WO2018086574A1 - 水含量分布检测装置及其应用 - Google Patents

水含量分布检测装置及其应用 Download PDF

Info

Publication number
WO2018086574A1
WO2018086574A1 PCT/CN2017/110379 CN2017110379W WO2018086574A1 WO 2018086574 A1 WO2018086574 A1 WO 2018086574A1 CN 2017110379 W CN2017110379 W CN 2017110379W WO 2018086574 A1 WO2018086574 A1 WO 2018086574A1
Authority
WO
WIPO (PCT)
Prior art keywords
terahertz
lens
assembly
water content
content distribution
Prior art date
Application number
PCT/CN2017/110379
Other languages
English (en)
French (fr)
Inventor
李辰
丁庆
Original Assignee
华讯方舟科技有限公司
深圳市太赫兹系统设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华讯方舟科技有限公司, 深圳市太赫兹系统设备有限公司 filed Critical 华讯方舟科技有限公司
Publication of WO2018086574A1 publication Critical patent/WO2018086574A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal

Definitions

  • the present invention relates to the field of terahertz detection technology, and in particular to a water content distribution detecting device and application thereof.
  • the tissue section method is often used to slice the biological tissue, followed by observation and analysis using an optical microscope, and the distribution and position of the normal tissue and the diseased tissue in the biological tissue are identified by observing the water content distribution therein.
  • this method requires professionals to carry out cumbersome manual operations and lengthy data analysis, which requires high cost, complicated steps, and long waiting period.
  • the water content analysis using a common optical microscope is only based on the image contrast of different water content regions, and the sensitivity of the water content measurement is low.
  • a water content distribution detecting device comprising: a terahertz radiation device, a first dimming lens assembly, a carrier assembly, a second dimming lens assembly, and a terahertz detecting assembly, the carrier assembly including a movable load Stage
  • the first dimming lens assembly is disposed between the terahertz radiation devices, and the second dimming lens assembly is disposed between the carrier assembly and the terahertz detecting assembly, the terahertz detection Component connection signal analysis device;
  • the terahertz beam radiated by the terahertz radiation device is focused by a first dimming lens assembly to a sample to be tested on the stage, and the terahertz beam transmitted by the sample to be tested is passed through the second dimming lens Focusing the component on the terahertz detection component, the terahertz signal detected by the terahertz detection component The water content distribution detection of the sample to be tested is performed to the signal analysis device.
  • the apparatus comprises a terahertz radiation device, a first dimming lens assembly, a carrier assembly, a second dimming lens assembly and a terahertz detecting assembly
  • the carrier assembly comprising a movable stage a first dimming lens assembly disposed between the terahertz radiating devices, a second dimming lens assembly disposed between the carrier assembly and the terahertz detecting assembly, a terahertz detecting assembly coupled to the signal analyzing device, and a terahertz radiating device radiating
  • the terahertz beam is focused by the first dimming lens assembly to the sample to be tested on the stage, and the terahertz beam transmitted by the sample to be tested is focused by the second dimming lens assembly to the terahertz detecting component, and the terahertz detecting component detects
  • the incoming terahertz signal is input to the signal analysis device for detecting the water content distribution of the sample to be tested, on the one hand,
  • the stage can be moved, when the stage moves, the sample to be tested placed on the stage can be moved to perform horizontal and vertical scanning of the sample to be tested. Since water molecules have strong absorption capacity for terahertz radiation, high-sensitivity water content detection can be performed. Therefore, a structural schematic diagram of the three-dimensional water content distribution of the sample to be tested can be obtained, thereby utilizing pathological histology to measure the degree of tissue damage. Analyze to avoid the cumbersome procedure of tissue sectioning in traditional pathology and improve water content determination Sensitivity and accuracy, the water content detecting device applied in a biological tissue distribution analysis, the detection material having a wide range of application.
  • FIG. 1 is a first schematic structural diagram of a water content distribution detecting device according to a first embodiment of the present invention
  • FIG. 2 is a schematic view showing the refinement structure of the terahertz radiation device of FIG. 1 in one embodiment
  • FIG. 3 is a refinement structure and light of the first dimming lens assembly of FIG. 1 in one embodiment thereof Road diagram
  • FIG. 4 is a schematic view showing the refinement structure of the carrier assembly of FIG. 1 in one embodiment
  • FIG. 5 is a schematic diagram of a refinement structure and an optical path of the second dimming lens assembly of FIG. 1 in one embodiment
  • FIG. 6 is a schematic diagram of a refinement structure and an optical path of the terahertz detecting assembly of FIG. 1 in one embodiment
  • FIG. 7 is a second schematic structural diagram of a water content distribution detecting device according to Embodiment 1 of the present invention.
  • FIG. 8 is a schematic diagram showing the refinement structure of one of the signal analysis devices of FIG. 1 or FIG. 7;
  • FIG. 9 is a schematic diagram showing the composition and structure of a water content distribution detecting device and a light path thereof in a specific example of Embodiment 2 of the present invention.
  • Terahertz radiation refers to electromagnetic radiation having a frequency between 0.1 THz and 10 THz. Due to the extremely strong reflection characteristics of metal objects in the terahertz frequency band, complex organic molecules exhibit spectral characteristics absorption, non-polar non-metal materials exhibit high transmission characteristics, and terahertz imaging in nondestructive testing, materials science, and national defense security. All fields have important application value. Since water is a polar molecule, water molecules have a strong absorption capacity for terahertz radiation. Whether it is a laboratory-assembled terahertz system or a commercial terahertz product, nitrogen or dry air is commonly used to remove water vapor from the system. The method to reduce the loss of terahertz waves in free space.
  • terahertz imaging can easily identify aqueous and anhydrous substances for high-sensitivity water content determination. This is especially important in biological systems because Minor changes in water content will reflect critical changes in biological tissues. People can accurately distinguish normal tissue from diseased tissue (such as cancerous tissue) without using lossy detection methods (such as pathological tissue sections), and the sensitivity is higher.
  • Terahertz imaging is based on the absorption of terahertz radiation by moisture, so high-sensitivity water content detection is possible.
  • Terahertz microscopy imaging is a promising medical diagnostic technique that aims to improve the spatial resolution of current terahertz imaging systems to obtain microscopic tomographic images of the sample under test in the terahertz band. The various embodiments of the inventive arrangements are described in detail below.
  • the water content distribution detecting apparatus of the first embodiment includes a terahertz radiation device 101, a first dimming lens assembly 102, a carrier assembly 103, a second dimming lens assembly 104, and a terahertz detecting assembly 105.
  • the carrier assembly 103 includes a movable stage 1031;
  • the first dimming lens assembly 102 is disposed between the terahertz radiation device 101 and the carrier assembly 103, and the second dimming lens assembly 104 is disposed between the carrier assembly 103 and the terahertz detection assembly 105, the terahertz detection assembly 105 connected to the signal analysis device 106;
  • the terahertz beam radiated from the terahertz radiation device 101 is focused 102 through the first dimming lens assembly to the sample to be tested on the stage 1031, and the terahertz beam transmitted by the sample to be tested is focused by the second dimming lens assembly 104.
  • the terahertz signal detected by the terahertz detection component 105 is input to the signal analysis device 106 for moisture content distribution detection of the sample to be tested.
  • the stage 1031 can move in the horizontal direction and the vertical direction (direction of the vertical horizontal plane).
  • the signal analysis device 106 may be an external component of the water content distribution detecting device or an internal component of the water content distribution detecting device.
  • the first dimming lens assembly 102 and the second dimming lens assembly 104 may respectively include one or more optical components, such as a convex lens, an aperture stop, etc., and the number of each optical component may be respectively One can also be multiple.
  • the first dimming is performed by the terahertz radiation device 101, the first dimming lens assembly 102, the carrier assembly 103, the second dimming lens assembly 104, and the terahertz detecting assembly 105.
  • the lens assembly 102 is disposed between the terahertz radiation device 101 and the carrier assembly 103
  • the second dimming lens assembly 104 is disposed between the carrier assembly 103 and the terahertz detection assembly 105
  • the terahertz detection assembly 105 is connected to the signal analysis.
  • the device 106, and the terahertz beam radiated by the terahertz radiation device 101 is focused 102 by the first dimming lens assembly to the sample to be tested on the stage 1031, and the terahertz beam transmitted by the sample to be tested is subjected to the second adjustment.
  • the optical lens assembly 104 is focused to the terahertz detection component 105, and the principle of the confocal microscope is utilized, which can greatly improve the spatial resolution of the terahertz imaging to improve the detection accuracy.
  • the sample to be tested can be moved to perform horizontal and vertical scanning of the sample to be tested, and in addition, due to water molecules to the terahertz It has strong absorption capacity and can detect water content with high sensitivity. Therefore, the structural diagram of the three-dimensional water content distribution of the sample to be tested can be obtained, so that the pathological histology can be used to analyze the degree of pathological changes of the tissue to avoid the traditional pathology.
  • the cumbersome procedure of tissue sectioning improves the sensitivity and accuracy of water content determination.
  • the terahertz radiation device 101 may include a terahertz quantum cascade laser 1011.
  • the terahertz radiation device 101 may include a terahertz quantum cascade laser 1011 and a thermoelectric cooler 1012 connected to the terahertz quantum cascade laser 1011.
  • the terahertz radiation device 101 is used to radiate a terahertz beam, and the thermoelectric cooler 1012 and the terahertz quantum cascade laser 1011 are generally connected by heat transfer (thermal coupling), thereby effectively eliminating the terahertz quantum cascade laser 1011 itself.
  • the heat ensures long-term reliable operation of the terahertz radiation device 101 and even the entire device; the terahertz quantum cascade laser 1011 is typically driven in a pulsed mode.
  • the terahertz radiation source is the key device for determining the terahertz imaging sensitivity.
  • semiconductor-based all-solid-state terahertz quantum cascade lasers have high energy conversion efficiency, small size, light weight, and easy integration.
  • the use of semiconductor-based all-solid-state terahertz quantum cascade lasers ensures high sensitivity performance of the device in water content determination.
  • the first dimming lens assembly 102 can include a first collimating lens 1021, a first focusing lens 1022, a first aperture stop 1023, and a second collimating arrangement.
  • the terahertz beam exiting ⁇ 1023 is collimated by the second collimating lens 1024, and the second focusing lens 1025 is focused to the sample to be tested on the stage.
  • each optical component in the first dimming lens assembly 102 can be disposed in a free space; the first collimating lens 1021 and the first focusing lens 1022 are used for collimating and focusing the terahertz beam to the first aperture stop 1023
  • the first aperture stop 1023 is used as a spatial filter for obtaining a uniform terahertz beam profile to improve the quality of the microscopic image; in addition, the first aperture stop 1023 as a confocal aperture stop must be sufficiently small to select a sub-aperture
  • the millimeter-scale aperture size is to reduce the power loss of the terahertz radiation at the first aperture stop 1023 while ensuring the imaging resolution; the second collimating lens 1024 and the second focusing lens 1025 are used to emit the first aperture stop 1023.
  • the Hertz beam is collimated and focused; since the sub-millimeter first aperture stop 1023 will produce a larger exit beam divergence angle, the second collimating lens 1024 needs to have a larger lens diameter, ie a second collimation
  • the lens diameter of the lens 1024 is larger than the lens diameter of the first collimating lens 1021 to effectively collect the terahertz light beam emitted by the first aperture stop 1023; the second focusing lens 1025 needs to have a larger
  • the diameter, that is, the lens diameter of the second focusing lens 1025 is larger than the lens diameter of the first focusing lens 1022, and it is also required to have a high concentrating ability, such as having a large numerical aperture, that is, the numerical aperture of the second focusing lens 1025 is larger than that of the first focusing lens 1022.
  • the numerical aperture is used to focus a larger diameter terahertz beam on a point on the sample to be tested, thereby moving the stage 1031 to drive the sample to be scanned for scanning imaging.
  • the structural composition of the first dimming lens assembly 102 is not limited thereto.
  • the sub-millimeter scale refers to 0.1 mm to 1 mm.
  • the carrier assembly 103 may further include a stepping motor 1032 and a controller 1033, wherein the stepping motor 1032 is connected to the stage 1031 and the controller 1033, respectively;
  • the 1033 is used to control the stepping motor 1032 to drive the stage 1031 to perform stepping motion in the set direction, and feed back the step position information.
  • the sample to be tested is placed and fixed on the stage 1031, the stage 1031 needs to be kept horizontal, and in addition, the stage 1031 in which the sample to be tested is placed generally needs to be performed.
  • Partial hollowing out or use of high-transmittance, low-absorption materials in the terahertz band or materials that use transmittances in the terahertz band above the transmittance threshold, ie, a certain transmittance
  • the material required or required for the absorption rate, wherein the transmittance threshold can be selected according to actual needs) so that the terahertz beam incident on the sample to be tested can be transmitted from the bottom of the sample to be tested and propagated to the terahertz detecting component 105.
  • the stepping motor 1032 is generally mechanically coupled to the stage 1031, and the stepping motor 1032 is generally electrically coupled to the controller 1033.
  • the controller 1033 is configured to control the sample to be tested and the stage 1031 to perform high-precision steps in the horizontal and vertical directions. Into the motion, digital feedback step position information, adjust the field of view of the microscope or the area of the sample to be monitored, as an auxiliary mechanical device for microscopic scanning imaging.
  • the main performance index of the microscope is its spatial resolution
  • the sub-millimeter first aperture stop 1023 and the large numerical aperture second focus lens 1025 used by the water content distribution detecting device of the embodiment of the present invention will Greatly enhance spatial resolution.
  • the spatial resolution of the water content distribution detecting device has a certain relationship with the scanning precision of the stepping motor 1032 (ie, the displacement of each step).
  • the scanning accuracy of the stepping motor 1032 needs to be more than twice the spatial resolution of the microscope itself, so that the spatial resolution can be obtained, otherwise the original spatial resolution of the microscope will be reduced. Therefore, in one of the embodiments, the scanning accuracy of the stepping motor 1032 is more than twice the spatial resolution of the water content distribution detecting device.
  • the second dimming lens assembly 104 may include a third collimating lens 1041, a third focusing lens 1042, a second aperture stop 1043, and a first off-axis paraboloid.
  • the terahertz beam emerging from the second aperture stop 1043 is projected to the terahertz detection assembly 105 via the first off-axis parabolic mirror 1044 and the second off-axis parabolic mirror 1045.
  • each optical component in the second dimming lens assembly 104 can be disposed in a free space.
  • the third collimating lens 1041 is configured to collect and collimate a terahertz beam transmitted and diverged from the bottom of the sample to be tested, and the third collimating lens 1041 needs to have the same or larger numerical aperture as the second focusing lens 1025, ie, The numerical aperture of the three collimating lens 1041 is greater than or equal to the numerical aperture of the second focusing lens 1025 to optimize the spatial resolution of the detecting device.
  • the third focusing lens 1042 is for focusing the collimated rear terahertz beam to the second aperture stop 1043.
  • the second aperture stop 1043 is used as a confocal aperture stop, and the aperture of the second aperture stop 1043 is also required to be small enough to obtain a high resolution image, and an aperture similar in size to the first aperture stop 1023 can be selected, ie, The aperture of the two aperture stop 1043 is also sub-millimeter to ensure low power loss and high imaging resolution of the terahertz beam.
  • the terahertz beam emerging from the second aperture stop 1043 is projected to the terahertz detection assembly via the first off-axis parabolic mirror 17 and the second off-axis parabolic mirror 18, wherein the focused beam and field of view of the second off-axis parabolic mirror 18 are
  • the incident cone beam of the terahertz detection assembly 105 is matched to the field of view to ensure maximum light propagation coupling efficiency.
  • the first collimating lens 1031, the first focusing lens 1032, the second collimating lens 1034, the second focusing lens 1035, the third collimating lens 1041, and the third focusing lens 1042 are generally convex lenses.
  • a first collimating lens 1031 of the same lens diameter and a first focusing lens 1032, a second collimating lens 1034 of the same lens diameter and a second focusing lens 1035, a third collimating lens 1041 of the same lens diameter, and a third focusing may be selected.
  • Lens 1042 is generally convex lenses.
  • the terahertz detecting assembly 105 may include a super hemispherical lens 1051 and a thermal radiation meter 1052 disposed in a free space, wherein the thermal radiation meter 1052 is placed on the back of the super hemispherical lens 1052.
  • the super hemispherical lens 1051 is used to enhance the coupling efficiency of the thermal radiation meter 1052; the thermal radiation meter 1052 is also electrically connected to the signal analysis device 106 for performing acquisition and processing of the scanning imaging.
  • the water content distribution detecting device of the present invention may further include a signal analyzing device 106.
  • the signal analyzing means may include a signal amplifying circuit 1061, a signal collecting circuit 1062, and an image analyzing device 1063 which are sequentially connected.
  • the connection between the signal amplifying circuit 1061, the signal collecting circuit 1062 and the image analyzing device 1063 may be electrically connected.
  • the image analyzing device 1063 can adopt both online analysis and offline analysis.
  • the image analyzing device 1063 may be further connected to the controller 1033.
  • the image analyzing device 1063 may be configured to acquire the step position information fed back by the controller 1033, and combine the position information of the sample to be tested corresponding to each step position and at each step.
  • the measured signal of the sample to be tested at the position is taken to obtain a water content distribution map.
  • the signal amplifying circuit 1061 may include a lock-in amplifier and a chopper connected to the lock-in amplifier, the chopper being disposed before the terahertz detecting component 105, where the chopper is disposed before the terahertz detecting component 105 It means that the chopper is set at a position before the terahertz light velocity is incident on the terahertz detecting component 105, and the position can be selected according to actual needs.
  • the lock-in amplifier can greatly suppress unwanted noise and improve detection sensitivity, and the chopper is used to acquire a reference signal having the same frequency and phase relationship with the signal under test.
  • FIG. 9 it is a schematic structural view of a water content distribution detecting device of the present invention in a specific example.
  • a schematic structural view of a preferred example of the water content distribution detecting device is shown in FIG.
  • some deformations and improvements may be made to certain components or components.
  • the following is an example of the water content distribution detecting device in FIG. 9 as an example. .
  • the water content distribution detecting apparatus of the second embodiment includes a terahertz radiation device, a first dimming lens assembly, a carrier assembly, a second dimming lens assembly, a terahertz detecting component, and a signal analyzing device 217. .
  • the terahertz radiation device comprises a quantum cascade laser 202 having integrated thermoelectric cooler 201, wherein the thermoelectric cooler and the quantum cascade laser are connected by heat transfer (thermal coupling);
  • the first dimming lens assembly is disposed in terahertz radiation Between the device and the carrier assembly;
  • the first dimming lens assembly includes a first collimating lens 203, a first focusing lens 204, a first aperture stop 205, a second collimating lens 206, and a second a series of optical components of the second focusing lens 207;
  • the carrier assembly includes a stage 208 with a stepping motor, wherein the stage with the stepping motor is referred to as a stepping stage, wherein the sample to be tested
  • the 218 is placed on the stepping stage 208, and the stepping stage 208 is electrically connected to the controller 209 for controlling the high-precision stepping motion and scanning imaging of the sample 218 to be tested in the horizontal and vertical directions;
  • the optical lens assembly is disposed
  • the terahertz detection assembly includes a free-spaced super hemispherical lens 215 and a thermal radiation meter 216, wherein the thermal radiation meter is placed in the super
  • a signal analysis device 217 is electrically connected to the back of the hemispherical lens.
  • the signal analysis device 217 can include a signal amplification circuit, a signal acquisition circuit, and an image analysis device.
  • the signal amplification module, the signal acquisition module, and the image analysis device are electrically connected.
  • the image analysis device can adopt two methods: online analysis and offline analysis.
  • the signal amplifying circuit may include a lock-in amplifier, which can greatly suppress unwanted noise and improve detection sensitivity; the lock-in amplifier needs to be connected to a chopper, and the chopper needs to be disposed before the terahertz detecting component. , thereby obtaining a reference signal having the same frequency and phase relationship with the signal under test.
  • the water content distribution detecting device in this specific example utilizes the principle of confocal microscopy to greatly improve the spatial resolution of terahertz imaging, and can be extended to other applications of terahertz imaging, including medical imaging and material detection.
  • a confocal terahertz scanning microscope to scan the sample horizontally and vertically, a schematic diagram of the three-dimensional water content distribution of the sample can be obtained, thereby using pathological histology to analyze the degree of tissue damage, avoiding the tradition.
  • the cumbersome procedure of tissue sectioning in pathology improves the sensitivity and accuracy of water content determination.
  • the third embodiment of the present invention improves the application of a water content distribution detecting device.
  • the water content distribution detecting device described in any of the above embodiments may be applied to biological tissue analysis and material detection.
  • the sample to be tested can be placed on the stage 1031, and the three-dimensional scanning of the sample to be tested can be completed by controlling the stage 1031 to move in the horizontal direction and the vertical direction to obtain a three-dimensional sample to be tested.
  • the water content distribution map is analyzed according to the water content value of each point in the three-dimensional water content distribution map and the pathological histology method. For example, the area of the sample to be tested whose water content value is within a certain set interval may be queried, and the water content values of the points in the area are averaged, according to the average value and the preset lesion degree and water content value.
  • the correspondence determines the extent of the lesion in the corresponding tissue.
  • the setting interval can be selected according to actual needs. In this way, the cumbersome procedure of tissue sectioning in traditional pathology can be avoided, and the sensitivity and accuracy of water content determination are improved.
  • the sample to be tested can be placed on the stage 1031, and the three-dimensional scanning of the sample to be tested can be completed by controlling the stage 1031 to move in the horizontal direction and the vertical direction, and the three-dimensional water of the sample to be tested can be obtained.
  • the content distribution map based on the correspondence between the preset material type and the water content value, queries the material type that matches the water content value of each point in the three-dimensional water content distribution map.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种水含量分布检测装置及其应用,检测装置包括太赫兹辐射装置(101)、第一调光透镜组件(102)、载物架组件(103)、第二调光透镜组件(104)和太赫兹探测组件(105),载物架组件(103)包括可移动的载物台(1031);第一调光透镜组件(102)设置在太赫兹辐射装置(101)和载物架组件(103)之间,第二调光透镜组件(104)设置在载物架组件(103)和太赫兹探测组件(105)之间,太赫兹探测组件(105)连接信号分析装置(106);太赫兹辐射装置(101)辐射出的太赫兹光束经第一调光透镜组件(102)聚焦至载物台(1031)上的待测样品,待测样品透射的太赫兹光束经第二调光透镜组件(104)聚焦至太赫兹探测组件(105),太赫兹探测组件(105)探测到的太赫兹信号输入到信号分析装置(106)进行样品的含水量分布检测。采用该检测装置可以避免组织切片的繁琐程序,且可以提高水含量测定的灵敏度和准确性。

Description

水含量分布检测装置及其应用 技术领域
本发明涉及本发明涉及太赫兹检测技术领域,特别是涉及一种水含量分布检测装置及其应用。
背景技术
在进行生物组织分析中,常使用组织切片方法对生物组织进行切片,随后使用光学显微镜进行观察分析,通过观察其中的水含量分布来鉴定生物组织中正常组织和病变组织的分布和位置。然而此种方法需要专业人员进行繁琐的人工操作和冗长的数据分析,所需成本较高、步骤较为繁琐、等待周期较长。
此外,使用普通光学显微镜进行水含量分析,仅依据不同水含量区域的图像反差进行鉴别,水含量测定的灵敏度较低。
发明内容
本发明的目的在于提供一种水含量分布检测装置及其应用,可以避免组织切片的繁琐程序,且可以提高水含量测定的灵敏度和准确性。
本发明的目的通过如下技术方案实现:
一种水含量分布检测装置,包括:太赫兹辐射装置、第一调光透镜组件、载物架组件、第二调光透镜组件和太赫兹探测组件,所述载物架组件包括可移动的载物台;
所述第一调光透镜组件设置在所述太赫兹辐射装置之间,所述第二调光透镜组件设置在所述载物架组件和所述太赫兹探测组件之间,所述太赫兹探测组件连接信号分析装置;
所述太赫兹辐射装置辐射出的太赫兹光束经第一调光透镜组件聚焦至所述载物台上的待测样品,所述待测样品透射的太赫兹光束经所述第二调光透镜组件聚焦至所述太赫兹探测组件,所述太赫兹探测组件探测到的太赫兹信号输入 到所述信号分析装置进行所述待测样品的含水量分布检测。
一种如上所述的水含量分布检测装置在生物组织分析、材料检测中的应用。
根据上述本发明的方案,其装置包括太赫兹辐射装置、第一调光透镜组件、载物架组件、第二调光透镜组件和太赫兹探测组件,载物架组件包括可移动的载物台,第一调光透镜组件设置在太赫兹辐射装置之间,第二调光透镜组件设置在载物架组件和太赫兹探测组件之间,太赫兹探测组件连接信号分析装置,太赫兹辐射装置辐射出的太赫兹光束经第一调光透镜组件聚焦至载物台上的待测样品,待测样品透射的太赫兹光束经第二调光透镜组件聚焦至太赫兹探测组件,太赫兹探测组件探测到的太赫兹信号输入到信号分析装置进行待测样品的含水量分布检测,一方面,由于包括太赫兹辐射装置、第一调光透镜组件、载物架组件、第二调光透镜组件和太赫兹探测组件,载物架组件包括可移动的载物台,第一调光透镜组件设置在太赫兹辐射装置之间,第二调光透镜组件设置在载物架组件和太赫兹探测组件之间,太赫兹探测组件连接信号分析装置,且由于太赫兹辐射装置辐射出的太赫兹光束经第一调光透镜组件聚焦至载物台上的待测样品,待测样品透射的太赫兹光束经第二调光透镜组件聚焦至太赫兹探测组件,利用了共聚焦显微镜原理,可以大幅度的提高太赫兹成像的空间分辨率以提升检测的准确性,另一方面,由于载物台可移动,在载物台发生移动时可以带动放置在载物台上的待测样品进行移动,可以实现对待测样品水平和垂直方向的扫描,此外,由于水分子对太赫兹辐射具有强大的吸收能力,可以进行高灵敏度的水含量检测,因此,可以获得待测样品的三维水含量分布的结构示意图,从而利用病理组织学的方法对组织的病变程度进行分析,避免传统病理学中组织切片的繁琐程序,提高了水含量测定的灵敏度和准确性,将该水含量分布检测装置应用在生物组织分析、材料检测中,具有广泛的应用价值。
附图说明
图1为本发明实施例一的水含量分布检测装置的组成结构示意图一;
图2为图1中的太赫兹辐射装置在其中一个实施例中的细化结构示意图;
图3为图1中的第一调光透镜组件在其中一个实施例中的细化结构及其光 路示意图;
图4为图1中的载物架组件在其中一个实施例中的细化结构示意图;
图5为图1中的第二调光透镜组件在其中一个实施例中的细化结构及其光路示意图;
图6为图1中的太赫兹探测组件在其中一个实施例中的细化结构及其光路示意图;
图7为本发明实施例一的水含量分布检测装置的组成结构示意图二;
图8为图1或者图7中的信号分析装置的在其中一个实施例中的细化结构示意图;
图9为本发明实施例二的一个具体示例中的水含量分布检测装置的组成结构及其光路示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本使用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/和”包括一个或多个相关的所列项目的任意的和所有的组合。
太赫兹辐射是指频率在0.1THz到10THz之间的电磁辐射。由于在太赫兹频段,金属物体表现为极强反射的特点,复杂有机分子表现为光谱特性吸收,非极性非金属材料表现为高透射等特点,太赫兹成像在无损检测、材料学、国防安全等领域均具有重要的应用价值。由于水是极性分子,水分子对太赫兹辐射具有强大的吸收能力,无论是实验室组装的太赫兹系统,还是商业型太赫兹产品,冲氮气或干空气都是常用的排除系统内水蒸气的方法,以减少太赫兹波在自由空间内的损耗。也正因如此,太赫兹成像能够很容易地鉴别含水物质和无水物质,进行高灵敏度水含量的测定。这一点在生物系统中尤为重要,因为 水含量的微小改变将反映生物组织的关键性变化。人们在不使用有损式检测方法(如病理学组织切片)的情况下,仍能准确地将正常组织和病变组织(如癌化组织)区分开来,且灵敏度更高。太赫兹成像主要根据水分对太赫兹辐射的吸收,因此可以进行高灵敏度的水含量检测。太赫兹显微成像技术是一项很有潜能的医学诊断性技术,致力于提高目前太赫兹成像系统的空间分辨率,从而在太赫兹频段获得被测待测样品的显微层析图像。以下对本发明方案的各个实施例进行详细阐述。
实施例一
参见图1所示,为本发明实施例一的水含量分布检测装置的组成结构示意图一。如图1所示,本实施例一的水含量分布检测装置包括太赫兹辐射装置101、第一调光透镜组件102、载物架组件103、第二调光透镜组件104和太赫兹探测组件105,载物架组件103包括可移动的载物台1031;
第一调光透镜组件102设置在太赫兹辐射装置101和载物架组件103之间,第二调光透镜组件104设置在载物架组件103和太赫兹探测组件105之间,太赫兹探测组件105连接信号分析装置106;
太赫兹辐射装置101辐射出的太赫兹光束经第一调光透镜组件聚焦102至载物台1031上的待测样品,所述待测样品透射的太赫兹光束经第二调光透镜组件104聚焦至太赫兹探测组件105,太赫兹探测组件105探测到的太赫兹信号输入到信号分析装置106进行所述待测样品的含水量分布检测。
其中,考虑到待测样品在检测时是放置在载物台1031上的,为了能够实现对待测样品的三维扫描,一般需要载物台1031可在水平方向和垂直方向(垂直水平面的方向)移动。
其中,信号分析装置106可以是水含量分布检测装置的外接组件,也可以是水含量分布检测装置的内部组件。
其中,第一调光透镜组件102和第二调光透镜组件104可以分别包括一种或者多种光学元器件,例如,凸透镜、孔径光阑等,且每一种光学元器件的数量分别可以为一个,也可以为多个。
据此,根据上述本实施例的方案,由于太赫兹辐射装置101、第一调光透镜组件102、载物架组件103、第二调光透镜组件104和太赫兹探测组件105,第一调光透镜组件102设置在太赫兹辐射装置101和载物架组件103之间,第二调光透镜组件104设置在载物架组件103和太赫兹探测组件105之间,太赫兹探测组件105连接信号分析装置106,且由于太赫兹辐射装置101辐射出的太赫兹光束经第一调光透镜组件聚焦102至载物台1031上的待测样品,所述待测样品透射的太赫兹光束经第二调光透镜组件104聚焦至太赫兹探测组件105,利用了共聚焦显微镜原理,可以大幅度的提高太赫兹成像的空间分辨率以提升检测的准确性,另一方面,由于载物台1031可移动,在载物台1031发生移动时可以带动待测样品进行移动,可以实现对待测样品水平和垂直方向的扫描,此外,由于水分子对太赫兹辐射具有强大的吸收能力,可以进行高灵敏度的水含量检测,因此,可以获得待测样品的三维水含量分布的结构示意图,从而利用病理组织学的方法对组织的病变程度进行分析,避免传统病理学中组织切片的繁琐程序,提高了水含量测定的灵敏度和准确性。
在其中一个实施例中,如图2所示,太赫兹辐射装置101可以包括太赫兹量子级联激光器1011。或者,如图2所示,太赫兹辐射装置101可以包括太赫兹量子级联激光器1011和与该太赫兹量子级联激光器1011连接的热电制冷器1012。
其中,太赫兹辐射装置101用于向辐射太赫兹光束,热电制冷器1012和太赫兹量子级联激光器1011一般是通过传热连接(热耦合),从而有效消除太赫兹量子级联激光器1011自身产生的热,确保了太赫兹辐射装置101乃至整个装置的长期可靠运行;太赫兹量子级联激光器1011一般是在脉冲模式下进行驱动。太赫兹辐射源是决定太赫兹成像灵敏度的关键器件;在众多太赫兹辐射的产生方式中,基于半导体的全固态太赫兹量子级联激光器具有能量转换效率高、体积小、轻便、易集成等特点;使用基于半导体的全固态太赫兹量子级联激光器,可以保证装置在水含量测定的高灵敏度性能。
在其中一个实施例中,如图3所示,第一调光透镜组件102可以包括依次设置的第一准直透镜1021、第一聚焦透镜1022、第一孔径光阑1023、第二准直 透镜1024及第二聚焦透镜1025;太赫兹辐射装置101辐射出的太赫兹光束经所述第一准直透镜1021准直、第一聚焦透镜1022聚焦至第一孔径光阑1023,第一孔径光阑1023出射的太赫兹光束经第二准直透镜1024准直、第二聚焦透镜1025聚焦至所述载物台上的待测样品。
其中,第一调光透镜组件102中的各光学元器件可以设置在自由空间中;第一准直透镜1021、第一聚焦透镜1022用于准直并聚焦太赫兹光束至第一孔径光阑1023;第一孔径光阑1023作为空间滤波器,用于获得均匀的太赫兹光束轮廓,以改善显微影像质量;此外,第一孔径光阑1023作为共聚焦孔径光阑必须足够小,可选取亚毫米级孔径大小以减少太赫兹辐射在第一孔径光阑1023的功率损耗,同时保证成像分辨率;第二准直透镜1024、第二聚焦透镜1025用于对第一孔径光阑1023出射的太赫兹光束进行准直和聚焦;由于亚毫米级的第一孔径光阑1023将产生较大的出射光束发散角,因此,第二准直透镜1024需具有较大的透镜直径,即第二准直透镜1024的透镜直径大于第一准直透镜1021的透镜直径,以有效收集第一孔径光阑1023出射的太赫兹光束;第二聚焦透镜1025除需要拥有较大直径,即第二聚焦透镜1025的透镜直径大于第一聚焦透镜1022的透镜直径,还需拥有交高聚光能力,如拥有大数值孔径,即第二聚焦透镜1025的数值孔径大于第一聚焦透镜1022的数值孔径,以将较大直径的太赫兹光束聚焦于待测样品上一点,从而移动载物台1031以带动待测样品进行扫描成像。需要说明的是,第一调光透镜组件102的结构组成不限于此。亚毫米级指0.1毫米至1毫米。
在其中一个实施例中,如图4所示,载物架组件103还可以包括步进电机1032和控制器1033,其中,步进电机1032分别与载物台1031、控制器1033连接;控制器1033用于控制步进电机1032带动载物台1031在设定方向上进行步进运动,并反馈步进位置信息。
在本实施例中的水含量分布检测装置投入使用后,待测样品放置并固定于载物台1031上,载物台1031需保持水平,此外,放置待测样品的载物台1031一般需进行部分的挖空处理或使用太赫兹频段内高透射率、低吸收的材料(或者说是使用对太赫兹频段的透射率高于透射率阈值的材料,即满足一定透射率 要求或者吸收率要求的材料,其中,透射率阈值可以根据实际需要选定),以保证入射到待测样品的太赫兹光束可以从待测样品底部透射出去,经传播到达太赫兹探测组件105,完成太赫兹透射光束的探测。
其中,步进电机1032一般与载物台1031机械连接,步进电机1032一般与控制器1033电连接;控制器1033用于控制待测样品和载物台1031在水平和垂直方向进行高精度步进运动,数字反馈步进位置信息,调整显微镜的视场或所需监控的样品区域,作为显微镜扫描成像的辅助机械装置。
需要说明的是步进电机1032与载物台1031的在图4中的位置关系仅是示意性的,并不代表步进电机1032必须位于载物台1031的一侧,在具体实现,可以根据实际需要设定两者的位置关系。
作为成像系统,显微镜的主要性能指标就是其空间分辨率,而本发明实施例的水含量分布检测装置所使用的亚毫米级的第一孔径光阑1023和大数值孔径的第二聚焦透镜1025将大大增强空间分辨率。由于该水含量分布检测装置使用扫描方式进行二维或三维图像的建立,该水含量分布检测装置的空间分辨率与步进电机1032的扫描精度(即每次步进的位移)有一定关系,根据奈奎斯特采样定理,步进电机1032的扫描精度需是显微镜本身空间分辨率的2倍以上,才可以保证空间分辨率的获取,否则会降低显微镜原有的空间分辨率。因此,在其中一个实施例中,步进电机1032的扫描精度为水含量分布检测装置的空间分辨率的两倍以上。
在其中一个实施例中,如图5所示,第二调光透镜组件104可以包括依次设置的第三准直透镜1041、第三聚焦透镜1042、第二孔径光阑1043、第一离轴抛物面镜1044和第二离轴抛物面镜1045;所述待测样品透射的太赫兹光束经第三准直透镜1041收集、准直后,经第三聚焦透镜1042聚焦至所述第二孔径光阑1043;第二孔径光阑1043出射的太赫兹光束经第一离轴抛物面镜1044、第二离轴抛物面镜1045投射至太赫兹探测组件105。
其中,第二调光透镜组件104中的各光学元器件可以设置在自由空间中。第三准直透镜1041用于收集、准直从待测样品底部透射并发散的太赫兹光束,第三准直透镜1041需拥有与第二聚焦透镜1025相同或更大的数值孔径,即第 三准直透镜1041的数值孔径大于或者等于第二聚焦透镜1025的数值孔径,以最优化检测装置的空间分辨率。第三聚焦透镜1042用于将准直后太赫兹光束聚焦至第二孔径光阑1043。第二孔径光阑1043作为共聚焦孔径光阑,第二孔径光阑1043的孔径同样需足够小,以获得高分辨率的图像,可以选取与第一孔径光阑1023相似大小的孔径,即第二孔径光阑1043的孔径也为亚毫米级,以保证太赫兹光束的低功率损耗和高成像分辨率。第二孔径光阑1043出射的太赫兹光束经由第一离轴抛物面镜17、第二离轴抛物面镜18投射至太赫兹探测组件,其中第二离轴抛物面镜18的聚焦光束和视场需与太赫兹探测组件105的入射锥形光束和视场相匹配,以保证最大化的光传播耦合效率。
其中,第一准直透镜1031、第一聚焦透镜1032、第二准直透镜1034、第二聚焦透镜1035、第三准直透镜1041以及第三聚焦透镜1042一般均为凸透镜,在具体实现时,可以选用相同透镜直径的第一准直透镜1031和第一聚焦透镜1032,相同透镜直径的第二准直透镜1034和第二聚焦透镜1035,相同透镜直径的第三准直透镜1041和第三聚焦透镜1042。
在其中一个实施例中,如图6所示,太赫兹探测组件105可以包括自由空间内设置的超半球透镜1051和测热辐射仪1052,其中,测热辐射仪1052放置在超半球透镜1052背面,超半球透镜1051用于增强测热辐射仪1052的耦合效率;测热辐射仪1052还电性连接有信号分析装置106,信号分析装置106用于进行扫描成像的采集和处理。
在其中一个实施例中,如图7所示,本发明的水含量分布检测装置还可以包括信号分析装置106。
在其中一个实施例中,如图8所示,信号分析装置可以包括依次连接的信号放大电路1061、信号采集电路1062和图像分析装置1063。其中,信号放大电路1061、信号采集电路1062和图像分析装置1063之间的连接方式可以是电性连接。图像分析装置1063可采用在线分析和离线分析两种方式。
其中,图像分析装置1063还可以和控制器1033连接,图像分析装置1063可以用于获取控制器1033反馈的步进位置信息,结合每个步进位置对应的待测样品位置信息以及在每个步进位置时待测样品的被测信号获取水含量分布图。
此外,信号放大电路1061可以包括一锁相放大器以及与该锁相放大器连接的斩波器,该斩波器设置在太赫兹探测组件105之前,这里,斩波器设置在太赫兹探测组件105之前是指斩波器设置在太赫兹光速入射至太赫兹探测组件105之前的某个位置,该位置可以根据实际需要选取。其中,锁相放大器可大幅度的抑制无用噪声并提高检测灵敏度,斩波器用于获取和被测信号有相同频率和相位关系的参考信号。
实施例二
为了便于理解本发明的方案,以下通过一个具体示例对本发明方案进行阐述。
如图9所示,为本发明的水含量分布检测装置在一具体示例中的组成结构示意图。图9中示出了水含量分布检测装置的一个较佳示例的组成结构示意图。依据不同的考虑因素,在具体实现本发明的水含量分布检测装置时,也可以对某些部件或者组件做出若干变形和改进,以下以图9中的水含量分布检测装置为例进行详细说明。
参见图9所示,本实施例二的水含量分布检测装置包括太赫兹辐射装置、第一调光透镜组件、载物架组件、第二调光透镜组件、太赫兹探测组件和信号分析装置217。
其中,太赫兹辐射装置包括已集成热电制冷器201的量子级联激光器202,其中热电制冷器和量子级联激光器是通过传热连接(热耦合);第一调光透镜组件设置在太赫兹辐射装置及载物架组件之间;第一调光透镜组件包括在自由空间依次设置的第一准直透镜203、第一聚焦透镜204、第一孔径光阑205、第二准直透镜206及第二聚焦透镜207的一系列光学元器件;载物架组件包括带步进电机的载物台208,这里,将带步进电机的载物台称为步进载物台,其中,待测样品218放置于步进载物台208上,步进载物台208电性连接有控制器209,用于控制待测样品218在水平和垂直方向进行高精度步进运动和扫描成像;第二调光透镜组件设置在载物架组件及太赫兹探测组件之间;第二调光透镜组件包括自由空间设置的第三准直透镜210、第三聚焦透镜211、第二孔径光阑212、 第一离轴抛物面镜213及第二离轴抛物面镜214的一系列光学元器件;太赫兹探测组件包括自由空间设置的超半球透镜215和测热辐射仪216,其中测热辐射仪放置在超半球透镜背面并且电性连接有信号分析装置217。
其中,信号分析装置217可包括信号放大电路、信号采集电路、图像分析装置;其中信号放大模块、信号采集模块和图像分析装置电性连接;图像分析装置可采用在线分析和离线分析两种方式。信号分析装置中,信号放大电路可以包括一锁相放大器,可大幅度的抑制无用噪声并提高检测灵敏度;该锁相放大器需连接一斩波器,此斩波器需设置在太赫兹探测组件之前,从而获取和被测信号有相同频率和相位关系的参考信号。
该具体示例中的水含量分布检测装置利用了共聚焦显微镜原理,大幅度的提高了太赫兹成像的空间分辨率,可推广到太赫兹成像的其他应用领域包括医学成像、材料检测等。另一方面,使用共聚焦太赫兹扫描显微镜对样品进行水平和垂直方向的扫描,可以获得样品的三维水含量分布的结构示意图,从而利用病理组织学的方法对组织的病变程度进行分析,避免传统病理学中组织切片的繁琐程序,提高了水含量测定的灵敏度和准确性。
实施例三
根据上述本发明的水含量分布检测装置,本发明实施例三提高了一种水含量分布检测装置的应用。可以将如上任意一个实施例所述的水含量分布检测装置应用在生物组织分析、材料检测中。
具体地,在生物组织分析中,可以将待测样品放到载物台1031上,通过控制载物台1031在水平方向和垂直方向移动,可以完成对待测样品的三维扫描,获得待测样品三维水含量分布图,根据三维水含量分布图中各点的水含量值以及病理组织学的方法对组织的病变程度进行分析。例如,可以查询待测样品中水含量值处于某一设定区间的区域,对该区域内的各点的水含量值取平均值,根据该平均值以及预设的病变程度和水含量值的对应关系确定相应组织的病变程度。其中,设定区间可以根据实际需要选取。这种方式,可以避免传统病理学中组织切片的繁琐程序,提高了水含量测定的灵敏度和准确性。
具体地,在材料检测中,可以将待测样品放到载物台1031上,通过控制载物台1031在水平方向和垂直方向移动,可以完成对待测样品的三维扫描,获得待测样品三维水含量分布图,根据预设的材料类型与水含量值的对应关系,查询与三维水含量分布图中各点的水含量值相匹配的材料类型。
上述实施例中所述的“水平”、“垂直”仅是互为相对概念或是以装置的正常使用状态为参考的,而不应该认为是具有限制性的。
需要说明的是,当一个元件被称为“连接”另一个元件,根据需要,它可以是直接连接到另一个元件或者间接连接至该另一个元件上。术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或者暗示相对重要性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种水含量分布检测装置,其特征在于,包括:太赫兹辐射装置、第一调光透镜组件、载物架组件、第二调光透镜组件和太赫兹探测组件,所述载物架组件包括可移动的载物台;
    所述第一调光透镜组件设置在所述太赫兹辐射装置和所述载物架组件之间,所述第二调光透镜组件设置在所述载物架组件和所述太赫兹探测组件之间,所述太赫兹探测组件连接信号分析装置;
    所述太赫兹辐射装置辐射出的太赫兹光束经第一调光透镜组件聚焦至所述载物台上的待测样品,所述待测样品透射的太赫兹光束经所述第二调光透镜组件聚焦至所述太赫兹探测组件,所述太赫兹探测组件探测到的太赫兹信号输入到所述信号分析装置进行所述待测样品的含水量分布检测。
  2. 根据权利要求1所述的水含量分布检测装置,其特征在于,所述第一调光透镜组件包括依次设置的第一准直透镜、第一聚焦透镜、第一孔径光阑、第二准直透镜及第二聚焦透镜;所述太赫兹辐射装置辐射出的太赫兹光束经所述第一准直透镜准直、所述第一聚焦透镜聚焦至所述第一孔径光阑,所述第一孔径光阑出射的太赫兹光束经所述第二准直透镜准直、所述第二聚焦透镜聚焦至所述载物台上的待测样品。
  3. 根据权利要求2所述的水含量分布检测装置,其特征在于,所述第二调光透镜组件包括依次设置的第三准直透镜、第三聚焦透镜、第二孔径光阑、第一离轴抛物面镜和第二离轴抛物面镜;所述待测样品透射的太赫兹光束经所述第三准直透镜收集、准直后,经所述第三聚焦透镜聚焦至所述第二孔径光阑;所述第二孔径光阑出射的太赫兹光束经第一离轴抛物面镜、第二离轴抛物面镜投射至所述太赫兹探测组件。
  4. 根据权利要求3所述的水含量分布检测装置,其特征在于,所述第二准直透镜的透镜直径大于所述第一准直透镜的透镜直径,和/或所述第二聚焦透镜的透镜直径大于所述第一聚焦透镜的透镜直径,和/或所述第二聚焦透镜的数值孔径大于所述第一聚焦透镜的数值孔径;和/或所述第三准直透镜的数值孔径大 于或者等于所述第二聚焦透镜的数值孔径;和/或所述第一孔径光阑的孔径为亚毫米级;和/或所述第二孔径光阑的孔径为亚毫米级。
  5. 根据权利要求1所述的水含量分布检测装置,其特征在于,还包括信号分析装置,所述信号分析装置包括依次连接的信号放大电路、信号采集电路和图像分析装置。
  6. 根据权利要求5所述的水含量分布检测装置,其特征在于,所述信号放大电路包括锁相放大器以及与所述锁相放大器连接的斩波器,所述斩波器设置在所述太赫兹探测组件之前。
  7. 根据权利要求1所述的水含量分布检测装置,其特征在于:
    所述太赫兹辐射装置包括太赫兹量子级联激光器,或者所述太赫兹辐射装置包括太赫兹量子级联激光器和与该太赫兹量子级联激光器连接的热电制冷器;
    或/和
    所述太赫兹探测组件包括超半球透镜和测热辐射仪,所述测热辐射仪放置在所述超半球透镜的背面且与所述信号分析装置连接。
  8. 根据权利要求1所述的水含量分布检测装置,其特征在于,所述载物架组件还包括步进电机和控制器,所述控制器用于控制所述步进电机带动所述载物台在设定方向上进行步进运动,并反馈步进位置信息。
  9. 根据权利要求1所述的水含量分布检测装置,其特征在于,所述载物台包括挖空部或者使用对太赫兹频段的透射率高于设定透射率的材料。
  10. 一种如权利要求1至9任意一项所述的水含量分布检测装置在生物组织分析、材料检测中的应用。
PCT/CN2017/110379 2016-11-11 2017-11-10 水含量分布检测装置及其应用 WO2018086574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610998291.7A CN106338498A (zh) 2016-11-11 2016-11-11 水含量分布检测装置及其应用
CN201610998291.7 2016-11-11

Publications (1)

Publication Number Publication Date
WO2018086574A1 true WO2018086574A1 (zh) 2018-05-17

Family

ID=57841244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110379 WO2018086574A1 (zh) 2016-11-11 2017-11-10 水含量分布检测装置及其应用

Country Status (2)

Country Link
CN (1) CN106338498A (zh)
WO (1) WO2018086574A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327476A (zh) * 2020-11-12 2021-02-05 中国电子技术标准化研究院 一种制备太赫兹双远心透镜天线组的方法及透镜天线组

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106338498A (zh) * 2016-11-11 2017-01-18 华讯方舟科技有限公司 水含量分布检测装置及其应用
KR20190056771A (ko) * 2017-11-17 2019-05-27 현대자동차주식회사 수밀 검사 장치 및 방법
CN109946262B (zh) * 2017-12-21 2024-01-26 深圳先进技术研究院 一种基于太赫兹波的检测装置及检测系统
CN110824592B (zh) * 2018-08-07 2021-12-21 京东方科技集团股份有限公司 透镜组件、太赫兹波层析成像系统、方法及过滤器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006051728A1 (ja) * 2004-11-09 2006-05-18 Tochigi Nikon Corporation 測定装置
EP0828143B1 (en) * 1996-09-09 2009-06-24 Lucent Technologies Inc. Optical system employing terahertz radiation
CN103454255A (zh) * 2013-09-02 2013-12-18 中国科学院上海微系统与信息技术研究所 一种太赫兹波扫描成像系统及方法
CN103954802A (zh) * 2014-05-13 2014-07-30 中国科学技术大学 长波长扫描近场显微分析系统
CN203929610U (zh) * 2013-12-12 2014-11-05 北京理工大学 一种在透射和反射测量间切换的测光装置
CN105259132A (zh) * 2015-10-13 2016-01-20 成都曙光光纤网络有限责任公司 一种太赫兹波透射成像系统
CN106338498A (zh) * 2016-11-11 2017-01-18 华讯方舟科技有限公司 水含量分布检测装置及其应用
CN206223653U (zh) * 2016-11-11 2017-06-06 华讯方舟科技有限公司 水含量分布检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0828143B1 (en) * 1996-09-09 2009-06-24 Lucent Technologies Inc. Optical system employing terahertz radiation
WO2006051728A1 (ja) * 2004-11-09 2006-05-18 Tochigi Nikon Corporation 測定装置
CN103454255A (zh) * 2013-09-02 2013-12-18 中国科学院上海微系统与信息技术研究所 一种太赫兹波扫描成像系统及方法
CN203929610U (zh) * 2013-12-12 2014-11-05 北京理工大学 一种在透射和反射测量间切换的测光装置
CN103954802A (zh) * 2014-05-13 2014-07-30 中国科学技术大学 长波长扫描近场显微分析系统
CN105259132A (zh) * 2015-10-13 2016-01-20 成都曙光光纤网络有限责任公司 一种太赫兹波透射成像系统
CN106338498A (zh) * 2016-11-11 2017-01-18 华讯方舟科技有限公司 水含量分布检测装置及其应用
CN206223653U (zh) * 2016-11-11 2017-06-06 华讯方舟科技有限公司 水含量分布检测装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327476A (zh) * 2020-11-12 2021-02-05 中国电子技术标准化研究院 一种制备太赫兹双远心透镜天线组的方法及透镜天线组
CN112327476B (zh) * 2020-11-12 2022-05-03 中国电子技术标准化研究院 一种制备太赫兹双远心透镜天线组的方法及透镜天线组

Also Published As

Publication number Publication date
CN106338498A (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2018086574A1 (zh) 水含量分布检测装置及其应用
CN110300883B (zh) 用于增强光热成像和光谱的方法和设备
US10942116B2 (en) Method and apparatus for enhanced photo-thermal imaging and spectroscopy
CN103439254B (zh) 一种分光瞳激光共焦拉曼光谱测试方法与装置
CN103969239B (zh) 一种分光瞳激光差动共焦拉曼光谱测试方法及装置
CN103411957B (zh) 高空间分辨双轴共焦图谱显微成像方法与装置
CN107192702B (zh) 分光瞳激光共焦cars显微光谱测试方法及装置
CN107132029B (zh) 一种同时测量高反射/高透射光学元件的反射率、透过率、散射损耗和吸收损耗的方法
WO2014110900A1 (zh) 激光差动共焦图谱显微成像方法与装置
CN107167455A (zh) 分光瞳激光差动共焦cars显微光谱测试方法及装置
CN103940799A (zh) 激光双轴共焦布里渊-拉曼光谱测量方法与装置
JP2017524995A (ja) 線走査、標本走査、多モード共焦点顕微鏡
CN107167456A (zh) 透射式差动共焦cars显微光谱测试方法及装置
CN107037031A (zh) 反射式差动共焦cars显微光谱测试方法及装置
WO2012014727A1 (ja) 遠赤外撮像装置およびそれを用いた撮像方法
CN109187438A (zh) 后置分光瞳激光共焦布里渊-拉曼光谱测试方法及装置
CN111289496A (zh) 一种远距离变焦距激光诱导击穿光谱的检测方法及装置
WO2018059135A1 (zh) 测量太赫兹光束参数的方法
Thompson et al. Confocal laser induced fluorescence with comparable spatial localization to the conventional method
CN106128514A (zh) 激光聚变靶丸物态信息多轴测量系统
US20230236112A1 (en) Method and apparatus for enhanced photo-thermal imaging and spectroscopy
CN104990908B (zh) 激光双轴共焦诱导击穿‑拉曼光谱成像探测方法及装置
CN109211874A (zh) 后置分光瞳激光共焦拉曼光谱测试方法及装置
CN116184679A (zh) 太赫兹成像光路、装调系统、方法及成像光路搭建方法
CN109211873A (zh) 后置分光瞳激光差动共焦拉曼光谱测试方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17870515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17870515

Country of ref document: EP

Kind code of ref document: A1