式(A)中、Rは、炭素原子数8以上の直鎖脂肪族基である。)
    で表されるジカルボン酸(a1)、又はそのアミド形成性誘導体と、
     下記式(B1):
    N-R-NH・・・(B1)
    (式(B)中、Rは、炭素原子数10以上の直鎖脂肪族である。)
    で表されるジアミン(b1)と、
    を反応させてポリアミド系樹脂を生成させることと、を含む請求項1に記載のポリアミド系樹脂を製造する方法。
    Formula (C-1) below:
    HOOC-R 3 (—O—R 4 ) m —COOH (C-1)
    (In formula (C-1), R 3 and R 4 are each independently a chain aliphatic group having 1 to 6 carbon atoms, and m is an integer of 1 to 30.)
    A dicarboxylic acid (c-1) represented by: or an amide-forming derivative thereof,
    Formula (C-2) below:
    H 2 N—R 5 (—O—R 6 ) n —NH 2 (C-2)
    (In Formula (C-2), R 5 and R 6 are each independently a chain aliphatic group having 1 to 3 carbon atoms, and n is an integer of 1 to 30.)
    Diamine (c-2) represented by
    Formula (D-1) below:
    HOOC-R 7 -COOH (D-1)
    (In the formula (D-1), R 7 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 8 to 20 carbon atoms, Absent.)
    A dicarboxylic acid (d-1) represented by: or an amide-forming derivative thereof, and
    The following formula (D-2):
    H 2 N—R 8 —NH 2 (D-2)
    (In the formula (D-2), R 8 is a linear or branched aliphatic group having 1 to 20 carbon atoms, but in a linear aliphatic group having 10 to 20 carbon atoms, Absent.)
    One or more selected from the group consisting of diamines (d-2) represented by:
    The following formula (A1):
    HOOC-R 1 -COOH (A1)
    (In the formula (A), R 1 is a linear aliphatic group having 8 or more carbon atoms.)
    A dicarboxylic acid (a1) represented by the formula:
    The following formula (B1):
    H 2 N—R 2 —NH 2 (B1)
    (In the formula (B), R 2 is a linear aliphatic having 10 or more carbon atoms.)
    A diamine (b1) represented by:
    The method for producing a polyamide resin according to claim 1, comprising: reacting a compound to produce a polyamide resin.
  13.  前記ジカルボン酸(a1)、又はそのアミド形成性誘導体と、前記ジアミン(b1)とを反応させてプレポリマーを得ることと、
     前記プレポリマーを、ジカルボン酸(c-1)、又はそのアミド形成性誘導体と、前記ジアミン(c-2)と、前記ジカルボン酸(d-1)、又はそのアミド形成性誘導体と、前記ジアミン(d-2)とからなる群より選択される1以上と反応させることと、を含む、請求項12に記載の方法。
    Reacting the dicarboxylic acid (a1) or its amide-forming derivative with the diamine (b1) to obtain a prepolymer;
    The prepolymer comprises a dicarboxylic acid (c-1) or an amide-forming derivative thereof, the diamine (c-2), the dicarboxylic acid (d-1) or an amide-forming derivative thereof, and the diamine ( reacting with one or more selected from the group consisting of: d-2).
  14.  前記プレポリマーを生成させる反応と、前記ポリアミド系樹脂を生成させる反応とが、溶融混練法で行われる、請求項13に記載の方法。 The method according to claim 13, wherein the reaction for generating the prepolymer and the reaction for generating the polyamide-based resin are performed by a melt-kneading method.
PCT/JP2017/040477 2016-11-10 2017-11-09 Polyamide resin, molded body, laminate, medical device, and polyamide resin production method WO2018088495A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018550267A JP7118891B2 (en) 2016-11-10 2017-11-09 Polyamide resin, molding, laminate, medical device, and method for producing polyamide resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-220059 2016-11-10
JP2016220059 2016-11-10

Publications (1)

Publication Number Publication Date
WO2018088495A1 true WO2018088495A1 (en) 2018-05-17

Family

ID=62109908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040477 WO2018088495A1 (en) 2016-11-10 2017-11-09 Polyamide resin, molded body, laminate, medical device, and polyamide resin production method

Country Status (2)

Country Link
JP (1) JP7118891B2 (en)
WO (1) WO2018088495A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275071A (en) * 1990-03-23 1991-12-05 Terumo Corp Antithrombogenic medical polymer material and device
JPH0543684A (en) * 1991-08-13 1993-02-23 Mitsubishi Kasei Corp Antithrombotic material
JPH06504304A (en) * 1991-01-10 1994-05-19 デユポン・カナダ・インコーポレーテツド polyamide composition
JP2000053763A (en) * 1998-08-11 2000-02-22 Toray Ind Inc Copolyamide, its production and its use
JP2009234196A (en) * 2008-03-28 2009-10-15 Ube Ind Ltd Laminate
JP2011256364A (en) * 2010-03-26 2011-12-22 Ube Industries Ltd Production method of polyether amide elastomer, and polyether amide elastomer obtained by the production method
JP2017109518A (en) * 2015-12-14 2017-06-22 株式会社ブリヂストン tire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275071A (en) * 1990-03-23 1991-12-05 Terumo Corp Antithrombogenic medical polymer material and device
JPH06504304A (en) * 1991-01-10 1994-05-19 デユポン・カナダ・インコーポレーテツド polyamide composition
JPH0543684A (en) * 1991-08-13 1993-02-23 Mitsubishi Kasei Corp Antithrombotic material
JP2000053763A (en) * 1998-08-11 2000-02-22 Toray Ind Inc Copolyamide, its production and its use
JP2009234196A (en) * 2008-03-28 2009-10-15 Ube Ind Ltd Laminate
JP2011256364A (en) * 2010-03-26 2011-12-22 Ube Industries Ltd Production method of polyether amide elastomer, and polyether amide elastomer obtained by the production method
JP2017109518A (en) * 2015-12-14 2017-06-22 株式会社ブリヂストン tire

Also Published As

Publication number Publication date
JPWO2018088495A1 (en) 2019-10-03
JP7118891B2 (en) 2022-08-16

Similar Documents

Publication Publication Date Title
JP4193588B2 (en) Polyamide elastomer
US20100098893A1 (en) Polyamide resin
KR20190024898A (en) Thermally dissolvable laminate type three-dimensional printer material and filament for heat dissolving laminate type three-dimensional printer using the same
US10400068B2 (en) Polyamide elastomer, medical device, and method for producing polyamide elastomer
KR20130060224A (en) Polyamide resin
JP2016532728A (en) Copolymer having polyamide block and polyether block
JP2003286341A (en) Polyamide elastomer
JP7033075B2 (en) Polyamide-based resin, molded body, laminate, medical device, and method for manufacturing polyamide-based resin.
JP6778678B2 (en) Polyamide elastomers, medical devices and methods for manufacturing polyamide elastomers
EP2617755A1 (en) Polyoxamide resin having excellent impact resistance and impact-resistant part
JP6273882B2 (en) Polyamide elastomer and molded article produced using the same
JP7118891B2 (en) Polyamide resin, molding, laminate, medical device, and method for producing polyamide resin
JP7013386B2 (en) Polyamide-based resin, molded body, laminate, medical device, and method for manufacturing polyamide-based resin.
KR20140086770A (en) Polyamide resin, method for preparing the same, and article comprising the same
JP2003012800A (en) Polyamide elastomer and method for manufacturing the same
JP6451082B2 (en) Polyamide resin
JP6905327B2 (en) Polyamide-based resin, molded product, laminate, medical device, and method for manufacturing polyamide-based resin
JP2016204489A (en) Polyamide elastomer for plastic magnet, and composition and molded article comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868825

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17868825

Country of ref document: EP

Kind code of ref document: A1