WO2018088338A1 - Scanning fundus photography device - Google Patents

Scanning fundus photography device Download PDF

Info

Publication number
WO2018088338A1
WO2018088338A1 PCT/JP2017/039864 JP2017039864W WO2018088338A1 WO 2018088338 A1 WO2018088338 A1 WO 2018088338A1 JP 2017039864 W JP2017039864 W JP 2017039864W WO 2018088338 A1 WO2018088338 A1 WO 2018088338A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
fundus
light
scanning device
concave mirror
Prior art date
Application number
PCT/JP2017/039864
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木 孝佳
雄輝 荒井
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2018550180A priority Critical patent/JP7027326B2/en
Publication of WO2018088338A1 publication Critical patent/WO2018088338A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes

Definitions

  • the present invention relates to a scanning fundus imaging apparatus that scans light with respect to the fundus and receives the reflected light from the fundus to photograph the fundus.
  • Scanning fundus imaging apparatuses called SLO (Scanning Laser Ophthalmoscope) and L-SLO (Line-Scanning Laser Ophthalmoscope) are known as fundus imaging apparatuses for obtaining a fundus image having a high contrast and a wide angle.
  • SLO Scanning Laser Ophthalmoscope
  • L-SLO Line-Scanning Laser Ophthalmoscope
  • Patent Document 1 laser light emitted from a laser light source is scanned at a high speed in one direction by a first scanning element 14 (polyhedral mirror), and the second scanning element is passed through a scanning compensation means 18 (slit mirror). 16 (vibration plane mirror), and the second scanning element scans the laser beam at a low speed in a direction perpendicular to the scanning direction of the first scanning element 14, thereby scanning the laser beam two-dimensionally.
  • a configuration is disclosed in which the laser beam is reflected by the scanning movement means 20 (primary mirror) and projected onto the fundus.
  • slit light irradiated using an LED light source 101 and a slit 102 is scanned by a scanning device 105 (galvanomirror), and passes through two optical lenses (a scanning lens 106 and an eyepiece lens 107).
  • a scanning device 105 galvanomirror
  • two optical lenses a scanning lens 106 and an eyepiece lens 107.
  • Patent Document 2 adopts an optical system using a lens and requires only one scanning device, so that it is an inexpensive configuration. It is technically difficult to take a wide-angle fundus image of 80 degrees or more. If an optical system using a lens is used to achieve wide-angle shooting with an angle of view of 80 degrees or more, the working length becomes short, the distance between the eye and the lens is narrow, and the operability is poor, and the eye or face of the subject. There is a possibility that a part of the device may come into contact. Further, if a working length with a margin is to be secured, there is a problem that the wide-angle lens has to be enlarged and the apparatus becomes expensive.
  • the present invention has been made in view of the above points, and provides a scanning fundus photographing apparatus capable of photographing a wide retinal range with high image quality with a configuration that is less expensive than a conventional apparatus. Objective.
  • the present invention is a line-scanning fundus imaging apparatus that scans slit light, projects light onto the fundus of the eye to be examined, receives reflected light from the fundus, and images the fundus.
  • An illumination optical system that irradiates the slit light to the optical path dividing device, a first scanning device that scans the slit light in one direction, and the first scanning of the slit light that has entered through the optical path dividing device.
  • An objective optical system having a first concave mirror that transmits to the device, and a second concave mirror that transmits the slit light scanned by the first scanning device to the fundus, and the light that has entered through the optical path splitting device
  • a line-scanning fundus imaging apparatus comprising: an imaging optical system that receives reflected light from the fundus, wherein the first concave mirror increases the spread angle of the slit light (Invention 1). .
  • the objective optical system (the first concave mirror and the second concave mirror) is configured with a dedicated concave mirror to handle wide-angle slit light, but the illumination optical system and the photographing optical system are limited to narrow-angle slit light.
  • an expensive optical device such as a large lens is not required, a wide retinal range can be photographed with high image quality with a configuration that is cheaper than the conventional apparatus.
  • the photographing optical system includes a line-shaped multi-light sensor that receives reflected light from the fundus, and the line-shaped multi-light sensor is synchronized with the first scanning device. You may make it operate
  • move (invention 2).
  • photography optical system rescans the reflected light from the said fundus, and receives the reflected light from the said fundus, and the said two-dimensional multi-optical sensor
  • a second scanning device that is incident on the first scanning device, and the second scanning device performs a scanning operation in a direction parallel to each other in synchronization with the scanning operation of the first scanning device (Invention 3).
  • the scanning angle of the second scanning device may be smaller than the scanning angle of the first scanning device (Invention 4). Furthermore, in the said invention (invention 4), the said 2nd scanning device is good also as what scans the said reflected light in multiple times, while the said 1st scanning device scans the said slit light once (invention 5). By dividing a wide retinal range spatially and photographing multiple times with a multi-light sensor, fundus photographing with a wide angle and high resolution becomes possible.
  • the optical path dividing device is disposed at the first focal point of the first concave mirror
  • the first scanning device is disposed at the second focal point
  • the first focal point of the second concave mirror is It is preferable that the second focal point of the second concave mirror coincides with the second focal point of the first concave mirror and that the second focal point of the second concave mirror is located at the pupil position of the eye to be examined (invention 6).
  • this is possible.
  • the second scanning device is disposed at a pupil conjugate position of the eye to be examined (Invention 7).
  • the imaging optical system has a slit opening at the fundus conjugate position of the eye to be examined (Invention 8). Since the slit openings arranged in this manner allow reflected light from the fundus to pass but not light from other than the fundus, a fundus image with high contrast can be obtained.
  • the line scanning fundus photographing apparatus of the present invention it is possible to photograph a wide retinal range with high image quality with a configuration that is less expensive than the conventional apparatus.
  • FIG. 1 illustrates a basic optical configuration of a line scanning fundus imaging apparatus according to the present embodiment
  • FIG. 2 illustrates an optical configuration of an objective optical system of the line scanning fundus imaging apparatus according to the present embodiment. Is seen from the direction of incidence of slit light (state seen from the direction of arrow A in FIG. 1).
  • slit light from the slit light source 1 enters the beam splitter 2 (optical path splitting device), and the beam splitter 2 Is reflected by the first concave mirror 3 and enters the first scanning device 4.
  • the slit light that is simultaneously reflected and scanned by the first scanning device 4 is reflected by the second concave mirror 5, passes through the pupil 6a of the eye 6 to be examined, and is condensed on the fundus 6b.
  • the spreading direction of the slit light is perpendicular to the scanning direction of the first scanning device 4 (for example, a galvanometer mirror).
  • the spreading direction of the slit light in FIG. 1 is a direction perpendicular to the paper surface
  • the spreading direction of the slit light in FIG. 2 is the left-right direction.
  • the slit light projected on the fundus 6b is reflected by the fundus 6b, and the reflected light from the fundus 6b travels in the opposite direction of the arrow along the same optical path, and passes through the second concave mirror 5, the first scanning device 4, and the first concave mirror 3. Then, it is reflected by the beam splitter 2 and enters the light receiving unit 7 (imaging optical system). Since the fundus is illuminated with slit-shaped light, the fundus image formed on the light receiving unit 7 is also slit-shaped. When slit light is scanned by the first scanning device, the fundus portion corresponding to the scanning angle is illuminated in a slit shape, and slit-shaped fundus images are sequentially formed on the light receiving unit 7.
  • FIG. 3 shows an optical configuration of the light receiving unit 7 of the scanning fundus photographing apparatus according to the present embodiment.
  • the reflected light from the fundus 6b that has entered the light receiving unit 7 is guided to the slit opening 7b by the first relay lens 7a, and the reflected light that has passed through the slit opening 7b passes through the second relay lens 7c, and is photoed by the camera lens 7e.
  • the light enters the photoelectric conversion device 7f (light receiving means) formed of a diode.
  • the photoelectric conversion device 7f is a line-shaped multi-optical sensor, for example, a line camera in which photodiodes are arranged in a one-dimensional line shape.
  • the luminance information of each point of the fundus 6b can be obtained by the photoelectric conversion device 7f. Based on the obtained luminance information, that is, the output intensity of the photoelectric conversion device 7f and the scanning position information of the scanning device, a photographed image of the fundus oculi 6b can be formed.
  • the photographed fundus 6b is stored in a storage device (not shown), displayed on a display (not shown), or printed by a printer (not shown).
  • the slit light source 1 in this embodiment collimates light from, for example, a white LED light source, cuts it out at the slit opening, and irradiates the beam splitter 2 as slit light having a predetermined length in the horizontal direction. Configured to be.
  • FIG. 4 shows a schematic diagram of the optical arrangement of the objective optical system.
  • light beams are transmitted in one direction so that the flow of the light beams can be easily understood. Therefore, although it is described that the light beam is transmitted through the first concave mirror 3 and the second concave mirror 5, the actual light beam is reflected by each concave mirror.
  • the first concave mirror 3 relays slit light from the beam splitter 2 located at the first pupil position to the first scanning device 4 located at the second pupil position.
  • the slit light is expanded by the first concave mirror 3 and the angle of expansion is increased.
  • the slit light incident on the first concave mirror 3 is a light beam having a divergence angle of 50 degrees ( ⁇ 1 in the figure), and the slit light reflected by the first concave mirror 3 has a divergence angle of 150 degrees ( ⁇ 2 in the figure).
  • the image is enlarged and transmitted to the first scanning device 4.
  • the first concave mirror 3 can be, for example, a slit-like elliptical mirror extending in the horizontal direction.
  • the first scanning device 4 is constituted by a galvanometer mirror, and the wide-angle slit light reflected by the first concave mirror 3 is scanned at a low speed in the vertical direction (direction perpendicular to the longitudinal direction of the slit light) by the first scanning device 4. Is incident on the second concave mirror 5.
  • the second concave mirror 5 relays the slit light scanned by the first scanning device 4 located at the second pupil position to the pupil 6a of the eye 6 to be examined located at the third pupil position.
  • the light is reflected by the second concave mirror 5, collected on the pupil 6 a of the eye 6 to be examined, and projected onto the fundus 6 b.
  • the second concave mirror 5 can be, for example, a wide-angle elliptical mirror.
  • the beam splitter 2 is positioned at the first focal point 3 a of the first concave mirror 3, and the galvanometer mirror as the first scanning device 4 is disposed at the second focal point 3 b of the first concave mirror 3.
  • a galvano mirror which is the first scanning device 4 is arranged at the first focal point 5a of the second concave mirror 5, and the pupil 6a of the eye 6 to be examined is located at the second focal point 5b of the second concave mirror 5, so that the first The second focal point 3b of the concave mirror 3 and the first focal point 5a of the second concave mirror 5 are at the same position.
  • the slit light which is a light beam with a narrow angle (for example, 50 degrees)
  • a wide angle for example, 150 degrees
  • the illumination optical system slit light source 1
  • photographing optical system light-receiving unit 7
  • the slit light projected onto the fundus 6b is reflected by the fundus 6b, and the reflected light from the fundus 6b travels in the opposite direction along the same optical path as the slit light, as shown in FIG.
  • the light is reflected by the beam splitter 2 through the device 4 and the first concave mirror 3 and enters the light receiving unit 7.
  • the reflected light incident on the light receiving unit 7 is condensed by the first relay lens 7a on the slit opening 7b located on the fundus conjugate surface, passes through the slit opening 7b, and passes through the second relay lens 7c.
  • a slit-like fundus image is formed on the photoelectric conversion device 7f, which is a line-shaped multi-optical sensor, by the camera lens 7e.
  • the fundus is scanned and photographed by the photoelectric conversion device 7 f in synchronization with the scanning of the first scanning device 4.
  • the acquired fundus images are arranged based on the scanning position information of the first scanning device 4, and a fundus image in a wide two-dimensional range can be obtained.
  • the slit opening 7 b is disposed at a position conjugate with the fundus 6 b of the eye 6 to be examined.
  • the slit opening 7b By guiding the reflected light to the slit opening 7b arranged in this way, light (stray light) generated around the fundus image is removed by the slit opening 7b, and a fundus image with high contrast can be taken. it can.
  • FIG. 5 illustrates an optical configuration of the light receiving unit 7A according to the present embodiment. Since the configuration other than the light receiving unit 7A is the same as that of the first embodiment, the description thereof is omitted.
  • the reflected light from the fundus 6b incident on the light receiving portion 7A is collected by the first relay lens 7Aa to the slit opening 7Ab, and the reflected light that has passed through the slit opening 7Ab passes through the second relay lens 7Ac. Then, the light enters the second scanning device 7Ad.
  • the second scanning device 7Ad is configured by a galvanometer mirror, and the reflected light that has passed through the slit opening 7Ab is scanned at a low speed in the vertical direction (direction perpendicular to the longitudinal direction of the slit light) by the second scanning device 7Ad. Is incident on.
  • the first relay lens 7Aa and the second relay lens 7Ac are spherical lens groups having the same focal length, and are arranged to face each other. Further, the beam splitter 2 is disposed at the front focal position of the first relay lens 7Aa, and the slit opening 7Ab is disposed at the rear focal position. Similarly, the slit opening 7Ab is disposed at the front focal position of the second relay lens 7Ac, and the second scanning device 7Ad (galvano mirror) is disposed at the rear focal position. The reflected light scanned by the second scanning device 7Ad is incident on the photoelectric conversion device 7Af formed of a photodiode by the camera lens 7Ae.
  • the photoelectric conversion device 7Af is a two-dimensional multi-optical sensor, for example, a CCD camera in which photodiodes are arranged in a two-dimensional area.
  • the slit opening 7Ab is disposed at a position conjugate with the fundus 6b of the eye 6 to be examined.
  • the slit opening 7Ab By guiding the reflected light to the slit opening 7Ab arranged in this way, light (stray light) generated around the fundus image is removed by the slit opening 7Ab, and a fundus image with high contrast can be photographed. it can.
  • the second scanning device 7Ad is disposed at a position conjugate with the pupil 6a of the eye 6 to be examined.
  • the scanning operation of the second scanning device 7Ad is synchronized with the scanning operation of the first scanning device 4.
  • luminance information of each point on the fundus 6b can be obtained by the photoelectric conversion device 7Af.
  • a photographed image of the fundus oculi 6b can be formed.
  • the photographed fundus 6b is stored in a storage device (not shown), displayed on a display (not shown), or printed by a printer (not shown).
  • an area-shaped multi-photosensor (photoelectric conversion device 7Af used in the second embodiment) ) Is generally widespread and has many high-resolution and inexpensive devices, but requires the second scanning device 7Ad.
  • the first embodiment has a feature that the configuration is simple because the second scanning device 7Ad is unnecessary.
  • the line-shaped multi-light sensor has a smaller degree of freedom of selection than the area-shaped multi-light sensor. Therefore, neither the first embodiment nor the second embodiment is superior, and each has advantages and disadvantages. Therefore, which light receiving unit configuration should be selected according to the surrounding circumstances.
  • the synchronization of the scanning operation does not necessarily mean that the scanning is performed at the same scanning speed and the same scanning angle.
  • the second scanning device 7Ad is greater than the scanning angle of the galvanometer mirror that is the first scanning device 4.
  • the second scanning device 7Ad performs three scanning operations while the first scanning device 4 performs one scanning operation, for example, by reducing the scanning angle of the galvanometer mirror, and the second scanning device 4 This means that the scanning operation by the scanning device 7Ad is performed at a timing maintaining a certain relationship.
  • the first scanning device 4 plays a role of illuminating incident slit light at a target position.
  • the first scanning device 4 performs rescanning on the reflected light from the fundus 6 b of the eye 6 to be examined.
  • the reflected light follows the same path as the incident slit light, so that the scanning position information with respect to the fundus is lost and the light advances to the first concave mirror 3.
  • the path of the reflected light is reflected by the first concave mirror 3 and passes through the optical path splitting device (beam splitter 2) to the light receiving unit 7A as a light beam having no scanning position information.
  • the second scanning device 7Ad is configured to scan the reflected light again in the light receiving unit 7A, and the second scanning device 7Ad performs the scanning operation in synchronization with the scanning operation of the first scanning device 4. It becomes possible to give the reflected light again scanning position information relating to the position scanned by the one scanning device 4 in the vertical direction. As a result, the reflected light is projected onto the area-shaped multi-light sensor 7Af and formed as a scanned two-dimensional wide-angle fundus image.
  • the scanning angle of the second scanning device 7Ad (the swing angle of the galvano mirror) is made smaller than the scanning angle of the first scanning device 4 (the swing angle of the galvano mirror), and the first scanning device 4 emits the slit light once.
  • the second scanning device 7Ad scans the reflected light a plurality of times to form a captured image of the fundus 6b, thereby narrowing the imaging range per image and capturing a high-resolution fundus image. be able to.
  • the slit light is scanned once by the first scanning device 4, the reflected light is scanned three times by the second scanning device 7Ad, and the camera lens 7Ae and the photoelectric conversion device 7Af are synchronized with the scanning of the second scanning device 7Ad.
  • the shutter is released three times with a CCD camera configured as follows, three fundus images obtained by dividing the desired imaging target area of the fundus 6b into three can be taken. By joining these three fundus images by image processing, it is possible to obtain one high-resolution fundus image that covers the entire imaging target area of the fundus 6b.
  • the beam splitter 2 which is an optical path dividing device may be changed to a perforated mirror or the like.
  • a perforated mirror is used as an optical path dividing device, slit light is incident from a hole portion of the perforated mirror, and reflected light from the fundus is guided to the photographing optical system using a ring-shaped mirror surface.
  • Slit light source (illumination optical system) 2 Beam splitter (optical path splitting device) DESCRIPTION OF SYMBOLS 3 1st concave mirror 4 1st scanning device 5 2nd concave mirror 6 Eye to be examined 6a Pupil 6b Fundus 7, 7A Light-receiving part (imaging optical system) 7a, 7Aa First relay lens 7b, 7Ab Slit aperture 7c, 7Ac Second relay lens 7Ad Second scanning device 7e, 7Ae Camera lens 7f, 7Af Photoelectric conversion device

Abstract

Provided is a scanning fundus photography device, which scans and projects slit light upon a fundus 6b of a subject eye 6, receives reflected light from the fundus 6b, and photographs the fundus 6b. This scanning fundus photography device comprises: an illumination optical system which irradiates an optical path segmenting device 2 with the slit light; an objective optical system, further comprising a first scan device 4 which scans the slit light in one direction, a first concave mirror 3 which propagates to the first scan device 4 the slit light which has entered thereupon through the optical path segmenting device 2, and a second concave mirror 5 which propagates to the fundus 6b the slit light which has been scanned with the first scan device 4; and a photographic optical system 7 which receives the reflected light from the fundus 6b which has entered via the optical path segmenting device 2. The first concave mirror 3 enlarges the fan angle of the slit light and relays same to the first scan device 4.

Description

走査型眼底撮影装置Scanning fundus imaging device
 本発明は、眼底に対して光を走査し、眼底からの反射光を受光して眼底を撮影する走査型眼底撮影装置に関する。 The present invention relates to a scanning fundus imaging apparatus that scans light with respect to the fundus and receives the reflected light from the fundus to photograph the fundus.
 コントラストが高く、広角の眼底画像を得るための眼底撮影装置としてSLO(Scanning Laser Ophthalmoscope)やL-SLO(Line-Scanning Laser Ophthalmoscope)と呼ばれる走査型眼底撮影装置が知られている。 Scanning fundus imaging apparatuses called SLO (Scanning Laser Ophthalmoscope) and L-SLO (Line-Scanning Laser Ophthalmoscope) are known as fundus imaging apparatuses for obtaining a fundus image having a high contrast and a wide angle.
 例えば特許文献1には、レーザー光源から照射されたレーザー光を第1の走査要素14(多面鏡)で一方向に高速走査し、走査補償手段18(スリット鏡)を介して第2の走査要素16(振動平面鏡)に入射させ、第2の走査要素で第1の走査要素14の走査方向とは直交する方向にレーザー光を低速走査することによりレーザー光を2次元走査し、2次元走査されたレーザー光を走査移動手段20(主鏡)で反射させて眼底に投光する構成が開示されている。 For example, in Patent Document 1, laser light emitted from a laser light source is scanned at a high speed in one direction by a first scanning element 14 (polyhedral mirror), and the second scanning element is passed through a scanning compensation means 18 (slit mirror). 16 (vibration plane mirror), and the second scanning element scans the laser beam at a low speed in a direction perpendicular to the scanning direction of the first scanning element 14, thereby scanning the laser beam two-dimensionally. A configuration is disclosed in which the laser beam is reflected by the scanning movement means 20 (primary mirror) and projected onto the fundus.
 また、例えば特許文献2には、LED光源101とスリット102を用いて照射されたスリット光を走査デバイス105(ガルバノミラー)で走査し、二つの光学レンズ(走査レンズ106と接眼レンズ107)を通過させて眼底に投光する構成が開示されている。 Further, for example, in Patent Document 2, slit light irradiated using an LED light source 101 and a slit 102 is scanned by a scanning device 105 (galvanomirror), and passes through two optical lenses (a scanning lens 106 and an eyepiece lens 107). A configuration for projecting light onto the fundus is disclosed.
特許第5330236号公報Japanese Patent No. 5330236 米国特許公開公報2015/0131050A1US Patent Publication No. 2015 / 0131050A1
 しかしながら、特許文献1に記載された方法では、ポイント走査方式であるためにコントラストが高い画像が得られるものの、その反面、光源にレーザーを使用するために基本的には単色画像が撮影されることとなる。それゆえカラー画像を実現しようとすると高価なレーザー光源を複数搭載する必要があり、装置が高価な構成となってしまうという問題がある。また、レーザー光源は波長幅が狭く、撮影した眼底画像の色再現性が乏しいという問題もある。 However, in the method described in Patent Document 1, an image with high contrast is obtained because of the point scanning method, but on the other hand, a monochromatic image is basically taken because a laser is used as a light source. It becomes. Therefore, it is necessary to mount a plurality of expensive laser light sources in order to realize a color image, and there is a problem that the apparatus becomes an expensive configuration. Further, the laser light source has a problem that the wavelength width is narrow and the color reproducibility of the photographed fundus image is poor.
 また、特許文献2に記載された方法では、レンズを用いた光学系を採用することと、走査デバイスが一つで済むことから安価な構成にはなるものの、その反面、レンズによる構成で画角80度以上となる広角の眼底画像を撮影する構成は技術的に難しい。仮にレンズを用いた光学系で画角80度以上の広角撮影を実現しようとするとワーキング長が短くなり、被検眼とレンズとの距離が狭いために操作性が悪く、被検者の眼または顔に装置の一部が接触する可能性がある。さらに余裕のあるワーキング長を確保しようとすると、広角レンズを大型化せざるを得なくなり、装置が高価な構成となってしまうという問題点もある。 In addition, the method described in Patent Document 2 adopts an optical system using a lens and requires only one scanning device, so that it is an inexpensive configuration. It is technically difficult to take a wide-angle fundus image of 80 degrees or more. If an optical system using a lens is used to achieve wide-angle shooting with an angle of view of 80 degrees or more, the working length becomes short, the distance between the eye and the lens is narrow, and the operability is poor, and the eye or face of the subject. There is a possibility that a part of the device may come into contact. Further, if a working length with a margin is to be secured, there is a problem that the wide-angle lens has to be enlarged and the apparatus becomes expensive.
 本発明は、このような点に鑑みてなされたものであり、従来の装置よりも安価な構成で、広い網膜範囲を高画質で撮影することが可能な走査型眼底撮影装置を提供することを目的とする。 The present invention has been made in view of the above points, and provides a scanning fundus photographing apparatus capable of photographing a wide retinal range with high image quality with a configuration that is less expensive than a conventional apparatus. Objective.
 上記目的を達成するために、本発明は、スリット光を走査して被検眼の眼底に投光し、前記眼底からの反射光を受光して前記眼底を撮影するライン走査型眼底撮影装置であって、前記スリット光を光路分割デバイスへと照射する照明光学系と、前記スリット光を一方向に走査する第1走査デバイスと、前記光路分割デバイスを経て入光した前記スリット光を前記第1走査デバイスへと伝達する第1凹面鏡と、前記第1走査デバイスで走査された前記スリット光を前記眼底へと伝達する第2凹面鏡とを有する対物光学系と、前記光路分割デバイスを経て入光した前記眼底からの反射光を受光する撮影光学系とを備え、前記第1凹面鏡が前記スリット光の広がり角を拡大させることを特徴とする、ライン走査型眼底撮影装置を提供する(発明1)。 In order to achieve the above object, the present invention is a line-scanning fundus imaging apparatus that scans slit light, projects light onto the fundus of the eye to be examined, receives reflected light from the fundus, and images the fundus. An illumination optical system that irradiates the slit light to the optical path dividing device, a first scanning device that scans the slit light in one direction, and the first scanning of the slit light that has entered through the optical path dividing device. An objective optical system having a first concave mirror that transmits to the device, and a second concave mirror that transmits the slit light scanned by the first scanning device to the fundus, and the light that has entered through the optical path splitting device A line-scanning fundus imaging apparatus comprising: an imaging optical system that receives reflected light from the fundus, wherein the first concave mirror increases the spread angle of the slit light (Invention 1). .
 上記発明(発明1)によれば、ライン走査型眼底撮影装置を、狭角スリット光を扱うレンズ光学系と、広角スリット光を扱う凹面鏡光学系の特徴を生かして設計することが可能になる。すなわち、対物光学系(第1凹面鏡と第2凹面鏡)は広角スリット光を扱うため専用の凹面鏡で構成されるが、照明光学系と撮影光学系で扱われるのは狭角スリット光に限定されており、大きなレンズ等の高価な光学デバイスが不要となるため、従来の装置よりも安価な構成で、広い網膜範囲を高画質で撮影することが可能となる。 According to the above invention (Invention 1), it becomes possible to design a line scanning type fundus imaging apparatus taking advantage of the features of a lens optical system that handles narrow-angle slit light and a concave mirror optical system that handles wide-angle slit light. In other words, the objective optical system (the first concave mirror and the second concave mirror) is configured with a dedicated concave mirror to handle wide-angle slit light, but the illumination optical system and the photographing optical system are limited to narrow-angle slit light. In addition, since an expensive optical device such as a large lens is not required, a wide retinal range can be photographed with high image quality with a configuration that is cheaper than the conventional apparatus.
 上記発明(発明1)においては、前記撮影光学系が、前記眼底からの反射光を受光するライン状のマルチ光センサを備え、該ライン状のマルチ光センサが前記第1走査デバイスに同期して動作するようにしてもよい(発明2)。 In the above invention (Invention 1), the photographing optical system includes a line-shaped multi-light sensor that receives reflected light from the fundus, and the line-shaped multi-light sensor is synchronized with the first scanning device. You may make it operate | move (invention 2).
 また、上記発明(発明1)においては、前記撮影光学系が、前記眼底からの反射光を受光する2次元マルチ光センサと、前記眼底からの反射光を再走査して前記2次元マルチ光センサに入射させる第2走査デバイスとを備え、該第2走査デバイスが前記第1走査デバイスの走査動作と同期して互いに平行な方向に走査動作を行うようにしてもよい(発明3)。 Moreover, in the said invention (invention 1), the said imaging | photography optical system rescans the reflected light from the said fundus, and receives the reflected light from the said fundus, and the said two-dimensional multi-optical sensor A second scanning device that is incident on the first scanning device, and the second scanning device performs a scanning operation in a direction parallel to each other in synchronization with the scanning operation of the first scanning device (Invention 3).
 上記発明(発明3)においては、前記第2走査デバイスの走査角度が前記第1走査デバイスの走査角度よりも小さくてもよい(発明4)。さらに上記発明(発明4)においては、前記第1走査デバイスが前記スリット光を一回走査する間に前記第2走査デバイスが前記反射光を複数回走査するものとしてもよい(発明5)。広い網膜範囲を空間的に分割してマルチ光センサで複数回撮影することにより、広角で且つ解像度の高い眼底撮影が可能になる。 In the above invention (Invention 3), the scanning angle of the second scanning device may be smaller than the scanning angle of the first scanning device (Invention 4). Furthermore, in the said invention (invention 4), the said 2nd scanning device is good also as what scans the said reflected light in multiple times, while the said 1st scanning device scans the said slit light once (invention 5). By dividing a wide retinal range spatially and photographing multiple times with a multi-light sensor, fundus photographing with a wide angle and high resolution becomes possible.
 上記発明(発明1~5)においては、前記第1凹面鏡の第1焦点に前記光路分割デバイスが、第2焦点に前記第1走査デバイスがそれぞれ配置され、前記第2凹面鏡の第1焦点が前記第1凹面鏡の第2焦点に一致し、前記第2凹面鏡の第2焦点が被検眼の瞳位置に位置することが好ましい(発明6)。患者の瞳孔径が小さいほど広角の眼底撮影は困難であるが、上記発明(発明6)によればそれが可能になる。 In the above inventions (Inventions 1 to 5), the optical path dividing device is disposed at the first focal point of the first concave mirror, the first scanning device is disposed at the second focal point, and the first focal point of the second concave mirror is It is preferable that the second focal point of the second concave mirror coincides with the second focal point of the first concave mirror and that the second focal point of the second concave mirror is located at the pupil position of the eye to be examined (invention 6). The smaller the patient's pupil diameter, the more difficult the fundus photographing at a wide angle is. However, according to the above invention (Invention 6), this is possible.
 上記発明(発明3~5)においては、前記第2走査デバイスが被検眼の瞳共役位置に配置されることが好ましい(発明7)。 In the above inventions (Inventions 3 to 5), it is preferable that the second scanning device is disposed at a pupil conjugate position of the eye to be examined (Invention 7).
 上記発明(発明1~7)においては、前記撮影光学系が、被検眼の眼底共役位置にスリット開口を有することが好ましい(発明8)。このように配置されたスリット開口は、眼底からの反射光を通すが眼底以外からの光を通さないため、コントラストの高い眼底画像が得られる。 In the above inventions (Inventions 1 to 7), it is preferable that the imaging optical system has a slit opening at the fundus conjugate position of the eye to be examined (Invention 8). Since the slit openings arranged in this manner allow reflected light from the fundus to pass but not light from other than the fundus, a fundus image with high contrast can be obtained.
 本発明のライン走査型眼底撮影装置によれば、従来の装置よりも安価な構成で、広い網膜範囲を高画質で撮影することが可能となる。 According to the line scanning fundus photographing apparatus of the present invention, it is possible to photograph a wide retinal range with high image quality with a configuration that is less expensive than the conventional apparatus.
本発明の第1の実施形態に係るライン走査型眼底撮影装置の光学構成を示す説明図である。It is explanatory drawing which shows the optical structure of the line scanning type fundus imaging apparatus which concerns on the 1st Embodiment of this invention. 同第1の実施形態に係るライン走査型眼底撮影装置の対物光学系の光学構成を、スリット光の入射方向から見た状態で示す説明図である。It is explanatory drawing which shows the optical structure of the objective optical system of the line scanning type fundus imaging apparatus which concerns on the 1st Embodiment in the state seen from the incident direction of slit light. 同第1の実施形態に係るライン走査型眼底撮影装置の受光部(撮影光学系)の光学構成を示す説明図である。It is explanatory drawing which shows the optical structure of the light-receiving part (shooting optical system) of the line scanning type fundus imaging apparatus according to the first embodiment. 同第1の実施形態に係るライン走査型眼底撮影装置の対物光学系の構成と光線光路を模式的に示す説明図である。It is explanatory drawing which shows typically the structure and light beam path of the objective optical system of the line scanning type fundus imaging apparatus according to the first embodiment. 本発明の第2の実施形態に係るライン走査型眼底撮影装置の受光部(撮影光学系)の光学構成を示す説明図である。It is explanatory drawing which shows the optical structure of the light-receiving part (imaging optical system) of the line scanning type fundus imaging apparatus which concerns on the 2nd Embodiment of this invention. 同第2の実施形態に係るライン走査型眼底撮影装置における反射光の光線光路を模式的に示す説明図である。It is explanatory drawing which shows typically the light beam path of the reflected light in the line scanning type fundus imaging apparatus according to the second embodiment.
(第1の実施形態)
 以下、本発明の第1の実施形態を図面に基づいて詳細に説明する。図1には、本実施形態に係るライン走査型眼底撮影装置の基本的な光学構成が図示されており、図2には本実施形態に係るライン走査型眼底撮影装置の対物光学系の光学構成を、スリット光の入射方向から見た状態(図1における矢印Aの方向から見た状態)が図示されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 illustrates a basic optical configuration of a line scanning fundus imaging apparatus according to the present embodiment, and FIG. 2 illustrates an optical configuration of an objective optical system of the line scanning fundus imaging apparatus according to the present embodiment. Is seen from the direction of incidence of slit light (state seen from the direction of arrow A in FIG. 1).
 図1及び2に示すように、本実施形態に係るライン走査型眼底撮影装置では、スリット光源1(照明光学系)からのスリット光がビームスプリッター2(光路分割デバイス)に入射し、ビームスプリッター2を透過したスリット光が第1凹面鏡3で反射され、第1走査デバイス4に入射する。第1走査デバイス4にて反射されると同時に走査されたスリット光は第2凹面鏡5で反射され、被検眼6の瞳6aを通過して眼底6bに集光される。スリット光の広がり方向は、第1走査デバイス4(例えばガルバノミラー)の走査方向とは垂直な関係にある。図1におけるスリット光の広がり方向は紙面に対して垂直な方向であり、図2におけるスリット光の広がり方向は左右方向である。 As shown in FIGS. 1 and 2, in the line-scanning fundus imaging apparatus according to the present embodiment, slit light from the slit light source 1 (illumination optical system) enters the beam splitter 2 (optical path splitting device), and the beam splitter 2 Is reflected by the first concave mirror 3 and enters the first scanning device 4. The slit light that is simultaneously reflected and scanned by the first scanning device 4 is reflected by the second concave mirror 5, passes through the pupil 6a of the eye 6 to be examined, and is condensed on the fundus 6b. The spreading direction of the slit light is perpendicular to the scanning direction of the first scanning device 4 (for example, a galvanometer mirror). The spreading direction of the slit light in FIG. 1 is a direction perpendicular to the paper surface, and the spreading direction of the slit light in FIG. 2 is the left-right direction.
 眼底6bに投光されたスリット光は眼底6bで反射され、眼底6bからの反射光は、同じ光路を矢印と逆方向に進み、第2凹面鏡5、第1走査デバイス4、第1凹面鏡3を経てビームスプリッター2で反射され受光部7(撮影光学系)に入射する。眼底をスリット状の光で照明しているので、受光部7に結像される眼底像もスリット状になる。第1走査デバイスでスリット光が走査されると、走査角に応じた眼底の部位がスリット状に照明され、受光部7にはスリット状の眼底像が順次結像される。 The slit light projected on the fundus 6b is reflected by the fundus 6b, and the reflected light from the fundus 6b travels in the opposite direction of the arrow along the same optical path, and passes through the second concave mirror 5, the first scanning device 4, and the first concave mirror 3. Then, it is reflected by the beam splitter 2 and enters the light receiving unit 7 (imaging optical system). Since the fundus is illuminated with slit-shaped light, the fundus image formed on the light receiving unit 7 is also slit-shaped. When slit light is scanned by the first scanning device, the fundus portion corresponding to the scanning angle is illuminated in a slit shape, and slit-shaped fundus images are sequentially formed on the light receiving unit 7.
 図3には本実施形態に係る走査型眼底撮影装置の受光部7の光学構成が図示されている。受光部7に入射した眼底6bからの反射光は、第1リレーレンズ7aによりスリット開口7bへと導かれ、スリット開口7bを通過した反射光が第2リレーレンズ7cを経て、カメラレンズ7eによりフォトダイオードで構成された光電変換デバイス7f(受光手段)に入射する。光電変換デバイス7fはライン状のマルチ光センサで、例えばフォトダイオードを1次元のライン状に配置したラインカメラである。このようにして眼底6bの各点の輝度情報を光電変換デバイス7fにより得ることができる。そして、その得られた輝度情報すなわち光電変換デバイス7fの出力強度と、走査デバイスの走査位置情報に基づいて、眼底6bの撮影像を形成することができる。撮影された眼底6bは、記憶装置(不図示)に格納されたり、ディスプレイ(不図示)に表示されたり、あるいはプリンター(不図示)により印刷される。 FIG. 3 shows an optical configuration of the light receiving unit 7 of the scanning fundus photographing apparatus according to the present embodiment. The reflected light from the fundus 6b that has entered the light receiving unit 7 is guided to the slit opening 7b by the first relay lens 7a, and the reflected light that has passed through the slit opening 7b passes through the second relay lens 7c, and is photoed by the camera lens 7e. The light enters the photoelectric conversion device 7f (light receiving means) formed of a diode. The photoelectric conversion device 7f is a line-shaped multi-optical sensor, for example, a line camera in which photodiodes are arranged in a one-dimensional line shape. Thus, the luminance information of each point of the fundus 6b can be obtained by the photoelectric conversion device 7f. Based on the obtained luminance information, that is, the output intensity of the photoelectric conversion device 7f and the scanning position information of the scanning device, a photographed image of the fundus oculi 6b can be formed. The photographed fundus 6b is stored in a storage device (not shown), displayed on a display (not shown), or printed by a printer (not shown).
 本実施形態におけるスリット光源1は、例えば白色LED光源からの光をコリメートし、スリット開口部で切り取り、スリットを通過した光が水平方向に所定の長さを持つスリット光としてビームスプリッター2へと照射されるように構成される。 The slit light source 1 in this embodiment collimates light from, for example, a white LED light source, cuts it out at the slit opening, and irradiates the beam splitter 2 as slit light having a predetermined length in the horizontal direction. Configured to be.
 ビームスプリッター2から被検眼6の瞳6aまでの構成は、本実施形態に係る走査型眼底撮影装置の対物光学系であり、スリット光源1から照射されたスリット光の投光光路と眼底6bからの反射光の受光光路の共通光路となる。図4に対物光学系の光学配置模式図を示す。図4では光線の流れがわかりやすいように、光線を一方向に伝達するように示している。そのため、第1凹面鏡3及び第2凹面鏡5で光線が透過しているように記載されているが、実際の光線は各凹面鏡で反射している。この対物光学系において第1凹面鏡3は、第1瞳位置に位置するビームスプリッター2から第2瞳位置に位置する第1走査デバイス4へとスリット光をリレーするものである。スリット光は、第1凹面鏡3により広がり角が拡大される。例えば、第1凹面鏡3に入射するスリット光は50度の広がり角(図中のθ1)の光線であり、第1凹面鏡3で反射したスリット光は150度の広がり角(図中のθ2)に拡大されて第1走査デバイス4へと伝達される。また、第1凹面鏡3は、例えば水平方向に延びるスリット状の楕円鏡とすることができる。 The configuration from the beam splitter 2 to the pupil 6a of the eye 6 to be examined is the objective optical system of the scanning fundus photographing apparatus according to this embodiment, and the projection light path of the slit light emitted from the slit light source 1 and the fundus 6b It becomes a common optical path of the light receiving optical path of the reflected light. FIG. 4 shows a schematic diagram of the optical arrangement of the objective optical system. In FIG. 4, light beams are transmitted in one direction so that the flow of the light beams can be easily understood. Therefore, although it is described that the light beam is transmitted through the first concave mirror 3 and the second concave mirror 5, the actual light beam is reflected by each concave mirror. In this objective optical system, the first concave mirror 3 relays slit light from the beam splitter 2 located at the first pupil position to the first scanning device 4 located at the second pupil position. The slit light is expanded by the first concave mirror 3 and the angle of expansion is increased. For example, the slit light incident on the first concave mirror 3 is a light beam having a divergence angle of 50 degrees (θ1 in the figure), and the slit light reflected by the first concave mirror 3 has a divergence angle of 150 degrees (θ2 in the figure). The image is enlarged and transmitted to the first scanning device 4. The first concave mirror 3 can be, for example, a slit-like elliptical mirror extending in the horizontal direction.
 第1走査デバイス4はガルバノミラーにより構成され、第1凹面鏡3により反射された広角のスリット光が第1走査デバイス4によって縦方向(スリット光の長手方向に対して垂直な方向)に低速走査されて第2凹面鏡5に入射される。 The first scanning device 4 is constituted by a galvanometer mirror, and the wide-angle slit light reflected by the first concave mirror 3 is scanned at a low speed in the vertical direction (direction perpendicular to the longitudinal direction of the slit light) by the first scanning device 4. Is incident on the second concave mirror 5.
 第2凹面鏡5は、第2瞳位置に位置する第1走査デバイス4によって走査されたスリット光を第3瞳位置に位置する被検眼6の瞳6aへとリレーするものであり、走査されたスリット光が第2凹面鏡5により反射されて被検眼6の瞳6aに集光され、眼底6bへと投光される。第2凹面鏡5は、例えば広角の楕円鏡とすることができる。 The second concave mirror 5 relays the slit light scanned by the first scanning device 4 located at the second pupil position to the pupil 6a of the eye 6 to be examined located at the third pupil position. The light is reflected by the second concave mirror 5, collected on the pupil 6 a of the eye 6 to be examined, and projected onto the fundus 6 b. The second concave mirror 5 can be, for example, a wide-angle elliptical mirror.
 図4に示すように、第1凹面鏡3の第1焦点3aにはビームスプリッター2が位置し、第1走査デバイス4であるガルバノミラーは、第1凹面鏡3の第2焦点3bに配置される。また、第2凹面鏡5の第1焦点5aには第1走査デバイス4であるガルバノミラーが配置され、第2凹面鏡5の第2焦点5bには被検眼6の瞳6aが位置するので、第1凹面鏡3の第2焦点3bと第2凹面鏡5の第1焦点5aは同一位置にあることとなる。 As shown in FIG. 4, the beam splitter 2 is positioned at the first focal point 3 a of the first concave mirror 3, and the galvanometer mirror as the first scanning device 4 is disposed at the second focal point 3 b of the first concave mirror 3. In addition, a galvano mirror which is the first scanning device 4 is arranged at the first focal point 5a of the second concave mirror 5, and the pupil 6a of the eye 6 to be examined is located at the second focal point 5b of the second concave mirror 5, so that the first The second focal point 3b of the concave mirror 3 and the first focal point 5a of the second concave mirror 5 are at the same position.
 このような対物光学系の構成とすることにより、狭角(例えば50度)の光線であるスリット光を第1凹面鏡3によって倍率をかけて広角(例えば150度)のスリット光とすることができる。これにより照明光学系(スリット光源1)や撮影光学系(受光部7)において広角スリット光を扱う必要がなくなるため、広角スリット光に対応するための大きく複雑な構成のレンズが不要となり、従来の装置よりも安価な構成で、広い網膜範囲を高画質で撮影することが可能となる。 By adopting such an objective optical system configuration, the slit light, which is a light beam with a narrow angle (for example, 50 degrees), can be converted into a wide angle (for example, 150 degrees) slit light by multiplying the magnification by the first concave mirror 3. . This eliminates the need to handle wide-angle slit light in the illumination optical system (slit light source 1) and photographing optical system (light-receiving unit 7), so that a lens having a large and complicated configuration for dealing with wide-angle slit light becomes unnecessary. With a configuration that is cheaper than the apparatus, it is possible to capture a wide retinal range with high image quality.
 眼底6bへ投光されたスリット光は眼底6bで反射され、眼底6bからの反射光は、図1に示すように、スリット光と同じ光路を逆方向に進み、第2凹面鏡5、第1走査デバイス4、第1凹面鏡3を経てビームスプリッター2で反射され受光部7に入射する。 The slit light projected onto the fundus 6b is reflected by the fundus 6b, and the reflected light from the fundus 6b travels in the opposite direction along the same optical path as the slit light, as shown in FIG. The light is reflected by the beam splitter 2 through the device 4 and the first concave mirror 3 and enters the light receiving unit 7.
 図3に示すように、受光部7に入射した反射光は、第1リレーレンズ7aによって眼底共役面に位置するスリット開口7bに集光され、スリット開口7bを通過し、第2リレーレンズ7cを経て、カメラレンズ7eによりライン状のマルチ光センサである光電変換デバイス7fにスリット状の眼底像を結像させる構成となる。第1走査デバイス4の走査と同期して光電変換デバイス7fにて眼底がスキャン撮影される。取得された眼底画像は第1走査デバイス4の走査位置情報に基づいて並べられ、二次元の広い範囲の眼底画像を得ることが可能となる。 As shown in FIG. 3, the reflected light incident on the light receiving unit 7 is condensed by the first relay lens 7a on the slit opening 7b located on the fundus conjugate surface, passes through the slit opening 7b, and passes through the second relay lens 7c. As a result, a slit-like fundus image is formed on the photoelectric conversion device 7f, which is a line-shaped multi-optical sensor, by the camera lens 7e. The fundus is scanned and photographed by the photoelectric conversion device 7 f in synchronization with the scanning of the first scanning device 4. The acquired fundus images are arranged based on the scanning position information of the first scanning device 4, and a fundus image in a wide two-dimensional range can be obtained.
 なお、受光部7において、スリット開口7bは被検眼6の眼底6bと共役となる位置に配置される。このように配置したスリット開口7bに反射光を導くことによって、眼底像の周りで発生した、測定に不要な光(迷光)がスリット開口7bで除去され、コントラストの高い眼底像を撮影することができる。 In the light receiving unit 7, the slit opening 7 b is disposed at a position conjugate with the fundus 6 b of the eye 6 to be examined. By guiding the reflected light to the slit opening 7b arranged in this way, light (stray light) generated around the fundus image is removed by the slit opening 7b, and a fundus image with high contrast can be taken. it can.
(第2の実施形態)
 続いて、本発明の第2の実施形態を図面に基づいて詳細に説明する。第2の実施形態に係るライン走査型眼底撮影装置は、第1の実施形態に係るライン走査型眼底撮影装置の受光部7を、異なる光学構成を有する受光部7Aに置き換えたものである。図5には本実施形態に係る受光部7Aの光学構成が図示されている。受光部7A以外の構成は第1の実施形態と同様であるため、説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described in detail based on the drawings. The line-scanning fundus imaging apparatus according to the second embodiment is obtained by replacing the light-receiving unit 7 of the line-scanning fundus imaging apparatus according to the first embodiment with a light-receiving unit 7A having a different optical configuration. FIG. 5 illustrates an optical configuration of the light receiving unit 7A according to the present embodiment. Since the configuration other than the light receiving unit 7A is the same as that of the first embodiment, the description thereof is omitted.
 図5に示すように、受光部7Aに入射した眼底6bからの反射光は、第1リレーレンズ7Aaによりスリット開口7Abに集光され、スリット開口7Abを通過した反射光が第2リレーレンズ7Acを経て、第2走査デバイス7Adに入射する。第2走査デバイス7Adはガルバノミラーにより構成され、スリット開口7Abを通過した反射光が第2走査デバイス7Adによって縦方向(スリット光の長手方向に対して垂直な方向)に低速走査されてカメラレンズ7Aeに入射される。第1リレーレンズ7Aaと第2リレーレンズ7Acはそれぞれ同じ焦点距離を持つ球面レンズ群で、向かい合って配置される。また、第1リレーレンズ7Aaの前側焦点位置にはビームスプリッター2が、後側焦点位置にはスリット開口7Abが配置される。同様に、第2リレーレンズ7Acの前側焦点位置にはスリット開口7Abが、後側焦点位置には第2走査デバイス7Ad(ガルバノミラー)が配置される。第2走査デバイス7Adによって走査された反射光はカメラレンズ7Aeによりフォトダイオードで構成された光電変換デバイス7Afに入射する。光電変換デバイス7Afは二次元のマルチ光センサで、例えばフォトダイオードを二次元のエリア状に配置したCCDカメラである。 As shown in FIG. 5, the reflected light from the fundus 6b incident on the light receiving portion 7A is collected by the first relay lens 7Aa to the slit opening 7Ab, and the reflected light that has passed through the slit opening 7Ab passes through the second relay lens 7Ac. Then, the light enters the second scanning device 7Ad. The second scanning device 7Ad is configured by a galvanometer mirror, and the reflected light that has passed through the slit opening 7Ab is scanned at a low speed in the vertical direction (direction perpendicular to the longitudinal direction of the slit light) by the second scanning device 7Ad. Is incident on. The first relay lens 7Aa and the second relay lens 7Ac are spherical lens groups having the same focal length, and are arranged to face each other. Further, the beam splitter 2 is disposed at the front focal position of the first relay lens 7Aa, and the slit opening 7Ab is disposed at the rear focal position. Similarly, the slit opening 7Ab is disposed at the front focal position of the second relay lens 7Ac, and the second scanning device 7Ad (galvano mirror) is disposed at the rear focal position. The reflected light scanned by the second scanning device 7Ad is incident on the photoelectric conversion device 7Af formed of a photodiode by the camera lens 7Ae. The photoelectric conversion device 7Af is a two-dimensional multi-optical sensor, for example, a CCD camera in which photodiodes are arranged in a two-dimensional area.
 なお、受光部7Aにおいて、スリット開口7Abは被検眼6の眼底6bと共役となる位置に配置される。このように配置したスリット開口7Abに反射光を導くことによって、眼底像の周りで発生した、測定に不要な光(迷光)がスリット開口7Abで除去され、コントラストの高い眼底像を撮影することができる。 In the light receiving unit 7A, the slit opening 7Ab is disposed at a position conjugate with the fundus 6b of the eye 6 to be examined. By guiding the reflected light to the slit opening 7Ab arranged in this way, light (stray light) generated around the fundus image is removed by the slit opening 7Ab, and a fundus image with high contrast can be photographed. it can.
 受光部7Aにおいて、第2走査デバイス7Adは被検眼6の瞳6aと共役となる位置に配置されている。また、第2走査デバイス7Adの走査動作は第1走査デバイス4の走査動作に同期している。このようにして眼底6bの各点の輝度情報を光電変換デバイス7Afにより得ることができる。そして、その得られた輝度情報すなわち光電変換デバイス7Afの出力強度と、二つの走査デバイスの走査位置情報に基づいて、眼底6bの撮影像を形成することができる。撮影された眼底6bは、記憶装置(不図示)に格納されたり、ディスプレイ(不図示)に表示されたり、あるいはプリンター(不図示)により印刷される。 In the light receiving unit 7A, the second scanning device 7Ad is disposed at a position conjugate with the pupil 6a of the eye 6 to be examined. The scanning operation of the second scanning device 7Ad is synchronized with the scanning operation of the first scanning device 4. In this way, luminance information of each point on the fundus 6b can be obtained by the photoelectric conversion device 7Af. Based on the obtained luminance information, that is, the output intensity of the photoelectric conversion device 7Af and the scanning position information of the two scanning devices, a photographed image of the fundus oculi 6b can be formed. The photographed fundus 6b is stored in a storage device (not shown), displayed on a display (not shown), or printed by a printer (not shown).
 第1の実施形態に係る受光部7の構成と、第2の実施形態に係る受光部7Aの構成とを比べると、第2の実施形態で使用するエリア状のマルチ光センサ(光電変換デバイス7Af)は一般に広く普及しており、高解像度で安価なものが多くあるが、第2走査デバイス7Adが必要となる。その点で第1の実施形態は第2走査デバイス7Adが不要であるため、構成がシンプルになるという特徴を有する。一方でライン状のマルチ光センサはエリア状のマルチ光センサに比べて選定の自由度が少ないという事情もある。よって、第1の実施形態と第2の実施形態のどちらが優れているということはなく、それぞれに一長一短あるため、周辺事情に応じてどちらの受光部の構成とするか選択すべきであろう。 Comparing the configuration of the light receiving unit 7 according to the first embodiment with the configuration of the light receiving unit 7A according to the second embodiment, an area-shaped multi-photosensor (photoelectric conversion device 7Af used in the second embodiment) ) Is generally widespread and has many high-resolution and inexpensive devices, but requires the second scanning device 7Ad. In that respect, the first embodiment has a feature that the configuration is simple because the second scanning device 7Ad is unnecessary. On the other hand, the line-shaped multi-light sensor has a smaller degree of freedom of selection than the area-shaped multi-light sensor. Therefore, neither the first embodiment nor the second embodiment is superior, and each has advantages and disadvantages. Therefore, which light receiving unit configuration should be selected according to the surrounding circumstances.
 ここで、走査動作の同期とは必ずしも同じ走査速度かつ同じ走査角度で走査することを意味するものではなく、例えば第1走査デバイス4であるガルバノミラーの走査角度よりも第2走査デバイス7Adであるガルバノミラーの走査角度を小さくし、第1走査デバイス4が一回の走査動作を行う間に第2走査デバイス7Adが三回の走査動作を行う等、第1走査デバイス4による走査動作と第2走査デバイス7Adによる走査動作とが一定の関係性を維持したタイミングで行われることを意味している。 Here, the synchronization of the scanning operation does not necessarily mean that the scanning is performed at the same scanning speed and the same scanning angle. For example, the second scanning device 7Ad is greater than the scanning angle of the galvanometer mirror that is the first scanning device 4. The second scanning device 7Ad performs three scanning operations while the first scanning device 4 performs one scanning operation, for example, by reducing the scanning angle of the galvanometer mirror, and the second scanning device 4 This means that the scanning operation by the scanning device 7Ad is performed at a timing maintaining a certain relationship.
 対物光学系において、第1走査デバイス4は入射したスリット光を目的の位置に照明する役割を果たす。その一方で、図6に示すように、第1走査デバイス4は、被検眼6の眼底6bからの反射光に対して再走査を行う。この再走査により、反射光は入射したスリット光と同一経路をたどるため、眼底に対する走査位置情報を失って第1凹面鏡3に進む。さらに、反射光の進路は第1凹面鏡3で反射され、光路分割デバイス(ビームスプリッター2)を経て走査位置情報を持たない光線として受光部7Aに向かう。そこで、受光部7Aにおいて第2走査デバイス7Adが再び反射光を走査する構成とし、第2走査デバイス7Adが第1走査デバイス4の走査動作と同期して走査動作を行うようにすることにより、第1走査デバイス4が縦方向に走査した位置に関する走査位置情報を再度反射光に持たせることが可能となる。その結果として反射光は、エリア状のマルチ光センサ7Af上に投影され、走査された二次元の広角眼底像として結像される。 In the objective optical system, the first scanning device 4 plays a role of illuminating incident slit light at a target position. On the other hand, as shown in FIG. 6, the first scanning device 4 performs rescanning on the reflected light from the fundus 6 b of the eye 6 to be examined. By this rescanning, the reflected light follows the same path as the incident slit light, so that the scanning position information with respect to the fundus is lost and the light advances to the first concave mirror 3. Further, the path of the reflected light is reflected by the first concave mirror 3 and passes through the optical path splitting device (beam splitter 2) to the light receiving unit 7A as a light beam having no scanning position information. Therefore, the second scanning device 7Ad is configured to scan the reflected light again in the light receiving unit 7A, and the second scanning device 7Ad performs the scanning operation in synchronization with the scanning operation of the first scanning device 4. It becomes possible to give the reflected light again scanning position information relating to the position scanned by the one scanning device 4 in the vertical direction. As a result, the reflected light is projected onto the area-shaped multi-light sensor 7Af and formed as a scanned two-dimensional wide-angle fundus image.
 また、第2走査デバイス7Adの走査角度(ガルバノミラーの振り角度)を第1走査デバイス4の走査角度(ガルバノミラーの振り角度)よりも小さくして、第1走査デバイス4でスリット光を一回走査する間に第2走査デバイス7Adで複数回反射光を走査し、何枚も眼底6bの撮影像を形成することで、一枚あたりの撮影範囲が狭くなり、解像度の高い眼底画像を撮影することができる。 Further, the scanning angle of the second scanning device 7Ad (the swing angle of the galvano mirror) is made smaller than the scanning angle of the first scanning device 4 (the swing angle of the galvano mirror), and the first scanning device 4 emits the slit light once. During the scanning, the second scanning device 7Ad scans the reflected light a plurality of times to form a captured image of the fundus 6b, thereby narrowing the imaging range per image and capturing a high-resolution fundus image. be able to.
 例えば、第1走査デバイス4でスリット光を一回走査する間に、第2走査デバイス7Adで三回反射光を走査し、第2走査デバイス7Adの走査に合わせてカメラレンズ7Ae及び光電変換デバイス7Afから構成されるCCDカメラで三回シャッターを切れば、眼底6bの所望の撮影対象領域を三分割した眼底画像を三枚撮影することができる。これら三枚の眼底画像を画像処理によって繋ぎ合わせることにより、眼底6bの撮影対象領域全体をカバーする高解像度の眼底画像一枚を得ることができる。 For example, while the slit light is scanned once by the first scanning device 4, the reflected light is scanned three times by the second scanning device 7Ad, and the camera lens 7Ae and the photoelectric conversion device 7Af are synchronized with the scanning of the second scanning device 7Ad. If the shutter is released three times with a CCD camera configured as follows, three fundus images obtained by dividing the desired imaging target area of the fundus 6b into three can be taken. By joining these three fundus images by image processing, it is possible to obtain one high-resolution fundus image that covers the entire imaging target area of the fundus 6b.
 以上、本発明に係る走査型眼科撮影装置について図面に基づいて説明してきたが、本発明は上記実施形態に限定されることなく、種々の変更実施が可能である。 The scanning ophthalmic imaging apparatus according to the present invention has been described above with reference to the drawings. However, the present invention is not limited to the above-described embodiment, and various modifications can be made.
 例えば、光路分割デバイスであるビームスプリッター2は、穴あきミラー等に変更しても良い。穴あきミラーを光路分割デバイスとして用いる場合、穴あきミラーの穴部からスリット光を入光しリング状のミラー面を使って眼底からの反射光を撮影光学系に導く。これにより、投光と受光を光路分割デバイス面上で空間的に分離できるため、眼等で発生した有害光を穴あきミラーによって除去する効果がある。 For example, the beam splitter 2 which is an optical path dividing device may be changed to a perforated mirror or the like. When a perforated mirror is used as an optical path dividing device, slit light is incident from a hole portion of the perforated mirror, and reflected light from the fundus is guided to the photographing optical system using a ring-shaped mirror surface. Thereby, since light projection and light reception can be spatially separated on the surface of the optical path dividing device, there is an effect of removing harmful light generated by the eye or the like with a perforated mirror.
 1 スリット光源(照明光学系)
 2 ビームスプリッター(光路分割デバイス)
 3 第1凹面鏡
 4 第1走査デバイス
 5 第2凹面鏡
 6 被検眼
  6a 瞳
  6b 眼底
 7,7A 受光部(撮影光学系)
  7a,7Aa 第1リレーレンズ
  7b,7Ab スリット開口
  7c,7Ac 第2リレーレンズ
  7Ad 第2走査デバイス
  7e,7Ae カメラレンズ
  7f,7Af 光電変換デバイス
1 Slit light source (illumination optical system)
2 Beam splitter (optical path splitting device)
DESCRIPTION OF SYMBOLS 3 1st concave mirror 4 1st scanning device 5 2nd concave mirror 6 Eye to be examined 6a Pupil 6b Fundus 7, 7A Light-receiving part (imaging optical system)
7a, 7Aa First relay lens 7b, 7Ab Slit aperture 7c, 7Ac Second relay lens 7Ad Second scanning device 7e, 7Ae Camera lens 7f, 7Af Photoelectric conversion device

Claims (8)

  1.  スリット光を走査して被検眼の眼底に投光し、前記眼底からの反射光を受光して前記眼底を撮影するライン走査型眼底撮影装置であって、
     前記スリット光を光路分割デバイスへと照射する照明光学系と、
     前記スリット光を一方向に走査する第1走査デバイスと、前記光路分割デバイスを経て入光した前記スリット光を前記第1走査デバイスへと伝達する第1凹面鏡と、前記第1走査デバイスで走査された前記スリット光を前記眼底へと伝達する第2凹面鏡とを有する対物光学系と、
     前記光路分割デバイスを経て入光した前記眼底からの反射光を受光する撮影光学系とを備え、
     前記第1凹面鏡が前記スリット光の広がり角を拡大させることを特徴とする、ライン走査型眼底撮影装置。
    A line-scanning fundus imaging device that scans slit light, projects light on the fundus of the subject's eye, receives reflected light from the fundus, and images the fundus,
    An illumination optical system for irradiating the slit light to the optical path dividing device;
    The first scanning device that scans the slit light in one direction, the first concave mirror that transmits the slit light that has entered through the optical path dividing device to the first scanning device, and the first scanning device. An objective optical system having a second concave mirror that transmits the slit light to the fundus,
    An imaging optical system that receives reflected light from the fundus that has entered through the optical path splitting device, and
    The line-scanning fundus imaging apparatus, wherein the first concave mirror increases a spread angle of the slit light.
  2.  前記撮影光学系が、前記眼底からの反射光を受光するライン状のマルチ光センサを備え、
     該ライン状のマルチ光センサは前記第1走査デバイスに同期して動作することを特徴とする、請求項1に記載のライン走査型眼底撮影装置。
    The imaging optical system includes a line-shaped multi-light sensor that receives reflected light from the fundus.
    The line-scanning fundus imaging apparatus according to claim 1, wherein the line-shaped multi-optical sensor operates in synchronization with the first scanning device.
  3.  前記撮影光学系が、前記眼底からの反射光を受光する二次元マルチ光センサと、前記眼底からの反射光を再走査して前記二次元マルチ光センサに入射させる第2走査デバイスとを備え、
     該第2走査デバイスが前記第1走査デバイスの走査動作と同期して互いに平行な方向に走査動作を行うことを特徴とする、請求項1に記載のライン走査型眼底撮影装置。
    The imaging optical system includes a two-dimensional multi-light sensor that receives reflected light from the fundus, and a second scanning device that re-scans the reflected light from the fundus and enters the two-dimensional multi-photo sensor.
    The line-scanning fundus imaging apparatus according to claim 1, wherein the second scanning device performs a scanning operation in a direction parallel to each other in synchronization with the scanning operation of the first scanning device.
  4.  前記第2走査デバイスの走査角度が前記第1走査デバイスの走査角度よりも小さい、請求項3に記載のライン走査型眼底撮影装置。 The line-scanning fundus imaging apparatus according to claim 3, wherein a scanning angle of the second scanning device is smaller than a scanning angle of the first scanning device.
  5.  前記第1走査デバイスが前記スリット光を一回走査する間に前記第2走査デバイスが前記反射光を複数回走査する、請求項4に記載のライン走査型眼底撮影装置。 The line-scanning fundus imaging apparatus according to claim 4, wherein the second scanning device scans the reflected light a plurality of times while the first scanning device scans the slit light once.
  6.  前記第1凹面鏡の第1焦点に前記光路分割デバイスが、第2焦点に前記第1走査デバイスがそれぞれ配置され、
     前記第2凹面鏡の第1焦点が前記第1凹面鏡の第2焦点に一致し、
     前記第2凹面鏡の第2焦点が被検眼の瞳位置に位置することを特徴とする、請求項1~5のいずれか1項に記載のライン走査型眼底撮影装置。
    The optical path splitting device is disposed at a first focal point of the first concave mirror, and the first scanning device is disposed at a second focal point;
    The first focal point of the second concave mirror coincides with the second focal point of the first concave mirror;
    6. The line-scanning fundus imaging apparatus according to claim 1, wherein the second focal point of the second concave mirror is located at a pupil position of the eye to be examined.
  7.  前記第2走査デバイスが被検眼の瞳共役位置に配置されることを特徴とする、請求項3~5のいずれか1項に記載のライン走査型眼底撮影装置。 6. The line-scanning fundus imaging apparatus according to claim 3, wherein the second scanning device is disposed at a pupil conjugate position of the eye to be examined.
  8.  前記撮影光学系が、被検眼の眼底共役位置にスリット開口を有することを特徴とする、請求項1~7のいずれか1項に記載のライン走査型眼底撮影装置。 The line scanning fundus imaging apparatus according to any one of claims 1 to 7, wherein the imaging optical system has a slit opening at a fundus conjugate position of an eye to be examined.
PCT/JP2017/039864 2016-11-08 2017-11-06 Scanning fundus photography device WO2018088338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018550180A JP7027326B2 (en) 2016-11-08 2017-11-06 Scanning fundus photography device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016218411 2016-11-08
JP2016-218411 2016-11-08

Publications (1)

Publication Number Publication Date
WO2018088338A1 true WO2018088338A1 (en) 2018-05-17

Family

ID=62110671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039864 WO2018088338A1 (en) 2016-11-08 2017-11-06 Scanning fundus photography device

Country Status (2)

Country Link
JP (1) JP7027326B2 (en)
WO (1) WO2018088338A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112155512A (en) * 2020-09-30 2021-01-01 广东唯仁医疗科技有限公司 Optical coherence tomography imaging equipment and control method thereof
WO2022124170A1 (en) * 2020-12-09 2022-06-16 株式会社トプコン Fundus observation device
WO2024062893A1 (en) * 2022-09-22 2024-03-28 株式会社トプコン Fundus imaging device, method for controlling fundus imaging device, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114008A (en) * 1990-05-19 1994-04-26 G Rodenstock Instr Gmbh Device for observing eyeground
JP2014200403A (en) * 2013-04-03 2014-10-27 株式会社トプコン Ophthalmologic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06114008A (en) * 1990-05-19 1994-04-26 G Rodenstock Instr Gmbh Device for observing eyeground
JP2014200403A (en) * 2013-04-03 2014-10-27 株式会社トプコン Ophthalmologic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112155512A (en) * 2020-09-30 2021-01-01 广东唯仁医疗科技有限公司 Optical coherence tomography imaging equipment and control method thereof
WO2022124170A1 (en) * 2020-12-09 2022-06-16 株式会社トプコン Fundus observation device
WO2024062893A1 (en) * 2022-09-22 2024-03-28 株式会社トプコン Fundus imaging device, method for controlling fundus imaging device, and program

Also Published As

Publication number Publication date
JPWO2018088338A1 (en) 2019-10-03
JP7027326B2 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
JP6978165B2 (en) Eyeball imaging device
US7819526B2 (en) Fundus camera
JP2010012109A (en) Ocular fundus photographic apparatus
JP7027326B2 (en) Scanning fundus photography device
JP6531369B2 (en) Fundus imaging device
JP4585814B2 (en) Ophthalmic equipment
JP2012187293A (en) Fundus photographing apparatus
JP7376847B2 (en) Fundus image processing device and fundus image processing program
JP6319616B2 (en) Scanning laser ophthalmoscope
WO2023068071A1 (en) Ophthalmological device
JP7098964B2 (en) Fundus photography device
JP2019134905A (en) Ocular fundus imaging apparatus
JP6651747B2 (en) Scanning laser ophthalmoscope
WO2021132588A1 (en) Scanning optical fundus imaging device
JP2005279122A (en) Fundus oculi photography apparatus
JP6848207B2 (en) Ophthalmologic imaging equipment
WO2020179522A1 (en) Scanning ophthalmic imaging device, and ophthalmic imaging program
JP7268357B2 (en) Scanning ophthalmic imaging device and ophthalmic imaging program
JP7468162B2 (en) Fundus image processing program and fundus photographing device
JP7355194B2 (en) fundus imaging device
JP6460650B2 (en) Ophthalmic equipment
JP7421062B2 (en) fundus imaging device
WO2021049405A1 (en) Corneal endothelial cell imaging device, method for controlling same, and program
JP2024036142A (en) Ophthalmology imaging equipment and ophthalmology imaging program
JPH01284228A (en) Optical system for laser scan eye-ground camera

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869314

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018550180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869314

Country of ref document: EP

Kind code of ref document: A1