WO2018086496A1 - 可伸缩桨臂组件及无人飞行器 - Google Patents

可伸缩桨臂组件及无人飞行器 Download PDF

Info

Publication number
WO2018086496A1
WO2018086496A1 PCT/CN2017/109549 CN2017109549W WO2018086496A1 WO 2018086496 A1 WO2018086496 A1 WO 2018086496A1 CN 2017109549 W CN2017109549 W CN 2017109549W WO 2018086496 A1 WO2018086496 A1 WO 2018086496A1
Authority
WO
WIPO (PCT)
Prior art keywords
paddle arm
paddle
telescoping
arm assembly
toothed member
Prior art date
Application number
PCT/CN2017/109549
Other languages
English (en)
French (fr)
Inventor
罗东东
苏文兵
吕航
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2018086496A1 publication Critical patent/WO2018086496A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/29Constructional aspects of rotors or rotor supports; Arrangements thereof
    • B64U30/296Rotors with variable spatial positions relative to the UAV body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/31Supply or distribution of electrical power generated by photovoltaics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present application relates to the field of unmanned aerial vehicles, and more particularly to a retractable paddle arm assembly and an unmanned aerial vehicle.
  • the existing unmanned aerial vehicle generally includes a fuselage, a paddle arm and a power assembly, and the other end of the paddle arm is connected to the airframe of the unmanned aerial vehicle, and the other end is connected to a power component that provides flight power for the unmanned aerial vehicle.
  • the existing unmanned aerial vehicle generally includes a fuselage, a paddle arm and a power assembly, and the other end of the paddle arm is connected to the airframe of the unmanned aerial vehicle, and the other end is connected to a power component that provides flight power for the unmanned aerial vehicle.
  • most of the propeller arms of the UAV are fixed, resulting in a large size and poor portability of the UAV.
  • the blade used in combination is also of a fixed size, and the pitch of the blade is not adjustable.
  • the requirements for endurance time, load capacity, etc. are often different. For example, when an unmanned aerial vehicle is required for heavy-duty operation or when the life requirement of the unmanned aerial vehicle is high, the operating power consumption is too large due to the failure of the blade specifications, which
  • the purpose of the present application is to provide a telescopic paddle arm assembly and an unmanned aerial vehicle in which the paddle arm can be extended and contracted, and the pitch can be adjusted according to requirements, in order to solve the above technical problem.
  • the present application provides a retractable paddle arm assembly, one end of which is connected to the fuselage of the UAV, and the other end is rotated with a propeller for driving the UAV.
  • the telescopic paddle arm assembly including a first paddle arm, a second paddle arm, a first toothing member, and a second toothing member, the first paddle arm being fixedly coupled to the first toothing member
  • the second paddle arm is fixedly connected to the second toothed member;
  • first toothed member is engaged with the second toothed member, and when the first toothed member is rotated, the first toothed member drives the second toothed member to move, thereby passing through The second toothed member extends or shortens the second paddle arm relative to the first paddle arm.
  • the second paddle arm is opposite the first paddle arm when the second paddle arm is moved relative to the first paddle arm in a direction toward the first paddle arm Elongating, the overall length of the telescoping paddle arm assembly is lengthened; when the second paddle arm is moved relative to the first paddle arm in a direction away from the first paddle arm, the second paddle arm The overall length of the telescoping paddle arm assembly is reduced relative to the first paddle arm shortening.
  • the first toothed member drives the second toothed member to move in parallel when the first toothed member rotates.
  • any two points on the second toothed member move in the same direction and move the same distance.
  • the first paddle arm and the second paddle arm are both hollow structures.
  • the first paddle arm is nested with the second paddle arm.
  • the first paddle arm is sleeved outside of the second paddle arm.
  • the second paddle arm is sleeved outside of the first paddle arm.
  • the first toothed member is fixed to an inner side of the first paddle arm, and the second toothed member is fixed to an inner side of the second paddle arm.
  • the telescopic paddle arm assembly further includes a drive motor, a drive shaft of the drive motor is fixedly coupled to the first toothed member, and the drive motor is fixedly mounted to the first paddle arm .
  • the first toothed member rotates, thereby driving the second toothed member to move, thereby causing movement of the rack
  • the second paddle arm is elongated or shortened relative to the first paddle arm.
  • an end of the second paddle arm adjacent to the first paddle arm is provided with a retreat slot for preventing the second paddle arm from contacting the drive motor.
  • the telescoping paddle arm assembly further includes a cord winding mechanism for receiving a wire between the power motor and any of the following:
  • a first PCB board a first power source
  • the power motor is electrically connected to the first PCB board and/or the first power source.
  • the winding mechanism is fixedly disposed inside the first paddle arm or inside the second paddle arm.
  • the winding mechanism is further configured to receive a wire between the drive motor and any of the following devices:
  • a second PCB board a second power source
  • the driving motor is electrically connected to the second PCB board and/or the second power source.
  • the first paddle arm is a fixed paddle arm, and the fixed paddle arm is fixedly coupled to the body of the UAV;
  • the second paddle arm is a telescoping paddle arm that is coupled to the power motor for driving the propeller of the unmanned aerial vehicle.
  • the first end of the first paddle arm is coupled to the body, and the second end of the first paddle arm is coupled to the first end of the second paddle arm, A second end of the second paddle arm is coupled to the power motor.
  • the second paddle arm is a fixed paddle arm, and the fixed paddle arm is fixedly coupled to the body of the UAV;
  • the first paddle arm is a telescoping paddle arm that is coupled to the power motor for driving the propeller of the unmanned aerial vehicle.
  • the first end of the first paddle arm is coupled to the power motor, and the second end of the first paddle arm is coupled to the first end of the second paddle arm, the first A second end of the second paddle arm is coupled to the fuselage.
  • the first toothed member is a gear and the second toothed member is a rack.
  • an unmanned aerial vehicle including:
  • a propeller coupled to the power motor, the propeller generating a force that causes the unmanned aerial vehicle to move under the drive of the power motor;
  • the first paddle arm and the second paddle arm are drivingly connected to the second toothed member through the first toothed member, and the second toothed member is rotated by the rotation of the first toothed member.
  • the first toothed member is driven to move under. Therefore, when the first toothed member rotates forward and reverse, the second toothed member advances or retreats correspondingly, thereby driving the second paddle arm and the first paddle arm to approach or away from each other. Therefore, the length of the paddle arm of the above-described retractable paddle arm assembly can be adjusted by the first and second toothing members.
  • the distribution distance of the propellers at the ends of the plurality of telescopic paddle arms can be increased, and the unmanned aerial vehicles can be matched with different specifications of the propellers, thereby forming different force effects to meet different applications. demand.
  • the propeller's power efficiency can be improved, thereby improving the overall efficiency of the unmanned aerial vehicle and increasing the life time of the unmanned aerial vehicle.
  • the UAV When the retractable paddle arm assembly is shortened, the UAV is reduced in size and size, and the UAV is suitable for lower load conditions. At this time, the propeller arm of the UAV can be matched with a small-sized propeller, which can improve the flexibility of the UAV. Moreover, when the UAV is required to be carried or stored, the telescopic paddle arm assembly is contracted to facilitate the placement and carrying of the UAV.
  • FIG. 1 is a schematic perspective structural view of an unmanned aerial vehicle according to an embodiment of the present application.
  • FIG. 2 is a schematic structural view of a fuselage and a first paddle arm of the UAV shown in FIG. 1;
  • FIG. 3 is a schematic structural view of a first toothed member and a second toothed member of the unmanned aerial vehicle shown in FIG. 1;
  • FIG. 4 is a schematic structural view of a second paddle arm, a power motor and a propeller of the UAV shown in FIG. 1;
  • FIG. 5 is a schematic structural view of the first paddle arm and the second paddle arm of the UAV shown in FIG. 1;
  • Fig. 6 is an enlarged schematic view showing the winding mechanism of the unmanned aerial vehicle shown in Fig. 2.
  • Unmanned aerial vehicle 11, fuselage; 12, telescopic paddle arm assembly; 121, first paddle arm; 122, second paddle arm; 123, first toothed member; 124, second toothed member; , avoidance slot; 13, power; 15, landing gear; 16, power motor; 17, propeller; 18, winding mechanism; 19, drive motor;
  • the retractable paddle arm assembly of the embodiment of the present application can be applied to various movable objects driven by a motor, including but not limited to an Unmanned Aerial Vehicle (UAV), a ship, and a robot.
  • UAV Unmanned Aerial Vehicle
  • an unmanned aerial vehicle is taken as an example for description, and other details are not described herein.
  • the structure of the unmanned aerial vehicle includes a fuselage, a retractable paddle arm assembly, and a power system.
  • One end of the retractable paddle arm assembly is connected to the fuselage and the other end is equipped with a power system.
  • a typical powertrain system includes a power motor and a propeller, the drive shaft of which is coupled to a propeller, under which the propeller generates a force that causes the UAV to move, such as lift or thrust that causes the UAV to move.
  • the present application provides an unmanned aerial vehicle 10 including a fuselage 11 and a retractable paddle arm assembly 12 disposed on the fuselage 11 .
  • the retractable paddle arm assembly 12 can be one or more, and when there are multiple, the plurality of retractable paddle arm assemblies 12 are evenly distributed around the outer circumference of the fuselage 11.
  • the UAV 10 is a quadrotor, i.e., an aircraft having four power components, each power assembly including a power motor 16 and a propeller 17 driven by the power motor 16. Accordingly, in the present embodiment, the number of the retractable paddle arm assemblies 12 is also four. It can be understood that the UAV 10 can also be a six-rotor aircraft, an eight-rotor aircraft, a twelve-rotor aircraft, and the like.
  • the body 11 is a box-shaped, hollow structure. Specifically, in the present embodiment, the body 11 is a square case.
  • the fuselage 11 may be a regular or irregular shape such as a rectangular box, a circular box, or an elliptical box, which is not limited in the embodiment of the present application.
  • the UAV 10 is also provided with a power source 13 and a PCB board (not shown).
  • the power source 13 is used to provide power support for the unmanned aerial vehicle 10.
  • the power source 13 is disposed outside the body 11, facilitating the disassembly of the power source 13. It can be understood that the power source 13 can be a lithium battery or a solar battery or the like.
  • the PCB board is fixedly provided with a body 11 therein. The PCB board is electrically connected to the power source 13.
  • the positions of the power source 13 and the PCB board are not limited to being disposed on the body 11.
  • the positions of the power source 13 and the PCB board can also be disposed at other positions of the UAV according to design requirements.
  • the power source 13 can be set in the machine.
  • the power supply 13 and the PCB board are disposed in the retractable paddle arm assembly.
  • the unmanned aerial vehicle 10 may include a plurality of power sources 13 or a plurality of PCB boards. Multiple power supplies 13 or multiple PCB boards can be easily designed to facilitate layout and avoid complicated wiring.
  • the underside of the fuselage 11 is also provided with a landing gear 15 for supporting the landing of the UAV 10 .
  • the landing gear 15 has a U-shaped structure.
  • the free ends of the landing gear 15 are fixedly coupled to the body 11, and the middle portion of the landing gear 15 is used to abut against the ground so that the landing gear 15 can stably support the body 11.
  • the landing gear 15 can be a U-shaped structure as shown in FIG. 1 or a T-shaped or a triangular structure.
  • the embodiment of the present application is not limited.
  • the retractable paddle arm assembly 12 is coupled to the fuselage 11 of the UAV 10 and the other end is coupled to a power motor 16 for driving the UAV 10.
  • the retractable paddle arm assembly includes a first paddle arm 121, a second paddle arm 122, a first toothing member 123, and a second toothing member 124 (the first toothing member 123 and the second toothing member 124 are as shown in FIG. 3 and 5)).
  • the first paddle arm 121 is fixedly coupled to the first toothed member 123
  • the second paddle arm 122 is fixedly coupled to the second toothed member 124.
  • the first toothed member 123 Engaging with the second toothed member 124, the first toothed member 123 moves the second toothed member 124 when the first toothed member 123 rotates. Specifically, in the embodiment, when the first toothed member 123 rotates, the first toothed member 123 drives the second toothed member 124 to move in parallel.
  • parallel movement means that all points of a part are moved by the same distance in a certain direction, and the part does not rotate with respect to any point on itself.
  • any two points on the second toothed member 124 move in the same direction and move the same distance, and the second toothed member 124 does not rotate.
  • the second paddle arm 122 fixedly coupled to the second tooth piece 124 is also moved in parallel by the parallel movement of the second tooth piece 124. Since the second paddle arm 122 moves in parallel with respect to the first paddle arm 121, the second paddle arm 122 is elongated or shortened relative to the first paddle arm 121.
  • the second paddle arm 122 moves relative to the first paddle arm 121 toward the first paddle arm 121, the second paddle arm 122 is elongated relative to the first paddle arm 121, and the retractable paddle arm assembly 12
  • the overall length is lengthened; when the second paddle arm 122 moves relative to the first paddle arm 121 in a direction away from the first paddle arm 121, the second paddle arm 122 is shortened relative to the first paddle arm 121, and the retractable paddle arm assembly 12
  • the overall length is reduced.
  • the retractable paddle arm assembly 12 also includes a drive motor 19.
  • a drive shaft (not shown) of the drive motor 19 is fixedly coupled to the first toothed member 123, and a fixed portion of the drive motor 19 is fixedly coupled to the first paddle arm.
  • the rotating portion of the drive motor 19 may be a rotating shaft or a rotor, and the driving motor 19 is fixedly mounted to the first paddle arm 121.
  • the drive motor 19 is mounted to the first paddle arm 121 by its fixed portion, such as a motor base or stator.
  • the second toothed member 124 is at the first
  • the toothed member 123 is moved in parallel along a straight line.
  • the second paddle arm 122 fixedly coupled to the second toothing member 124 is moved correspondingly by the movement of the second toothing member 124, and thus elongated or shortened with respect to the first paddle arm 121.
  • the drive shaft of the drive motor 19 is fixedly coupled to the first toothed member 123, the first toothed member 123 is engaged with the second toothed member 124, and the second toothed member 124 is at the first toothed member.
  • the movement of the 123 is driven by the rotation, so that the first toothed member 123 can be considered to be the active rotating active member, and the second toothed member 124 is the passively moving driven member.
  • the first toothed member 123 as the active member is fixedly coupled to the first paddle arm 121
  • the second toothed member 124 as the passive member is fixedly coupled to the second paddle arm 122
  • one end of the first paddle arm 121 is fixedly coupled to The fuselage 11 of the unmanned aerial vehicle 10, the first paddle arm 121
  • the other end is connected to one end of the second paddle arm 122
  • the other end of the second paddle arm 122 is connected to a power motor 16 that drives the rotation of the propeller 17. Therefore, in the present embodiment, the first paddle arm 121 is a fixed paddle arm, and the second paddle arm 122 is a telescopic paddle arm that can be expanded and contracted under the rotation of the drive motor 19.
  • the second paddle arm 122 is a fixed paddle arm and the first paddle arm 121 is a telescoping paddle arm.
  • the second paddle arm 122 as a fixed paddle arm is fixedly coupled to the body 11 of the UAV 10
  • the first paddle arm 121 as a telescopic paddle arm is coupled to a power motor 16 for driving the rotation of the propeller 17.
  • the first toothed member 123 fixedly coupled to the first paddle arm 121 rotates, the first toothed member 123 is engaged with the second toothed member 124 fixedly coupled to the second paddle arm 122 as the fixed paddle arm.
  • the second toothed member 124 causing the second toothed member 124 to have a tendency to move in parallel with respect to the first toothed member 123, but the first toothed member 123 is fixed on the first paddle arm 121, since the first paddle arm 121 is connected to a higher quality The heavy body 11 end, the second paddle arm 122 is connected to the lighter power motor 16 end, so the first toothed member 121, the first paddle arm 121 remains stationary, the second toothed member 122, the second The paddle arm 122 moves relative to the first toothed member 121 and the first paddle arm 121 to realize the function of extending or shortening the extendable paddle arm assembly 12.
  • the first paddle arm 121 is fixedly connected with the fuselage 11 as a fixed paddle arm; the second paddle arm is used
  • the power motor 16 that drives the rotation of the propeller 17 is connected as a telescopic paddle arm. Only the first paddle arm 121 is described as a fixed paddle arm and the second paddle arm 122 is used as a telescoping paddle arm, but one of ordinary skill in the art will appreciate that the first paddle arm 121 acts as a telescoping paddle arm and is used for driving.
  • the power motor 16 in which the propeller 17 rotates is connected, and the second paddle arm 122 is fixedly connected to the fuselage 11 of the UAV 10 as a fixed paddle arm, and the above-mentioned situation is not described herein.
  • the first paddle arm 121 has a hollow structure. Specifically, in the present embodiment, the first paddle arm 121 is a square tube, and the cavity of the first paddle arm 121 and the cavity of the body 11 communicate with each other.
  • the second paddle arm 122 is disposed at an end of the first paddle arm 121 away from the body 11 .
  • the second paddle arm 122 is also a hollow structure, and the first paddle arm 121 and the second paddle arm 122 are nested.
  • one end of the second paddle arm 122 is sleeved outside the first paddle arm 121.
  • one end of the first paddle arm 121 is sleeved outside of the second paddle arm 122.
  • the cavity of the second paddle arm 122 communicates with the cavity of the first paddle arm 121.
  • the second paddle arm 122 matches the shape and size of the first paddle arm 121, and the second paddle arm 122 is slidable relative to the first paddle arm 121.
  • the second The paddle arm 122 is a square tube.
  • a slide rail is disposed between the second paddle arm 122 and the first paddle arm 121, and the second paddle arm 122 is slidably coupled with the first paddle arm 121 through the slide rail.
  • the slide rails can facilitate sliding between the second paddle arm 122 and the first paddle arm 121. It can be understood that the slide rail can be a groove or a rib.
  • a power assembly composed of the power motor 16 and the propeller 17 is provided at one end of the second paddle arm 122 away from the first paddle arm 121.
  • the power motor 16 is electrically connected to the power source 13.
  • the power motor 16 is coupled to the propeller 17 for providing a driving force for the rotation of the propeller 17.
  • the propeller 17 is detachably disposed at an end of the second paddle arm 122.
  • the propeller 17 includes a plurality of propellers 17 of different sizes, respectively, to match the needs of the different lengths of the retractable paddle arm assembly 12.
  • the shape of the first paddle arm 121 and the second paddle arm 122 may be a circular tube shape, a tapered shape, or the like, which is not limited herein.
  • the power motor 16 drives the propeller 17 to rotate, and the propeller 17 drives the unmanned aerial vehicle 10 to move. It can be understood that the power motor 16 is electrically connected to the power source 13 and the PCB board, and the power source 13 provides power support for the power motor 16. It will be appreciated that the power source 13 includes a first power source.
  • the PCB board includes a first PCB board. The power motor 16 is electrically connected to the first power source and the first PCB board.
  • the second paddle arm 122 and the first paddle arm 121 are drivingly coupled by the first toothed member 123 and the first toothed member 124 .
  • the first toothed member 123 is a gear and the second toothed member 124 is a rack.
  • the rack moves parallel along the gear in a straight line, so that the second paddle arm 122 expands and contracts with respect to the first paddle arm 121.
  • the first toothed member 123 can be another type of toothed member that can be fixedly coupled with the drive shaft to be rotated by the drive shaft.
  • the second toothed member 124 can be engaged with the first toothed member 123. It is not limited in the embodiment of the present application, which is to be moved, for example, in the embodiment of the present application.
  • the rotating portion of the drive motor 19 of the present embodiment is fixedly coupled to the first toothed member 123, and the fixed portion of the drive motor 19 is fixedly coupled to the first paddle arm 121.
  • the rotating portion of the driving motor 19 is, for example, the transmission shaft in the present embodiment. In other implementations, it may be a rotor or the like for driving the motor 19; the fixed portion of the driving motor 19 may be a motor base or a stator. And, the drive motor 19 is electrically connected to the PCB board.
  • the driving motor 19 When the power source 13 supplies power to the PCB board, the driving motor 19 receives a Pulse Width Modulation (PWM) signal, and the driving motor 19 rotates in the forward or reverse direction, and the second toothed member 123 passes the second toothed member 123. Engagement of the piece 124 can control the movement of the second toothed member 124, Further, the second paddle arm 122 is elongated or shortened.
  • the power source 13 further includes a second power source
  • the PCB board further includes a second PCB board
  • the driving motor 19 is electrically connected to the second power source and the second PCB board. It can be understood that the first power source and the second power source may be the same power source or different power sources.
  • the first PCB board and the second PCB board may be the same PCB board or different PCB boards.
  • the first toothed member 123 is fixedly disposed on the inner side of the first paddle arm 121
  • the second toothed member 124 is fixedly disposed on the inner side of the second paddle arm 122 .
  • the driving motor 19 and the first toothing member 123 effectively utilize the space in the first paddle arm 121, avoiding occupying the space of the body 11, and facilitating the internal arrangement of the body 11.
  • one end of the second toothed member 124 is engaged with the first toothed member 123 , and the other end of the second toothed member 124 is fixedly coupled to the inner side wall of the second paddle arm 122 . Also, one end of the second toothed member 124 that meshes with the first toothed member 123 can protrude from the second paddle arm 122.
  • the second toothed member 124 can be fixedly connected to the inner side wall of the second paddle arm 122 by screws or bonding.
  • the second paddle arm 122 is injection molded, and the second toothed member 124 is injection molded on the inner sidewall of the second paddle arm 122 when the second paddle arm 122 is injection molded.
  • the second toothed member 124 is fixedly connected to the second paddle arm 122 in the above manner, and the operation is simple and convenient, which not only ensures the stability of the connection of the second toothed member 124 and the second paddle arm 122, but also avoids the need for the screw connection.
  • the second paddle arm 122 opens a threaded hole to cause damage to the retractable paddle arm assembly 12 of the UAV 10 .
  • the end of the second toothed member 124 that meshes with the first toothed member 123 moves in parallel along the rotation of the first toothed member 123, thereby driving the second toothed member 124.
  • the other end of the expansion Since the other end of the second toothed member 124 is fixedly coupled to the second paddle arm 122 , the second toothed member 124 drives the second paddle arm 122 to expand and contract with the other end of the second toothed member 124 .
  • the drive motor 19 can be one or more.
  • the drive motor 19 may be disposed inside the body 11, such as at a central position of the body 11.
  • the driving shaft of the driving motor 19 is provided with four first toothing members 123.
  • Each of the first toothing members 123 is drivingly coupled to a second toothing member 124, and each of the second toothing members 124 drives a second.
  • the paddle arm 122 telescopically moves. Since the four first toothed members 123 are arranged in a mutually overlapping manner, the four second toothed members 124 are spatially displaced from each other to prevent mutual interference between the second toothed members 124.
  • the rotation speeds of the four first toothed members 123 can be ensured to be uniform, so that the expansion and contraction distance of each of the second paddle arms 122 relative to the first paddle arm 121 can be kept consistent, and a plurality of telescopic devices can be ensured.
  • the length of the paddle arm assembly 12 remains the same, facilitating telescoping adjustment of the telescoping paddle arm assembly 12. Avoid The plurality of telescoping paddle arm assemblies 12 are of different lengths that affect the flight of the UAV 10 .
  • each of the drive motors 19 is provided with two first toothed members 123.
  • Each drive motor 19 drives the adjacent or opposite two second paddle arms 122 to telescope. Also, since the two first toothed members 123 are arranged in a mutually overlapping manner, the two second toothed members 124 are spatially displaced from each other to prevent mutual interference between the second toothed members 124.
  • the drive motor 19 may be four, and the four drive motors 19 respectively drive a first toothed member 123.
  • Each of the first toothed members 123 corresponds to one second toothed member 124, and each of the extendable paddle arm assemblies 12 is independently adjusted using one of the drive motors 19.
  • the four drive motors 19 simultaneously receive a PWM signal, and the drive motor 19 rotates in the forward or reverse direction.
  • the four second paddle arms 122 can be simultaneously controlled. Elongate or shorten.
  • the rotational speeds of the four drive motors 19 are the same, ensuring that the expansion and contraction distances of the four second paddle arms 122 are equal, so that the length of the telescopic paddle arm assembly 12 is the same.
  • the bottom of the second paddle arm 122 near the end of the first paddle arm 121 is provided with a relief groove 125.
  • the escape groove 125 serves to prevent the second paddle arm 122 from touching the drive motor 19.
  • the shape of the escape groove 125 is adapted to the shape of the drive motor 19.
  • the first paddle arm 121 and the second paddle arm 122 need not overlap, which can be satisfied.
  • the adjustment of the arm length of the telescopic paddle arm assembly allows the escape groove 125 to be omitted.
  • the UAV 10 of the present embodiment further includes a winding mechanism 18 .
  • the winding mechanism 18 is fixedly disposed inside the first paddle arm 121.
  • the wire 20 of the power motor 16 is electrically connected to the first power source and the first PCB board through the winding mechanism 18, and the winding mechanism 18 is used for retracting the wire between the power motor 16 and the first power source or the power motor 16 and the first PCB. Wire 20 between the plates.
  • the winding mechanism 18 includes a housing, a reel, and a torsion spring.
  • One end of the wire 20 is electrically connected to the first PCB board or the first power source, and the other end is electrically connected to the power motor 16.
  • the wire 20 is wound around a reel.
  • a groove is provided on the reel, and the wire 20 is received in the groove to facilitate the winding of the wire 20.
  • a torsion arm of the torsion spring is fixedly connected to the housing, and the other end is fixedly connected to the reel.
  • the winding mechanism 18 can retract and retract the wire 20 in time to prevent the wire 20 from being wound and affect the movement of the second paddle arm 122.
  • the second paddle arm 122 is fixedly coupled to the body 11, and the second paddle arm 122 is a fixed paddle arm, and the first paddle arm 121 is a telescopic paddle arm.
  • the second paddle arm 122 may be coupled to the power motor 16 for driving the rotation of the propeller 17. That is, the first toothed member 123 is fixedly disposed in the second paddle arm 122, one end of the second toothed member 124 is engaged with the first toothed member 123, and the other end of the second toothed member 124 is opposite to the first paddle arm 121.
  • the inner side wall is fixedly connected.
  • the drive motor 19 is fixedly disposed in the second paddle arm 122 to drive the first tooth member 123.
  • the driving motor 19 drives the first toothing member 123 to rotate, one end of the second toothing member 124 engaging with the first toothing member 123 moves along with the first toothing member 123 to drive the first toothing member 124.
  • the other end is telescopic. Since the other end of the first toothed member 124 is fixedly coupled to the first paddle arm 121, the second toothed member 124 drives the second paddle arm 122 toward or away from the first paddle arm 121.
  • the bottom of the first paddle arm 121 near the end of the second paddle arm 122 is provided with a retreat slot.
  • the escape groove is for preventing the first paddle arm 121 from touching the drive motor. Therefore, the escape groove formed by the second paddle arm 122 can also avoid interference between the first paddle arm 121 and the drive motor.
  • the winding mechanism 18 can also be fixedly disposed inside the second paddle arm 122. Since the driving motor 19 is located in the second paddle arm 122, the driving motor 19 is electrically connected to the second power source and the second PCB board through the winding mechanism 18. The winding mechanism 18 can also be used to retract the wire between the drive motor 19 and the second power source or the wire 20 between the drive motor 19 and the second PCB board. Then, the winding mechanism 18 is provided with two reels, and the winding mechanism 18 retracts the wires 20 of the power motor 16 and the driving motor 19, respectively.
  • the first paddle arm 121 Drivenly coupled to the second paddle arm 122 by the first toothed member 123 and the second toothed member 124, the second toothed member 124 is driven by the first toothed member 123 by rotating the first toothed member 123 motion. Therefore, the first toothed member 123 rotates forward or backward, and the second toothed member 124 advances or retreats correspondingly, thereby driving the second paddle arm 122 and the first paddle arm 121 to approach or away from each other. Therefore, the length of the paddle arm of the above-described UAV 10 can be adjusted by the retractable paddle arm 12.
  • the distribution distance of the propellers 17 at the ends of the plurality of second paddle arms 122 can be increased, and the unmanned aerial vehicles 10 can be matched with different specifications of the propellers 17 to form different forces. Effective to meet different application needs.
  • the propeller's power efficiency can be improved, thereby improving the overall efficiency of the unmanned aerial vehicle and increasing the life time of the unmanned aerial vehicle.
  • the retractable paddle arm assembly 12 of the UAV 10 can be combined with a small-sized propeller to improve the flexibility of the UAV.
  • the retractable paddle arm assembly of the UAV is contracted to facilitate the placement and carrying of the UAV.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

一种可伸缩桨臂组件(12)及无人飞行器(10)。可伸缩桨臂组件(12)的一端与无人飞行器(10)的机身(11)连接,另一端与用于驱动无人飞行器(10)的螺旋桨(17)转动的动力电机(16)连接,包括第一桨臂(121)、第二桨臂(122)、第一齿合件(123)以及第二齿合件(124),第一桨臂(121)与第一齿合件(123)固定连接,第二桨臂(122)与第二齿合件(124)固定连接;其中,第一齿合件(123)与第二齿合件(124)啮合,当第一齿合件(123)转动时,第一齿合件(123)带动第二齿合件(124)移动,从而通过第二齿合件(124)使第二桨臂(122)相对于第一桨臂(121)伸长或缩短。可伸缩桨臂组(12)件及无人飞行器(10)可以根据使用需求,调配桨臂的长度,匹配不同规格的螺旋桨,以形成不同的力效以满足不同的应用需求。

Description

可伸缩桨臂组件及无人飞行器
本申请要求于2016年11月14日提交中国专利局、申请号为201610999160.0、申请名称为“可伸缩桨臂组件及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本申请涉及无人飞行器领域,特别是一种可伸缩桨臂组件及无人飞行器。
【背景技术】
如今,无人飞行器被广泛应用于航拍、运输、监测、勘探、搜救等领域。现有的无人飞行器一般包括机身、桨臂以及动力组件,所述桨臂一端连接无人飞行器的机身,另一端连接为无人飞行器提供飞行动力的动力组件。目前,无人飞行器的桨臂多数是固定的,导致无人飞行器的体积大、便携性差。并且,在实际运行时,对于具有特定尺寸的桨臂的无人飞行器而言,其搭配使用的桨叶也为固定规格尺寸,则桨叶的桨距是不可调整的。当无人飞行器应用于不同领域时,对续航时间、负载能力等的需求往往不同。例如,当需要无人飞行器进行重载运行时或者对无人飞行器的续航要求较高时,往往会由于桨叶规格达不到要求而造成运行功耗过大,影响无人飞行器的性能。
【发明内容】
本申请的目的在于为解决上述技术问题而提供一种桨臂能够伸缩,可以根据需求调整桨距的可伸缩桨臂组件及无人飞行器。
为解决上述技术问题,本申请提供一种可伸缩桨臂组件,所述可伸缩桨臂组件的一端与无人飞行器的机身连接,另一端与用于驱动所述无人飞行器的螺旋桨转动的动力电机连接,所述可伸缩桨臂组件包括第一桨臂、第二桨臂、第一齿合件以及第二齿合件,所述第一桨臂与所述第一齿合件固定连接,所述第二桨臂与所述第二齿合件固定连接;
其中,所述第一齿合件与所述第二齿合件啮合,当所述第一齿合件转动时,所述第一齿合件带动所述第二齿合件移动,从而通过所述第二齿合件使所述第二桨臂相对于所述第一桨臂伸长或缩短。
在其中一些实现方式中,当所述第二桨臂相对于所述第一桨臂朝着靠近所述第一桨臂的方向移动时,所述第二桨臂相对于所述第一桨臂伸长,所述可伸缩桨臂组件的总体长度加长;当所述第二桨臂相对于所述第一桨臂朝着远离所述第一桨臂的方向移动时,所述第二桨臂相对于所述第一桨臂缩短,所述可伸缩桨臂组件的总体长度减小。
在其中一些实现方式中,当所述第一齿合件转动时,所述第一齿合件带动所述第二齿合件进行平行移动。
在其中一些实现方式中,当所述第二齿合件进行平行移动时,所述第二齿合件上的任意两点在相同的方向上移动且移动相同的距离。
在其中一些实现方式中,所述第一桨臂及所述第二桨臂均为中空结构。
在其中一些实现方式中,所述第一桨臂与所述第二桨臂嵌套设置。
在其中一些实现方式中,所述第一桨臂套设在所述第二桨臂的外部。
在其中一些实现方式中,所述第二桨臂套设在所述第一桨臂的外部。
在其中一些实现方式中,所述第一齿合件固定于所述第一桨臂的内侧,所述第二齿合件固定于所述第二桨臂内侧。
在其中一些实现方式中,所述可伸缩桨臂组件还包括驱动电机,所述驱动电机的传动轴与所述第一齿合件固定连接,所述驱动电机固定安装于所述第一桨臂。
在其中一些实现方式中,当所述驱动电机的所述传动轴运转时,所述第一齿合件发生转动,进而带动所述第二齿合件移动,从而通过所述齿条的移动使所述第二桨臂相对于所述第一桨臂伸长或缩短。
在其中一些实现方式中,所述第二桨臂靠近所述第一桨臂的一端开设有避让槽,所述避让槽用于防止所述第二桨臂触碰所述驱动电机。
在其中一些实现方式中,所述可伸缩桨臂组件还包括卷线机构,所述卷线机构用于收容所述动力电机与下述任一设备之间的导线:
第一PCB板,第一电源,其中,所述动力电机与所述第一PCB板和/或所述第一电源电连接。
在其中一些实现方式中,所述卷线机构固定设于所述第一桨臂内侧或所述第二桨臂内侧。
在其中一些实现方式中,当所述驱动电机固定设于所述第二桨臂内时,所述卷线机构还用于收容所述驱动电机与下述任一设备之间的导线:
第二PCB板,第二电源,其中,所述驱动电机与所述第二PCB板和/或所述第二电源电连接。
在其中一些实现方式中,所述第一桨臂为固定桨臂,所述固定桨臂与所述无人飞行器的机身固定连接;
所述第二桨臂为伸缩桨臂,所述伸缩桨臂与用于驱动所述无人飞行器的螺旋桨转动的所述动力电机连接。
在其中一些实现方式中,所述第一桨臂的第一端连接于所述机身,所述第一桨臂的第二端连接于所述第二桨臂的第一端,所述第二桨臂的第二端连接于所述动力电机。
在其中一些实现方式中,所述第二桨臂为固定桨臂,所述固定桨臂与所述无人飞行器的机身固定连接;
所述第一桨臂为伸缩桨臂,所述伸缩桨臂与用于驱动所述无人飞行器的螺旋桨转动的所述动力电机连接。
在其中一些实现方式中,所述第一桨臂的第一端连接于所述动力电机,所述第一桨臂的第二端连接于所述第二桨臂的第一端,所述第二桨臂的第二端连接于所述机身。
在其中一些实现方式中,所述第一齿合件为齿轮,所述第二齿合件为齿条。
为解决上述技术问题,本申请还提供一种无人飞行器,包括:
机身;
动力电机;
螺旋桨,与所述动力电机连接,所述螺旋桨在所述动力电机的驱动下产生使得所述无人飞行器移动的力;以及
如上所述的可伸缩桨臂组件,其中,所述可伸缩桨臂组件的一端与所述机身连接,另一端与所述动力电机连接。
在上述可伸缩桨臂组件中,第一桨臂与第二桨臂通过第一齿合件与第二齿合件进行驱动连接,通过第一齿合件的转动,使第二齿合件在第一齿合件的驱动下移动。因此,当第一齿合件正转、反转时,第二齿合件相应地前进或后退,从而带动第二桨臂与第一桨臂相互靠近或远离。因此,上述可伸缩桨臂组件的桨臂长度可以通过第一齿合件和第二齿合件进行调节。
当可伸缩桨臂组件伸长时,可增大位于多个伸缩桨臂端部的螺旋桨的分布距离,进而可为无人飞行器匹配不同规格的螺旋桨,从而形成不同的力效以满足不同的应用需求。当搭配大尺寸螺旋桨时,可提高螺旋桨的力效,进而提高无人飞行器的整机效率,增加无人飞行器的续航时间。
当可伸缩桨臂组件缩短时,无人飞行器的体积和尺寸减小,并且该无人飞行器适用于负重较低情形。此时无人飞行器的桨臂可以搭配小尺寸的螺旋桨,可以提高无人飞行器的灵活性。并且,当需要对无人飞行器进行携带或存放的时候,使可伸缩桨臂组件收缩,便于无人飞行器的放置与携带。
【附图说明】
图1为本申请一实施例提供的无人飞行器的立体结构示意图;
图2为图1所示的无人飞行器的机身与第一桨臂的结构示意图;
图3为图1所示的无人飞行器的第一齿合件与第二齿合件的结构示意图;
图4为图1所示的无人飞行器的第二桨臂、动力电机与螺旋桨的结构示意图;
图5为图1所示的无人飞行器的第一桨臂与第二桨臂组合好后的结构示意图;
图6为图2所示的无人飞行器的卷线机构的放大示意图。
附图标记说明如下:
10、无人飞行器;11、机身;12、可伸缩桨臂组件;121、第一桨臂;122、第二桨臂;123、第一齿合件;124、第二齿合件;125、避让槽;13、电源;15、起落架;16、动力电机;17、螺旋桨;18、卷线机构;19、驱动电机;20、导线。
【具体实施方式】
下面将结合本申请实施例中的附图,对本申请实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在不做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“顶部”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本申请不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。本申请实施例的可伸缩桨臂组件可以应用到各种由电机驱动的可移动物体上,包括但不限于无人飞行器(Unmanned Aerial Vehicle,UAV),轮船,机器人。具体在本申请中,以无人飞行器为例进行说明,其他不再赘述。无人飞行器的结构包括机身、可伸缩桨臂组件和动力系统。可伸缩桨臂组件的一端与机身连接,另一端上安装有动力系统。典型的动力系统包括动力电机和螺旋桨,动力电机的传动轴连接螺旋桨,螺旋桨在所述动力电机的驱动下产生使得所述无人飞行器移动的力,例如,使得无人飞行器移动的升力或者推力。
请参阅图1,本申请提供一种无人飞行器10包括机身11及设置在机身11上的可伸缩桨臂组件12。可伸缩桨臂组件12可以为一个或多个,当为多个时,多个可伸缩桨臂组件12均匀分布于机身11的外周。在本实施方式中, 所述无人飞行器10为四旋翼飞行器,即具有四个动力组件的飞行器,每个动力组件包括一个动力电机16和一个由所述动力电机16驱动的螺旋桨17。相应地,在本实施方式中,所述可伸缩桨臂组件12的数量也为四个。可以理解,所述无人飞行器10也可以为六旋翼飞行器、八旋翼飞行器、十二旋翼飞行器等。
机身11为一盒状、中空结构。具体在本实施方式中,机身11为正方形盒体。
四个可伸缩桨臂组件12分别设于机身11的四个顶角处。可以理解的是,机身11也可以为长方形盒体、圆形盒体、椭圆形盒体等规则或不规则的形状,本申请实施例不作限定。
无人飞行器10还设有电源13及PCB板(图中未示出)。具体地,电源13用于为无人飞行器10提供电力支持。电源13设于机身11的外侧,便于电源13的拆卸。可以理解,电源13可以为锂电池或太阳能电池等。PCB板固定设有机身11内。PCB板与电源13电连接。
可以理解,电源13及PCB板的位置并不限定于设于机身11上,电源13及PCB板的位置还可以根据设计需要设置于无人飞行器的其他位置,例如,电源13可以设于机身11内,或者,电源13及PCB板设于可伸缩桨臂组件内。
并且,无人飞行器10可以包括多个电源13或多个PCB板。多个电源13或多个PCB板可以方便设计,便于布局,避免布线复杂。
机身11的底侧还设有起落架15,用于支撑无人飞行器10的起落。起落架15为U形结构。起落架15的两自由端与机身11固定连接,起落架15的中部用于与地面抵接,以使起落架15能够稳定支撑机身11。可以理解的是,起落架15除了可以为如图1所示的U形结构外,也可以是T形、三角形等结构,本申请实施例不作限定。
可伸缩桨臂组件12的一端与无人飞行器10的机身11连接,另一端与用于驱动所述无人飞行器10的动力电机16连接。可伸缩桨臂组件包括第一桨臂121、第二桨臂122、第一齿合件123以及第二齿合件124(第一齿合件123和第二齿合件124如图3和图5所示)。第一桨臂121与第一齿合件123固定连接,第二桨臂122与第二齿合件124固定连接。其中,第一齿合件123 与第二齿合件124啮合,当第一齿合件123转动时,所述第一齿合件123带动所述第二齿合件124移动。具体到本实施例中,当第一齿合件123转动时,所述第一齿合件123带动所述第二齿合件124进行平行移动。
在本申请实施例中所称的“平行移动”是指,一个部件的所有点都按照某个方向做相同距离的移动,并且该部件没有相对于自身上的任意一点发生转动。当所述第二齿合件124平行移动时,所述第二齿合件124上的任意两点在相同的方向上移动且移动相同的距离,并且所述第二齿合件124没有发生转动。从而,通过所述第二齿合件124的平行移动,使与所述第二齿合件124固定连接的第二桨臂122也进行平行移动。由于第二桨臂122相对于第一桨臂121平行移动,因而第二桨臂122相对于第一桨臂121伸长或缩短。即,当第二桨臂122相对于第一桨臂121朝着靠近第一桨臂121的方向移动时,第二桨臂122相对于第一桨臂121伸长,可伸缩桨臂组件12的总体长度加长;当第二桨臂122相对于第一桨臂121朝着远离第一桨臂121的方向移动时,第二桨臂122相对于第一桨臂121缩短,可伸缩桨臂组件12的总体长度减小。
可伸缩桨臂组件12还包括驱动电机19。驱动电机19的传动轴(未图示)与第一齿合件123固定连接,驱动电机19的固定部分与第一桨臂固定连接。驱动电机19的转动部分可以为转轴或转子,驱动电机19固定安装于第一桨臂121。在不同实现方式中,驱动电机19通过其固定部分,例如电机底座或定子,安装于第一桨臂121。当驱动电机19的所述传动轴运转时,所述第一齿合件123发生转动,进而带动所述第二齿合件124移动,在本实施例中,第二齿合件124在第一齿合件123的带动下,沿直线进行平行移动。从而,通过第二齿合件124的移动,与第二齿合件124固定连接的第二桨臂122进行相应的移动,因而相对于第一桨臂121伸长或缩短。
在本实施例中,由于驱动电机19的传动轴固定连接于第一齿合件123,第一齿合件123与第二齿合件124啮合,第二齿合件124在第一齿合件123的转动驱动下进行移动,因此可以认为第一齿合件123为主动转动的主动件,第二齿合件124为被动移动的从动件。作为主动件的第一齿合件123固定连接于第一桨臂121,而作为被动件的第二齿合件124固定连接于第二桨臂122,并且第一桨臂121的一端固定连接于无人飞行器10的机身11,第一桨臂121 的另一端连接于第二桨臂122的一端,第二桨臂122的另一端连接于驱动螺旋桨17转动的动力电机16。因此,在本实施例中,第一桨臂121为固定桨臂,而第二桨臂122为可在驱动电机19的转动下进行伸缩的伸缩桨臂。
应理解的是,在一些其他实施方式中,可以与本实施例中的情况相反:第二桨臂122为固定桨臂,第一桨臂121为伸缩桨臂。具体地,作为固定桨臂的第二桨臂122与无人飞行器10的机身11固定连接,作为伸缩桨臂的第一桨臂121与用于驱动螺旋桨17转动的动力电机16连接。当固定连接在第一桨臂121上的第一齿合件123转动时,由于第一齿合件123与固定连接于作为固定桨臂的第二桨臂122上的第二齿合件124啮合,导致第二齿合件124具有相对于第一齿合件123进行平行移动的趋势,但第一齿合件123固定在第一桨臂121上,由于第一桨臂121连接的是质量更重的机身11端,第二桨臂122连接的是质量更轻的动力电机16端,因此第一齿合件121、第一桨臂121保持不动,第二齿合件122、第二桨臂122相对于位于第一齿合件121、第一桨臂121进行移动,实现可伸缩桨臂组件12的伸长或缩短功能。
由于上述两种情形的结构类似、原理相同,为避免赘述,以下仅以第一种情形进行详细描述:第一桨臂121与机身11固定连接,作为固定桨臂;第二桨臂与用于驱动螺旋桨17转动的动力电机16连接,作为伸缩桨臂。以下仅描述了第一桨臂121作为固定桨臂,第二桨臂122作为伸缩桨臂的情形,但本技术领域的普通技术人员可以理解,第一桨臂121作为伸缩桨臂与用于驱动螺旋桨17转动的动力电机16连接,第二桨臂122作为固定桨臂与无人飞行器10的机身11固定连接的情形与上述情形类型,在此不再赘述。
第一桨臂121的一端固定设于机身11上。可以理解,第一桨臂121与机身11可以为一体注塑成型。第一桨臂121为中空结构。具体在本实施方式中,第一桨臂121为方管状,且第一桨臂121的腔体与机身11腔体相互连通。
第二桨臂122设于第一桨臂121远离机身11的一端。第二桨臂122也为中空结构,且第一桨臂121与第二桨臂122嵌套设置。在本实施例中,第二桨臂122的一端套设于第一桨臂121的外部。在一些其他实现方式中,第一桨臂121的一端套设于第二桨臂122的外部。第二桨臂122的腔体与第一桨臂121腔体相互连通。第二桨臂122与第一桨臂121的形状和尺寸大小相匹配,第二桨臂122相对于第一桨臂121可滑动。具体在本实施方式中,第二 桨臂122为方管状。
优选地,在第二桨臂122与第一桨臂121之间设有滑轨,第二桨臂122与第一桨臂121通过滑轨配合滑动连接。滑轨可以便于第二桨臂122与第一桨臂121之间滑行。可以理解,滑轨可以为凹槽或凸筋。
第二桨臂122远离第一桨臂121的一端设有由动力电机16和螺旋桨17构成的动力组件。动力电机16与电源13电连接。动力电机16与螺旋桨17连接,用于为螺旋桨17的转动提供驱动力。
优选地,螺旋桨17可拆卸设于第二桨臂122的端部。螺旋桨17包括多个,分别为多个不同型号大小的螺旋桨17,以分别配合不同长短的可伸缩桨臂组件12使用需求。可以理解的是,第一桨臂121和第二桨臂122的形状还可以为圆管状、锥状等,在此不作限定。
动力电机16带动螺旋桨17转动,螺旋桨17带动无人飞行器10行动。可以理解,动力电机16与电源13及PCB板电连接,电源13为动力电机16提供电力支撑。可以理解,电源13包括第一电源。PCB板包括第一PCB板。动力电机16与第一电源及第一PCB板电连接。
请参阅图2及图3,第二桨臂122与第一桨臂121通过第一齿合件123和第一齿合件124驱动连接。在本实施例中,第一齿合件123为齿轮,第二齿合件124为齿条。当驱动电机19的传动轴带动齿轮转动时,齿条沿齿轮沿直线进行平行移动,使第二桨臂122相对于第一桨臂121伸缩。可以理解,第一齿合件123可以为能够与传动轴固定连接从而被其带动做旋转运动的其他类型的齿合件,第二齿合件124可以为能够与第一齿合件123啮合被其带动进行移动,例如沿直线进行平行移动的其他类型的齿合件,在本申请实施例中不作限定。
本实施方式的驱动电机19的转动部分与第一齿合件123固定连接,驱动电机19的固定部分与第一桨臂121固定连接。驱动电机19的转动部分例如为本实施例中的传动轴,在其他实现方式中,可以为驱动电机19的转子等;驱动电机19的固定部分可以为电机底座或定子。并且,驱动电机19与PCB板电连接。当电源13对PCB板供电时,驱动电机19收到一个脉冲宽度调制(Pulse Width Modulation,PWM)信号,驱动电机19正向转动或反向转动,通过第一齿合件123与第二齿合件124的啮合,可以控制第二齿合件124移动, 进而使得第二桨臂122伸长或缩短。具体地,电源13还包括第二电源,PCB板还包括第二PCB板,则驱动电机19与第二电源及第二PCB板电连接。可以理解,第一电源与第二电源可以为同一电源,也可以为不同电源,第一PCB板与第二PCB板可以为同一PCB板,也可以为不同的PCB板。具体在本实施方式中,第一齿合件123固定设于第一桨臂121的内侧,第二齿合件124固定设于第二桨臂122的内侧。驱动电机19与第一齿合件123有效利用第一桨臂121内的空间,避免占用机身11的空间,便于机身11的内部布置。
请参阅图3至图5,第二齿合件124的一端与第一齿合件123啮合,第二齿合件124的另一端与第二桨臂122的内侧壁固定连接。并且,第二齿合件124的与第一齿合件123啮合的一端能够从第二桨臂122内伸出。
可以理解,第二齿合件124可以通过螺钉或粘接等方式实现与第二桨臂122的内侧壁固定连接。具体在本实施方式中,第二桨臂122为注塑成型,则第二齿合件124在第二桨臂122注塑成型的时候,注塑嵌入于第二桨臂122的内侧壁上。第二齿合件124通过上述方式与第二桨臂122固定连接,操作简单便捷,不仅可以保证第二齿合件124与第二桨臂122连接的稳定性,也可以避免由于螺钉连接需要在第二桨臂122开设螺孔,对无人飞行器10的可伸缩桨臂组件12造成损坏。
当第一齿合件123转动的时候,第二齿合件124的与第一齿合件123啮合的一端跟随第一齿合件123转动沿直线进行平行移动,从而带动第二齿合件124的另一端伸缩。由于第二齿合件124的另一端与第二桨臂122固定连接,则第二齿合件124带动第二桨臂122随第二齿合件124的另一端伸缩。
在一实施方式中,驱动电机19可以为一个或多个。当驱动电机19为一个的时候,驱动电机19可以设置于机身11内部,如位于机身11的中央位置。驱动电机19的驱动轴上设有四个第一齿合件123,每个第一齿合件123分别与一个第二齿合件124驱动连接,每个第二齿合件124驱动一个第二桨臂122伸缩运动。由于四个第一齿合件123相互罗列重叠设置,则四个第二齿合件124在空间上需要相互错位,以避免第二齿合件124之间相互干涉。由于共用同一个驱动电机19,则可以保证四个第一齿合件123的转速一致,使每个第二桨臂122相对于第一桨臂121的伸缩距离能够保持一致,保证多个可伸缩桨臂组件12的长度保持相同,方便可伸缩桨臂组件12的伸缩调节。避免 多个可伸缩桨臂组件12的长度不同,影响无人飞行器10的飞行。
当驱动电机19为两个的时候,每个驱动电机19上设有两个第一齿合件123。每个驱动电机19驱动相邻或相对的两个第二桨臂122伸缩。同样,由于两个第一齿合件123相互罗列重叠设置,则两个第二齿合件124在空间上需要相互错位,以避免第二齿合件124之间相互干涉。
在一实施方式中,驱动电机19可以为四个,四个驱动电机19分别驱动一个第一齿合件123。每个第一齿合件123对应一个第二齿合件124,则每个可伸缩桨臂组件12独立使用一个驱动电机19进行伸缩调整。四个驱动电机19同时收到一个PWM信号,驱动电机19正向转动或反向转动,通过第一齿合件123与第二齿合件124的啮合,可以同时控制四个第二桨臂122伸长或缩短。四个驱动电机19的转速相同,保证四个第二桨臂122的伸缩距离相等,使可伸缩桨臂组件12的长度相同。
请参阅图4,第二桨臂122靠近第一桨臂121的一端的底部开设有避让槽125,当第二桨臂122收缩时,第二桨臂122与驱动电机19的底座碰撞。避让槽125用于防止第二桨臂122触碰驱动电机19。避让槽125的形状与驱动电机19的形状大小相适配。当第二桨臂122靠近第一桨臂121的一端收缩运动到第一桨臂121内的时候,如图5所示,驱动电机19收容于避让槽125内,避免第二桨臂122与驱动电机19之间发生干涉。
可以理解,当第二齿合件124的长度足够长,并且驱动电机19的安装位置距离第二桨臂122足够远时,第一桨臂121与第二桨臂122无需重叠,即可满足可伸缩桨臂组件的臂长的调节,则避让槽125可以省略。
请参阅图2及图5,具体在本实施方式中,本实施方式的无人飞行器10还包括卷线机构18。卷线机构18固定设于第一桨臂121内侧。动力电机16的导线20通过卷线机构18与第一电源及第一PCB板电连接,卷线机构18用于收放动力电机16与第一电源之间的导线或动力电机16与第一PCB板之间的导线20。
具体地,请参阅图6,卷线机构18包括壳体、卷轴及扭簧。导线20的一端与第一PCB板或第一电源电连接,另一端与动力电机16电连接。导线20缠绕在卷轴上。卷轴上设有凹槽,导线20收容于凹槽内,以方便导线20缠绕。扭簧的一个扭臂与壳体固定连接,另一端与卷轴固定连接。当第一齿 合件123正向转动的时候,第二桨臂122远离第一桨臂121的时候,对导线20有拉力,导线20被拉长,卷轴转动,扭簧发生形变。当第一齿合件123反向转动的时候,第二桨臂122靠近第一桨臂121的时候,导线20松开,扭簧恢复弹性形变,则卷轴回转,将导线20重新缠绕在卷轴上。卷线机构18可以及时导线20进行收放,避免导线20发生卷绕,影响第二桨臂122的运动。
可以理解,在其他实施方式中,第二桨臂122与机身11固定连接,则第二桨臂122为固定桨臂,第一桨臂121为伸缩桨臂。此时可以是,第二桨臂122与用于驱动螺旋桨17转动的动力电机16连接。即,第一齿合件123固定设于第二桨臂122内,第二齿合件124的一端与第一齿合件123啮合,第二齿合件124的另一端与第一桨臂121的内侧壁固定连接。
同样,驱动电机19固定设于第二桨臂122内,以驱动第一齿合件123。当驱动电机19驱动第一齿合件123转动的时候,第二齿合件124与第一齿合件123啮合的一端随着第一齿合件123运动,则带动第一齿合件124的另一端伸缩。由于第一齿合件124的另一端与第一桨臂121固定连接,则第二齿合件124带动第二桨臂122靠近或远离第一桨臂121。
在其他实施方式中,当驱动电机19固定设于第二桨臂122内的时候,第一桨臂121靠近第二桨臂122的一端的底部开设有避让槽。避让槽用于防止第一桨臂121触碰驱动电机。因此,第二桨臂122开设的避让槽同样可以避免第一桨臂121与驱动电机之间发生干涉。当齿条124的长度足够长,并且驱动电机19的安装位置距离第一桨臂121足够远时,第一桨臂121与第二桨臂122无需重叠,即可满足可伸缩桨臂组件12的臂长的调节,则避让槽可以省略。
可以理解,在一些其他实现方式中,卷线机构18还可以固定设于第二桨臂122的内部。由于驱动电机19位于第二桨臂122内,驱动电机19通过卷线机构18与第二电源及第二PCB板电连接。则卷线机构18还可以用于收放驱动电机19与第二电源之间的导线或驱动电机19与第二PCB板之间的导线20。则卷线机构18设有两个卷轴,则卷线机构18分别对动力电机16及驱动电机19的导线20进行收放。
在本申请实施例的可伸缩桨臂12以及无人飞行器10中,第一桨臂121 与第二桨臂122通过第一齿合件123和第二齿合件124进行驱动连接,通过转动第一齿合件123,使第二齿合件124在第一齿合件123的驱动下运动。因此,第一齿合件123正转或反转,第二齿合件124相应地前进或后退,从而带动第二桨臂122与第一桨臂121之间相互靠近或远离。因此,上述无人飞行器10的桨臂长度可以通过该可伸缩桨臂12进行调节。
当可伸缩桨臂组件12伸长时,可增大位于多个第二桨臂122端部的螺旋桨17的分布距离,进而可为无人飞行器10匹配不同规格的螺旋桨17,以形成不同的力效以满足不同的应用需求。当搭配大尺寸螺旋桨时,可提高螺旋桨的力效,进而提高无人飞行器的整机效率,增加无人飞行器的续航时间。
当可伸缩桨臂组件12缩短时,无人飞行器10的体积和尺寸减小,并且该无人飞行器10适用于负重较低情形。此时无人飞行器10的可伸缩桨臂组件12可以搭配小尺寸的螺旋桨,可以提高无人飞行器的灵活性。并且,当需要对无人飞行器进行携带或存放的时候,使无人飞行器的可伸缩桨臂组件收缩,便于无人飞行器的放置与携带。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种可伸缩桨臂组件(12),其特征在于,所述可伸缩桨臂组件(12)的一端与无人飞行器(10)的机身(11)连接,另一端与用于驱动所述无人飞行器(10)的螺旋桨(17)转动的动力电机(16)连接,包括第一桨臂(121)、第二桨臂(122)、第一齿合件(123)以及第二齿合件(124),所述第一桨臂(121)与所述第一齿合件(123)固定连接,所述第二桨臂(122)与所述第二齿合件(124)固定连接;
    其中,所述第一齿合件(123)与所述第二齿合件(124)啮合,当所述第一齿合件(123)转动时,所述第一齿合件(123)带动所述第二齿合件(124)移动,从而通过所述第二齿合件(124)使所述第二桨臂(122)相对于所述第一桨臂(121)伸长或缩短。
  2. 根据权利要求1所述的可伸缩桨臂组件(12),其特征在于,当所述第二桨臂(122)相对于所述第一桨臂(121)朝着靠近所述第一桨臂(121)的方向移动时,所述第二桨臂(122)相对于所述第一桨臂(121)伸长,所述可伸缩桨臂组件(12)的总体长度加长;当所述第二桨臂(122)相对于所述第一桨臂(121)朝着远离所述第一桨臂(121)的方向移动时,所述第二桨臂(122)相对于所述第一桨臂(121)缩短,所述可伸缩桨臂组件(12)的总体长度减小。
  3. 根据权利要求1或2所述的可伸缩桨臂组件(12),其特征在于,当所述第一齿合件(123)转动时,所述第一齿合件(123)带动所述第二齿合件(124)进行平行移动。
  4. 根据权利要求1至3任一项所述的可伸缩桨臂组件(12),其特征在于,当所述第二齿合件(124)进行平行移动时,所述第二齿合件(124)上的任意两点在相同的方向上移动且移动相同的距离。
  5. 根据权利要求1至4任一项所述的可伸缩桨臂组件(12),其特征在 于,所述第一桨臂(121)及所述第二桨臂(122)均为中空结构。
  6. 根据权利要求1至5任一项所述的可伸缩桨臂组件(12),其特征在于,所述第一桨臂(121)与所述第二桨臂(122)嵌套设置。
  7. 根据权利要求6所述的可伸缩桨臂组件(12),其特征在于,所述第一桨臂(121)套设在所述第二桨臂(122)的外部。
  8. 根据权利要求7所述的可伸缩桨臂组件(12),其特征在于,所述第二桨臂(122)套设在所述第一桨臂(121)的外部。
  9. 根据权利要求1至8任一项所述的可伸缩桨臂组件(12),其特征在于,所述第一齿合件(123)固定于所述第一桨臂(121)的内侧,所述第二齿合件(124)固定于所述第二桨臂(122)内侧。
  10. 根据权利要求1至9任一项所述的可伸缩桨臂组件(12),其特征在于,所述可伸缩桨臂组件(12)还包括驱动电机(19),所述驱动电机(19)的传动轴与所述第一齿合件(123)固定连接,所述驱动电机(19)固定安装于所述第一桨臂(121)。
  11. 根据权利要求10所述的可伸缩桨臂组件(12),其特征在于,当所述驱动电机(19)的所述传动轴运转时,所述第一齿合件(123)发生转动,进而带动所述第二齿合件(124)移动,从而通过所述齿条(124)的移动使所述第二桨臂(122)相对于所述第一桨臂(121)伸长或缩短。
  12. 根据权利要求10或11所述的可伸缩桨臂组件(12),其特征在于,所述第二桨臂(122)靠近所述第一桨臂(121)的一端开设有避让槽(125),所述避让槽(125)用于防止所述第二桨臂触碰所述驱动电机(19)。
  13. 根据权利要求1至12任一项所述的可伸缩桨臂组件(12),其特征 在于,所述可伸缩桨臂组件(12)还包括卷线机构(18),所述卷线机构(18)用于收容所述动力电机(16)与下述任一设备之间的导线:
    第一PCB板,第一电源,其中,所述动力电机(16)与所述第一PCB板和/或所述第一电源电连接。
  14. 根据权利要求13所述的可伸缩桨臂组件(12),其特征在于,所述卷线机构(18)固定设于所述第一桨臂(121)内侧或所述第二桨臂(122)内侧。
  15. 根据权利要求13或者14所述的可伸缩桨臂组件(12),其特征在于,当所述驱动电机(19)固定设于所述第二桨臂(122)内时,所述卷线机构(18)还用于收容所述驱动电机(19)与下述任一设备之间的导线:
    第二PCB板,第二电源,其中,所述驱动电机(19)与所述第二PCB板和/或所述第二电源电连接。
  16. 根据权利要求1-15任一项所述的可伸缩桨臂组件(12),其特征在于,所述第一桨臂(121)为固定桨臂,所述固定桨臂与所述无人飞行器(10)的机身(11)固定连接;
    所述第二桨臂(122)为伸缩桨臂,所述伸缩桨臂与用于驱动所述无人飞行器(10)的螺旋桨(17)转动的所述动力电机(16)连接。
  17. 根据权利要求16所述的可伸缩桨臂组件(12),其特征在于,所述第一桨臂(121)的第一端连接于所述机身(11),所述第一桨臂(121)的第二端连接于所述第二桨臂(122)的第一端,所述第二桨臂(122)的第二端连接于所述动力电机(16)。
  18. 根据权利要求1-15任一项所述的可伸缩桨臂组件(12),其特征在于,所述第二桨臂(122)为固定桨臂,所述固定桨臂与所述无人飞行器(10)的机身(11)固定连接;
    所述第一桨臂(121)为伸缩桨臂,所述伸缩桨臂与用于驱动所述无人飞 行器(10)的螺旋桨(17)转动的所述动力电机(16)连接。
  19. 根据权利要求18所述的可伸缩桨臂组件(12),其特征在于,所述第一桨臂(121)的第一端连接于所述动力电机(16),所述第一桨臂(121)的第二端连接于所述第二桨臂(122)的第一端,所述第二桨臂(122)的第二端连接于所述机身(11)。
  20. 根据权利要求1-19任一项所述的可伸缩桨臂组件(12),其特征在于,所述第一齿合件(123)为齿轮,所述第二齿合件(124)为齿条。
  21. 一种无人飞行器(10),其特征在于,包括:
    机身(11);
    动力电机(16);
    螺旋桨(17),与所述动力电机(16)连接,所述螺旋桨(17)在所述动力电机(16)的驱动下产生使得所述无人飞行器(10)移动的力;以及
    如权利要求1-20任一项所述的可伸缩桨臂组件(12),其中,所述可伸缩桨臂组件(12)的一端与所述机身(11)连接,另一端与所述动力电机(16)连接。
PCT/CN2017/109549 2016-11-14 2017-11-06 可伸缩桨臂组件及无人飞行器 WO2018086496A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610999160.0 2016-11-14
CN201610999160.0A CN106379515B (zh) 2016-11-14 2016-11-14 可伸缩桨臂组件及无人机

Publications (1)

Publication Number Publication Date
WO2018086496A1 true WO2018086496A1 (zh) 2018-05-17

Family

ID=57958526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109549 WO2018086496A1 (zh) 2016-11-14 2017-11-06 可伸缩桨臂组件及无人飞行器

Country Status (2)

Country Link
CN (1) CN106379515B (zh)
WO (1) WO2018086496A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060272A (zh) * 2021-05-19 2021-07-02 宜宾职业技术学院 一种无人机机臂折叠结构
CN113716015A (zh) * 2021-08-19 2021-11-30 航天时代飞鹏有限公司 一种四旋翼无人机机臂自主收放机构
CN116080904A (zh) * 2023-04-10 2023-05-09 成都理工大学 一种无人机载连续投放装置
EP4311785A1 (en) * 2022-07-26 2024-01-31 The Boeing Company Anomaly detection via unmanned aerial drone

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106379515B (zh) * 2016-11-14 2020-03-31 深圳市道通智能航空技术有限公司 可伸缩桨臂组件及无人机
CN107128482B (zh) * 2017-05-03 2018-10-19 福建省泉州南飞鸟鞋业有限公司 一种防撞无人机
EP3455129B1 (en) * 2017-05-05 2022-04-06 SZ DJI Technology Co., Ltd. Systems and methods related to transformable unmanned aerial vehicles
CN107757913B (zh) * 2017-11-21 2020-01-07 歌尔科技有限公司 基于无人机的载重控制方法、设备以及无人机
CN107972862B (zh) * 2017-11-21 2020-11-17 歌尔科技有限公司 基于无人机的载重控制方法、设备及无人机
CN108706096A (zh) * 2018-04-02 2018-10-26 夏贵荣 一种通过调整旋翼距离控制四旋翼无人机运动的支架
CN109606611B (zh) * 2018-12-12 2021-11-30 江苏翔龙智能装备科技有限公司 一种可缠绕电线的机臂缩入式无人机
CN109895991B (zh) * 2018-12-12 2021-09-07 江苏科兴电器有限公司 一种可缠绕电线的折叠式无人机
CN110525629A (zh) * 2019-07-26 2019-12-03 广东工业大学 一种可折弯无人机机臂及无人机
CN111099008A (zh) * 2020-01-16 2020-05-05 广东工业大学 一种可调无人机
CN111824390B (zh) * 2020-07-24 2024-06-28 中天飞龙(西安)智能科技有限责任公司 一种具有可伸缩机翼的无人机
CN111824402B (zh) * 2020-07-24 2024-05-31 云南延奔信息安全技术股份有限公司 一种无人机
CN112357047A (zh) * 2020-11-19 2021-02-12 南京信息工程大学 一种可伸缩机臂变旋翼的无人机
CN112722278B (zh) * 2020-12-21 2023-03-31 空中跳动(嘉兴)科技有限公司 一种便于拆卸组装用于精准农业的无人机
CN113277075B (zh) * 2021-07-02 2022-10-28 宁波阿瑞斯自动化技术有限公司 一种可折叠多旋翼无人机

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105173058A (zh) * 2015-09-25 2015-12-23 联想(北京)有限公司 电子设备
CN205010472U (zh) * 2015-09-01 2016-02-03 湖南云顶智能科技有限公司 用于无人机的可伸缩机臂
CN205366058U (zh) * 2015-12-31 2016-07-06 上海九鹰电子科技有限公司 一种多旋翼飞行器
CN205390129U (zh) * 2016-03-07 2016-07-27 浙江大学 一种农用无人机可伸缩喷杆
CN106005387A (zh) * 2016-07-20 2016-10-12 张学衡 一种可垂直起降式除雾霾飞行器
KR101665445B1 (ko) * 2014-08-07 2016-10-13 연세대학교 산학협력단 무인 비행체 및 이의 제어 방법
CN106379515A (zh) * 2016-11-14 2017-02-08 深圳市道通智能航空技术有限公司 可伸缩桨臂组件及无人机
CN206141812U (zh) * 2016-11-14 2017-05-03 深圳市道通智能航空技术有限公司 可伸缩桨臂组件及无人机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204399474U (zh) * 2015-01-13 2015-06-17 杭州乐卡麦尔工业设计有限公司 无人飞机上的伸缩动力臂
CN205203378U (zh) * 2015-08-24 2016-05-04 深圳市诺亚星辰科技开发有限公司 一种改进的多旋翼无人机
CN205076041U (zh) * 2015-09-25 2016-03-09 黄少锋 一种适应性强的飞行器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101665445B1 (ko) * 2014-08-07 2016-10-13 연세대학교 산학협력단 무인 비행체 및 이의 제어 방법
CN205010472U (zh) * 2015-09-01 2016-02-03 湖南云顶智能科技有限公司 用于无人机的可伸缩机臂
CN105173058A (zh) * 2015-09-25 2015-12-23 联想(北京)有限公司 电子设备
CN205366058U (zh) * 2015-12-31 2016-07-06 上海九鹰电子科技有限公司 一种多旋翼飞行器
CN205390129U (zh) * 2016-03-07 2016-07-27 浙江大学 一种农用无人机可伸缩喷杆
CN106005387A (zh) * 2016-07-20 2016-10-12 张学衡 一种可垂直起降式除雾霾飞行器
CN106379515A (zh) * 2016-11-14 2017-02-08 深圳市道通智能航空技术有限公司 可伸缩桨臂组件及无人机
CN206141812U (zh) * 2016-11-14 2017-05-03 深圳市道通智能航空技术有限公司 可伸缩桨臂组件及无人机

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113060272A (zh) * 2021-05-19 2021-07-02 宜宾职业技术学院 一种无人机机臂折叠结构
CN113060272B (zh) * 2021-05-19 2021-11-16 宜宾职业技术学院 一种无人机机臂折叠结构
CN113716015A (zh) * 2021-08-19 2021-11-30 航天时代飞鹏有限公司 一种四旋翼无人机机臂自主收放机构
CN113716015B (zh) * 2021-08-19 2024-06-11 航天时代飞鹏有限公司 一种四旋翼无人机机臂自主收放机构
EP4311785A1 (en) * 2022-07-26 2024-01-31 The Boeing Company Anomaly detection via unmanned aerial drone
US12030677B2 (en) 2022-07-26 2024-07-09 The Boeing Company Anomaly detection via self-lifting detector attachment member of unmanned aerial drone
CN116080904A (zh) * 2023-04-10 2023-05-09 成都理工大学 一种无人机载连续投放装置
CN116080904B (zh) * 2023-04-10 2023-06-09 成都理工大学 一种无人机载连续投放装置

Also Published As

Publication number Publication date
CN106379515A (zh) 2017-02-08
CN106379515B (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2018086496A1 (zh) 可伸缩桨臂组件及无人飞行器
EP3632793B1 (en) Unmanned aerial vehicle and landing gear thereof
CN109070989B (zh) 可折叠无人飞行器
JP6463841B2 (ja) 無人航空機
US9522725B2 (en) Stowable and deployable unmanned aerial vehicle
GB2588478A (en) A coaxial double-propeller vertical take-off and landing aircraft using moving mass control and a control method thereof
US11634215B2 (en) Flying object
CN108513559B (zh) 机架及多旋翼无人机
US10280904B2 (en) Electrically activated pivot assembly
WO2020029796A1 (zh) 一种螺旋桨组件、动力组件及无人飞行器
EP3677502A1 (en) Frame assembly of unmanned aerial vehicle, and unmanned aerial vehicle
US11834163B2 (en) Aerial vehicle with tape spring arms
CN113212735B (zh) 一种空射无人机
KR101220990B1 (ko) 회전 전원공급선을 이용한 전기비행기의 전원공급장치
WO2018090828A1 (zh) 一种电机、无人飞行器及其导线收纳装置
CN210769674U (zh) 可伸缩的涡流发生器、飞行器和风力发电机
CN115520384B (zh) 一种垂直起降固定翼无人机
CN212022964U (zh) 一种无人机的起落架及无人机
CN220743384U (zh) 一种无人机旋翼多功能支撑臂
CN213083473U (zh) 飞行器
JP7123459B1 (ja) 飛行装置
WO2023182127A1 (ja) 飛行装置
WO2022198608A1 (zh) 飞行器
CN216332710U (zh) 一种多旋翼飞行器大梁自动伸缩机构
CN210000583U (zh) 光伏设备和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17869308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17869308

Country of ref document: EP

Kind code of ref document: A1