WO2018086001A1 - 柔性显示器及展开检测方法 - Google Patents

柔性显示器及展开检测方法 Download PDF

Info

Publication number
WO2018086001A1
WO2018086001A1 PCT/CN2016/105166 CN2016105166W WO2018086001A1 WO 2018086001 A1 WO2018086001 A1 WO 2018086001A1 CN 2016105166 W CN2016105166 W CN 2016105166W WO 2018086001 A1 WO2018086001 A1 WO 2018086001A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
flexible display
parameter
sensing element
emitting element
Prior art date
Application number
PCT/CN2016/105166
Other languages
English (en)
French (fr)
Inventor
夏新元
杨金辉
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to US16/347,747 priority Critical patent/US10788862B2/en
Priority to EP16921414.5A priority patent/EP3540714A1/en
Priority to CN201680036579.4A priority patent/CN107820629B/zh
Priority to PCT/CN2016/105166 priority patent/WO2018086001A1/zh
Publication of WO2018086001A1 publication Critical patent/WO2018086001A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/147Digital output to display device ; Cooperation and interconnection of the display device with other functional units using display panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • G09G3/035Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays for flexible display surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2380/00Specific applications
    • G09G2380/02Flexible displays

Definitions

  • the present invention relates to a flexible display, and more particularly to a flexible display and a method for detecting the same.
  • the embodiment of the invention discloses a flexible display and a deployment detection method, which can detect the degree of deployment of the display screen of the flexible display by a simple structure.
  • the flexible display disclosed in the embodiment of the invention includes a flexible display screen, a receiving housing and a processor, and the flexible display screen is extended from the receiving housing or received in the receiving housing, wherein the flexible display
  • the display further includes a first light emitting element and a first light sensing element, the first light emitting element and the first light sensing element being disposed at respective positions of the housing case; the flexible display screen including stretching along the flexible display screen a plurality of first base units disposed in a direction interval, the first base unit includes a first light transmissive area, and an area of the first light transmissive area of each first base unit is different, when any of the first When the position of the light-transmitting region moves through the first light-emitting element and the first light-sensing element, the first light-transmitting region is located at the first light-emitting element and the first light-sensing element Between the components, the first light sensing element senses light emitted by the first light emitting element through the first light transmitting region and generates
  • the flexible display provided by the embodiment of the present invention includes a flexible display screen, a receiving housing and a processor, and the flexible display screen is extended from the receiving housing or received in the receiving housing, wherein the flexible display
  • the display further includes a first light emitting element, a second light emitting element, and a first light sensing element and a second light sensing element, wherein the first light emitting element and the first light sensing element are disposed at corresponding positions of the receiving housing, The second light-emitting element and the second light-sensing element are also disposed at corresponding positions of the housing;
  • the flexible display screen includes a plurality of first base units spaced along the extending direction of the flexible display screen, and the plurality of a plurality of second base units corresponding to the base unit one by one, each of the first base units includes a first light transmissive area, and an area of the light transmissive area of each of the first base units is different, each of the second The base unit includes a second light transmissive area; the second light transmis
  • the embodiment of the present invention provides a deployment detecting method for detecting a stretched length of a flexible display screen of a flexible display, wherein the flexible display includes a first light emitting element and a first light sensing element disposed at opposite positions of the flexible display.
  • the flexible display screen is provided with a plurality of first base units arranged along the extending direction of the flexible display screen, each of the first base units includes a first light-transmissive area having a different area, and the method includes the steps of: first light sensing Receiving, when the first light-transmitting region of any of the first base units is moved between the first light-emitting element and the first light-sensing element, the light emitted by the first light-emitting element and generating a first light-sensing parameter; receiving the First light sensing parameter generated by the first light sensing element Determining, according to the correspondence table of the light sensing parameter and the extension length, determining a first extension length corresponding to the first light sensing parameter; determining that the first extension
  • An embodiment of the present invention provides a deployment detecting method for detecting a stretched length of a flexible display screen of a flexible display, wherein the flexible display includes a first light emitting element and a first light sensing element disposed at opposite positions of the flexible display, and a second light-emitting element and a second light-sensing element disposed at opposite positions of the flexible display, wherein the flexible display screen is provided with a plurality of first base units arranged along an extending direction of the flexible display screen, and a plurality of a base unit corresponding to and parallel to the second base unit, each of the first base units includes a first light transmissive area having a different area, and each of the second base units includes a second light transmissive area having an equal area, the method comprising the steps of: The first light sensing element receives the light emitted by the first light emitting element and generates the first light when moving between the first light emitting element and the first light sensing element in the light transmitting region of any of the first base units Sensing parameters
  • FIG. 1 is a block diagram showing the structure of a flexible display in accordance with an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a perspective view of a flexible display in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a flexible display screen of a flexible display in accordance with an embodiment of the present invention.
  • FIG. 4 is a table showing a correspondence relationship between a light sensing parameter and an extended length in an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of a flexible display in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a flexible display in accordance with another embodiment of the present invention.
  • Figure 7 is a schematic cross-sectional view of a flexible display in accordance with still another embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for detecting deployment of a flexible display according to an embodiment of the present invention.
  • Figure 9 is a flow chart showing the additional steps of the unfolding detection method shown in Figure 8.
  • FIG. 10 is a flowchart of a method for detecting deployment of a flexible display according to another embodiment of the present invention.
  • FIG. 1 is a structural block diagram of a flexible display 100 according to an embodiment of the invention.
  • the flexible display 100 includes a flexible display 10 , a receiving housing 20 , a lighting module 30 , a light sensing module 40 , and a processor 50 .
  • the flexible display screen 10 can be wound into or received from the housing case 20 .
  • FIG. 2 is a schematic diagram of a perspective view of the flexible display 100.
  • the light emitting module 30 includes a first light emitting element F1
  • the light sensing module 40 includes a first light sensing element G1 .
  • the first light-emitting element F1 and the first light-sensing element G1 are disposed at corresponding positions of the housing case 20, and the first light-emitting element F1 is configured to emit light toward the direction of the first light-sensing element G1.
  • the flexible display screen 10 includes a plurality of first base units 101 spaced apart along the direction of extension of the flexible display screen 10.
  • Each of the first base units 101 includes a first light transmissive area A1 and the area of the first light transmissive area A1 of each of the first base units 101 is different, and the position of the first light transmissive area A1 of one of the first base units 101 is different.
  • the flexible display screen 10 moves through the first light emitting element F1 And the first light-transmitting region A1 is located between the first light-emitting element F1 and the first light-sensing element G1, and the first light-transmitting area A1 is used for The light emitted by the first light emitting element F1 is transmitted to the first light sensing element G1.
  • the first light sensing element G1 senses light emitted by the first light emitting element F1 and transmitted through the first light transmitting area A1 to generate a first light sensing parameter.
  • the amount of light passing through is different, that is, The amount of light emitted from the first light-emitting element F1 to the first light-sensing element G1 is different. Therefore, the amount of light received by the first light sensing element G1 is also different, and different first light sensing parameters are generated.
  • the processor 50 is coupled to the first light sensing element G1 for receiving light sensing parameters generated by the first light sensing element G1, and the processor 50 is configured according to a preset light sensing parameter and stretching.
  • the length correspondence table determines the extension length D1 corresponding to the received first light sensing parameter, thereby determining that the flexible display screen 10 extends out of the housing case 20 to the extension length D1.
  • the first light-transmissive area A1 of different areas when the flexible display screen 10 is moved to different positions, the first light-transmitting area A1 of different areas is located at the first light-emitting element F1 and the first light-sensing element. Between G1, the amount of light received by the first light sensing element G1 is different to produce different light sensing parameters, thereby indicating different stretch lengths of the flexible display screen 10.
  • the first light sensing parameter generated by the first light sensing element G1 when the first light transmitting area A1 of each first base unit 101 passes through the first light sensing element G1 is detected in advance, And measuring the extension length of the flexible display screen 10 to determine the correspondence between different light sensing parameter ranges and different extension lengths to form the correspondence table T1.
  • the correspondence table T1 includes a correspondence relationship between a light sensing parameter, a parameter range, and an extension length, and the processor 50 receives the according to the The obtained light sensing parameter determines a range of light parameters in which the first light sensing parameter is located, and further determines a corresponding stretch length according to the range of the light parameters.
  • the light sensing parameters E1 and E2 correspond to the parameter ranges E1 to E2, and both correspond to the extension length X1.
  • the first light-transmitting region A1 of each first base unit 101 may be detected a plurality of times before the first light-sensing element G1 passes through the first light-sensing element G1.
  • the detection result is determined by determining the correspondence between the different ranges of the light sensing parameters and the different stretching lengths to form the correspondence table T1.
  • the correspondence table T1 may be pre-programmed in the processor 50.
  • the flexible display 100 may further include a memory 60 in which the correspondence table T1 may be stored.
  • the area of the first light-transmissive area A1 of the plurality of first base units 101 varies from small to large or from large to small in the direction in which the flexible display screen 10 extends. In other embodiments, the area of the first light-transmitting area A1 of the plurality of first base units 101 may be a random change order, as long as the area of the first light-transmitting area A1 of each first base unit 101 is different. Just fine.
  • the light emitting module 30 further includes a second light emitting element F2
  • the light sensing module 40 further includes a second light sensing element G2
  • the second light emitting element F2 and the second light sensing element G2 are also disposed at corresponding positions of the housing case 20.
  • the flexible display screen 10 further includes a second base unit 102 spaced apart along the extending direction of the flexible display screen 10, the plurality of second base units 102 including a second light transmissive area Q1 and each of the second base units 102
  • the second light-transmissive region Q1 has the same area, and the plurality of second base units 102 are in one-to-one correspondence with the plurality of first base units 101 and are distributed in parallel, when the first base unit 101 is transparent to the first base unit 101.
  • the second light transmitting area Q1 of the second base unit 102 corresponding to the first base unit 101 is also moved. To the corresponding position of the second light sensing element G2.
  • the second light-transmitting region Q1 of the second base unit 102 corresponds to the second light-emitting element F2 and the second light-sensing element G2 and is located at the second light-emitting element F2 and the second light-sensing element G2. Between the light emitted by the second light emitting element F2 is transmitted to the second light sensing element G2.
  • the first base unit 101 passes through the first light emitting element F1 and the first light sensing element G1
  • the second base unit 102 corresponding to the first base unit 101 also passes through the second light emitting element F2 and the second light sensing element G2.
  • the first light-emitting element Light emitted by F1 is emitted to the first light sensing element G1 through the first light transmitting area A1 of the first base unit 101.
  • the first light sensing element G1 senses light emitted by the first light emitting element F1 to generate a corresponding first light sensing parameter.
  • the second base unit 101 when the second base unit 101 is moved to correspond to the second light emitting element F2 and the second light sensing element G2, the light emitted by the second light emitting element F2 passes through the second base unit 102.
  • the second light transmitting region Q1 is emitted to the second light sensing element G2.
  • the second light sensing element G2 senses the light emitted by the second light emitting element F2 to generate a corresponding second light sensing parameter.
  • the processor 50 is further coupled to the second light sensing element G2 for receiving the first light sensing parameter generated by the first light sensing element G1 and the second light sensing parameter generated by the second light sensing element G2.
  • the processor 50 further calculates a ratio of the first light sensing parameter to the second light sensing parameter to obtain a parameter ratio.
  • the processor 50 further determines the extension length D2 corresponding to the parameter ratio according to a correspondence table of a parameter ratio and an extension length.
  • the processor 50 compares whether the extension length D1 obtained according to the light sensing parameter is equal to the extension length D2 obtained according to the parameter ratio, and if not equal, corrects the extension length D1 obtained according to the light sensing parameter to The extension length D2 obtained from the parameter ratio is described. That is, based on the extension length D2 obtained according to the parameter ratio, it is determined that the extension length of the flexible display screen 10 extending out of the housing case 20 is determined to be the extension length D2 obtained according to the parameter ratio. In some embodiments, the processor 50 directly determines the extension length D2 as the extension length of the flexible display screen 10 extending out of the housing case 20 without comparison with the extension length D1.
  • the processor 50 determines that the extension length D1 is equal to the extension length D2, it is determined that the flexible display screen 10 extends out of the housing case 20 by any one of the extension length D1 or the extension length D2. In some embodiments, when the processor 50 determines that the extension length D1 and the extension length D2 are not equal, any one of the extension length D1 and the extension length D2 may also be determined on the premise that the accuracy requirement is not high. The flexible display screen 10 is extended to extend beyond the housing housing 20.
  • the first light-transmitting region G1 of the first light-transmitting region A1 of each first base unit 101 and the second light-transmitting region of the corresponding second base unit 102 may be detected multiple times in advance.
  • Q1 passes through the second light sensing element G2
  • the extended length of the flexible display screen 10 is used to determine a correspondence between different parameter ratios and different extension lengths to form a correspondence table between the parameter ratio and the extension length.
  • the first base unit 101 and the corresponding second base unit 102 pass through the corresponding light sensing elements at the same time,
  • the first base unit 101 and the corresponding second base unit 102 respectively move through the first light-emitting element F1 and the second light-emitting element F2 at the same speed.
  • Speed V the first light-emitting element F1 and the second light-emitting element F2
  • the time period in which the first base unit 101 and the corresponding second base unit 102 pass the corresponding light sensing element is t, and the first light transmitting area A1 in the first base unit 101 passes through the first light sensing element G1.
  • the time is T.
  • the first transparent area A1 has a width W1
  • the second basic unit 102 has a width W2
  • the second basic unit 102 has a second transparent area.
  • the ratio of the area S 1 of the first light-transmitting area A1 to the area S2 of the second light-transmissive area Q1 of the second base unit 102 can be expressed by the ratio of T to t (W2/W1 is a fixed coefficient). ), which is the time duty cycle of T on t, which is a value that is independent of the speed at which the screen moves.
  • the ratio of the amount of light received by the first light sensing element G1 to the amount of light received by the second light sensing element G2 is equal to the area S 1 of the first light transmitting area A1 and the second light transmitting area Q1 of the second base unit 102.
  • the ratio of the area S2 is therefore also a value independent of the moving speed.
  • the first light sensing parameter generated by the first light sensing element G1 is generated by the second light sensing element G2.
  • the second optical sensing parameter ratio that is, the parameter ratio is equal to the light amount ratio, and is independent of the moving speed, only the area S1 of the first light transmitting area A1 and the second light transmitting area Q1 of the second base unit 102
  • the ratio of area S2 is related.
  • the area S1 of the first light-transmitting area A1 of each of the first base units 101 is different, and the area of the second light-transmitting area Q1 of each of the second base units 102 is the same, different first base units 101 and The parameter ratio is unique when the second base unit 102 passes the corresponding light sensing element.
  • the processor 50 determines whether the speed of the flexible display screen 10 is fast or slow, and whether the speed is changed or constant during the pulling process, according to the extended length D2 obtained by the parameter ratio. Influence, the extension length D2 derived from the parameter ratio is a more accurate value.
  • the processor 50 calculates a ratio of the first light sensing parameter to the second light sensing parameter to obtain a parameter ratio, and determines the parameter ratio according to the correspondence between the parameter ratio and the extended length. After the extension length, it is directly determined that the parameter is longer than the corresponding extension length for the flexible display screen 10 to extend out of the receiving housing 20.
  • the flexible display screen 10 includes a first edge C1 along a direction in which the flexible display screen extends, and the plurality of first base units 101 are spaced apart from the first edge C1. on.
  • the flexible display screen 10 further includes a second edge C2 along a direction in which the flexible display screen extends, the second edge C2 corresponding to the first edge C1, the plurality of second base units 102 is spaced apart from the second edge C2.
  • a line connecting the plurality of second base units 102 corresponds to the second light emitting element F2 and the second light sensing element G2.
  • the receiving housing 20 includes an opening K1, and the flexible display screen 10 extends from the opening K1 or from the opening.
  • the opening K1 is received in the housing case 20.
  • the first light emitting element F1 and the first light sensing element G1 are disposed at corresponding positions at the opening K1.
  • the first light-emitting element F1 and the first light-sensing element G1 are disposed at a relative position of the first side Z1 and the second side Z2 of the opening K1, and the second light-emitting element F2 is
  • the second light sensing element G2 is also disposed at a relative position of the first side Z1 and the second side Z2 of the opening K1.
  • first light-emitting element F1 and the first light-sensing element G1 are respectively disposed on the first side Z1 of the opening and the first end P1 of the second side Z2.
  • second light-emitting element F2 and the second light-sensing element G2 are respectively disposed on the first side Z1 of the opening K1 and the second end P2 of the second side Z2.
  • a direction of a line connecting the first light-emitting element F1 and the first light-sensing element G1 is perpendicular to an extending direction of the flexible display screen 10 from the opening K1, when the flexible display screen 10 passes through the opening K1,
  • the first light-emitting element F1 and the first light-sensing element G1 are opposite to the upper and lower surfaces of the flexible display screen 10, respectively.
  • the flexible display screen 10 When the flexible display screen 10 is extended or contracted from the receiving housing 20, when the position of the first light transmitting area A1 of a certain first base unit 101 is moved to the first light emitting element F1 and When the first light sensing element G1 corresponds, the light emitted by the first light emitting element F1 is emitted to the first light sensing element G1 through the first light transmitting area A1 of the first base unit 101.
  • the first light sensing element G1 senses light emitted by the first light emitting element F1 to generate a corresponding first light sensing parameter.
  • the position of the light-transmitting region Q2 of a certain second base unit 102 is moved to correspond to the second light-emitting element F2 and the second light-sensing element G2, the light emitted by the second light-emitting element F2 passes through the The second light transmitting region Q1 of the second base unit 102 is emitted to the second light sensing element G2.
  • the second light sensing element G2 senses the light emitted by the second light emitting element F2 to generate a corresponding second light sensing parameter.
  • the second light-emitting element F2 and the second light-sensing element G2 are disposed at a first end Z1 of the opening K1 and a second end P2 of the second side Z2, the plurality of second basic units 102 is an example set on the second edge C2.
  • the second base unit 102 can also be disposed on the same edge side by side with the first base unit 101, that is, disposed side by side on the first edge C1, and the second light emitting element F2 and the second light sensing element G2 can also be
  • the first light-emitting element F1 and the first light-sensing element G1 are arranged side by side at the same end of the first side Z1 and the second side Z2 of the opening K1.
  • first light-emitting element F1 and the first light-sensing element G1 are respectively disposed at the first end P1 or the second end P2 of the first side Z1 and the second side Z2, and the second light-emitting element F2 and the second
  • the light sensing element G2 is disposed side by side with the first light emitting element F1 and the first light sensing element G1 at the first end P1 or the second end P2 of the first side Z1 and the second side Z2, respectively.
  • the second base unit 102 and the first base unit 101 may also be disposed at other positions of the flexible display screen along the extending direction of the flexible display screen 10.
  • the first light emitting element F1, the first light sensing element G1, and the first The two light-emitting elements F2 and the second light-sensing element G2 may also be disposed on opposite sides of the other positions of the opening K1 as long as the first base unit 101 is moved to the first light-emitting element.
  • the second base unit 102 corresponding to the first base unit 101 may correspond to the positions of the second light emitting element F2 and the second light sensing element G2.
  • each of the first base units 101 further includes an opaque area A2, and the sum of the sizes of the first transparent area A1 and the opaque area A2 of the first base unit 101 is substantially equal to The second base unit 102, when the first base unit 101 and the second base unit 102 are disposed, facilitates alignment of the two.
  • each of the first base units 101 may include only the first light transmissive area A1 and not the opaque area A2.
  • each of the second base units 102 includes only the second light transmissive area Q1.
  • each of the second base units 102 may also include an opaque area. .
  • the first light emitting element F1 and the second light emitting element F2 may be light emitting diodes or laser diodes, and the emitted light may be infrared light or visible light.
  • the first light sensing element G1 and the second light sensing element G1 are photodiodes, and the first light sensing parameter and the second light sensing parameter respectively generated are current parameters or voltage parameters.
  • the processor 50 can determine the corresponding extension length according to the aforementioned correspondence.
  • the first light-emitting element F1 and the second light-emitting element F2 are laser diodes, since the light-emitting intensity is large, the influence of the ambient light is small, and therefore, the first light-sensing element G1 and the second light-sensing element are G1 may be disposed at the opening of the opening K1 as shown in FIG. 2.
  • the first light sensing element G1 and the second light sensing element G1 are disposed on the inner side wall of the receiving housing 20 near the opening K1, thereby avoiding the environment.
  • the first light-emitting element F1 and the second light-emitting element F2 can have high detection accuracy even if they are ordinary light-emitting diodes or laser diodes.
  • the receiving housing 20 further includes a winding-shaped receiving passage T1 in the receiving housing 20 , and the flexible display screen 10 is received in the receiving shell through the receiving passage T1 .
  • the first light-emitting element and the first light-sensing element are disposed at corresponding positions on the first sides of the two opposite surfaces S1, S2 of the receiving passage, the second light-emitting element and the first
  • the two light sensing elements are respectively disposed at a corresponding position of the first light emitting element and the first light sensing element along a first side of the two opposite surfaces, or the second light emitting element and the second light sensing
  • the elements are respectively disposed at corresponding positions on the second side of the two opposite surfaces S1, S2, the first side Opposite the second side.
  • the receiving passage T1 is formed by winding plastic, a resin material, a metal material, or the like.
  • the first light-transmissive area A1 of the first base unit 101 may be formed of a light-transmitting material, such as a transparent plastic, a transparent resin, or the like, or a through hole.
  • the area of each of the second base units 102 is made of a light transmissive material or is a through hole as a whole.
  • the processor 50 further determines the size of the visible display area/expansion area of the flexible display screen 10 according to the extended length of the current flexible display screen 10, and adjusts the size of the display content according to the size of the visible display area. In order to match the size of the currently visible display area, for example, the display content is scaled to conform to the size of the currently visible display area.
  • the processor 50 can calculate the size of the visible display area/expansion area of the flexible display screen 10 according to the extended length of the current flexible display screen 10 and the width W of the flexible display screen 10. Obviously, the width W of the flexible display screen 10 is a fixed known value, and the processor 50 can obtain the visible display area/expansion area by multiplying the extension length by the width W when the extension length is known. size.
  • the processor 50 may determine the size of the current visible display area according to the current extension length, and adjust the size of the display content such that the display content still allows full screen in the current visible display area. display.
  • the processor 50 can also adjust the resolution of the display content according to the size of the visible display area such that the display content can be clearly displayed in the visible display area.
  • the flexible display screen 10 can be a display screen such as an OLED flexible display screen or an electronic paper flexible display screen. In some embodiments, the flexible display screen 10 also incorporates a touch input function as a flexible touch display screen.
  • the processor 50 can be a central processing unit, a microcontroller, a single chip microcomputer, a digital signal processor, or the like.
  • the memory 60 can be a flash memory, a solid state memory, a read only memory, a wipeable readable memory, or the like.
  • the flexible display 100 may further include other components such as a sound playing unit, a microphone (sound input unit), and the like, and the flexible display 100 itself may be used as a smart portable terminal.
  • the flexible display 100 further includes a rotating shaft R1 extending from a side of the receiving casing 20 to the inside of the receiving casing 20, and one side of the flexible display screen 10 is fixed to the rotating shaft R1. on.
  • the flexible display screen 10 When the flexible display screen 10 is gradually received inside the housing case 20, the flexible display screen 10 can be gradually rotated and wound on the rotating shaft R1.
  • the flexible display screen 10 When the flexible display screen 10 is gradually pulled out from the housing case 20, the flexible display screen 10 is gradually released from the rotation shaft R1.
  • the flexible display screen 10 further includes an operating lever 110 on the outermost end side of the flexible display screen 10, and the operating lever 110 is used for the user to operate the flexible display screen 10. It is drawn out from the housing case 20.
  • the flexible display 100 of the present invention may further include a deployment drive mechanism for driving the flexible display screen 10 to automatically extend from the housing housing 20 and driving the flexible display screen. 10 can be stretched at a constant speed or variable speed.
  • the flexible display 100 may further include a reset mechanism (not shown) or the like for driving the flexible display screen 10 to be retracted in the receiving housing 20 after being started, and wound on the rotating shaft R1. .
  • FIG. 8 is a flowchart of a method for detecting a deployment in an embodiment of the present invention.
  • the unfolding detection method is for detecting the stretched length of the flexible display screen 10 in the aforementioned flexible display 100.
  • the flexible display 100 includes a first light-emitting element F1 and a first light-sensing element G1 disposed at corresponding positions of the flexible display 100.
  • the flexible display screen 10 is provided with a plurality of first rows arranged along the extending direction of the flexible display screen 10.
  • a base unit 101, each of the first base units 101 includes a first light transmissive area A1 having a different area; the method includes the following steps:
  • the first light sensing element G1 receives the light emitted by the first light emitting element F1 when the first light transmitting area A1 of any first base unit 101 moves between the first light emitting element F1 and the first light sensing element G1. Generating a first light sensing parameter (S701);
  • the generated first light sensing parameter of the first light sensing element G1 is received (S702).
  • the correspondence table between the light sensing parameter and the extended length includes a correspondence relationship between the light sensing parameter, the parameter range, and the extension length
  • the step S702 includes: determining the first light according to the received light sensing parameter. Sensing the range of optical parameters in which the parameters are located, and further determining the corresponding first extension length according to the range of optical parameters in which the parameters are located.
  • Determining the first extension length is such that the flexible display screen 10 extends the extension length of the housing case 20 (S704).
  • FIG. 9 is a flowchart of a supplementary step of the flowchart shown in FIG.
  • the flexible display device 100 further includes a second light-emitting element F2 and a second light-sensing element G2 disposed at corresponding positions of the accommodating housing 20, and the flexible display screen 10 is further disposed with the plurality of first base units A plurality of second base units 102 corresponding to and parallel to each other, each of the second base units 102 includes a second light-transmissive area Q1 having an equal area.
  • the method further includes the steps of:
  • the second light sensing element G2 receives the light emitted by the second light emitting element G2 and generates a second light sensing parameter when any of the second base units 102 moves between the second light emitting element F2 and the second light sensing element G2 ( S705).
  • the second extension length corresponding to the parameter ratio is determined according to the correspondence between the parameter ratio and the extension length (S709).
  • step S710 is performed.
  • the second extension length is such that the flexible display screen 10 extends the extension length of the housing case 20 (S710).
  • the method further comprises the steps of:
  • Detecting a first light sensing parameter generated by the first light sensing element G1 when the first light transmitting area A1 of each first base unit 101 passes through the first light sensing element G1, and measuring the current flexible display The length of the screen 10 is extended to determine the correspondence between different ranges of light sensing parameters and different stretch lengths to form the correspondence table T1.
  • the method further comprises the steps of:
  • the first light-sensing element G1 generates the first light-sensing element when the first light-transmitting area A1 of the first base unit 101 and the corresponding second base unit 102 pass through the second light-sensing element G2.
  • a table of correspondence between the parameter ratio and the extension length is formed.
  • the method further comprises the steps of:
  • the size of the visible display area/expansion area of the flexible display screen 10 is determined according to the stretched length of the current flexible display screen 10, and the size of the display content is adjusted according to the size of the visible display area to conform to the size of the currently visible display area.
  • FIG. 10 is a flowchart of a method for detecting a deployment in another embodiment of the present invention.
  • the unfolding detection method is for detecting the stretched length of the flexible display screen 10 in the flexible display 100.
  • the flexible display 10 includes a first light-emitting element F1 and a first light-sensing element G1 disposed at corresponding positions of the housing case 20 of the flexible display 10, and second light-emitting elements F2 and second disposed at corresponding positions of the housing case 20.
  • the light sensing element G2 is provided with a plurality of first base units 101 arranged along the extending direction of the flexible display screen 10 and a plurality of second base units 102 corresponding to the first base unit 101.
  • Each of the first base units 101 includes a first light-transmitting area A1 having a different area
  • each of the second base units 102 includes a second light-transmitting area Q1 having the same area.
  • the method comprises the following steps:
  • the first light sensing element G1 receives the light emitted by the first light emitting element F1 when the first light transmitting area A1 of any first base unit 101 moves between the first light emitting element F1 and the first light sensing element G1. Generating a first light sensing parameter (S801);
  • the second light sensing element G2 receives the light emitted by the second light emitting element G2 and generates the second light sensing parameter when the corresponding second base unit 102 moves between the second light emitting element F2 and the second light sensing element G2. (S802).
  • the first light sensing parameter and the second light sensing parameter are simultaneously received (S803).
  • the extension length corresponding to the parameter ratio is determined according to the correspondence between the parameter ratio and the extension length (S805).
  • the extension length is determined such that the flexible display screen 10 extends out of the extension length of the housing case 20 (S806).
  • the method further comprises the steps of:
  • the first light sensing element may be detected when the first light transmitting area A1 of each first base unit 101 passes through the second light sensing element G1 and the corresponding second base unit 102 passes through the second light sensing element G2.
  • a first light sensing parameter generated by G1 and a second light generated by the second light sensing element G2 The parameter ratio between the light sensing parameters, and measuring the extension length of the current flexible display screen 10, thereby determining the correspondence between different parameter ratios and different extension lengths to form the correspondence between the parameter ratio and the extension length table.
  • the method further comprises the steps of:
  • the size of the visible display area/expansion area of the flexible display screen 10 is determined according to the stretched length of the current flexible display screen 10, and the size of the display content is adjusted according to the size of the visible display area to conform to the size of the currently visible display area.
  • the first light-transmissive area A1 of different areas can be disposed, and when the flexible display screen 10 is moved to different positions, the first light-transmissive area A1 of different areas is located at the first position.
  • the light-emitting element F1 and the first light-sensing element G1 are in between, the amount of light received by the first light-sensing element G1 is different to generate different light-sensing parameters, thereby indicating different stretch lengths of the flexible display screen 10.
  • the flexible display 100 and the deployment detecting method of the present invention are further configured to move to the second base unit 102 corresponding to the first base unit 101 by setting the second light-transmissive area Q1 of the second base unit 102 as a reference.
  • the light sensing element G2 corresponds to the position
  • the light sensing parameter generated by the second light sensing element G2 determines the parameter between the light sensing parameter generated by the first light sensing element G1 and the light sensing parameter generated by the second light sensing element G2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Control Of El Displays (AREA)

Abstract

一种柔性显示器(100)及展开检测方法。柔性显示器(100)包括柔性显示屏(10),收容壳体(20),对应设置的第一发光元件(F1)及第一光感应元件(G1)。柔性显示屏(10)上设置有多个沿着柔性显示屏(10)的伸展方向排列的第一基础单元(101),每个第一基础单元(101)包括面积不同的透光区域(A1)。展开检测方法用于检测柔性显示器(100)的柔性显示屏(10)的伸展长度,方法包括:第一光感应元件(G1)在任一第一基础单元(101)的透光区域(A1)运动到位于第一发光元件(F1)及第一光感应元件(G1)之间时接收第一发光元件(F1)发的光并产生第一光感应参数(S701);接收第一光感应参数(S702);根据光感应参数与伸展长度的对应关系表,确定第一光感应参数对应的第一伸展长度(S703);确定第一伸展长度为柔性显示屏(10)伸展出收容壳体(20)的伸展长度(S704)。

Description

柔性显示器及展开检测方法 技术领域
本发明涉及一种柔性显示器,尤其涉及一种柔性显示器及其展开检测方法。
背景技术
目前,柔性显示器由于其可卷曲性而方便携带等特点,卷轴式的柔性显示器已具有一定的市场。然而,现在的卷轴式的柔性显示器,往往无法准确检测柔性显示器的显示屏的伸展长度,或者检测的方式比较复杂。
发明内容
本发明实施例公开一种柔性显示器及展开检测方法,可通过简单的结构检测到柔性显示器的显示屏的展开程度。
本发明实施例公开的柔性显示器,包括柔性显示屏、收容壳体以及处理器,所述柔性显示屏从所述收容壳体中伸展出来或收容进所述收容壳体中,其中,所述柔性显示器还包括第一发光元件以及第一光感应元件,所述第一发光元件与所述第一光感应元件设置于收容壳体的相应位置;所述柔性显示屏包括沿着柔性显示屏的伸展方向间隔设置的多个第一基础单元,所述第一基础单元包括第一透光区域,且每个第一基础单元的所述第一透光区域的面积不同,当任一所述第一透光区域的位置随所述柔性显示屏移动经过所述第一发光元件以及所述第一光感应元件时,所述第一透光区域位于所述第一发光元件及所述第一光感应元件之间,所述第一光感应元件感应所述第一发光元件发出的通过所述第一透光区域的光并产生第一光感应参数;所述处理器与所述第一光感应元件耦接,用于接收所述第一光感应参数,所述处理器根据一预先设置的光感应参数与伸展长度的第一对应关系表确定所述接收到的第一光感应参数对应的第一伸展长度,并确定所述柔性显示屏伸展出收容壳体外的展开长度为所述第一伸展长度。
本发明实施例提供的柔性显示器,包括柔性显示屏、收容壳体以及处理器,所述柔性显示屏从所述收容壳体中伸展出来或收容进所述收容壳体中,其中,所述柔性显示器还包括第一发光元件、第二发光元件以及第一光感应元件、第二光感应元件,所述第一发光元件与所述第一光感应元件设置于收容壳体的相应位置,所述第二发光元件及第二光感应元件也设置于收容壳体的相应位置;所述柔性显示屏包括沿着柔性显示屏的伸展方向间隔设置的多个第一基础单元以及与所述多个第一基础单元一一对应的多个第二基础单元,每个所述第一基础单元包括第一透光区域,且每个第一基础单元的透光区域的面积不同,每个所述第二基础单元包括第二透光区域每一第二基础单元的第二透光区域的面积相同;其中,当其中一第一基础单元的第一透光区域的位置运动到第一发光元件及第一光感应元件之间时,与所述第一基础单元对应的第二基础单元的第二透光区域也运动到所述第二发光元件及第二光感应元件之间,,所述第一光感应元件感应所述第一发光元件发出并通过所述第一透光区域传导的光而产生相应的第一光感应参数,所述第二光感应元件感应所述第二发光元件发出并通过所述第二透光区域传导的光而产生相应的第二光感应参数;所述处理器与所述第一光感应元件及第二光感应元件耦接,用于接收所述第一光感应元件产生的第一光感应参数以及所述第二光感应元件产生的第二光感应参数,所述处理器并计算所述第一光感应参数与第二光感应参数的比值得到一参数比,并进一步根据一参数比与伸展长度的对应关系表确定所述参数比对应的伸展长度,从而确定所述柔性显示屏伸展出收容壳体外的展开长度为所述伸展长度。
本发明实施例提供的展开检测方法,用于检测柔性显示器的柔性显示屏的伸展长度,其中,所述柔性显示器包括设置于柔性显示器的相对位置的第一发光元件及第一光感应元件,所述柔性显示屏上设置有多个沿着柔性显示屏的伸展方向排列的第一基础单元,每个第一基础单元包括面积不同的第一透光区域,所述方法包括步骤:第一光感应元件在任一第一基础单元的第一透光区域运动到位于第一发光元件及第一光感应元件之间时接收所述第一发光元件发出的光并产生第一光感应参数;接收所述第一光感应元件产生的第一光感应参 数;根据光感应参数与伸展长度的对应关系表,确定所述第一光感应参数对应的第一伸展长度;确定所述第一伸展长度为柔性显示屏伸展出所述收容壳体的伸展长度。
本发明实施例提供的展开检测方法,用于检测柔性显示器的柔性显示屏的伸展长度,其中,所述柔性显示器包括设置于柔性显示器的相对位置的第一发光元件及第一光感应元件,以及设置于柔性显示器的相对位置的第二发光元件及第二光感应元件,所述柔性显示屏上设置有多个沿着柔性显示屏的伸展方向排列的第一基础单元以及多个与所述第一基础单元对应且平行的第二基础单元,每个第一基础单元包括面积不同的第一透光区域,每个第二基础单元包括面积相等的第二透光区域,所述方法包括步骤:所述第一光感应元件在任一第一基础单元的透光区域运动到位于所述第一发光元件及第一光感应元件之间时接收所述第一发光元件发的光并产生第一光感应参数;所述第二光感应元件在对应的第二基础单元运动到位于所述第二发光元件及第二光感应元件之间时接收所述第二发光元件发的光并产生第二光感应参数;接收所述第一光感应参数及所述第二光感应参数;计算所述第一光感应参数与第二光感应参数的比值得到一参数比;根据参数比与伸展长度的对应关系,确定所述参数比对应的伸展长度;以及确定所述伸展长度为柔性显示屏伸展出所述收容壳体的伸展长度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例中的柔性显示器的结构框图。
图2为本发明一实施例中的柔性显示器的一视角的示意图。
图3为本发明一实施例中的柔性显示器的柔性显示屏展开的示意图。
图4为本发明一实施例中的光感应参数与伸展长度的对应关系表。
图5为本发明一实施例中的柔性显示器的横截面示意图。
图6为本发明另一实施例中的柔性显示器的横截面示意图。
图7为本发明再一实施例中的柔性显示器的横截面示意图。
图8为本发明一实施例中的柔性显示器的展开检测方法的流程图。
图9为图8所示的展开检测方法的补充步骤流程图。
图10为本发明另一实施例中的柔性显示器的展开检测方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,为本发明一实施例中的柔性显示器100的结构框图。该柔性显示器100包括柔性显示屏10、收容壳体20、发光模组30、光感应模组40及处理器50。所述柔性显示屏10可卷绕收容于收容壳体20中,或者从收容壳体20中伸展出来。
请参阅图2,为柔性显示器100的一视角的示意图,所述发光模组30包括第一发光元件F1,所述光感应模组40包括第一光感应元件G1。所述第一发光元件F1与所述第一光感应元件G1设置于收容壳体20的相应位置,所述第一发光元件F1用于朝所述第一光感应元件G1的方向发光。
请一并参阅图3,为柔性显示屏10从所述收容壳体20中伸展出来的俯视示意图。所述柔性显示屏10包括沿着柔性显示屏10的伸展方向间隔设置的多个第一基础单元101。每一第一基础单元101包括第一透光区域A1且每个第一基础单元101的第一透光区域A1的面积不同,当其中一第一基础单元101的第一透光区域A1的位置所述柔性显示屏10移动经过所述第一发光元件F1 以及所述第一光感应元件G1时,所述第一透光区域A1位于所述第一发光元件F1及所述第一光感应元件G1之间,所述第一透光区域A1用于将所述第一发光元件F1发出的光透过至所述第一光感应元件G1。所述第一光感应元件G1感应所述第一发光元件F1发出并通过所述第一透光区域A1传导的光而产生第一光感应参数。
由于每一第一基础单元101的第一透光区域A1的面积不同,因此,不同的第一基础单元101的第一透光区域A1运动到所述开口K1时,通过的光量不同,即,第一发光元件F1发出的光传导至所述第一光感应元件G1的光量不同。因此,所述第一光感应元件G1接收到的光量也不同,而产生不同的第一光感应参数。
所述处理器50与所述第一光感应元件G1耦接,用于接收所述第一光感应元件G1产生的光感应参数,所述处理器50并根据一预先设置的光感应参数与伸展长度的对应关系表确定所述接收到的第一光感应参数对应的伸展长度D1,从而确定所述柔性显示屏10伸展出收容壳体20外的伸展长度为所述伸展长度D1。
从而,本发明中,通过设置不同面积的第一透光区域A1,当柔性显示屏10运动到不同的位置,不同面积的第一透光区域A1位于第一发光元件F1及第一光感应元件G1之间时,第一光感应元件G1接收到的光量不同而产生不同的光感应参数,从而指示柔性显示屏10的不同的伸展长度。
在一些实施例中,通过预先检测每一第一基础单元101的第一透光区域A1经过所述第一光感应元件G1时,所述第一光感应元件G1产生的第一光感应参数,以及测量当前所述柔性显示屏10的伸展长度,从而一一确定不同的光感应参数范围与不同的伸展长度的对应关系而形成所述对应关系表T1。
请一并参阅图4,为对应关系表T1的示意图,在一些实施例中,所述对应关系表T1包括光感应参数、参数范围以及伸展长度的对应关系,所述处理器50根据所述接收到的光感应参数确定所述第一光感应参数所处的光参数范围,并根据所处的光参数范围进一步确定所对应的伸展长度。例如,如图5所示的对应关系表T1,光感应参数E1、E2都对应参数范围E1~E2,且都对应伸展长度X1。
其中,在一些实施例中,可预先多次检测每一第一基础单元101的第一透光区域A1经过所述第一光感应元件G1时,所述第一光感应元件G1产生的第一光感应参数,以及测量当前所述柔性显示屏10的伸展长度,从而确定某一同一伸展长度对应的多个光感应参数,而得到伸展长度与光感应参数范围的对应关系,并经过多次的检测结果,一一确定不同的光感应参数范围与不同的伸展长度的对应关系而形成所述对应关系表T1。
其中,所述对应关系表T1可预先烧录于所述处理器50中。如图1所示,所述柔性显示器100还可包括存储器60,所述对应关系表T1可存储于所述存储器60中。
由于是光感应参数范围对应伸展长度,从而进一步避免了误差。
在一些实施例中,所述多个第一基础单元101的第一透光区域A1的面积为沿着柔性显示屏10伸展的方向从小到大变化或从大到小依次变化。在另一些实施例中,所述多个第一基础单元101的第一透光区域A1的面积可为随机的变化顺序,只要每一第一基础单元101的第一透光区域A1的面积不同即可。
请返回参阅图2-3,如图2所示,所述发光模组30还包括第二发光元件F2,所述光感应模组40还包括第二光感应元件G2,所述第二发光元件F2及第二光感应元件G2同样设置于所述收容壳体20的对应位置。所述柔性显示屏10还包括沿着柔性显示屏10的伸展方向间隔设置的第二基础单元102,所述多个第二基础单元102包括第二透光区域Q1且每一第二基础单元102的第二透光区域Q1的面积相同,所述多个第二基础单元102与所述多个第一基础单元101一一对应且平行分布,当所述第一基础单元101的第一透光区域A1的位置运动到所述收容壳体20的所述第一光感应元件G1的对应位置时,与所述第一基础单元101对应的第二基础单元102的第二透光区域Q1也运动到所述第二光感应元件G2对应的位置。即,所述第二基础单元102的第二透光区域Q1与所述第二发光元件F2及所述第二光感应元件G2对应且位于第二发光元件F2及所述第二光感应元件G2之间,用于将所述第二发光元件F2发出的光透过至所述第二光感应元件G2。
当所述柔性显示屏10从所述收容壳体20中伸展出来或收缩进去时,所述第一基础单元101经过所述第一发光元件F1与第一光感应元件G1时,与所 述第一基础单元101对应的第二基础单元102也经过所述第二发光元件F2与第二光感应元件G2。如前所述,当某一第一基础单元101的第一透光区域A1的位置运动到与所述第一发光元件F1及所述第一光感应元件G1对应时,所述第一发光元件F1发出的光通过所述第一基础单元101的第一透光区域A1发射至所述第一光感应元件G1。所述第一光感应元件G1感应所述第一发光元件F1发出的光而产生相应的第一光感应参数。
同样的,所述第二基础单元101运动到与所述第二发光元件F2及所述第二光感应元件G2对应时,所述第二发光元件F2发出的光通过所述第二基础单元102的第二透光区域Q1发射至所述第二光感应元件G2。所述第二光感应元件G2感应所述第二发光元件F2发出的光而产生相应的第二光感应参数。
所述处理器50还与所述第二光感应元件G2耦接,用于同时接收第一光感应元件G1产生的第一光感应参数及第二光感应元件G2产生的第二光感应参数。
所述处理器50还计算所述第一光感应参数与第二光感应参数的比值得到一参数比。所述处理器50并进一步根据一参数比与伸展长度的对应关系表确定所述参数比对应的伸展长度D2。
所述处理器50比较所述根据光感应参数得到的伸展长度D1与所述根据参数比得到的伸展长度D2是否相等,如果不相等则将所述根据光感应参数得到的伸展长度D1修正为所述根据参数比得到的伸展长度D2。即,以所述根据参数比得到的伸展长度D2为准,确定当前确定所述柔性显示屏10伸展出收容壳体20外的伸展长度为所述根据参数比得到的伸展长度D2。在一些实施例中,所述所述处理器50直接将所述伸展长度D2确定为所述柔性显示屏10伸展出收容壳体20外的伸展长度,而不与所述伸展长度D1进行比较。
显然,所述处理器50在判断伸展长度D1与伸展长度D2相等时,确定柔性显示屏10伸展出收容壳体20外的伸展长度为伸展长度D1或伸展长度D2中的任意一个。在一些实施例中,当所述处理器50判断伸展长度D1与伸展长度D2不相等时,在精确度要求不高的前提下,也可确定所述伸展长度D1与伸展长度D2中的任意一个为柔性显示屏10伸展出收容壳体20外的伸展长度。
其中,在一些实施例中,同样可预先多次检测每一第一基础单元101的第一透光区域A1所述第一光感应元件G1及对应的第二基础单元102的第二透光区域Q1经过第二光感应元件G2时,所述第一光感应元件G1产生的第一光感应参数及第二光感应元件G2产生的第二光感应参数之间的参数比,以及测量当前所述柔性显示屏10的伸展长度,从而一一确定不同的参数比与不同的伸展长度的对应关系而形成所述参数比与伸展长度的对应关系表。
其中,由于当所述柔性显示屏10从所述收容壳体20中伸展出来或收缩进去时,所述第一基础单元101与对应的第二基础单元102同时经过对应的光感应元件,假设当柔性显示屏10在外力作用下以速度V移动时,第一基础单元101与对应的第二基础单元102分别经过第一发光元件F1及第二发光元件F2的移动速度都是一样的,都是速度V。
设所述第一基础单元101与对应的第二基础单元102经过对应的光感应元件的时间为t,第一基础单元101中的第一透光区域A1经过所述第一光感应元件G1的时间为T。
假设第一基础单元101中的第一透光区域A1的长度为L1,第二基础单元102的第二透光区域Q1的长度为L2,那么可以得出T/t=(L1/V)/(L2/V)=L1/L2。
设第一透光区域A1的宽度为W1,则第一透光区域A1的面积S1=L1*W1,设第二基础单元102的宽度为W2,则第二基础单元102的第二透光区域Q1的面积S2=L2*W2。
所以:T/t=L1/L2=(S1/W1)/(S2/W2)=S1*W2/S2*W1。
我们由以上可以发现,第一透光区域A1的面积S 1与第二基础单元102的第二透光区域Q1的面积S2的比值可以用T与t的比值来表示(W2/W1为固定系数),也就是T在t上的时间占空比,它是一个与屏幕移动速度无关的值。
由于所述第一光感应元件G1接收到的光量与第二光感应元件G2接收到的光量的比等于第一透光区域A1的面积S 1与第二基础单元102的第二透光区域Q1的面积S2之比,因此也是与移动速度无关的值。
而第一光感应元件G1产生的第一光感应参数与第二光感应元件G2产生 的第二光感应参数比,即参数比等于所述光量比,也与所述移动速度无关,仅仅与第一透光区域A1的面积S1与第二基础单元102的第二透光区域Q1的面积S2之比相关。
由于每个第一基础单元101的第一透光区域A1的面积S1不同,而每个第二基础单元102的第二透光区域Q1的面积相同,因此,不同的第一基础单元101及第二基础单元102经过对应的光感应元件时,所述参数比是唯一的。
因此,所述处理器50根据所述参数比得出的伸展长度D2,不论用户拉动所述柔性显示屏10的速度是快是慢,拉动过程中速度是变化的还是恒定的,都不会受到影响,所述根据所述参数比得出的伸展长度D2是一个更准确的值。
在一些实施例中,所述处理器50计算所述第一光感应参数与第二光感应参数的比值得到参数比,以及根据所述参数比与伸展长度的对应关系表确定所述参数比对应的伸展长度后,直接确定所述所述参数比对应的伸展长度为所述柔性显示屏10伸展出所述收容壳体20的长度。
如图3所示,在一实施例中,所述柔性显示屏10包括沿着柔性显示屏延伸方向的第一边缘C1,所述多个第一基础单元101间隔设置于所述第一边缘C1上。如图3所示,所述柔性显示屏10还包括沿着柔性显示屏延伸方向的第二边缘C2,所述第二边缘C2与所述第一边缘C1对应,所述多个第二基础单元102间隔设置于所述第二边缘C2上。当所述柔性显示屏10从所述收容壳体20中伸展出来或收缩进去时,所述多个第一基础单元101的连线与所述第一发光元件F1及所述第一光感应元件G1对应,所述多个第二基础单元102的连线与所述第二发光元件F2及第二光感应元件G2对应。
请一并参阅图2,如图5及图2所示,在一实施例中,所述收容壳体20包括一开口K1,所述柔性显示屏10从所述开口K1中伸展出来或从所述开口K1收容进所述收容壳体20中。所述第一发光元件F1与所述第一光感应元件G1设置于开口K1处的对应位置。如图2所示,所述第一发光元件F1与所述第一光感应元件G1设置于所述开口K1的第一边Z1和第二边Z2的相对位置,所述第二发光元件F2与所述第二光感应元件G2也设置于所述开口K1的第一边Z1和第二边Z2的相对位置。具体的,所述第一发光元件F1与所述第一光感应元件G1分别设置于所述开口的第一边Z1和第二边Z2的第一端P1。所 述第二发光元件F2与所述第二光感应元件G2分别设置于所述开口K1的第一边Z1和第二边Z2的第二端P2。
所述第一发光元件F1与所述第一光感应元件G1的连接线方向与所述柔性显示屏10从开口K1中的伸展方向垂直,当柔性显示屏10通过所述开口K1时,所述第一发光元件F1与所述第一光感应元件G1分别与柔性显示屏10的上下两个表面正对。当所述柔性显示屏10从所述收容壳体20中伸展出来或收缩进去时,当某一第一基础单元101的第一透光区域A1的位置运动到与所述第一发光元件F1及所述第一光感应元件G1对应时,所述第一发光元件F1发出的光通过所述第一基础单元101的第一透光区域A1发射至所述第一光感应元件G1。所述第一光感应元件G1感应所述第一发光元件F1发出的光而产生相应的第一光感应参数。当某一第二基础单元102的透光区域Q2的位置运动到与所述第二发光元件F2及所述第二光感应元件G2对应时,所述第二发光元件F2发出的光通过所述第二基础单元102的第二透光区域Q1发射至所述第二光感应元件G2。所述第二光感应元件G2感应所述第二发光元件F2发出的光而产生相应的第二光感应参数。
图2中,示意出了所述第二发光元件F2及第二光感应元件G2设置于开口K1的第一边Z1及第二边Z2的第二端P2处,所述多个第二基础单元102为设置于第二边缘C2上的示例。显然,所述第二基础单元102也可与第一基础单元101并排设置于同一边缘,即并排设置于所述第一边缘C1,所述第二发光元件F2及第二光感应元件G2也可与所述第一发光元件F1及第一光感应元件G1并排设置于开口K1的第一边Z1及第二边Z2的同一端处。即,所述第一发光元件F1及第一光感应元件G1分别设置于第一边Z1及第二边Z2的第一端P1或第二端P2处,所述第二发光元件F2及第二光感应元件G2分别与所述第一发光元件F1及第一光感应元件G1并排设置于第一边Z1及第二边Z2的第一端P1或第二端P2处。
所述第二基础单元102及第一基础单元101也可沿着柔性显示屏10的伸展方向间隔设置在柔性显示屏的其它位置,第一发光元件F1、第一光感应元件G1以及所述第二发光元件F2及第二光感应元件G2也可设置于开口K1的其它位置的相对两侧,只要满足当第一基础单元101运动到与第一发光元件 F1及第一光感应元件G1的位置对应时,所述与第一基础单元101对应的第二基础单元102也与第二发光元件F2及第二光感应元件G2的位置对应即可。
其中,如图3所示,每一第一基础单元101还包括不透光区域A2,所述第一基础单元101的第一透光区域A1及不透光区域A2的尺寸之和大致等于对应的第二基础单元102,从而布设所述第一基础单元101及第二基础单元102时,方便两者的对准。显然,在其他实施例中,所述每一第一基础单元101可仅包括第一透光区域A1,而不包括不透光区域A2。其中,如图3所示,每一第二基础单元102仅包括所述第二透光区域Q1,显然,在其他实施例中,所述每一第二基础单元102也可包括不透光区域。
其中,在一实施例中,所述第一发光元件F1及第二发光元件F2可为发光二极管或激光二极管,所发出的光可为红外光或可见光。所述第一光感应元件G1及第二光感应元件G1为光电二极管,所分别产生的第一光感应参数及第二光感应参数为电流参数或电压参数。当第一光感应元件G1及第二光感应元件G1接收到不同的光量时,产生的电流或电压的大小不同,从而,所述处理器50可以根据前述的对应关系确定所对应的伸展长度。
其中,当所述第一发光元件F1及第二发光元件F2为激光二极管时,由于发光强度较大,环境光的影响较小,因此,所述第一光感应元件G1及第二光感应元件G1可设置于如图2所示的所述开口K1的口子处。
请一并参阅图6,在其它实施例中,所述第一光感应元件G1及第二光感应元件G1设置于所述收容壳体20的靠近所述开口K1的内侧壁,从而避免受到环境光的影响。无论所述第一发光元件F1及第二发光元件F2为普通发光二极管或激光二极管,都能有较高的检测准确性。
请一并参阅图7,在其它实施例中,所述收容壳体20还包括位于收容壳体20内的卷绕形的收容通道T1,所述柔性显示屏10通过收容通道T1收容于收容壳体20中,所述第一发光元件与所述第一光感应元件设置于所述收容通道的两个相对表面S1、S2的第一侧的对应位置,所述第二发光元件与所述第二光感应元件分别与第一发光元件与所述第一光感应元件并排设置于所述两个相对表面的第一侧的对应位置,或者,所述第二发光元件与所述第二光感应元件分别设置于所述两个相对表面S1、S2的第二侧的对应位置,所述第一侧 与所述第二侧相对。其中,所述收容通道T1为通过卷绕的塑料、树脂材料、金属材料等形成。
其中,所述第一基础单元101的第一透光区域A1可为透光材料,例如透明塑料、透明树脂等制成或者设置贯穿孔的方式形成。所述每一个第二基础单元102的区域为透光材料制成或者整体为贯穿孔。
在一些实施例中,所述处理器50还根据当前柔性显示屏10的伸展长度确定柔性显示屏10的可见显示区域/展开区域的尺寸,并根据所述可见显示区域的尺寸调整显示内容的尺寸以符合当前可见显示区域的尺寸,例如对显示内容进行缩放而使其符合当前可见显示区域的尺寸。具体的,所述处理器50可根据所述当前柔性显示屏10的伸展长度以及柔性显示屏10的宽度W,计算得出所述柔性显示屏10的可见显示区域/展开区域的尺寸。显然,所述柔性显示屏10的宽度W为一固定的已知值,所述处理器50在知道伸展长度时,通过伸展长度乘以所述宽度W即可得出可见显示区域/展开区域的尺寸。
从而,当柔性显示屏10正在播放某一显示内容的时候,用户希望调整柔性显示屏10的显示尺寸,例如将柔性显示屏10从收容壳体20中伸展出更多的部分或收缩部分区域到收容壳体20中时,处理器50可根据当前的伸展长度确定当前的可见显示区域的尺寸,并调整所述显示内容的尺寸而使得所述显示内容仍让可以在当前的可见显示区域中全屏显示。
所述处理器50还可根据所述可见显示区域的尺寸调整显示内容的分辨率,使得显示内容可在所述可见显示区域中清晰地进行显示。
其中,所述柔性显示屏10可为OLED柔性显示屏、电子纸柔性显示屏等显示屏。在一些实施例中,所述柔性显示屏10还整合了触摸输入功能,为柔性的触摸显示屏。
所述处理器50可为中央处理器、微控制器、单片机、数字信号处理器等。所述存储器60可为闪存存储器、固态存储器、只读存储器、可擦可读存储器等。
其中,所述柔性显示器100还可包括其他的元件,例如声音播放单元、麦克风(声音输入单元)等,所述柔性显示器100本身可作为一个智能便携式终端使用。
其中,如图2或3所示,所述柔性显示器100还包括从收容壳体20的侧面向收容壳体20内部延伸的转轴R1,所述柔性显示屏10的一侧固定于所述转轴R1上。当所述柔性显示屏10逐渐收容于所述收容壳体20内部时,所述柔性显示屏10可逐渐转动缠绕于所述转轴R1上。当所述柔性显示屏10逐渐从所述收容壳体20拉伸出来时,所述柔性显示屏10逐渐从所述转轴R1上释放展开。
其中,如图3或4所示,所述柔性显示屏10还包括位于柔性显示屏10最外端侧的操作杆110,所述操作杆110用于供用户操作而将所述柔性显示屏10从收容壳体20中拉伸出来。在其他实施例中,本发明的柔性显示器100还可包括展开驱动机构,所述展开驱动机构用于驱动所述柔性显示屏10从收容壳体20中自动伸展出来,且驱动所述柔性显示屏10伸展的速度可为匀速或变速。
其中,所述柔性显示器100还可包括复位机构(图中未示)等,用于启动后驱动所述柔性显示屏10向所述收容壳体20中进行收复,而缠绕于所述转轴R1上。
请参阅图8,为本发明一实施例中的展开检测方法的流程图。所述展开检测方法用于检测前述的柔性显示器100中的柔性显示屏10的伸展长度。所述柔性显示器100包括设置于柔性显示器100对应位置的第一发光元件F1及第一光感应元件G1,所述柔性显示屏10上设置有多个沿着柔性显示屏10的伸展方向排列的第一基础单元101,每个第一基础单元101包括面积不同的第一透光区域A1;所述该方法包括如下步骤:
第一光感应元件G1在任一第一基础单元101的第一透光区域A1运动到位于第一发光元件F1及第一光感应元件G1之间时接收所述第一发光元件F1发的光并产生第一光感应参数(S701);
接收第一光感应元件G1的产生的第一光感应参数(S702)。
根据光感应参数与伸展长度的对应关系表,确定所述第一光感应参数对应的第一伸展长度(S703)。具体的,所述光感应参数与伸展长度的对应关系表包括光感应参数、参数范围以及伸展长度的对应关系,所述步骤S702包括:根据所述接收到的光感应参数确定所述第一光感应参数所处的光参数范围,并根据所处的光参数范围进一步确定所对应的第一伸展长度。
确定所述第一伸展长度为柔性显示屏10伸展出所述收容壳体20的伸展长度(S704)。
请参阅图9,为图8所示的流程图的补充步骤流程图。其中,所述柔性显示器100还包括设置于收容壳体20对应位置的第二发光元件F2及第二光感应元件G2,所述柔性显示屏10上还设置有与所述多个第一基础单元101对应且平行的多个第二基础单元102,每个第二基础单元102包括面积相等的第二透光区域Q1,如图8所示,所述方法还包括步骤:
第二光感应元件G2在任一第二基础单元102运动到位于第二发光元件F2及第二光感应元件G2之间时接收所述第二发光元件G2发的光并产生第二光感应参数(S705)。
接收与所述第一光感应参数同时产生的第二光感应参数(S706)。
计算第一光感应参数与第二光感应参数的比值得到一参数比(S707)。
根据参数比与伸展长度的对应关系,确定所述参数比对应的第二伸展长度(S709)。
比较所述第一伸展长度与第二伸展长度是否相等(S709)。如果相等,则流程结束,如果不相等,则执行步骤S710。
确定所述第二伸展长度为柔性显示屏10伸展出所述收容壳体20的伸展长度(S710)。
其中,在一些实施例中,所述方法还包括步骤:
预先多次检测每一第一基础单元101的第一透光区域A1经过第一光感应元件G1时,所述第一光感应元件G1产生的第一光感应参数,以及测量当前所述柔性显示屏10的伸展长度,从而一一确定不同的光感应参数范围与不同的伸展长度的对应关系而形成所述对应关系表T1。
其中,在一些实施例中,所述方法还包括步骤:
可预先多次检测每一第一基础单元101的第一透光区域A1及对应的第二基础单元102经过第二光感应元件G2时,所述第一光感应元件G1产生的第一光感应参数及第二光感应元件G2产生的第二光感应参数之间的参数比,以及测量当前所述柔性显示屏10的伸展长度,从而一一确定不同的参数比与不同的伸展长度的对应关系而形成所述参数比与伸展长度的对应关系表。
在一些实施例中,所述方法还包括步骤:
根据当前柔性显示屏10的伸展长度确定柔性显示屏10的可见显示区域/展开区域的尺寸,并根据所述可见显示区域的尺寸调整显示内容的尺寸以符合当前可见显示区域的尺寸。
请参阅图10,为本发明另一实施例中的展开检测方法的流程图。所述展开检测方法用于检测柔性显示器100中的柔性显示屏10的伸展长度。所述柔性显示器10包括设置于柔性显示器10的收容壳体20对应位置的第一发光元件F1及第一光感应元件G1,以及设置于收容壳体20对应位置的第二发光元件F2及第二光感应元件G2,所述柔性显示屏10上设置有多个沿着柔性显示屏10的伸展方向排列的第一基础单元101以及多个与所述第一基础单元101对应的第二基础单元102,每个第一基础单元101包括面积不同的第一透光区域A1,每个第二基础单元102包括面积相同的第二透光区域Q1。该方法包括如下步骤:
第一光感应元件G1在任一第一基础单元101的第一透光区域A1运动到位于第一发光元件F1及第一光感应元件G1之间时接收所述第一发光元件F1发的光并产生第一光感应参数(S801);
第二光感应元件G2在对应的第二基础单元102运动到位于第二发光元件F2及第二光感应元件G2之间时接收所述第二发光元件G2发的光并产生第二光感应参数(S802)。
同时接收第一光感应参数及第二光感应参数(S803)。
计算第一光感应参数与第二光感应参数的比值得到一参数比(S804)。
根据参数比与伸展长度的对应关系,确定所述参数比对应的伸展长度(S805)。
确定所述伸展长度为柔性显示屏10伸展出所述收容壳体20的伸展长度(S806)。
其中,在一些实施例中,所述方法还包括步骤:
可预先多次检测每一第一基础单元101的第一透光区域A1经过第一光感应元件G1及对应的第二基础单元102经过第二光感应元件G2时,所述第一光感应元件G1产生的第一光感应参数及所述第二光感应元件G2产生的第二 光感应参数之间的参数比,以及测量当前所述柔性显示屏10的伸展长度,从而一一确定不同的参数比与不同的伸展长度的对应关系而形成所述参数比与伸展长度的对应关系表。
在一些实施例中,所述方法还包括步骤:
根据当前柔性显示屏10的伸展长度确定柔性显示屏10的可见显示区域/展开区域的尺寸,并根据所述可见显示区域的尺寸调整显示内容的尺寸以符合当前可见显示区域的尺寸。
因此,通过本发明的柔性显示器100及展开检测方法,可以通过设置不同面积的第一透光区域A1,当柔性显示屏10运动到不同的位置,不同面积的第一透光区域A1位于第一发光元件F1及第一光感应元件G1之间时,第一光感应元件G1接收到的光量不同而产生不同的光感应参数,从而指示柔性显示屏10的不同的伸展长度。进一步的,本发明的柔性显示器100及展开检测方法,还通过设置第二基础单元102的第二透光区域Q1作为参考,通过第一基础单元101对应的第二基础单元102运动到与第二光感应元件G2对应位置时,第二光感应元件G2产生的光感应参数,并求出第一光感应元件G1产生的光感应参数与第二光感应元件G2产生的光感应参数之间的参数比,通过参数比确定伸展长度,避免了柔性显示屏10拉出或收缩速度的影响,更加提高了检测的准确度。
以上所述是本发明的优选实施例,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。

Claims (23)

  1. 一种柔性显示器,包括柔性显示屏、收容壳体以及处理器,所述柔性显示屏从所述收容壳体中伸展出来或收容进所述收容壳体中,其特征在于:
    所述柔性显示器还包括第一发光元件以及第一光感应元件,所述第一发光元件与所述第一光感应元件设置于收容壳体的相应位置;
    所述柔性显示屏包括沿着柔性显示屏的伸展方向间隔设置的多个第一基础单元,所述第一基础单元包括第一透光区域,且每个第一基础单元的所述第一透光区域的面积不同,当任一所述第一透光区域的位置随所述柔性显示屏移动经过所述第一发光元件以及所述第一光感应元件时,所述第一透光区域位于所述第一发光元件及所述第一光感应元件之间,所述第一光感应元件感应所述第一发光元件发出的通过所述第一透光区域的光并产生第一光感应参数;
    所述处理器与所述第一光感应元件耦接,用于接收所述第一光感应参数,所述处理器根据一预先设置的光感应参数与伸展长度的第一对应关系表确定所述接收到的第一光感应参数对应的第一伸展长度,并确定所述柔性显示屏伸展出收容壳体外的展开长度为所述第一伸展长度。
  2. 如权利要求1所述的柔性显示器,其特征在于,多个所述第一基础单元的所述第一透光区域的面积为沿着柔性显示屏伸展的方向从小到大变化或从大到小依次变化,或者多个所述第一基础单元的第一透光区域的面积为随机的变化顺序。
  3. 如权利要求1所述的柔性显示器,其特征在于,所述柔性显示器还包括第二发光元件及第二光感应元件,所述第二发光元件及第二光感应元件设置于所述收容壳体的相应位置,所述柔性显示屏还包括沿着柔性显示屏的伸展方向间隔设置多个第二基础单元,每个所述第二基础单元包括第二透光区域,且每个所述第二基础单元的第二透光区域的面积相同,所述多个第二基础单元与所述多个第一基础单元一一对应且与柔性显示屏伸展方向平行分布,所述第二透光区域的位置随所述柔性显示屏移动经过所述第二发光元件以及所述第二光感应元件时,所述第二透光区域位于所述第二发光元件及所述第二光感应元件之间,所述第二光感应元件感应所述第二发光元件发出的通过所述第二透光 区域的光并产生第二光感应参数。
  4. 如权利要求3所述的柔性显示器,其特征在于,所述处理器还与所述第二光感应元件耦接,用于接收所述第二光感应参数,所述处理器还根据所述第二光感应参数及与所述第二光感应参数同时接收到的所述第一光感应参数,计算所述第一光感应参数与所述第二光感应参数的比值得到一参数比,并进一步根据一参数比与伸展长度的第二对应关系表确定所述参数比对应的第二伸展长度,所述处理器比较所述第一伸展长度及第二伸展长度是否相等,若结果判断为否,则确定所述柔性显示屏伸展出收容壳体外的展开长度为所述第二伸展长度。
  5. 如权利要求4所述的柔性显示器,其特征在于,所述第一基础单元设置于所述柔性显示屏的第一边缘,所述第二基础单元与第一基础单元并排设置于所述第一边缘或所述第二基础单元设置于所述柔性显示屏的与第一边缘相对的第二边缘。
  6. 如权利要求5所述的柔性显示器,其特征在于,所述收容壳体还包括开口,所述柔性显示屏从所述开口中伸展出来或从所述开口收容进所述收容壳体中,所述第一发光元件与所述第一光感应元件设置于所述开口的第一边和第二边的相对位置,所述第二发光元件与所述第二光感应元件也设置于所述开口的所述第一边和第二边的相对位置。
  7. 如权利要求6所述的柔性显示器,其特征在于,所述第一发光元件与所述第一光感应元件分别设置于所述开口的第一边和第二边的第一端,所述第二发光元件与所述第二光感应元件分别设置于所述开口的第一边和第二边的第一端或者分别设置于所述开口的所述第一边和第二边的第二端,所述第二端与所述第一端相对。
  8. 如权利要求5所述的柔性显示器,其特征在于,所述收容壳体还包括位于收容壳体内的卷绕形的收容通道,所述柔性显示屏通过收容通道收容于收容壳体中,所述所述第一发光元件与所述第一光感应元件设置于所述收容通道的两个相对表面的第一侧的对应位置,所述第二发光元件与所述第二光感应元件分别与第一发光元件与所述第一光感应元件并排设置于所述两个相对表面的第一侧的对应位置,或者,所述第二发光元件与所述第二光感应元件分别设 置于所述两个相对表面的第二侧的对应位置,所述第一侧与所述第二侧相对。
  9. 如权利要求3-8任一项所述的柔性显示器,其特征在于,所述第一发光元件及第二发光元件为发光二极管或激光二极管,所发出的光可为红外光或可见光,所述第一光感应元件及第二光感应元件为光电二极管,所述第一光感应元件及第二光感应元件产生的第一光感应参数及第二光感应参数为电流参数或电压参数。
  10. 如权利要求1-8任一项所述的柔性显示器,其特征在于,所述每一第一基础单元的第一透光区域及第二基础单元的第二透光区域为包括透明塑料、透明树脂在内的透光材料制成或者通过设置贯穿孔的方式形成。
  11. 一种柔性显示器,包括柔性显示屏、收容壳体以及处理器,所述柔性显示屏从所述收容壳体中伸展出来或收容进所述收容壳体中,其特征在于:
    所述柔性显示器还包括第一发光元件、第二发光元件以及第一光感应元件、第二光感应元件,所述第一发光元件与所述第一光感应元件设置于收容壳体的相应位置,所述第二发光元件及第二光感应元件也设置于收容壳体的相应位置;
    所述柔性显示屏包括沿着柔性显示屏的伸展方向间隔设置的多个第一基础单元以及与所述多个第一基础单元一一对应的多个第二基础单元,每个所述第一基础单元包括第一透光区域,且每个第一基础单元的透光区域的面积不同,每个所述第二基础单元包括第二透光区域每一第二基础单元的第二透光区域的面积相同;
    其中,当其中一第一基础单元的第一透光区域的位置运动到第一发光元件及第一光感应元件之间时,与所述第一基础单元对应的第二基础单元的第二透光区域也运动到所述第二发光元件及第二光感应元件之间,所述第一光感应元件感应所述第一发光元件发出并通过所述第一透光区域传导的光而产生相应的第一光感应参数,所述第二光感应元件感应所述第二发光元件发出并通过所述第二透光区域传导的光而产生相应的第二光感应参数;
    所述处理器分别与所述第一光感应元件及第二光感应元件耦接,用于接收所述第一光感应元件产生的第一光感应参数以及所述第二光感应元件产生的第二光感应参数,所述处理器计算所述第一光感应参数与第二光感应参数的 比值得到一参数比,并进一步根据一参数比与伸展长度的对应关系表确定所述参数比对应的伸展长度,从而确定所述柔性显示屏伸展出收容壳体外的展开长度为所述伸展长度。
  12. 如权利要求11所述的柔性显示器,其特征在于,所述第一基础单元设置于所述柔性显示屏的第一边缘,所述第二基础单元与第一基础单元并排设置于所述第一边缘或所述第二基础单元设置于所述柔性显示屏的与第一边缘相对的第二边缘。
  13. 如权利要求12所述的柔性显示器,其特征在于,所述收容壳体还包括开口,所述柔性显示屏从所述开口中伸展出来或从所述开口收容进所述收容壳体中,所述第一发光元件与所述第一光感应元件设置于所述开口的第一边和第二边的相对位置,所述第二发光元件与所述第二光感应元件也设置于所述开口的第一边和第二边的相对位置。
  14. 如权利要求13所述的柔性显示器,其特征在于,所述第一发光元件与所述第一光感应元件分别设置于所述开口的第一边和第二边的第一端,所述第二发光元件与所述第二光感应元件分别设置于所述开口的第一边和第二边的第一端或者分别设置于所述开口的第一边和第二边的第二端,所述第二端与所述第一端相对。
  15. 如权利要求12所述的柔性显示器,其特征在于,所述收容壳体还包括位于收容壳体内的卷绕形的收容通道,所述柔性显示屏通过收容通道收容于所述收容壳体中,所述第一发光元件与所述第一光感应元件设置于所述收容通道的两个相对表面的第一侧的对应位置,所述第二发光元件与所述第二光感应元件分别与第一发光元件与所述第一光感应元件并排设置于所述两个相对表面的第一侧的对应位置,或者,所述第二发光元件与所述第二光感应元件分别设置于所述两个相对表面的第二侧的对应位置,所述第一侧与所述第二侧相对。
  16. 如权利要求11-15任一项所述的柔性显示器,其特征在于,所述第一发光元件及第二发光元件为发光二极管或激光二极管,所发出的光可为红外光或可见光,所述第一光感应元件及第二光感应元件为光电二极管,所分别产生的第一光感应参数及第二光感应参数为电流参数或电压参数。
  17. 如权利要求16所述的柔性显示器,其特征在于,所述第一基础单元的第一透光区域及所述第二基础单元的第二透光区域为包括透明塑料、透明树脂在内的透光材料制成或者通过设置贯穿孔的方式形成。
  18. 一种展开检测方法,用于检测柔性显示器的柔性显示屏的伸展长度,其中,所述柔性显示器包括设置于柔性显示器的相对位置的第一发光元件及第一光感应元件,所述柔性显示屏上设置有多个沿着柔性显示屏的伸展方向排列的第一基础单元,每个第一基础单元包括面积不同的第一透光区域,所述方法包括步骤:
    第一光感应元件在任一第一基础单元的第一透光区域运动到位于第一发光元件及第一光感应元件之间时接收所述第一发光元件发出的光并产生第一光感应参数;
    接收所述第一光感应元件产生的第一光感应参数;
    根据光感应参数与伸展长度的对应关系表,确定所述第一光感应参数对应的第一伸展长度;
    确定所述第一伸展长度为柔性显示屏伸展出所述收容壳体的伸展长度。
  19. 如权利要求18所述的方法,其特征在于,所述柔性显示器还包括设置于柔性显示器的对应位置的第二发光元件及第二光感应元件,所述柔性显示屏上还设置有与所述多个第一基础单元对应的多个第二基础单元,每个第二基础单元包括第二透光区域,且每个第二基础单元的第二透光区域的面积相等,所述方法还包括步骤:
    所述第二光感应元件在任一第二基础单元运动到位于所述第二发光元件及第二光感应元件之间时接收所述第二发光元件发的光并产生第二光感应参数;
    接收与所述第一光感应参数同时产生的第二光感应参数;
    计算所述第一光感应参数与第二光感应参数的比值得到一参数比;
    根据参数比与伸展长度的对应关系,确定所述参数比对应的第二伸展长度;以及
    比较所述第一伸展长度与第二伸展长度是否相等;
    如果不相等,则确定所述第二伸展长度为柔性显示屏伸展出所述收容壳体的伸展长度。
  20. 如权利要求18所述的方法,其特征在于,所述方法还包括步骤:
    预先检测每一第一基础单元的第一透光区域经过所述第一光感应元件时,所述第一光感应元件产生的第一光感应参数以及测量当前所述柔性显示屏的伸展长度,从而一一确定不同的光感应参数与不同的伸展长度的对应关系而形成所述光感应参数与伸展长度的对应关系表。
  21. 如权利要求19所述的方法,其特征在于,所述方法还包括步骤:
    预先检测每一第一基础单元的第一透光区域及对应的第二基础单元的第二透光区域分别经过所述第一光感应元件和第二光感应元件时,所述第一光感应元件产生的第一光感应参数及所述第二光感应元件产生的第二光感应参数之间的参数比,以及测量当前所述柔性显示屏的伸展长度,从而一一确定不同的参数比与不同的伸展长度的对应关系而形成所述参数比与伸展长度的对应关系表。
  22. 一种展开检测方法,用于检测柔性显示器的柔性显示屏的伸展长度,其中,所述柔性显示器包括设置于柔性显示器的相对位置的第一发光元件及第一光感应元件,以及设置于柔性显示器的相对位置的第二发光元件及第二光感应元件,所述柔性显示屏上设置有多个沿着柔性显示屏的伸展方向排列的第一基础单元以及多个与所述第一基础单元对应且平行的第二基础单元,每个第一基础单元包括面积不同的第一透光区域,每个第二基础单元包括面积相等的第二透光区域,所述方法包括步骤:
    所述第一光感应元件在任一第一基础单元的透光区域运动到位于所述第一发光元件及第一光感应元件之间时接收所述第一发光元件发的光并产生第一光感应参数;
    所述第二光感应元件在对应的第二基础单元运动到位于所述第二发光元件及第二光感应元件之间时接收所述第二发光元件发的光并产生第二光感应参数;
    接收所述第一光感应参数及所述第二光感应参数;
    计算所述第一光感应参数与第二光感应参数的比值得到一参数比;
    根据参数比与伸展长度的对应关系,确定所述参数比对应的伸展长度;以及
    确定所述伸展长度为柔性显示屏伸展出所述收容壳体的伸展长度。
  23. 如权利要求22所述的方法,其特征在于,所述方法还包括步骤:
    预先检测每一第一基础单元的第一透光区域及对应的第二基础单元的第二透光区域分别经过所述第一光感应元件和第二光感应元件时,所述第一光感应元件产生的第一光感应参数及所述第二光感应元件产生的第二光感应参数之间的参数比,以及测量当前所述柔性显示屏的伸展长度,从而一一确定不同的参数比与不同的伸展长度的对应关系而形成所述参数比与伸展长度的对应关系表。
PCT/CN2016/105166 2016-11-09 2016-11-09 柔性显示器及展开检测方法 WO2018086001A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/347,747 US10788862B2 (en) 2016-11-09 2016-11-09 Flexible display device and unfolding detection method thereof
EP16921414.5A EP3540714A1 (en) 2016-11-09 2016-11-09 Flexible display and extension detection method
CN201680036579.4A CN107820629B (zh) 2016-11-09 2016-11-09 柔性显示器及展开检测方法
PCT/CN2016/105166 WO2018086001A1 (zh) 2016-11-09 2016-11-09 柔性显示器及展开检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105166 WO2018086001A1 (zh) 2016-11-09 2016-11-09 柔性显示器及展开检测方法

Publications (1)

Publication Number Publication Date
WO2018086001A1 true WO2018086001A1 (zh) 2018-05-17

Family

ID=61600982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105166 WO2018086001A1 (zh) 2016-11-09 2016-11-09 柔性显示器及展开检测方法

Country Status (4)

Country Link
US (1) US10788862B2 (zh)
EP (1) EP3540714A1 (zh)
CN (1) CN107820629B (zh)
WO (1) WO2018086001A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927619A (zh) * 2021-01-29 2021-06-08 厦门天马微电子有限公司 一种滑卷显示装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108735100A (zh) * 2018-05-21 2018-11-02 上海创功通讯技术有限公司 一种柔性显示装置及其控制方法、控制装置
CN108924296B (zh) * 2018-06-28 2020-12-25 云谷(固安)科技有限公司 柔性屏滑动装置及终端设备
CN109388193A (zh) * 2018-10-18 2019-02-26 维沃移动通信有限公司 一种柔性显示屏伸展长度的获取方法和电子设备
CN109471542B (zh) * 2018-11-07 2022-08-26 合肥禾斗技汇科技有限公司 定位系统
CN109375794B (zh) * 2018-11-07 2021-12-14 安徽中巨智能科技有限公司 用于测量线或绳伸出长度的测量系统
CN109471543B (zh) * 2018-11-07 2022-08-23 合肥禾斗技汇科技有限公司 可存储笔迹的笔记本
CN109495628B (zh) * 2018-11-07 2021-04-06 南京溧水高新创业投资管理有限公司 具有书写功能的手机或平板保护壳
CN112703548A (zh) * 2018-11-21 2021-04-23 深圳市柔宇科技股份有限公司 电子设备及其控制方法
CN109712532B (zh) * 2019-01-08 2021-10-19 京东方科技集团股份有限公司 一种显示装置的屏幕控制方法及其控制装置、显示装置
CN110322793B (zh) * 2019-06-28 2022-02-22 昆山国显光电有限公司 柔性显示装置
CN110930878B (zh) * 2019-11-11 2021-06-18 维沃移动通信有限公司 一种柔性屏的控制方法和电子设备
WO2021117953A1 (ko) * 2019-12-13 2021-06-17 엘지전자 주식회사 디스플레이 장치
EP4087264A4 (en) * 2019-12-30 2023-09-06 LG Electronics Inc. IMAGE DISPLAY DEVICE AND OPERATING METHOD THEREOF
CN112235442A (zh) * 2020-10-13 2021-01-15 Oppo广东移动通信有限公司 电子装置
CN112509471B (zh) * 2020-12-08 2022-09-27 Oppo广东移动通信有限公司 电子设备及其控制方法
CN112885242B (zh) * 2021-02-09 2022-11-25 维沃移动通信有限公司 显示设备、柔性显示屏的显示方法和可读存储介质
WO2023092496A1 (zh) * 2021-11-26 2023-06-01 京东方科技集团股份有限公司 显示装置及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833194A (zh) * 2003-08-08 2006-09-13 皇家飞利浦电子股份有限公司 双稳显示器
TW201205155A (en) * 2010-07-21 2012-02-01 E Ink Holdings Inc Flexible display device and anti-misoperation method thereof
CN102956151A (zh) * 2011-08-10 2013-03-06 三星显示有限公司 显示装置
CN103426384A (zh) * 2012-05-22 2013-12-04 三星显示有限公司 显示装置、显示装置的校准方法及显示装置的显示方法
CN104021749A (zh) * 2013-03-01 2014-09-03 联想(北京)有限公司 一种显示方法及电子设备
CN104461444A (zh) * 2014-12-30 2015-03-25 上海华勤通讯技术有限公司 柔性屏的分屏显示方法及终端设备
CN104505005A (zh) * 2014-12-31 2015-04-08 合肥鑫晟光电科技有限公司 显示装置及显示方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102300558B1 (ko) * 2014-12-26 2021-09-14 삼성전자주식회사 광원 모듈

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1833194A (zh) * 2003-08-08 2006-09-13 皇家飞利浦电子股份有限公司 双稳显示器
TW201205155A (en) * 2010-07-21 2012-02-01 E Ink Holdings Inc Flexible display device and anti-misoperation method thereof
CN102956151A (zh) * 2011-08-10 2013-03-06 三星显示有限公司 显示装置
CN103426384A (zh) * 2012-05-22 2013-12-04 三星显示有限公司 显示装置、显示装置的校准方法及显示装置的显示方法
CN104021749A (zh) * 2013-03-01 2014-09-03 联想(北京)有限公司 一种显示方法及电子设备
CN104461444A (zh) * 2014-12-30 2015-03-25 上海华勤通讯技术有限公司 柔性屏的分屏显示方法及终端设备
CN104505005A (zh) * 2014-12-31 2015-04-08 合肥鑫晟光电科技有限公司 显示装置及显示方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112927619A (zh) * 2021-01-29 2021-06-08 厦门天马微电子有限公司 一种滑卷显示装置

Also Published As

Publication number Publication date
CN107820629A (zh) 2018-03-20
US20190286194A1 (en) 2019-09-19
US10788862B2 (en) 2020-09-29
CN107820629B (zh) 2020-04-14
EP3540714A1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2018086001A1 (zh) 柔性显示器及展开检测方法
WO2016197700A1 (zh) 柔性显示器及其柔性显示屏的弯曲状态检测方法
TWI665462B (zh) 距離感測器及距離感測模組
US11126306B2 (en) Optical touch apparatus and width detecting method thereof
US20170185231A1 (en) System and method of determining a touch input for selecting a feature on a touch display
TW201547276A (zh) 光感測裝置及安排感光元件的方法
JP2015159385A (ja) 光電センサ
US20190230912A1 (en) Detection device for detecting fishing device entering water and method thereof
JP2011257335A (ja) 光学式位置検出装置、電子機器及び表示装置
EP3279913A1 (en) Photoelectric sensor
US9182315B2 (en) Lens module testing device
US7504611B2 (en) Moving object detecting photointerrupter and electronic device using the same
US20170205525A1 (en) Stud sensor
TW201903384A (zh) 顏色偵測裝置及其方法
CN110455750B (zh) 镜面除雾方法、镜面除雾装置以及智能镜子
US6246467B1 (en) Rangefinder apparatus
CN219893367U (zh) 一种智能摄像头的测试系统
JP2011257336A (ja) 光学式位置検出装置、電子機器及び表示装置
JP7055296B2 (ja) 光センサ、及び、カウンタ
CN106933428B (zh) 用于电子设备的方法和电子设备
JP2006349403A (ja) エッジセンサのティーチング方法およびエッジセンサ
JP6247121B2 (ja) 入力装置
JPS55121113A (en) Tactile sensor using semiconductor device
KR20160064628A (ko) Pcb 위치 감지 장치
JP2511593B2 (ja) 光電式検知装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016921414

Country of ref document: EP

Effective date: 20190611