WO2018086511A1 - 个人座舱通风照明装置 - Google Patents

个人座舱通风照明装置 Download PDF

Info

Publication number
WO2018086511A1
WO2018086511A1 PCT/CN2017/109713 CN2017109713W WO2018086511A1 WO 2018086511 A1 WO2018086511 A1 WO 2018086511A1 CN 2017109713 W CN2017109713 W CN 2017109713W WO 2018086511 A1 WO2018086511 A1 WO 2018086511A1
Authority
WO
WIPO (PCT)
Prior art keywords
personal
ventilation
air
photocatalyst
lighting device
Prior art date
Application number
PCT/CN2017/109713
Other languages
English (en)
French (fr)
Inventor
史乔升
程湛
况薇
张存
汪光文
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2018086511A1 publication Critical patent/WO2018086511A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D11/00Passenger or crew accommodation; Flight-deck installations not otherwise provided for
    • B64D2011/0038Illumination systems for cabins as a whole
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0625Environmental Control Systems comprising means for distribution effusion of conditioned air in the cabin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/064Environmental Control Systems comprising more than one system, e.g. dual systems

Definitions

  • This invention relates to a personal cabin ventilation lighting device, and more particularly to a personal cabin ventilation lighting device that combines the purification of air in a ventilation duct with the illumination of a personal cabin using the principle of photocatalyst.
  • the air quality of the passenger cabin cockpit directly affects the comfort of passengers. There are reports that poor air quality can cause fatigue, headache and sore throat problems in the crew and passengers. On the other hand, the air recirculation system used to save energy re-introduces the air discharged from the cabin into the cabin for ventilation, which makes the air quality problem more serious.
  • a photocatalyst is a substance that does not change itself under the illumination of light but promotes a chemical reaction. Under the irradiation of light, the photocatalyst can activate the oxygen and water adsorbed on the surface of the material to generate a free hydroxyl group and active oxygen with strong oxidizing ability, and an oxidation reaction occurs to completely decompose the organic matter, bacteria, virus, etc. into Carbon dioxide and water.
  • Photocatalyst air purification technology is the ideal technology for environmental pollution control at present.
  • the key to the excellent photocatalytic purification effect is whether the contact area between the polluted air and the photocatalyst can be increased to a greater extent and whether the photocatalyst surface can be sufficiently irradiated with sufficient light.
  • the photocatalyst may be not only a photocatalyst that is excited by irradiation of ultraviolet light, but also a photocatalyst that is excited by irradiation of other light (for example, visible light).
  • the existing photocatalyst purification device can be mainly divided into a single flow channel type, a single flow channel type extended surface type, a honeycomb flow channel superposition type, and an extended light source type. Below, each will be for each category The type of device is briefly described.
  • a single channel structure is a typical photocatalytic device structure.
  • the single-channel photocatalyst device only one flow channel is included, the wall surface of the flow channel is coated with a photocatalyst coating, and the ultraviolet lamp is arranged at the center of the flow channel, and the photocatalytic oxidation reaction process is realized by exciting the photocatalyst.
  • Jin Ning and others from Shanghai University of Technology have integrated primary filtration, high-efficiency filtration, activated carbon filtration and photocatalytic catalytic filtration into one device.
  • the structure of such an integrated device 1A is as shown in FIG.
  • the air enters from the side wall 10A1 of the cylinder 10A. Under the action of the fan 20A disposed inside, the air passes through the multi-layer filter (primary filter 30A, HEPA high efficiency filter 40A, activated carbon filter 50A), and arrives.
  • the inner layer is attached to a screen 60A of TiO 2 (photocatalyst).
  • the ultraviolet double lamp tube 70A is disposed in the center of the cylindrical cylinder 10A of the integrated device 1A, the photocatalyst is in an excited state, and the contaminated gas undergoes a redox reaction when passing through the photocatalyst, thereby realizing the process of air purification by using multiple filters as a whole. .
  • the single-flow type has a disadvantage in that the area in which the contaminated air contacts the photocatalyst (TiO2) is small, and therefore, the reaction area in which the reaction takes place is also small.
  • a single-flow type extended surface structure is proposed, wherein the single-flow type extended surface type
  • the structure is based on a single-channel structure, and other forms of carrier are used instead of the simple flow channel wall as the attachment surface of the photocatalyst. This way increases the surface area of the photocatalyst, thereby increasing the reaction efficiency of the device.
  • the structure of the photocatalytic device 1B in the form of such a swirling air duct is as shown in FIG.
  • the photocatalyst device 1B in the form of a swirling air passage is formed as a spiral flow path 20B by a spacer (not shown) with respect to a single-channel photocatalyst device.
  • the TiO 2 coating (photocatalyst coating) is sprayed on the separator in addition to being sprayed on the pipe wall 11B, thereby increasing the reaction area.
  • ultraviolet lamps 31A, 32A of different radiation wavelengths are arranged in the direction of the central axis of the device, thereby forming a resonant light source to place the photocatalyst in a high intensity excitation state.
  • the photocatalyst device 1B in the form of a swirling swirl duct shown in Fig. 2 since both the flow path length and the coating area are greatly expanded, these two factors also become the key to the improvement of the reaction efficiency.
  • Zhao Gang designed a wire-type photocatalyst device for the railway passenger car, and its structure is shown in Figure 3.
  • the screen type photocatalyst device 1C is mounted on a return air duct (not shown) and has a flat drawer structure.
  • the outlet of the flow channel is small in distance from the inlet, and a metal mesh structure is arranged on each of the end faces.
  • the TiO2 coating (photocatalyst coating) is attached to the screen and is excited by the two ultraviolet lamps 10C arranged in the middle of the flow path. Due to the special shape requirements of the device, the coating is arranged in the direction of the vertical flow channel, and the non-blocking flow path is considered, so that the wire mesh structure is adopted.
  • the mesh structure has limited area expansion and is not an ideal carrier form, resulting in a low efficiency of single pass of the device. Therefore, the structure of the screen type photocatalyst device 1C shown in Fig. 3 is only applicable to the case where the return air can be repeatedly returned and the concentration of the polluted gas is low.
  • Shan Xinggang et al. conducted an experimental study of photocatalysis.
  • the experimental device used in this study was a structural form of a glass tube sleeve, in which an ultraviolet tube was installed in the inner quartz tube, and small glass beads were filled in the outer glass tube sleeve.
  • the TiO 2 photocatalyst is spray-coated on the small glass beads in the form of a coating to form a packed bed, whereby the reaction area can be greatly expanded.
  • the single-channel extended surface photocatalyst devices of the above three cases have the following disadvantages: the air flowing in the flow channel is subject to a large flow resistance, and in the field of ventilation systems sensitive to flow resistance, such as vehicles. In the ventilation system, it is likely that the flow resistance requirement is not met.
  • honeycomb flow path structure is the same as the extended surface structure, which is proposed to increase the reaction surface.
  • the honeycomb flow path is dense and it is not possible to arrange an ultraviolet light source inside each flow path, the ultraviolet lamp can only be placed at the inlet and outlet of the channel.
  • the flow path cannot be set too long, and thus a so-called honeycomb flow path superimposed structure in which a short honeycomb flow path structure and an ultraviolet lamp are superposed is formed.
  • the photocatalyst device 1D designed by the Beihang Wangfu research group for the passenger cabin is a superimposed structure of the honeycomb flow channel, and its structure is shown in Fig. 4.
  • the purpose of using the honeycomb flow path is to consider that the flow resistance of the honeycomb flow path structure is much lower than that of the structure of the packed bed and the metal mesh shown in Fig. 3.
  • a TiO 2 coating (photocatalyst coating) 30D is spray-attached to the wall surface position of each of the honeycomb flow channels 10D, and a plurality of sets of the ultraviolet light 20D and the plurality of honeycomb flow channels 10D are stacked to enable most of the honeycomb channels 10D.
  • the ultraviolet light conditions are good, and thus a large reaction efficiency can be achieved.
  • the honeycomb flow channel laminate used has a size of 300 mm x 300 mm, a thickness of 6 mm, and a honeycomb cell density of 250 x 250 cells/m 2 .
  • the optimal aspect ratio of the cellular channel is 1.5. Under this structural ratio, the light intensity can be fully utilized.
  • Gu Changjun and others have also studied this structure. Different from Lu Dewei and others, Gu Changjun and others used ceramic mesh to replace the metal mesh, and also achieved good experimental results.
  • the above-mentioned three kinds of honeycomb channel superimposed photocatalyst devices also have the following disadvantages: the air flowing in the flow channel is subject to a large flow resistance, and in the field of ventilation systems sensitive to flow resistance, such as ventilation of vehicles. In the system, it is likely that the flow resistance requirement is not met.
  • Feng Qiaolian et al. proposed the idea of using an optical fiber as a light source, and the photocatalyst device 1E is as shown in FIG.
  • the fiber LF replaces the blades of the fan BL and is inserted into the hub H of the fan BL.
  • On the surface of the optical fiber LF a coating of TiO 2 is covered.
  • An ultraviolet lamp tube 20E is arranged in the center of the hub, and the fiber bundle distributed in the radial direction can extend the ultraviolet light source to the coating portion to excite the photocatalytic reaction of the photocatalyst.
  • this idea has not been realized in kind, and its actual effect needs to be verified.
  • Ye Jianren proposed a carrier using SiO 2 as a photocatalyst, and the photocatalyst device 1F made thereof is shown in FIG.
  • a three-dimensional skeleton of SiO 2 was first prepared, and then the TiO 2 coating was attached to the skeleton, and the skeleton was placed in the interior of the apparatus in the form of a packed bed.
  • An ultraviolet lamp tube is arranged near the carrier. Since the light source can expand the optical path through SiO 2 , this form of photocatalyst is also a light source extended type, which greatly contributes to the improvement of reaction efficiency.
  • the application of photocatalyst is mainly concentrated in the civilian field, which is used to purify the air in the room and improve the air quality.
  • the control of polluting gases is still mainly used in the thermal catalytic oxidation reactor. Specifically, the gas is heated to a high temperature of 300 ° C to 500 ° C, and a contaminated gas such as VOC is oxidized to CO 2 and H 2 O by the action of the catalyst.
  • the control of polluting gases is still mainly used to treat O 3 and VOC by ozone converter.
  • the principle is similar to the traditional high temperature catalytic oxidation reactor used in the aerospace field, but there are some reaction conditions. difference.
  • the photocatalytic oxidation reactor has the advantages of low energy consumption and simple structure compared with the conventional high-temperature catalytic oxidation reactor, and thus has a good application prospect.
  • the present invention has been made to solve the above technical problems, and an object thereof is to provide a personal cabin ventilation lighting device, which can not only maximize the contact area between the polluted air and the photocatalyst, but also ensure sufficient light irradiation on the surface of the photocatalyst to the utmost extent. At the same time, through the combination of lighting in the personal cabin, the rational use of the interior space of the cabin.
  • the present invention provides a personal cabin ventilation lighting device comprising a device body housing and a personal lighting assembly for providing illumination of a personal cabin, characterized in that the housing of the apparatus body is The space surrounded by the inner peripheral surface and the outer peripheral surface of the personal lighting assembly constitutes a ventilation flow passage having a gas supply inlet and an air supply outlet. Air from the upstream air intake member flows into the ventilation flow passage from the air supply inlet, and is discharged from the air supply outlet to an air environment in which the personal cabin is located, and is coated on an inner circumferential surface of the apparatus main body casing a photocatalyst coating is disposed on the outer peripheral surface of the personal illumination component, and a photocatalyst excitation light source is disposed. The photocatalyst excitation source is used to excite the photocatalyst coating layer, and the photocatalytic oxidation reaction is used to flow in the ventilation flow channel. The air is purified.
  • thermocatalytic oxidation reactor is additionally provided, and the air purification is combined with the illumination of the personal cabin to realize the rational use of the interior space of the cabin.
  • a personal cabin ventilation lighting device is the personal cabin ventilation lighting device of the first aspect of the present invention, characterized in that the ventilation air passage is connected to the air supply inlet and the supply The cross-sectional area of the flow passage on the gas outlet side is smaller than the cross-sectional area of the flow passage at the portion of the ventilation flow passage for performing the photocatalytic oxidation reaction.
  • the cross-sectional area of the flow passage of the ventilation flow passage on the gas supply inlet and the gas supply outlet side is smaller than that of the ventilation flow passage for performing the photocatalytic oxidation reaction
  • the cross-sectional area of the flow passage at the portion thereof therefore, allows the ventilation flow passage to assume a narrow-wide-narrow form, and accordingly, the flow velocity of the air flowing in the ventilation flow passage also produces a fast-slow-fast change.
  • the photocatalyst excitation light source and the photocatalyst coating are correspondingly disposed at a wide position of the ventilation flow path, it is possible to ensure that the flow rate of the purified air flowing out from the air supply outlet can reach a desired level while ensuring the flow rate of the purified air flowing out from the air supply outlet
  • the time that the air entering the ventilation channel stays in the ventilation channel (personal cabin ventilation lighting) is increased, thereby also increasing the proportion of air in which the photocatalytic reaction occurs.
  • a personal cabin ventilation lighting device is the personal cabin ventilation lighting device of the first aspect of the invention, characterized in that a plurality of said photocatalyst excitation light sources are on the outer circumference of said personal lighting assembly Arranged on the outer peripheral surface of the personal lighting assembly at intervals from each other.
  • a personal cabin ventilation lighting device is the personal cabin ventilation lighting device of the first aspect of the invention, characterized in that the personal cabin ventilation lighting device further comprises a flow regulating mechanism, the individual The lighting assembly has a lamp housing having a lamp housing body and an excitation light source mounting portion, the flow adjustment mechanism having: a manual knob disposed at an outlet end of the device body housing, that is, by the ventilation flow a gas supply outlet side of the track, and is formed to be rotatable relative to an axis of the personal cabin ventilation lighting device, and an opening of the outer side of the personal cabin ventilation lighting device is formed inside the manual knob a personal ventilation nozzle having a large opening on one side of the personal cabin ventilation lighting device; an adjustment spring formed between the lamp housing main body of the lamp housing and the excitation light source mounting portion, one end of the adjustment spring The manual knob is connected, the other end is connected to the personal lighting component; and the adjusting base is provided, the adjusting base Provided at an inlet end of the main body casing of the apparatus, that is
  • the adjustment spring can be pressed or released to move the (the above-mentioned lamp housing) of the personal illumination unit where the adjustment spring is placed to reduce or increase the air supply.
  • the cross-sectional area (opening degree) of the inlet 141 is adjusted, and the air volume (inlet air volume and air outlet amount) is adjusted, so that the passenger sitting on the personal cabin can adjust the air volume according to his own needs, thereby improving the comfort of the occupant.
  • a personal cabin ventilation lighting device is the personal cabin lighting device of the fourth aspect of the present invention, characterized in that the personal lighting assembly further has an illumination source, and the lamp housing further has a concentrating portion for concentrating light emitted by the illumination source.
  • the condensing portion can condense the light emitted from the illumination source, it is possible to provide a brighter illumination of the passenger sitting on the personal cockpit.
  • a personal cabin ventilation lighting device is the personal cabin lighting apparatus of the fourth aspect of the present invention, characterized in that: at the outlet end of the apparatus main body casing, a guide member is further provided, The purified air flowing out of the air supply outlet of the ventilation flow passage passes through the A guiding flow path between the guide and the personal lighting assembly flows to the personal ventilation nozzle of the manual knob and then flows out to the exterior of the personal cabin ventilation lighting device.
  • the purified air passes through the guiding flow path between the guide member and the personal lighting assembly, flows to the personal ventilation nozzle of the manual knob, and then flows out to the personal cabin ventilation lighting device.
  • the outside therefore, allows the purified air to be discharged through a personal venting nozzle to a greater extent.
  • a personal cabin ventilation lighting device is the personal cabin ventilation lighting device of any of the first to sixth aspects of the invention, characterized in that the device main body casing is spherical The personal lighting component is columnar.
  • the ventilation flow path can be made to have a narrow-wide-narrow form, and accordingly, the flow rate of air flowing in the ventilation flow path can also be A fast-slow-fast change is produced whereby the time for the air entering the venting passage to stay in the venting passage (personal cockpit ventilating illuminator) is increased, thereby also increasing the proportion of air in which the photocatalytic reaction occurs.
  • the apparatus main body casing is designed to be spherical, the personal cabin ventilation lighting device can be rotated at a certain angle in the space in which the personal cabin ventilation lighting device is accommodated by the connection mechanism, thereby enabling the personal ventilation nozzle to be realized.
  • the direction of the purified air discharged at the discharge is designed to be spherical.
  • a personal cabin ventilation lighting device is the personal cabin ventilation lighting device of any of the first to sixth aspects of the invention, characterized in that the device main body casing is formed as a shape in which a radial width of the gas supply inlet and the gas supply outlet side of the ventilation flow passage are smaller than a portion of the ventilation flow passage for performing the photocatalytic oxidation reaction Radial width, the personal lighting assembly is cylindrical or frustum shaped.
  • the ventilation flow path can be made to have a narrow-wide-narrow form, and accordingly, the flow velocity of the air flowing in the ventilation flow path also produces a fast-slow-fast change, thereby enabling entry.
  • the time in which the air in the ventilation channel stays in the ventilation channel is increased, thereby also increasing the proportion of air in which the photocatalytic reaction occurs.
  • FIG. 1 is a schematic view showing a single-channel photocatalyst purification apparatus in the prior art.
  • Fig. 2 is a schematic view showing a photocatalyst device of a single-flow type extended surface type (in the form of a swirling airflow duct) in the prior art.
  • Fig. 3 is a schematic view showing another single-channel type extended surface type (mesh type) photocatalyst device in the prior art.
  • Fig. 4 is a schematic view showing a photocatalyst device of a honeycomb flow channel superposition type in the prior art.
  • Fig. 5 is a schematic view showing a photocatalyst device of an extended light source type (using an optical fiber as an extended light source) in the prior art.
  • Fig. 6 is a schematic view showing another photocatalyst device of the prior art in which a light source type (a carrier using SiO2 as a photocatalyst) is expanded.
  • a light source type a carrier using SiO2 as a photocatalyst
  • Fig. 7 is a schematic view showing the structure of a personal cabin ventilation lighting device according to an embodiment of the present invention.
  • Figure 8 is a diagram for explaining the structural principle of a personal cabin ventilation lighting device, in which a device main body casing, a personal lighting assembly, a flow regulating mechanism, a ventilation flow path for ventilation air flow, a photocatalyst excitation light source, and a photocatalyst coating are shown. And other components.
  • Figure 9 is a developmental view schematically showing the arrangement of the photocatalyst excitation light source disposed on the excitation light source mounting surface of the personal cabin ventilation lighting device shown in Figure 7.
  • Fig. 10 is a view schematically showing a modification of the personal cabin ventilation lighting device of Fig. 7, corresponding to Fig. 8 of the present invention, and showing a device main body casing and a personal lighting assembly having different shapes therein.
  • Figure 11 is a top plan view schematically showing the arrangement of the photocatalyst excitation light source disposed on the excitation light source mounting surface of the personal cabin ventilation lighting device shown in Figure 10.
  • FIG. 7 is a schematic view showing the structure of a personal cabin ventilation lighting device 100 according to an embodiment of the present invention
  • FIG. 8 is a view for explaining the structural principle of the personal cabin ventilation lighting device 100 shown in FIG.
  • FIG. 9 is a schematic representation of the individual disposed in FIG. An exploded view of the arrangement of the photocatalyst excitation source 150 on the mounting surface of the excitation light source in the cabin ventilation lighting device 100.
  • a personal cabin ventilation lighting device 100 includes a device main body casing 110, a personal lighting assembly 120, and a flow rate adjusting mechanism 130.
  • the above-described personal cabin ventilation lighting device 100 is a device that combines a ventilation function and a lighting function.
  • a space surrounded by the inner peripheral surface of the apparatus main body casing 110 and the outer peripheral surface of the personal lighting unit 120 (hereinafter sometimes referred to as "excitation light source mounting surface") constitutes a ventilation flow path 140 through which ventilation air flows.
  • the personal lighting assembly 120 described above has an illumination source 121 and a lamp housing 122.
  • the illumination light source 121 is, for example, an LED lamp, but is not limited thereto, and may be any other suitable light source.
  • the lamp housing 122 has, for example, a lamp housing main body 122a having a columnar shape, a condensing portion 122b, and a columnar excitation light source mounting portion 122c for illuminating the light source 121.
  • the emitted light converges to provide a brighter light.
  • the photocatalyst excitation light source 150 is disposed on the outer surface of the excitation light source mounting portion 122c, that is, the excitation light source mounting surface.
  • the flow rate adjustment mechanism 130 has a manual knob 131, an adjustment spring 132, and an adjustment base 133.
  • the manual knob 131 is disposed at the outlet end of the apparatus main body casing 110 and is formed to be rotatable relative to the axis of the apparatus. Inside the manual knob 131, a personal ventilation nozzle 131a having an opening on the outer side of the device larger than an opening on the inner side of the device is formed.
  • the adjustment spring 132 is formed between the lamp housing main body 122a of the lamp housing 122 and the excitation light source mounting portion 122c, and one end of the adjustment spring 132 is connected to the manual knob 131, and the other end is connected to the top end of the lamp housing 122a.
  • the adjustment base 133 is disposed at an inlet end of the apparatus main body casing 110.
  • the adjustment base 133 and the inlet end of the apparatus main body casing 110 are formed with a ventilation passage for allowing air to flow from the upstream ventilation duct and the like to the personal cabin ventilation lighting device 100.
  • the air supply inlet 141 of 140, the personal lighting unit 120 (in the present embodiment, more specifically, the concentrating portion 122b of the lamp housing 122b of the personal lighting unit 120) and the outlet end of the apparatus main body housing 110 are formed.
  • the air supply outlet 142 for the air to flow out of the ventilation flow path 140. In the flow path between the gas supply inlet 141 and the gas supply outlet 142, the air flowing therethrough is purified.
  • a guide member 111 is further disposed at the outlet end of the apparatus main body casing 110, and the purified air flowing out from the air supply outlet 142 passes through the guiding flow path between the guiding member 111 and the personal lighting unit 120, and flows to the manual knob 131. At the personal ventilation nozzle 131a, it then flows out to the outside of the personal cabin ventilation lighting device 100.
  • the adjustment spring 132 can be pressed or released to move the (the lamp housing 122 of the personal illumination unit 120) where the adjustment spring 132 is located up and down to reduce or increase the air supply inlet 141.
  • a photocatalyst coating layer 160 is formed on the inner surface of the apparatus main body casing 110.
  • the photocatalyst coating layer 160 may be applied to the entire inner surface of the apparatus main body casing 110, for example, or may be adjusted according to the position at which the photocatalyst excitation light source 150 is disposed.
  • a plurality of photocatalyst excitation light sources 150 are arranged on the outer peripheral surface (excitation light source mounting surface) of the columnar excitation light source mounting portion 122c at intervals spaced apart from each other over the entire circumference.
  • the apparatus main body casing 110 is formed in a spherical shape as shown in FIG. 7, and the personal illumination unit 120 is columnar.
  • the ventilation flow path 140 can be made to exhibit a narrow-width-narrow form. Accordingly, the flow rate of air flowing in the venting passage 140 also produces a fast-slow-fast change.
  • the apparatus main body casing 110 may be formed as shown in FIG. 8 such that the radial width of the side of the air supply inlet 141 of the ventilation flow path 140 is smaller than the radial direction of the portion of the ventilation flow path 140 for photocatalytic purification. width. Further, although not shown, the radial width of the air supply outlet 142 side of the airflow passage 140 of the apparatus main body casing 110 is also smaller than the diameter of the portion of the ventilation flow path 140 for photocatalytic purification. To the width.
  • the ventilation flow path 140 can also be made to have a narrow-width-narrow form, which is equivalent to the structure shown in Fig. 7. Technical effect.
  • the photocatalyst excitation light source 150 and the photocatalyst coating layer 160 are correspondingly disposed at a wide position of the ventilation flow path 140, the flow rate of the purified air flowing out from the air supply outlet port 142 can be ensured to be required.
  • the time during which the air entering the ventilation flow passage 140 stays in the ventilation flow passage 140 is increased, thereby also increasing the proportion of the air in which the photocatalytic reaction occurs.
  • the apparatus main body casing 110 is designed to be spherical, so that the personal cabin ventilation lighting device 100 can be rotated at a certain angle in the space in which the personal cabin ventilation lighting device 100 is housed by the connection mechanism, thereby enabling The direction of the purified air discharged from the personal ventilation nozzle 131a is adjusted.
  • the photocatalytic oxidation reaction can be utilized to achieve the (Contamination) Removal of a portion of the VOC gas in the air to achieve an air purification function.
  • the apparatus main body casing 110 as a whole has a substantially spherical shape (FIG. 7) and the individual lighting unit 120 as a whole has a columnar shape has been described.
  • the personal lighting unit 120 as a whole may be substantially cylindrical or may be It is roughly square prismatic like a quadrangular prism.
  • the cross-sectional area of the flow path for performing photocatalytic purification in the ventilation flow path 140 is formed to be larger than the cross-sectional area of the flow path at the air supply inlet 141 and the air supply outlet 142 of the ventilation flow path 140.
  • the overall shape of the apparatus main body casing 110 and the personal lighting assembly 120 can be appropriately selected.
  • the air supply to the ventilation passage 140 of the apparatus main body casing 110 is shown.
  • the radial width of the inlet 141 and the side of the air supply outlet 142 are both smaller than the radial width of the portion of the ventilation flow path 140 for photocatalytic purification, and the personal lighting assembly 120 has a columnar structure as a whole, but the present invention does not To be limited thereto, for example, as shown in FIG. 10, the individual illumination unit 120 may have a frustum shape as a whole.
  • the air entering the ventilation flow path 140 is in the ventilation flow path 140 (personal cabin ventilation lighting device 100). The time spent on staying can be increased.
  • the lamp housing 122 as a whole (particularly, the excitation light source mounting portion 122c) has a truncated cone shape, and when viewed in plan as shown in FIG. 11, a plurality of photocatalyst excitation light sources 150 are provided throughout the lamp housing 122.
  • the outer peripheral surface (excitation light source mounting surface) of the excitation light source mounting portion 122c is disposed on the outer circumference at a certain interval from each other.
  • the photocatalyst excitation light source 150 can also be formed on the entire outer peripheral surface of the excitation light source mounting portion 122c, which is self-evident.
  • the other end of the adjustment spring 132 is connected to the top end of the lamp housing 122a, but the present invention is not limited thereto, and may be connected to other portions of the lamp housing 122a.
  • the personal lighting assembly 120 can be moved up and down relative to the device body housing 110 (personal cabin ventilation lighting device 100) by adjusting the pressing and releasing of the spring 132, the connection of the adjusting spring 132 to the personal lighting assembly 120 is adjusted.
  • the position is not limited to the top end of the lamp housing 122a, nor is it limited to the lamp housing 122a.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)

Abstract

一种个人座舱通风照明装置(100),能提高空气与光触媒的接触面积,且能保证光触媒表面得到足够的光照射,通过与照明系统结合来实现机舱内部空间的合理利用。该装置(100)包括装置主体外壳(110)和个人照明组件(120),由装置主体外壳(110)的内周面与个人照明组件(120)的外周面围起的空间构成通风流道(140),通风流道(140)具有供气入口(141)和供气出口(142),来自上游进风部件的空气从供气入口(141)流入通风流道(140),并从供气出口(142)排出至个人座舱所在的空气环境中,在装置主体外壳(110)的内周面涂敷有光触媒涂层(160),在个人照明组件(120)的外周面布置有光触媒激发光源(150),利用光催化氧化反应,对在通风流道(140)中流动的空气进行净化。

Description

个人座舱通风照明装置
本申请要求于2015年12月18日提交的、申请号为201510960268.4的中国专利申请的优先权,在此以参见的方式引入该申请的全部内容。
技术领域
本发明涉及一种个人座舱通风照明装置,更具体来说,本发明涉及一种将利用光触媒的原理对通风管道中的空气的净化与个人座舱的照明相结合的个人座舱通风照明装置。
背景技术
民用客机座舱的空气品质直接影响到乘客的舒适性,有资料表明空气品质不佳会使得机组人员和乘客普遍存在疲劳、头疼和咽喉疼痛等问题。另一方面,为了节省能源而采用的空气再循环系统将座舱排出的空气重新导入座舱进行通风,使空气品质的问题更加严重。
众所周知,光触媒是一种在光的照射下,自身不发生变化,但却能促进化学反应的物质。光触媒在光的照射下,可使材料表面所吸附的氧和水分活性化,产生具有氧化能力极强的自由氢氧基和活性氧,发生氧化反应,以使有机物、细菌、病毒等彻底分解为二氧化碳和水。
光触媒空气净化技术是当前国际上治理环境污染的理想技术。其中,光触媒净化效果优异与否的关键便在于能否更大程度地提高污染空气与光触媒的接触面积以及能否更大程度地保证光触媒表面得到足够的光照射。另外,上述光触媒不仅可以是通过照射紫外光而发生激发的光触媒,也可以是通过照射其它的光(例如可见光)而发生激发的光触媒。
另外,现有的光触媒净化装置按结构主要可分为单流道式、单流道型拓展表面式、蜂窝流道叠加式以及拓展光源式这几种类型。以下,将分别对每种类 型的装置进行简单说明。
(1)单流道式
单流道式结构是典型的光触媒装置结构。在单流道式的光触媒装置中,仅包含一个流道,流道壁面涂有光触媒涂层,而在流道中心布置紫外线灯,通过激发光触媒来实现光催化氧化反应过程。
上海理工大学的金宁等人将初级过滤、高效过滤、活性炭过滤及光触媒催化过滤集成为一个装置进行了研究。这种集成装置1A的结构如图1所示。空气由圆柱筒10A的侧壁10A1进入,在设于内部的风机20A的作用下,空气会先后经过多层过滤网(初效过滤网30A、HEPA高效过滤网40A、活性炭过滤网50A),到达内层的附着有TiO2(光触媒)的滤网60A上。由于在集成装置1A的圆柱筒10A的中心布置有紫外线双灯管70A,因此,光触媒处于激发状态,污染气体在经过光触媒时会发生氧化还原反应,由此利用多重过滤整体上实现空气净化的过程。
但是,如图1所示,单流道式的缺点在于污染空气与光触媒(TiO2)接触的面积小,因此,其发生反应的反应面积也较小。
(2)单流道型拓展表面式
如上所述,由于单流道式的光触媒装置的反应面积较小,因此,为了提高污染空气与光触媒的反应面积,提出了单流道型拓展表面式结构其中,上述单流道型拓展表面式结构是在单流道式结构的基础上,采用了其它形式的载体,以取代单纯的流道壁面来作为光触媒的附着表面。这种方式增加了光触媒的表面积,由此能够提高装置的反应效率。
闫其年等人对导流回旋风道形式的光触媒装置进行了研究。这种导流回旋风道形式的光触媒装置1B的结构如图2所示。相对于单流道式的光触媒装置,这种导流回旋风道形式的光触媒装置1B采用隔板(未图示),形成螺旋流道20B。TiO2涂层(光触媒涂层)除了喷涂在管道壁11B上之外,还喷涂附着在隔板上,由此来提高反应面积。四支(在此仅示出了两支)不同辐射波长的紫 外灯管31A、32A布置于装置中央轴线方向,由此来形成谐振光源,以使光触媒处于高强度激发状态。在图2所示的导流回旋风道形式的光触媒装置1B中,由于流道长度与涂层面积均有较大程度地拓展,因此,这两个因素也成为反应效率提高的关键。
此外,赵刚为铁路客车设计了丝网式的光触媒装置,其结构如图3所示。这种丝网式的光触媒装置1C安装于回风管路(未图示)上,呈扁平的抽屉式结构。流道的出口与入口距离较小,且两个端面各布置有一层金属丝网结构。TiO2涂层(光触媒涂层)附着于丝网上,受到流道中间布置的两支紫外灯管10C照射后达到激发状态。由于此装置特殊的外形要求,使得其涂层布置于垂直流道方向,又考虑到不可阻塞流道,因此采用了丝网结构。但是丝网结构对面积拓展有限,并非理想载体形式,导致装置的单次通过反应效率较低。因此,图3所示的这种丝网式的光触媒装置1C的结构仅适用于可重复回风且污染气体浓度较低的情况。
另外,单兴刚等人进行了光催化的实验研究。该研究采用的实验装置为玻璃管套筒的结构形式,在内层的石英管中安装紫外灯管,在外层的玻璃管套筒中填充小玻璃珠颗粒。将TiO2(光触媒)以涂层形式喷涂附着在小玻璃珠上,而形成为填充床的形式,由此能大幅拓展反应面积。
但是,上述三种情形的单流道型拓展表面式的光触媒装置均存在如下缺点:在流道中流动的空气会受到较大的流阻,在对流阻较为敏感的通风系统领域,如交通工具的通风系统中,很可能不满足流阻要求。
(3)蜂窝流道叠加式
蜂窝流道结构与拓展表面式结构同样,都是为了增大反应表面而提出的。但是,由于蜂窝流道较为密集,无法在每个流道内部布置紫外光源,因此,只能在通道的入口与出口位置放置紫外灯管。另外,考虑到光线的照射范围的局限性,流道又不可设置得过长,由此,也就出现了较短的蜂窝流道结构与紫外灯叠加的所谓蜂窝流道叠加式的结构。
北航王浚课题组为旅客机座舱设计的光触媒装置1D就属于这种蜂窝流道 叠加式的结构,其结构如图4所示。采用蜂窝流道的目的,是考虑到与填充床以及图3所示的金属网等形式的结构相比,蜂窝流道式结构的流阻要低得多。另外,将TiO2涂层(光触媒涂层)30D喷涂附着在每个蜂窝流道10D的壁面位置,利用多组紫外灯20D与多个蜂窝流道10D的叠加结构,能使大部分蜂窝通道10D中的紫外线光照条件良好,由此能实现较大的反应效率。
另外,鹿院卫等人同样研究了这种蜂窝流道叠加式结构。所采用的蜂窝流道层板尺寸为300mm×300mm,厚度为6mm,蜂窝孔密度为250×250单元/m2。经过计算验证,研究提出蜂窝通道最佳纵横比为1.5,这个结构比例下,可保证光强得到充分利用。此外,谷昌军等人也对这种结构进行了研究。与鹿院卫等人不同的是,谷昌军等人采用了陶瓷网取代了金属网,同样也取得了较好的实验效果。
但是,上述三种情形的蜂窝流道叠加式的光触媒装置也同样存在如下缺点:在流道中流动的空气会受到较大的流阻,在对流阻较为敏感的通风系统领域,如交通工具的通风系统中,很可能不满足流阻要求。
(4)拓展光源式
除了上述较为常规的光触媒装置类型,还有些研究者另辟蹊径,通过对光路拓展的方式使得光强分布更加均匀,以此提高反应效率。
冯巧莲等人提出了采用光纤作为拓展光源的想法,其构想的光触媒装置1E如图5所示。光纤LF替代了风机BL的叶片,插在风机BL的轮毂H上。而在光纤LF的表面,则覆盖有TiO2的涂层。轮毂中央布置有紫外灯管20E,分布于径向的光纤束可将紫外光源延展至涂层部位,激发光触媒发生光催化反应。但是,此想法并未通过实物实现,其实际效果如何有待验证。
叶剑人则提出了以SiO2为光触媒的载体,其制成的光触媒装置1F如图6所示。实验时,需先制备SiO2的三维骨架,其后将TiO2涂层附着于骨架上,并将骨架以填充床形式安置于装置内部。载体附近布置有紫外灯管。由于光源可通过SiO2扩展光路,因此这种形式的光触媒也属于光源拓展型,对反应效率的提高有很大帮助。
另外,目前光触媒的应用主要集中在民用领域,用于净化房间内空气,提高空气质量。在航天领域中,污染气体的控制目前仍主要采用的是热催化氧化反应器。具体来说,是通过将气体加热至300℃~500℃的高温,并通过催化剂的作用促使VOC等污染气体被氧化为CO2和H2O。而在航空领域中,污染气体的控制目前则仍主要采用臭氧转换器对O3与VOC进行处理,其原理与航天领域中采用的传统的高温催化氧化反应器类似,只是反应条件上会存在一些差异。
同时,光催化氧化反应器相较于传统的高温催化氧化反应器,具有能耗低、结构简单的优点,因而具有良好的应用前景。
通过上述介绍可知,在以往仍然无法存在一种光触媒装置,既能最大程度地提高污染空气与光触媒的接触面积,又能最大程度地保证光触媒表面得到足够的光照射。
因此,如何能够设计一种能够利用满足上述条件的光触媒净化技术,实现提升民用客机座舱的空气品质的结构便成为亟待解决的技术问题。
同时,还希望设计出的上述结构同时能够使在供通风空气流动的通风流道中流动的气流所受到的流阻满足对流阻要求较高的通风系统领域,例如飞机通风系统设计领域。
发明内容
本发明为解决上述技术问题而作,其目的在于提供一种个人座舱通风照明装置,其不仅能最大程度地提高污染空气与光触媒的接触面积,而且能最大程度地保证光触媒表面得到足够的光照射,同时,通过与个人座舱的照明相结合,来实现机舱内部空间的合理利用。
为了实现上述技术问题,本发明提供一种个人座舱通风照明装置,包括装置主体外壳和个人照明组件,所述个人照明组件用于提供个人座舱的照明,其特征是,由所述装置主体外壳的内周面与所述个人照明组件的外周面围起的空间构成通风流道,所述通风流道具有供气入口和供气出口,来 自上游进风部件的空气从所述供气入口流入所述通风流道,并从所述供气出口排出至所述个人座舱所在的空气环境中,在所述装置主体外壳的内周面涂敷有光触媒涂层,在所述个人照明组件的外周面布置有光触媒激发光源,通过所述光触媒激发光源激发所述光触媒涂层,利用光催化氧化反应,对在所述通风流道中流动的所述空气进行净化。
通过如上所述构成,由于将利用光催化氧化反应进行的空气净化与个人座舱的照明相结合,因此,一方面能够实现光触媒的空气在航空、航天领域的应用,另一方面,无需像现有技术这样,另外设置热催化氧化反应器,通过将空气净化与个人座舱的照明结合,实现机舱内部空间的合理利用。
本发明的第二方面的个人座舱通风照明装置是在本发明的第一方面的个人座舱通风照明装置的基础上,其特征是,所述通风流道的靠所述供气入口及所述供气出口一侧的流道的截面积均小于所述通风流道的用于进行所述光催化氧化反应的部分处的流道的截面积。
通过如上所述构成,由于所述通风流道的靠所述供气入口及所述供气出口一侧的流道的截面积均小于所述通风流道的用于进行所述光催化氧化反应的部分处的流道的截面积,因此,能使通风流道呈现出窄-宽-窄的形式,相应地,通风流道中流动的空气流速也会产生快-慢-快的变化。
另外,由于在通风流道的宽幅位置对应地设置有光触媒激发光源和光触媒涂层,由此,能够在保证从供气出口流出的经净化后的空气的流速能够达到所要求的水平的同时,使得进入通风流道中的空气在通风流道(个人座舱通风照明装置)内停留的时间得以增长,因而也使得发生光触媒反应的空气的比例提高。
本发明的第三方面的个人座舱通风照明装置是在本发明的第一方面的个人座舱通风照明装置的基础上,其特征是,多个所述光触媒激发光源在所述个人照明组件的外周上彼此间隔开一定间隔地布置在所述个人照明组件的外周面上。
通过如上所述构成,能够使多个光触媒激发光源更有效率地对光触媒涂层进行激发。
本发明的第四方面的个人座舱通风照明装置是在本发明的第一方面的个人座舱通风照明装置的基础上,其特征是,所述个人座舱通风照明装置还包括流量调节机构,所述个人照明组件具有灯罩壳,所述灯罩壳具有灯罩壳主体和激发光源安装部分,所述流量调节机构具有:手动旋钮,该手动旋钮设置在所述装置主体外壳的出口端、即靠所述通风流道的供气出口一侧,并形成为能相对于所述个人座舱通风照明装置的轴线旋转,在所述手动旋钮的内部形成有靠所述个人座舱通风照明装置外部一侧的开口比靠所述个人座舱通风照明装置内部一侧的开口大的个人通风喷嘴;调节弹簧,该调节弹簧形成在所述灯罩壳的灯罩壳主体与所述激发光源安装部分之间,所述调节弹簧的一端与所述手动旋钮连接,另一端与所述个人照明组件连接;以及调节基座,该调节基座设置在装置主体外壳的入口端、即靠所述通风流道的供气入口一侧,通过旋转所述手动旋钮,能按压或是释放所述调节弹簧,来使所述个人照明组件相对于所述装置主体外壳上下移动,来减小或是增大所述通风流道的供气入口的截面积,以调节风量。
通过如上所述构成,由于通过旋转上述手动旋钮,能够按压或是释放上述调节弹簧,以使调节弹簧所在的上述个人照明组件(的上述灯罩壳)上下移动,来减小或是增大供气入口141的截面积(开度),并调节风量(进风量和出风量),因此,坐在个人座舱上的乘客能够根据自身的需求调节风量,从而能够提高乘坐者的舒适度。
本发明的第五方面的个人座舱通风照明装置是在本发明的第四方面的个人座舱通风照明装置的基础上,其特征是,所述个人照明组件还具有照明光源,所述灯罩壳还具有聚光部分,该聚光部分用于使所述照明光源发出的光会聚。
通过如上所述构成,由于上述聚光部分能使照明光源发出的光会聚,因此,能提供坐在个人座舱上的乘客更明亮的光照。
本发明的第六方面的个人座舱通风照明装置是在本发明的第四方面的个人座舱通风照明装置的基础上,其特征是,在所述装置主体外壳的出口端还设置有引导件,从所述通风流道的供气出口流出的净化后的空气经过所述 引导件与所述个人照明组件间的引导流路,流至所述手动旋钮的个人通风喷嘴处,随后流出至所述个人座舱通风照明装置的外部。
通过如上所述构成,由于净化后的空气经过所述引导件与所述个人照明组件间的引导流路,流至所述手动旋钮的个人通风喷嘴处,随后流出至所述个人座舱通风照明装置的外部,因此,能使净化后的空气通过个人通风喷嘴排放到更大的范围。
本发明的第七方面的个人座舱通风照明装置是在本发明的第一方面至第六方面中的任一方面的个人座舱通风照明装置的基础上,其特征是,所述装置主体外壳呈球状,所述个人照明组件呈柱状。
通过如上所述构成,由于使装置主体外壳呈球状,且使个人照明组件呈柱状,因此,能使通风流道呈现出窄-宽-窄的形式,相应地通风流道中流动的空气流速也会产生快-慢-快的变化,由此,能使进入通风流道中的空气在通风流道(个人座舱通风照明装置)内停留的时间得以增长,因而也使得发生光触媒反应的空气的比例提高。
另外,由于将装置主体外壳设计成球状,因此,个人座舱通风照明装置能够在通过连接机构对该个人座舱通风照明装置进行收纳的空间内以一定的角度转动,由此,能够实现从个人通风喷嘴处排放的净化后的空气的方向调节。
本发明的第八方面的个人座舱通风照明装置是在本发明的第一方面至第六方面中的任一方面的个人座舱通风照明装置的基础上,其特征是,所述装置主体外壳形成为如下形状:靠所述通风流道的所述供气入口及所述供气出口一侧的径向宽度均小于位于所述通风流道的用于进行进行所述光催化氧化反应的部分处的径向宽度,所述个人照明组件呈柱状或锥台状。
通过如上所述构成,同样地,能使通风流道呈现出窄-宽-窄的形式,相应地通风流道中流动的空气流速也会产生快-慢-快的变化,由此,能使进入通风流道中的空气在通风流道(个人座舱通风照明装置)内停留的时间得以增长,因而也使得发生光触媒反应的空气的比例提高。
附图说明
图1是示意表示现有技术中的一种单流道式的光触媒净化装置的示意图。
图2是示意表示现有技术中的一种单流道型拓展表面式(导流回旋风道形式)的光触媒装置的示意图。
图3是示意表示现有技术中的另一种单流道型拓展表面式(丝网式)的光触媒装置的示意图。
图4是示意表示现有技术中的一种蜂窝流道叠加式的光触媒装置的示意图。
图5是示意表示现有技术中的一种拓展光源式(采用光纤作为拓展光源)的光触媒装置的示意图。
图6是示意表示现有技术中的另一种拓展光源式(以SiO2为光触媒的载体)的光触媒装置的示意图。
图7是示意表示本发明实施方式的个人座舱通风照明装置的结构的示意图。
图8是对个人座舱通风照明装置的结构原理进行说明的图,其中,示出了装置主体外壳、个人照明组件、流量调节机构、供通风空气流动的通风流道、光触媒激发光源、光触媒涂层等构件。
图9是示意表示设置在图7所示的个人座舱通风照明装置中的激发光源安装面上的光触媒激发光源布置的展开示意图。
图10是示意表示图7中的个人座舱通风照明装置的变形例进行说明的图,相当于本发明的图8,并示出了其中具有不同形状的装置主体外壳和个人照明组件。
图11是示意表示设置在图10所示的个人座舱通风照明装置中的激发光源安装面上的光触媒激发光源布置的俯视示意图。
具体实施方式
以下,参照图7至图9,对本发明的个人座舱通风照明装置100进行 说明。其中,图7是示意表示本发明实施方式的个人座舱通风照明装置100的结构的示意图,图8是对图7所示的个人座舱通风照明装置100的结构原理进行说明的图,其中示出了装置主体外壳110、个人照明组件120、流量调节机构130、供通风空气流动的通风流道140、光触媒激发光源150、光触媒涂层160等构件,图9是示意表示设置在图8所示的个人座舱通风照明装置100中的激发光源安装面上的光触媒激发光源150布置的展开示意图。
如图7所示,本发明一实施方式的个人座舱通风照明装置100包括装置主体外壳110、个人照明组件120、流量调节机构130。上述个人座舱通风照明装置100是将通风功能和照明功能结合的装置。由装置主体外壳110的内周面和个人照明组件120的外周面(下面有时也称为“激发光源安装面”)围起的空间构成供通风空气流动的通风流道140。
如图7和图8所示,上述个人照明组件120具有照明光源121和灯罩壳122。上述照明光源121例如是LED灯,但不局限于此,也可以是其它任意合适的光源。如图7所示,上述灯罩壳122作为一例,例如具有呈柱状的灯罩壳主体122a、聚光部分122b以及呈柱状的激发光源安装部分122c,其中,上述聚光部分122b用于使照明光源121发出的光会聚,以提供更明亮的光照。另外,上述光触媒激发光源150布置在上述激发光源安装部分122c的外表面、即激发光源安装面上。
上述流量调节机构130具有手动旋钮131、调节弹簧132以及调节基座133。上述手动旋钮131设置在装置主体外壳110的出口端,并形成为能相对于装置的轴线旋转。在上述手动旋钮131的内部形成有靠装置外部一侧的开口比靠装置内部一侧的开口大的个人通风喷嘴131a。上述调节弹簧132形成在上述灯罩壳122的灯罩壳主体122a与激发光源安装部分122c之间,调节弹簧132的一端与上述手动旋钮131连接,另一端连接在上述灯罩壳122a的顶端。上述调节基座133设置在装置主体外壳110的入口端。
上述调节基座133与上述装置主体外壳110的入口端间形成有用于使空气从上游通风管路等部件流入至个人座舱通风照明装置100的通风流道 140的供气入口141,上述个人照明组件120(在本实施方式中,更具体来说是个人照明组件120的灯罩壳122b的聚光部分122b)与上述装置主体外壳110的出口端间形成有供空气流出通风流道140的供气出口142。在供气入口141与供气出口142间的流道中,对流过其中的空气进行净化。另外,在上述装置主体外壳110的出口端还设置有引导件111,从供气出口142流出的净化后的空气经过引导件111与个人照明组件120间的引导流路,流至手动旋钮131的个人通风喷嘴131a处,随后流出至个人座舱通风照明装置100的外部。
通过旋转上述手动旋钮131,能够按压或是释放上述调节弹簧132,以使调节弹簧132所在的上述个人照明组件120(的上述灯罩壳122)上下移动,来减小或是增大供气入口141的截面积(开度),并调节风量(进风量和出风量)。
在装置主体外壳110的内表面,形成有光触媒涂层160。上述光触媒涂层160例如可以涂在装置主体外壳110的整个内表面,也可以根据光触媒激发光源150的设置位置进行调整。
如图9所示,在本实施方式中,多个光触媒激发光源150在整个圆周上彼此间隔开一定间隔地布置在呈柱状的激发光源安装部分122c的外周面(激发光源安装面)上。
在本实施方式中,较为理想的是,如图7所示,使装置主体外壳110呈球状,并且使个人照明组件120呈柱状。通过这样,能使通风流道140呈现出窄-宽-窄的形式。相应地,通风流道140中流动的空气流速也会产生快-慢-快的变化。
另外,装置主体外壳110也可以如图8所示形成为使靠通风流道140的供气入口141一侧的径向宽度小于位于通风流道140的用于进行光触媒净化的部分处的径向宽度。另外,虽未图示,但同样地,装置主体外壳110的靠通风流道140的供气出口142一侧的径向宽度也小于位于通风流道140的用于进行光触媒净化的部分处的径向宽度。由此,根据图8所示的结构,也能够使通风流道140呈现出窄-宽-窄的形式,具有与图7所示的结构相当 的技术效果。
另外,由于在通风流道140的宽幅位置对应地设置有光触媒激发光源150和光触媒涂层160,由此,能够在保证从供气出口142流出的经净化后的空气的流速能够达到所要求的水平的同时,使得进入通风流道140中的空气在通风流道140(个人座舱通风照明装置100)内停留的时间得以增长,因而也使得发生光触媒反应的空气的比例提高。
除此之外,将装置主体外壳110设计成球状,使得个人座舱通风照明装置100能够在通过连接机构对该个人座舱通风照明装置100进行收纳的空间内以一定的角度转动,由此,能够实现从个人通风喷嘴131a处排放的净化后的空气的方向调节。
另外,由于进入到通风流道140(个人座舱通风照明装置100内部)的(污染)空气在经过由光触媒激发光源150进行了照射后的光触媒涂层160时,能够利用光催化氧化反应,实现对(污染)空气中的一部分VOC气体的去除,从而实现空气净化功能。
接着,参照图10和图11,对本发明的个人座舱通风照明装置100的变形例进行说明。
在本变形例中,对于与上述实施方式相同或相当的构件标注相同的标号,并省略其详细说明。另外,仅对与上述实施方式不同的构造、形状等进行展开说明。
在上述实施方式中,对装置主体外壳110整体呈大致球状(图7)、个人照明组件120整体呈柱状的情况进行了说明,其中,个人照明组件120整体既可以呈大致圆柱状,也可以呈大致四棱柱这样的方柱状。
另外,在本发明中,只要形成为使通风流道140中的用于进行光触媒净化的流道的截面积大于通风流道140的供气入口141及供气出口142处的流道的截面积,则装置主体外壳110和个人照明组件120的整体形状可以适当地选择。
例如,在图8中,示出了装置主体外壳110的靠通风流道140的供气 入口141及供气出口142一侧的径向宽度均小于位于通风流道140的用于进行光触媒净化的部分处的径向宽度,而个人照明组件120整体呈柱状的结构,但本实用新型不局限于此,例如也可以如图10所示,使个人照明组件120整体呈锥台形状。只要能够在保证从供气出口142流出的经净化后的空气的流速能够达到所要求的水平的同时,使得进入通风流道140中的空气在通风流道140(个人座舱通风照明装置100)内停留的时间得以增长即可。
在如图10所示这样的结构中,灯罩壳122整体(特别是激发光源安装部分122c)呈锥台状,当如图11这样俯视观察时,多个光触媒激发光源150在整个灯罩壳122的外周上彼此间隔开一定间隔地布置在激发光源安装部分122c的外周面(激发光源安装面)上。
当然,光触媒激发光源150也可以形成在激发光源安装部分122c的整个外周面上,这点是自不待言的。
熟悉本领域的技术人员易于想到其它的优点和修改。因此,在其更宽泛的上来说,本发明并不局限于这里所示和所描述的具体细节和代表性实施例。因此,可以在不脱离如所附权利要求书及其等价物所限定的总体发明概念的精神或范围的前提下做出修改。
例如,在本发明的实施方式中,示出了上述调节弹簧132的另一端连接在上述灯罩壳122a的顶端的情况,但本发明不局限于此,也可以连接在灯罩壳122a的其它部分,除此之外,只要通过调节弹簧132的按压、释放,能使个人照明组件120相对于装置主体外壳110(个人座舱通风照明装置100)上下移动,则调节弹簧132与个人照明组件120连接的连接位置不局限于灯罩壳122a的顶端,也不局限于灯罩壳122a。

Claims (8)

  1. 一种个人座舱通风照明装置(100),包括装置主体外壳(110)和个人照明组件(120),所述个人照明组件(120)用于提供个人座舱的照明,
    其特征在于,
    由所述装置主体外壳(110)的内周面与所述个人照明组件(120)的外周面围起的空间构成通风流道(140),所述通风流道(140)具有供气入口(141)和供气出口(142),来自上游进风部件的空气从所述供气入口(141)流入所述通风流道(140),并从所述供气出口(142)排出至所述个人座舱所在的空气环境中,
    在所述装置主体外壳(110)的内周面涂敷有光触媒涂层(160),
    在所述个人照明组件(120)的外周面布置有光触媒激发光源(150),
    通过所述光触媒激发光源(150)激发所述光触媒涂层(160),利用光催化氧化反应,对在所述通风流道(140)中流动的所述空气进行净化。
  2. 如权利要求1所述的个人座舱通风照明装置(100),其特征在于,
    所述通风流道(140)的靠所述供气入口(141)及所述供气出口(142)一侧的流道的截面积均小于所述通风流道(140)的用于进行所述光催化氧化反应的部分处的流道的截面积。
  3. 如权利要求1所述的个人座舱通风照明装置(100),其特征在于,
    多个所述光触媒激发光源(150)在所述个人照明组件(120)的外周上彼此间隔开一定间隔地布置在所述个人照明组件(120)的外周面上。
  4. 如权利要求1所述的个人座舱通风照明装置(100),其特征在于,
    所述个人座舱通风照明装置(100)还包括流量调节机构(130),
    所述个人照明组件(120)具有灯罩壳(122),所述灯罩壳(122)具有灯罩壳主体(122a)和激发光源安装部分(122c),
    所述流量调节机构(130)具有:
    手动旋钮(131),该手动旋钮(131)设置在所述装置主体外壳(110) 的出口端、即靠所述通风流道(140)的供气出口(142)一侧,并形成为能相对于所述个人座舱通风照明装置(100)的轴线旋转,在所述手动旋钮(131)的内部形成有靠所述个人座舱通风照明装置(100)外部一侧的开口比靠所述个人座舱通风照明装置(100)内部一侧的开口大的个人通风喷嘴(131a);
    调节弹簧(132),该调节弹簧(132)形成在所述灯罩壳(122)的灯罩壳主体(122a)与所述激发光源安装部分(122c)之间,所述调节弹簧(132)的一端与所述手动旋钮(131)连接,另一端与所述个人照明组件(120)连接;以及
    调节基座(133),该调节基座(133)设置在装置主体外壳(110)的入口端、即靠所述通风流道(140)的供气入口(141)一侧,
    通过旋转所述手动旋钮(131),能按压或是释放所述调节弹簧(132),来使所述个人照明组件(120)相对于所述装置主体外壳(110)上下移动,来减小或是增大所述通风流道(140)的供气入口(141)的截面积,以调节风量。
  5. 如权利要求4所述的个人座舱通风照明装置(100),其特征在于,
    所述个人照明组件(120)还具有照明光源(121),
    所述灯罩壳(122)还具有聚光部分(122b),该聚光部分(122b)用于使所述照明光源(121)发出的光会聚。
  6. 如权利要求4所述的个人座舱通风照明装置(100),其特征在于,
    在所述装置主体外壳(110)的出口端还设置有引导件(111),从所述通风流道(140)的供气出口(142)流出的净化后的空气经过所述引导件(111)与所述个人照明组件(120)间的引导流路,流至所述手动旋钮(131)的个人通风喷嘴(131a)处,随后流出至所述个人座舱通风照明装置(100)的外部。
  7. 如权利要求1至6中任一项所述的个人座舱通风照明装置(100),其特征在于,
    所述装置主体外壳(110)呈球状,
    所述个人照明组件(120)呈柱状。
  8. 如权利要求1至6中任一项所述的个人座舱通风照明装置(100),其特征在于,
    所述装置主体外壳(110)形成为如下形状:靠所述通风流道(140)的所述供气入口(141)及所述供气出口(142)一侧的径向宽度均小于位于所述通风流道(140)的用于进行进行所述光催化氧化反应的部分处的径向宽度,
    所述个人照明组件(120)呈柱状或锥台状。
PCT/CN2017/109713 2016-11-14 2017-11-07 个人座舱通风照明装置 WO2018086511A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610999806.5 2016-11-14
CN201610999806.5A CN106741966B (zh) 2016-11-14 2016-11-14 个人座舱通风照明装置

Publications (1)

Publication Number Publication Date
WO2018086511A1 true WO2018086511A1 (zh) 2018-05-17

Family

ID=58973539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109713 WO2018086511A1 (zh) 2016-11-14 2017-11-07 个人座舱通风照明装置

Country Status (2)

Country Link
CN (1) CN106741966B (zh)
WO (1) WO2018086511A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106741966B (zh) * 2016-11-14 2019-04-23 中国商用飞机有限责任公司 个人座舱通风照明装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107276A (ja) * 1998-10-08 2000-04-18 Mitsubishi Paper Mills Ltd 空気浄化装置
CN2911515Y (zh) * 2006-06-20 2007-06-13 佟铁峰 一种集通风、消毒、照明为一体的出风口
US20150064061A1 (en) * 2013-09-01 2015-03-05 Fariborz Taghipour Air Purifier for Transportation Vehicles
CN204901443U (zh) * 2015-09-15 2015-12-23 北京蓝思凯奇环保科技有限公司 可视光应答型光触媒空气净化灯
CN106741966A (zh) * 2016-11-14 2017-05-31 中国商用飞机有限责任公司 个人座舱通风照明装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7419615B2 (en) * 2005-06-30 2008-09-02 The Boeing Company Renewable superhydrophobic coating
CN101920037B (zh) * 2009-12-31 2013-07-17 周云正 飞机座舱等离子体空气净化器
CN101869719B (zh) * 2010-06-09 2011-05-04 滕龙海 一种紫外线杀菌、照明及空气清洗装置
CN102225215B (zh) * 2011-06-22 2013-12-04 李霁野 内耦合无极感应放电紫外光触媒杀菌灯
CN105333518B (zh) * 2015-11-12 2018-06-19 孔祥华 一种具备加湿功能的可拆卸式光催化空气净化器
CN205577481U (zh) * 2016-03-18 2016-09-14 浙江蓝民环保科技有限公司 一种光触媒候车室

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107276A (ja) * 1998-10-08 2000-04-18 Mitsubishi Paper Mills Ltd 空気浄化装置
CN2911515Y (zh) * 2006-06-20 2007-06-13 佟铁峰 一种集通风、消毒、照明为一体的出风口
US20150064061A1 (en) * 2013-09-01 2015-03-05 Fariborz Taghipour Air Purifier for Transportation Vehicles
CN204901443U (zh) * 2015-09-15 2015-12-23 北京蓝思凯奇环保科技有限公司 可视光应答型光触媒空气净化灯
CN106741966A (zh) * 2016-11-14 2017-05-31 中国商用飞机有限责任公司 个人座舱通风照明装置

Also Published As

Publication number Publication date
CN106741966A (zh) 2017-05-31
CN106741966B (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2017101619A1 (zh) 光触媒蜂窝组件及光触媒净化装置
CN108355491B (zh) 光触媒蜂窝组件
WO2017101618A1 (zh) 光触媒蜂窝组件及光触媒净化装置
US10293072B2 (en) Air purifier for transportation vehicles
JP6797114B2 (ja) 空気供給源中に存在するオゾン及び揮発性有機化合物を処理するための卑金属触媒
ES2912993T3 (es) Unidad de purificación de aire de aeronave y de reducción de compuestos orgánicos volátiles que comprende un fotocatalizador activado por diodos emisores de luz ultravioleta
WO2018086511A1 (zh) 个人座舱通风照明装置
WO2014193252A1 (en) Device for photocatalytic removal of volatile organic and inorganic contamination as well as microorganisms especially from automobile air conditioning systems
CN105031702A (zh) 具有led紫外线发光二极管光源的空气净化器
PL232541B1 (pl) Instalacja nawiewna pojazdu
CN105289290A (zh) 箱式光催化空气净化装置
US20220305429A1 (en) Filter element for coupling adsorption and regeneration of volatile organic compounds and purification device
CN111895532B (zh) 一种基于多面体结构的光催化空气净化装置
CN211753938U (zh) 一种光触媒空气净化反应器
JPH10309438A (ja) ガス浄化装置
CN207694603U (zh) 一种废气处理单元及废气处理系统
CN1327163C (zh) 空气净化用光催化反应腔
CN205126944U (zh) 具有led紫外线发光二极管光源的空气净化器
JP2006325866A (ja) 光触媒式空気清浄機
US20240042089A1 (en) Air purification module, air purification system including the same, and method of purifying air
CN215428228U (zh) 一种轻型、高效的臭氧转换器
CN108825365B (zh) 基于削减pM2.5的纳米汽油添加剂分子缓释前置装置
CN212417546U (zh) 一种空气净化器
CN207838707U (zh) 一种净化废气的光催化装置
CN110433655B (zh) 光触媒芯体组件及光触媒净化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869434

Country of ref document: EP

Kind code of ref document: A1