WO2018085993A1 - 一种LCoS相位校准方法及设备 - Google Patents

一种LCoS相位校准方法及设备 Download PDF

Info

Publication number
WO2018085993A1
WO2018085993A1 PCT/CN2016/105108 CN2016105108W WO2018085993A1 WO 2018085993 A1 WO2018085993 A1 WO 2018085993A1 CN 2016105108 W CN2016105108 W CN 2016105108W WO 2018085993 A1 WO2018085993 A1 WO 2018085993A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase modulation
gray value
value
change period
relationship
Prior art date
Application number
PCT/CN2016/105108
Other languages
English (en)
French (fr)
Inventor
宗良佳
王咪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/105108 priority Critical patent/WO2018085993A1/zh
Priority to CN201680090538.3A priority patent/CN109891305B/zh
Publication of WO2018085993A1 publication Critical patent/WO2018085993A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular, to an LCoS phase calibration method and device.
  • LCoS Liquid Crystal on Silicon
  • LCoS has been gradually applied to the field of optical communication in recent years as a spatial phase modulator.
  • Solution 1 For the phase error caused by the uneven thickness of LCoS, the LCoS is divided into multiple regions, and the LUT corresponding to each region is obtained for phase calibration of the corresponding region. This scheme can effectively compensate for the uneven thickness of the LCoS. Phase error.
  • WSS Widelength Select Switch
  • the wavelength range covered by WSS is usually in C-band (ie, 1529nm-1562nm), so the phase error caused by wavelength correlation is also very small.
  • Embodiments of the present invention provide an LCoS phase calibration method and device for solving a problem of large phase error caused by a short period of phase adjustment amount change.
  • an LCoS phase calibration method includes: loading the same gray value on each pixel of the LCoS, obtaining a phase modulation amount corresponding to different gray values of the multiple loads, and obtaining an initial response relationship, and according to The initial response relationship and the target response relationship corresponding to the phase modulation amount change period K are obtained, and the initial gray value correspondence relationship is obtained, where K is a positive integer; further, according to the preset gray value range corresponding to the target response relationship Determining K input gray values corresponding to the phase modulation amount change period K, and determining K output gray levels corresponding to the K input gray values according to the initial gray value correspondence relationship; The corresponding output gray value is respectively loaded on the K pixel points corresponding to the quantity change period K, and the actual phase modulation depth value corresponding to the phase modulation quantity change period K is obtained; based on the actual phase modulation depth value and the target response Corresponding target phase modulation depth value, determining the corrected phase modulation depth value and the corrected target response relationship; finally, according to the initial response And the
  • the method provided by the embodiment of the present invention can correct the phase error corresponding to the different phase adjustment amount change periods, and effectively reduce the crosstalk effect between the pixels in the LCoS.
  • the method provided by the embodiment of the present invention solves the next generation.
  • the inter-pixel crosstalk effect of the ultra-small pixels has a significant effect.
  • the insertion loss and the high-order diffracted light energy of the LCoS in the application of the WSS and the like can be effectively reduced by correcting the phase error.
  • the method provided by the embodiment of the present invention is applicable to all Phase-modulated LCoS devices eliminate the need to change the physical structure of the LCoS, without adding any hardware cost, and are easy to operate. cut costs.
  • the gray value and the phase adjustment amount in the target response relationship are preset linear relationship.
  • the target response relationship can be set according to the actual application needs.
  • the initial gray value correspondence relationship refers to a correspondence relationship between an input gray value and an output gray value in any of the same phase adjustment amounts, wherein the input gray value refers to A gray value in a target response relationship, the output gray value being a gray value in the initial response relationship.
  • the initial gray value correspondence can describe the relationship between the target response relationship and the initial response relationship.
  • the corrected target response relationship is determined according to the corrected phase modulation depth value and the preset gray value range.
  • the modified phase modulation depth value and the corrected target response relationship can be easily determined by using the method provided by the embodiment of the present invention.
  • the corresponding output gray value is respectively loaded on the K pixel points corresponding to the phase modulation amount change period K, and the actual phase modulation depth value corresponding to the phase modulation amount change period K is obtained, including Obtaining, respectively, voltage values corresponding to the K output gray values, wherein each output gray value corresponds to one voltage value, and K voltage values are respectively determined according to voltage values corresponding to the K output gray values respectively
  • the respective voltage signals are sequentially loaded onto the K pixel points corresponding to the phase modulation amount change period K.
  • the phase modulation amount corresponding to each of the K pixel points after the voltage signal is loaded is measured.
  • the actual phase modulation depth value corresponding to the phase modulation amount change period K is determined according to the phase adjustment amount corresponding to each of the K pixel points.
  • the method provided by the embodiment of the present invention can easily obtain the actual phase modulation depth value corresponding to each phase adjustment amount change period, without adding any hardware cost, and is easy to operate and save cost.
  • the actual phase modulation depth value corresponding to the phase modulation amount change period K is determined according to the phase adjustment amount corresponding to each of the K pixel points
  • the actual phase modulation depth value adopts the following formula. determine: Where b is the actual phase modulation depth value, P1 is the maximum value of the phase adjustment amounts corresponding to the K pixel points, and P2 is the minimum value among the phase adjustment amounts corresponding to the K pixel points.
  • the actual phase modulation depth value can be easily determined by the method provided by the embodiment of the present invention.
  • the gray value correspondence relationship corresponding to the phase modulation amount change period K refers to the correspondence between the corrected input gray value and the corrected output gray value under any same phase adjustment amount. a relationship, wherein the corrected input gray value refers to a gray value in the corrected target response relationship, and the output gray value refers to a gray value in the initial response relationship.
  • the method further includes: Corresponding relationship of the gray value corresponding to the phase modulation amount change period K is stored in the storage area of the LCoS, so that when the LCoS is loaded with the blazed grating of the phase modulation amount change period K, the period corresponding to the period K is changed according to the phase modulation amount In the gray value correspondence relationship, the corresponding corrected output gradation values are respectively loaded on the K pixel points corresponding to the phase modulation amount change period K.
  • a plurality of LUTs corresponding to the phase change amount change periods can be obtained.
  • the LCoS loads the blazed gratings with different phase modulation amount change periods, the gray corresponding to each phase modulation amount change period In the degree correspondence relationship, the corresponding corrected output gradation value is respectively loaded on the pixel points corresponding to the phase modulation amount change period.
  • an LCoS phase calibration device includes: a communication interface and a processor coupled to the communication interface; the processor is configured to: load the same gray value on each pixel of the LCoS through the communication interface Obtaining a phase modulation amount corresponding to different gray values respectively, and obtaining an initial response relationship; and obtaining an initial gray value correspondence relationship according to the initial response relationship and the target response relationship corresponding to the phase modulation amount change period K , K is a positive integer; according to the target Determining, according to the preset gray value range corresponding to the response relationship, K input gray values corresponding to the phase modulation amount change period K, and determining K corresponding to the K input gray values according to the initial gray value correspondence relationship Outputting a gray scale; loading corresponding gray output values on the K pixel points corresponding to the phase modulation amount change period K through the communication interface, and obtaining an actual phase modulation depth value corresponding to the phase modulation amount change period K; Determining the corrected phase modulation depth value and the corrected target response relationship by the actual phase modul
  • the gray value and the phase adjustment amount in the target response relationship are preset linear relationship.
  • the initial gray value correspondence relationship refers to a correspondence relationship between an input gray value and an output gray value in any of the same phase adjustment amounts, wherein the input gray value refers to A gray value in a target response relationship, the output gray value being a gray value in the initial response relationship.
  • the corrected phase modulation depth value is determined by the following formula:
  • c is the corrected phase modulation depth value
  • a is the target phase modulation depth value
  • b is the actual phase modulation depth value
  • the corrected target response relationship is determined according to the corrected phase modulation depth value and the preset gray value range.
  • the processor is specifically configured to:
  • each output gray value corresponds to a voltage value
  • the voltage signal is sequentially loaded to the K pixel points corresponding to the phase modulation amount change period K through the communication interface;
  • the actual phase modulation depth value corresponding to the phase modulation amount change period K is determined according to the phase adjustment amount corresponding to each of the K pixel points.
  • the processor determines the actual phase modulation depth when the phase modulation amount change period K corresponds to the actual phase modulation depth value according to the phase adjustment amount corresponding to the K pixel points respectively.
  • the value is determined by the following formula:
  • P1 is the maximum value of the phase adjustment amounts corresponding to the K pixel points
  • P2 is the minimum value among the phase adjustment amounts corresponding to the K pixel points.
  • the gray value correspondence relationship corresponding to the phase modulation amount change period K refers to the correspondence between the corrected input gray value and the corrected output gray value under any same phase adjustment amount. a relationship, wherein the corrected input gray value refers to a gray value in the corrected target response relationship, and the output gray value refers to a gray value in the initial response relationship.
  • the processor is further configured to:
  • the gray value corresponding to the phase modulation amount change period K is corresponding.
  • a relationship is stored in the storage area of the LCoS, so that when the LCoS is loaded with a blazed grating having a phase modulation amount change period K, a gray value corresponding to the period K is changed according to the phase modulation amount, and the phase modulation amount is The corresponding corrected output gradation values are respectively loaded on the K pixel points corresponding to the change period K.
  • FIG. 1 is a schematic structural diagram of an LCoS according to an embodiment of the present invention.
  • FIG. 2(a) is a schematic diagram showing the working principle of phase modulation by LCoS in the embodiment of the present invention
  • FIG. 2(b) is a second schematic diagram showing the working principle of phase modulation by LCoS in the embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a WSS device according to an embodiment of the present invention.
  • FIG. 6(a) is a schematic diagram showing changes in a phase change amount change period in an embodiment of the present invention.
  • 6(b) is a schematic diagram showing changes in a phase change amount change period in an embodiment of the present invention.
  • FIG. 7 is a flowchart showing an overview of an LCoS phase calibration method according to an embodiment of the present invention.
  • FIG. 9 is a diagram showing an input gray value distribution diagram in which a phase adjustment amount change period is 8 in an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of actual phase modulation depth values respectively corresponding to different phase adjustment amount change periods according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of corrected phase modulation depth values respectively corresponding to different phase adjustment amount change periods according to an embodiment of the present invention.
  • Figure 13 is an initial LUT curve in an embodiment of the present invention.
  • phase adjustment amount change period 8 is an actual phase modulation depth value corresponding to a phase adjustment amount change period 8 in the embodiment of the present invention.
  • phase modulation depth value corresponding to a phase adjustment amount change period 24 according to an embodiment of the present invention
  • 16(a) is a comparison diagram of a corrected target gradation phase response curve corresponding to a phase adjustment amount change period 8 and an original target gradation phase response curve according to an embodiment of the present invention
  • 16(b) is a comparison diagram of the corrected target gray phase response curve and the original target gray phase response curve corresponding to the phase adjustment amount change period 24 in the embodiment of the present invention
  • 17(a) is a modified target gray phase response curve corresponding to the phase adjustment amount change period 8 in the embodiment of the present invention.
  • Figure 17 (b) shows the corrected target corresponding to the phase adjustment amount change period 24 in the embodiment of the present invention. Gray phase response curve
  • FIG. 18 is a schematic structural diagram of an LCoS phase calibration apparatus according to an embodiment of the present invention.
  • Embodiments of the present invention provide an LCoS phase calibration method and device for solving a problem of large phase error caused by a short period of phase adjustment amount change.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • LCoS includes glass layer, indium tin oxide (ITO) layer, alignment layer (top), and liquid crystal (from the top to bottom). , LC) layer, Alignment layer (bottom), and aluminized Complementary Metal Oxide Semiconductor (CMOS) substrate (including aluminum layer and COMS layer).
  • ITO indium tin oxide
  • LC liquid crystal
  • CMOS Complementary Metal Oxide Semiconductor
  • Fig. 2(a) and Fig. 2(b) The working principle of LCoS to achieve phase modulation is shown in Fig. 2(a) and Fig. 2(b): when the LC layer is not loaded with voltage, the liquid crystal molecules are arranged according to the steering rule of the Alignment layer, as shown in Fig. 2(a); When the LC layer is loaded with a voltage, the liquid crystal molecules are deflected according to the magnitude of the voltage. Since the liquid crystal molecules are birefringent materials, different steering will produce different equivalent refractive indices. Therefore, when the incident light passes through the liquid crystal molecules, different steering of the liquid crystal molecules will achieve a phase modulation effect on the light.
  • Figure 3 shows the typical response curve of the LCoS loading voltage and phase modulation. As can be seen from Figure 3, the two have a nonlinear relationship. In practical applications, the main application target gray phase response curve is shown in Figure 4.
  • the phase adjustment amount and the input gray value are linearly varying. When the input gray value changes from 0 to 255, the phase modulation amount is generated. The change from 0 to 2 pi, where the input gray value is large Small corresponds to the size of the voltage value. Therefore, for an LCoS chip that is not phase-aligned, a linear change relationship as shown in FIG. 4 cannot be obtained.
  • Input gray value Output gray value 0 GL-0 1 GL-1 ... ... 255 GL-255
  • the LUT contains the input gray value (that is, the abscissa shown in Figure 4)
  • the correspondence between the input gray value and the output gray value Specifically, according to the phase modulation amount corresponding to each input gray value in FIG. 4, the voltage value corresponding to the corresponding phase modulation amount in FIG. 3 is determined, and further according to the corresponding relationship between the preset voltage value and the output gray value, The output gray value corresponding to the voltage value, that is, the input gray value, the output gray value, and the voltage value are one-to-one correspondence. Therefore, when the input gradation value is changed from 0 to 255 by obtaining the LUT, the amount of phase modulation generated linearly changes from 0 to 2 pi.
  • the blazed gratings for different diffraction angles are formed by loading the input gradation values corresponding to the different phase adjustment amount change periods on different regions of the LCoS, thereby selecting each wavelength. Sexual output.
  • the magnitude of the phase adjustment amount change period determines the diffraction angle of the LCoS as shown in Fig. 6.
  • an embodiment of the present invention provides a phase calibration method and device for solving the above problem.
  • the initial response relationship is represented by an initial gray phase response curve
  • the target response relationship is represented by a target gray phase response curve
  • the initial gray value correspondence is represented by an initial LUT
  • the phase modulation amount is changed by a period K.
  • Gray value correspondence relationship with phase modulation amount change period K Corresponding LUT representation.
  • an embodiment of the present invention provides an LCoS phase calibration method, where the method includes:
  • Step 700 The calibration device loads the same gray value on each pixel of the LCoS, and obtains the phase modulation amount corresponding to the different gray values of the multiple loads, and obtains an initial response relationship.
  • the input gray value here may directly correspond to a voltage value, or obtain an output gray value corresponding to each input gray value through a preset LUT, and further convert the output gray value into a corresponding voltage value and load it into each On the pixel.
  • Step 710 The calibration device obtains an initial gray value correspondence relationship according to the initial response relationship and the target response relationship corresponding to the phase modulation amount change period K, where K is a positive integer.
  • phase modulation amount change period K means that different K value values are loaded for each K pixel points to obtain different phase modulation quantity changes, and as a phase modulation quantity change period, in practical applications, the value of K is 8 or 24, etc. .
  • the gray value and the phase adjustment amount in the target response relationship are preset linear relationship.
  • the target gray phase response curve is as shown in FIG. 4, and the input gray value has a linear relationship with the phase modulation amount. It should be noted that the target gray phase response curve may not pass the origin according to actual needs.
  • the initial gray value correspondence relationship refers to a correspondence relationship between the input gray value and the output gray value in any of the same phase adjustment amounts, wherein the input gray value refers to gray in the target response relationship.
  • a degree value, the output gray value being a gray value in the initial response relationship.
  • the method for obtaining the initial LUT by using the initial gray phase response curve and the target gray phase response curve is similar to the method for obtaining the LUT according to FIG. 3 and FIG. 4 in the prior art, and details are not described herein again.
  • Step 720 The calibration device determines K input gray values corresponding to the phase modulation amount change period K according to the preset gray value range corresponding to the target response relationship, and determines K according to the initial gray value correspondence relationship. Enter the K output gradations corresponding to the gray value.
  • the preset gray value range here may range from 0 to 255, or other possible preset gray value range.
  • each input gray value is determined according to the phase adjustment amount change period, and then the initial gray value correspondence determined according to step 710 is searched for, and the output gray value corresponding to each input gray value is determined.
  • Step 730 The calibration device loads the corresponding output gray value respectively on the K pixel points corresponding to the phase modulation amount change period K, and obtains the actual phase modulation depth value corresponding to the phase modulation amount change period K.
  • the calibration device needs to perform the following process: obtaining voltage values corresponding to K output gray values respectively, wherein each output gray value corresponds to a voltage value, and according to the voltage values corresponding to the K output gray values respectively,
  • the voltage signals corresponding to the K voltage values are sequentially loaded to the K pixel points corresponding to the phase modulation amount change period K, and the phase modulation amounts corresponding to the K pixel points after the loading voltage signal are respectively measured, corresponding to the K pixel points respectively.
  • the phase adjustment amount determines the actual phase modulation depth value corresponding to the phase modulation amount change period K.
  • the actual phase modulation depth value is determined by the following formula:
  • P1 is the maximum value of the phase adjustment amounts corresponding to the K pixel points
  • P2 is the minimum value among the phase adjustment amounts corresponding to the K pixel points.
  • the eight input gray values corresponding to the phase adjustment amount change period are respectively: 0. 255/8, 2*255/8, ..., 7*255/8, see Figure 9.
  • Finding the output gray value corresponding to each input gray value in the initial LUT determined in step 710 according to the eight input gray values obtained above, and obtaining the voltage values corresponding to the eight input gray values respectively, and the eight obtained will be obtained.
  • the voltage signals corresponding to the voltage values are sequentially loaded to 8 pixel points, that is, the eight voltage values are sequentially loaded into the same row or consecutive 8 pixel points in the same row from large to small or small to large, and then measured.
  • the phase adjustment amount corresponding to each of the 8 pixel points after the voltage signal is loaded.
  • K1, K2, and K3 respectively correspond to actual phase modulation depth values of P1, P2, and P3, and as can be seen from FIG. 10, as the phase adjustment amount changes.
  • the cycle is shortened and the actual phase modulation depth is reduced. Therefore, it is necessary to determine the corrected phase modulation depth value, the corrected target gray phase response curve, and the corresponding LUT for each phase adjustment amount change period.
  • Step 740 The calibration device determines the corrected phase modulation depth value and the corrected target response relationship based on the actual phase modulation depth value and the target phase modulation depth value corresponding to the target response relationship.
  • the corrected phase modulation depth value is determined by the following formula:
  • c is the corrected phase modulation depth value
  • a is the target phase modulation depth value
  • b is the actual phase modulation depth value
  • the corrected phase modulation depth value may be slightly larger or slightly smaller than the c value near the calculated c value.
  • c (2pi) 2 /1.83pi ⁇ 2.19pi. It can be seen that c can also take 2.2 pi or 2.15 pi or the like.
  • the corrected target response relationship is determined according to the corrected phase modulation depth value and the preset gray value range.
  • phase adjustment amount change periods K1, K2, and K3 are respectively corresponding.
  • the corrected phase modulation depth values are 2 pi* (2 pi/P1), 2 pi* (2 pi/P2), and 2 pi* (2 pi/P3).
  • Step 750 The calibration device obtains the phase according to the initial response relationship and the corrected target response relationship.
  • the bit value of the bit modulation amount changes K corresponds to the gray value correspondence relationship.
  • the gray value correspondence relationship corresponding to the phase modulation amount change period K refers to a correspondence relationship between the corrected input gray value and the corrected output gray value under any same phase adjustment amount, wherein the corrected input gray
  • the degree value refers to the gray value in the corrected target response relationship
  • the output gray value refers to the gray value in the initial response relationship.
  • the calibration apparatus may also store the gray value correspondence corresponding to the phase modulation amount change period K in the storage area of the LCoS, so that when the LCoS loads the blazed grating of the phase modulation amount change period K, according to The gradation value correspondence corresponding to the phase modulation amount change period K is loaded with the corresponding corrected output gradation value at the K pixel points corresponding to the phase modulation amount change period K. Therefore, the gray value correspondence relationship corresponding to the plurality of sets of phase modulation amount change periods can be obtained according to the above method.
  • the following is an example of a blazed grating with a phase adjustment amount change period of 8 and 24, and how to obtain LUT values corresponding to different phase adjustment amount change periods.
  • the calibration device loads the same gray value on each pixel of the LCoS, and measures the phase modulation amount generated under different gray values to obtain an initial gray phase response curve, as shown in FIG.
  • the initial gray phase response curve is nonlinear, and the target gray phase response curve is linear.
  • the calibration device obtains the initial LUT, that is, the initial gray value correspondence relationship according to the initial gray phase response curve and the target gray phase response curve, as shown in FIG. 13 as the initial LUT curve, and the abscissa is the input gray value (ie, the target gray scale).
  • the output gray value in the phase response curve, the ordinate is the output gray value (ie, the input gray value in the initial gray phase response curve), and FIG. 13 is the input gray value and the output gray according to FIG.
  • the phase adjustment amount corresponding to the degree value is the same.
  • the calibration device loads the corresponding input gray value respectively according to the initial LUT at 8 pixel points corresponding to each phase adjustment amount change period 8 of the LCoS.
  • Eight phase adjustment amounts are obtained, as shown in FIG. 14, and the actual phase modulation depth value corresponding to the phase adjustment amount change period (sparking period) 8 is calculated to be 1.6 pi.
  • the corresponding input gray value is respectively loaded on the 24 pixel points corresponding to each phase adjustment amount change period 24 of the LCoS, and 24 phase adjustment amounts are obtained, as shown in FIG. 15, and the phase adjustment amount is calculated.
  • the actual phase modulation depth value corresponding to the change period 24 is 1.9 pi.
  • the calibration apparatus determines the corrected phase modulation depth for the phase adjustment amount change period 8 of 2.5 pi and the corrected target phase modulation depth for the phase adjustment amount change period 24 according to the calculation formula of the corrected phase modulation depth value.
  • 2.1 pi as shown in Fig. 16 (a) and Fig. 16 (b), is a comparison chart of the corrected target gradation phase response curve and the original target gradation phase response curve.
  • the calibration apparatus obtains a phase adjustment amount change according to the initial gray phase response curve and the corrected target gray phase response curve corresponding to the phase adjustment amount change period 8.
  • the LUT curve corresponding to the period 8 and the corrected target gray-scale phase response curve corresponding to the initial gray-scale phase response curve and the phase adjustment amount change period 24 obtain the LUT curve corresponding to the phase adjustment amount change period 24.
  • the LUT corresponding to the obtained phase adjustment amount change period 8 and the LUT corresponding to the phase adjustment amount change period 24 are written in the storage area of the LCoS.
  • an embodiment of the present invention provides an LCoS phase calibration apparatus, including: a communication interface 1801 and a processor 1802 coupled to the communication interface 1801;
  • the processor 1802 is configured to:
  • the same gray value is loaded on each pixel of the LCoS through the communication interface, and the phase modulation quantities respectively corresponding to the different gray values of the multiple loads are obtained to obtain an initial response relationship; according to the initial response relationship and the phase
  • the target response relationship corresponding to the modulation amount change period K is obtained, and the initial gray value correspondence relationship is obtained, K is a positive integer; and the K corresponding to the phase modulation amount change period K is determined according to the preset gray value range corresponding to the target response relationship
  • Inputting a gray value determining K output gray levels corresponding to the K input gray values according to the initial gray value correspondence; respectively, passing the K pixel points corresponding to the phase modulation amount change period K Transmitting, by the communication interface, a corresponding output gray value, and obtaining an actual phase modulation depth value corresponding to the phase modulation amount change period K; Determining a corrected phase modulation depth value and a corrected target response relationship according to the target phase modulation depth value corresponding to the target modulation depth value and the target response relationship; and
  • the gray value and the phase adjustment amount in the target response relationship are preset linear relationship.
  • the initial gray value correspondence relationship refers to a correspondence relationship between an input gray value and an output gray value in any of the same phase adjustment amounts, wherein the input gray value refers to A gray value in a target response relationship, the output gray value being a gray value in the initial response relationship.
  • the corrected phase modulation depth value is determined by the following formula:
  • c is the corrected phase modulation depth value
  • a is the target phase modulation depth value
  • b is the actual phase modulation depth value
  • the corrected target response relationship is determined according to the corrected phase modulation depth value and the preset gray value range.
  • the processor 1802 is specifically configured to:
  • each output gray value corresponds to a voltage value
  • the voltage signals respectively corresponding to the K voltage values are sequentially loaded to the K pixel points corresponding to the phase modulation quantity change period K through the communication interface;
  • the processor 1802 determines the actual phase modulation depth value corresponding to the phase modulation amount change period K according to the phase adjustment amount corresponding to the K pixel points respectively.
  • the depth value is determined by the following formula:
  • P1 is the maximum value of the phase adjustment amounts corresponding to the K pixel points
  • P2 is the minimum value among the phase adjustment amounts corresponding to the K pixel points.
  • the gray value correspondence relationship corresponding to the phase modulation amount change period K refers to the correspondence between the corrected input gray value and the corrected output gray value under any same phase adjustment amount. a relationship, wherein the corrected input gray value refers to a gray value in the corrected target response relationship, and the output gray value refers to a gray value in the initial response relationship.
  • the processor 1802 is further configured to:
  • the gray value corresponding to the phase modulation amount change period K is corresponding.
  • a relationship is stored in the storage area of the LCoS, so that when the LCoS is loaded with a blazed grating having a phase modulation amount change period K, a gray value corresponding to the period K is changed according to the phase modulation amount, and the phase modulation amount is The corresponding corrected output gradation values are respectively loaded on the K pixel points corresponding to the change period K.
  • the method provided by the embodiment of the present invention can correct the phase error corresponding to the different phase adjustment amount change periods, and effectively reduce the crosstalk effect between the pixels in the LCoS, and in particular, the method provided by the embodiment of the present invention is The effect of the inter-pixel crosstalk effect of the next generation of ultra-small pixels is remarkable.
  • the insertion loss and the high-order diffracted light energy of the LCoS in the application of the WSS and the like can be effectively reduced by correcting the phase error, and the method provided by the embodiment of the present invention is further provided. Applicable to all phase-modulated LCoS devices, without changing the physical structure of the LCoS, without adding any hardware cost, easy to operate, and cost-effective.
  • each functional module in each embodiment of the present application may be used. It can be integrated into one processing module, or each module can exist physically separately, or two or more modules can be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules if implemented in the form of software functional modules and sold or used as separate products, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种LCoS相位校准方法及设备,包括:在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量得到初始响应关系,结合目标响应关系,得到初始灰度值对应关系;根据目标响应关系对应的预设灰度值范围确定相位调制量变化周期K对应的K个输入灰度值,根据初始灰度值对应关系确定K个输入灰度值对应的K个输出灰度;在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得实际相位调制深度值,并结合目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系;根据初始响应关系和修正后的目标响应关系,得到相位调制量变化周期K对应的灰度值对应关系。

Description

一种LCoS相位校准方法及设备 技术领域
本发明涉及光通信技术领域,特别是涉及一种LCoS相位校准方法及设备。
背景技术
LCoS(Liquid Crystal on Silicon,硅基液晶)作为空间强度调制器,早期主要应用于图像显示领域,用于图像处理、显示、编码等。随着对LCoS研究的拓展,近几年LCoS作为空间相位调制器,逐渐应用于光通信领域。
对LCoS的相位通过LUT(Look Up Table,查找表)的方式进行校准是目前业界通用的公知技术,但是现有的方式存在一定的相位误差。
以下为现有技术中提出的两种补偿相位误差的方案:
方案1:针对LCoS厚度不均带来的相位误差,将LCoS分成多个区域,并得到每个区域对应的LUT,用于对相应区域进行相位校准,此方案能够有效补偿LCoS厚度不均造成的相位误差。
方案2:考虑波长相关性,获得不同波长区域对应不同的LUT,补偿不同波长区域造成的相位误差,同时也补偿了LCoS厚度不均造成的相位误差。
但是,上述两种方案在实际应用时的效果非常有限,原因有以下两点:
1)随着LCoS工艺技术的不断提升,目前商用LCoS的厚度误差在0.5%以内,因此由于LCoS厚度不均造成的相位误差很小;
2)当LCoS在WSS(Wavelength selective switch,波长选择开关)中应用时,目前WSS覆盖的波长范围通常还是在C波段(即1529nm-1562nm),因此波长相关性造成的相位误差也非常小。
在仿真模拟中发现,LCoS的相位调整量变化周期较短时,像素间的串扰影响较大,实际相位调制深度低于目标相位调制深度,造成相位误差较大,由于LCoS的衍射角度由相位调整量变化周期控制,因此会进一步造成LCoS在器件应用时的衍射光能量降低。此外,随着LCoS技术的不断演进,LCoS 的分辨率不断提升,像素大小不断减小。例如目前商用的通信波段LCoS的像素大小通常为8um(分辨率为1920×1080),而下一代LCoS的像素大小将有可能降低为4um左右(分辨率将达到4k×2k)。因此,随着未来LCoS的像素大小的减小,这种效应会更加明显。
发明内容
本发明实施例提供一种LCoS相位校准方法及设备,用以解决由于相位调整量变化周期较短造成的相位误差较大的问题。
本发明实施例提供的具体技术方案如下:
第一方面,一种LCoS相位校准方法,包括:在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量,得到初始响应关系,并根据所述初始响应关系和所述相位调制量变化周期K对应的目标响应关系,得到初始灰度值对应关系,K为正整数;进一步地,根据所述目标响应关系对应的预设灰度值范围确定所述相位调制量变化周期K对应的K个输入灰度值,根据所述初始灰度值对应关系确定所述K个输入灰度值对应的K个输出灰度;接下来,在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值;基于所述实际相位调制深度值和所述目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系;最后,根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系。
因此,采用本发明实施例提供的方法,能够纠正不同相位调整量变化周期分别对应的相位误差,有效降低LCoS中的像素间的串扰影响,特别地,本发明实施例提供的方法对解决下一代超小像素的像素间串扰影响有显著效果,此外,通过纠正相位误差能够有效降低LCoS在WSS等器件应用时的插损及高阶衍射光能量,进一步地本发明实施例提供的方法适用于所有相位调制型LCoS器件,无需改变LCoS物理结构,无需增加任何硬件成本,操作简便, 节省成本。
在一种可能的实现方式中,所述目标响应关系中的灰度值与相位调整量为预设的线性变化关系。
因此,目标响应关系可以根据实际应用需要进行设定。
在一种可能的实现方式中,所述初始灰度值对应关系是指任一相同相位调整量下输入灰度值与输出灰度值的对应关系,其中,所述输入灰度值是指所述目标响应关系中的灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
因此,初始灰度值对应关系能够描述目标响应关系与初始响应关系的关系。
在一种可能的实现方式中,所述修正后的相位调制深度值采用如下公式确定:c=a2/b。其中,c为所述修正后的相位调制深度值,a为所述目标相位调制深度值,b为所述实际相位调制深度值。所述修正后的目标响应关系是根据所述修正后的相位调制深度值和所述预设灰度值范围确定的。
因此,采用本发明实施例提供的方法能够简便地确定修正后的相位调制深度值以及修正后的目标响应关系。
在一种可能的实现方式中,在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值,包括:获得所述K个输出灰度值分别对应的电压值,其中,每个输出灰度值对应一个电压值,并根据所述K个输出灰度值分别对应的电压值,将K个电压值分别对应的电压信号依次加载到所述相位调制量变化周期K对应的K个像素点上。接着,测量加载电压信号后K个像素点分别对应的相位调制量,最后,根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值。
因此,采用本发明实施例提供的方法能够简便地获得每个相位调整量变化周期对应的实际相位调制深度值,无需增加任何硬件成本,操作简便,节省成本。
在一种可能的实现方式中,根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值时,所述实际相位调制深度值采用如下公式确定:
Figure PCTCN2016105108-appb-000001
其中,b为所述实际相位调制深度值,P1为所述K个像素点分别对应的相位调整量中的最大值,P2为所述K个像素点分别对应的相位调整量中的最小值。
因此,采用本发明实施例提供的方法能够简便地确定实际相位调制深度值。
在一种可能的实现方式中,所述相位调制量变化周期K对应的灰度值对应关系是指任一相同相位调整量下修正后的输入灰度值与修正后的输出灰度值的对应关系,其中,所述修正后的输入灰度值是指所述修正后的目标响应关系中灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
在一种可能的实现方式中,在根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系后,还包括:将所述相位调制量变化周期K对应的灰度值对应关系存入所述LCoS的存储区,以使所述LCoS加载相位调制量变化周期K的闪耀光栅时,根据所述相位调制量变化周期K对应的灰度值对应关系,在所述相位调制量变化周期K对应的K个像素点上分别加载对应的修正后的输出灰度值。
因此,采用本发明实施例提供的方法能够获得多个相位调整量变化周期分别对应的LUT,在LCoS加载不同的相位调制量变化周期的闪耀光栅时,根据每个相位调制量变化周期对应的灰度值对应关系,在该相位调制量变化周期对应的像素点上分别加载对应的修正后的输出灰度值。
第二方面,一种LCoS相位校准设备,包括:通信接口以及耦合到所述通信接口的处理器;所述处理器用于:通过所述通信接口在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量,得到初始响应关系;根据所述初始响应关系和所述相位调制量变化周期K对应的目标响应关系,得到初始灰度值对应关系,K为正整数;根据所述目标 响应关系对应的预设灰度值范围确定所述相位调制量变化周期K对应的K个输入灰度值,根据所述初始灰度值对应关系确定所述K个输入灰度值对应的K个输出灰度;在相位调制量变化周期K对应的K个像素点上分别通过所述通信接口加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值;基于所述实际相位调制深度值和所述目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系;根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系。
在一种可能的实现方式中,所述目标响应关系中的灰度值与相位调整量为预设的线性变化关系。
在一种可能的实现方式中,所述初始灰度值对应关系是指任一相同相位调整量下输入灰度值与输出灰度值的对应关系,其中,所述输入灰度值是指所述目标响应关系中的灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
在一种可能的实现方式中,所述修正后的相位调制深度值采用如下公式确定:
c=a2/b
其中,c为所述修正后的相位调制深度值,a为所述目标相位调制深度值,b为所述实际相位调制深度值;
所述修正后的目标响应关系是根据所述修正后的相位调制深度值和所述预设灰度值范围确定的。
在一种可能的实现方式中,所述处理器,具体用于:
在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值时,获得所述K个输出灰度值分别对应的电压值,其中,每个输出灰度值对应一个电压值;
根据所述K个输出灰度值分别对应的电压值,将K个电压值分别对应的 电压信号通过所述通信接口依次加载到所述相位调制量变化周期K对应的K个像素点上;
测量加载电压信号后K个像素点分别对应的相位调制量;
根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值。
在一种可能的实现方式中,所述处理器根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值时,所述实际相位调制深度值采用如下公式确定:
Figure PCTCN2016105108-appb-000002
其中,b为所述实际相位调制深度值,P1为所述K个像素点分别对应的相位调整量中的最大值,P2为所述K个像素点分别对应的相位调整量中的最小值。
在一种可能的实现方式中,所述相位调制量变化周期K对应的灰度值对应关系是指任一相同相位调整量下修正后的输入灰度值与修正后的输出灰度值的对应关系,其中,所述修正后的输入灰度值是指所述修正后的目标响应关系中灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
在一种可能的实现方式中,所述处理器,还用于:
在根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系后,将所述相位调制量变化周期K对应的灰度值对应关系存入所述LCoS的存储区,以使所述LCoS加载相位调制量变化周期K的闪耀光栅时,根据所述相位调制量变化周期K对应的灰度值对应关系,在所述相位调制量变化周期K对应的K个像素点上分别加载对应的修正后的输出灰度值。
附图说明
图1为本发明实施例中LCoS的具体结构示意图;
图2(a)为本发明实施例中LCoS实现相位调制的工作原理示意图之一;
图2(b)为本发明实施例中LCoS实现相位调制的工作原理示意图之二;
图3为本发明实施例中LCoS加载电压与相位调制量的典型响应曲线;
图4为本发明实施例中目标灰度相位响应曲线;
图5为本发明实施例中WSS器件的结构示意图;
图6(a)为本发明实施例中相位调整量变化周期的变化示意图;
图6(b)为本发明实施例中相位调整量变化周期的变化示意图;
图7为本发明实施例中LCoS相位校准方法的概述流程图;
图8为本发明实施例中初始灰度相位响应曲线;
图9为本发明实施例中相位调整量变化周期为8的输入灰度值分布图;
图10为本发明实施例中针对不同的相位调整量变化周期分别对应的实际相位调制深度值的示意图;
图11为本发明实施例中针对不同的相位调整量变化周期分别对应的修正后的相位调制深度值的示意图;
图12为本发明实施例中的初始灰度相位响应曲线;
图13为本发明实施例中的初始LUT曲线;
图14为本发明实施例中相位调整量变化周期8对应的实际相位调制深度值;
图15为本发明实施例中相位调整量变化周期24对应的实际相位调制深度值;
图16(a)为本发明实施例中相位调整量变化周期8对应的修正后的目标灰度相位响应曲线和原目标灰度相位响应曲线的对比图;
图16(b)为本发明实施例中相位调整量变化周期24对应的修正后的目标灰度相位响应曲线和原目标灰度相位响应曲线的对比图;
图17(a)为本发明实施例中相位调整量变化周期8对应的修正后的目标灰度相位响应曲线;
图17(b)为本发明实施例中相位调整量变化周期24对应的修正后的目标 灰度相位响应曲线;
图18为本发明实施例中LCoS相位校准设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供一种LCoS相位校准方法及设备,用以解决由于相位调整量变化周期较短造成的相位误差较大的问题。其中,方法和设备是基于同一发明构思的,由于方法及设备解决问题的原理相似,因此设备与方法的实施可以相互参见,重复之处不再赘述。
下面首先介绍一下LCoS的具体结构,如图1所示,LCoS从上到下依次包括玻璃(Glass)层、氧化铟锡(ITO)层、对准(Alignment)层(上)、液晶(Liquid Crystal,LC)层、Alignment层(下)以及镀铝的互补金属氧化物半导体(Complementary Metal Oxide Semiconductor,CMOS)基板(包括铝层和COMS层)。
LCoS实现相位调制的工作原理如图2(a)和图2(b)所示:当LC层不加载电压时,液晶分子根据Alignment层的转向规则排列,如图2(a)所示;当LC层加载电压时,液晶分子会根据电压的大小进行偏转。由于液晶分子为双折射材料,不同的转向将产生不同的等效折射率。因此,当入射光经过液晶分子时,液晶分子不同的转向将实现对光的相位调制效果。
图3所示为LCoS加载电压与相位调制量的典型响应曲线,由图3可知,两者并非线性变化关系。而在实际应用中,主要应用目标灰度相位响应曲线如图4所示,相位调整量与输入灰度值为线性变化关系,当输入灰度值从0变化到255时,产生的相位调制量的变化从0~2pi,其中,输入灰度值的大 小与电压值的大小一一对应。因此,对于没有进行相位校准的LCoS芯片,无法得到如图4所示的线性变化关系。
表1
输入灰度值 输出灰度值
0 GL-0
1 GL-1
255 GL-255
通常的做法是:为了根据图3得到图4,需要产生一个LUT(Look Up Table,查找表),如表1所示,该LUT包含了输入灰度值(即图4中横坐标所示的输入灰度值)与输出灰度值之间的对应关系。具体的,根据图4中每个输入灰度值对应的相位调制量,确定在图3中相应相位调制量对应的电压值,进一步根据预设的电压值与输出灰度值的对应关系,得到电压值对应的输出灰度值,即输入灰度值、输出灰度值,电压值三者一一对应。因此,通过获得LUT实现当输入灰度值从0~255变化时,产生的相位调制量从0~2pi线性变化。
特别地,对于WSS器件,参阅图5所示,通过在LCoS的不同区域上加载不同相位调整量变化周期分别对应的输入灰度值,构成针对不同衍射角度的闪耀光栅,从而将各个波长进行选择性输出。相位调整量变化周期的大小决定了LCoS的衍射角度参阅图6所示。
当LCoS的相位调整量变化周期较快时,像素间的串扰影响较大,从而导致相位调制深度降低,造成的相位误差较大。因此,本发明实施例提供了一种相位校准方法及设备,用以解决上述问题。
在本发明实施例中,初始响应关系用初始灰度相位响应曲线表示,目标响应关系用目标灰度相位响应曲线表示,初始灰度值对应关系用初始LUT表示,相位调制量变化周期K对应的灰度值对应关系用相位调制量变化周期K 对应的LUT表示。应理解的是,上述概念还可以用其他形式表示。
下面结合附图对本发明优选的实施方式进行详细说明。参阅图7所示,本发明实施例提供一种LCoS相位校准方法,该方法包括:
步骤700:校准设备在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量,得到初始响应关系。
例如,在LCoS的各个像素点上均加载0、100、200等,获得每个灰度值对应的相位调整量,得到初始灰度相位响应曲线,如图8所示。这里的输入灰度值可以直接对应一个电压值,或者,通过预设的LUT获得对应每个输入灰度值的输出灰度值,并进一步将输出灰度值转换为相应的电压值加载到各个像素点上。
步骤710:校准设备根据初始响应关系和相位调制量变化周期K对应的目标响应关系,得到初始灰度值对应关系,K为正整数。
其中,相位调制量变化周期K是指每K个像素点加载不同的灰度值得到不同的相位调制量变化,作为一个相位调制量变化周期,在实际应用中K的取值为8或24等。
可选地,目标响应关系中的灰度值与相位调整量为预设的线性变化关系。
例如,目标灰度相位响应曲线如图4所示,输入灰度值与相位调制量具有线性变化关系。须知,根据实际需要,目标灰度相位响应曲线还可以不通过原点。
可选地,初始灰度值对应关系是指任一相同相位调整量下输入灰度值与输出灰度值的对应关系,其中,所述输入灰度值是指所述目标响应关系中的灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
具体的,通过初始灰度相位响应曲线和目标灰度相位响应曲线得到初始LUT的方法与现有技术中根据图3和图4获得LUT的方法类似,此处不再赘述。
步骤720:校准设备根据目标响应关系对应的预设灰度值范围确定相位调制量变化周期K对应的K个输入灰度值,根据初始灰度值对应关系确定K个 输入灰度值对应的K个输出灰度。
这里的预设灰度值范围可以为0~255,或者其他可能的预设灰度值范围。
具体的,根据相位调整量变化周期确定每个输入灰度值,然后查找根据步骤710确定的初始灰度值对应关系,确定每个输入灰度值对应的输出灰度值。
步骤730:校准设备在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得相位调制量变化周期K对应的实际相位调制深度值。
具体的,校准设备需要执行以下过程:获得K个输出灰度值分别对应的电压值,其中,每个输出灰度值对应一个电压值,根据K个输出灰度值分别对应的电压值,将K个电压值分别对应的电压信号依次加载到相位调制量变化周期K对应的K个像素点上,测量加载电压信号后K个像素点分别对应的相位调制量,根据K个像素点分别对应的相位调整量确定相位调制量变化周期K对应的实际相位调制深度值。
可选地,实际相位调制深度值采用如下公式确定:
Figure PCTCN2016105108-appb-000003
其中,b为实际相位调制深度值,P1为K个像素点分别对应的相位调整量中的最大值,P2为K个像素点分别对应的相位调整量中的最小值。
例如,假设相位调整量变化周期为8,即每8个像素为一个周期,预设灰度值范围为0~255,则相位调整量变化周期对应的8个输入灰度值分别为:0、255/8、2*255/8、……、7*255/8,参阅图9所示。根据上述获得的8个输入灰度值在步骤710确定的初始LUT中查找每个输入灰度值对应的输出灰度值,获得8个输入灰度值分别对应的电压值,将获得的8个电压值分别对应的电压信号依次加载到8个像素点上,即8个电压值按照从大到小或从小到大的顺序依次加载到同一行或同一列的连续8个像素点上,然后测量加载电压信号后8个像素点分别对应的相位调整量。最后,计算实际相位调制深度值, 假设p1=1.6pi,p2=0,则:
Figure PCTCN2016105108-appb-000004
由上可知,由于像素串扰的影响,实际相位调制深度低于目标相位调制深度。例如,参阅图10所示,针对不同的相位调整量变化周期,K1、K2、K3,分别对应的实际相位调制深度值为P1、P2、P3,且由图10可知,随着相位调整量变化周期缩短,实际相位调制深度降低。因此,需要针对每个相位调整量变化周期确定修正后的相位调制深度值、修正后的目标灰度相位响应曲线,以及对应的LUT。
步骤740:校准设备基于实际相位调制深度值和目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系。
可选地,在执行步骤730时,修正后的相位调制深度值采用如下公式确定:
c=a2/b
其中,c为修正后的相位调制深度值,a为目标相位调制深度值,b为实际相位调制深度值。
应理解的是,修正后的相位调制深度值可以在计算得到的c值附近,略大于或略小于c值。
例如,上例中得到的b≈1.83pi,则c=(2pi)2/1.83pi≈2.19pi。可知,c也可以取2.2pi或2.15pi等。
进一步地,修正后的目标响应关系是根据修正后的相位调制深度值和预设灰度值范围确定的。
参阅图11所示,结合图10针对不同的相位调整量变化周期,K1、K2、K3,假设灰度值变化范围为0~255,则可得相位调整量变化周期K1、K2、K3分别对应的修正后的相位调制深度值为2pi*(2pi/P1)、2pi*(2pi/P2)、2pi*(2pi/P3)。
步骤750:校准设备根据初始响应关系和修正后的目标响应关系,得到相 位调制量变化周期K对应的灰度值对应关系。
其中,相位调制量变化周期K对应的灰度值对应关系是指任一相同相位调整量下修正后的输入灰度值与修正后的输出灰度值的对应关系,其中,修正后的输入灰度值是指修正后的目标响应关系中灰度值,输出灰度值是指初始响应关系中的灰度值。
此外,在执行完步骤740后,校准设备还可将相位调制量变化周期K对应的灰度值对应关系存入LCoS的存储区,以使LCoS加载相位调制量变化周期K的闪耀光栅时,根据相位调制量变化周期K对应的灰度值对应关系,在相位调制量变化周期K对应的K个像素点上分别加载对应的修正后的输出灰度值。因此,可以根据上述方法得到多组相位调制量变化周期对应的灰度值对应关系。
下面结合一个具体的实施例详细阐述本发明实施例的实施过程。
下面以相位调整量变化周期为8和24的闪耀光栅为例,说明如何获取不同相位调整量变化周期对应的LUT值。
首先,校准设备在LCoS的各个像素点上均加载相同的灰度值,测量不同灰度值下产生的相位调制量,得到初始灰度相位响应曲线,如图12所示。其中,初始灰度相位响应曲线为非线性变化,目标灰度相位响应曲线为线性变化。
校准设备根据初始灰度相位响应曲线和目标灰度相位响应曲线,得到初始LUT即初始灰度值对应关系,如图13所示为初始LUT曲线,横坐标为输入灰度值(即目标灰度相位响应曲线中的输出灰度值),纵坐标为输出灰度值(即初始灰度相位响应曲线中的输入灰度值),图13是根据图12得到的,输入灰度值与输出灰度值对应的相位调整量相同。
接着,由于本例希望通过在LCoS上加载相位调整量变化周期8和24分别对应的输入灰度值,构成针对两种衍射角度的闪耀光栅,且每个闪耀光栅所需的目标相位调整深度均为2pi,因此,校准设备根据初始LUT在LCoS的每个相位调整量变化周期8对应的8个像素点上分别加载对应的输入灰度值, 获得8个相位调整量,参阅图14所示,并计算得到相位调整量变化周期(闪耀周期)8对应的实际相位调制深度值为1.6pi。以及根据初始LUT在LCoS的每个相位调整量变化周期24对应的24个像素点上分别加载对应的输入灰度值,获得24个相位调整量,参阅图15所示,并计算得到相位调整量变化周期24对应的实际相位调制深度值为1.9pi。进一步地,校准设备根据修正后的相位调制深度值的计算公式确定针对相位调整量变化周期8的修正后的相位调制深度为2.5pi以及针对相位调整量变化周期24的修正后的目标相位调制深度为2.1pi,参阅图16(a)和图16(b)所示,为修正后的目标灰度相位响应曲线和原目标灰度相位响应曲线的对比图。
最后,参阅图17(a)和图17(b)所示,校准设备根据初始灰度相位响应曲线和相位调整量变化周期8对应的修正后的目标灰度相位响应曲线,得到相位调整量变化周期8对应的LUT曲线,以及根据初始灰度相位响应曲线和相位调整量变化周期24对应的修正后的目标灰度相位响应曲线,得到相位调整量变化周期24对应的LUT曲线。
此外,将得到的相位调整量变化周期8对应的LUT以及相位调整量变化周期24对应的LUT写入LCoS的存储区。
参阅图18所示,本发明实施例提供一种LCoS相位校准设备,包括:通信接口1801以及耦合到通信接口1801的处理器1802;
所述处理器1802用于:
通过所述通信接口在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量,得到初始响应关系;根据所述初始响应关系和所述相位调制量变化周期K对应的目标响应关系,得到初始灰度值对应关系,K为正整数;根据所述目标响应关系对应的预设灰度值范围确定所述相位调制量变化周期K对应的K个输入灰度值,根据所述初始灰度值对应关系确定所述K个输入灰度值对应的K个输出灰度;在相位调制量变化周期K对应的K个像素点上分别通过所述通信接口加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值;基于所述实际 相位调制深度值和所述目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系;根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系。
在一种可能的实现方式中,所述目标响应关系中的灰度值与相位调整量为预设的线性变化关系。
在一种可能的实现方式中,所述初始灰度值对应关系是指任一相同相位调整量下输入灰度值与输出灰度值的对应关系,其中,所述输入灰度值是指所述目标响应关系中的灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
在一种可能的实现方式中,所述修正后的相位调制深度值采用如下公式确定:
c=a2/b
其中,c为所述修正后的相位调制深度值,a为所述目标相位调制深度值,b为所述实际相位调制深度值;
所述修正后的目标响应关系是根据所述修正后的相位调制深度值和所述预设灰度值范围确定的。
在一种可能的实现方式中,所述处理器1802,具体用于:
在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值时,获得所述K个输出灰度值分别对应的电压值,其中,每个输出灰度值对应一个电压值;
根据所述K个输出灰度值分别对应的电压值,将K个电压值分别对应的电压信号通过所述通信接口依次加载到所述相位调制量变化周期K对应的K个像素点上;
测量加载电压信号后K个像素点分别对应的相位调制量;
根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周 期K对应的实际相位调制深度值。
在一种可能的实现方式中,所述处理器1802根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值时,所述实际相位调制深度值采用如下公式确定:
Figure PCTCN2016105108-appb-000005
其中,b为所述实际相位调制深度值,P1为所述K个像素点分别对应的相位调整量中的最大值,P2为所述K个像素点分别对应的相位调整量中的最小值。
在一种可能的实现方式中,所述相位调制量变化周期K对应的灰度值对应关系是指任一相同相位调整量下修正后的输入灰度值与修正后的输出灰度值的对应关系,其中,所述修正后的输入灰度值是指所述修正后的目标响应关系中灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
在一种可能的实现方式中,所述处理器1802,还用于:
在根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系后,将所述相位调制量变化周期K对应的灰度值对应关系存入所述LCoS的存储区,以使所述LCoS加载相位调制量变化周期K的闪耀光栅时,根据所述相位调制量变化周期K对应的灰度值对应关系,在所述相位调制量变化周期K对应的K个像素点上分别加载对应的修正后的输出灰度值。
综上所述,采用本发明实施例提供的方法,能够纠正不同相位调整量变化周期分别对应的相位误差,有效降低LCoS中的像素间的串扰影响,特别地,本发明实施例提供的方法对解决下一代超小像素的像素间串扰影响有显著效果,此外,通过纠正相位误差能够有效降低LCoS在WSS等器件应用时的插损及高阶衍射光能量,进一步地本发明实施例提供的方法适用于所有相位调制型LCoS器件,无需改变LCoS物理结构,无需增加任何硬件成本,操作简便,节省成本。
需要说明的是,本发明实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理模块中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程
和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种硅基液晶LCoS相位校准方法,其特征在于,包括:
    在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量,得到初始响应关系;
    根据所述初始响应关系和所述相位调制量变化周期K对应的目标响应关系,得到初始灰度值对应关系,K为正整数;
    根据所述目标响应关系对应的预设灰度值范围确定所述相位调制量变化周期K对应的K个输入灰度值,根据所述初始灰度值对应关系确定所述K个输入灰度值对应的K个输出灰度;
    在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值;
    基于所述实际相位调制深度值和所述目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系;
    根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系。
  2. 如权利要求1所述的方法,其特征在于,所述目标响应关系中的灰度值与相位调整量为预设的线性变化关系。
  3. 如权利要求1或2所述的方法,其特征在于,所述初始灰度值对应关系是指任一相同相位调整量下输入灰度值与输出灰度值的对应关系,其中,所述输入灰度值是指所述目标响应关系中的灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述修正后的相位调制深度值采用如下公式确定:
    c=a2/b
    其中,c为所述修正后的相位调制深度值,a为所述目标相位调制深度值,b为所述实际相位调制深度值;
    所述修正后的目标响应关系是根据所述修正后的相位调制深度值和所述预设灰度值范围确定的。
  5. 如权利要求1-4任一项所述的方法,其特征在于,在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值,包括:
    获得所述K个输出灰度值分别对应的电压值,其中,每个输出灰度值对应一个电压值;
    根据所述K个输出灰度值分别对应的电压值,将K个电压值分别对应的电压信号依次加载到所述相位调制量变化周期K对应的K个像素点上;
    测量加载电压信号后K个像素点分别对应的相位调制量;
    根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值。
  6. 如权利要求5所述的方法,其特征在于,根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值时,所述实际相位调制深度值采用如下公式确定:
    Figure PCTCN2016105108-appb-100001
    其中,b为所述实际相位调制深度值,P1为所述K个像素点分别对应的相位调整量中的最大值,P2为所述K个像素点分别对应的相位调整量中的最小值。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述相位调制量变化周期K对应的灰度值对应关系是指任一相同相位调整量下修正后的输入灰度值与修正后的输出灰度值的对应关系,其中,所述修正后的输入灰度值是指所述修正后的目标响应关系中灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
  8. 如权利要求1-7任一项所述的方法,其特征在于,在根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应 的灰度值对应关系后,还包括:
    将所述相位调制量变化周期K对应的灰度值对应关系存入所述LCoS的存储区,以使所述LCoS加载相位调制量变化周期K的闪耀光栅时,根据所述相位调制量变化周期K对应的灰度值对应关系,在所述相位调制量变化周期K对应的K个像素点上分别加载对应的修正后的输出灰度值。
  9. 一种LCoS相位校准设备,其特征在于,包括:通信接口以及耦合到所述通信接口的处理器;
    所述处理器用于:
    通过所述通信接口在LCoS的各个像素点上均加载同一灰度值,获取多次加载的不同灰度值分别对应的相位调制量,得到初始响应关系;
    根据所述初始响应关系和所述相位调制量变化周期K对应的目标响应关系,得到初始灰度值对应关系,K为正整数;
    根据所述目标响应关系对应的预设灰度值范围确定所述相位调制量变化周期K对应的K个输入灰度值,根据所述初始灰度值对应关系确定所述K个输入灰度值对应的K个输出灰度;
    在相位调制量变化周期K对应的K个像素点上分别通过所述通信接口加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值;
    基于所述实际相位调制深度值和所述目标响应关系对应的目标相位调制深度值,确定修正后的相位调制深度值和修正后的目标响应关系;
    根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系。
  10. 如权利要求9所述的设备,其特征在于,所述目标响应关系中的灰度值与相位调整量为预设的线性变化关系。
  11. 如权利要求9或10所述的设备,其特征在于,所述初始灰度值对应关系是指任一相同相位调整量下输入灰度值与输出灰度值的对应关系,其中,所述输入灰度值是指所述目标响应关系中的灰度值,所述输出灰度值是指所 述初始响应关系中的灰度值。
  12. 如权利要求9-11任一项所述的设备,其特征在于,所述修正后的相位调制深度值采用如下公式确定:
    c=a2/b
    其中,c为所述修正后的相位调制深度值,a为所述目标相位调制深度值,b为所述实际相位调制深度值;
    所述修正后的目标响应关系是根据所述修正后的相位调制深度值和所述预设灰度值范围确定的。
  13. 如权利要求9-12任一项所述的设备,其特征在于,所述处理器,具体用于:
    在相位调制量变化周期K对应的K个像素点上分别加载对应的输出灰度值,获得所述相位调制量变化周期K对应的实际相位调制深度值时,获得所述K个输出灰度值分别对应的电压值,其中,每个输出灰度值对应一个电压值;
    根据所述K个输出灰度值分别对应的电压值,将K个电压值分别对应的电压信号通过所述通信接口依次加载到所述相位调制量变化周期K对应的K个像素点上;
    测量加载电压信号后K个像素点分别对应的相位调制量;
    根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值。
  14. 如权利要求13所述的设备,其特征在于,所述处理器根据所述K个像素点分别对应的相位调整量确定所述相位调制量变化周期K对应的实际相位调制深度值时,所述实际相位调制深度值采用如下公式确定:
    Figure PCTCN2016105108-appb-100002
    其中,b为所述实际相位调制深度值,P1为所述K个像素点分别对应的相位调整量中的最大值,P2为所述K个像素点分别对应的相位调整量中的最 小值。
  15. 如权利要求9-14任一项所述的设备,其特征在于,所述相位调制量变化周期K对应的灰度值对应关系是指任一相同相位调整量下修正后的输入灰度值与修正后的输出灰度值的对应关系,其中,所述修正后的输入灰度值是指所述修正后的目标响应关系中灰度值,所述输出灰度值是指所述初始响应关系中的灰度值。
  16. 如权利要求9-15任一项所述的设备,其特征在于,所述处理器,还用于:
    在根据所述初始响应关系和所述修正后的目标响应关系,得到所述相位调制量变化周期K对应的灰度值对应关系后,将所述相位调制量变化周期K对应的灰度值对应关系存入所述LCoS的存储区,以使所述LCoS加载相位调制量变化周期K的闪耀光栅时,根据所述相位调制量变化周期K对应的灰度值对应关系,在所述相位调制量变化周期K对应的K个像素点上分别加载对应的修正后的输出灰度值。
PCT/CN2016/105108 2016-11-08 2016-11-08 一种LCoS相位校准方法及设备 WO2018085993A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2016/105108 WO2018085993A1 (zh) 2016-11-08 2016-11-08 一种LCoS相位校准方法及设备
CN201680090538.3A CN109891305B (zh) 2016-11-08 2016-11-08 一种LCoS相位校准方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/105108 WO2018085993A1 (zh) 2016-11-08 2016-11-08 一种LCoS相位校准方法及设备

Publications (1)

Publication Number Publication Date
WO2018085993A1 true WO2018085993A1 (zh) 2018-05-17

Family

ID=62110032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105108 WO2018085993A1 (zh) 2016-11-08 2016-11-08 一种LCoS相位校准方法及设备

Country Status (2)

Country Link
CN (1) CN109891305B (zh)
WO (1) WO2018085993A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203988A1 (zh) * 2020-04-08 2021-10-14 华为技术有限公司 硅基液晶加载装置、硅基液晶器件和硅基液晶调制方法
WO2021232925A1 (zh) * 2020-05-21 2021-11-25 华为技术有限公司 Lcos调节方法,光器件以及可重构光分插复用器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627403B (zh) * 2020-06-05 2021-11-09 南京芯视元电子有限公司 LCoS空间光调制器的自动相位线性校正系统
CN113608369A (zh) * 2021-08-04 2021-11-05 上海交通大学 提高波长选择开关端口隔离度的调制方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608710A (zh) * 2012-04-20 2012-07-25 武汉邮电科学研究院 基于lcos的波长选择开关及降低端口间串扰的方法
CN103197455A (zh) * 2013-03-19 2013-07-10 清华大学 一种提高相控硅基液晶器件响应速度的方法
CN103217818A (zh) * 2013-03-19 2013-07-24 清华大学 一种提高相控硅基液晶器件响应速度的方法
CN105841825A (zh) * 2016-03-15 2016-08-10 华中科技大学 一种基于硅基液晶的波长分辨监测方法
US20160323034A1 (en) * 2015-04-30 2016-11-03 Nistica, Inc. Optical channel monitor for a wavelength selective switch employing a single photodiode

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060139377A1 (en) * 2004-12-29 2006-06-29 Haiming Jin LCOS micro-display driver integrated circuit
JP2012151628A (ja) * 2011-01-19 2012-08-09 Jvc Kenwood Corp 位相調整装置
CN202172209U (zh) * 2011-08-30 2012-03-21 华为技术有限公司 一种基于硅基液晶的外腔可调谐激光器
CN103034011B (zh) * 2012-12-03 2015-01-28 华中科技大学 一种硅基液晶光滤波器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102608710A (zh) * 2012-04-20 2012-07-25 武汉邮电科学研究院 基于lcos的波长选择开关及降低端口间串扰的方法
CN103197455A (zh) * 2013-03-19 2013-07-10 清华大学 一种提高相控硅基液晶器件响应速度的方法
CN103217818A (zh) * 2013-03-19 2013-07-24 清华大学 一种提高相控硅基液晶器件响应速度的方法
US20160323034A1 (en) * 2015-04-30 2016-11-03 Nistica, Inc. Optical channel monitor for a wavelength selective switch employing a single photodiode
CN105841825A (zh) * 2016-03-15 2016-08-10 华中科技大学 一种基于硅基液晶的波长分辨监测方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203988A1 (zh) * 2020-04-08 2021-10-14 华为技术有限公司 硅基液晶加载装置、硅基液晶器件和硅基液晶调制方法
WO2021232925A1 (zh) * 2020-05-21 2021-11-25 华为技术有限公司 Lcos调节方法,光器件以及可重构光分插复用器
CN113703241A (zh) * 2020-05-21 2021-11-26 华为技术有限公司 Lcos调节方法,光器件以及可重构光分插复用器
CN113703241B (zh) * 2020-05-21 2022-10-18 华为技术有限公司 Lcos调节方法,光器件以及可重构光分插复用器

Also Published As

Publication number Publication date
CN109891305B (zh) 2020-11-17
CN109891305A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
WO2018085993A1 (zh) 一种LCoS相位校准方法及设备
JP6625737B2 (ja) ムラ現象の補償方法
CN101226292B (zh) 相位调制装置
CN108172183B (zh) 一种像素补偿方法、像素补偿装置及显示装置
US9640128B2 (en) Gamma voltage tuning method and gamma voltage tuning system
US20220005393A1 (en) Method and device for determining pixel compensation value, electronic device and storage medium
KR102151262B1 (ko) 표시 패널의 구동 방법, 이를 수행하는 표시 장치, 이에 적용되는 보정값 산출 방법 및 계조 데이터의 보정 방법
KR102197270B1 (ko) 표시 패널의 영상 보정 방법, 이를 포함하는 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
US11170687B2 (en) Display driving circuit, operation method thereof, and operation method of optical-based MURA inspection device configured to extract information for compensating MURA of display panel
US10008148B2 (en) Image processing apparatus, image processing method, display device, computer program and computer-readable medium
KR101225574B1 (ko) 하이 다이나믹 레인지 이미지를 위한 광의 공간 변조를 결정하기 위한 감소된 해상도에서 백라이트 시뮬레이션
JP5575364B2 (ja) 広視野角具現方法、記録媒体および装置
CN105244007A (zh) 一种曲面显示屏的灰阶修正表的生成方法及装置
JP5259134B2 (ja) 表示装置の駆動装置及びその映像信号の補正方法
CN111223437A (zh) 一种伽马寄存器校准方法、伽马寄存器校准装置及显示装置
JP5945341B1 (ja) 空間位相変調器
CN103943051A (zh) 显示图像的方法及执行该方法的显示装置
CN107591120B (zh) 一种显示面板的补偿方法及其补偿设备、存储设备
US9250459B2 (en) Spatial light modulator, and spatial light modulating method
KR20150086983A (ko) 디지털 감마 보정부, 이를 포함하는 표시 장치 및 이를 이용한 표시 패널 구동 방법
JP2008040493A5 (zh)
US8952881B2 (en) Image display apparatus and information processing apparatus
CN103426393B (zh) 显示设备色彩校正方法
KR20190100553A (ko) 액정 표시 패널의 구동 장치 및 이를 포함하는 액정 표시 장치
KR102566785B1 (ko) 표시 장치 및 이의 구동 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16921240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16921240

Country of ref document: EP

Kind code of ref document: A1