WO2018084626A1 - 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치 - Google Patents

빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치 Download PDF

Info

Publication number
WO2018084626A1
WO2018084626A1 PCT/KR2017/012394 KR2017012394W WO2018084626A1 WO 2018084626 A1 WO2018084626 A1 WO 2018084626A1 KR 2017012394 W KR2017012394 W KR 2017012394W WO 2018084626 A1 WO2018084626 A1 WO 2018084626A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transmission power
information
base station
transmission
Prior art date
Application number
PCT/KR2017/012394
Other languages
English (en)
French (fr)
Inventor
류현석
이남정
박정호
설지윤
손혁민
쉬에펑
유현규
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170075747A external-priority patent/KR20180049781A/ko
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US16/347,440 priority Critical patent/US10736044B2/en
Priority to EP17868254.8A priority patent/EP3522617A4/en
Priority to KR1020197012910A priority patent/KR102341470B1/ko
Priority to CN201780082094.3A priority patent/CN110140387B/zh
Publication of WO2018084626A1 publication Critical patent/WO2018084626A1/ko
Priority to US16/983,308 priority patent/US11234196B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss

Definitions

  • the present invention relates to a method for controlling power of a terminal in a beamforming system, and more particularly, to a method and apparatus for supporting uplink power control of a terminal according to a beam change.
  • the present invention also relates to 3GPP NR sync signals, essential system information (required for initial access and random access procedure), and measurement RS design, sync signal and PBCH (physical broadcast control channel) design, and SS (synchronization signal) block design. will be.
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G network communication system or a post LTE system.
  • 5G communication systems are being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Gigabit (60 GHz) band).
  • mmWave ultra-high frequency
  • FD-MIMO massive array multiple input / output
  • FD-MIMO massive array multiple input / output
  • Array antenna, analog beam-forming, and large scale antenna techniques are discussed.
  • 5G communication systems have advanced small cells, advanced small cells, cloud radio access network (cloud RAN), ultra-dense network (ultra-dense network) , Device to Device communication (D2D), wireless backhaul, moving network, cooperative communication, Coordinated Multi-Points (CoMP), and interference cancellation
  • cloud RAN cloud radio access network
  • ultra-dense network ultra-dense network
  • D2D Device to Device communication
  • wireless backhaul moving network
  • cooperative communication Coordinated Multi-Points (CoMP), and interference cancellation
  • Hybrid FSK and QAM Modulation FQAM
  • SWSC Slide Window Superposition Coding
  • ACM Advanced Coding Modulation
  • FBMC Fan Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • An embodiment of the present invention is to provide a transmission power control method and apparatus. Another object of the present invention is to provide a method and apparatus for operating a terminal and a base station for operating uplink transmission power control according to a beam change in a beamforming system.
  • an embodiment of the present invention is to provide a method and apparatus for transmitting a synchronization signal and / or control channel.
  • an embodiment of the present invention provides a scheme for transmitting a DL common control channel and a sync cycle except for a sync in a system in which a sync cycle is variable, and provides a sync signal design and a PBCH scrambling sequence design scheme accordingly. It aims to do it.
  • An embodiment of the present invention provides a method of determining a transmission power of a terminal, the method comprising: receiving a terminal specific transmission power parameter from a base station; Determining a transmission power of the terminal based on the terminal specific transmission power parameter and a subcarrier spacing assigned to the terminal; And transmitting an uplink signal based on the determined transmission power.
  • a terminal comprising: a transceiver for transmitting and receiving a signal; And receiving a terminal specific transmission power parameter from a base station, determining a transmission power of the terminal based on the terminal specific transmission power parameter and a subcarrier spacing assigned to the terminal, and based on the determined transmission power. It provides a terminal including a control unit for controlling to transmit an uplink signal.
  • an embodiment of the present invention provides a method for operating a base station, comprising: transmitting a message including subcarrier spacing configuration information to a terminal; Transmitting a terminal specific transmission power parameter to the terminal; And receiving an uplink signal from the terminal, wherein the transmission power of the uplink signal is determined based on the terminal specific transmission power parameter and the subcarrier spacing setting information.
  • a base station a transmission and reception unit for transmitting and receiving signals; And a controller for transmitting a message including subcarrier spacing setting information to a terminal, transmitting a terminal specific transmission power parameter to the terminal, and receiving an uplink signal from the terminal.
  • the transmit power of the link signal is provided based on the terminal specific transmit power parameter and the subcarrier spacing setting information.
  • an efficient power control method may be provided.
  • interference caused by an adjacent cell may be minimized through power control according to a beam change.
  • a system for transmitting a DL common control channel excluding a sync and a method for transmitting a sync period in a system in which a sync period is variable can be provided.
  • 1A is a diagram illustrating an example of parameter transmission for transmission power control of a terminal according to an embodiment of the present invention.
  • 1B is a diagram illustrating an example of parameter transmission for transmission power control of a terminal in a random access process according to an embodiment of the present invention.
  • FIG. 1C is a diagram illustrating an example of an operation of a terminal for transmission power control of a terminal in a random access process according to an embodiment of the present invention.
  • FIG. 1D is a diagram illustrating an example of an operation of another terminal for controlling transmission power of a terminal in a random access process according to an embodiment of the present invention.
  • FIG. 1E is a diagram illustrating an example of an operation of another terminal for controlling transmission power of a terminal in a random access process according to an embodiment of the present invention.
  • FIG. 1F is a diagram illustrating an example of a parameter for controlling transmission power of a terminal after RRC connection setup according to an embodiment of the present invention.
  • 1G is a diagram illustrating another parameter example for controlling transmission power of a terminal after RRC connection setup according to an embodiment of the present invention.
  • FIG. 1H illustrates an example of operations of a base station and a terminal related to uplink transmission beam change of a terminal based on power headroom reporting (PHR) according to an embodiment of the present invention.
  • PHR power headroom reporting
  • 1I is a diagram illustrating an example of UE operation when different subcarrier spacings are used in one cell (or one base station) according to an embodiment of the present invention.
  • 1J is a diagram illustrating an example of a subframe for transmitting uplink data and control information according to an embodiment of the present invention.
  • 1K is a diagram illustrating another example of a subframe for transmitting uplink data and control information according to an embodiment of the present invention.
  • FIG. 1L illustrates another example of a subframe for transmitting uplink data and control information according to an embodiment of the present invention.
  • 1M illustrates another example of a subframe for transmitting uplink data and control information according to an embodiment of the present invention.
  • 1N is a diagram illustrating an example of reference signal transmission for channel sounding according to an embodiment of the present invention.
  • 1O is a diagram illustrating another example of reference signal transmission for channel sounding according to an embodiment of the present invention.
  • 1P is a diagram illustrating operations of a terminal and a base station according to an embodiment of the present invention.
  • 1q is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • 1r is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • 2A is a diagram illustrating Scenario Alt 1 according to an embodiment of the present invention.
  • 2B is a diagram illustrating Scenario Alt 2 according to an embodiment of the present invention.
  • 2C is a diagram illustrating an embodiment related to neighboring cell measurement of Scenario Alt 1 according to an embodiment of the present invention.
  • 2D is a diagram illustrating another embodiment of Scenario Alt 1 according to an embodiment of the present invention.
  • 2E is a diagram illustrating another embodiment of Scenario Alt 1 according to an embodiment of the present invention.
  • FIG. 2F is a diagram illustrating a unit of a beam sweeping signal in a multi-beam system according to an embodiment of the present invention: block, burst, burst set (continuous burst).
  • FIG. 2G is a diagram illustrating a unit of a beam sweeping signal in a multi-beam system according to an embodiment of the present invention: block, burst, burst set (discontinuous burst).
  • 2H is a diagram illustrating a cyclic shift index corresponding to the m-th block of a burst set for each burst number in a burst set according to an embodiment of the present invention.
  • FIG. 2I is a diagram illustrating a cyclic shift index 2 corresponding to the mth block of a burst set for each burst number in a burst set according to an embodiment of the present invention.
  • 2J is a cyclic shift index corresponding to the m th block of the burst set for each burst number in the burst set according to an embodiment of the present invention. It is a figure which shows the case where the starting point of a burst set is not known.
  • 2K is a diagram illustrating a root index for each burst number in a burst set and a cyclic shift index corresponding to the m-th block of the burst set according to an embodiment of the present invention.
  • FIG. 2L illustrates a root index for each burst number in a burst set and a cyclic shift index 2 corresponding to the m th block in the burst set according to an embodiment of the present invention.
  • 2M is a diagram illustrating a root index for each burst number in a burst set and a cyclic shift index 3 corresponding to the m th block in the burst set according to an embodiment of the present invention.
  • 2N is a diagram illustrating a root index for each antenna port, a burst number in a burst set, and a cyclic shift index corresponding to an m th block according to an embodiment of the present invention.
  • 2P illustrates multiplexing between reference signals for decoding PSS, SSS, TSS, PBCH, and PBCH in an SS block according to an embodiment of the present invention.
  • 2q is a diagram illustrating multiplexing 1 between PSS, SSS, TSS, and PBCH in an SS block according to an embodiment of the present invention.
  • 2r is a diagram illustrating multiplexing 2 between PSS, SSS, TSS, and PBCH in an SS block according to an embodiment of the present invention.
  • 2S is a diagram illustrating multiplexing 3 between PSS, SSS, TSS, and PBCH in an SS block according to an embodiment of the present invention.
  • 2T is a diagram illustrating multiplexing 4 between PSS, SSS, TSS, and PBCH in an SS block according to an embodiment of the present invention.
  • 2u is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • 2V is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • a terminal may be referred to as a terminal, a user equipment (UE), or the like.
  • a base station may be referred to as a base station, eNB, gNB, transmission and reception point (TRP), and the like.
  • An embodiment of the present invention provides a method and apparatus for controlling transmission power.
  • an embodiment of the present invention includes a method and apparatus for operating a base station and a terminal for controlling transmission power of data and a control channel transmitted in uplink of a terminal in a system using beamforming.
  • Equation 1-a Transmission power control for an uplink data channel (PUSCH) of the LTE cellular communication system is shown in Equation 1-a.
  • Equation 1-a represents a transmission power of a physical uplink shared channel (PUSCH), which is a physical channel for uplink data transmission, in a i-th subframe of a terminal, PPUSCH (i).
  • P0_PUSCH is a parameter consisting of P0_NOMINAL_PUSCH + P0_UE_PUSCH and is a value that the base station informs the terminal through higher layer signaling (RRC signaling).
  • RRC signaling higher layer signaling
  • P0_NOMINAL_PUSCH is a cell-specific value composed of 8-bit information and has a range of [-126, 24] dB.
  • P0_UE_PUSCH is a UE-specific value composed of 4-bit information and has a range of [-8, 7] dB.
  • the cell-specific value is transmitted by the base station through cell-specific RRC signaling (SIB), and the UE-specific value is transmitted to the terminal by dedicated RRC signaling.
  • SIB cell-specific RRC signaling
  • the PL is a path loss value calculated by the terminal and is calculated through the reception power of the cell-specific reference signal (CRS) of the downlink channel transmitted by the base station. More specifically, the base station transmits the referenceSignalPower and filtering coefficients to the terminal through UE-specific or Cell-specific RRC signaling, and based on this, the terminal calculates a path loss as follows.
  • CRS cell-specific reference signal
  • Ks is a value given by a higher layer parameter, deltaMCS-Enabled, and BPRE (Bits per Resource Element) can be calculated as follows. Is only when uplink control information is transmitted in PUSCH without UL-SCH data Value, for the rest of the cases Use
  • C is the number of code blocks
  • Kr is the size of code block 'r'
  • O CQI is the number of CQI / PMI bits including CRC
  • N RE is the number of resource elements.
  • higher layer signaling dedicated RRC signaling
  • f (i) is equal to the f (i-1) value used in the previous subframe (i.e. the i-1st subframe).
  • PDCCH DC downlink control channel
  • the value is accumulated and used.
  • FDD system In the TDD system May have different values depending on the DL / UL configuration.
  • the value may vary depending on the DCI format.
  • the values of Table 1-b are used for DCI formats 0, 3, and 4, and the values of Table 1-c are used for DCI format 3A.
  • Equation 1-e is a transmit power of a physical uplink control channel (PUCCH), which is a physical channel for transmitting uplink control information in an i-th subframe of a terminal, It is shown.
  • Is This parameter is configured to be a value that the base station informs the terminal through higher layer signaling (RRC signaling).
  • RRC signaling higher layer signaling
  • Is a cell-specific value composed of 8-bit information and has a range of [-126, 24] dB.
  • SIB cell-specific RRC signaling
  • the UE-specific value is transmitted to the terminal by dedicated RRC signaling.
  • SIB cell-specific RRC signaling
  • the PL which is a path loss value calculated by the UE, is calculated through the reception power of the CRS (Cell-specific Reference Signal) of the downlink channel transmitted by the base station as in the transmission power control of the PUSCH. More specifically, the base station transmits the referenceSignalPower and the filtering coefficient to the terminal through UE-specific or Cell-specific RRC signaling, and based on this, the terminal calculates a path loss as shown in Equation 1-b.
  • CRS Cell-specific Reference Signal
  • the PUCCH When the PUCCH is transmitted through 2-antanna ports (ie, SFBC: Space Frequency Block Code), the PUCCH is transmitted to the UE through higher layer signaling (Cell-specific or UE-specific RRC signaling), and the value varies according to the format of the PUCCH. to be. If SFBC is not used, to be.
  • SFBC Space Frequency Block Code
  • PUCCH formats 1, 1a, and 1b Means the number of bits used for feedback of channel quality information, Is the number of bits used for HARQ-ACK / NACK feedback, and Is a bit used for feedback of the scheduling request, 0 or 1. More specifically, in PUCCH formats 1, 1a, and 1b to be. If you use Normal CP in PUCCH formats 2, 2a, and 2b, Is as follows.
  • PUCCH format 3 Is as follows.
  • PUCCH transmission power control unlike transmission power control of PUSCH, only accumulation-based transmission power control is achieved. Is given by [Suha Geek 1-i].
  • the UE transmits the data to the UE through DC downlink control channel (PDCCH).
  • the value is accumulated and used.
  • In the FDD system In the TDD system Can have different values according to DL / UL Configuration as shown in [Table 1-f].
  • the value may vary depending on the DCI format.For DCI format 1A / 1B / 1D / 1 / 2A / 2B / 2C / 2/3, the accumulated value in Table 1-b Use the same value as for DCI format 3A, The values used in Table 1-c Use the same value as the value.
  • the main purpose of the control of the uplink transmission power of the terminal is to minimize the amount of interference caused to the adjacent cell and to minimize the power consumption of the terminal.
  • This transmission power control can be applied in the beamforming system for the same purpose.
  • interference caused by an adjacent cell and strength of a received signal received by a base station may vary depending on which beam the terminal transmits.
  • a specific terminal may transmit using Omni-antenna that does not support beamforming.
  • Another terminal equipped with a small number of antenna elements may transmit uplink data and control information using a wide beam.
  • another terminal equipped with a plurality of antenna elements may transmit uplink data and control information using a narrow beam. Therefore, it is necessary to use different transmission power control parameters according to the transmission beam of the terminal.
  • 1A is a diagram illustrating an example of transmission power control parameter transmission of a base station according to an embodiment of the present invention. Since the base station does not know the capability of the terminal until the capability negotiation with the terminal, all the terminals connected in the cell transmit a default transmit power parameter that can be commonly used regardless of the capability of the terminal. (1a-10). E.g, Is a cell-specific parameter And UE-specific parameters It consists of. Similarly, Is a cell-specific parameter And UE-specific parameters It consists of. In this case, cell-specific parameters Wow The MS may be transmitted to the terminal through a control channel broadcast by the base station, such as a master information block (MIB) or a system information block (SIB). As another example, Wow May be transmitted through common downlink control information (DCI) constituting a common search space. UE-specific parameters in the state before the terminal accesses the base station Wow May be embedded in the terminal and the base station as a single default value.
  • MIB master information block
  • SIB system information block
  • the base station may configure one or two default values through a broadcast channel such as MIB, SIB, or common DCI.
  • the base station may configure one or more of a default value for a terminal using an omni-antenna, a default value for a terminal using a wide beam, and a default value for a terminal using a narrow beam. .
  • the terminal may continue to use these default values until there is an additional command from the base station as shown in FIG. 1A. Additional instructions from these base stations Wow Value update may be performed after RRC Connection Setup (1a-30) (or after performing random access procedure (1a-30)), through UE-specific RRC signaling, or through L1-signaling (PDCCH). (1a-40).
  • the base station is updated to the PDCCH transmitted for each UE through the dedicated PDCCH
  • the base station is updated to two or more UEs through a separate DCI for power control.
  • Wow You can send a value or an offset value.
  • the terminal can be used for transmitting uplink data and control information Wow You need a value.
  • the default value may be embedded in the base station and the terminal or configured by the base station through MIB, SIB, or common DCI.
  • the terminal may continue to use these default values until there is an additional command 1a-40 from the base station as shown in FIG. 1A. Additional instructions from these base stations Wow Value update may be performed after RRC Connection Setup (1a-30) (or after performing random access procedure (1a-20)), through UE-specific RRC signaling, or through L1-signaling (PDCCH). .
  • the terminal may determine the transmission power based on the default transmission power parameter.
  • the UE may determine uplink PUSCH transmission power and / or uplink PUCCH transmission power based on a default transmission power parameter.
  • the default transmission power parameter may be used to determine the transmission power until the terminal receives the terminal specific transmission power parameter.
  • the terminal may determine the uplink transmission power of the terminal using the terminal specific transmission power parameter.
  • the terminal may determine the uplink PUSCH transmission power and / or the uplink PUCCH transmission power based on the UE specific transmission power parameter.
  • the UE specific transmit power parameter may have a higher priority than the default transmit power parameter. Therefore, when the terminal receives both the default transmission power parameter and the terminal specific transmission power parameter, priority may be given to determining the transmission power using the terminal specific transmission power parameter.
  • the terminal may determine, verify, calculate, and obtain a transmission power based on the transmission power parameter, and may transmit a PUCCH or a PUSCH based on the obtained transmission power value.
  • FIG. 1B is an example of parameter transmission for transmission power control of a terminal in a random access process according to an embodiment of the present invention.
  • FIG. 1B may correspond to operation 1a-20 of FIG. 1A.
  • the UE transmits a random access preamble, wherein transmission power parameters used for transmission of the random access preamble may be transmitted from the base station through MIB, SIB, or Common DCI.
  • the base station transmits preambleInitialReceivedTargetPower and powerRampingStep parameters via SIB, and preambleInitialReceivedTargetPower is ⁇ -120, -118, -116,... , -92, -90 ⁇ dBm and powerRampingStep has a value between ⁇ 0, 2, 4, 6 ⁇ dB.
  • the transmission power for the transmission of the random access preamble of the terminal is calculated as follows.
  • the terminal receives the preambleInitialReceivedTargetPower parameter received through the SIB.
  • the transmission power value of the random access preamble is determined by comparing with the value.
  • the base station receives the random access preamble transmitted by the terminal, the base station transmits a random access response (RAR) in operation 1b-20.
  • the RAR may include information for transmitting MSG3.
  • the terminal receiving the RAR transmits the MSG3 to the base station in operation 1b-30.
  • the base station receiving the MSG3 may transmit the MSG4 to the terminal in operation 1b-40.
  • the PDCCH is monitored to receive a random access response (RAR) for a predetermined time. How long the UE should monitor the PDCCH for RAR reception, the base station transmits through the ra-ResponseWindowSize parameter of the SIB. If the UE fails to receive the RAR for the ra-ResponseWindowSize time, the UE retransmits the random access preamble. In this case, the transmission power of the random access preamble retransmitted by the UE may be transmitted by being increased by powerRampingStep [dB] than the transmission power used for initial random access preamble transmission using the aforementioned powerRampingStep parameter.
  • RAR random access response
  • the terminal may perform the following operation.
  • a beamforming system In the mmWave band, a beamforming system is used due to coverage limitations.
  • a synchronization signal may be beamformed and transmitted in various beam directions.
  • the terminal may select a beam having the strongest signal strength among several beam directions to perform synchronization.
  • the terminal may store information on the beam having the strongest signal strength and the beam having the strongest signal strength (generally, N beams may be stored based on the beam having the largest signal strength).
  • the terminal If the terminal does not receive the RAR for a predetermined time after transmitting the random access preamble, the terminal changes the beam of the random access preamble retransmitted using the beam information stored in the synchronization process. At this time, the information on the time that the terminal should monitor the RAR may be transmitted by the base station to the terminal through the MIB, SIB or common DCI.
  • the maximum number of retransmissions may be limited.
  • the maximum number of retransmissions may be transmitted by the base station to the terminal through the MIB, SIB or common DCI, or may use a value previously promised between the terminal and the base station.
  • the UE stops the random access procedure and acquires beam information through a synchronization signal transmitted through beamforming (for example, searching for a beam having the largest signal strength). You can do a new one.
  • the UE When the UE does not receive the RAR for a predetermined time after transmitting the random access preamble, the UE uses the same beam as the beam used for the initial random access preamble transmission. At this time, the transmission power of the preamble to be retransmitted is increased.
  • Information on the time that the terminal should monitor the RAR may be transmitted to the terminal through the MIB, SIB or common DCI.
  • the RAR monitoring time for applying the beam change mentioned in Option 1 and the RAR monitoring time for applying the transmit power change mentioned in Option 2 may be different.
  • the terminal When the terminal retransmits the random access preamble by increasing the transmission power, how much the transmission power is increased by retransmission of the random access preamble may be related to the power class of the terminal (ie, the maximum transmission power of the terminal). . Therefore, it is necessary to limit the maximum number of retransmissions.
  • the maximum number of retransmissions may be transmitted by the base station to the terminal through the MIB, SIB or common DCI, or may use a value previously promised between the terminal and the base station.
  • the UE stops the random access procedure and acquires beam information through a synchronization signal transmitted through beamforming (for example, searching for a beam having the largest signal strength). You can do a new one.
  • the UE uses a beam different from the beam used for the initial random access preamble transmission, and increases the transmission power of the retransmitted preamble.
  • Information on the time that the terminal should monitor the RAR may be transmitted to the terminal through the MIB, SIB or common DCI.
  • the RAR monitoring time for applying the beam change and the RAR monitoring time for applying the transmit power change may be different. For example, after performing the RAR monitoring for T1 time, the terminal increases the transmission power and retransmits the random access preamble when the RAR is not received. After retransmission of the preamble, after performing the RAR monitoring for T2 time, if the RAR is not received, the preamble can be retransmitted by changing the beam. As another example, the UE performs RAR monitoring for a time T1, and when the RAR is not received, increases the transmission power and retransmits the random access preamble (first retransmission).
  • the transmit power is increased and the random access preamble is retransmitted (second retransmission). If the RAR is not received until the Nth retransmission is performed (after increasing the transmission power until the maximum number of retransmissions is reached), the terminal changes the beam for transmitting the random access preamble.
  • the maximum number of retransmissions may be transmitted by the base station to the terminal through the MIB or SIB, or may use a value previously promised between the terminal and the base station.
  • the beam change may be performed first, and then the transmission power may be changed later. That is, after performing the RAR monitoring for the time T1, the terminal retransmits the random access preamble by changing the beam when the RAR is not received. After retransmission of the preamble using the changed beam, after performing RAR monitoring for T2 time, if the RAR is not received, the preamble may be retransmitted by increasing the transmission power. As another example, the UE performs RAR monitoring for a time T1, and when the RAR is not received, changes the beam to retransmit the random access preamble (first retransmission).
  • the beam is changed to retransmit the random access preamble (second retransmission). If the RAR is not received until the Nth retransmission is performed (after changing the beam, until the maximum number of retransmissions is reached), the terminal increases the transmission power for transmitting the random access preamble.
  • the maximum number of retransmissions may be transmitted by the base station to the terminal through the MIB, SIB or common DCI, or may use a value previously promised between the terminal and the base station.
  • the UE stops the random access procedure and acquires beam information through a synchronization signal transmitted through beamforming (for example, searching for a beam having the largest signal strength). You can do a new one.
  • FIG. 1C illustrates an example of an operation of a terminal for transmission power control of a terminal in a random access process according to an embodiment of the present invention. More specifically, the detailed description of Option 2 mentioned above.
  • the UE receives random access parameters from the base station through MIB, SIB or common DCI.
  • the random access parameters include random access preamble sequence type, time / frequency resource for random access preamble transmission, target reception power of random access preamble, power ramping step size for increasing transmission power to be performed when random access retransmission, and RAR monitoring time.
  • the size of the RAR Reception Widow and the maximum number of retransmissions of the random access preamble may be included.
  • the terminal receiving the random access parameter transmits the random access preamble through Equation 1-j (operation 1c-10).
  • the UE checks whether the RAR is received in the RAR reception window. If RAR is received, proceed to operation 1c-20, and if RAR is not received, proceed to operation 1c-25.
  • the UE may transmit Msg3 in operation 1c-20.
  • the transmission power parameter for the Msg3 transmission may inform the terminal through the RAR.
  • the terminal increases the random access preamble transmission power and retransmits the random access preamble.
  • the increase amount of the random access preamble transmit power may be configured by the base station through SIB or common DCI (power ramping step size), and when the power ramping step size is configured to 0 dB, the increase of the transmit power of the random access preamble is not performed. Do not.
  • the terminal performs retransmission while increasing the transmit power of the preamble until the number of retransmissions of the random access preamble reaches a maximum (operation 1c-30).
  • operation 1c-35 the UE checks whether the maximum number of retransmissions has been reached. If the maximum number of retransmissions is reached, the operation proceeds to operation 1c-40, otherwise the operation proceeds to operation 1c-15.
  • the cell-selection procedure refers to a procedure in which a terminal detects a synchronization signal transmitted from each cell and connects to a beam of a base station which has transmitted the synchronization signal having the strongest received signal. If the maximum number of retransmissions has not been reached, the terminal may proceed to operation 1c-15 and continue to perform operation 1c-15 or less.
  • FIG. 1D illustrates another operation of a terminal for transmission power control of a terminal in a random access process according to an embodiment of the present invention. More specifically, the detailed description of Option 1 mentioned above.
  • the terminal receives random access parameters from the base station through MIB, SIB or common DCI.
  • the random access parameters include random access preamble sequence type, time / frequency resource for random access preamble transmission, target reception power of random access preamble, information on beam to be performed when random access retransmission, RAR reception Widow size indicating RAR monitoring time,
  • the maximum number of retransmissions of the random access preamble may be included. In this case, the following may be considered as information on a beam to be performed when random access retransmission.
  • a value representing the difference between the received signals of the beam [x dB] Based on the strength of the synchronization signal detected by the terminal through the beamformed beam transmission, when the synchronization signal having the largest received signal strength is called S1, two Assume that the synchronization signal having the second largest received signal strength is S2, and then S3 (that is, S1> S2> S3> S4>). At this time, the role of [x dB] is used to select a preamble to be retransmitted by the terminal, and when S1-S2 ⁇ [x dB] and S1-S3> [x dB], the terminal transmits S1 to the initial transmission of the random access preamble. Use this transmitted beam.
  • the first retransmission of the random access preamble may use a beam transmitted by S3 rather than a beam transmitted by S2.
  • the UE may use the beam transmitted by S5 instead of the beam transmitted by S4 for the second retransmission of the random access preamble.
  • the transmission power used for the transmission of the random access preamble may use the same value as the transmission power used for the transmission of the random access preamble in the previous beam.
  • the UE Upon receiving the random access parameter, the UE transmits the random access preamble through the Equation 1-j in the specific beam (beam detected through the synchronization signal) (operation 1d-10).
  • operation 1d-15 the UE checks whether the RAR is received in the RAR reception window. If the RAR is received, the operation proceeds to operation 1d-20. If the RAR is not received, the operation proceeds to operation 1d-25.
  • the UE may transmit Msg3 in operation 1d-20.
  • the beam for Msg3 transmission uses the same beam as the beam used for the random access preamble transmission, and the transmission power parameter at this time may inform the terminal through the RAR.
  • the terminal When the terminal does not receive the RAR in the RAR Reception Window, the terminal changes the beam for the random access preamble transmission in operation 1d-25, and retransmits the random access preamble with the changed beam.
  • the UE performs retransmission while changing the beam of the preamble until the number of retransmissions of the random access preamble reaches a maximum (1d-30).
  • operation 1d-35 the UE checks whether the maximum number of retransmissions has been reached. If the maximum number of retransmissions is reached, the operation proceeds to operation 1c-40, otherwise the operation proceeds to operation 1d-15.
  • the cell-selection procedure refers to a procedure in which a terminal detects a synchronization signal transmitted from each cell and connects to a beam of a base station which has transmitted the synchronization signal having the strongest received signal. If the maximum number of retransmissions has not been reached, the terminal may proceed to operation 1d-15 and continue to perform operation 1d-15 or less.
  • FIG. 1E illustrates another terminal operation for controlling transmission power of a terminal in a random access process according to an embodiment of the present invention. More specifically, the detailed description of Option 1 mentioned above.
  • the UE receives random access parameters from the base station through MIB, SIB or common DCI.
  • the random access parameters include random access preamble sequence type, time / frequency resource for random access preamble transmission, target receive power of random access preamble, power ramping step size to increase transmit power to be performed when random access retransmission, and random access retransmission.
  • Information on a beam to be performed, a RAR reception widow size indicating a RAR monitoring time, and a maximum number of retransmissions of a random access preamble may be included. In this case, the following may be considered as information on a beam to be performed when random access retransmission.
  • a value representing the difference between the received signals of the beam [x dB] Based on the strength of the synchronization signal detected by the terminal through the beamformed beam transmission, when the synchronization signal having the largest received signal strength is called S1, two Assume that the synchronization signal having the second largest received signal strength is S2, and then S3 (that is, S1> S2> S3> S4>). At this time, the role of [x dB] is used to select a preamble to be retransmitted by the terminal, and when S1-S2 ⁇ [x dB] and S1-S3> [x dB], the terminal transmits S1 to the initial transmission of the random access preamble. Use this transmitted beam.
  • the first retransmission of the random access preamble may use a beam transmitted by S3 rather than a beam transmitted by S2.
  • S3-S4 ⁇ [x dB] and S3-S5> [x dB] the UE may use the beam transmitted by S5 instead of the beam transmitted by S4 for the second retransmission of the random access preamble.
  • the UE Upon receiving the random access parameter, the UE transmits the random access preamble through the Equation 1-j in the specific beam (beam detected through the synchronization signal) (operation 1e-10).
  • the UE checks whether the RAR is received in the RAR reception window. If RAR is received, proceed to operation 1e-20. If RAR is not received, proceed to operation 1e-25.
  • the UE may transmit Msg3 in operation 1e-20.
  • the beam for Msg3 transmission uses the same beam as the beam used for the random access preamble transmission, and the transmission power parameter at this time may inform the terminal through the RAR.
  • the UE If the UE does not receive the RAR in the RAR Reception Window, in operation 1e-25, the UE increases the transmission power for the random access preamble transmission and retransmits the random access preamble in the same beam as the initial transmission of the random access preamble. have.
  • the terminal performs retransmission while increasing the transmit power of the preamble until the number of retransmissions of the random access preamble reaches a maximum (operation 1e-30).
  • operation 1e-35 the UE checks whether the maximum number of retransmissions has been reached. If the maximum number of retransmissions has been reached, the operation proceeds to operation 1e-40, otherwise the operation proceeds to operation 1e-15.
  • the UE When the maximum number of retransmissions is reached, the UE changes the beam for random access preamble transmission in operation 1e-40 and retransmits the random access preamble with the changed beam in operation 1e-45.
  • the UE checks whether the RAR is received in the RAR reception window. If the RAR is received, the operation proceeds to operation 1e-20. If the RAR is not received, the operation proceeds to operation 1e-55.
  • the cell-selection procedure refers to a procedure in which a terminal detects a synchronization signal transmitted from each cell and connects to a beam of a base station which has transmitted the synchronization signal having the strongest received signal.
  • the RAR Reception Window T1 for power ramping and the RAR Reception Window T2 for beam change may be the same or different.
  • the random access procedure may be abandoned and the cell-selection procedure may be performed again.
  • the maximum number of retransmissions at this time may be the same as or different from the maximum number of retransmissions for power ramping.
  • the order of preamble transmission power and beam change may be applied differently from FIG. 1E.
  • the transmission power is increased to transmit the random access preamble, and when the RAR is not received, the beam is changed.
  • the beam change is performed first, and when the RAR is not performed, the transmission power of the random access preamble is described. It can also be configured to increase.
  • 1F and 1G are exemplary parameters for transmission power control of a terminal after an RRC connection setup according to an embodiment of the present invention. These parameters may be transmitted to each UE through UE-specific dedicated RRC signaling, and a cell using a wide beam and a cell using a narrow beam may use different parameters. As another example, a wide beam may be operated at a specific moment and a narrow beam may be operated at another moment according to the operation of a base station in the same cell. More specifically, in order to reduce the initial beam searching time of the terminal, the synchronization signal and the broadcast channel may operate in a wide beam. The base station forms a narrow beam based on the wide beam detected by the terminal to transmit UE-specific data and control information.
  • the base station can configure both P0 and alpha values for the wide beam and P0 and alpha values for the narrow beam.
  • two types of wide beams and narrow beams are described, but different for each beam width of the terminal.
  • Value and You can configure the value.
  • it may be operated in the form of P0-PUSCH-WideBeam, P0-PUSCH-NarrowBeam.
  • P0-Nominal PUCCH-WideBeam P0-NominalPUCCH-NarrowBeam
  • P0-UE-PUCCH-WideBeam P0-UE-PUCCH-NarrowBeam
  • Alpha-Narrowbeam Alpha-Narrowbeam
  • beam reciprocity may exist between a transmit beam and a receive beam of a base station, and a transmit beam and a receive beam of a terminal.
  • the beam reciprocity at the base station entrance and the beam reciprocity at the terminal entrance may be considered respectively or simultaneously.
  • the beam reciprocity at the base station means that the transmission beam of the base station and the reception beam of the base station are the same
  • the beam reciprocity at the terminal entrance means the case where the transmission beam of the terminal and the reception beam of the base station are the same.
  • the reception beam of the base station and the transmission beam of the base station are the same, meaning that the beam gain or beam direction of the reception beam and the transmission beam is the same. Indicates.
  • the beam reciprocity is not established at the base station, it means that the beam gain or beam direction of the reception beam of the base station and the transmission beam of the base station is different.
  • different beam gains mean that a difference in gain between the reception beam and the transmission beam is out of a predetermined range.
  • different beam directions mean that the difference between the reception beam direction and the transmission beam direction is out of a certain range.
  • the fact that the beam reciprocity does not hold at the terminal means that the difference in the beam gain between the reception beam and the transmission beam and the difference between the reception beam and the transmission beam direction are out of a range, as does the beam reciprocity at the base station.
  • the base station when the beam reciprocity is established, the base station is ⁇ P01, P02,... , P0N ⁇ , such as P0 values (P0 values having different values for each beam) for N different beams, may be transmitted to the UE through RRC signaling.
  • the base station when the beam reciprocity does not hold, the base station is ⁇ P01 ', P02',... , P0M ' ⁇ may transmit P0 values (different P0 values for each beam pair) for M different transmission beam-receive beam pairs to the UE through RRC signaling.
  • the base station determines whether the beam reciprocity is established, and when the beam reciprocity is established, ⁇ P01, P02,... , P0N ⁇ is transmitted through RRC signaling, and when beam reciprocity does not hold, ⁇ P01 ', P02',... , P0M ' ⁇ may be transmitted through RRC signaling.
  • the base station does not determine whether or not the beam reciprocity is established, and the P0 value ( ⁇ P01, P02,..., P0N ⁇ ) for the case where the beam reciprocity is established or for all transmission beam-receive beam combinations.
  • P0 values ⁇ P01 ', P02', ..., P0M ' ⁇ may be transmitted to the terminal through RRC signaling.
  • the base station determines that the beam reciprocity is established in a subframe in which the terminal transmits uplink data / control information, through '1-bit' RRC signaling or '1-bit' DCI signaling (BeamReciprocity_enabled or BeamReciprocity_disabled) Whether or not beam reciprocity is to be applied may be informed to the terminal.
  • the terminal receiving the BeamReciprocity_enabled is ⁇ P01, P02,... , P0N ⁇ uses N values.
  • the terminal receiving the BeamReciprocity_disabled is ⁇ P01 ', P02',... , P0M ' ⁇ .
  • the base station may signal a reference P0 value to the RRC and then signal an offset value from the reference to the beam actually used through the RRC or the DCI. More specifically, P0 value (P0 value for each beam) as a reference is determined by ⁇ P01, P02,... , P0N ⁇ , offset information about which P0 to use (for example, P02) and how much offset value to apply based on P02 can be transmitted through DCI.
  • the reference P0 value may be signaled through the RRC and the offset value may be signaled through the RRC (eg, ⁇ offset_1, offset_2, ..., offset_K ⁇ ).
  • DCI can indicate which offset value should be used.
  • the terminal calculates a pathloss as shown in [Equation 1b].
  • the beam gain may occur because the RF chains generating the transmission beam and the RF elements forming the RF chain forming the reception beam are different.
  • the phase shifter of the RF chain generating the transmission beam and the phase shifter of the RF chain forming the receiving beam are different from each other, even if the transmission beam and the receiving beam use the same phase shift value to form the same beam width.
  • the transmission beam and the reception beam may form different beam widths.
  • the difference between the transmit beam and the receive beam gain may occur because the number of panels of the antenna generating the transmit beam and the number of panels of the antenna forming the receive beam are different. More specifically, the number of transmit beam panels of the terminal may be less than the number of receive beam panels of the terminal. Therefore, the width of the terminal transmission beam may be larger than the width of the terminal reception beam. Similarly, the number of transmit beam panels of the base station and the number of receive beam panels of the base station may be different.
  • the pathloss value calculated by the terminal through downlink may differ from the pathloss value experienced when the terminal actually transmits data and control information through the uplink. More specifically, the downlink pathloss estimated by the terminal may include a transmission beam gain of the base station and a reception beam gain of the terminal. The data and control information transmitted by the terminal in the uplink are received by the base station by combining the transmit beam gain of the terminal and the receive beam gain of the base station with the pathloss.
  • the base station transmit beam + terminal receive beam gain reflected in the downlink pathloss calculation (assuming G DL ) and the terminal transmit beam + base station receive beam gain reflected in the actual uplink transmission (G UL)
  • the base station may not predict the transmission power actually transmitted by the terminal. For example, when G DL ⁇ G UL , it may be downlink pathloss + G DL > uplink pathloss + G UL (when the downlink pathloss and the uplink pathloss are the same).
  • the terminal transmits the uplink data and the control information with a power larger than the actually required transmission power.
  • G DL > G UL it may be downlink pathloss + G DL ⁇ uplink pathloss + G UL (when the downlink pathloss and the uplink pathloss are the same).
  • the terminal transmits at a smaller power than actually required transmission power. Since this may not satisfy the reception target SINR at the serving base station, the reception performance of uplink data and control information may be degraded. Therefore, it is necessary to reflect the beam gain difference according to the transmit / receive beam pattern.
  • the terminal may transmit a power headroom report (PHR) to the base station through the MAC control element and the MAC message.
  • PHR power headroom report
  • the PHR information is composed of the difference between the transmission power that the terminal can transmit at maximum and the transmission power actually transmitted by the terminal.
  • the base station determines whether the terminal can further increase the transmission power (when the PHR value is positive) or decrease the transmission power (when the PHR value is negative) based on the PHR information transmitted by the terminal. If the PHR value is positive, the base station may increase the resource at the next uplink transmission of the terminal transmitting the PHR. If the PHR value is negative, the base station may allocate the resource at the next uplink transmission of the terminal transmitting the PHR. Can be reduced.
  • the UE may transmit uplink data and control information at a higher transmission power than the transmission power actually to be transmitted. This may cause unnecessary power consumption of the terminal and may cause additional interference to neighbor cells.
  • the UE may transmit uplink data and control information at a lower transmission power than the transmission power actually to be transmitted. Since this may not satisfy the reception target SINR at the serving base station, the reception performance of uplink data and control information may be degraded. Therefore, it is necessary to reduce the error caused by the difference between the G DL and the G UL .
  • the base station may inform the terminal of its transmit beam gain and receive beam gain.
  • the terminal may reflect the transmit / receive beam gain of the base station received from the base station and the transmit / receive beam gain of the terminal measured by the base station in the downlink pathloss calculation for transmission power control.
  • the terminal when the terminal transmits the PHR to the base station, the terminal may include information about the transmit beam gain and the receive beam gain of the terminal in the PHR.
  • the base station may recalculate the PHR through the transmit / receive beam gain of the terminal received from the terminal and the transmit / receive beam gain of the base station measured by the base station itself.
  • the base station may transmit a transmission beam gain of the base station to the terminal through RRC signaling.
  • referenceSignalPower of Equation 1-b may be a value including a transmission power of a base station and a transmission beam gain of a base station. That is, referenceSignalPower configured by the base station to RRC is a value configured by transmission power of the base station and transmission beam gain of the base station.
  • the RSRP measured by the UE is received power in which downlink pathloss and received beam gain of the UE are reflected. Therefore, the downlink pathloss calculated by the terminal may naturally reflect the transmit beam gain of the base station and the receive beam gain of the terminal.
  • the terminal may transmit the transmission beam gain of the terminal to the base station, and such transmission may be performed when the capability negotiation between the base station and the terminal is performed, or transmitted in a MAC control element / MAC message or a separate MAC control element / MAC message for transmitting PHR. Can be.
  • the base station may appropriately use the P0 value. More specifically, P0_Nominal_PUSCH / P0_Nominal_PUCCH is a cell-specific value and may properly reflect the difference between the transmission beam and the reception beam gain of the base station. In addition, P0_UE_PUSCH / P0_UE_PUCCH may properly reflect the difference between the transmission beam and the reception beam gain of the terminal. As mentioned above, the base station obtains information on the transmission beam and the reception beam gain of the terminal through the base station-to-terminal capability negotiation, or the base station receives information on the transmission beam and the reception beam gain of the terminal through PHR transmission of the terminal. This can be obtained.
  • the base station may determine the P0_Nominal_PUSCH / P0_Nominal_PUCCH or P0_UE_PUSCH / P0_UE_PUCCH value using the transmission beam gain and the reception beam gain of the base station measured by the base station.
  • the base station may appropriately use the closed-loop power control value. More specifically, in Equation 1-a, f (i) is a value that the base station can dynamically control through the PDCCH, and may properly reflect the difference between the transmit beam and the receive beam gain of the base station.
  • the terminal may set a transmission power value of the terminal by calculating a downlink PL reflecting the transmission beam of the base station and the reception beam (ie, G DL ) of the terminal.
  • the base station uses the uplink data channel, the uplink control channel, or the uplink control signals (eg, a sounding reference signal, a demodulation reference signal, etc.) of the terminal, and a transmission beam of the terminal and a reception beam of the base station (ie, G UL ).
  • This reflected uplink PL can be predicted.
  • the base station may infer the difference between the downlink PL calculated by the terminal and the uplink PL predicted by the base station by using PHR (Power Headroom Reporting) information reported by the terminal and the uplink PL predicted by the terminal (that is, the downlink PL). Difference between Link PL and Uplink PL, Offset).
  • the base station may dynamically configure through the PDCCH by reflecting such an offset value in f (i) (included in f (i) Value).
  • a large number of beams may exist according to a combination of a transmission beam of a base station and a reception beam of a terminal. For example, if there are 100 transmission beams of a base station and two reception beams of a terminal, there may be a total of 200 beam pairs.
  • pathloss calculation for each beam is required in the terminal.
  • the memory capacity of the terminal increases, which may not be desirable.
  • the pathloss calculation is performed for too few beams, the beam operation of the base station may be restricted.
  • the UE-A may have a higher signal strength for three beams (or beam pairs) than the other beams, such as beam 1, beam 12, and beam 33, and transmit uplink data and control information to these beams. You may want to. Therefore, the UE stores pathloss for these beams, but there may be a case where it is determined that the amount of interference caused to neighboring cells may increase when a large number of users are crowded in these beams or when the beams are used. In this case, UE-A may not transmit in the corresponding subframe (base station scheduler does not allocate a beam). Therefore, delay may occur.
  • the base station transmits uplink data and control information using another beam (for example, beam 102 or beam pair 102), but not as a preferred beam of terminal-A as a workaround. Can be ordered.
  • the terminal does not store the pathloss value for the beam 102 (or beam pair 102), it is not possible to perform the transmission power control.
  • the following operation can be considered.
  • FIG. 1h illustrates operations of a base station and a terminal related to uplink transmission beam change of a terminal based on power headroom reporting (PHR) according to an embodiment of the present invention.
  • PHR power headroom reporting
  • the base station may transmit the number of beams to be reported by the terminal to the terminal through RRC signaling, MAC control element / MAC message, or DCI. For example, when the number of beams (or the number of beam pairs) is set to N, the UE sets the beam index and the received signal strength of the beam (hereinafter referred to as beam information) for each of the N beams to the base station through uplink. report.
  • the beam information may be periodically transmitted by the terminal or may be transmitted aperiodically by a command of the base station.
  • the terminal transmits the PHR to the base station, the PHR transmission may be made (event triggered) or periodically transmitted when a specific condition is satisfied.
  • the PHR information may be transmitted through a MAC control element or a MAC message.
  • the PHR information includes a maximum transmission power value of the terminal and a transmission power value actually used by the terminal.
  • the base station may command the uplink transmission beam change of the terminal using the PHR information transmitted from the terminal.
  • the three beams are the beams with the strongest signal strength (assumed beam A) and the beams having a signal difference of x dB relative to beam A (assumed beam B), and the signal strength x dB relative to beam B It can be a beam that differs.
  • the reason for the difference in x dB is that the pathloss difference may not be large for different beams having the same signal strength. Therefore, the terminal may not need to store several similar pathloss values.
  • the x dB value may be transmitted through RRC signaling, MAC control element / MAC message, or DCI.
  • the terminal may indicate the number of beams to be measured and may also indicate a beam index or a beam index set to be measured. This may be referred to as information on a beam for pathloss.
  • the three beams for which the UE should calculate the pathloss are the beams with the highest signal strength (assuming beam A) and beam A.
  • the signal strength difference may be beams (assuming beam B and beam C) within y dB.
  • the reason for limiting it to within y dB is because when the difference in beam spacing is too large, there is no possibility of using the beam. Therefore, the terminal may not need to store several similar pathloss values.
  • the y dB value may be transmitted through RRC signaling, MAC control element / MAC message, or DCI.
  • the BS transmits a 'Number of Beams' parameter indicating how many beams to report to the UE through RRC signaling, MAC control element / MAC message, or DCI. Can be sent to.
  • the beam information may be transmitted through an uplink control channel (PUCCH), an uplink data channel (PUSCH), or a MAC control element / MAC message.
  • the base station may transmit a threshold for beam information reporting to the terminal through RRC signaling, a MAC control element / MAC message, or a DCI together with the 'Number of Beams' parameter.
  • the base station may configure the threshold value so as not to report on a beam having a reception strength equal to or lower than the threshold.
  • the base station transmits PHR related information to the terminal.
  • the PHR related information may include information about the number of beams that should transmit the PHR. If the PHR information does not include information on the number of beams separately, the 'Number of Beams' parameter used in operation 1h-10 may be used. Alternatively, the number of beams included in the PHR information may be different from the 'Number of Beams' parameter used in operation 1h-10. Two Thresholds (Threshold-1 and Threshold-2, Threshold-1 ⁇ Threshold-2) may be included.
  • the UE Upon receiving this, the UE receives the beam reception intensity of the previous serving beam (the beam used for transmitting uplink data and control information in the previous subframe n-k) and the current serving beam (used for transmitting uplink data and control information in the current subframe n). It is determined whether the beam reception intensity of the beam) differs by more than Threshold-1. If the difference between the received strength of the previous serving beam and the current serving beam is greater than or equal to Threshold-1, but not greater than or equal to Threshold-2, the UE may include the serving beam information in the PHR and transmit it. In this case, the serving beam information may include an index of the serving beam and a received signal strength of the serving beam.
  • the UE may not transmit the PHR.
  • the UE may transmit the serving beam and the Candidate beam information in the PHR.
  • Candidate beams are beams that are not serving beams but are likely to be serving beams. For example, when it is assumed that the number of beams configured in the PHR related information transmitted from the base station to the terminal or 'Number of Beams' is N, N-1 beams except the serving beam may be candidate beams.
  • the base station may configure a single threshold on the PHR-related information.
  • the UE determines whether the difference between the previous serving beam and the current serving beam is equal to or greater than a corresponding threshold. If the difference between the previous serving beam and the current serving beam is equal to or greater than the threshold and the PHR value is positive, the terminal may include the serving beam information in the PHR. If the difference between the previous serving beam and the current serving beam is equal to or greater than the threshold and the PHR value is negative, the UE may transmit both the serving beam information and the candidate beam information in the PHR.
  • the PHR-related information transmitted from the base station to the terminal through RRC signaling may include a Timer value instead of the aforementioned two thresholds (Threshold-1 and Threshold-2) or a single threshold.
  • the Timer value may include a periodic PHR Timer indicating a PHR transmission period and a prohibit PHR Timer indicating a timer for which PHR transmission is prohibited.
  • the PHR related information transmitted by the base station to the terminal through RRC signaling may include information on how many beams the terminal should transmit the PHR to the base station.
  • the information about the number of beams may not be transmitted together with the PHR information, but may be transmitted to the terminal through RRC signaling, MAC control element / MAC message or DCI when the base station transmits a beam related parameter.
  • the UE Upon receiving this, the UE transmits PHR for N beams to the base station in 10 subframe periods in operation 1h-40.
  • N 1
  • the UE may transmit the beam index of the serving beam and the received signal strength of the beam having the corresponding index to the base station by including the PHR information.
  • N> 1 the UE may transmit the serving beam index, the candidate beam index, and the received signal strength of the serving beam and the candidate beams having the corresponding index to the base station by including the PHR information.
  • Such beam information may be transmitted through a MAC control element or a MAC message.
  • the base station receiving the PHR information in the subframe 'n' from the terminal compares the PHR information received in the previous subframe 'n-k', and transmits the uplink by the terminal in the next subframe 'n + j'. It is determined whether the transmission beam used for the data channel or the control channel is changed.
  • the base station may inform the terminal of the changed beam index through the RRC signaling, MAC control element / MAC message or DCI. Upon receiving this, the terminal transmits the next uplink transmission using the corresponding beam.
  • the base station may explicitly inform the terminal of the previously used beam index through the RRC signaling, the MAC control element / MAC message or the DCI. Upon receiving this, the UE transmits the beam using a previously used beam during the next uplink transmission. Meanwhile, as another example of the case where the base station determines not to change the transmission beam, the base station may perform no operation.
  • the terminal operates the timer based on the time point when the UE transmits the PHR to the base station, and the beam index (modified beam index) is not received through RRC signaling, MAC control element / MAC message or DCI until the timer expires.
  • uplink transmission is performed using a conventionally used beam.
  • 1I illustrates an operation of a UE when two or more subcarrier spacings are used in one cell (or one base station) according to an embodiment of the present invention.
  • UE-1 may use 15 kHz subcarrier spacing (SCS) because it supports eMBB service
  • UE-2 may use 60 kHz SCS because it supports URLLC service.
  • SCS subcarrier spacing
  • M uplink transmission resources
  • PSD Power Spectral Density
  • terminal-1 and UE-2 must interpret the M value differently.
  • the base station transmits a synchronization signal to the terminal.
  • Operation 1i-20 The base station transmits an uplink transmission power parameter to the terminal. These parameters are transmitted through SIB or RRC signaling, and the SCS used for transmitting the SIB or RRC signaling may be the same as or different from the SCS of the synchronization signal. If a different SCS is used for the synchronization signal, an indication is required. For example, when the uplink transmission power parameter is transmitted through the SIB, the SCS used for the SIB transmission may be indicated in the MIB. In addition, after the RRC connection setup, when the uplink transmission power parameter is transmitted through RRC signaling, the SCS used for RRC signaling may be indicated through MIB, SIB, or Common DCI. If the SCS is the same as the synchronization signal, no additional indication is required.
  • Operation 1i-30 When the same SCS as the SCS used for synchronizing signal transmission is used as a reference for M value determination, no reference numerology related information is needed. If the SCS used for the synchronization signal transmission and the other SCS are used as the criteria for determining the M value, a separate indication may be required. Such indication may be sent via MIB, SIB or Common DCI.
  • the UE using the same SCS as the SCS used for the synchronization signal indicates the number of RBs indicated by the base station through the DCI. It can be applied to M value as it is.
  • M 8 (2 x 4)
  • SCS 240 kHz used for a synchronization signal
  • SCS 120 kHz used by a user equipment for uplink transmission.
  • the terminal when the base station transmits reference SCS related information to the terminal through MIB, SIB, Common DCI, or RRC signaling (when an SCS different from the SCS used for the synchronization signal is set as a reference value), the terminal is a base station.
  • the number of RBs indicated by this DCI can be scaled up or down based on a reference value.
  • the terminal transmits uplink data and control information by using the calculated transmission power value.
  • the base station may have different transmission powers according to the SCS used in its cell.
  • the control value may be transmitted to the terminal through MIB, SIB, or Common DCI. More specifically, the P0 value when using the 15 kHz SCS and the P0 value when using the 30 kHz SCS may be different. For example, assume UE-1 using 15 kHz SCS and UE-2 using 30 kHz SCS, and both UE-1 and UE-2 transmit 2 RBs for uplink data (or control information). Suppose you have been assigned.
  • transmission power control of different SCSs may be defined using the closed-loop power control parameter f (i) of Equation 1-a.
  • f (i) the closed-loop power control parameter f (i) of Equation 1-a.
  • the transmission beam of the terminal may be dynamically changed according to the movement of obstacles or the movement of the terminal located between the base station and the terminal.
  • the configuration of the power control parameter based on the aforementioned RRC signaling may be undesirable. Accordingly, faster transmission power can be adjusted through L1 signaling (configuration of power control parameter values with PDCCH). In other words, Wow One or both of the values may be transmitted to the terminal through the PDCCH.
  • L1 signaling configuration of power control parameter values with PDCCH
  • Wow One or both of the values may be transmitted to the terminal through the PDCCH.
  • the signaling overhead may increase greatly.
  • a combination of RRC signaling and signaling through PDCCH may be considered. For example, a set of parameters of FIGS. 1F and 1G may be configured through RRC signaling, and a value of the corresponding set may be configured through PDCCH.
  • the parameters of FIG. 1F and FIG. 1G are transmitted to the terminal through RRC signaling, and any of FIG. 1F (narrow beam) and FIG. 1G (narrow beam) at a specific moment (for example, a specific subframe or a specific slot).
  • Whether to use the parameters can be indicated via a 1-bit of the DCI. That is, in the case of '1', the narrow beam may be used, and in the case of '0', the wide beam may be used. When three or more beam widths are used, indications can be made using more than two bits of DCI.
  • the closed-loop transmission power control is possible in the beamforming system. That is, as illustrated in FIGS. 1F and 1G Wow
  • the value is configured through RRC signaling, and fine adjustment of transmission power for each beam can be made dynamically through the PDCCH. More specifically, transmission power control of the uplink data channel may be represented by Equation 1-k.
  • f (i) may include a power step size that depends on the beam index. That is, when performing transmission power control based on Accumulation, In the case of performing transmit power control based on Absolute Value, Can be. May be dynamically configured through the PDCCH. On the other hand, as shown in [Table 1-b] and [Table 1-c] is configured through the PDCCH The transmission power value considering the beam width may be reflected in the value.
  • Transmission power control of the uplink control channel can be expressed by the following Equation 1-1.
  • Equations 1-k and Equations 1-l And May be the same or different from each other.
  • Waveforms used for data and control channels transmitted by the terminal in uplink may vary according to the environment of the terminal or the operation of the base station.
  • the base station-A may use orthogonal frequency division multiple access (OFDMA) as an uplink waveform.
  • the base station-B may use SC-FDMA (Single Carrier- Frequency Division Multiple Access) as an uplink waveform.
  • Base station-C can use both OFDMA and SC-FDMA.
  • the base station may transmit cell-specifically to the terminal through MIB or SIB as to which of the uplink waveforms can be used. For example, when '00' is transmitted through the MIB or SIB, the base station and the terminal may be promised by using both OFDMA, SC-FDMA if '01', and OFDMA and SC-FDMA if '10'.
  • Equation 1-k May be determined in the terminal as shown in Equation 1-m.
  • the base station When configuring, it may reflect the uplink waveform used by the terminal. For example, ⁇ -A1 to Z1 ⁇ dB may be configured when using OFDMA, and ⁇ -A2 to Z2 ⁇ dB may be configured when using SC-FDMA.
  • UE-A based on SC-FDMA Suppose is 23 dBm.
  • the terminal may implicitly promise between the base station and the terminal to operate at 23 dBm-x dB.
  • the x value in xdB may be configured by the base station through RRC signaling or may always use a fixed value.
  • the maximum power reduction may reflect the amount of frequency resources (number of RBs: number of resource blocks) and modulation allocated to the terminal for uplink data and control channel transmission.
  • the MPR value may be set differently according to the uplink waveform.
  • the MPR value may be a value promised in advance between the base station and the terminal.
  • AMPR Advanced maximum power reduction
  • ACLR Adjacent Channel Leakage Ratio
  • Is an tolerance value according to a band combination in which communication is performed and these values may also be set differently according to a waveform used by the terminal.
  • Is a value that depends on the aggregated channel bandwidth and guard-band, and these values may also be set differently according to the waveform used by the terminal.
  • the power amplifier-maximum power reduction is a parameter for complying with regulations in a multi-RAT environment, and these values may also be set differently according to a waveform used by the terminal.
  • the base station may configure different parameter values through common RRC signaling, dedicated RRC signaling, or DCI.
  • the terminal calculates its own transmission power value through Equation 1-a or Equation 1-e. You can add power by ⁇ 1 [dB] at.
  • the command for using the DFT-S-OFDM and the value for ⁇ 1 [dB] may be configured by the base station through Common RRC signaling, Dedicated RRC signaling, or DCI as described above.
  • the terminal when the base station commands CP-OFDM to be used for uplink transmission of a specific terminal, the terminal calculates its own transmission power value through Equation 1-a or Equation 1-e. You can reduce power by ⁇ 2 [dB] at.
  • the command for using CP-OFDM and a value for ⁇ 2 [dB] may be configured by the base station through Common RRC signaling, Dedicated RRC signaling, or DCI as described above.
  • 1J illustrates an example of a subframe for transmitting uplink data and control information according to an embodiment of the present invention.
  • the first symbol is an example of a downlink control channel transmitted by a base station to a terminal in a cell (eg, physical downlink control channel (PDCCH) of LTE). Although only one symbol (ie, the first symbol) is used for downlink control channel transmission, two or more symbols may be used for downlink control channel transmission.
  • a base station e.g, physical downlink control channel (PDCCH) of LTE.
  • PDCCH physical downlink control channel
  • two or more symbols may be used for downlink control channel transmission.
  • the base station After the base station transmits the downlink control channel to the terminal (or after receiving the downlink channel from the base station), the base station receives the uplink control channel from the terminal (or the terminal transmits the uplink channel to the base station) ).
  • a gap for switching TX / RX of RF is required (second symbol).
  • the base station needs a demodulation reference signal (DMRS) for uplink channel estimation of the UE (third symbol).
  • DMRS demodulation reference signal
  • the RS occupies the entire symbol, there may be various patterns for the DMRS (eg, there may be one DMRS for every four REs, and two DRMS for every six REs). May be present continuously in the axis).
  • the DMRS is present only in the third symbol, but may exist in the DMRS in two or more symbols in one slot.
  • the DMRS is located only in the third symbol, data decoding is possible as soon as the base station receiver finishes estimating the uplink channel of the terminal, thereby reducing the signal processing time of the receiver.
  • the UL data region (UL data region) indicated in FIG. 1J may include and transmit uplink control information (UCI) for reporting data of the UE and the base station.
  • the UCI includes HARQ (Hybrid ARQ) ACK / NACK information, RI (rank indicator), CQI (Channel Quality Indicator), PMI (Pre-coder Matrix Indicator), and beam-related information (Beam Measurement Information: beam index and each and a BMI as a received signal of a beam corresponding to the beam index.
  • HARQ ACK / NACK information may be mapped to a symbol adjacent to the DMRS.
  • RI is rank information used for MIMO operation, and thus the amount of CQI / PMI information may vary, and therefore, it should be decoded prior to CQI / PMI information. Therefore, the RI may be located next to a symbol on which HARQ ACK / NACK information is transmitted. Meanwhile, the CQI / PMI / BMI may have a larger information amount than HARQ ACK / NACK and RI, and may be mapped to time-first as indicated by arrows to obtain time diversity. Meanwhile, the last symbol of the slot may be used for transmitting an uplink control channel (eg, physical uplink control channel (PUCCH) of LTE).
  • PUCCH physical uplink control channel
  • FIG. 1K is another example of a subframe for transmitting uplink data and control information according to an embodiment of the present invention.
  • the RI information is located after the mapping of HARQ ACK / NACK information is finished in FIG. 1K, and the mapping of the CQI / PMI / BMI is not time-first after the mapping of the RI information is finished. It can be done as frequency-first.
  • the HARQ ACK / NACK information and the RI information may be mapped to only the same symbol, but may be mapped to different symbols as shown in FIG. 1J. This is because CQI / PMI / BMI information having a relatively large amount of data additionally obtains frequency diversity gain.
  • the base station can configure additional DMRS in addition to the front-loaded DMRS.
  • additional DMRS a mapping rule of UCI for multiplexing UCI with data is needed.
  • the mapping rule of the UCI may be the same as in FIGS. 1J and 1K regardless of the presence or absence of additional DMRSs, as shown in FIGS. 1L (a) and 1M (a).
  • the advantage of this method is that it can take the same mapping rule regardless of the presence or absence of additional DMRS, it may be easy to implement the base station and the terminal. However, if the amount of UCI is increased and the time axis change of the channel is large, the channel estimation performance of UCI mapped far from front-loaded DMRS may be degraded. In addition, to maximize frequency diversity gain, when frequency hopping in a PUSCH (UL data region) is supported, UCI is mapped only near the first front-loaded DMRS (ie, near the second DMRS). Because it is not mapped), the frequency diversity gain cannot be obtained sufficiently. Therefore, as illustrated in FIGS.
  • mapping rule may be needed to allow UCI to be properly distributed based on two DMRSs. Through this mapping rule, UCIs can be properly distributed based on two DMRSs, thereby improving channel estimation performance of UCIs. In addition, when frequency hopping is applied, frequency diversity gain can be maximized.
  • the 1N illustrates an example of reference signal (SRS) transmission for channel sounding according to an embodiment of the present invention.
  • the UE may perform SRS transmission periodically or aperiodically.
  • the base station receiving this may acquire the uplink channel and timing information of the terminal.
  • the base station may operate under the assumption that the channel information obtained through the SRS received through the uplink from the terminal is similar to the downlink channel information (UL / DL reciprocity).
  • the SRS may be transmitted by being time division multiplexed (TDM) or frequency division multiplexed (FDM) with the uplink control channel.
  • TDM time division multiplexed
  • FDM frequency division multiplexed
  • the transmission is performed by TDM, and the SRS and the uplink control channel occupy the entire bandwidth of the UL, but the SRS and the uplink control channel may occupy a part of the UL bandwidth, and the bandwidths may be different.
  • the transmission bandwidth of the SRS may use A tones
  • the uplink control channel may use B tones.
  • the SRS transmission may be ordered by the base station through a downlink control channel or through RRC signaling, and may be periodically transmitted for a predetermined period or only once when the command is made.
  • the transmission resource of the SRS may be one or two symbols on the time axis in one slot (or subframe or mini-slot). That is, the terminal transmits the SRS once from one or two symbols, the system is allocated in the slot for SRS transmission.
  • FIG. 1O is another example of transmission of a reference signal (SRS) for channel sounding according to an embodiment of the present invention.
  • SRS reference signal
  • the difference from FIG. 1N is that the UE transmits the SRS once or more in two or more symbols rather than transmitting the SRS once.
  • one UE transmits an SRS 10 times through 10 symbols.
  • the SRS transmitted through each symbol may be transmitted in different beam directions.
  • the third symbol is used for DMRS transmission, but may be replaced with SRS symbol transmission without DMRS transmission.
  • the last symbol is illustrated as an uplink control channel, this may also be replaced by SRS symbol transmission.
  • the base station may make an indication for a single transmission of the SRS or multiple transmissions of the SRS. Such indication may be made through L1-signaling (eg, DCI of PDCCH).
  • the DCI may include information on how many symbols to transmit the SRS.
  • a slot / subframe / mini-slot capable of multiple transmission of SRS may be set through RRC signaling along with information on how many symbols to transmit SRS. The terminal receiving this transmits the corresponding number of SRSs in the corresponding slot / subframe / mini-slot.
  • a combination of RRC signaling and L1 signaling is possible.
  • a slot / subframe / mini-slot capable of multiple transmission of SRS through RRC signaling may be configured, and a fixed value may be used to determine how many symbols to transmit SRS. Fixed in the specification).
  • the base station may refer to a slot / subframe / mini-slot in which actual transmission is performed among slots / subframes / mini-slots configured through RRC through 1-bit of DCI.
  • a slot / subframe / mini-slot capable of multiple transmission of the SRS is configured through RRC signaling, and the SRS is configured through several symbols in the corresponding slot / subframe / mini-slot. Whether to transmit may be indicated by the base station via the DCI.
  • 1P is a diagram illustrating operations of another terminal and a base station according to an embodiment of the present invention.
  • the UE and the base station may be in an RRC connection state.
  • the terminal may perform steps 1a-10, 1a-20, and 1a-30 of FIG. 1a and may be in an RRC connection state.
  • the UE and the base station may perform the operations described with reference to FIGS. 1B, 1C, 1D, and 1E in a random access procedure.
  • the UE may receive a UE-specific transmit power parameter from the base station.
  • the UE may receive the UE-specific transmit power parameter through RRC signaling, MAC control element / MAC message, or DCI, and receive the UE-specific transmit power parameter according to a combination of at least two of the messages. It may be.
  • some information of the UE-specific transmit power parameter may be received through RRC signaling, and some information may be received through DCI.
  • the UE-specific transmit power parameter may include the transmit power parameter described in operation 1a-40 of FIG. 1P.
  • the UE-specific transmit power parameter may include the transmit power parameters described with reference to FIGS. 1F and 1G.
  • the UE-specific transmit power parameter may include transmit power parameters described in operations 1h-10 and 1h-20 of FIG. 1H, and may include transmit power parameters described in 1i-20 and 1i-30 of FIG. 1I. have.
  • a combination of RRC signaling and signaling through PDCCH may be considered.
  • a set of parameters of FIGS. 1-f and 1-g may be configured through RRC signaling, and a value of the corresponding set may be configured through a PDCCH.
  • the base station may signal an offset value from the reference to the beam actually used through the RRC or DCI.
  • the transmission power parameter may include a parameter (information on the beam) about a pathloss for each beam.
  • Pathloss may be considered when uplink transmission power is determined, and in a hybrid beamforming system, since a large number of beams may exist according to a combination of a transmission beam of a base station and a reception beam of a terminal, pathloss calculation for each beam is required.
  • the base station may indicate, via RRC signaling, MAC control element / MAC message, or DCI, how many beams the terminal should store by measuring pathloss.
  • the base station can provide information about the beam, and the information about the beam can indicate the beam for which path loss should be measured. For example, it may indicate a beam index or a beam index set.
  • the terminal may measure pathloss with respect to the indicated beam and determine transmission power based on the measured pathloss.
  • the transmit power parameter may include information on a subcarrier spacing (SCS) for interpreting an M value.
  • SCS subcarrier spacing
  • the transmission power parameter is not limited to the above configuration, and may include the parameters mentioned in each embodiment of the present invention.
  • the UE may calculate the transmit power based on the UE-specific transmit power parameter.
  • the terminal may determine the transmit power for uplink data channel transmission and / or the transmit power for uplink control channel transmission.
  • the UE may calculate the transmission power by combining the transmission power parameters received through the RRC signaling and the PDCCH.
  • the terminal may determine the transmission power in consideration of pathloss for each beam.
  • the terminal may interpret the M value in consideration of information on the SCS, and maintain the PSD by interpreting the M value.
  • the terminal is not limited to the above configuration, and may determine the transmission power in consideration of various parameters mentioned in each embodiment of the present invention.
  • the UE may transmit an uplink.
  • Transmitting uplink may be expressed as transmitting at least one of an uplink channel (data channel, control channel), an uplink signal, uplink data, and uplink information.
  • Specific operations of the terminal and the base station are not limited to FIG. 1p, and specific operations corresponding to each parameter of FIG. 1p refer to operations of the terminal and the base station described with reference to FIGS. 1a to 1o.
  • 1q is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • the terminal may include a transceiver 1q-10, a controller 1q-20, and a storage unit 1q-30.
  • the controller 1q-20 may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 1q-10 may transmit and receive a signal with another network entity.
  • the transceiver 1q-10 may receive system information from, for example, a base station, and may receive a synchronization signal or a reference signal.
  • the controller 1q-20 may control the overall operation of the terminal according to the embodiment proposed by the present invention.
  • the controller 1q-20 may control the operation of the terminal described with reference to FIGS. 1A to 1P of the present invention.
  • the control unit 1q-20 receives the terminal specific transmission power parameter from the base station and based on the terminal specific transmission power parameter and the subcarrier spacing assigned to the terminal.
  • the transmission power of the terminal may be determined and controlled to transmit an uplink signal based on the determined transmission power.
  • the controller 1q-20 may control to apply an M value used to determine the transmission power based on the subcarrier interval.
  • the terminal specific transmission power parameter may include information on a beam, and the transmission power may be determined based on a path loss measured based on the information on the beam.
  • control unit 1q-20 receives an RRC (radio resource control) message including a set of transmit power parameters and information indicating a transmit power parameter used for determining the transmit power among the set of transmit power parameters. It may be controlled to receive a physical downlink control channel (PDCCH) including a.
  • RRC radio resource control
  • the storage unit 1q-30 may store at least one of information transmitted / received through the transmission / reception unit 1q-10 and information generated by the control unit 1q-20.
  • 1r is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the configuration of the base station may be used as a TRP structure.
  • the TRP may be configured as part of the configuration of the base station.
  • the base station may include a transceiver 1r-10, a controller 1r-20, and a storage unit 1r-30.
  • the controller 1r-20 may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 1r-10 may transmit and receive a signal with another network entity.
  • the transceiver 1r-10 may transmit system information to the terminal, for example, and may transmit a synchronization signal or a reference signal.
  • the controller 1r-20 may control the overall operation of the base station according to the embodiment proposed by the present invention.
  • the controller 1r-20 may control the operation of the base station described with reference to FIGS. 1A to 1O of the present invention.
  • the controller 1r-20 transmits a message including subcarrier spacing setting information to the terminal, transmits a terminal specific transmission power parameter to the terminal, and transmits an uplink from the terminal. Control to receive the signal.
  • the transmission power of the uplink signal may be determined based on the terminal specific transmission power parameter and the subcarrier spacing setting information.
  • the M value used to determine the transmission power may be applied based on the subcarrier spacing setting information.
  • the terminal specific transmission power parameter may include information on a beam, and the transmission power may be determined based on a path loss measured based on the information on the beam.
  • control unit 1r-20 transmits a radio resource control (RRC) message including a set of transmit power parameters, and indicates information indicating a transmit power parameter used for determining the transmit power among the set of transmit power parameters. It may be controlled to transmit a physical downlink control channel (PDCCH) including a.
  • RRC radio resource control
  • PDCH physical downlink control channel
  • the storage unit 1r-30 may store at least one of information transmitted and received through the transceiver unit 1r-10 and information generated through the controller 1r-20.
  • DL Common Control Signal includes Sync Signals, at least the channel (or channels) (ie, PBCH) for transmitting system information necessary to perform random access, Signal used for RRM Measurement and Signal used for L3 Mobility do.
  • RRM measurement may include beam measurement. This DL Common Control Signal must be broadcast so that users in the cell or neighboring cells can hear it.
  • the sync signals may include a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a tertiary synchronization signal (TSS).
  • PSS / SSS can be used for coarse timing / frequency synchronization and can also be used for cell-ID detection. Or it can be used for coarse TRP transmission beam selection.
  • the boundary of a subframe (SF) or a slot cannot be known by synchronizing using PSS and SSS. Accordingly, it is possible to design the system to know the SF / Slot boundary by using the SSS sequence and PBCH information.
  • a new synchronization signal such as a tertiary synchronization signal (TSS) may be introduced for the corresponding function.
  • TSS tertiary synchronization signal
  • the TSS can be used to determine the SF / slot boundary by allowing the UE to know the number of OFDM symbols transmitted by the UE.
  • DL Common Control Signals may not need to be transmitted frequently, so the system can be designed to variably change the transmission period of DL Common Control Signals.
  • the transmission period of the DL Common Control Signal in a variable manner (i.e., Configurable DL Common Control Signal)
  • the following effects can be expected:
  • FIG. 2A shows an embodiment of Scenario Alt 1.
  • a to F of Figure 2a means different physical channels, each channel may be used for the following purposes.
  • F At least measurement reference signal that the connected UE uses for mobility and measurement.
  • a non-connected UE means a terminal that is in an IDLE state or wants to attempt a new access.
  • the physical channel A / B / C may or may not be included in one SS block (SS-block) defined in NR.
  • the periods of the physical channels A / B / C may be the same or different.
  • the physical channels A and B are included in one SS block and thus may have the same period.
  • physical channel C may have a different period from A / B in the system.
  • the physical channel D / E / F may or may not be included in one SS block (SS-block) defined in NR.
  • the periods of the physical channels D / E / F may be the same or different.
  • Step 1 Non-connected UE reads A and performs Cell-ID Detection via PSS / SSS.
  • Step 2 When the beam sweeping PSS / SSS signal is transmitted in a continuous OFDM symbol, SF or Slot boundary detection is performed through SSS, PBCH or TSS.
  • Step 3 Decoding B based on Cell-ID information detected in Step 1.
  • B may be a single or multiple physical channels and basically transmits essential system information for performing at least initial access and random access.
  • B has a self-decodable property.
  • B can have at least the following information: i) configuration for C, if necessary, ii) system bandwidth (BW), iii) system frame number (SFN), iv Information for the UE to perform random access (for example, random access resource configuration).
  • Step 4 When the configuration information of C is transmitted through B, the UE receives C.
  • C may be used for i) initial cell selection / cell reselection, ii) beam-ID acquisition.
  • C may not be transmitted when performed using a sync signal (i.e., A).
  • the non-connected UE may perform cell-selection and re-selection through C without performing Step 3.
  • Step 5 Perform random access.
  • Step 6 The UE receives D. Period information of D may be transmitted to the UE in steps 1 to 5.
  • the sequence of PSS / SSS of A and D may not be the same.
  • the length of the sequence or the sequence value itself may be different.
  • A includes SF / slot boundary detection (e.g., through SSS sequence, PBCH contents, TSS, etc.)
  • D may not need to include SF / slot boundary detection. For example, if A includes TSS, then D need not include TSS.
  • Step 6 UE decodes E
  • the frequency / time axis mapping (e.g., FDM) of D and E may or may not be the same as the frequency / time axis mapping of A and B.
  • E may or may not contain the same contents as B.
  • F is a signal of the same type as C (e.g., same sequence, same time / frequency mapping)
  • the configuration for F need not be made at E. That is, after configuring C in B, F, the mobility / measurement signal for the connected UE, may be transmitted in the same period as D.
  • the frequency / time mapping relationship between F and D may be the same as the frequency / time mapping relationship between C and A.
  • the D / E is not transmitted separately, only the F may be transmitted.
  • E may include a configuration for F.
  • E may not be transmitted.
  • Step 7. If F is sent, F can be received.
  • F may or may not be the same as C.
  • F can be used for i) handover, ii) L1 / L2 mobility.
  • the HO operation can be performed based on a measurement through a sync signal (i.e., A and / or D) or C.
  • C may be a signal predetermined for each cell-ID, and in this case, the non-connected UE may not separately receive the PBCH for cell-selection or re-selection (Step 3 is unnecessary).
  • Step 3 when C is not present and the non-connected UE performs cell-selection and re-selection through the sync signal (i.e., A), Step 3 and Step 4 are unnecessary.
  • Sync signal A is transmitted in a predetermined period so that both the non-connected UE and the connected UE of the cell can receive it, and the sync signal D can be known to be connected so that basically, the non-connected UEs receive the information. can not do.
  • This information may be transmitted to the UE in the following manner:
  • the information in the PBCH may not change for a certain time (eg, the same PBCH information is transmitted for 40ms in case of LTE), and thus, a non-connected UE is periodically transmitted when receiving and decoding PBCH information.
  • Multiple B channels can be combined. This enables more robust PBCH decoding.
  • connected UEs may have an advantage of faster decoding of the same system information as compared to non-connected UEs.
  • B consists of a plurality of channels
  • E has the same form (eg, code rate, frequency / timebase mapping) as one of the channels constituting B. Can have.
  • the contents and channel types included in B and E may not be the same, and the period in which the information contained in B and E is maintained may also be different (eg, the information in PBCH 1 is the same for 400 ms and the information in PBCH 2). Is the same for 40ms).
  • C and F may be identical (e.g., same sequence, same time / frequency mapping), and in this case, separate configuration for F in F may not be performed. This is because F may be transmitted based on the information of C configured in B and the period information of D. In this case, the frequency / time mapping relationship between A and C and the frequency / time mapping relationship between D and F may be the same or different.
  • FIG. 2B shows an embodiment of Scenario Alt 2.
  • a to F of Figure 2a means different physical channels, each channel may be used for the following purposes.
  • Step 1 Non-connected UE reads A and performs Cell-ID Detection via PSS / SSS.
  • Step 2 When the beam sweeping PSS / SSS signal is transmitted in a continuous OFDM symbol, SF or Slot boundary detection is performed through SSS, PBCH or TSS.
  • the terminal should perform blind detection. For example, if the network can select one of the sync periods of ⁇ 5ms, 20ms, 40ms ⁇ , the terminal may use the smallest value 5ms for the detection of the sync signal.
  • B may perform robust decoding of B by combining several Bs periodically transmitted by transmitting the same contents for a predetermined time.
  • a specific period value e.g., 5ms, 20ms, 40ms
  • This period value may be transmitted through one or several of the Sync signals (i.e., PSS, SSS, TSS).
  • PSS PSS, SSS, TSS
  • PSS or SSS sequences may be used according to the period value, and thus the UE may recognize the period of B.
  • TSS it is also possible to indicate period through TSS.
  • TSS uses different sequence but one sequence value is composed of one sequence in Cyclic form to represent several OFDM symbols to distinguish SF boundary. Can be. If the periods of A and B are the same, the UE can find out the periods of A and B through the above scheme.
  • Step 3 The UE decodes B based on the period information obtained in step 2.
  • B may be a single or multiple physical channels and basically transmits essential system information for initial access and random access.
  • B may contain at least the following information: e.g., i) configuration of C (if needed), ii) system BW, iii) system frame number, iv) info for performing RA.
  • Step 4 When C is configured through B, the UE receives C.
  • C may be used for i) cell selection / re-selection, ii) beam-ID acquisition.
  • C cell-selection and re-selection operations of a non-connected UE can be performed through a sync signal (i.e., A).
  • the non-connected UE may perform cell-selection and re-selection through C without performing Step 3.
  • Step 5 Run Random Access. Change to RRC connected state.
  • Step 6 Receive A and B respectively for Sync and PBCH reception in Connected state.
  • Step 7 If C is sent, UE (connected) receives C.
  • C can be used for i) handover and ii) beam-ID update.
  • the UE If the UE performs cell-selection / re-selection based on A in a non-connected state, the UE receives configuration information about C included in B after being connected and i) handover, ii ) Can be used for L1 / L2 mobility.
  • HO operation can be performed based on measurement through sync signal (i.e., A).
  • C may be a predetermined signal for each cell-ID, and in this case, the non-connected UE may not separately receive the PBCH for cell-selection or re-selection. Step 3 not required).
  • C if C does not exist and the non-connected UE performs cell-selection and re-selection through a sync signal (ie, A), Step 3 and Step 4 becomes unnecessary.
  • the non-connected UE performs cell-selection / re-selection through the sync signal (eg, A) without performing Step 3, it performs random access. It can be connected to RRC and can receive configuration B after connection establishment to find out configuration for C and use it for handover and L1 / L2 mobility.
  • the sync signal eg, A
  • the terminal continuously detects the sync sequence to check whether the sync period has been updated from the existing value. At this time, the information is transmitted before the period is actually changed, so that the terminal can immediately receive the updated Sync. At this time,
  • the C and / or F signals for mobility / measurement may be used by the UE to perform handover.
  • the information may include period information of C and / or F, frequency / time mapping information, and the number of antenna ports used to transmit C and / or F.
  • Alt 1-1 When C and F are the same signal and are transmitted together with the sync signal (eg, FIG. 2A), the UE decodes B of the neighboring cell after receiving the A of the neighboring cell, thereby configuring configuration information about C and / or F of the neighboring cell. , pattern, cycle information). Based on this information, it will be used for future measurements for HO.
  • Alt 1-2 When only C is transmitted among C / F of the neighboring cell, the UE decodes B of the neighboring cell after receiving the A of the neighboring cell to find configuration information (mapping, pattern, period information) of the C of the neighboring cell. Based on this information, it will be used for future measurements for HO.
  • configuration information mapping, pattern, period information
  • Alt 1-3 When only the F of the neighboring cell is transmitted, the UE finds the period of the connected sync (i.e., D of the neighboring cell) in the manner described above, and then finds the configuration of the F through decoding of the E of the neighboring cell. Based on this information, it will be used for future measurements for HO.
  • D of the neighboring cell the period of the connected sync
  • Alt 1-4 Or Alt 1-1, 1-2, 1-3.
  • the serving cell TRP is applied to the neighboring cell.
  • Information about the mobility / measurement signal can be informed.
  • the cell-ID of the neighboring cell and the period of C and / or F of the neighboring cell or the period of D of the neighboring cell may be informed through cell-specific RRC signaling or UE-specific RRC signaling.
  • configuration information of C and / or F may be transmitted through cell-specific or UE-specific RRC signaling.
  • the configuration information of C and / or F may include period information, frequency / time mapping information, and the number of antenna ports used to transmit C and / or F.
  • the terminal may perform neighboring cell measurement by finding only period information without other information of neighboring cell C and / or F.
  • Period information of the C and / or F of the neighboring cell may inform the UE of the serving cell's TRP through cell-specific RRC signaling (SIB) or UE-specific RRC signaling.
  • the TRP informs UE of the measurement gap period and the starting point of the measurement gap (e.g., SF number) through UE-specific RRC signaling.
  • the measurement gap specified for the UE DL information about the UE is not transmitted.
  • Sync signal is mobility / measurement signal
  • Alt 2-1-2 After receiving A of the neighboring cell, obtain period information of D through PBCH, and after receiving D, find out configuration information of C and / or F through E. Use C and / or F or A and C and / or F simultaneously for measurement
  • Alt 2-2-2 After receiving A of the neighboring cell, obtain the period information of D through the PBCH of the neighboring cell and use D or A and D for measurement
  • the serving cell base station can inform the information of the mobility / measurement signal of the neighboring cell base station. For example, a period of D and / or a period of C / F may be transmitted together with a Cell-ID of a neighboring cell through SIB (Cell-specific RRC signaling) or UE-specific RRC signaling.
  • SIB Cell-specific RRC signaling
  • UE-specific RRC signaling UE-specific RRC signaling
  • the measurement signal is received through an Rx beam of a direction other than the Rx beam currently associated with the serving cell.
  • the serving cell does not give down the DL signal for the UE while the UE performs the measurement on the neighboring cell (a concept similar to that of FIG. 2C).
  • the interval i.e., measurement gap
  • the way to specify the measurement gap is as follows.
  • the TRP informs UE of the measurement gap period and the starting point of the measurement gap (e.g., SF number) through UE-specific RRC signaling.
  • the measurement gap specified for the UE DL information about the UE is not transmitted.
  • the D of the serving cell is not transmitted.
  • this information can be transmitted to neighboring cells in the following manner:
  • Alt 1-1 The UE finds configuration information (mapping, pattern, period information) about C by decoding B after receiving A of the neighboring cell. Based on this information, it will be used for future measurements for HO.
  • configuration information mapping, pattern, period information
  • Alt 1-2 If C, which is distinguished by cell-ID only, is previously specified, the terminal utilizes C for measurement for HO after receiving A of the neighboring cell.
  • the serving cell base station can inform the information of the mobility / measurement signal of the neighboring cell base station.
  • C-cycle information can be transmitted along with the Cell-ID of the neighboring cell through SIB (Cell-specific RRC signaling) or UE-specific RRC signaling.
  • Update cycle information of Scenario Alt 1 can be performed in the following way.
  • Alt 1 Update the period values of C, D, E, and / or F through Channel B. Only period information for some physical channels of C, D, E, and / or F may be transmitted. The terminal continuously receives the transmitted period value and checks whether it is updated in the existing value.
  • Alt 2 Changed via DCI Indication. Can specify clear time period (e.g., after +2 SF)
  • the terminal continuously detects the sync sequence to check whether the sync period has been updated from the existing value. At this time, the information is transmitted before the period is actually changed, so that the terminal can immediately receive the updated Sync. At this time,
  • the UE When the UE intends to perform HO, it is possible to utilize C, D, E, and / or F of neighboring cells. At this time, when the period of the neighboring cell is changed, it should be known. Although the terminal may directly receive A and / or B to find out the corresponding information, when the serving cell base station delivers the corresponding information to the terminal in the serving cell, the following scheme is possible.
  • Alt 1. Pass through system information. That is, it can be transmitted through physical channel B. This information can be included in the MIB or SIB.
  • Alt 5 Deliver relevant information through PDSCH (message per terminal)
  • the corresponding information can also be transmitted through the channel.
  • the changed period information of the neighboring cell may be transmitted through Alt 1
  • the changed measurement gap information for each terminal may be transmitted through an RRC reconfiguration message.
  • the changed period information of the neighboring cell and the changed measurement gap information for each terminal may be transmitted through the PDSCH.
  • the terminal When the terminal wants to perform measurement on the neighboring cell, if a signal (A, C, D and / or F) capable of performing the measurement of the neighboring cell is not transmitted, the terminal serves a signal for performing the measurement. You can ask for Thereafter, the serving base station transmits the request to the neighboring cell to transmit or do not transmit a signal for measurement.
  • a signal A, C, D and / or F
  • Whether or not the UE transmits the measurement signal of the next cell may be determined through the serving cell base station or directly through the reception of the A / B of the neighboring cell. For example, when the serving cell base station informs the cell-ID of the neighboring cell through the SIB or the UE-specific RRC signal, but the measurement signal information for the corresponding cell is not transmitted in particular, and the terminal is sent to the neighboring cell When performing the measurement, the UE may request to transmit the measurement signal of the neighboring cell to the serving cell through the PUCCH or PDSCH. If the corresponding terminal (terminal requesting measurement signal for neighboring cell A) terminates the connection with the serving cell base station (when performing HO to another cell), the serving cell base station informs the neighboring cell of the corresponding information. It can help to reduce the energy consumption of the base station so that the measurement signal is not transmitted when the neighboring cell is not needed.
  • the UE in the idle state needs to find a reception beam for receiving paging information through UE Rx beam sweeping within a short interval after waking to receive the paging information.
  • a or C may be utilized, and in order to perform the operation in a short time, it is necessary to repeatedly transmit A and C (FIG. 2D).
  • Designing subcarrier spacing for sync transmission for non-connected UE is larger than subcarrier spacing for data transmission, so that the sync signal transmitted in the same beam is repeated several times during nominal symbol duration (one symbol duration of data). do.
  • the UE may perform receiving beam sweeping for selecting an Rx beam through a sync signal transmitted several times within a corresponding time (FIG. 2D).
  • a sync for transmitting a non-connected UE can be repeatedly transmitted several times using the same subcarrier spacing as data (FIG. 2D).
  • a sync signal for a non-connected UE having a high Sync Density characteristic may be occasionally transmitted for terminals waking up to receive paging information.
  • a sync signal for a non-connected UE having a low sync density characteristic is transmitted.
  • the sync signal for the non-connected UE having a high Sync Density characteristic is transmitted every 1000ms, and for the non-connected UE having a low Sync Density characteristic at the remaining transmission time
  • the sync signal is sent. This is shown in Figure 2e.
  • a sync signal for a non-connected UE having a high Sync Density characteristic can be generated in the manner described in Alt 1/2.
  • the terminal to receive the paging information may receive a sync signal for a non-connected UE having a high Sync Density characteristic by getting up earlier than the time when it is supposed to occur, and sync for a non-connected UE having a high sync density characteristic.
  • the period of the signal may be configured through MIB, SIB, UE-specific RRC Signaling, etc. in the connected state.
  • synchronization using PSS and SSS is used to synchronize a subframe (SF) or a slot boundary. Not known. Therefore, it is possible to design the system to know the slot / subframe boundary using the SSS sequence and PBCH information.
  • a new synchronization signal may be introduced for the function (i.e., or tertiary synchronization signal (TSS)). This signal is hereinafter referred to as TSS.
  • TSS tertiary synchronization signal
  • a non-connected UE it is necessary for a non-connected UE to perform measurement on neighboring cells for cell selection or for a cell change for a connected UE.
  • Measurement of the neighboring cells may be performed through a synchronization signal (SS) or a reference signal (RS).
  • SS synchronization signal
  • RS reference signal
  • the synchronization signal may not only be transmitted through a wider beam than the measurement reference signal, but also may be transmitted only in a relatively narrow band, thereby reducing the accuracy of the metric. Therefore, it may be more efficient to use the measurement reference signal for cell selection or cell change of the terminal.
  • the beam sweeping time unit of the synchronization signal and the measurement reference signal is the same (e.g., 2 subframes), and both signals can be used as measurement signals (terminal RRM measurement). Signal ”.
  • signals such as TSS and measurement reference signals must be cell-specific and transmitted periodically, and must also be transmitted by beam sweeping. This is because these signals must be received by all users wherever they are in the cell.
  • FIGS. 2F and 2G the division units of the signal beam-swept in the multi-beam system are shown in FIGS. 2F and 2G.
  • a burst may occupy one slot or one subframe, and a burst set basically includes a signal that is beam sweeped for one period.
  • the burst set period represents the period in which the burst set occurs.
  • the subunit constituting the burst is a block. Each block can be transmitted using a different transmission beam. Each block may consist of a single or a plurality of OFDM symbols.
  • the burst is continuously transmitted within the burst set period, and in FIG. 2G, the burst is transmitted discontinuously within the burst set period.
  • the burst set period of the TSS burst set period and the measurement signal are the same.
  • the UE In order to perform measurement by using the measurement signal, the UE needs to know configuration information of the corresponding measurement signal. In order to receive the corresponding measurement signal in the multi-beam system, the terminal needs the following configuration information:
  • Block number in burst set (ie slot / frame boundary)
  • NR systems are usually based on multiple beams, but some cells (or TRP or TRP groups) may run single-bea systems rather than multiple beams.
  • the single beam-based system is a special case of the multi-beam based system and, unlike the multi-beam based system, does not involve beam sweeping for cell-specific signals. That is, it refers to a situation where there is one block in the burst. If a cell (or TRP or TRP group) supporting the UE is previously informed whether the system is a single beam-based system, much signaling overhead such as feedback related to beam-related information accompanying a multi-beam-based system can be reduced later.
  • Information 4 is to transmit information about this through the TSS.
  • TSS may be utilized to inform the terminal of configuration information of the above-described measurement signal.
  • the terminal has to perform PBCH, so that the information can be obtained more quickly and simply when compared with the case where the measurement reference signal configuration information can be known.
  • Some of the above three pieces of information may be fixed in the standard, in which case it is not necessary to transmit information about the fixed information through the TSS.
  • the terminal uses the synchronization signal as the measurement signal, the information 3 may not necessarily need to be transmitted through the TSS.
  • the TSS design allows for the following embodiments:
  • Embodiment 1-1) It is possible to distinguish information 1 and information 2 by using different versions of cyclic shifts.
  • 2H shows the case where a length L sequence (ie, d (0), ..., d (L-1)) is used as the base sequence for the TSS;
  • One block is one OFDM symbol;
  • a unit occupied by one burst is one subframe;
  • the period of the burst set is one, two, or four frames;
  • An example of a cyclic shift index of a TSS for transmitting the information 1 and 2 is shown.
  • the TSS sequence transmitted in the mth block is
  • the terminal can know information 1 and information 2 through the received TSS sequence.
  • the root index of the TSS detection result sequence received by the UE is r2 and the sequence value is [d (1),... , d (L-1), d (0)], the measurement signal is transmitted through one beam sweeping for two subframes, and the OFDM symbol receiving the TSS is the second OFDM symbol of the subframe ( It can be seen that the symbol number in the subframe is 1).
  • Embodiment 2-2 A TSS structure for transmitting information 1/2/4 is proposed.
  • information 1/2/4 may be transmitted with different root indexes of the TSS sequence, an example of which is shown in FIG. 2L.
  • Embodiment 2-3 A TSS structure for transmitting information 1/2/4 is proposed.
  • information 1/2/4 may be transmitted with different TSS sequence cyclic shift and root index, an example of which is shown in FIG. 2M.
  • Embodiment 3-1) It is possible to distinguish information 1, information 2, and information 3 by using different versions of cyclic shifts and by using different root indexes.
  • FIG. 2N shows a case where a length L sequence with root index u (ie, d u (0), ..., d u (L-1)) is used as the base sequence for TSS;
  • FIG. One block is one OFDM symbol;
  • a unit occupied by one burst is one subframe;
  • the period of the burst set is one, two, or four frames;
  • the number of antenna ports is 1, 2, or 4;
  • An example of a root index and a cyclic shift index of a TSS for transmitting the information 1/2/3 is shown.
  • the TSS sequence transmitted in the mth block by the number of bursts in the burst set is
  • the terminal can know information 1 and information 2 through the received TSS sequence.
  • the root index of the TSS detection result sequence received by the UE is r2 and the sequence value is [d (1),... , d (L-1), d (0)], the measurement signal is transmitted through two antenna ports in one OFDM symbol (ie, transmitted in two different beams), and a burst set It can be seen that the number of bursts is one, and the OFDM symbol receiving the TSS in the burst set is the second OFDM symbol (symbol number in the subframe is 1).
  • information 2 may be distinguished through a TSS sequence root index and information 1 and 3 may be distinguished through a cyclic shift index.
  • Embodiment 3-2 When classifying information 1/2/3/4, as described in Embodiments 1-2 or 2-2, identifying a single beam / multi-beam based system when there is one burst in a burst set TSS sequence root index or TSS sequence cyclic shift may be used for this purpose.
  • the TSS plays a role in delivering the above information (as described above, some information may be selected as a fixed value in the standard, in which case it may not be necessary to transmit the information), based on the information obtained through the TSS PBCH decoding may be performed.
  • the scrambling sequence of the PBCH may be differently applied based on the information transmitted from the TSS, and thus, may reduce the complexity of UE decoding.
  • the method described below can be applied to a burst transmission structure as shown in FIG. 2G.
  • the PBCH is a physical channel for transmitting some or all of minimum system information (minimum SI) in the 3GPP New RAT standard. Therefore, the PBCH should also be transmitted through beam sweeping.
  • minimum SI minimum system information
  • the TSS transmission burst set and the PBCH transmission burst set have the same period.
  • the actual PBCH transmission period may be larger than the PBCH transmission burst set period due to repetitive transmission.
  • the transmission period of the PBCH may be constantly fixed regardless of the period of the burst set for transmitting the measurement signal. For example, when the transmission period of the PBCH is fixed to 4 frames as shown in FIG. 2L, if the period of the measurement signal transmission burst set is 2 frames, the same PBCH information is repeated twice during the transmission period of the PBCH (that is, To decode more robust PBCH information).
  • the scrambling sequence Has a period Q.
  • Scrambling sequence applied to the PBCH transmitted in the first frame Wow Scrambling sequence applied to the PBCH transmitted in the first frame Is the same.
  • the scrambling sequence is changed from frame to frame. In other words, To satisfy Starting at the first frame, obtained by substituting each m The scrambling sequences applied to the PBCH transmitted in the first frame are the same, but different scrambling sequences are used for different m values.
  • the scrambling sequence must be changed for every frame within the PBCH period, and the terminal must bear a somewhat higher PBCH blind decoding complexity in order to find the correct system frame number.
  • the decoding complexity of the UE can be reduced by using fewer scrambling sequences when transmitting the PBCH.
  • the PBCH transmission period changes depending on the total size of the burst set that transmits the measurement signal or the number of slots / subframes occupied.
  • the transmission period of the PBCH is It becomes a 4X subframe.
  • the system frame number (SFN) is If the TSS / PBCH burst set period is K frames and the PBCH transmission period is Q frames, the scrambling sequence Has a period Q.
  • Scrambling sequence applied to the PBCH transmitted in the first frame Wow Scrambling sequence applied to the PBCH transmitted in the first frame Is the same.
  • the scrambling sequence is changed every K frames.
  • the scrambling sequences applied to the PBCH transmitted in the first frame are the same, but different scrambling sequences are used for different m values.
  • the following information may be included in the PBCH.
  • the TSS includes only the block number (ie slot / frame boundary) in the burst.
  • One SS block may include some or all of a reference signal (RS) for PSS, SSS, TSS, PBCH, and PBCH decoding.
  • RS reference signal
  • One OFDM symbol duration is determined based on the subcarrier spacing (SCS) of the data channel, and one SS block is singular or multiple OFDM symbols according to the subcarrier spacing value for transmitting the SS block. Or OFDM subsymbols. For example, if the subcarrier interval of the data channel is 60 kHz and the subcarrier interval value used when transmitting the SS block is 240 kHz, the SS block may form a channel composed of four OFDM subsymbols.
  • the reference signal for PBCH decoding may also be used for the RRM measurement reference signal, and the RRM measurement reference signal may be used for beam selection or cell selection / reselection. Both PSS and SSS may be used for cell-ID detection, or only SSS may be used for cell-ID detection. PSS is basically used to estimate the initial frequency / time offset.
  • the TSS serves to convey information such as slot / frame boundary, SS block number indication in the SS burst, SS burst size, and the number of antenna ports transmitting the RRM measurement reference signal.
  • the PBCH carries some or all of the minimum SI defined in NR. An embodiment of a multiplexing method of the channels in the SS block will be described below.
  • FIG. 2P illustrates an embodiment of multiplexing a reference signal for decoding PSS, SSS, TSS, PBCH, and PBCH.
  • SS block subcarrier spacing 120 kHz
  • SS-BW 40 MHz
  • SS block subcarrier spacing 240 kHz
  • SS-BW 80 MHz
  • RB represents a resource block
  • RE represents a resource element.
  • the SSS as well as the reference signal for decoding the PBCH may be utilized for decoding the PBCH.
  • the order between OFDM symbols or OFDM subsymbols in the SS block may be changed.
  • FIG. 2Q illustrates an embodiment of multiplexing a reference signal for measuring PSS, SSS, TSS, PBCH, and RRM.
  • SS block subcarrier spacing 120 kHz
  • SS-BW 40 MHz
  • SS block subcarrier spacing 240 kHz
  • SS-BW 80 MHz
  • the SSS may be used as a reference signal for PBCH decoding.
  • the order between OFDM symbols or OFDM subsymbols in the SS block may be changed.
  • FIG. 2R illustrates an example of multiplexing a reference signal for measuring PSS, SSS, TSS, PBCH, and RRM.
  • SS block subcarrier spacing 120 kHz
  • SS-BW 40 MHz
  • SS block subcarrier spacing 240 kHz
  • SS-BW 80 MHz
  • the PSS and the TSS may be transmitted at subcarrier intervals corresponding to twice the SS block subcarrier intervals.
  • the SSS may be used as a reference signal for PBCH decoding.
  • FIG. 2S shows an embodiment of multiplexing a reference signal for measuring PSS, SSS, TSS, PBCH, and RRM.
  • SS block subcarrier spacing 120 kHz
  • SS-BW 40 MHz
  • SS block subcarrier spacing 240 kHz
  • SS-BW 80 MHz
  • the SSS may be used as a reference signal for PBCH decoding.
  • the order between OFDM symbols or OFDM subsymbols in the SS block may be changed.
  • FIG. 2T illustrates an embodiment of multiplexing a reference signal for measuring PSS, SSS, TSS, PBCH, and RRM.
  • SS block subcarrier spacing 120 kHz
  • SS-BW 40 MHz
  • SS block subcarrier spacing 240 kHz
  • SS-BW 80 MHz
  • the SSS may be used as a reference signal for PBCH decoding.
  • the order between OFDM symbols or OFDM subsymbols in the SS block may be changed.
  • 2u is a diagram illustrating a configuration of a terminal according to an embodiment of the present invention.
  • the terminal may include a transceiver 2u-10, a controller 2u-20, and a storage 2u-30.
  • the control unit 2u-20 may be defined as a circuit or an application specific integrated circuit or at least one processor.
  • the transceiver 2u-1010 may exchange a signal with another network entity.
  • the transceiver 2u-10 may receive system information from, for example, a base station, and may receive a synchronization signal or a reference signal.
  • the controller 2u-20 may control the overall operation of the terminal according to the embodiment proposed by the present invention.
  • the controller 2u-20 may control the operation of the terminal described with reference to FIGS. 2A to 2T of the present invention.
  • the storage unit 2u-30 may store at least one of information transmitted / received through the transmission / reception unit 2u-10 and information generated by the control unit 2u-20.
  • FIG. 2V is a diagram illustrating a configuration of a base station according to an embodiment of the present invention.
  • the configuration of the base station in Figure 2v may be used as a structure of the TRP.
  • the TRP may be configured as part of the configuration of the base station.
  • the base station may include a transceiver 2v-10, a controller 2v-20, and a storage 2v-30.
  • the control unit 2v-20 may be defined as a circuit or application specific integrated circuit or at least one processor.
  • the transceiver 2v-10 may transmit and receive signals with other network entities.
  • the transceiver 2v-10 may transmit system information to the terminal, for example, and may transmit a synchronization signal or a reference signal.
  • the controller 2v-20 may control the overall operation of the base station according to the embodiment proposed by the present invention.
  • the controller 2v-20 may control the operation of the base station described with reference to FIGS. 2A to 2T of the present invention.
  • the storage unit 2v-30 may store at least one of information transmitted / received through the transmission / reception unit 2v-10 and information generated by the control unit 2v-20.

Abstract

본 개시는 LTE와 같은 4G 통신 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 또는 pre-5G 통신 시스템에 관련된 것이다. 본 발명의 실시 예에 따르면, 단말의 송신 전력 결정 방법에 있어서, 기지국으로부터 단말 특정 송신전력 파라미터를 수신하는 단계 상기 단말 특정 송신전력 파라미터 및 상기 단말에 할당된 서브캐리어 간격(subcarrier spacing)에 기반하여 상기 단말의 송신전력을 결정하는 단계 및 상기 결정된 송신전력에 기반하여 상향링크 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법 및 이를 수행하는 장치를 제공할 수 있다.

Description

빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
본 발명은 빔포밍 시스템에서 단말의 전력 제어 방법에 관한 것으로, 구체적으로 빔의 변화에 따른 단말의 상향링크 전력제어를 지원하기 위한 방법 및 장치에 관한 것이다.
또한, 본 발명은 3GPP NR sync signals, essential system information (required for initial access and random access procedure), and measurement RS 디자인, sync signal 및 PBCH (physical broadcast control channel) 설계, SS (synchronization signal) 블록 설계에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다.
높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다.
또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다.
이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
본 발명의 실시 예는 송신 전력 제어 방법 및 장치를 제공하는 것을 목적으로 한다. 또한, 본 발명의 실시 예는 빔포밍 시스템에서 빔의 변화에 따른 상향링크 송신전력 제어를 동작시키기 위한 단말 및 기지국의 동작 방법 및 장치를 제공하는 것을 그 목적으로 한다.
또한, 본 발명의 실시 예는 동기 신호 및/또는 제어 채널 전송 방법 및 장치를 제공하는 것을 목적으로 한다. 또한, 본 발명의 실시 예는 Sync의 주기가 가변적인 시스템에서 Sync를 제외한 DL Common Control 채널의 전송 방식 및 Sync 주기를 전송하는 방식을 제공하며, Sync 신호 설계 및 그에 따른 PBCH 스크램블링 시퀀스 설계 방식을 제공하는 것을 목적으로 한다.
본 발명의 실시 예는 단말의 송신 전력 결정 방법에 있어서, 기지국으로부터 단말 특정 송신전력 파라미터를 수신하는 단계; 상기 단말 특정 송신전력 파라미터 및 상기 단말에 할당된 서브캐리어 간격(subcarrier spacing)에 기반하여 상기 단말의 송신전력을 결정하는 단계; 및 상기 결정된 송신전력에 기반하여 상향링크 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법을 제공한다.
또한, 본 발명의 실시 예는 단말에 있어서, 신호를 송신 및 수신하는 송수신부; 및 기지국으로부터 단말 특정 송신전력 파라미터를 수신하고, 상기 단말 특정 송신전력 파라미터 및 상기 단말에 할당된 서브캐리어 간격(subcarrier spacing)에 기반하여 상기 단말의 송신전력을 결정하며, 상기 결정된 송신전력에 기반하여 상향링크 신호를 전송하도록 제어하는 제어부를 포함하는 단말을 제공한다.
또한, 본 발명의 실시 예는 기지국에 동작 방법에 있어서, 서브캐리어 간격(subcarrier spacing) 설정 정보를 포함하는 메시지를 단말에 전송하는 단계; 상기 단말에게 단말 특정 송신전력 파라미터를 전송하는 단계; 및 상기 단말로부터 상향링크 신호를 수신하는 단계를 포함하고, 상기 상향링크 신호의 송신전력은 상기 단말 특정 송신전력 파라미터 및 상기 서브캐리어 간격 설정 정보에 기반하여 결정되는 것을 특징으로 하는 방법을 제공한다.
또한, 본 발명의 실시 예는, 기지국에 있어서, 신호를 송신 및 수신하는 송수신부; 및 서브캐리어 간격(subcarrier spacing) 설정 정보를 포함하는 메시지를 단말에 전송하고, 상기 단말에게 단말 특정 송신전력 파라미터를 전송하며, 상기 단말로부터 상향링크 신호를 수신하도록 제어하는 제어부를 포함하고, 상기 상향링크 신호의 송신전력은 상기 단말 특정 송신전력 파라미터 및 상기 서브캐리어 간격 설정 정보에 기반하여 결정되는 것을 특징으로 하는 기지국을 제공한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따르면 효율적인 전력 제어 방법을 제공할 수 있다. 또한, 본 발명의 실시 예에 따르면 빔포밍을 사용하는 시스템에서 빔의 변화에 따른 전력제어를 통해 인접 셀로 야기하는 간섭을 최소화 할 수 있다.
또한, 본 발명의 실시 예에 따르면 동기 신호 및 제어 채널 전송 방법을 제공할 수 있다. 또한, 본 발명의 실시 예에 따르면 Sync의 주기가 가변적인 시스템에서 Sync를 제외한 DL Common Control 채널의 전송 방식 및 Sync 주기를 전송하는 방식을 제공할 수 있다.
도 1a는 본 발명의 일 실시 예에 따른 단말의 송신전력 제어를 위한 파라미터 전송에 대한 예시를 나타내는 도면이다.
도 1b는 본 발명의 일 실시 예에 따른 랜덤 액세스 과정에서 단말의 송신전력 제어를 위한 파라미터 전송에 대한 예시를 나타내는 도면이다.
도 1c는 본 발명의 일 실시 예에 따른 랜덤 액세스 과정에서 단말의 송신전력 제어에 대한 단말의 동작 예시를 나타내는 도면이다.
도 1d는 본 발명의 일 실시 예에 따른 랜덤 액세스 과정에서 단말의 송신전력 제어에 대한 또 다른 단말의 동작 예시를 나타내는 도면이다.
도 1e는 본 발명의 일 실시 예에 따른 랜덤 액세스 과정에서 단말의 송신전력 제어에 대한 또 다른 단말의 동작 예시를 나타내는 도면이다.
도 1f는 본 발명의 일 실시 예에 따른 RRC Connection Setup 이후 단말의 송신전력 제어를 위한 파라미터 예시를 나타내는 도면이다.
도 1g는 본 발명의 일 실시 예에 따른 RRC Connection Setup 이후 단말의 송신전력 제어를 위한 또 다른 파라미터 예시를 나타내는 도면이다.
도 1h는 본 발명의 일 실시 예에 따른 Power Headroom Reporting (PHR)에 기반한 단말의 상향링크 송신 빔 변경 관련 기지국과 단말의 동작 예시를 나타내는 도면이다.
도 1i는 본 발명의 일 실시 예에 따른 한 셀 내에서 (또는 하나의 기지국이) 서로 다른 subcarrier spacing을 사용할 때, 단말 동작의 예시를 나타내는 도면이다.
도 1j는 본 발명의 일 실시 예에 따른 상향링크 데이터 및 제어 정보 전송을 위한 서브프레임 예시를 나타내는 도면이다.
도 1k는 본 발명의 일 실시 예에 따른 상향링크 데이터 및 제어 정보 전송을 위한 서브프레임의 또 다른 예시를 나타내는 도면이다.
도 1l 본 발명의 일 실시 예에 따른 상향링크 데이터 및 제어 정보 전송을 위한 서브프레임의 또 다른 예시를 나타내는 도면이다.
도 1m 본 발명의 일 실시 예에 따른 상향링크 데이터 및 제어 정보 전송을 위한 서브프레임의 또 다른 예시를 나타내는 도면이다.
도 1n는 본 발명의 일 실시 예에 따른 Channel Sounding을 위한 Reference Signal 전송의 예시를 나타내는 도면이다.
도 1o는 본 발명의 일 실시 예에 따른 Channel Sounding을 위한 Reference Signal 전송의 또 다른 예시를 나타내는 도면이다.
도 1p는 본 발명의 일 실시 예에 따른 단말과 기지국의 동작을 나타내는 도면이다.
도 1q는 본 발명의 일 실시 예에 따른 단말의 구성을 나타내는 도면이다.
도 1r는 본 발명의 일 실시 예에 따른 기지국의 구성을 나타내는 도면이다.
도 2a는 본 발명의 일 실시 예에 따른 Scenario Alt 1을 나타내는 도면이다.
도 2b는 본 발명의 일 실시 예에 따른 Scenario Alt 2를 나타내는 도면이다.
도 2c는 본 발명의 일 실시 예에 따른 Scenario Alt 1의 neighboring cell measurement 관련 실시 예를 나타내는 도면이다.
도 2d는 본 발명의 일 실시 예에 따른 Scenario Alt 1의 다른 실시 예를 나타내는 도면이다.
도 2e는 본 발명의 일 실시 예에 따른 Scenario Alt 1의 다른 실시 예를 나타내는 도면이다.
도 2f는 본 발명의 일 실시 예에 따른 다중 빔 시스템에서 beam sweeping되는 신호의 단위: 블락, 버스트, 버스트 세트 (연속 버스트)를 나타내는 도면이다.
도 2g는 본 발명의 일 실시 예에 따른 다중 빔 시스템에서 beam sweeping되는 신호의 단위: 블락, 버스트, 버스트 세트 (비연속 버스트)를 나타내는 도면이다.
도 2h는 본 발명의 일 실시 예에 따른 버스트 세트 내 버스트 개수 별 버스트 세트 m번째 블록에 해당되는 cyclic shift 인덱스를 나타내는 도면이다.
도 2i는 본 발명의 일 실시 예에 따른 버스트 세트 내 버스트 개수 별 버스트 세트 m번째 블록에 해당되는 cyclic shift 인덱스 2를 나타내는 도면이다.
도 2j는 본 발명의 일 실시 예에 따른 버스트 세트 내 버스트 개수 별 버스트 세트 m번째 블록에 해당되는 cyclic shift 인덱스. 버스트 세트의 시작점을 알려주지 않는 경우를 나타내는 도면이다.
도 2k는 본 발명의 일 실시 예에 따른 버스트 세트 내 버스트 개수 별 루트인덱스 및 버스트 세트 m번째 블록에 해당되는 cyclic shift 인덱스를 나타내는 도면이다.
도 2l는 본 발명의 일 실시 예에 따른 버스트 세트 내 버스트 개수 별 루트인덱스 및 버스트 세트 m번째 블록에 해당되는 cyclic shift 인덱스 2를 나타내는 도면이다.
도 2m는 본 발명의 일 실시 예에 따른 버스트 세트 내 버스트 개수 별 루트인덱스 및 버스트 세트 m번째 블록에 해당되는 cyclic shift 인덱스 3을 나타내는 도면이다.
도 2n는 본 발명의 일 실시 예에 따른 안테나 포트 개수 및 버스트 세트 내 버스트 개수 별 루트인덱스 및 m번째 블록에 해당되는 cyclic shift 인덱스를 나타내는 도면이다.
도 2o는 본 발명의 일 실시 예에 따른 TSS/PBCH 버스트 세트 주기 = 2 프레임, PBCH 전송 주기 = 4 프레임일 경우를 나타내는 도면이다.
도 2p는 본 발명의 일 실시 예에 따른 SS 블록 내 PSS, SSS, TSS, PBCH, PBCH 디코딩을 위한 기준신호 간 multiplexing을 나타내는 도면이다.
도 2q는 본 발명의 일 실시 예에 따른 SS 블록 내 PSS, SSS, TSS, PBCH 간 multiplexing 1을 나타내는 도면이다.
도 2r은 본 발명의 일 실시 예에 따른 SS 블록 내 PSS, SSS, TSS, PBCH 간 multiplexing 2를 나타내는 도면이다.
도 2s는 본 발명의 일 실시 예에 따른 SS 블록 내 PSS, SSS, TSS, PBCH 간 multiplexing 3을 나타내는 도면이다.
도 2t는 본 발명의 일 실시 예에 따른 SS 블록 내 PSS, SSS, TSS, PBCH 간 multiplexing 4를 나타내는 도면이다.
도 2u는 본 발명의 일 실시 예에 따른 단말의 구성을 나타내는 도면이다.
도 2v는 본 발명의 일 실시 예에 따른 기지국의 구성을 나타내는 도면이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예에서 단말은 terminal, UE(user equipment) 등으로 지칭할 수 있다. 본 발명의 실시 예에서 기지국은 base station, eNB, gNB, TRP(transmission and reception point) 등으로 지칭할 수 있다.
<제1 실시 예>
본 발명의 실시 예는 송신 전력 제어 방법 및 장치를 제공한다. 또한, 본 발명의 실시 예는 빔포밍을 적용한 시스템에서 단말의 상향링크로 송신하는 데이터 및 제어채널의 송신 전력 제어를 위한 기지국과 단말의 동작 방법 및 장치를 포함한다.
LTE 셀룰러 통신 시스템의 상향링크 데이터 채널 (PUSCH: Physical Uplink Shared Channel)에 대한 송신 전력 제어는 하기의 [수학식 1-a]와 같다.
[수학식 1-a]
Figure PCTKR2017012394-appb-I000001
상기 수학식 1-a는 단말의 i 번째 subframe에서 상향링크 데이터 전송을 위한 물리 채널인 PUSCH (Physical Uplink Shared Channel)의 송신전력, PPUSCH(i)를 나타낸다. 이때, P0_PUSCH는 P0_NOMINAL_PUSCH + P0_UE_PUSCH로 구성된 파라미터 이며 higher layer signaling (RRC signaling)을 통해 기지국이 단말에게 알려주는 값이다. 특히, P0_NOMINAL_PUSCH 는 8-bit 정보로 구성된 셀-특정 (cell-specific)한 값으로 [-126, 24]dB의 범위를 갖는다. 또한 P0_UE_PUSCH 는 4-bit 정보로 구성된 단말-특정 (UE-specific)한 값으로 [-8, 7]dB의 범위를 갖는다. Cell-specific한 값은 Cell-specific RRC signaling (SIB: System Information Block)을 통해 기지국이 전송하며, UE-specific한 값은 dedicated RRC signaling을 통해 기지국이 단말로 전송한다. 이때, j는 PUSCH의 grant 방식을 의미하며 보다 구체적으로, j = 0은 semi-persistent grant를 의미하고, j = 1은 dynamic scheduled grant, 그리고 j = 2는 random access response에 대한 PUSCH grant를 의미한다. 한편,
Figure PCTKR2017012394-appb-I000002
는 경로손실 (path-loss)을 보상하기 위한 값으로,
Figure PCTKR2017012394-appb-I000003
Figure PCTKR2017012394-appb-I000004
의 경우, 기지국은 {0, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} 중의 하나의 값을 3-bit 정보를 통해 cell-specific하게 셀 내의 모든 단말에게 알려준다.
Figure PCTKR2017012394-appb-I000005
= 1 값을 사용한다.
PL은 단말이 계산하는 경로손실 값으로, 기지국이 전송하는 하향링크 채널의 CRS (Cell-specific Reference Signal)의 수신 전력을 통해 계산한다. 보다 구체적으로, 기지국은 UE-specific 또는 Cell-specific RRC signaling을 통해 referenceSignalPower 및 filtering coefficient를 단말로 전송하며, 이를 기반하여 단말은 경로 손실을 다음과 같이 계산한다.
[수학식 1-b]
Figure PCTKR2017012394-appb-I000006
Figure PCTKR2017012394-appb-I000007
는 MCS에 관련된 값으로 다음과 같이 구성된다.
[수학식 1-c]
Figure PCTKR2017012394-appb-I000008
Ks는 higher layer 파라미터, deltaMCS-Enabled에 의해 주어지는 값이고, BPRE (Bits per Resource Element)는 다음과 같이 계산될 수 있다.
Figure PCTKR2017012394-appb-I000009
은 상향링크 제어정보가 UL-SCH 데이터 없이 PUSCH로 전송되는 경우에 한해
Figure PCTKR2017012394-appb-I000010
값을 가지며, 나머지 경우에 대해
Figure PCTKR2017012394-appb-I000011
을 사용한다.
[수학식 1-d]
Figure PCTKR2017012394-appb-I000012
C는 code block의 수, Kr은 code block 'r'의 크기, OCQI는 CRC를 포함한 CQI/PMI 비트수, 그리고 NRE 는 resource element의 수를 나타낸다.
f(i)는 Closed-loop으로 전력제어를 수행하기 위한 파라미터이며, accumulation 기반의 전력제어 또는 absolute value 기반의 전력제어를 수행하는지에 따라 달라질 수 있다. accumulation 기반의 전력제어 또는 absolute value 기반의 전력제어를 수행하는지의 여부는, higher layer signaling (dedicated RRC signaling)을 통해 단말로 전송된다. 예를 들어, Accumulation-enabled = on 되면 단말은 accumulation 기반의 전력제어를 수행하고, Accumulation-enabled = off 되면, 단말은 absolute value 기반의 전력제어를 수행한다.
Accumulation 기반의 전력제어에서
Figure PCTKR2017012394-appb-I000013
로 동작한다. 즉, i-번째 subframe에서 f(i)는 이전 subframe (즉, i - 1번째 subframe)에서 사용한 f(i-1) 값에
Figure PCTKR2017012394-appb-I000014
번째 subframe에서 하향링크 제어채널 (PDCCH: Physical Downlink Control Channel)을 통해 DCI로 단말에게 전송했던
Figure PCTKR2017012394-appb-I000015
값을 accumulation해서 사용하게 된다. FDD 시스템에서
Figure PCTKR2017012394-appb-I000016
이며, TDD 시스템에서
Figure PCTKR2017012394-appb-I000017
는 DL/UL Configuration에 따라 서로 다른 값을 가질 수 있다.
Figure PCTKR2017012394-appb-I000018
Absolute value 기반의 전력제어에서
Figure PCTKR2017012394-appb-I000019
로 동작한다. 즉, i-번째 subframe에서 f(i)
Figure PCTKR2017012394-appb-I000020
번째 subframe에서 하향링크 제어채널 (PDCCH: Physical Downlink Control Channel)을 통해 DCI로 단말에게 전송했던
Figure PCTKR2017012394-appb-I000021
값을 accumulation 없이 바로 사용하게 된다. FDD 시스템에서
Figure PCTKR2017012394-appb-I000022
이며, TDD 시스템에서
Figure PCTKR2017012394-appb-I000023
는 Table 1-a와 같이 DL/UL Configuration에 따라 서로 다른 값을 가질 수 있다.
Accumulation 기반의 전력제어와 Absolute value 기반의 전력제어에 사용되는
Figure PCTKR2017012394-appb-I000024
값은 DCI format에 따라 달라질 수 있다. 예를 들어, DCI format 0, 3, 그리고 4의 경우 Table 1-b의 값을 사용하고, DCI format 3A의 경우 Table 1-c의 값을 사용한다.
Figure PCTKR2017012394-appb-I000025
한편, LTE 셀룰러 통신 시스템의 상향링크 제어 채널 (PUCCH: Physical Uplink Control Channel)에 대한 송신 전력 제어는 하기의 [수학식 1-e]와 같다.
[수학식 1-e]
Figure PCTKR2017012394-appb-I000026
상기 수학식 1-e는 단말의 i 번째 subframe에서 상향링크 제어정보 전송을 위한 물리 채널인 PUCCH (Physical Uplink Control Channel)의 송신전력,
Figure PCTKR2017012394-appb-I000027
를 나타낸 것이다. 이때,
Figure PCTKR2017012394-appb-I000028
Figure PCTKR2017012394-appb-I000029
로 구성된 파라미터 이며 higher layer signaling (RRC signaling)을 통해 기지국이 단말에게 알려주는 값이다. 특히,
Figure PCTKR2017012394-appb-I000030
는 8-bit 정보로 구성된 셀-특정 (cell-specific)한 값으로 [-126, 24]dB의 범위를 갖는다. 또한
Figure PCTKR2017012394-appb-I000031
는 4-bit 정보로 구성된 단말-특정 (UE-specific)한 값으로 [-8, 7]dB의 범위를 갖는다. Cell-specific한 값은 Cell-specific RRC signaling (SIB: System Information Block)을 통해 기지국이 전송하며, UE-specific한 값은 dedicated RRC signaling을 통해 기지국이 단말로 전송한다. 한편, PUSCH의 송신전력 제어와 달리, PUCCH 송신전력 제어에서는 경로 손실을 보상하는
Figure PCTKR2017012394-appb-I000032
가 사용되지 않는다.
단말이 계산하는 경로손실 값인 PL은 PUSCH의 송신전력 제어에서와 마찬가지로, 기지국이 전송하는 하향링크 채널의 CRS (Cell-specific Reference Signal)의 수신 전력을 통해 계산한다. 보다 구체적으로, 기지국은 UE-specific 또는 Cell-specific RRC signaling을 통해 referenceSignalPowerfiltering coefficient를 단말로 전송하며, 이를 기반하여 단말은 경로 손실을 [수학식 1-b]와 같이 계산한다.
Figure PCTKR2017012394-appb-I000033
는 higher layer signaling (Cell-specific or UE-specific RRC signaling)을 통해 단말로 전송되며, PUCCH의 format에 따라 가변하는 값으로 PUCCH format 1a (1-bit HARQ-ACK/NACK 전송)을 기준으로 상대적인 값을 진다.
Figure PCTKR2017012394-appb-I000034
값은 Table 1-d와 같이 구성된다.
Figure PCTKR2017012394-appb-I000035
Figure PCTKR2017012394-appb-I000036
는 PUCCH가 2-antanna ports로 전송되는 경우 (즉, SFBC: Space Frequency Block Code) higher layer signaling (Cell-specific or UE-specific RRC signaling)을 통해 단말로 전송되며, PUCCH의 format에 따라 가변하는 값이다. SFBC가 사용되지 않는 경우,
Figure PCTKR2017012394-appb-I000037
이다.
Figure PCTKR2017012394-appb-I000038
값은 Table 1-e와 같이 구성된다.
Figure PCTKR2017012394-appb-I000039
Figure PCTKR2017012394-appb-I000040
는 PUCCH format에 따라 다른 값이 사용되며, 이때
Figure PCTKR2017012394-appb-I000041
는 channel quality information의 피드백에 사용되는 비트수를 의미하고,
Figure PCTKR2017012394-appb-I000042
는 HARQ-ACK/NACK 피드백에 사용되는 비트수, 그리고
Figure PCTKR2017012394-appb-I000043
는 Scheduling Request의 피드백에 사용되는 비트로서 0 또는 1이다. 보다 구체적으로, PUCCH format 1, 1a, 그리고 1b에서
Figure PCTKR2017012394-appb-I000044
이다. PUCCH format 2, 2a, 그리고 2b에서 Normal CP를 사용하는 경우,
Figure PCTKR2017012394-appb-I000045
는 다음과 같다.
[수학식 1-f]
Figure PCTKR2017012394-appb-I000046
PUCCH format 2에서 Extended CP를 사용하는 경우,
Figure PCTKR2017012394-appb-I000047
는 다음과 같다.
[수학식 1-g]
Figure PCTKR2017012394-appb-I000048
PUCCH format 3에서
Figure PCTKR2017012394-appb-I000049
는 다음과 같다.
[수학식 1-h]
Figure PCTKR2017012394-appb-I000050
Figure PCTKR2017012394-appb-I000051
는 Closed-loop으로 전력제어를 수행하기 위한 파라미터이며, 기지국은 UE-specific하게 PUCCH 전송전력을 Correction할 수 있다. PUCCH 전송전력 제어에서는 PUSCH의 전송전력 제어와 달리, accumulation 기반의 송신전력 제어만이 이루이지며,
Figure PCTKR2017012394-appb-I000052
는 [수하긱 1-i]와 같이 주어진다.
[수학식 1-i]
Figure PCTKR2017012394-appb-I000053
즉, i-번째 subframe에서
Figure PCTKR2017012394-appb-I000054
는 이전 subframe (즉, i - 1번째 subframe)에서 사용한
Figure PCTKR2017012394-appb-I000055
값에
Figure PCTKR2017012394-appb-I000056
번재 subframe에서 하향링크 제어채널 (PDCCH: Physical Downlink Control Channel)을 통해 DCI로 단말에게 전송했던
Figure PCTKR2017012394-appb-I000057
값을 accumulation해서 사용하게 된다. FDD 시스템에서
Figure PCTKR2017012394-appb-I000058
이며, TDD 시스템에서
Figure PCTKR2017012394-appb-I000059
는 [Table 1-f]와 같이 DL/UL Configuration에 따라 서로 다른 값을 가질 수 있다.
Figure PCTKR2017012394-appb-I000060
Figure PCTKR2017012394-appb-I000061
값은 DCI format에 따라 달라질 수 있으며, DCI format 1A/1B/1D/1/2A/2B/2C/2/3에 대해서는 Table 1-b의 accumulated
Figure PCTKR2017012394-appb-I000062
와 동일한 값을 사용하며, DCI format 3A의 경우,
Figure PCTKR2017012394-appb-I000063
값은 Table 1-c에서 사용한
Figure PCTKR2017012394-appb-I000064
값과 동일한 값을 사용한다.
단말의 상향링크 송신전력 제어의 주 목적은 인접셀로 야기하는 간섭 양의 최소화 및 단말의 전력소모 최소화이다. 또한, 셀 내 단말의 위치에 관계없이 기지국이 수신하는 수신 신호의 세기를 일정하게 유지함으로써, 단말의 송신신호가 기지국 수신단 AGC (Automatic Gain Control)의 Dynamic Range 내에 들어오게끔 하기 위함이다. 이러한 전송전력 제어는 동일 목적으로 빔포밍 시스템에서 적용될 수 있다. 그러나 빔포밍 시스템에서는 단말이 어떤 빔을 사용해서 송신하는지에 따라 인접셀로 야기하는 간섭 및 기지국이 수신하는 수신 신호의 세기가 달라질 수 있다. 예를 들어, 특정 단말은 빔포밍을 지원하지 않는 Omni-antenna를 사용하여 전송할 수 있다. 적은 수의 antenna elements를 장착한 또 다른 단말은 wide beam을 이용하여 상향링크 데이터 및 제어정보를 송신할 수 있다. 그리고 다수의 antenna elements를 장착한 또 다른 단말은 narrow beam을 이용하여 상향링크 데이터 및 제어정보를 송신할 수 있다. 따라서 이러한 단말의 송신 beam에 따라 서로 다른 송신전력 제어 파라미터가 사용될 필요가 있다.
도 1a는 본 발명의 일 실시 예에 따른 기지국의 송신전력 제어 파라미터 전송에 대한 예시를 나타내는 도면이다. 기지국은 단말과의 Capability negotiation (단말의 능력 협상) 이전까지, 단말의 능력을 알 수 없기 때문에, 셀 내에 접속한 모든 단말이 단말의 능력에 관계없이, 공통적으로 사용할 수 있는 default 송신전력 파라미터를 전송할 수 있다(1a-10). 예를 들어,
Figure PCTKR2017012394-appb-I000065
는 cell-specific 한 파라미터인
Figure PCTKR2017012394-appb-I000066
와 UE-specific한 파라미터인
Figure PCTKR2017012394-appb-I000067
로 구성된다. 이와 유사하게,
Figure PCTKR2017012394-appb-I000068
는 cell-specific 한 파라미터인 와 UE-specific한 파라미터인
Figure PCTKR2017012394-appb-I000070
로 구성된다. 이때, cell-specific한 파라미터인
Figure PCTKR2017012394-appb-I000071
Figure PCTKR2017012394-appb-I000072
는 MIB (Master Information Block) 또는 SIB (System Information Block)와 같이 기지국이 broadcast 하는 제어 채널을 통해 단말에게 전송될 수 있다. 또 다른 일 예로,
Figure PCTKR2017012394-appb-I000073
Figure PCTKR2017012394-appb-I000074
는 common search space를 구성하는 common DCI(downlink control information)을 통해 전송될 수 있다. 단말이 기지국에 접속하기 이전의 상태에서 UE-specific한 파라미터인
Figure PCTKR2017012394-appb-I000075
Figure PCTKR2017012394-appb-I000076
는 단일 default 값으로 단말과 기지국에 내장돼 있을 수 있다.
또 다른 일 예로, 기지국은 MIB, SIB 또는 common DCI와 같은 broadcast 채널을 통해 하나 또는 2개 이상의 default 값을 configuration할 수 있다. 예를 들어, 기지국은 Omni-antenna를 사용하는 단말을 위한 default 값, wide beam을 사용하는 단말을 위한 default 값, 그리고 narrow beam을 사용하는 단말을 위한 default 값들 중 하나 또는 그 이상을 configuration할 수 있다. 단말은 이러한 default 값들을 도 1a에서와 같이 기지국으로부터의 추가적인 명령이 있기 전까지 계속 사용할 수 있다. 이러한 기지국의 추가적인 명령 (
Figure PCTKR2017012394-appb-I000077
Figure PCTKR2017012394-appb-I000078
값의 update)은 RRC Connection Setup (1a-30) 후 (또는 랜덤 액세스 절차 (1a-30) 수행 후), UE-specific한 RRC signaling을 통해 이루어지거나 또는 L1-signaling (PDCCH)을 통해 이루어질 수 있다 (1a-40). L1-signaling을 통해
Figure PCTKR2017012394-appb-I000079
Figure PCTKR2017012394-appb-I000080
값의 Update가 이루어지는 경우, 기지국은 dedicated PDCCH를 통해 각 UE별로 전송되는 PDCCH에 Update된
Figure PCTKR2017012394-appb-I000081
Figure PCTKR2017012394-appb-I000082
값을 포함하거나, default 값과의 차이 (offset 값)를 나타내는 값을 포함시켜 전송할 수 있다. 또 다른 일 예로, 기지국은 전력제어를 위한 별도의 DCI를 통해 둘 이상의 UE들에게 Update된
Figure PCTKR2017012394-appb-I000083
Figure PCTKR2017012394-appb-I000084
값을 전송하거나, offset 값을 전송할 수 있다.
한편, 시그널링 오버헤드를 줄이기 위해 Cell-specific 그리고 UE-specific한 파라미터들의 구분 없이, 단일
Figure PCTKR2017012394-appb-I000085
Figure PCTKR2017012394-appb-I000086
값을 사용할 수 있다. 이러한 값은 UE-specific RRC signaling을 통해 dedicated하게 각 단말로 전송되거나 Cell-specific하게 전송될 수 있다. 따라서 기지국과 단말과의 능력협상 이전에 단말이 상향링크 데이터 및 제어정보 전송을 위해 사용할 수 있는 default
Figure PCTKR2017012394-appb-I000087
Figure PCTKR2017012394-appb-I000088
값이 필요하다. 이러한 default 값은 앞서 언급한 것처럼 기지국과 단말에 내장돼 있거나, 기지국이 MIB, SIB 또는 common DCI를 통해 configuration할 수 있다.
단말은 이러한 default 값들을 도 1a에서와 같이 기지국으로부터의 추가적인 명령(1a-40)이 있기 전까지 계속 사용할 수 있다. 이러한 기지국의 추가적인 명령 (
Figure PCTKR2017012394-appb-I000089
Figure PCTKR2017012394-appb-I000090
값의 update)은 RRC Connection Setup (1a-30) 후 (또는 랜덤 액세스 절차 (1a-20) 수행 후), UE-specific한 RRC signaling을 통해 이루어지거나 또는 L1-signaling (PDCCH)을 통해 이루어질 수 있다.
단말은 default 송신전력 파라미터에 기반하여 송신 전력을 결정할 수 있다. 단말은 default 송신전력 파라미터에 기반하여 상향링크 PUSCH 송신 전력 및/또는 상향링크 PUCCH 송신 전력을 결정할 수 있다. default 송신전력 파라미터는 단말이 단말 특정 송신전력 파라미터를 수신하기 이전까지 송신 전력을 결정하는데 사용할 수 있다. 단말이 단말 특정 송신전력 파라미터를 수신하면 단말은 단말 특정 송신 전력 파라미터를 이용하여 단말의 상향링크 송신 전력을 결정할 수 있다. 단말은 단말 특정 송신전력 파라미터에 기반하여 상향링크 PUSCH 송신전력 및/또는 상향링크 PUCCH 송신 전력을 결정할 수 있다. 단말 특정 송신전력 파라미터는 default 송신전력 파라미터 보다 우선 순위가 높을 수 있다. 따라서 단말이 default 송신전력 파라미터와 단말 특정 송신전력 파라미터를 모두 수신한 경우, 단말 특정 송신전력 파라미터를 사용하여 송신 전력을 결정하는 것에 우선 순위가 있을 수 있다.
단말은 송신전력 파라미터에 기반하여 송신전력을 결정, 확인, 계산, 획득할 수 있고, 획득한 송신전력 값에 기반하여 PUCCH 또는 PUSCH를 전송할 수 있다.
도 1b는 본 발명의 일 실시 예에 따른 랜덤 액세스 과정에서 단말의 송신전력 제어를 위한 파라미터 전송에 대한 예시이다. 도 1b는 도 1a의 1a-20 동작에 대응할 수 있다. 1b-10 동작에서 단말은 랜덤 액세스 프리앰블을 전송하며, 이때 랜덤 액세스 프리앰블의 전송에 사용되는 송신전력 파라미터들은 MIB, SIB 또는 Common DCI를 통해 기지국으로부터 전송될 수 있다. 예를 들어, 기지국은 preambleInitialReceivedTargetPowerpowerRampingStep 파라미터를 SIB를 통해 전송하며, preambleInitialReceivedTargetPower는 {-120, -118, -116, … , -92, -90}dBm 사이의 값이고, powerRampingStep은 {0, 2, 4, 6}dB 사이의 값을 갖는다. 보다 구체적으로, 단말의 랜덤 액세스 프리앰블의 송신을 위한 송신전력은 다음과 같이 계산된다.
[수학식 1-j]
Figure PCTKR2017012394-appb-I000091
단말은 SIB을 통해 수신한 preambleInitialReceivedTargetPower 파라미터를
PREAMBLE_RECEIVED_TARGET_POWER로 세팅하고 경로손실을 계산한 후,
Figure PCTKR2017012394-appb-I000092
값과 비교하여 랜덤 액세스 프리앰블의 송신전력 값을 결정한다.
단말이 전송한 랜덤 액세스 프리앰블을 기지국이 수신하였으며, 1b-20 동작에서 기지국은 RAR (random access response)를 전송한다. RAR에는 MSG3 을 전송하기 위한 정보가 포함될 수 있다. RAR을 수신한 단말은 1b-30 동작에서 MSG3를 기지국으로 전송한다. MSG3를 수신한 기지국은 1b-40 동작에서 MSG4를 단말에게 전송할 수 있다.
단말이 랜덤 액세스 프리앰블을 송신한 후, 일정 시간동안 RAR (random access response)을 수신하기 위해 PDCCH를 모니터링한다. 단말이 RAR 수신을 위해 PDCCH를 얼마의 시간동안 모니터링해야 하는지는, 기지국이 SIB의 ra-ResponseWindowSize 파라미터를 통해 전송한다. 단말이 ra-ResponseWindowSize 시간 동안 RAR 수신에 실패한 경우, 단말은 랜덤 액세스 프리앰블을 재전송한다. 이때 단말이 재전송하는 랜덤 액세스 프리앰블의 송신전력은, 앞서 언급한 powerRampingStep 파라미터를 이용하여 초기 랜덤 액세스 프리앰블 전송에 사용된 송신전력 보다 powerRampingStep [dB] 만큼 증가되어 전송될 수 있다.
빔포밍 시스템에서 단말이 송신한 랜덤 액세스 프리앰블을 기지국이 수신하지 못한 경우, 단말은 다음의 동작을 취할 수 있다.
Option 1) 랜덤 액세스 프리앰블 전송에 사용하는 송신 빔 변경
- mmWave 대역에서는 커버리지의 제약으로 인해 빔포밍 시스템이 사용된다. 이러한 빔포밍 시스템에서는 동기신호가 빔포밍되어 여러 빔 방향으로 송신될 수 있다. 단말은 여러 빔 방향 중에 가장 신호 세기가 센 빔을 선택하여 동기화를 수행할 수 있다. 이때, 단말은 가장 신호 세기가 센 빔과 그 다음 신호 세기가 센 빔에 대한 정보를 저장해 둘 수 있다(일반적으로, 신호 세기가 큰 빔을 기준으로 N개의 빔을 저장할 수 있다).
- 단말이 랜덤 액세스 프리앰블을 전송한 후 일정 시간동안 RAR을 수신하지 못한 경우, 단말은 동기화 과정에서 저장해 둔 빔 정보를 이용하여 재전송하는 랜덤 엑세스 프리앰블의 빔을 변경한다. 이때, 단말이 RAR을 모니터링해야할 시간에 대한 정보는 MIB, SIB 또는 common DCI를 통해 기지국이 단말로 전송할 수 있다.
- 단말이 빔을 변경하여 랜덤 액세스 프리앰블을 재전송하는 경우, 어떤 빔을 사용하여 랜덤 액세스 프리앰블을 재전송할 것인지는 단말이 빔 포밍되어 전송되는 동기신호 획득 절차와 관련이 있다. 따라서 단말이 저장할 수 있는 빔 정보의 개수를 제한하기 위해, 최대 재전송 횟수를 제한할 수 있다. 최대 재전송 횟수는 MIB, SIB 또는 common DCI를 통해 기지국이 단말로 전송하거나, 단말과 기지국 간에 사전에 약속된 값을 사용할 수 있다.
- 랜덤 액세스 프리앰블 전송이 최대 재전송 횟수를 넘어가는 경우, 단말은 랜덤 액세스 절차를 중단하고, 빔 포밍되어 전송되는 동기신호를 통해 빔 정보 획득 (예를 들어, 가장 큰 신호 세기를 갖는 빔을 탐색)을 새로 수행할 수 있다.
Option 2) 랜덤 액세스 프리앰블 전송에 사용하는 송신전력 증가
- 단말이 랜덤 액세스 프리앰블을 전송한 후 일정 시간동안 RAR을 수신하지 못한 경우, 단말은 초기 랜덤 액세스 프리앰블 송신 시 사용한 빔과 동일한 빔을 사용한다. 이때, 재전송하는 프리앰블의 송신 전력을 증가시킨다.
- 단말이 RAR을 모니터링해야 할 시간에 대한 정보는 MIB, SIB 또는 common DCI를 통해 기지국이 단말로 전송할 수 있다.
- Option 1에서 언급한 빔 변경을 적용하기 위한 RAR 모니터링 시간과 Option 2에서 언급한 송신전력 변경을 적용하기 위한 RAR 모니터링 시간은 다를 수 있다.
- 단말이 송신전력을 증가시켜 랜덤 액세스 프리앰블을 재전송하는 경우, 어느 정도까지 송신전력을 증가시켜 랜덤 액세스 프리앰블을 재전송할 것인지는 단말의 Power Class와 관련이 있을 수 있다 (즉, 단말의 최대 송신 전력). 따라서 최대 재전송 횟수를 제한할 필요가 있다. 최대 재전송 횟수는 MIB, SIB 또는 common DCI를 통해 기지국이 단말로 전송하거나, 단말과 기지국 간에 사전에 약속된 값을 사용할 수 있다.
- 랜덤 액세스 프리앰블 전송이 최대 재전송 횟수를 넘어가는 경우, 단말은 랜덤 액세스 절차를 중단하고, 빔 포밍되어 전송되는 동기신호를 통해 빔 정보 획득 (예를 들어, 가장 큰 신호 세기를 갖는 빔을 탐색)을 새로 수행할 수 있다.
Option 3) 위에 언급한 두 가지의 조합이 있을 수 있다.
- 단말이 랜덤 액세스 프리앰블을 전송한 후 일정 시간동안 RAR을 수신하지 못한 경우, 단말은 초기 랜덤 액세스 프리앰블 송신 시 사용한 빔과 다른 빔을 사용하며, 재전송하는 프리앰블의 송신 전력을 증가시킨다.
- 단말이 RAR을 모니터링해야 할 시간에 대한 정보는 MIB, SIB 또는 common DCI를 통해 기지국이 단말로 전송할 수 있다.
- 빔 변경을 적용하기 위한 RAR 모니터링 시간과 송신전력 변경을 적용하기 위한 RAR 모니터링 시간은 다를 수 있다. 예를 들어, 단말은 T1 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못한 경우 송신전력을 증가시켜 랜덤 액세스 프리앰블을 재전송한다. 프리앰블 재전송 후, T2 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못한 경우 빔을 변경하여 프리앰블을 재전송할 수 있다. 또 다른 일 예로, 단말은 T1 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못한 경우 송신전력을 증가시키고, 랜덤 액세스 프리앰블을 재전송한다 (첫번째 재전송). 다시 T1 시간동안 RAR 모니터링을 수행 한 후, RAR을 수신하지 못하게 되면 송신전력을 증가시키고, 랜덤 액세스 프리앰블을 재전송한다 (두번째 재전송). N번째 재전송이 수행될때까지 (최대 재전송 횟수에 도달할 때까지, 송신전력을 증가시킨 후) RAR을 수신하지 못한 경우, 단말은 랜덤 액세스 프리앰블을 송신하기 위한 빔을 변경한다. 최대 재전송 횟수는 MIB 또는 SIB를 통해 기지국이 단말로 전송하거나, 단말과 기지국 간에 사전에 약속된 값을 사용할 수 있다.
- 한편, 빔 변경을 먼저 수행하고, 송신전력을 추후 변경할 수 있다. 즉, 단말은 T1 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못한 경우 빔을 변경하여 랜덤 액세스 프리앰블을 재전송한다. 변경된 빔을 사용하여 프리앰블 재전송 후, T2 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못한 경우 송신전력을 증가하여 프리앰블을 재전송할 수 있다. 또 다른 일 예로, 단말은 T1 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못한 경우 빔을 변경하여 랜덤 액세스 프리앰블을 재전송한다 (첫번째 재전송). 다시 T1 시간동안 RAR 모니터링을 수행한 후, RAR을 수신하지 못하게 되면 빔을 변경하여 랜덤 액세스 프리앰블을 재전송한다 (두번째 재전송). N번째 재전송이 수행될때까지 (최대 재전송 횟수에 도달할 때까지, 빔을 변경한 후) RAR을 수신하지 못한 경우, 단말은 랜덤 액세스 프리앰블을 송신하기 위한 송신전력을 증가시킨다. 최대 재전송 횟수는 MIB, SIB 또는 common DCI를 통해 기지국이 단말로 전송하거나, 단말과 기지국 간에 사전에 약속된 값을 사용할 수 있다.
- 랜덤 액세스 프리앰블 전송이 최대 재전송 횟수를 넘어가는 경우, 단말은 랜덤 액세스 절차를 중단하고, 빔 포밍되어 전송되는 동기신호를 통해 빔 정보 획득 (예를 들어, 가장 큰 신호 세기를 갖는 빔을 탐색)을 새로 수행할 수 있다.
앞서 언급한 Option들 중 어떤 옵션을 사용할 것인지에 대해서는 기지국과 단말 간 사전에 약속돼 있거나, MIB, SIB 또는 common DCI를 통해 기지국이 configuration할 수 있다. 예를 들어, '00'의 경우에는 상기 option 1, '01'의 경우에는 상기 option 2, 그리고 '10'의 경우에는 상기 option 3이 사용될 수 있다.
도 1c는 본 발명의 일 실시 예에 따른 랜덤 액세스 과정에서 단말의 송신전력 제어에 대한 단말의 동작 예시이다. 보다 구체적으로 앞서 언급한 Option 2에 대한 상세 설명이다.
1c-05 동작에서 단말은 기지국으로부터 MIB, SIB 또는 common DCI를 통해 랜덤 액세스 파라미터들을 수신한다. 랜덤 액세스 파라미터에는 랜덤 액세스 Preamble Sequence Type, 랜덤 액세스 Preamble 전송을 위한 시간/주파수 자원, 랜덤 액세스 Preamble의 Target 수신 전력, 랜덤 액세스 재전송시 수행할 송신전력 증가에 대한 Power Ramping Step 크기, RAR Monitoring 시간을 나타내는 RAR Reception Widow 크기, 랜덤 액세스 Preamble의 최대 재전송 횟수 등이 포함될 수 있다.
랜덤 액세스 파라미터를 수신한 단말은 [수학식 1-j]를 통해 랜덤 액세스 Preamble을 송신한다 (1c-10 동작).
1c-15 동작에서 단말은 RAR reception window 내에서 RAR 이 수신되었는지 여부를 확인한다. RAR이 수신된 경우 1c-20 동작으로 진행하고, RAR이 수신되지 않은 경우 1c-25 동작으로 진행한다.
RAR Reception Window 내에서 RAR이 수신된 경우, 1c-20 동작에서 단말은 Msg3를 전송할 수 있다. Msg3 전송을 위한 송신전력 파라미터는 기지국이 RAR을 통해 단말에게 알려줄 수 있다.
단말이 RAR Reception Window 내에서 RAR을 수신하지 못한 경우, 1c-25 동작에서 단말은 랜덤 액세스 Preamble 송신전력을 증가시키고, 랜덤 액세스 Preamble을 재전송한다. 이때, 랜덤 액세스 Preamble 송신전력의 증가량은 SIB 또는 common DCI를 통해 기지국이 Configuration할 수 있으며 (Power Ramping Step 크기), Power Ramping Step 크기가 0dB로 configuration될 경우, 랜덤 액세스 Preamble의 송신전력 증가는 수행되지 않는다.
단말은 랜덤 액세스 Preamble의 재전송 횟수가 최대에 도달하기 전까지 Preamble의 송신전력을 증가시키면서 재전송을 수행한다(1c-30 동작).
1c-35 동작에서 단말은 최대 재전송 횟수에 도달하였는지 여부를 확인한다. 최대 재전송 횟수에 도달한 경우, 1c-40 동작으로 진행하고, 그렇지 않은 경우 1c-15 동작으로 진행할 수 있다.
최대 재전송 횟수에 도달한 경우, 1c-40 동작에서 단말은 랜덤 액세스 절차를 포기하고, Cell-selection 절차를 재수행한다. Cell-selection 절차는, 단말이 각 셀로부터 전송되는 동기신호를 검출하여, 가장 수신 신호가 센 동기신호를 송신한 기지국의 빔에 접속하는 절차를 의미한다. 최대 재전송횟수에 도달하지 않은 경우, 단말은 1c-15 동작으로 진행할 수 있고, 1c-15 동작 이하 동작을 계속 수행할 수 있다.
도 1d는 본 발명의 일 실시 예에서 랜덤 액세스 과정에서 단말의 송신전력 제어에 대한 또 다른 단말의 동작 예시이다. 보다 구체적으로 앞서 언급한 Option 1에 대한 상세 설명이다.
1d-05 동작에서 단말은 기지국으로부터 MIB, SIB 또는 common DCI를 통해 랜덤 액세스 파라미터들을 수신한다. 랜덤 액세스 파라미터에는 랜덤 액세스 Preamble Sequence Type, 랜덤 액세스 Preamble 전송을 위한 시간/주파수 자원, 랜덤 액세스 Preamble의 Target 수신 전력, 랜덤 액세스 재전송시 수행할 Beam에 대한 정보, RAR Monitoring 시간을 나타내는 RAR Reception Widow 크기, 랜덤 액세스 Preamble의 최대 재전송 횟수 등이 포함될 수 있다. 이때, 랜덤 액세스 재전송시 수행할 Beam에 대한 정보로 다음을 고려할 수 있다. Beam의 수신신호 차이를 나타내는 값 [x dB]: 단말이 빔 포밍되어 전송되는 동기신호를 통해 검출한 동기신호의 세기를 기반으로, 가장 큰 수신 신호세기를 갖는 동기 신호를 S1이라고 할 때, 두 번째로 큰 수신 신호세기를 갖는 동기 신호를 S2, 그 다음을 S3로 가정하자 (즉, S1 > S2 > S3 > S4 > …). 이때 [x dB]의 역할은 단말이 재전송할 Preamble을 선택하는데 사용되며, S1 - S2 < [x dB]이고, S1 - S3 > [x dB] 인 경우, 단말은 랜덤 액세스 Preamble의 초기 전송에 S1이 전송된 빔을 사용한다. 그리고, 랜덤 액세스 Preamble의 첫번째 재전송에는 S2가 전송된 빔이 아닌 S3가 전송된 빔을 사용할 수 있다. 마찬가지로 S3 - S4 < [x dB]이고, S3 - S5 > [x dB] 인 경우, 단말은 랜덤 액세스 Preamble의 두번째 재전송에 S4가 전송된 빔이 아닌, S5가 전송된 빔을 사용할 수 있다. 빔이 변경된 경우, 랜덤 액세스 Preamble의 전송에 사용되는 송신전력은 이전 Beam에서 랜덤 액세스 Preamble의 송신에 사용했던 송신전력과 동일한 값을 사용할 수 있다.
랜덤 액세스 파라미터를 수신한 단말은 특정 빔에서 (동기신호를 통해 검출한 빔) [수학식 1-j]를 통해 랜덤 액세스 Preamble을 송신한다(1d-10 동작).
1d-15 동작에서 단말은 RAR reception window 내에서 RAR 이 수신되었는지 여부를 확인한다. RAR이 수신된 경우 1d-20 동작으로 진행하고, RAR이 수신되지 않은 경우 1d-25 동작으로 진행한다.
RAR Reception Window 내에서 RAR이 수신된 경우, 1d-20 동작에서 단말은 Msg3를 전송할 수 있다. Msg3 전송을 위한 빔은 랜덤 액세스 Preamble 전송시 사용한 빔과 동일한 빔을 사용하며, 이때의 송신전력 파라미터는 기지국이 RAR을 통해 단말에게 알려줄 수 있다.
단말이 RAR Reception Window 내에서 RAR을 수신하지 못한 경우, 1d-25 동작에서 단말은 랜덤 액세스 Preamble 송신을 위한 빔을 변경시키고, 변경된 빔으로 랜덤 액세스 Preamble을 재전송한다.
단말은 랜덤 액세스 Preamble의 재전송 횟수가 최대에 도달하기 전까지 Preamble의 빔을 변경시키면서 재전송을 수행한다(1d-30).
1d-35 동작에서 단말은 최대 재전송 횟수에 도달하였는지 여부를 확인한다. 최대 재전송 횟수에 도달한 경우, 1c-40 동작으로 진행하고, 그렇지 않은 경우 1d-15 동작으로 진행할 수 있다.
최대 재전송 횟수에 도달한 경우, 1d-40 동작에서 단말은 랜덤 액세스 절차를 포기하고, Cell-selection 절차를 재수행한다. Cell-selection 절차는, 단말이 각 셀로부터 전송되는 동기신호를 검출하여, 가장 수신 신호가 센 동기신호를 송신한 기지국의 빔에 접속하는 절차를 의미한다. 최대 재전송횟수에 도달하지 않은 경우, 단말은 1d-15 동작으로 진행할 수 있고, 1d-15 동작 이하 동작을 계속 수행할 수 있다.
도 1e는 본 발명의 일 실시 예에서 랜덤 액세스 과정에서 단말의 송신전력 제어에 대한 또 다른 단말의 동작 예시이다. 보다 구체적으로 앞서 언급한 Option 1에 대한 상세 설명이다.
1e-05 동작에서 단말은 기지국으로부터 MIB, SIB 또는 common DCI를 통해 랜덤 액세스 파라미터들을 수신한다. 랜덤 액세스 파라미터에는 랜덤 액세스 Preamble Sequence Type, 랜덤 액세스 Preamble 전송을 위한 시간/주파수 자원, 랜덤 액세스 Preamble의 Target 수신 전력, 랜덤 액세스 재전송시 수행할 송신전력 증가에 대한 Power Ramping Step 크기, 랜덤 액세스 재전송시 수행할 Beam에 대한 정보, RAR Monitoring 시간을 나타내는 RAR Reception Widow 크기, 랜덤 액세스 Preamble의 최대 재전송 횟수 등이 포함될 수 있다. 이때, 랜덤 액세스 재전송시 수행할 Beam에 대한 정보로 다음을 고려할 수 있다. Beam의 수신신호 차이를 나타내는 값 [x dB]: 단말이 빔 포밍되어 전송되는 동기신호를 통해 검출한 동기신호의 세기를 기반으로, 가장 큰 수신 신호세기를 갖는 동기 신호를 S1이라고 할 때, 두 번째로 큰 수신 신호세기를 갖는 동기 신호를 S2, 그 다음을 S3로 가정하자 (즉, S1 > S2 > S3 > S4 > …). 이때 [x dB]의 역할은 단말이 재전송할 Preamble을 선택하는데 사용되며, S1 - S2 < [x dB]이고, S1 - S3 > [x dB] 인 경우, 단말은 랜덤 액세스 Preamble의 초기 전송에 S1이 전송된 빔을 사용한다. 그리고, 랜덤 액세스 Preamble의 첫번째 재전송에는 S2가 전송된 빔이 아닌 S3가 전송된 빔을 사용할 수 있다. 마찬가지로 S3 - S4 < [x dB]이고, S3 - S5 > [x dB] 인 경우, 단말은 랜덤 액세스 Preamble의 두번째 재전송에 S4가 전송된 빔이 아닌, S5가 전송된 빔을 사용할 수 있다.
랜덤 액세스 파라미터를 수신한 단말은 특정 빔에서 (동기신호를 통해 검출한 빔) [수학식 1-j]를 통해 랜덤 액세스 Preamble을 송신한다(1e-10 동작).
1e-15 동작에서 단말은 RAR reception window 내에서 RAR 이 수신되었는지 여부를 확인한다. RAR이 수신된 경우 1e-20 동작으로 진행하고, RAR이 수신되지 않은 경우 1e-25 동작으로 진행한다.
RAR Reception Window 내에서 RAR이 수신된 경우, 1e-20 동작에서 단말은 Msg3를 전송할 수 있다. Msg3 전송을 위한 빔은 랜덤 액세스 Preamble 전송시 사용한 빔과 동일한 빔을 사용하며, 이때의 송신전력 파라미터는 기지국이 RAR을 통해 단말에게 알려줄 수 있다.
단말이 RAR Reception Window 내에서 RAR을 수신하지 못한 경우, 1e-25 동작에서 단말은 랜덤 액세스 Preamble 송신을 위한 송신전력을 증가시키고, 랜덤 액세스 Preamble의 초기 전송과 동일 빔에서 랜덤 액세스 Preamble을 재전송 할 수 있다.
단말은 랜덤 액세스 Preamble의 재전송 횟수가 최대에 도달하기 전까지 Preamble의 송신전력을 증가시키면서 재전송을 수행한다(1e-30 동작).
1e-35 동작에서 단말은 최대 재전송 횟수에 도달하였는지 여부를 확인한다. 최대 재전송 횟수에 도달한 경우, 1e-40 동작으로 진행하고, 그렇지 않은 경우 1e-15 동작으로 진행할 수 있다.
최대 재전송 횟수에 도달한 경우, 1e-40 동작에서 단말은 랜덤 액세스 Preamble 송신을 위한 빔을 변경시키고, 1e-45 동작에서 변경된 빔으로 랜덤 액세스 Preamble을 재전송한다.
1e-50 동작에서 단말은 RAR reception window 내에서 RAR 이 수신되었는지 여부를 확인한다. RAR이 수신된 경우 1e-20 동작으로 진행하고, RAR이 수신되지 않은 경우 1e-55 동작으로 진행한다.
변경된 빔으로 랜덤 액세스 Preamble을 전송한 후, 일정시간 동안 (RAR Reception Widow) RAR이 수신되지 않으면 단말은 랜덤 액세스 절차를 포기하고, Cell-selection 절차를 재수행한다 (1e-55 동작). Cell-selection 절차는, 단말이 각 셀로부터 전송되는 동기신호를 검출하여, 가장 수신 신호가 센 동기신호를 송신한 기지국의 빔에 접속하는 절차를 의미한다. 이때, Power Ramping을 위한 RAR Reception Window (T1)과 빔 변경을 위한 RAR Reception Window (T2)는 같거나 다를 수 있다.
또 다른 일 예로, 변경된 Beam으로 랜덤 액세스 Preamble을 재전송 후, 최대 재전송 횟수에 도달할 때까지 RAR이 수신되지 않으면 랜덤 액세스 절차를 포기하고, Cell-selection 절차를 재수행할 수 있다. 이때의 최대 재전송 횟수는 Power Ramping을 위한 최대 재전송 횟수와 같거나 다를 수 있다.
한편, option 1과 option 2를 조합할 때, preamble 송신 전력과 빔 변경에 대한 순서를 도 1e와 다르게 적용할 수 있다. 도 1e에서는 송신 전력을 증가하여 랜덤 액세스 프리앰블을 전송하고, RAR을 수신하지 못한 경우 빔을 변경하는 것으로 설명하고 있으나, 빔 변경을 먼저 수행하고, RAR이 수행되지 않은 경우 랜덤 액세스 프리앰블의 송신 전력을 증가시키는 것으로 구성할 수도 있다.
도 1f와 도 1g는 본 발명의 일 실시 예에서 RRC Connection Setup 이후 단말의 송신전력 제어를 위한 파라미터 예시이다. 이러한 파라미터들은 UE-specific한 dedicated RRC signaling을 통해 각 단말에게 전송될 수 있으며, wide 빔을 사용하는 셀과 narrow 빔을 사용하는 셀이 서로 다른 파라미터를 사용할 수 있다. 또 다른 일 예로, 동일 셀에서 기지국의 운용에 따라 특정 순간에는 wide 빔을 운용하고 또 다른 순간에는 narrow 빔을 운용할 수 있다. 보다 구체적으로, 단말의 초기 빔 searching 시간을 줄이기 위해서, 동기신호 및 broadcast 채널은 wide 빔으로 운용할 수 있다. 기지국은 단말이 검출한 wide 빔을 기준으로 narrow한 빔을 형성하여 UE-specific한 데이터 및 제어정보를 전송할 수 있다. 따라서, 이러한 경우 기지국은 wide 빔에 대한 P0와 alpha 값 및 narrow 빔에 대한 P0와 alpha 값을 모두 Configuration할 수 있다. 본 예에서는 wide 빔과 narrow 빔의 두 가지 종류에 대해 기술하였으나, 단말의 beam width (빔 폭) 별로 서로 다른
Figure PCTKR2017012394-appb-I000093
값과
Figure PCTKR2017012394-appb-I000094
값을 configuration 할 수 있다. 또한, 본 실시 예에서는
Figure PCTKR2017012394-appb-I000095
Figure PCTKR2017012394-appb-I000096
Figure PCTKR2017012394-appb-I000097
의 두 가지 값으로 구분되어 사용되었으나, 단일
Figure PCTKR2017012394-appb-I000098
값으로 사용될 수 있다. 예를 들어, P0-PUSCH-WideBeam, P0-PUSCH-NarrowBeam 형태로 운용될 수 있다.
또한, PUCCH에 대해서도 PUSCH와 유사하게, P0-NominalPUCCH-WideBeam (P0-NominalPUCCH-NarrowBeam), P0-UE-PUCCH-WideBeam (P0-UE-PUCCH-NarrowBeam), 그리고 Alpha-Widebeam (Alpha-Narrowbeam) 값을 정의할 수 있으며, 이러한 값들은 PUSCH에 사용된 값들과 같거나 다를 수 있다. 단말이 Wide beam을 사용할 수 있는지, narrow beam을 사용할 수 있는지는 단말의 능력에 따라 다를 수 있다. 예를 들어, 많은 수의 antenna array를 장착할 수 있는 단말들은 narrow beam을 사용할 수 있다. 따라서 이러한 RRC signaling은 기지국과 단말 간 능력 협상 이후에 적용할 수 있다.
또 다른 일 예로, 기지국의 송신 빔과 수신 빔, 그리고 단말의 송신 빔과 수신 빔 사이에 빔 Reciprocity가 존재할 수 있다. 이때, 기지국 입장에서의 beam reciprocity와 단말 입장에서의 beam reciprocity가 각각 또는 동시에 고려될 수 있다. 기지국 입장에서의 beam reciprocity는 기지국의 송신 빔과 기지국의 수신 빔이 동일한 경우를 의미하고, 단말 입장에서의 beam reciprocity는 단말의 송신 빔과 기지국의 수신 빔이 동일한 경우를 의미한다. 기지국의 수신 빔과 기지국의 송신 빔 (또는 단말의 송신 빔과 단말의 수신 빔)이 동일하다는 의미는, 수신 빔과 송신 빔의 빔 이득 (beam gain) 또는 빔 방향 (beam direction)이 동일하다는 것을 나타낸다. 기지국에서 beam reciprocity가 성립하지 않는 다는 것은, 기지국의 수신 빔과 기지국의 송신 빔의 빔 이득 또는 빔 방향이 다르다는 것을 의미한다. 이때, 빔 이득이 다르다는 것은 수신 빔과 송신 빔의 이득 차이가 일정 범위를 벗어난다는 것을 의미한다. 마찬가지로 빔 방향이 다르다는 것은, 수신 빔 방향과 송신 빔 방향의 차이가 일정 범위를 벗어난다는 것을 의미한다. 단말에서 beam reciprocity가 성립하지 않는다는 것도 기지국에서 beam reciprocity가 성립하지 않는다는 것과 마찬가지로, 수신 빔과 송신 빔의 빔 이득 차 및 수신 빔과 송신 빔 방향의 차이가 일정 범위를 벗어난다는 것을 의미한다.
이러한 beam reciprocity의 유무에 따라, 서로 다른 전력제어가 이루어질 수 있다. 보다 구체적으로, beam reciprocity가 성립하는 경우 기지국은 {P01, P02,…, P0N}과 같이 N개의 서로 다른 빔에 대한 P0 값 (빔 별로 서로 다른 값을 갖는 P0 값)을 RRC signaling을 통해 단말에게 전송할 수 있다. 이와 달리 Beam reciprocity가 성립하지 않는 경우, 기지국은 {P01’, P02’,…, P0M’}과 같이 M개의 서로 다른 송신 빔 - 수신 빔 쌍에 대한 P0 값 (빔 쌍 별로 서로 다른 P0 값)을 RRC signaling을 통해 단말에게 전송할 수 있다. 기지국은 beam reciprocity가 성립하는지 여부를 판단하고, beam reciprocity가 성립하는 경우에는 {P01, P02,…, P0N}를 RRC signaling을 통해 전송하고, beam reciprocity가 성립하지 않는 경우에는 {P01’, P02’,…, P0M’}를 RRC signaling을 통해 전송할 수 있다.
또 다른 일 예로, 기지국은 beam reciprocity가 성립하는지의 여부를 판단하지 않고, beam reciprocity가 성립하는 경우에 대한 P0 값 ({P01, P02, …, P0N}) 또는 모든 송신 빔 - 수신 빔 조합에 대한 P0 값 ({P01’, P02’, …, P0M’})을 RRC signaling을 통해 단말로 전송할 수 있다. 그 이후에, 기지국이 단말이 상향링크 데이터/제어 정보를 전송하는 subframe에서 beam reciprocity가 성립함을 판단했으면, ‘1-bit’ RRC signaling 또는 ‘1-bit’ DCI signaling (BeamReciprocity_enabled or BeamReciprocity_disabled) 을 통해 beam reciprocity가 적용될 것인지 아닌지를 단말에게 알려줄 수 있다. BeamReciprocity_enabled를 수신한 단말은 {P01, P02, …, P0N}으로 구성된 N개의 값들을 사용한다. BeamReciprocity_disabled를 수신한 단말은 {P01’, P02’, …, P0M’}으로 구성된 M개의 값들을 사용한다.
또 다른 일 예로, 기지국은 기준이 되는 P0 값을 RRC로 Signaling한 후, 기준으로부터 실제 사용되는 빔과의 offset 값을 RRC 또는 DCI를 통해 시그널링할 수 있다. 보다 구체적으로, 기준이 되는 P0 값 (빔 별 P0 값)을 {P01, P02, …, P0N}으로 가정할 경우, DCI를 통해 어떤 P0를 사용할 것인지 (예를 들어, P02) 그리고 P02를 기준으로 얼마의 offset 값을 적용해야 할지에 대한 offset 정보를 전송할 수 있다. 또는, 기준이 되는 P0 값을 RRC를 통해 시그널링하고, offset 값도 RRC를 통해 시그널링할 수 있다 (예를 들어, {offset_1, offset_2, …, offset_K}). 그리고 실제 어떤 offset 값을 사용해야 하는지 DCI를 통해 Indication할 수 있다.
기존 LTE 상향링크 데이터채널 (PUSCH) 및 상향링크 제어채널 (PUCCH)의 송신전력 제어에서는 [수학식 1b]와 같이 pathloss를 단말이 계산한다. Hybrid Beamforming이 고려된 시스템에서는 기지국과 단말의 송신 빔 - 수신 빔 패턴에 따른 빔 이득차이가 존재할 수 있다. 이때, 빔 이득은 송신 빔을 생성하는 RF Chain과 수신 빔을 형성하는 RF Chain을 구성하는 RF 소자들이 다르기 때문에 발생할 수 있다. 예를 들어, 송신 빔을 생성하는 RF Chain의 phase shifter와 수신 빔을 형성하는 RF Chain의 phase shifter가 서로 다르기 때문에 송신 빔과 수신 빔이 동일한 beam width를 형성하기 위해, 동일한 phase shift 값을 사용하더라도 송신 빔과 수신 빔이 서로 다른 beam width를 형성할 수 있다. 또 다른 예로, 송신 빔과 수신 빔 이득 차이는 송신 빔을 생성하는 안테나의 패널 수와 수신 빔을 형성하는 안테나의 패널 수가 다르기 때문에 발생할 수 있다. 보다 구체적으로, 단말의 송신 빔 패널 수가 단말의 수신 빔 패널 수보다 더 적을 수 있다. 따라서 단말 송신 빔의 width는 단말 수신 빔의 width 보다 클 수 있다. 이와 비슷하게, 기지국의 송신 빔 패널 수와 기지국의 수신 빔 패널 수가 서로 다를 수 있다.
이러한 송/수신 빔의 이득 차이로 인해, 단말이 하향링크를 통해 계산한 pathloss 값과, 단말이 상향링크를 통해 실제로 데이터 및 제어정보를 전송할 때 겪는 pathloss 값이 서로 다를 수 있다. 보다 구체적으로, 단말이 estimation한 하향링크 pathloss에는 기지국의 송신 빔 이득과 단말의 수신 빔 이득이 포함될 수 있다. 그리고, 단말이 상향링크로 전송한 데이터 및 제어정보는 단말의 송신 빔 이득과 기지국의 수신 빔 이득이 pathloss와 결합하여 기지국에 수신된다. 따라서 하향링크 pathloss와 상향링크 pathloss가 동일하더라도, 하향링크 pathloss 계산시 반영된 기지국 송신 빔 + 단말 수신 빔 이득 (GDL로 가정)과 실제 상향링크 전송 시 반영된 단말 송신 빔 + 기지국 수신 빔 이득 (GUL로 가정)이 서로 다른 경우, 기지국은 단말이 실제로 전송한 송신 전력을 예측하지 못할 수 있다. 예를 들어, GDL< GUL일 경우, 하향링크 pathloss + GDL> 상향링크 pathloss + GUL 이 될 수 있다 (하향링크 pathloss와 상향링크 pathloss가 동일할 경우). 이때, 단말은 실제로 필요한 송신전력보다 더 큰 전력으로 상향링크 데이터 및 제어정보를 전송하게 된다. 이는 단말의 불필요한 전력소모를 유발하고 인접 셀로 추가적인 간섭을 야기할 수 있다. 이와 반대로 GDL > GUL일 경우, 하향링크 pathloss + GDL < 상향링크 pathloss + GUL 이 될 수 있다 (하향링크 pathloss와 상향링크 pathloss가 동일할 경우). 이때, 단말은 실제로 필요한 송신전력보다 더 작은 전력으로 전송하게 된다. 이는 서빙 기지국에서의 수신 Target SINR을 만족시키지 못할 수 있으므로, 상향링크 데이터 및 제어정보의 수신 성능을 열화시킬 수 있다. 따라서, 송/수신 빔 패턴에 따른 빔 이득 차이를 반영시킬 필요가 있다.
한편, 단말은 MAC control element 및 MAC message를 통해 Power Headroom Report (PHR)를 기지국으로 전송할 수 있다. 이때, PHR 정보는 단말이 최대로 전송할 수 있는 송신 전력과 단말이 실제로 전송한 송신 전력의 차이로 구성된다. 기지국은 단말이 전송한 PHR 정보를 기반으로, 단말이 송신 전력을 추가적으로 높일 수 있는지 (PHR 값이 양수일 경우) 또는 송신 전력을 낮춰야 하는지 (PHR 값이 음수일 경우)의 여부를 판단한다. PHR 값이 양수인 경우, 기지국은 PHR을 전송한 단말의 다음 상향링크 전송 시, 자원을 증가시킬 수 있으며, PHR 값이 음수인 경우, 기지국은 PHR을 전송한 단말의 다음 상향링크 전송 시, 자원을 감소시킬 수 있다. 이때, 앞서 언급한 GDL과 GUL의 차이로 인해 단말이 실제로 전송해야 하는 송신 전력보다 더 높은 송신 전력으로 상향링크 데이터 및 제어정보를 전송하게 될 수 있다. 이는 단말의 불필요한 전력소모를 유발하고 인접 셀로 추가적인 간섭을 야기할 수 있다. 또한 앞서 언급한 GDL과 GUL의 차이로 인해 단말이 실제로 전송해야 하는 송신 전력보다 더 낮은 송신 전력으로 상향링크 데이터 및 제어정보를 전송할 수 있다. 이는 서빙 기지국에서의 수신 Target SINR을 만족시키지 못할 수 있으므로, 상향링크 데이터 및 제어정보의 수신 성능을 열화시킬 수 있다. 따라서, 이러한 GDL과 GUL의 차이로 인해 발생하는 오차를 줄일 필요가 있다.
이러한 문제를 해결하기 위한 일 예로, 기지국과 단말 능력 (capability) 협상 시, 기지국은 자신의 송신 빔 이득과 수신 빔 이득을 단말로 알려줄 수 있다. 단말은 기지국으로부터 전달 받은 기지국의 송/수신 빔 이득과 자신이 측정한 단말의 송/수신 빔 이득을 송신 전력 제어를 위한 하향링크 pathloss 계산에 반영할 수 있다.
또 다른 일 예로, 단말은 PHR을 기지국으로 전송할 때, 단말의 송신 빔 이득과 수신 빔 이득에 대한 정보를 PHR에 포함시킬 수 있다. 기지국은 단말로부터 전달 받은 단말의 송/수신 빔 이득과 기지국 자신이 측정한 기지국의 송/수신 빔 이득을 통해 PHR을 다시 계산할 수 있다.
또 다른 일 예로, 기지국은 RRC signaling을 통해 기지국의 송신 빔 이득을 단말에게 전송할 수 있다. 보다 구체적으로 [수학식 1-b]의 referenceSignalPower는 기지국의 송신전력과 기지국의 송신 빔 이득을 포함한 값일 수 있다. 즉, 기지국이 RRC로 configuration하는 referenceSignalPower는 기지국의 송신전력 + 기지국의 송신 빔 이득으로 구성된 값이다. 그리고 단말이 측정하는 RSRP는 하향링크 pathloss와 단말의 수신 빔 이득이 반영된 수신 전력이다. 따라서, 단말이 계산하는 하향링크 pathloss에는 기지국의 송신 빔 이득과 단말의 수신 빔 이득이 자연스럽게 반영될 수 있다. 따라서, 단말은 기지국으로 단말의 송신 빔 이득을 전송할 수 있으며, 이러한 전송은 기지국 - 단말 간 능력 협상 시 이루어지거나, PHR을 전송하는 MAC control element/MAC message 또는 별도의 MAC control element/MAC message로 전송될 수 있다.
송/수신 빔 패턴에 따른 빔 이득 차이를 반영시키는 또 다른 방안으로, 기지국이 P0 값을 적절히 활용할 수 있다. 보다 구체적으로, P0_Nominal_PUSCH/P0_Nominal_PUCCH 는 cell-specific한 값으로, 기지국의 송신 빔과 수신 빔 이득의 차이를 적절히 반영할 수 있다. 또한 P0_UE_PUSCH/P0_UE_PUCCH는 단말의 송신 빔과 수신 빔 이득 차이를 적절히 반영할 수 있다. 앞서 언급한 방식처럼, 기지국 - 단말 간 능력 협상을 통해 단말의 송신 빔과 수신 빔 이득에 대한 정보를 기지국이 획득했거나, 단말의 PHR 전송을 통해 단말의 송신 빔과 수신 빔 이득에 대한 정보를 기지국이 획득할 수 있다. 이러한 정보들을 활용하여 기지국은 자신이 측정한 기지국의 송신 빔 이득과 수신 빔 이득을 이용하여 P0_Nominal_PUSCH/ P0_Nominal_PUCCH 또는 P0_UE_PUSCH/P0_UE_PUCCH 값을 결정할 수 있다.
송/수신 빔 패턴에 따른 빔 이득 차이를 반영시키는 또 다른 방안으로, 기지국이 Closed-loop 전력제어 값을 적절히 활용할 수 있다. 보다 구체적으로, [수학식 1-a]에서 f(i)는 기지국이 dynamic하게 PDCCH를 통해 제어할 수 있는 값으로, 기지국의 송신 빔과 수신 빔 이득의 차이를 적절히 반영할 수 있다. 예를 들어, 단말은 기지국의 송신 빔과 단말의 수신 빔 (즉, GDL)이 반영된 하향링크 PL을 계산하여 단말의 송신 전력 값을 setting할 수 있다. 기지국은 단말의 상향링크 데이터 채널, 상향링크 제어 채널 또는 상향링크 제어 신호 (예를 들어, Sounding Reference Signal, Demodulation reference signal 등)들을 이용하여 단말의 송신 빔과 기지국의 수신 빔 (즉, GUL)이 반영된 상향링크 PL을 예측할 수 있다. 기지국은 단말이 Reporting한 PHR (Power Headroom Reporting) 정보와 자신이 예측한 상향링크 PL을 이용하여, 단말이 계산한 하향링크 PL와 기지국이 예측한 상향링크 PL의 차이를 유추할 수 있다 (즉 하향링크 PL와 상향링크 PL의 차이, Offset). 기지국은 이러한 Offset 값을 f(i)에 반영하여 PDCCH를 통해 dynamic하게 configuration할 수 있다 (f(i)에 포함된
Figure PCTKR2017012394-appb-I000099
값을 조절).
Hybrid beamforming 시스템에서는 기지국의 송신 빔과 단말의 수신 빔 조합에 따라 많은 수의 빔이 존재할 수 있다. 예를 들어, 기지국의 송신 빔이 100개이고, 단말의 수신 빔이 2개로 가정할 경우, 총 200개의 빔 쌍 (beam pair)이 존재할 수 있다. 이러한 서로 다른 빔 별로 송신 전력제어를 수행하기 위해서는, 단말에서 빔 별 pathloss 계산이 필요하다. 그러나, 너무 많은 빔에 대한 pathloss 계산을 수행하게 될 경우 단말의 메모리 용량이 증가하므로 바람직하지 않을 수 있다. 이와 달리, 너무 적은 빔에 대한 pathloss 계산을 수행하게 될 경우, 기지국의 빔 운용에 제약이 발생할 수 있다. 예를 들어, 단말-A는 빔 1, 빔 12, 빔 33과 같이 3개의 빔 (또는 빔 쌍)에 대한 신호 세기가 나머지 빔들에 비해 클 수 있으며, 이러한 빔들로 상향링크 데이터 및 제어정보를 전송하고자 할 수 있다. 따라서 단말은 이러한 빔들에 대한 pathloss를 저장했으나, 이러한 빔들에 사용자들이 많이 몰려 있거나, 이러한 빔들을 사용하게 될 경우 인접 셀에 야기하는 간섭의 양이 증가할 수 있다고 판단하는 경우가 발생할 수 있다. 이러한 경우, 단말-A는 해당 subframe에서 전송을 못할 수 있다 (기지국 스케줄러가 빔을 할당하지 않음). 따라서, 지연이 발생할 수 있다. 이러한 문제를 해결하기 위해, 차선책으로 단말-A의 선호 빔은 아니지만, 또 다른 빔 (예를 들어, 빔 102 또는 빔 쌍 102)를 이용하여 상향링크 데이터 및 제어정보를 송신하라고 기지국은 단말-A에게 명령할 수 있다. 이때, 단말이 빔 102 (또는 빔 쌍 102)에 대한 pathloss 값을 저장하지 않았을 경우, 송신 전력제어를 수행할 수 없다. 이러한 문제를 해결하기 위해, 다음의 동작을 고려할 수 있다.
도 1h는 본 발명의 일 실시 예에서 Power Headroom Reporting (PHR)에 기반한 단말의 상향링크 송신 빔 변경 관련 기지국과 단말의 동작을 나타낸다.
기지국은 RRC signaling, MAC control element/MAC message 또는 DCI를 통해 단말이 reporting해야 하는 빔의 개수를 단말에게 전송할 수 있다. 일 예로, 빔의 개수(또는 빔 쌍의 개수)가 N으로 setting되었을 경우, 단말은 N개의 빔 각각에 대해 빔 index 및 빔의 수신 신호 세기 (이하 빔 정보로 표기)를 상향링크를 통해 기지국으로 보고한다. 이러한 빔 정보는 단말이 주기적으로 전송하거나, 기지국의 명령에 의해 비 주기적으로 전송할 수 있다. 한편, 단말은 기지국으로 PHR을 전송하는데, PHR 전송은 특정 조건이 만족될 때 이루어지거나 (event triggered), 주기적으로 전송할 수 있다. PHR 정보는 MAC control element 또는 MAC message를 통해 전송될 수 있으며, 단말의 최대 송신 전력 값과 단말이 실제로 사용한 송신 전력 값으로 이루어진다. 기지국은 단말로부터 전송된 PHR 정보를 이용하여 단말의 상향링크 송신 빔 변경을 명령할 수 있다.
RRC signaling, MAC control element/MAC message, 또는 DCI를 통해, 단말이 몇 개의 빔에 대해 pathloss 측정을 하여 저장해두어야 할 지를 기지국이 Indication할 수 있으며, 이러한 정보는 PHR 과정에서 사용될 수 있다. 예를 들어, 빔의 수 (또는 빔 쌍의 수) = 3으로 기지국이 Indication한 경우, 단말은 송신전력 제어를 위해 3개의 빔에 대해 pathloss를 계산하여 저장할 수 있다. 이때, 3개의 빔은 신호 세기를 기준으로 신호 세기가 가장 큰 빔 3개일 수 있다. 또는 3개의 빔은 신호 세기가 가장 센 빔 (빔 A로 가정) 과 빔 A를 기준으로 신호 세기가 x dB 차이가 나는 빔 (빔 B로 가정), 그리고 빔 B를 기준으로 신호 세기가 x dB 차이가 나는 빔 일 수 있다. x dB의 차이를 두는 이유는 동일한 신호 세기를 갖는 서로 다른 빔들의 경우, pathloss 차이가 크지 않을 수 있기 때문이다. 따라서, 단말이 비슷한 pathloss 값을 여러 개 저장해 둘 필요가 없을 수 있다. 이때, x dB 값은 RRC signaling, MAC control element/MAC message, 또는 DCI를 통해 전송될 수 있다. pathloss와 관련하여 단말이 측정해야 하는 빔의 개수를 지시할 수 있을 뿐만 아니라 측정해야 하는 빔 인덱스 또는 빔 인덱스 세트를 지시할 수도 있다. 이를 pathloss를 위한 빔에 대한 정보로 지칭할 수도 있다.
또 다른 일 예로, 빔의 수 (또는 빔 쌍의 수) = 3으로 기지국이 Indication한 경우, 단말이 pathloss를 계산해야 하는 3개의 빔들은 신호 세기가 가장 센 빔 (빔 A로 가정) 과 빔 A를 기준으로 신호 세기 차이가 y dB 이내로 들어오는 빔들 (빔 B, 빔 C로 가정)일 수 있다. y dB의 이내로 한정하는 이유는 빔의 세가 차이가 너무 큰 경우, 해당 빔을 사용할 가능성이 없기 때문이다. 따라서, 단말이 비슷한 pathloss 값을 여러 개 저장해 둘 필요가 없을 수 있다. 이때, y dB 값은 RRC signaling, MAC control element/MAC message, 또는 DCI를 통해 전송될 수 있다.
보다 구체적으로 도 1h에서와 같이 1h-10 동작에서 기지국은 몇 개의 빔에 대한 빔 정보를 보고할 것인지를 알려주는 ‘Number of Beams’ 파라미터를 RRC signaling, MAC control element/MAC message 또는 DCI를 통해 단말로 전송할 수 있다. 이를 수신한 단말은 ‘Number of Beams’ 파라미터가 지칭하는 개수 만큼 빔 정보를 상향링크를 통해 기지국으로 전송한다. 예를 들어, ‘Number of Beams’ = 3인 경우, 단말은 기지국으로 3개의 빔 각각에 대한 빔 인덱스 및 빔의 수신 세기 (빔 정보)를 상향링크로 전송할 수 있다. 이때 빔 정보는 상향링크 제어채널 (PUCCH), 상향링크 데이터 채널 (PUSCH) 또는 MAC control element/MAC message를 통해 전송될 수 있다. 한편 기지국은 ‘Number of Beams’ 파라미터와 함께, 빔 정보 reporting을 위한 Threshold를 RRC signaling, MAC control element/MAC message 또는 DCI를 통해 단말로 전송할 수 있다. 이 Threshold 값의 목적은 단말이 reporting하는 빔의 개수를 줄이고자 함이다. 예를 들어, ‘Number of Beams’ = 3인 경우, 단말은 기지국으로 3개의 빔 각각에 대한 빔 인덱스 및 빔의 수신 세기 (빔 정보)를 상향링크로 전송할 수 있다. 이때, 3개의 빔에 대한 신호 세기 차이가 매우 클 경우, 즉 빔-A 와 빔-B의 신호 세기는 비슷하지만 빔-C의 신호 세기가 매우 작아서 단말이 빔 정보를 reporting 하더라도 기지국의 빔 운용에 도움이 되지 않을 수 있다. 또한 불필요한 빔 정보의 reporting으로 상향링크 자원을 낭비하고 단말의 전력 소모를 증가시킬 수 있다. 따라서, Threshold 이하의 수신 세기를 갖는 빔에 대해서는 reporting하지 않도록 기지국이 Threshold 값을 configuration할 수 있다.
1h-20 동작에서 기지국은 PHR 관련 정보를 단말로 전송한다. PHR 관련 정보에는 PHR을 전송해야 하는 빔의 개수에 대한 정보가 포함될 수 있다. PHR 정보에 빔 개수에 대한 정보가 별도로 포함되지 않을 경우, 1h-10 동작에서 사용된 ‘Number of Beams’ 파라미터를 사용할 수 있다. 또는 PHR 정보에 포함된 빔 개수는 1h-10 동작에서 사용된 ‘Number of Beams’ 파라미터와 다를 수도 있다. 두 개의 Thresholds (Threshold-1과 Threshold-2, Threshold-1 < Threshold-2)가 포함될 수 있다. 이를 수신한 단말은 이전 서빙 빔 (이전 subframe n - k에서 상향링크 데이터 및 제어 정보 전송에 사용됐던 빔)의 빔 수신 세기와 현재 서빙 빔 (현재 subframe n에서 상향링크 데이터 및 제어 정보 전송에 사용되는 빔)의 빔 수신세기가 Threshold-1 이상 차이가 나는지 여부를 판단한다. 이전 서빙 빔과 현재 서빙 빔의 수신 세기 차이가 Threshold-1 이상 차이가 나지만 Threshold-2 이상 차이가 나지 않는 경우, 단말은 PHR에 서빙 빔 정보를 포함시켜 전송할 수 있다. 이때, 서빙 빔 정보는 서빙 빔의 인덱스와 서빙 빔의 수신 신호 세기를 포함할 수 있다. 만일, 이전 서빙 빔과 현재 서빙 빔의 수신 세기 차이가 Threshold-1 이상 차이가 나지 않는 경우, 단말은 PHR을 전송하지 않을 수 있다. 이전 서빙 빔과 현재 서빙 빔의 수신 세기 차이가 Threshold-2 이상 차이가 나는 경우, 단말은 PHR에 서빙 빔과 Candidate 빔 정보를 포함시켜 전송할 수 있다. Candidate 빔은 서빙 빔은 아니지만, 서빙 빔이 될 가능성이 있는 빔들을 의미한다. 예를 들어 기지국이 단말로 전송한 PHR 관련 정보 또는 ‘Number of Beams’에서 configuration한 빔 개수가 N이라고 가정할 경우, 서빙 빔을 제외한 N - 1개의 빔들이 candidate 빔이 될 수 있다.
또 다른 일 예로, 1h-20 동작에서 기지국은 PHR 관련 정보에 단일 Threshold를 configuration할 수 있다. 이를 수신한 단말은, 이전 서빙 빔과 현재 서빙 빔의 차이가 해당 Threshold 이상이 되는지를 판단한다. 이전 서빙 빔과 현재 서빙 빔의 차이가 Threshold 이상이고 PHR 값이 양수인 경우, 단말은 PHR에 서빙 빔 정보를 포함할 수 있다. 이전 서빙 빔과 현재 서빙 빔의 차이가 Threshold 이상이고 PHR 값이 음수인 경우, 단말은 PHR에 서빙 빔 정보와 candidate 빔 정보를 모두 포함시켜 전송할 수 있다.
기지국이 RRC signaling을 통해 단말로 전송하는 PHR 관련 정보에 앞서 언급한 두 개의 Thresholds (Threshold-1과 Threshold-2) 또는 단일 Threshold가 아닌, Timer 값이 포함될 수 있다. Timer 값은 PHR 전송 주기를 나타내는 periodic PHR Timer와 PHR 전송이 금지되는 Timer를 나타내는 prohibit PHR Timer가 있을 수 있다. 또한 기지국이 RRC signaling을 통해 단말로 전송하는 PHR 관련 정보에는 단말이 몇 개의 빔에 대해 PHR을 기지국으로 전송해야 하는지에 대한 정보가 포함될 수 있다. 또는 빔 개수에 대한 정보는 PHR 정보와 함께 전송되는 것이 아니라, 기지국이 빔 관련 파라미터 전송 시 RRC signaling, MAC control element/MAC message 또는 DCI를 통해 단말로 전송할 수 있다.
1h-30 동작에서 PHR 정보와 함께 전송되는 빔 개수에 대한 정보 또는 빔 관련 파라미터에 포함되어 전송되는 빔 개수에 대한 정보를 이용하여, 단말은 몇 개의 빔에 대한 PHR을 기지국으로 전송해야 하는지에 대해 판단할 수 있다. 또는 기지국이 단말이 몇 개의 빔에 대한 PHR을 전송해야 하는지를 PHR 정보와 함께 전송되는 빔 개수에 대한 정보 또는 빔 관련 파라미터에 포함되어 전송되는 빔 개수에 대한 정보를 통해 configuration할 수 있다. 예를 들어, PHR 정보와 함께 전송되는 빔 개수에 대한 정보 또는 빔 관련 파라미터에 포함되어 전송되는 빔 개수에 대한 정보가 N을 나타낸다고 가정하자 (N은 빔 개수를 지칭). 그리고 periodic PHR Timer = 10 subframes를 configuration 했다고 가정하자.
이를 수신한 단말은, 1h-40 동작에서 10 subframe 주기로 N개의 빔에 대한 PHR을 기지국으로 전송한다. 이때, N = 1인 경우, 단말은 서빙 빔에 대한 빔 인덱스 및 해당 인덱스를 갖는 빔의 수신신호 세기를 PHR 정보에 포함시켜 기지국으로 전송할 수 있다. N > 1인 경우, 단말은 시빙 빔 인덱스와 candidate 빔 인덱스 및 해당 인덱스를 갖는 서빙 빔과 candidate 빔들의 수신신호 세기를 PHR 정보에 포함시켜 기지국으로 전송할 수 있다. 이러한 빔 정보들은 MAC control element 또는 MAC message를 통해 전송될 수 있다. 한편, prohibit PHR Timer = 20 subframes를 지칭하는 경우, 단말은 20 subframe 동안 PHR 보고를 수행할 수 없다.
1h-50 동작에서 단말로부터 subframe ‘n’에 PHR 정보를 수신한 기지국은 이전 subframe ‘n - k’에서 수신한 PHR 정보와 비교하여, 다음 subframe ‘n + j’에서 단말이 상향링크로 송신하는 데이터 채널 또는 제어 채널을 위해 사용하는 송신 빔의 변경 여부를 판단하다.
1h-60 동작에서 기지국이 송신 빔 변경을 결정한 경우, 기지국은 RRC signaling, MAC control element/MAC message 또는 DCI를 통해 변경된 빔 인덱스를 단말로 알려줄 수 있다. 이를 수신한 단말은 다음 상향링크 전송 시, 해당 빔을 사용하여 송신한다. 이와 달리, 기지국이 송신 빔을 변경하지 않을 것으로 결정한 경우, RRC signaling, MAC control element/MAC message 또는 DCI를 통해 기존에 사용했던 빔 인덱스를 단말로 explicit하게 알려줄 수 있다. 이를 수신한 단말은 다음 상향링크 전송 시, 기존에 사용했던 빔을 사용하여 전송한다. 한편, 기지국이 송신 빔을 변경하지 않을 것으로 결정한 경우에 대한 또 다른 일 예로, 기지국은 아무 동작도 수행하지 않을 수 있다. 단말은 자신이 기지국으로 PHR을 전송한 시점을 기준으로 Timer를 동작시켜, Timer가 만료되기 이전까지 RRC signaling, MAC control element/MAC message 또는 DCI를 통해 빔 인덱스 (변경된 빔 인덱스)가 수신되지 않은 경우, 기존에 사용하던 빔을 이용하여 상향링크 전송을 수행한다.
도 1i는 본 발명의 일 실시 예에 따른 한 셀 내에서 (또는 하나의 기지국이) 2개 이상의 subcarrier spacing을 사용할 때, 단말의 동작을 나타낸다. 동일 셀에서 서로 다른 단말이 서로 다른 서비스를 지원한다고 가정하자. 보다 구체적으로, 단말-1은 eMBB 서비스를 지원하기 때문에 15 kHz subcarrier spacing (SCS)를 사용하고, 단말-2는 URLLC 서비스를 지원하기 때문에 60 kHz SCS을 사용할 수 있다. 이때, 단말-1과 단말-2가 상향링크 송신 자원으로 2 RBs (Resource Blocks)를 기지국으로부터 할당 받았다고 가정하자 ([수학식 1-a]에서 M = 2). 단말-1과 단말-2가 서로 다른 SCS를 사용하기 때문에 PSD (Power Spectral Density)가 달라지게 된다. 따라서, 동일한 M = 2를 할당 받았더라도, 동일한 PSD를 유지하기 위해서 단말-1과 단말-2는 M값을 서로 다르게 해석해야 한다. 예를 들어, 단말-1은 M = 2로 해석하고, 단말-2는 M = 8로 해석할 수 있다. 왜냐하면, 단말-2가 사용하는 SCS는 단말-1이 사용하는 SCS의 4배이므로, 단말-2가 단말-1과 동일한 PSD를 유지하기 위해서 단말-2는 2 RBs를 할당 받았더라도 M = 8 (2 x 4)로 해석해야 한다. 또 다른 일 예로, 단말-2는 M = 2로 해석하고, 단말-1은 M = 1/4로 해석할 수 있다. 왜냐하면, 단말-1이 사용하는 SCS는 단말-2가 사용하는 SCS의 1/4배이므로, 단말-1이 단말-2와 동일한 PSD를 유지하기 위해서 단말-1은 2 RBs를 할당 받았더라도 M = 1/4 (2 / 8)로 해석해야 한다. 즉, 기준 SCS로 어떤 값이 사용되느냐에 따라, 기준 SCS가 아닌 다른 SCS를 갖는 단말의 동작이 달라질 수 있다. 따라서 기준 SCS를 결정하는 방법이 필요하다.
보다 구체적으로 1i-10 동작에서 기지국은 단말로 동기신호 (synchronization signal)을 전송한다. 이때, 동기신호 전송에 사용되는 subcarrier spacing (SCS)을 A kHz (A = 2n x 15 kHz, n = -1, 0, 1, 2, …)로 가정하자. 이때, A 값은 기지국이 운용하는 center carrier frequency (중심 주파수)에 따라 달라질 수 있다. 예를 들어, 2 GHz의 중심 주파수에서 A = 15 kHz 일 수 있으며, 30 GHz의 중심 주파수에서 A = 120 kHz 일 수 있다. 한편, A 값은 기지국이 운용하는 중심 주파수에 두개 이상이 존재할 수 있다. 예를 들어, 2 GHz 중심 주파수를 사용하는 기지국-1은 A = 15 kHz를 사용하고, 기지국-2는 A = 60 kHz를 사용할 수 있다. 단말은 기지국이 운용하는 중심 주파수에서 어떤 A를 사용할지 모르기 때문에 blind하게 찾을 수 있다.
1i-20 동작: 기지국은 단말로 상향링크 송신전력 파라미터를 전송한다. 이러한 파라미터들은 SIB 또는 RRC signaling을 통해 전송되며, SIB 또는 RRC signaling의 전송에 사용되는 SCS는 동기신호의 SCS와 동일하거나 다를 수 있다. 동기신호의 SCS와 다른 SCS가 사용될 경우, 이에 대한 indication이 필요하다. 예를 들어, SIB를 통해 상향링크 송신전력 파라미터가 전송되는 경우, SIB 전송에 사용되는 SCS는 MIB에서 indication될 수 있다. 또한 RRC connection setup 이후, RRC signaling을 통해 상향링크 송신전력 파라미터가 전송되는 경우, RRC signaling에 사용되는 SCS는 MIB, SIB 또는 Common DCI를 통해 indication될 수 있다. 동기신호의 SCS와 동일한 경우는 별도의 indication이 필요 없다.
1i-30 동작: 동기신호 전송에 사용된 SCS와 동일한 SCS가 M 값 결정의 기준으로 사용되는 경우, 별도의 reference numerology 관련 정보가 필요 없다. 동기신호 전송에 사용된 SCS와 다른 SCS가 M 값 결정의 기준으로 사용될 경우, 별도의 indication이 필요할 수 있다. 이러한 indication은 MIB, SIB 또는 Common DCI를 통해 전송될 수 있다.
1i-40 동작: 동기신호 전송에 사용된 SCS와 동일한 SCS가 M 값 결정의 기준으로 사용되는 경우, 동기신호에 사용된 SCS와 동일한 SCS를 사용하는 단말은 기지국이 DCI를 통해 indication한 RB 수를 그대로 M 값에 적용할 수 있다. 동기신호에 사용된 SCS와 다른 SCS를 사용하는 단말은 기지국이 DCI를 통해 indication한 RB 수를, 기준 값 (동기신호에 사용된 SCS)을 기준으로 scaling up하거나 scaling down할 수 있다. 예를 들어, 동기신호에 사용된 SCS = 15 kHz 이고, 단말이 상향링크 전송에 사용하는 SCS = 60 kHz인 경우를 가정하자. 기지국이 DCI를 통해 indication한 RB수가 2인 경우, 단말은 M = 8 (2 x 4)로 재해석하여 송신전력을 계산한다. 또 다른 일 예로, 동기신호에 사용된 SCS = 240 kHz 이고, 단말이 상향링크 전송에 사용하는 SCS = 120 kHz인 경우를 가정하자. 기지국이 DCI를 통해 indication한 RB수가 4인 경우, 단말은 M = 2 (4 / 2)로 재해석하여 송신전력을 계산한다.
이와 유사하게, 기지국이 MIB, SIB, Common DCI, 또는 RRC signaling을 통해 단말로 reference SCS 관련 정보를 전송한 경우 (동기신호에 사용된 SCS와 다른 SCS가 기준 값으로 설정되는 경우), 단말은 기지국이 DCI를 통해 indication한 RB 수를, 기준 값을 기준으로 scaling up하거나 scaling down할 수 있다.
1i-50 동작에서 단말은 계산된 송신전력 값을 이용하여, 상향링크 데이터 및 제어정보 전송을 수행한다.
한 셀 내에서 (또는 하나의 기지국이) 2개 이상의 subcarrier spacing (SCS)을 사용할 때의 단말의 송신전력 제어에 대한 또 다른 일 예로, 기지국은 자신의 셀에서 사용되는 SCS에 따라 서로 다른 송신전력 제어 값을 MIB, SIB, 또는 Common DCI를 통해 단말로 전송할 수 있다. 보다 구체적으로, 15 kHz SCS을 사용할 때의, P0 값과 30 kHz SCS을 사용할 때의 P0 값은 서로 다를 수 있다. 예를 들어, 15 kHz SCS을 사용하는 단말-1과 30 kHz SCS을 사용하는 단말-2를 가정하고, 단말-1과 단말-2가 모두 2 RB를 상향링크 데이터 (또는 제어정보) 전송을 위해 할당 받았다고 가정하자. 단말-1과 단말-2는 서로 다른 P0 값을 Configuration 받으며 (단말-1은 15 kHz SCS에 해당되는 P0 값을 configuration 받으며, 단말-2는 30 kHz SCS에 해당되는 P0 값을 configuration 받는다), 단말-1과 단말-2는 모두 M = 2를 적용할 수 있다.
또 다른 일 예로, SCS에 관계 없이 동일한 P0 값을 사용하지만, [수학식 1-a]의 closed-loop 전력 제어 파라미터, f(i)를 활용하여 서로 다른 SCS의 송신 전력 제어를 정의할 수 있다. 예를 들어, 15 kHz SCS을 사용하는 단말-1과 30 kHz SCS을 사용하는 단말-2를 가정하고, 단말-1과 단말-2가 모두 2 RB를 상향링크 데이터 (또는 제어정보) 전송을 위해 할당 받았다고 가정하자. 단말-1과 단말-2는 모두 동일한 P0 값을 configuration 받으며, M = 2를 사용할 수 있다. 기지국은 DCI를 통해 단말-1과 단말-2가 사용할 수 있는 f(i) 값을 제어할 수 있다 (f(i)에 포함된 δ 값을 서로 다르게 setting).
한편, 단말의 송신 빔은 기지국과 단말 사이에 위치하는 장애물들의 움직임 또는 단말의 움직임에 따라 Dynamic하게 변경될 수 있다. 이러한 경우, 앞서 언급한 RRC signaling에 기반한 전력제어 파라미터의 configuration은 바람직하지 않을 수 있다. 따라서, L1 signaling (PDCCH로 전력제어 파라미터 값의 configuration)을 통해 보다 빠른 송신전력의 조절이 가능하다. 즉,
Figure PCTKR2017012394-appb-I000100
Figure PCTKR2017012394-appb-I000101
값들 중 하나 또는 모두가 PDCCH를 통해 단말로 전송될 수 있다. 그러나 이러한 경우, PDCCH로 전송되는 파라미터의 양이 많아지므로, 시그널링 오버헤드가 매우 증가할 수 있다. 이를 방지하기 위해, RRC signaling과 PDCCH를 통한 signaling의 조합을 고려해 볼 수 있다. 예를 들어, RRC signaling을 통해 도 1f 및 도 1g의 파라미터들의 set을 configuration하고, 해당 set 중에서 어떤 값을 사용할 지에 대해 PDCCH를 통해 configuration할 수 있다.
예를 들어, 도 1f와 도 1g의 파라미터들이 RRC signaling을 통해 단말로 전송되고, 특정 순간 (예를 들어, 특정 subframe 또는 특정 slot)에서 도 1f (wide beam)와 도 1g (narrow beam) 중 어느 파라미터들을 사용할 것인지에 대해, DCI의 1-bit을 통해 indication할 수 있다. 즉, '1' 경우 narrow beam, '0' 경우 wide beam이 사용될 수 있다. 3개 이상의 beam width가 사용될 경우 DCI의 2-bits 이상을 사용하여 indication할 수 있다.
[수학식 1-a] 의 PUSCH 송신전력 제어와 [수학식 1-e]의 PUCCH 송신전력 제어에서 보여지는 것처럼, 빔 포밍 시스템에서도 Closed-loop 형태의 송신전력 제어가 가능하다. 즉, 도 1f와 도 1g에서 예시한 것처럼
Figure PCTKR2017012394-appb-I000102
Figure PCTKR2017012394-appb-I000103
값은 RRC signaling을 통해 configuration하고, 빔 별로 송신전력의 미세 조절은 PDCCH를 통해 dynamic하게 이루어질 수 있다. 보다 구체적으로, 상향링크 데이터 채널의 송신전력제어는 하기 [수학식 1-k]로 표현될 수 있다.
[수학식 1-k]
Figure PCTKR2017012394-appb-I000104
이때,
Figure PCTKR2017012394-appb-I000105
Figure PCTKR2017012394-appb-I000106
는 빔 인덱스 'j'에 따라 달라질 수 있다. 또한,
Figure PCTKR2017012394-appb-I000107
는 PDCCH를 통해 dynamic하게 configuration되는 빔 인덱스 'j'에 따라 달라질 수 있는 power의 step size를 의미한다. 또 다른 일 예로,
Figure PCTKR2017012394-appb-I000108
대신 f(i)가 beam 인덱스에 따라 달라지는 power step size를 포함할 수 있다. 즉, Accumulation 기반의 송신 전력 제어를 수행하는 경우,
Figure PCTKR2017012394-appb-I000109
일 수 있으며, Absolute Value 기반의 송신 전력 제어를 수행하는 경우,
Figure PCTKR2017012394-appb-I000110
일 수 있다.
Figure PCTKR2017012394-appb-I000111
은 PDCCH를 통해 dynamic하게 configuration될 수 있다. 한편, [Table 1-b]와 [Table 1-c]에서 보여지는 것처럼 PDCCH를 통해 configuration되는
Figure PCTKR2017012394-appb-I000112
값에 beam width를 고려한 송신전력 값이 반영될 수 있다.
상향링크 제어 채널의 송신전력제어는 하기 [수학식 1-l]로 표현할 수 있다.
[수학식 1-l]
Figure PCTKR2017012394-appb-I000113
이때,
Figure PCTKR2017012394-appb-I000114
Figure PCTKR2017012394-appb-I000115
는 빔 인덱스 'j'에 따라 달라질 수 있다. 또한,
Figure PCTKR2017012394-appb-I000116
는 PDCCH를 통해 dynamic하게 configuration되는 빔 인덱스 'j' 에 따라 달라질 수 있는 power의 step size를 의미한다. 또 다른 일 예로,
Figure PCTKR2017012394-appb-I000117
대신
Figure PCTKR2017012394-appb-I000118
가 beam 인덱스에 따라 달라지는 power step size를 포함할 수 있다. 즉, Accumulation 기반의 송신 전력 제어를 수행하는 경우,
Figure PCTKR2017012394-appb-I000119
일 수 있으며, Absolute Value 기반의 송신 전력 제어를 수행하는 경우,
Figure PCTKR2017012394-appb-I000120
일 수 있다.
Figure PCTKR2017012394-appb-I000121
은 PDCCH를 통해 dynamic하게 configuration될 수 있다. 한편, [Table 1-b]와 [Table 1-c]에서 보여지는 것처럼 PDCCH를 통해 configuration되는
Figure PCTKR2017012394-appb-I000122
값에 beam width를 고려한 송신전력 값이 반영될 수 있다.
한편, [수학식 1-k]와 [수학식 1-l]의
Figure PCTKR2017012394-appb-I000123
Figure PCTKR2017012394-appb-I000124
은 서로 동일하거나 다를 수 있다.
단말이 상향링크로 송신하는 데이터 및 제어채널에 사용되는 Waveform은 단말의 환경 또는 기지국의 운용에 따라 달라질 수 있다. 예를 들어, 기지국-A는 OFDMA (Orthogonal Frequency Division Multiple Access)를 상향링크 waveform으로 사용할 수 있다. 또한 기지국-B는 SC-FDMA (Single Carrier- Frequency Division Multiple Access)를 상향링크 waveform으로 사용할 수 있다. 그리고 기지국-C는 OFDMA와 SC-FDMA를 모두 사용할 수 있다. 상향링크 waveform들 중 어떤 waveform이 사용될 수 있는지에 대해 기지국이 MIB 또는 SIB를 통해 cell-specific하게 단말로 전송할 수 있다. 예를 들어, MIB 또는 SIB를 통해 '00'이 전송되면 OFDMA, '01'이면 SC-FDMA, 그리고 '10'이면 OFDMA와 SC-FDMA를 모두 사용하는 것으로 기지국과 단말 간 약속할 수 있다.
상향링크에서 사용되는 waveform에 따라, 상기 [수학식 1-k] 및 [수학식 1-l]의
Figure PCTKR2017012394-appb-I000125
값을 다르게 운용할 수 있다. 예를 들어,
Figure PCTKR2017012394-appb-I000126
는 하기 [수학식 1-m]과 같이 단말에서 결정될 수 있다.
[수학식 1-m]
Figure PCTKR2017012394-appb-I000127
이때,
Figure PCTKR2017012394-appb-I000128
Figure PCTKR2017012394-appb-I000129
의 작은 값을 의미하고,
Figure PCTKR2017012394-appb-I000130
Figure PCTKR2017012394-appb-I000131
의 큰 값을 의미한다.
Figure PCTKR2017012394-appb-I000132
Figure PCTKR2017012394-appb-I000133
는 상기 [수학식 1-m]에 명시된 파라미터들에 의해 단말에서 결정될 수 있으며, 상기 파라미터들 중 하나 또는 두 개 이상을 이용하여, 단말이 사용하는 상향링크 waveform의 특성을 반영할 수 있다.
예를 들어,
Figure PCTKR2017012394-appb-I000134
는 특정 셀에서 단말이 UL 전송에 사용할 수 있는 최대 Tx power level로써, 기지국이 UE-specific한 RRC signaling을 통해 알려주는 값이다. 기지국은
Figure PCTKR2017012394-appb-I000135
를 configuration할때, 단말이 사용하는 상향링크 waveform을 반영할 수 있다. 예를 들어, OFDMA를 사용할 때는 {-A1 ~ Z1}dB를 configuration하고, SC-FDMA를 사용할 때는 {-A2 ~ Z2} dB를 configuration할 수 있다.
또 다른 일 예로,
Figure PCTKR2017012394-appb-I000136
는 단말의 Power Class에 해당되는 값으로, 단말의 capability에 해당될 수 있다. 단말이 특정 셀에서 사용할 수 있는 waveform에 따라
Figure PCTKR2017012394-appb-I000137
를 다르게 적용할 수 있다. 예를 들어, SC-FDMA 기준으로 단말-A의
Figure PCTKR2017012394-appb-I000138
가 23dBm이라고 가정하자. OFDMA가 사용되는 경우, 단말은 implicit하게 23dBm - xdB 로 동작한다고 기지국과 단말간 약속할 수 있다. xdB에서 x 값은 기지국이 RRC signaling을 통해 configuration할 수도 있고, 항상 고정된 값을 사용할 수 있다.
또 다른 일 예로, MPR (maximum power reduction)은 상향링크 데이터 및 제어채널 전송을 위해 단말에게 할당된 주파수 자원의 양 (RB의 수: resource block의 수) 및 modulation을 반영할 수 있다. 이때, 상향링크 waveform에 따라 MPR 값을 다르게 설정할 수 있다. MPR 값은 기지국과 단말 간 사전에 약속된 값이 사용될 수 있다.
또 다른 일 예로, AMPR (Additional maximum power reduction)은 ACLR (Adjacent Channel Leakage Ratio)과 스펙트럼 emission 요구사항에 따른 값이다. 이 값들도, 단말이 사용하는 waveform에 따라 다르게 설정될 수 있다.
또 다른 일 예로,
Figure PCTKR2017012394-appb-I000139
는 통신이 이루어지는 band combination에 따른 tolerance 값으로, 이 값들도 단말이 사용하는 waveform에 따라 다르게 설정될 수 있다.
또 다른 일 예로,
Figure PCTKR2017012394-appb-I000140
는 aggregated channel bandwidth 및 guard-band에 따라 달라지는 값으로, 이 값들도 단말이 사용하는 waveform에 따라 다르게 설정될 수 있다.
또 다른 일 예로, PMPR (Power amplifier-maximum power reduction)은 multi-RAT 환경에서 규정을 준수하기 위한 파라미터로, 이 값들도 단말이 사용하는 waveform에 따라 다르게 설정될 수 있다.
또 다른 일 예로, 상향링크에서 사용되는 waveform에 따라, 서로 다른 파라미터 값을 Common RRC signaling, Dedicated RRC signaling 또는 DCI를 통해 기지국이 configuration할 수 있다. 일 예로, 기지국이 특정 단말의 상향링크 전송으로 DFT-S-OFDM을 사용할 것을 명령한 경우, 단말은 [수학식 1-a] 또는 [수학식 1-e]을 통해 자신이 계산한 송신전력 값에서 Δ1 [dB] 만큼 전력을 더해서 송신할 수 있다. 이때, DFT-S-OFDM을 사용할 것에 대한 명령과 Δ1 [dB]에 대한 값은 앞서 언급한 것처럼, Common RRC signaling, Dedicated RRC signaling 또는 DCI를 통해 기지국이 configuration할 수 있다. 또 다른 일 예로, 기지국이 특정 단말의 상향링크 전송으로 CP-OFDM을 사용할 것을 명령한 경우, 단말은 [수학식 1-a] 또는 [수학식 1-e]을 통해 자신이 계산한 송신전력 값에서 Δ2 [dB] 만큼 전력을 줄여서 송신할 수 있다. 이때, CP-OFDM을 사용할 것에 대한 명령과 Δ2 [dB]에 대한 값은 앞서 언급한 것처럼, Common RRC signaling, Dedicated RRC signaling 또는 DCI를 통해 기지국이 configuration할 수 있다.
도 1j는 본 발명의 일 실시 예에서 상향링크 데이터 및 제어정보 전송을 위한 서브프레임 예시이다.
본 예에서 하나의 slot은 14 심볼 (OFDM 심볼 또는 SC-FDM 심볼)로 구성되었다고 가정하였으나, 이보다 적은 수의 심볼로 구성된 slot (7 심볼로 구성된 slot) 또는 이보다 많은 수의 심볼로 구성된 slot (28 심볼로 구성된 slot)이 가능하다. 도 1j에서 첫 번째 심볼은 기지국이 셀 내의 단말로 전송하는 하향링크 제어채널을 나타낸 예시이다 (예를 들어, LTE의 Physical Downlink Control Channel: PDCCH). 하나의 심볼 (즉, 첫 번째 심볼) 만이 하향링크 제어채널 전송에 사용됨을 예시하였으나, 둘 이상의 심볼들이 하향링크 제어채널 전송에 사용될 수도 있다. 기지국은 하향링크 제어채널을 단말로 전송한 후 (또는 단말은 하향링크 채널을 기지국으로부터 수신한 후), 기지국은 상향링크 제어채널을 단말로부터 수신한다 (또는 단말은 상향링크 채널을 기지국으로 송신한다). 이러한 기지국의 송신과 수신 또는 단말의 수신과 송신을 위해서 RF의 TX/RX를 switching하기 위한 Gap이 필요하다 (두 번째 심볼). Gap 이후에, 기지국이 단말의 상향링크 채널 추정을 위한 demodulation reference signal (DMRS)이 필요하다 (세 번째 심볼). 본 예시에서, RS가 전체 심볼을 차지하고 있음을 예시하였으나, DMRS에 대한 다양한 패턴이 있을 수 있다 (예를 들어, 4개의 RE 마다 하나의 DMRS가 존재할 수 있고, 6개의 RE 마다 두 개의 DRMS가 주파수 축에서 연속적으로 존재할 수 있다). 또한 본 예시에서 DMRS는 세 번째 심볼에만 존재함을 예시하였으나, 하나의 slot 내에서 두 개 이상의 심볼에 DMRS에 존재할 수도 있다. DMRS가 세 번째 심볼에만 위치했을 때, 기지국 수신단에서 단말의 상향링크 채널 추정을 끝내자마자 데이터 복호가 가능해지므로, 수신단의 신호처리 프로세싱 시간을 줄일 수 있다는 장점이 있을 수 있다.
한편, 도 1j에서 표기된 상향링크 데이터 영역 내에는 (UL data region), 단말의 데이터와 기지국으로 리포팅하는 제어정보 (UCI: Uplink Control Information)가 포함되어 전송될 수 있다. 이때, UCI에는 HARQ (Hybrid ARQ) ACK/NACK 정보, RI (rank Indicator), CQI (Channel Quality Indicator), PMI (Pre-coder Matrix Indicator), 그리고 빔-관련된 정보 (Beam Measurement Information: beam index 및 각 beam index에 해당되는 beam의 수신신호로 BMI로 표기)를 포함할 수 있다. 이러한 UCI 정보가 데이터 정보와 매핑될 때, 도 1h에서와 같이 매핑될 수 있다. 즉, HARQ ACK/NACK 정보는 DMRS와 인접한 심볼에 매핑될 수 있다. 이러한 매핑은 HARQ 정보의 채널 추정 성능을 높일 수 있으므로, 수신단에서 HARQ ACK/NACK 정보의 복호시, 에러확률을 줄일 수 있다. 한편, RI는 MIMO 운용에 사용되는 rank 정보이며, 이에 따라 CQI/PMI 정보량이 달라질 수 있으므로, CQI/PMI 정보 보다 우선하여 복호돼야 한다. 따라서 RI를 HARQ ACK/NACK 정보가 전송되는 심볼 옆에 위치시킬 수 있다. 한편, CQI/PMI/BMI는 정보량이 HARQ ACK/NACK 및 RI에 비하여 크고, time diversity를 얻기 위해 화살표가 나타낸 것처럼 time-first 로 매핑될 수 있다. 한편, slot의 마지막 심볼은 상향링크 제어채널 (예를 들어, LTE의 Physical Uplink Control Channel: PUCCH) 전송에 사용될 수 있다.
도 1k는 본 발명의 일 실시 예에 따른 상향링크 데이터 및 제어정보 전송을 위한 서브프레임의 또 다른 예시이다. 도 1k와 도 1j의 차이는 도 1k에서 RI 정보는 HARQ ACK/NACK 정보의 매핑이 끝난 후 위치하며, RI 정보의 매핑이 끝나고 CQI/PMI/BMI의 매핑이 time-first 가 아니라, 화살표로 예시된 것처럼 frequency-first로 이루어질 수 있다. 도 1k에서 HARQ ACK/NACK 정보와 RI 정보가 동일한 심볼에만 매핑되는 것으로 보일 수 있으나, 도 1j와 같이 서로 다른 심볼에 매핑될 수 있다. 이는 상대적으로 데이터량이 많은 CQI/PMI/BMI 정보들이 주파수 다이버시티 이득을 추가적으로 얻기 위함이다.
한편, 단말의 속도가 빠를 경우 Doppler 효과로 인해 시간에 따른 채널의 변화가 커지게 된다. 이러한 경우, 도 1j와 도 1k에 도시한 바와 같이 front-loaded DMRS만을 이용하여 채널을 추정하게 될 경우, 채널 추정 성능의 열화가 발생될 수 있다. 따라서, 기지국은 front-loaded DMRS 이외에 추가적인 DMRS를 configuration할 수 있다. 이렇게 추가적인 DMRS가 configuration될 때, UCI를 data와 multiplexing하여 전송하기 위한 UCI의 mapping 규칙이 필요하다. 이때, UCI의 mapping 규칙은 도 1l(a)와 도 1m(a)에 도시한 바와 같이, 추가적인 DMRS의 유무에 관계 없이 도 1j 및 도 1k와 동일할 수 있다. 이러한 방법의 장점은 추가적인 DMRS의 유무에 관계 없이 동일한 mapping 규칙을 가져갈 수 있으므로, 기지국과 단말 구현이 용이할 수 있다. 그러나 UCI의 양이 증가되고 채널의 시간 축 변화가 클 경우, front-loaded DMRS에서 멀리 떨어져 mapping되는 UCI의 채널 추정 성능이 열화 될 수 있다. 또한 주파수 다이버시티 이득을 극대화시키기 위해, PUSCH (UL data region)의 주파수 호핑을 지원하는 경우, UCI가 첫 번째 DMRS (front-loaded DMRS) 근처에만 mapping되기 때문에 (즉, 두 번째 DMRS 근처에는 UCI가 mapping되지 않기 때문에), 주파수 다이버시티 이득을 충분히 얻을 수 없게 된다. 따라서, 도 1l(b)와 도 1m(b)에 도시한 바와 같이, 추가적인 DMRS가 기지국으로부터 configuration되는 경우, UCI가 두 개의 DMRS를 기준으로 적절히 분산될 수 있도록 만들어주는 mapping 규칙이 필요할 수 있다. 이러한 mapping 규칙을 통해, UCI들이 두 개의 DMRS를 기준으로 적절히 분산됨으로써 UCI들의 채널 추정 성능 향상을 도모할 수 있다. 또한 주파수 호핑이 적용될 경우, 주파수 다이버시티 이득을 극대화 시킬 수 있다.
도 1n은 본 발명의 일 실시 예에 따른 채널 사운딩을 위한 reference signal (SRS) 전송의 예시이다. 단말은 주기적 또는 비주기적으로 SRS 전송을 할 수 있다. 이를 수신한 기지국은 단말의 상향링크 채널 및 timing 정보를 획득할 수 있다. TDD 시스템에서는 기지국이 단말로부터 상향링크를 통해 수신한 SRS를 통해 획득한 채널 정보가, 하향링크 채널 정보와 유사할 것을 가정하고 동작할 수 있다 (UL/DL reciprocity). 이때, SRS는 상향링크 제어채널과 TDM (Time Division Multiplexing) 또는 FDM (Frequency Division Multiplexing)되어 전송될 수 있다. 본 예는 TDM 되어 전송하는 경우이며, SRS와 상향링크 제어채널이 UL의 전 대역폭을 차지하는 것으로 도시화 하였으나, SRS와 상향링크 제어채널이 UL 대역폭의 일부를 차지할 수 있으며, 그 대역폭이 각각 다를 수 있다. 예를 들어, SRS의 전송 대역폭은 A tones을 사용하고, 상향링크 재어 채널은 B tones을 사용할 수 있다. 이러한 SRS 전송은 기지국이 하향링크 제어채널을 통해 명령하거나 RRC signaling을 통해 명령할 수 있으며, 명령이 이루어지면 일정 기간 동안 주기적으로 전송되거나, 한번만 전송할 수 있다. 그리고 시스템에서 SRS의 전송 자원은 하나의 slot (또는 subframe 또는 mini-slot) 내에서 시간축으로는 하나 또는 두개의 심볼일 수 있다. 즉, 단말은 시스템이 SRS 전송을 위해 slot 내에 할당된, 하나 또는 두 개의 심볼 중에서 SRS를 한번 전송한다.
도 1o는 본 발명의 일 실시 예에 따른 채널 사운딩을 위한 reference signal (SRS) 전송의 또 다른 예시이다. 도 1n과의 차이점은 단말이 SRS를 하나의 심볼에 한번 전송하는 것이 아니라, 두 개 이상의 심볼에서 두번 이상을 전송하는 것이다. 예를 들어, 도 1o에서 하나의 단말이 SRS를 10개의 심볼을 통해 10번 전송한다. 이때 각 심볼을 통해 전송되는 SRS는 서로 다른 빔 방향으로 전송될 수 있다. 그리고 도 1o에서는 세 번째 심볼이 DMRS 전송을 위해 사용할 것을 예시하였으나, DMRS 전송 없이 SRS 심볼 전송으로 대체될 수 있다. 마찬가지로, 마지막 심볼이 상향링크 제어채널로 예시하였으나, 이 또한 SRS 심볼 전송으로 대체될 수 있다.
기지국은 SRS의 단일 전송 또는 SRS의 multiple 전송에 대한 indication을 할 수 있다. 이러한 indication은 L1-signaling (예를 들어, PDCCH의 DCI)를 통해 이루어질 수 있다. 이때, DCI에는 몇 개의 심볼을 통해 SRS를 전송할 것인지에 대한 정보가 포함될 수 있다. 한편, SRS의 multiple 전송이 가능한 slot/subframe/mini-slot은 몇 개의 심볼을 통해 SRS를 전송할 것인지에 대한 정보와 함께, RRC signaling을 통해 setting될 수 있다. 이를 수신한 단말은 해당 slot/subframe/mini-slot에서 해당 개수의 SRS를 전송한다.
또 다른 일 예로, RRC signaling과 L1 signaling의 조합이 가능하다. 예를 들어, RRC signaling을 통해 SRS의 multiple 전송이 가능한 slot/subframe/mini-slot을 configuration하고, 몇 개의 심볼을 통해 SRS를 전송할 것인지는 고정된 값을 사용할 수 있다 (예를 들어, 고정된 수를 규격에서 고정). 기지국은 DCI의 1-bit를 통해, RRC를 통해 configuration한 slot/subframe/mini-slot 중에서, 실제 전송이 이루어지는 slot/subframe/mini-slot을 지칭할 수 있다. RRC signaling과 L1 signaling의 조합의 또 다른 일 예로, RRC signaling을 통해 SRS의 multiple 전송이 가능한 slot/subframe/mini-slot을 configuration하고, 해당 slot/ subframe/ mini-slot에서 몇 개의 심볼을 통해 SRS를 전송할 것인지는 DCI를 통해 기지국이 indication할 수 있다.
도 1p는 본 발명의 일 실시 예에 다른 단말과 기지국의 동작을 나타내는 도면이다.
도 1p를 참조하면, 1p-10 동작에서 단말과 기지국은 RRC 연결 상태에 있을 수 있다. 단말은 도 1a 의 1a-10, 1a-20, 1a-30 단계를 수행하고 RRC 연결 상태에 있을 수 있다. 단말과 기지국은 랜덤 액세스 절차에서 도 1b, 도 1c, 도 1d, 도 1e 에서 설명한 동작을 수행할 수 있다.
1p-20 동작에서 단말은 기지국으로부터 UE-specific 송신전력 파라미터를 수신할 수 있다. 상기 단말은 UE-specific 송신전력 파라미터는 RRC signaling, MAC control element/MAC message, 또는 DCI를 통해 수신할 수 있고, 상기 메시지들 중 적어도 2개 메시지의 조합에 따라 UE-specific 송신전력 파라미터를 수신할 수도 있다. 예를 들어, UE-specific 송신전력 파라미터의 일부 정보는 RRC signaling으로 수신하고, 일부 정보는 DCI를 통해 수신할 수도 있다.
UE-specific 송신전력 파라미터는 도 1p의 1a-40 동작에서 설명한 송신전력 파라미터를 포함할 수 있다. 또한, UE-specific 송신전력 파라미터는 도 1f와 도 1g에서 설명한 송신전력 파라미터를 포함할 수 있다. 또한, UE-specific 송신전력 파라미터는 도 1h의 1h-10, 1h-20 동작에서 설명한 송신 전력 파라미터를 포함할 수 있고, 도 1i의 1i-20, 1i-30 에서 설명한 송신전력 파라미터를 포함할 수 있다.
예를 들어, 도 1f와 eh 1g에서 언급한 바와 같이, RRC signaling과 PDCCH를 통한 signaling의 조합을 고려해 볼 수 있다. 예를 들어, RRC signaling을 통해 도 1-f 및 도 1-g의 파라미터들의 set을 configuration하고, 해당 set 중에서 어떤 값을 사용할 지에 대해 PDCCH를 통해 configuration할 수 있다. 또한, 기지국은 기준이 되는 P0 값을 RRC로 Signaling한 후, 기준으로부터 실제 사용되는 빔과의 offset 값을 RRC 또는 DCI를 통해 시그널링할 수 있다.
예를 들어, 송신전력 파라미터는 도 1h에서 언급한 바와 같이 빔 별 pathloss에 대한 파라미터(빔에 대한 정보)를 포함할 수 있다. 상향링크 송신전력 결정 시 pathloss를 고려할 수 있고, Hybrid beamforming 시스템에서는 기지국의 송신 빔과 단말의 수신 빔 조합에 따라 많은 수의 빔이 존재할 수 있으므로, 빔 별 pathloss 계산이 필요하다. 기지국은 RRC signaling, MAC control element/MAC message, 또는 DCI를 통해, 단말이 몇 개의 빔에 대해 pathloss 측정을 하여 저장해두어야 할 지를 기지국이 지시할 수 있다. 기지국은 빔에 대한 정보를 제공할 수 있고, 빔에 대한 정보는 경로 손실을 측정해야 하는 빔을 지시할 수 있다. 예를 들어, 빔 인덱스 또는 빔 인덱스 세트를 지시할 수 있다. 단말은 지시 받은 빔에 대해서 pathloss를 측정하고, 측정된 pathloss 에 기반하여 송신 전력을 결정할 수 있다.
예를 들어, 송신 전력 파라미터는 도 1i에서 언급한 바와 같이, M 값을 해석하기 위한 SCS(subcarrier spacing)에 대한 정보를 포함할 수 있다.
송신전력 파라미터는 상기 구성에 한정하지 않고, 본 발명의 각 실시 예에서 언급한 파라미터를 포함할 수 있다.
1p-30 동작에서 단말은 UE-specific 송신전력 파라미터에 기반하여 송신전력을 계산할 수 있다. 단말은 상향링크 데이터 채널 전송을 위한 송신전력 및/또는 상향링크 제어 채널 전송을 위한 송신전력을 결정할 수 있다. 예를 들어, 단말은 RRC signaling 과 PDCCH를 통해 수신한 송신전력 파라미터를 조합하여 송신 전력을 계산할 수도 있다. 예를 들어, 단말은 빔 별 pathloss를 고려하여 송신전력을 결정할 수 있다. 예를 들어, 단말은 SCS에 대한 정보를 고려하여 M 값을 해석할 수 있고, M 값을 해석하여 PSD를 유지할 수 있다. 단말은 상기 구성에 한정하지 않고, 본 발명의 각 실시 예에서 언급한 다양한 파라미터를 고려하여 송신 전력을 결정할 수 있다.
1p-40 동작에서 단말은 상향링크를 전송할 수 있다. 상향링크를 전송한다는 것은 상향링크 채널(데이터 채널, 제어 채널), 상향링크 신호, 상향링크 데이터, 상향링크 정보 중 적어도 하나를 전송하는 것으로 표현할 수 있다.
단말과 기지국의 구체적인 동작은 도 1p에 한정되지 않으며, 도 1p의 각 파라미터에 대응하는 구체적인 동작은 도 1a 내지 도 1o 에서 설명한 단말과 기지국의 동작을 참조한다.
도 1q는 본 발명의 일 실시 예에 따른 단말의 구성을 나타내는 도면이다.
도 1q를 참고하면, 단말은 송수신부 (1q-10), 제어부 (1q-20), 저장부 (1q-30)을 포함할 수 있다. 본 발명에서 제어부(1q-20)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (1q-10)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1q-10)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다.
제어부 (1q-20)은 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1q-20)는 본 발명의 도 1a 내지 도 1p를 통해 기술한 단말의 동작을 제어할 수 있다.
본 발명의 실시 예에 따르면, 상기 제어부(1q-20)는 기지국으로부터 단말 특정 송신전력 파라미터를 수신하고, 상기 단말 특정 송신전력 파라미터 및 상기 단말에 할당된 서브캐리어 간격(subcarrier spacing)에 기반하여 상기 단말의 송신전력을 결정하며, 상기 결정된 송신전력에 기반하여 상향링크 신호를 전송하도록 제어할 수 있다. 또한, 상기 제어부(1q-20)는 상기 서브캐리어 간격에 기반하여 상기 송신전력 결정에 이용하는 M 값을 적용하도록 제어할 수 있다. 상기 단말 특정 송신전력 파라미터는 빔에 대한 정보를 포함하고, 상기 송신 전력은 상기 빔에 대한 정보에 기반하여 측정한 경로 손실에 기반하여 결정될 수 있다. 또한, 상기 제어부(1q-20)는 송신전력 파라미터들의 세트를 포함하는 RRC(radio resource control) 메시지를 수신하고, 상기 송신전력 파라미터들의 세트 중 상기 송신전력 결정에 사용하는 송신전력 파라미터를 지시하는 정보를 포함하는 PDCCH(physical downlink control channel)를 수신하도록 제어할 수 있다.
저장부(1q-30)는 상기 송수신부 (1q-10)를 통해 송수신되는 정보 및 제어부 (1q-20)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
도 1r은 본 발명의 일 실시 예에 따른 기지국의 구성을 나타내는 도면이다.
도 1r 에서 기지국의 구성은 TRP의 구조로 이용할 수도 있다. 또한, TRP는 기지국의 구성 중 일부로 구성될 수도 있다.
도 1r을 참고하면, 기지국은 송수신부 (1r-10), 제어부 (1r-20), 저장부 (1r-30)을 포함할 수 있다. 본 발명에서 제어부(1r-20)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (1r-10)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(1r-10)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다.
제어부 (1r-20)은 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (1r-20)는 본 발명의 도 1a 내지 도 1o를 통해 기술한 기지국의 동작을 제어할 수 있다.
본 발명의 실시 예에 따르면 제어부(1r-20)는 서브캐리어 간격(subcarrier spacing) 설정 정보를 포함하는 메시지를 단말에 전송하고, 상기 단말에게 단말 특정 송신전력 파라미터를 전송하며, 상기 단말로부터 상향링크 신호를 수신하도록 제어할 수 있다. 상기 상향링크 신호의 송신전력은 상기 단말 특정 송신전력 파라미터 및 상기 서브캐리어 간격 설정 정보에 기반하여 결정될 수 있다. 또한, 상기 서브캐리어 간격 설정 정보에 기반하여 상기 송신전력 결정에 이용하는 M 값을 적용될 수 있다. 또한, 상기 단말 특정 송신전력 파라미터는 빔에 대한 정보를 포함하고, 상기 송신전력은 상기 빔에 대한 정보에 기반하여 측정한 경로 손실에 기반하여 결정될 수 있다. 또한, 상기 제어부(1r-20)는 송신전력 파라미터들의 세트를 포함하는 RRC(radio resource control) 메시지를 전송하고, 상기 송신전력 파라미터들의 세트 중 상기 송신전력 결정에 사용하는 송신전력 파라미터를 지시하는 정보를 포함하는 PDCCH(physical downlink control channel)를 전송하도록 제어할 수 있다.
저장부(1r-30)는 상기 송수신부 (1r-10)를 통해 송수신되는 정보 및 제어부 (1r-20)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
<제2 실시 예>
DL Common Control Signal은 Sync Signals, 최소한 Random Access를 수행하기에 필수적인 시스템 정보를 전송하는 채널 (혹은 채널들) (i.e., PBCH), RRM Measurement를 위하여 사용되는 Signal 및 L3 Mobility를 위하여 사용되는 Signal을 포함한다. RRM measurement로는 빔 측정을 포함할 수 있다. 이러한 DL Common Control Signal은 Cell 내 혹은 Neighboring Cell의 사용자들이 들을 수 있도록 Broadcasting 되어야 한다.
따라서 Multi-beam 기반 System에서는 Multi-beam Sweeping을 통하여 전송되어야 한다. Sync Signal들로는 PSS(primary synchronization signal), SSS(secondary synchronization signal), TSS(tertiary synchronization signal)가 포함될 수 있다. PSS/SSS는 coarse timing/frequency 동기를 잡는 데에 활용 가능하며 cell-ID를 detection하는 데 활용될 수도 있다. 혹은 coarse한 TRP 송신 빔 선택에도 사용될 수 있다. 연속적인 OFDM symbol을 활용하여 beam sweeping되는 신호들을 전송하는 시스템의 경우, PSS 및 SSS를 사용하여 동기를 잡는 것으로는 Subframe (SF) 혹은 Slot의 경계를 알 수 없다. 이에 SSS sequence 및 PBCH 정보를 활용하여 SF/Slot 경계를 알 수 있도록 시스템을 설계하는 것이 가능하다. 또는 해당 기능을 위하여 TSS (tertiary synchronization signal)와 같은 새로운 synchronization signal을 도입할 수도 있다. TSS는 각 OFDM 심볼 별로 각기 다른 시퀀스를 사용함으로써, 단말이 감지한 빔이 몇 번째 OFDM 심볼에서 전송된 것인 지를 알 수 있게 해주어 SF/slot 경계가 결정되는데 사용될 수 있다.
경우에 따라서는 DL Common Control Signal들이 자주 전송되지 않아도 될 수 있으며, 이에 시스템이 DL Common Control Signal들의 전송 주기를 가변적으로 변경하도록 디자인될 수 있다. DL Common Control Signal의 전송 주기를 가변적으로 변경하여 전송 할 경우 (i.e., Configurable DL Common Control Signal) 다음과 같은 효과를 기대할 수 있다:
1. 항상 전송되는 (always-on transmission) 신호 감소
2. Overhead 최소화
3. 네트워크 에너지 소모 최소화
Configurable DL Common Control Signal의 형태로 아래의 두 가지 Scenario가 가능하다.
Scenario Alt 1. 최소한 고정 주기 (약속된 주기)로 Sync가 전송된다.
Scenario Alt 2. 각 Cell별 네트워크가 자율적으로 Sync의 주기를 결정한다.
각 Alternative Scenario의 상세 동작은 다음과 같다.
Scenario Alt 1의 동작
도 2a는 Scenario Alt 1의 실시 예를 보여준다. 도 2a의 A~F는 서로 다른 physical channel을 의미하며, 각 채널은 다음의 용도로 사용될 수 있다.
A: Non-Connected 사용자를 위한 Sync
B: PBCH 1
C: 최소한 non-connected UE가 mobility 및 measurement에 사용하는 측정 기준신호. 해당 신호는 경우에 따라서 Connected UE도 사용 가능.
D: Connected 사용자를 위한 Sync
E: PBCH 2
F: 최소한 connected UE가 mobility 및 measurement에 사용하는 측정 기준신호.
본 발명의 실시 예에서 Non-connected UE라 함은, IDLE 상태에 있거나 혹은 신규 접속(access)을 시도하고자 하는 단말을 의미한다.
물리 채널 A/B/C는, NR에서 정의되는 하나의 SS 블록 (SS-block) 내에 포함될 수도 그렇지 않을 수도 있다. 또한, 물리 채널 A/B/C의 주기는 서로 동일할 수도 혹은 상이할 수도 있다. 예를 들어, 물리채널 A와 B는 하나의 SS 블록 내에 포함되며 따라서 동일한 주기를 가질 수 있다. 하지만 물리채널 C는 시스템에서 A/B와 다른 주기를 가질 수 있다. 마찬가지로, 물리 채널 D/E/F는, NR에서 정의되는 하나의 SS 블록 (SS-block) 내에 포함될 수도 그렇지 않을 수도 있다. 또한, 물리 채널 D/E/F의 주기는 서로 동일할 수도 혹은 상이할 수도 있다.
Scenario Alt 1의 TRP/UE 상세 동작은 다음과 같다:
Step 1. Non-connected UE가 A를 읽고 PSS/SSS를 통하여 Cell-ID Detection 수행.
Step 2. Beam sweeping되는 PSS/SSS 신호가 연속적인 OFDM symbol에 전송될 경우, SSS, PBCH 혹은 TSS를 통하여 SF 혹은 Slot 경계 Detection 수행.
Step 3. Step 1에서 Detection된 Cell-ID 정보를 기반으로 B를 Decoding.
B는 단일 혹은 다수 개의 physical 채널일 수 있으며, 기본적으로 최소한 initial access 및 random access를 수행하기 위한 필수 system information을 전송하는 역할을 한다.
또한, B는 Self-decodable 특성을 가진다.
B는 최소한 다음과 같은 정보를 가질 수 있다: i) 필요시, C에 대한 구성정보(configuration), ii) 시스템 대역폭(bandwidth, BW), iii) 시스템 프레임 번호(system frame number, SFN), iv) 단말이 랜덤 접속(random access)를 수행하기 위한 정보(예: 랜덤 접속 자원 구성 (configuration)).
Step 4. B를 통하여 C의 구성 정보가 전송될 경우, UE는 C를 수신.
C는 i) 초기 셀 선택/셀 재선택(re-selection), ii) beam-ID 획득 용도로 활용될 수 있음.
Non-connected UE의 초기 셀 선택 및 재 선택 과정 시, sync signal (i.e., A)을 활용하여 수행할 경우, C는 전송되지 않을 수 있다.
만약 C가 cell-ID에 따라 결정되는 지정된 신호일 경우에는 non-connected UE는 Step 3를 수행하지 않고, C를 통하여 cell-selection 및 re-selection 수행 가능하다.
Step 5. Random access 수행. UE는 RRC connected 상태로 변경.
Step 6. UE는 D를 수신. D의 주기 정보는 Step 1~5 과정에서 UE에게 전송될 수 있음.
A와 D의 PSS/SSS의 Sequence는 동일하지 않을 수 있다. 예를 들어, Sequence의 길이 혹은 Sequence 값 자체가 상이할 수 있다.
또한, A는 SF/slot boundary detection 기능 (e.g., SSS sequence, PBCH contents, TSS 등을 통하여)을 포함하더라도 D는 SF/slot boundary detection 기능을 포함할 필요 없을 수 있다. 예를 들어, A가 TSS를 포함한다면 D는 TSS를 포함할 필요가 없다.
Step 6. UE는 E를 Decoding
D와 E의 주파수/시간 축 mapping (e.g., FDM)은 A와 B의 주파수/시간 축 mapping과 동일할 수도 그렇지 않을 수도 있다.
E는 B와 동일한 contents를 포함할 수도 혹은 그렇지 않을 수도 있음. 예를 들어, F가 C와 동일한 형태의 신호일 경우 (e.g., 동일 sequence, 동일 시간/주파수 mapping) F에 대한 configuration은 E에서 이루어질 필요가 없다. 즉, B에서 C를 configuration한 후, connected UE를 위한 mobility/measurement 신호인 F는 D와 동일한 주기로 전송될 수 있다. 이 때 F와 D의 주파수/시간 mapping 관계는 C와 A의 주파수/시간 mapping 관계와 동일할 수 있다. 혹은 D/E가 따로 전송되지 않을 경우에는 F만 전송될 수도 있다.
혹은, E는 F에 대한 configuration을 포함할 수도 있다.
혹은, E는 전송되지 않을 수도 있다.
Step 7. F가 전송될 경우, F를 수신할 수 있다.
F는 C와 동일할 수도 혹은 동일하지 않을 수도 있다.
F는 i) handover, ii) L1/L2 mobility 용도로 활용될 수 있다.
만약 F가 전송되지 않는다면, HO 동작은 sync signal (i.e., A and/or D) 혹은 C를 통한 measurement 기반하여 수행 가능하다.
또 다른 실시 예에 따르면, C는 cell-ID 별로 미리 지정된 신호일 수 있으며, 이 경우 non-connected UE는 cell-selection 혹은 re-selection을 위하여 PBCH를 따로 수신하지 않을 수도 있다 (Step 3 불필요). 혹은 또 다른 실시 예에 따르면, C가 존재하지 않고 non-connected UE이 sync 신호 (i.e., A)를 통하여 cell-selection 및 re-selection을 수행할 경우에는 Step 3 및 Step 4가 불필요하게 된다.
Sync 신호 A는 미리 지정된 주기로 전송됨으로써 non-connected UE 및 해당 cell의 connected UE가 모두 수신 가능하며, Sync 신호 D는 connected 상태가 되어야 주기를 알 수 있음으로써 기본적으로 non-connected UE들은 해당 정보를 수신하지 못한다.
Step 5에서 D를 수신하기 위해서는 D의 주기를 알아야 한다. 해당 정보는 아래와 같은 방식으로 UE에게 전송될 수 있다:
Alt 1. Channel B를 통하여 전송
Alt 2. Random access 과정 중 Msg4를 통하여 전송
Alt 3. Random access 과정 이후, UE-specific RRC signaling을 통하여 전송
기본적으로, PBCH 내 정보들은 일정한 시간 동안 변경되지 않을 수 있으며 (e.g., LTE의 경우 40ms 동안은 동일한 PBCH 정보가 전송됨), 따라서 non-connected UE는 PBCH 정보를 수신하여 decoding할 때에 주기적으로 전송되는 여러 개의 B 채널을 combining 할 수 있다. 이는 보다 robust한 PBCH decoding을 가능하게 한다.
만약 B와 E가 동일할 경우, connected UE들은 non-connected UE와 비교해서 동일한 system information을 보다 더 빠르게 decoding할 수 있는 장점을 가질 수 있다.
B가 다수 개의 채널로 이루어져 있고, E가 포함하는 정보가 B가 포함하는 정보의 일부일 경우, E는 B를 구성하는 채널 중 하나의 채널과 동일한 형태 (e.g., code rate, 주파수/시간축 mapping)를 가질 수 있다.
B와 E에 포함된 contents 및 채널 형태는 동일하지 않을 수 있으며, 또한 B와 E 내에 포함된 정보가 유지되는 기간도 상이할 수 있다 (e.g., PBCH 1 내 정보는 400ms동안 동일, PBCH 2 내 정보는 40ms동안 동일).
C와 F의 형태는 동일 (e.g., 동일 sequence, 동일 시간/주파수 mapping)할 수 있으며, 이 때에는 E에서 F에 대한 별도의 Configuration이 수행되지 않을 수도 있다. 왜냐하면, B에서 configuration된 C의 정보 및 D의 주기 정보에 기반하여 F가 전송될 수 있기 때문이다. 이 때 A와 C의 주파수/시간 mapping 관계 및 D와 F의 주파수/시간 mapping 관계는 동일할 수도 혹은 상이할 수도 있다.
Scenario Alt 2의 동작
도 2b는 Scenario Alt 2의 실시 예를 보여준다. 도 2a의 A~F는 서로 다른 physical channel을 의미하며, 각 채널은 다음의 용도로 사용될 수 있다.
A: Sync signals
B: PBCH
C: 최소한 connected UE가 mobility 및 measurement에 사용하는 signal
Scenario Alt 2의 상세 동작은 다음과 같다:
Step 1. Non-connected UE가 A를 읽고 PSS/SSS를 통하여 Cell-ID Detection 수행.
Step 2. Beam sweeping되는 PSS/SSS 신호가 연속적인 OFDM symbol에 전송될 경우, SSS, PBCH 혹은 TSS를 통하여 SF 혹은 Slot 경계 Detection 수행.
<Sync detection>
Scenario Alt 2의 경우, Sync의 주기가 네트워크에서 선택됨에 따라, 단말은 Blind Detection을 수행하여야 한다. 예를 들어, 네트워크가 {5ms, 20ms, 40ms}의 Sync 주기 중 하나를 선택할 수 있다면, 단말은 Sync 신호 detection을 위하여 가장 작은 값인 5ms를 사용할 수 있다.
<PBCH detection>
Scenario Alt 1에서 설명한 바와 같이, B는 일정 시간 동안 동일한 contents가 전송됨으로써 주기적으로 전송되는 B를 여러 개 combining을 하여 robust한 B의 decoding을 수행할 수 있다. 이 때 UE가 신호의 combining을 수행하기 위해서는 B가 전송되는 명확한 주기 값 (e.g., 5ms, 20ms, 40ms)을 알아야 한다. 이 주기 값은 Sync신호들 (i.e., PSS, SSS, TSS) 중 하나 혹은 여러 개를 통하여 전송될 수 있다. 예를 들어, 주기 값에 따라서 서로 다른 PSS 혹은 SSS Sequence가 사용될 수 있으며 이를 통하여 UE는 B의 주기를 인지할 수 있게 되는 것이다. 혹은 TSS를 통하여 주기를 Indication하는 것도 가능한데, 각 주기 값에 따라 TSS는 서로 다른 Sequence를 사용하되 하나의 주기 값에 대해서는 하나의 Sequence를 Cyclic 형태로 구성함으로써 여러 개의 OFDM Symbol을 나타내어 SF boundary를 구분해낼 수 있다. 만약 A와 B의 주기가 동일할 경우, UE는 상기 방식을 통하여 A와 B의 주기를 알아낼 수 있다.
Step 3. UE는 step 2에서 획득된 주기 정보를 기반으로 B를 Decoding한다.
B는 단일 혹은 다수 개의 physical 채널일 수 있으며, 기본적으로 initial access 및 random access를 수행하기 위한 필수 system information을 전송하는 역할을 함.
B는 Self-decodable 특성을 가짐.
B는 최소한 다음과 같은 정보를 가질 수 있음: e.g., i) configuration of C (if needed), ii) system BW, iii) system frame number, iv) info for performing RA.
Step 4. B를 통하여 C가 Configure될 경우, UE는 C를 수신.
C는 i) cell selection/re-selection, ii) beam-ID 획득 용도로 활용될 수 있음.
만약 C가 Configuration 되지 않은 경우, non-connected UE의 cell-selection 및 re-selection 동작은 sync signal (i.e., A)을 통하여 수행 가능.
만약 C가 cell-ID에 따라 결정되는 지정된 신호일 경우에는 non-connected UE는 Step 3를 수행하지 않고, C를 통하여 cell-selection 및 re-selection 수행 가능.
Step 5. Random Access 수행. RRC connected 상태로 변경.
Step 6. Connected 상태에서 Sync 및 PBCH 수신을 위하여 A 및 B 각각을 수신.
Step 7. C가 전송될 경우, UE (connected)는 C를 수신.
C는 i) handover, ii) beam-ID update 용도로 활용될 수 있음.
만약 UE가 non-connected 상태에서 A를 기반으로 cell-selection/re-selection을 수행하는 경우에는, UE는 connected 상태가 된 이후 B에 포함된 C에 대한 configuration 정보를 수신하여 이를 i) handover, ii) L1/L2 mobility 용도로 활용할 수 있음.
만약 C가 전송되지 않는다면, HO 동작은 sync signal (i.e., A)을 통한 measurement 기반하여 수행 가능.
또 다른 non-connected UE 동작의 실시 예에 따르면, C는 cell-ID 별로 미리 지정된 신호일 수 있으며, 이 경우 non-connected UE는 cell-selection 혹은 re-selection을 위하여 PBCH를 따로 수신하지 않을 수도 있다 (Step 3 불필요). 혹은 또 다른 non-connected UE 동작의 실시 예에 따르면, C가 존재하지 않고 non-connected UE이 sync 신호 (i.e., A)를 통하여 cell-selection 및 re-selection을 수행할 경우에는 Step 3 및 Step 4가 불필요하게 된다.
또 다른 non-connected 및 connected UE 동작의 실시 예에 따르면, non-connected UE가 Step 3를 수행하지 않고 sync 신호 (e.g., A)를 통하여 cell-selection/re-selection을 수행한 이후 random access를 통하여 RRC connected될 수 있으며, connection establishment 이후 B를 수신하여 C에 대한 configuration을 알아내고 이를 handover 및 L1/L2 mobility에 활용할 수 있다.
Scenario Alt 2의 경우, 주기 값 정보가 Sequence를 통하여 전송되는 만큼, 단말은 지속적으로 Sync Sequence를 Detection 해 봄으로써 Sync의 주기가 기존 값에서 Update되었는 지 확인할 수 있다. 이 때, 실제로 주기가 변경되기 이전에 정보를 전송함으로써, 단말이 Update된 Sync를 바로 수신할 수 있도록 한다. 이 때,
Alt 1. 주기 변경 시점대비 절대적인 시간 이전에 변경 사실 알림 (e.g., 40ms 이전)
Alt 2. 변경 시점을 알리는 Sync 신호 전송 후 바로 주기 변경
[ Multi-cell Measurement Support ]
Mobility/measurement용 signal인 C 및/혹은 F는 UE가 handover를 수행하는 데 이용할 수 있다. UE가 handover를 수행하기 위해서는 neighboring cell의 C 및/혹은 F의 정보를 아는 것이 필요하다. 해당 정보에는 C 및/혹은 F의 주기 정보, 주파수/시간 mapping 정보, C 및/혹은 F를 전송하는데 사용하는 안테나 포트 개수 등이 포함될 수 있다.
Scenario Alt 1의 경우, neighboring cell의 measurement signal (i.e., C 및/혹은 F) 관련 정보를 획득하는 방법은 아래와 같다:
Alt 1. HO 시 C 및/혹은 F를 활용하는 경우
Alt 1-1. C와 F가 동일한 신호이고 Sync 신호와 더불어 전송될 경우 (e.g., 도 2a), 단말은 neighboring cell의 A 수신 이후 neighboring cell의 B를 decoding 함으로써 neighboring cell의 C 및/혹은 F에 대한 Configuration 정보 (mapping, pattern, 주기 정보)를 알아낸다. 이 정보를 바탕으로 추후 HO를 위한 measurement에 활용한다.
Alt 1-2. Neighboring cell의 C/F 중 C만 전송될 경우, 단말은 neighboring cell의 A 수신 이후 neighboring cell의 B를 decoding 함으로써 neighboring cell의 C에 대한 configuration 정보 (mapping, pattern, 주기 정보)를 알아낸다. 이 정보를 바탕으로 추후 HO를 위한 measurement에 활용한다.
Alt 1-3. Neighboring cell의 F만 전송될 경우, 단말은 앞서 설명한 방식들로 connected sync (i.e., neighboring cell의 D)의 주기를 알아낸 이후, neighboring cell의 E의 decoding을 통하여 F의 configuration을 알아낸다. 이 정보를 바탕으로 추후 HO를 위한 measurement에 활용한다.
Alt 1-4. 혹은, 상기 Alt 1-1., 1-2., 1-3. 상황에 대해서 (C와 F가 동일한 신호이고 Sync 신호와 더불어 전송될 경우, 혹은 Neighboring cell의 C/F 중 C만 전송될 경우, 혹은 Neighboring cell의 F만 전송될 경우) serving cell TRP가 neighboring cell의 mobility/measurement signal의 정보를 알려줄 수 있다. 예를 들어, SIB (Cell-specific RRC signaling) 혹은 UE-specific RRC signaling을 통하여 neighboring cell의 cell-ID와 함께 neighboring cell의 C 및/혹은 F의 주기, 혹은 neighboring cell의 D의 주기를 알려줄 수도 있다. 나아가 Cell-specific 혹은 UE-specific RRC signaling을 통하여 C 및/혹은 F의 configuration 정보도 함께 전송해줄 수 있다. 상술한 바와 같이 C 및/혹은 F의 configuration 정보에는 주기 정보, 주파수/시간 mapping 정보, C 및/혹은 F를 전송하는데 사용하는 안테나 포트 개수 등이 포함될 수 있다.
Alt 1-5. C 및/혹은 F가 cell-ID만으로 선택될 수 있는 지정된 신호라면, 단말은 neighboring cell C 및/혹은 F의 다른 정보 없이 주기 정보만 알아내어 neighboring cell measurement를 수행하는 것이 가능하다. Neighboring cell의 C 및/혹은 F의 주기 정보는 serving cell의 TRP가 SIB (Cell-specific RRC signaling) 혹은 UE-specific RRC signaling을 통하여 UE에게 알려줄 수 있다.
각 cell 별 C 및/혹은 F의 주기가 다르고 단말이 beam sweeping을 수행하는 경우, 단말이 neighboring cell에 대한 measurement를 수행할 경우, 현재 serving cell과 association 되어있는 Rx beam이 아닌 다른 방향성의 Rx beam을 통하여 measurement signal을 수신해야 하는 상황이 발생할 수 있다. 따라서, 단말이 neighboring cell에 대한 measurement를 수행하는 동안 serving cell에서는 단말을 위한 DL 신호를 내려주지 않는 것이 필요하다 (도 2c 참조). 이렇게 단말의 neighboring cell에 대한 measurement를 허용하는 구간 (i.e., measurement gap)을 지정하는 것이 필요하다. Measurement gap을 지정하는 방식에는 다음과 같은 방식이 가능하다.
Alt 1. TRP가 UE-specific RRC signaling을 통하여 UE 별로 measurement gap의 주기 정보 및 measurement gap의 시작점 (e.g., SF 번호)을 알려줌. UE에 지정된 measurement gap에서는 해당 UE에 대한 DL 정보가 전송되지 않는다.
Alt 2. Sync 신호가 mobility/measurement 신호인 경우
Alt 2-1. A만 mobility/measurement 신호로 활용되고 C 및/혹은 F가 존재하는 경우
Alt 2-1-1. Neighboring cell의 A만 수신하여 measurement 수행
Alt 2-1-2. Neighboring cell의 A수신 후 PBCH를 통하여 D의 주기 정보를 획득, D를 수신한 후 E를 통하여 C 및/혹은 F의 configuration 정보를 알아냄. C 및/혹은 F 혹은 A와 C 및/혹은 F를 동시에 measurement에 사용
Alt 2-2. A/D 모두 mobility/measurement signal로 활용되는 경우
Alt 2-2-1. Neighboring cell의 A만 수신하여 measurement 수행
Alt 2-2-2. Neighboring cell의 A를 수신한 후, neighboring cell의 PBCH를 통하여 D의 주기 정보를 획득하고 D 혹은 A 및 D 를 measurement에 활용
Alt 2-3. Alt 2-1/2-2 어떤 경우에서든, Serving Cell 기지국이 Neighboring Cell 기지국의 mobility/measurement signal의 정보를 알려줄 수 있다. 예를 들어, SIB (Cell-specific RRC signaling) 혹은 UE-specific RRC signaling을 통하여 Neighboring Cell의 Cell-ID와 함께 D의 주기 및/혹은 C/F의 주기를 전송해줄 수 있는 것이다.
Sync 기반의 measurement 수행과 더불어 단말이 beam sweeping을 수행하는 경우, 단말이 neighboring cell에 대한 measurement를 수행할 경우, 현재 serving cell과 association 되어있는 Rx beam이 아닌 다른 방향성의 Rx beam을 통하여 measurement signal을 수신해야 하는 상황이 발생할 수 있다. 따라서, 단말이 neighboring cell에 대한 measurement를 수행하는 동안 serving cell에서는 단말을 위한 DL 신호를 내려주지 않는 것이 필요하다 (도 2c와 유사한 개념). 이렇게 단말의 neighboring cell에 대한 measurement를 허용하는 구간 (i.e., measurement gap)을 지정하는 것이 필요하다. Measurement gap을 지정하는 방식에는 다음과 같은 방식이 가능하다.
Alt 1. TRP가 UE-specific RRC signaling을 통하여 UE 별로 measurement gap의 주기 정보 및 measurement gap의 시작점 (e.g., SF 번호)을 알려줌. UE에 지정된 measurement gap에서는 해당 UE에 대한 DL 정보가 전송되지 않음. 물론 serving cell의 D도 전송되지 않음.
Scenario Alt 2의 경우, 이 정보는 아래와 같은 방식으로 neighboring cell에 전송될 수 있다
Alt 1. C를 활용하는 경우
Alt 1-1. 단말은 Neighboring cell의 A 수신 이후 B를 Decoding 함으로써 C 에 대한 Configuration 정보 (mapping, pattern, 주기 정보)를 알아낸다. 이 정보를 바탕으로 추후 HO를 위한 measurement에 활용한다.
Alt 1-2. Cell-ID만으로 구분 되는 C가 미리 지정 되어 있을 경우, 단말은 neighboring cell의 A 수신 이후 C를 HO를 위한 measurement에 활용한다.
Alt 2. A를 활용하는 경우
Neighboring cell의 A만 수신하여 measurement 수행
Alt 3. Alt 1, 2 어떤 경우에서든, Serving Cell 기지국이 Neighboring Cell 기지국의 mobility/measurement signal의 정보를 알려줄 수 있다. 예를 들어, SIB (Cell-specific RRC signaling) 혹은 UE-specific RRC signaling을 통하여 Neighboring Cell의 Cell-ID와 함께 C의 주기 정보를 전송해줄 수 있는 것이다.
상술한 각 cell 별 D의 주기가 다르고 단말이 beam sweeping을 수행하는 경우 measurement gap의 필요성은 Scenario Alt 2에 대한 경우에도 적용된다.
[ Update of Periodicity of C, D, E, F ]
상기 Alternative Scenario들에서, Scenario Alt 1의 고정 주기로 전송되는 Sync 이외에 주기가 변경될 수 있는 C, D, E, F 신호의 주기를 네트워크가 변경하고자 하거나, Scenario Alt2의 주기를 변경하고자 한다면, serving cell의 connected 사용자들에게 이 정보를 Update 시켜주어야 한다. Scenario Alt 1의 주기 정보 Update는 아래와 같은 방식으로 수행 가능하다.
Alt 1. Channel B를 통하여 C, D , E, 및/혹은 F의 주기 값을 Update해 준다. C, D , E, 및/혹은 F 중 일부 물리 채널에 대한 주기 정보만 전송될 수 있다. 단말은 전송된 주기 값을 지속적으로 수신하여 기존 값에서의 Update 여부 확인한다.
Alt 2. DCI를 통하여 변경 여부 Indication. 주기가 변경되는 명확한 시점 (e.g., +2 SF 이후) 명시 가능
Scenario Alt 2의 경우, 주기 값 정보가 Sequence를 통하여 전송되는 만큼, 단말은 지속적으로 Sync Sequence를 Detection 해 봄으로써 Sync의 주기가 기존 값에서 Update되었는 지 확인할 수 있다. 이 때, 실제로 주기가 변경되기 이전에 정보를 전송함으로써, 단말이 Update된 Sync를 바로 수신할 수 있도록 한다. 이 때,
Alt 1. 주기 변경 시점대비 절대적인 시간 이전에 변경 사실 알림 (e.g., 40ms 이전)
Alt 2. 변경 시점을 알리는 Sync 신호 전송 후 바로 주기 변경
단말이 HO를 수행하고자 할 때, neighboring cell의 C, D , E, 및/혹은 F를 활용하는 것이 가능하다. 이 때, neighboring cell의 주기가 변경되었을 때에는 이를 알 수 있어야 한다. 단말이 직접 A 및/혹은 B를 수신하여 해당 정보를 알아낼 수도 있지만, serving cell 기지국이 해당 정보를 serving cell 내 단말에게 전달해주게 되는 경우에는 아래와 같은 방식이 가능하다.
Alt 1. System information을 통하여 전달. 즉, 물리채널 B를 통하여 전달 가능. MIB 혹은 SIB 내에 해당 정보 포함 가능.
Alt 2. RRC reconfiguration 메시지를 통하여 전달
Alt 3. DCI를 통하여 해당 정보 전달
Alt 4. MAC-CE를 통하여 해당 정보 전달
Alt 5. PDSCH (단말 별 메시지)를 통하여 해당 정보 전달
Measurement gap 정보가 변경되었다면 상기 채널을 통하여 해당 정보도 함께 전달 가능하다. 예를 들어, neighboring cell의 변경된 주기 정보는 Alt 1을 통하여 전달되고 단말 별 변경된 measurement gap 정보는 RRC reconfiguration 메시지를 통하여 전달 가능하다. 혹은, PDSCH를 통하여 neighboring cell의 변경된 주기 정보 및 단말 별 변경된 measurement gap 정보도 전달 가능하다.
단말이 neighboring cell에 대한 measurement를 수행하고자 할 때, neighboring cell의 measurement를 수행할 수 있는 신호 (A, C, D 및/혹은 F)가 전송되지 않을 경우, measurement 수행을 위한 신호를 단말이 serving 기지국에 요청할 수 있다. 이후 serving 기지국은 해당 요청을 neighboring cell에 전달하여 measurement를 위한 신호를 전송하거나 혹은 전송하지 않는 것이 가능하다.
단말이 옆 셀의 measurement 신호가 전송 되는지 되지 않는 지 여부는 serving cell 기지국을 통하여 혹은 직접 neighboring cell의 A/B의 수신을 통하여 알아낼 수 있다. 예를 들어, serving cell 기지국이 SIB를 통하여 혹은 UE-specific RRC 신호를 통하여 neighboring cell의 cell-ID를 알려주지만 해당 셀에 대한 measurement 신호 정보는 특별히 전송되지 않을 때, 그리고 단말이 해당 neighboring cell에 대한 measurement를 수행하고자 할 때, 단말은 PUCCH 혹은 PDSCH를 통하여 serving cell에 neighboring cell의 measurement 신호를 전송해줄 것을 요청할 수 있다. 만약 해당 단말 (neighboring cell A에 대한 measurement 신호를 요청하였던 단말)이 serving cell 기지국과의 연결을 종료하였을 경우 (다른 cell로의 HO를 수행하였을 경우), serving cell 기지국은 neighboring cell에 해당 사항을 알려주어 neighboring cell이 필요하지 않을 시 measurement 신호를 전송하지 않을 수 있도록, 따라서 기지국의 에너지 소모를 줄일 수 있도록 도와줄 수 있다.
[ Sync design for supporting fast paging process ]
Idle 상황의 UE는 Paging 정보를 받기 위하여 깨어난 후 beam 짧은 구간 안에 UE Rx beam sweeping을 통하여 paging 정보를 수신하기 위한 수신 빔을 찾는 과정이 필요하다. 이에 A 혹은 C가 활용될 수 있으며, 해당 동작을 짧은 시간 안에 수행하기 위하여서는 반복적으로 A 및 C가 자주 전송되는 것이 필요하다 (도 2d).
이를 해결하기 위하여 아래와 같은 방식이 고려될 수 있다.
Alt 1. Non-connected UE용 sync 전송을 위한 subcarrier spacing을 data 전송을 위한 subcarrier spacing보다 크게 디자인하여, nominal symbol duration (data의 한 symbol duration)동안 동일한 빔에서 전송되는 sync 신호가 여러 번 반복되도록 디자인한다. 단말은 해당 시간 안에 여러 번 전송되는 sync 신호를 통하여 Rx 빔을 선택하기 위한 수신 빔 sweeping을 진행할 수 있다 (도 2d).
Alt 2. Non-connected UE용 sync 전송을 위한 sync를 data와 동일한 subcarrier spacing을 사용하여 여러 번 반복적으로 전송할 수 있다 (도 2d).
Alt 3. Non-connected UE용 sync 전송 시 높은 Density 및 낮은 Density로 전송되는 두 가지의 경우를 섞어서 사용할 수 있다. 예를 들어, 높은 Sync Density 특성을 가지는 non-connected UE용 Sync 신호를 Paging 정보를 수신하기 위하여 깨어나는 단말들을 위하여 가끔 전송할 수 있다. 높은 Sync Density 특성을 가지는 Non-connected UE용 Sync가 전송되지 않는 구간에서는 낮은 Sync Density 특성을 가지는 non-connected UE용 Sync 신호가 전송된다. 즉, non-connected UE용 sync의 전송 주기가 100ms라고 하면, 높은 Sync Density 특성을 가지는 non-connected UE용 sync 신호는 1000ms마다 전송되고, 나머지 전송 시점에서는 낮은 Sync Density 특성을 가지는 non-connected UE용 sync 신호가 전송된다. 이는 도 2e에 나타나져 있다. 높은 Sync Density 특성을 가지는 non-connected UE용 sync 신호는 상기 Alt 1/2에서 소개된 방식대로 생성 가능하다. 따라서, paging 정보를 수신하고자 하는 단말은, 원래 일어나기로 하였던 시점보다 일찍 일어나서 높은 Sync Density 특성을 가지는 non-connected UE용 sync 신호를 수신할 수 있으며, 높은 sync density 특성을 가지는 non-connected UE용 sync 신호의 주기는 Connected 상태일 때 MIB, SIB, UE-specific RRC Signaling 등을 통하여 configuration될 수 있다.
[ TSS 및 PBCH 설계 ]
앞서 설명한 바와 같이, beam sweeping되는 신호들을 연속적인 OFDM symbol을 활용하여 전송하는 다중 빔 (multi-beam) 기반 시스템의 경우, PSS 및 SSS를 사용하여 동기를 잡는 것으로는 Subframe (SF) 혹은 Slot의 경계를 알 수 없다. 이에 SSS sequence 및 PBCH 정보를 활용하여 슬롯/서브프레임 (Slot/Subframe) 경계를 알 수 있도록 시스템을 설계하는 것이 가능하다. 또는 해당 기능을 위하여 새로운 동기화 신호를 도입할 수도 있다 (i.e., 혹은 tertiary synchronization signal (TSS)). 이하 해당 신호는 TSS라 명명한다. TSS는 각 OFDM 심볼 별로 각기 다른 시퀀스를 사용함으로써, 단말이 감지한 빔이 몇 번째 OFDM 심볼에서 전송된 것인 지를 알 수 있게 해주어 슬롯/서브프레임 경계가 결정되는데 사용될 수 있다.
Non-connected UE가 셀 선택을 위하여 혹은 connected UE가 셀 변경을 위하여 주변 cell에 대한 측정 (measurement)을 수행하는 것이 필요하다. 주변 cell에 대한 측정은 동기 신호 (SS: synchronization signal) 혹은 측정용 기준신호 (RS: reference signal)를 통하여 수행하는 것이 가능하다. 하지만, 동기 신호의 경우 측정용 기준신호와 비교하여 보다 넓은 빔을 통하여 전송될 뿐 아니라, 상대적으로 좁은 대역에서만 전송될 수 있음에 따라 측정 값 (metric)의 정확도가 떨어질 수 있다. 이에 단말의 셀 선택 혹은 셀 변경에 측정용 기준신호를 사용하는 것이 보다 효율적일 수 있다. 기본적으로 동기 신호 및 측정용 기준신호의 beam sweeping되는 시간 단위는 동일하며 (예: 2 서브프레임 등), 두 신호 모두 측정용 신호 (단말의 RRM measurement)로 활용될 수 있음에 따라 통틀어서 “측정용 신호”라 명명한다.
다중 빔 기반의 시스템에서는 TSS 및 측정용 기준신호와 같은 신호들은 cell-specific하며 주기적으로 (periodic) 전송되어야 하며, 또한 beam sweeping되어 전송되어야 한다. 왜냐하면 해당 신호들은 모든 사용자가 셀 내 어디에 위치하든지 수신할 수 있어야 하는 신호이기 때문이다.
후술되는 기술의 이해를 돕기 위하여 다중 빔 시스템에서 beam sweeping되는 신호의 구분 단위를 도 2f 및 2g에 나타내었다.
도 2f 및 2g에서 버스트 (burst)는 하나의 슬롯 혹은 하나의 서브프레임을 차지할 수 있으며, 버스트 세트 (burst set)은 기본적으로 한 주기의 beam sweeping되는 신호를 포함한다. 버스트 세트 주기는 버스트 세트가 발생하는 주기를 나타낸다. 또한, 버스트를 구성하는 소단위는 블락 (block)이다. 각 블락은 각기 다른 송신 빔을 사용하여 전송될 수 있다. 각 블락은 단일 혹은 복수의 OFDM 심벌 (symbol)로 구성될 수 있다. 도 2f의 경우, 버스트 세트 주기 내에 버스트가 연속적으로 전송되는 경우를, 도 2g의 경우 버스트 세트 주기 내에 버스트가 비연속적으로 전송되는 경우를 보여준다.
본 발명의 일 실시 예에서는, TSS 버스트 세트 주기와 측정용 신호의 버스트 세트 주기가 동일한 경우를 가정하고 있다.
단말이 측정용 신호를 활용하여 측정을 수행하기 위하여서는 해당 측정용 신호에 대한 구성 (configuration) 정보를 알아야 한다. 다중 빔 시스템에서 해당 측정용 신호를 수신하기 위하여 단말은 아래와 같은 구성 정보를 필요로 한다:
정보 1) 버스트 세트 내 블록 번호 (즉, 슬롯/프레임 경계)
정보 2) 해당 측정용 신호를 전송하는 버스트 세트의 전체 크기 혹은 차지하는 슬롯/서브프레임/프레임 개수 혹은 주기
정보 3) 측정용 신호를 전송 시 사용되는 안테나 포트 (port) 개수
정보 4) 단일 빔/다중 빔 기반 시스템 식별
Above-6GHz 대역에서 NR 시스템은 대게 다중 빔 기반을 기본으로 하고 있지만, 일부 셀 (혹은 TRP 혹은 TRP 그룹)에서는 다중 빔 기반이 아닌 단일 빔 (single-bea) 기반 시스템을 구동시킬 수도 있다. 이 경우는 단일 빔 기반 시스템은 다중 빔 기반 시스템의 특별 케이스 (special case)로 다중 빔 기반 시스템과 다르게 cell-specific 신호들에 대한 beam sweeping이 수반되지 않는다. 즉, 버스트 내 블록이 1개인 상황을 지칭한다. 단말을 지원하는 셀 (혹은 TRP 혹은 TRP그룹)이 단일 빔 기반 시스템인 지 미리 알려준다면, 추후 다중 빔 기반 시스템에서 동반되는 빔 관련 정보 피드백 등 많은 시그널링 오버헤드 (signaling overhead)를 줄일 수 있다. 정보 4는 이에 대한 정보를 TSS를 통하여 전송해주고자 하는 것이다.
상술한 측정용 신호의 구성 정보를 단말에게 알려주기 위하여 TSS가 활용될 수 있다. TSS를 활용하여 해당정보를 전송하였을 경우에는, 단말이 PBCH를 수행하여야 측정용 기준신호 구성정보를 알 수 있을 경우와 비교하였을 때에 보다 빠르고 간편하게 정보를 획득할 수 있다는 장점을 가진다. 위의 세 가지 정보 중 일부 정보는 표준에 고정될 수 있으며, 이 때에는 고정된 정보에 대한 정보를 굳이 TSS를 통하여 전송할 필요가 없다. 예를 들어, 단말이 측정용 신호로 동기 신호를 이용할 경우에는 굳이 정보 3이 TSS를 통하여 전송될 필요가 없을 수도 있다. TSS 설계로 아래와 같은 실시 예들이 가능하다:
실시 예 1-1) 정보 1 및 정보 2를 서로 다른 버전의 cyclic shifts를 이용하여 구분하는 것이 가능하다. 도 2h는 TSS를 위한 기본 시퀀스로 길이 L짜리 시퀀스 (즉, d(0), …, d(L-1))이 사용될 경우; 하나의 블록이 하나의 OFDM 심볼인 경우; 하나의 버스트가 차지하는 단위가 하나의 서브프레임인 경우; 그리고 버스트 세트의 주기가 1, 2, 혹은 4 프레임인 경우; 상기 정보 1 및 2를 전송하기 위한 TSS의 cyclic shift 인덱스에 대한 예를 보여준다.
m번째 블록에서 전송되는 TSS 시퀀스는
Figure PCTKR2017012394-appb-I000141
가 된다. 즉, 단말은 수신한 TSS 시퀀스를 통하여 정보 1 및 정보 2를 알 수 있게 된다. 예를 들어 단말이 수신한 TSS 검출 결과 시퀀스의 루트인덱스가 r2이고 시퀀스 값이 [ d(1), …, d(L-1), d(0) ]일 경우, 측정용 신호가 2 개의 서브프레임 동안 한 번의 beam sweeping을 통하여 전송된다는 것과, TSS를 수신한 OFDM symbol이 서브프레임 중 2번째 OFDM symbol (서브프레임 내 심벌 번호는 1)임을 알 수 있다.
실시 예 2-2) 정보 1/2/4를 전송하기 위한 TSS 구조를 제안한다. 실시 예 2-1의 확장으로, TSS 시퀀스의 루트인덱스를 다르게 하여 정보 1/2/4를 전송할 수 있으며, 그 예가 도 2l에 나타나 있다.
실시 예 2-3) 정보 1/2/4를 전송하기 위한 TSS 구조를 제안한다. 실시 예 2-1의 확장으로, TSS 시퀀스 cyclic shift 및 루트인덱스를 다르게 하여 정보 1/2/4를 전송할 수 있으며, 그 예가 도 2m에 나타나 있다.
실시 예 3-1) 정보 1, 정보 2, 및 정보 3을 서로 다른 버전의 cyclic shifts를 이용 그리고 서로 다른 루트인덱스를 이용하여 구분하는 것이 가능하다. 도 2n은 TSS를 위한 기본 시퀀스로 루트인덱스가 u인 길이 L짜리 시퀀스 (즉, du(0), …, du(L-1))가 사용될 경우; 하나의 블록이 하나의 OFDM 심볼인 경우; 하나의 버스트가 차지하는 단위가 하나의 서브프레임인 경우; 그리고 버스트 세트의 주기가 1, 2, 혹은 4 프레임인 경우; 안테나 포트 개수가 1, 2, 혹은 4인 경우; 상기 정보 1/2/3을 전송하기 위한 TSS의 루트 인덱스 및 cyclic shift 인덱스에 대한 예를 보여준다.
버스트 세트 내 버스트 개수 별 m번째 블록에서 전송되는 TSS 시퀀스는
Figure PCTKR2017012394-appb-I000142
가 된다. 즉, 단말은 수신한 TSS 시퀀스를 통하여 정보 1 및 정보 2를 알 수 있게 된다. 예를 들어 단말이 수신한 TSS 검출 결과 시퀀스의 루트인덱스가 r2이고 시퀀스 값이 [ d(1), …, d(L-1), d(0) ]일 경우, 측정용 신호가 하나의 OFDM symbol에서 2개의 안테나 포트를 통하여 전송되고 (즉, 두 개의 서로다른 방향의 빔으로 전송되고), 버스트 세트 내 버스트 개수는 1개이며, 버스트 세트 내 TSS를 수신한 OFDM symbol은 2번째 OFDM symbol (서브프레임 내 심벌 번호는 1) 임을 알 수 있다.
도 2n과 같은 실시 예 이외에 TSS 시퀀스 루트인덱스를 통하여 정보 2를 구분하고 cyclic shift 인덱스를 통하여 정보 1 및 정보 3을 구분하는 방식도 가능하다.
실시 예 3-2) 정보 1/2/3/4를 구분할 때, 실시 예 1-2 혹은 2-2에서 설명한 바와 같이, 버스트 세트 내 버스트 개수 1개일 때 단일 빔/다중 빔 기반 시스템을 구분하기 위하여 TSS 시퀀스 루트인덱스 혹은 TSS 시퀀스 cyclic shift 등을 활용할 수 있다.
TSS가 상기의 정보들을 전달하는 역할을 할 경우 (상술한 바와 같이 일부 정보는 표준에서 고정 값으로 선정될 수 있으며, 그 경우 해당 정보를 전송할 필요가 없을 수도 있음), TSS를 통하여 얻어진 정보를 기반으로 PBCH decoding을 수행할 수 있다. 조금 더 자세히 말하면, TSS에서 전달되는 정보에 기반하여 PBCH의 scrambling sequence가 다르게 적용될 수 있으며 이에 단말 decoding 시 복잡도를 줄여주는 역할을 할 수 있다. 후술하는 방식은 도 2g와 같은 버스트 전송 구조에 적용할 수 있다. 참고로, PBCH는 3GPP New RAT 표준에서 minimum system information (minimum SI) 중 일부 혹은 전부를 전송하는 물리 채널이다. 따라서 PBCH도 기본적으로 beam sweeping 수행을 통하여 전송되어야 하며, 본 발명에서는 TSS 전송 버스트 세트와 PBCH 전송 버스트 세트가 동일한 주기를 가짐을 가정으로 한다. 실제 PBCH 전송 주기는 반복 전송으로 인하여 PBCH 전송 버스트 세트 주기보다 클 수 있다.
보다 상세한 실시 예를 두 가지 경우에 나누어 기술하겠다.
< 상황 1: PBCH 전송 주기가 고정될 경우 >
예를 들어, 측정용 신호를 전송하는 버스트 세트의 주기에 무관하게 PBCH의 전송 주기는 일정하게 고정될 수 있다. 예를 들어, 도 2l에 나타낸 바와 같이 PBCH의 전송 주기가 4 프레임으로 고정될 경우, 측정용 신호 전송 버스트 세트의 주기가 2 프레임이면 PBCH의 전송 주기 동안 동일한 PBCH 정보는 2번 반복이 된다 (이는 보다 안정적인 (robust) PBCH 정보를 디코딩하기 위함이다).
이 때, PBCH를 통하여 전송될
Figure PCTKR2017012394-appb-I000143
개의 정보비트블록
Figure PCTKR2017012394-appb-I000144
은 모듈레이션 (modulation) 이전에 cell-specific 시퀀스를 사용하여
Figure PCTKR2017012394-appb-I000145
으로 스크램블링 되며, 그 방식은 아래와 같다:
시스템 프레임 번호 (SFN: system frame number)가 nf이고, TSS/PBCH 버스트 세트 주기가 K 프레임이고, PBCH 전송 주기가 Q 프레임이면, 스크램블링 시퀀스
Figure PCTKR2017012394-appb-I000146
는 Q를 주기로 갖는다. 즉,
Figure PCTKR2017012394-appb-I000147
번째 프레임에서 전송되는 PBCH에 적용되는 스크램블링 시퀀스
Figure PCTKR2017012394-appb-I000148
Figure PCTKR2017012394-appb-I000149
번째 프레임에서 전송되는 PBCH에 적용되는 스크램블링 시퀀스
Figure PCTKR2017012394-appb-I000150
는 동일하다.
Figure PCTKR2017012394-appb-I000151
을 만족하는
Figure PCTKR2017012394-appb-I000152
번째 프레임 내에서
Figure PCTKR2017012394-appb-I000153
프레임마다 스크램블링 시퀀스가 변경된다. 즉,
Figure PCTKR2017012394-appb-I000154
을 만족하는
Figure PCTKR2017012394-appb-I000155
번째 프레임을 시작으로, 각 m을 대입하였을 때 얻어지는
Figure PCTKR2017012394-appb-I000156
번째에 해당하는 프레임에서 전송되는 PBCH에 적용되는 스크램블링 시퀀스는 모두 동일하지만, 서로 다른 m 값에 대해서는 서로 다른 스크램블링 시퀀스가 사용된다.
즉, 도 2n에서는 K = 2, Q = 4이므로 W = 2가 되고, SFN0과 SFN1 프레임에서는 동일한 스크램블링 시퀀스가 사용되며 (즉,
Figure PCTKR2017012394-appb-I000157
), SFN2와 SFN3 프레임에서도 동일한 스크램블링 시퀀스가 사용된다 (즉,
Figure PCTKR2017012394-appb-I000158
). 하지만, SFN0/1 및 SFN2/3 프레임에서 사용되는 스크램블링 시퀀스는 다르다 (서로 다른 m 값).
TSS를 통하여 TSS/PBCH 버스트 세트의 주기를 알지 못할 경우는, PBCH 주기 내 매 프레임마다 스크램블링 시퀀스를 다르게 해주어야 하고 이에 정확한 시스템 프레임 번호를 알아내기 위하여 단말이 다소 높은 PBCH blind decoding 복잡도를 감수해야 하지만, TSS를 통하여 해당 정보를 습득함에 따라 PBCH 전송 시 보다 적은 스크램블링 시퀀스를 사용, 단말의 디코딩 복잡도를 낮출 수 있다.
< 상황 2: PBCH 전송 주기가 해당 측정용 신호를 전송하는 버스트 세트의 전체 크기 혹은 차지하는 슬롯/서브프레임 개수에 따라 변경될 경우 >
예를 들어, 측정용 신호를 전송하는 버스트 세트가 차지하는 서브프레임 개수가 X개이고 동일한 PBCH 정보가 4번 반복이 된다면 (이는 보다 안정적인 (robust) PBCH 정보를 디코딩하기 위함이다), PBCH의 전송주기는 4X 서브프레임이 된다.
이 때, PBCH를 통하여 전송될
Figure PCTKR2017012394-appb-I000159
개의 정보비트블록
Figure PCTKR2017012394-appb-I000160
은 모듈레이션 (modulation) 이전에 cell-specific 시퀀스를 사용하여
Figure PCTKR2017012394-appb-I000161
으로 스크램블링 되며, 그 방식은 아래와 같다:
Figure PCTKR2017012394-appb-I000162
시스템 프레임 번호 (SFN: system frame number)가
Figure PCTKR2017012394-appb-I000163
이고, TSS/PBCH 버스트 세트 주기가 K 프레임이고, PBCH 전송 주기가 Q 프레임이면, 스크램블링 시퀀스
Figure PCTKR2017012394-appb-I000164
는 Q를 주기로 갖는다.
즉,
Figure PCTKR2017012394-appb-I000165
번째 프레임에서 전송되는 PBCH에 적용되는 스크램블링 시퀀스
Figure PCTKR2017012394-appb-I000166
Figure PCTKR2017012394-appb-I000167
번째 프레임에서 전송되는 PBCH에 적용되는 스크램블링 시퀀스
Figure PCTKR2017012394-appb-I000168
는 동일하다.
Figure PCTKR2017012394-appb-I000169
을 만족하는
Figure PCTKR2017012394-appb-I000170
번째 프레임 내에서는 K 프레임마다 스크램블링 시퀀스가 변경된다. 즉,
Figure PCTKR2017012394-appb-I000171
을 만족하는
Figure PCTKR2017012394-appb-I000172
번째 프레임을 시작으로, 각 m을 대입하였을 때 얻어지는
Figure PCTKR2017012394-appb-I000173
번째에 해당하는 프레임에서 전송되는 PBCH에 적용되는 스크램블링 시퀀스는 모두 동일하지만, 서로 다른 m 값에 대해서는 서로 다른 스크램블링 시퀀스가 사용된다.
즉, 도 2n에서는 K = 2, Q = 4이므로 SFN0과 SFN1 프레임에서는 동일한 스크램블링 시퀀스가 사용되며 (즉,
Figure PCTKR2017012394-appb-I000174
), SFN2와 SFN3 프레임에서도 동일한 스크램블링 시퀀스가 사용된다 (즉,
Figure PCTKR2017012394-appb-I000175
). 하지만, SFN0/1 및 SFN2/3 프레임에서 사용되는 스크램블링 시퀀스는 다르다 (서로 다른 m 값).
[ PBCH 설계 ]
PBCH 내 하기의 정보가 포함될 수 있다.
정보 1) 측정용 신호를 전송하는 버스트 세트의 전체 크기 혹은 차지하는 슬롯/서브프레임/프레임 개수 혹은 주기
정보 2) 측정용 신호를 전송 시 사용되는 안테나 포트 (port) 개수
이 경우, TSS에는 버스트 내 블록 번호 (즉, 슬롯/프레임 경계)만 포함된다.
[ SS block의 구성 ]
하나의 SS 블록은 PSS, SSS, TSS, PBCH, PBCH 디코딩을 위한 기준신호 (RS) 중 일부 혹은 전부를 포함할 수 있다. 데이터 채널의 서브캐리어간격 (SCS: subcarrier spacing)을 기준으로 하나의 OFDM symbol 간격 (duration)이 결정되며, SS 블록을 전송하는 서브캐리어간격 값에 따라, 하나의 SS 블록은 단수 혹은 다수 개의 OFDM 심벌 혹은 OFDM 서브심벌로 구성될 수 있다. 예를 들어, 데이터 채널의 서브캐리어간격이 60 kHz이고 SS 블록을 전송할 때 사용하는 서브캐리어간격 값이 240 kHz일 경우, SS 블록은 4 개의 OFDM 서브심볼로 구성된 채널을 형성할 수 있다. PBCH 디코딩을 위한 기준신호는 RRM 측정 기준신호 용도로도 사용될 수 있으며, RRM 측정 기준신호는 빔 선택 혹은 셀 선택/재 선택 시에 사용될 수 있다. PSS와 SSS는 두 개 모두 cell-ID 검출에 활용될 수도 혹은 SSS만 cell-ID 검출에 활용될 수도 있다. PSS는 기본적으로 초기 주파수/시간 오프셋을 추정하기 위하여 활용된다. TSS는 슬롯/프레임 경계, SS 버스트 내 SS 블록 번호 indication, SS 버스트 사이즈, RRM 측정 기준신호를 전송하는 안테나 포트 개수 등의 정보를 전달하는 역할을 한다. PBCH는 NR에서 정의된 minimum SI의 일부 혹은 전부를 전달한다. 아래 SS block 내 상기 채널들의 multiplexing 방식에 대한 실시 예를 설명한다.
실시 예 1) 도 2p에 PSS, SSS, TSS, PBCH, PBCH 디코딩을 위한 기준신호 의 multiplexing 실시 예를 나타내었다. 일 예로, SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 40 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 80 MHz일 때를 생각해 보는 것이 가능하며, 이때 상세한 디자인 파라미터는 다음과 같다.
- PSS: 12RBs = 144 REs
- SSS: 24RBs = 288 REs
- TSS: 12RBs = 144 REs
- PBCH+BRS: 48 RBs = 576 REs
- PBCH:BRS 비율 = 2:1
여기에서 RB는 리소스블록 (resource block), RE는 리소스 엘리먼트 (resource element)를 나타낸다. 도 2p에서, PBCH 디코딩용 기준신호와 더불어 SSS도 PBCH의 디코딩에 활용될 수 있다. 도 2p에서 SS 블록 내 OFDM 심벌 혹은 OFDM 서브심벌 간 순서는 변경될 수 있다.
실시 예 2-1) 도 2q에 PSS, SSS, TSS, PBCH, RRM 측정용 기준신호의 multiplexing 실시 예를 나타내었다. 일 예로, SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 40 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 80 MHz일 때를 생각해 보는 것이 가능하며, 이때 상세한 디자인 파라미터는 다음과 같다.
- PSS: 12RBs = 144 REs
- SSS: 24RBs = 288 REs
- TSS: 12RBs = 144 REs
- PBCH: 48 RBs = 576 REs
도 2q의 실시 예의 경우 SSS가 PBCH 디코딩 시 기준신호 용도로 활용될 수 있다. 도 2q에서 SS 블록 내 OFDM 심벌 혹은 OFDM 서브심벌 간 순서는 변경될 수 있다. SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 20 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 40 MHz일 때에도 동일한 형태의 multiplexing이 적용될 수 있으며, 이 때 각 채널이 차지하는 RB는 정확히 절반이 된다.
실시 예 2-2) 도 2r에 PSS, SSS, TSS, PBCH, RRM 측정용 기준신호의 multiplexing 실시 예를 나타내었다. 일 예로, SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 40 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 80 MHz일 때를 생각해 보는 것이 가능하며, 이때 상세한 디자인 파라미터는 다음과 같다.
- PSS: 12RBs = 144 REs (SS 블록 서브캐리어간격 x 2 크기의 서브캐리어 간격 기준)
- SSS: 24RBs = 288 REs
- TSS: 12RBs = 144 REs (SS 블록 서브캐리어간격 x 2 크기의 서브캐리어 간격 기준)
- PBCH: 48 RBs = 576 REs
도 2r의 실시 예의 경우, PSS 및 TSS는 SS블록 서브캐리어간격의 2배에 해당하는 서브캐리어간격으로 전송될 수 있다. 또한, SSS가 PBCH 디코딩 시 기준신호 용도로 활용될 수 있다. 도 2r에서 SS 블록 내 OFDM 심벌 혹은 OFDM 서브심벌 간 순서는 변경될 수 있다. SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 20 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 40 MHz일 때에도 동일한 형태의 multiplexing이 적용될 수 있으며, 이 때 각 채널이 차지하는 RB는 정확히 절반이 된다.
실시 예 3) 도 2s에 PSS, SSS, TSS, PBCH, RRM 측정용 기준신호의 multiplexing 실시 예를 나타내었다. 일 예로, SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 40 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 80 MHz일 때를 생각해 보는 것이 가능하며, 이때 상세한 디자인 파라미터는 다음과 같다.
- PSS: 12RBs = 144 REs
- SSS: 24RBs = 288 REs
- TSS: 24RBs = 288 REs
- PBCH: 36 RBs = 432 REs
도 2s의 실시 예의 경우, SSS가 PBCH 디코딩 시 기준신호 용도로 활용될 수 있다. 도 2s에서 SS 블록 내 OFDM 심벌 혹은 OFDM 서브심벌 간 순서는 변경될 수 있다. SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 20 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 40 MHz일 때에도 동일한 형태의 multiplexing이 적용될 수 있으며, 이 때 각 채널이 차지하는 RB는 정확히 절반이 된다.
실시 예 4) 도 2t에 PSS, SSS, TSS, PBCH, RRM 측정용 기준신호의 multiplexing 실시 예를 나타내었다. 일 예로, SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 40 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 80 MHz일 때를 생각해 보는 것이 가능하며, 이때 상세한 디자인 파라미터는 다음과 같다.
- PSS: 24RBs = 288 REs
- SSS: 24RBs = 288 REs
- TSS: 24RBs = 288 REs
- PBCH: 24RBs = 288 REs
도 2t의 실시 예의 경우, SSS가 PBCH 디코딩 시 기준신호 용도로 활용될 수 있다. 도 2t에서 SS 블록 내 OFDM 심벌 혹은 OFDM 서브심벌 간 순서는 변경될 수 있다. SS 블록 서브캐리어간격 = 120 kHz, SS-BW = 20 MHz 혹은 SS 블록 서브캐리어간격 = 240 kHz, SS-BW = 40 MHz일 때에도 동일한 형태의 multiplexing이 적용될 수 있으며, 이 때 각 채널이 차지하는 RB는 정확히 절반이 된다.
도 2u는 본 발명의 일 실시 예에 따른 단말의 구성을 나타내는 도면이다.
도 2u를 참고하면, 단말은 송수신부 (2u-10), 제어부 (2u-20), 저장부 (2u-30)을 포함할 수 있다. 본 발명에서 제어부(2u-20)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (2u-1010)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(2u-10)는 예를 들어, 기지국으로부터 시스템 정보를 수신할 수 있으며, 동기 신호 또는 기준 신호를 수신할 수 있다.
제어부 (2u-20)은 본 발명에서 제안하는 실시예에 따른 단말의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2u-20)는 본 발명의 도 2a 내지 도 2t를 통해 기술한 단말의 동작을 제어할 수 있다.
저장부(2u-30)는 상기 송수신부 (2u-10)를 통해 송수신되는 정보 및 제어부 (2u-20)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
도 2v는 본 발명의 일 실시 예에 따른 기지국의 구성을 나타내는 도면이다. 도 2v에서 기지국의 구성은 TRP의 구조로 이용할 수도 있다. 또한, TRP는 기지국의 구성 중 일부로 구성될 수도 있다.
도 2v를 참고하면, 기지국은 송수신부 (2v-10), 제어부 (2v-20), 저장부 (2v-30)을 포함할 수 있다. 본 발명에서 제어부(2v-20)는, 회로 또는 어플리케이션 특정 통합 회로 또는 적어도 하나의 프로세서라고 정의될 수 있다.
송수신부 (2v-10)는 다른 네트워크 엔티티와 신호를 송수신할 수 있다. 송수신부(2v-10)는 예를 들어, 단말에 시스템 정보를 전송할 수 있으며, 동기 신호 또는 기준 신호를 전송할 수 있다.
제어부 (2v-20)은 본 발명에서 제안하는 실시예에 따른 기지국의 전반적인 동작을 제어할 수 있다. 예를 들어, 제어부 (2v-20)는 본 발명의 도 2a 내지 도 2t를 통해 기술한 기지국의 동작을 제어할 수 있다.
저장부(2v-30)는 상기 송수신부 (2v-10)를 통해 송수신되는 정보 및 제어부 (2v-20)을 통해 생성되는 정보 중 적어도 하나를 저장할 수 있다.
그리고 본 명세서와 도면에 개시된 실시 예들은 본 발명의 내용을 쉽게 설명하고, 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 따라서 본 발명의 범위는 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상을 바탕으로 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (15)

  1. 단말의 송신 전력 결정 방법에 있어서,
    기지국으로부터 단말 특정 송신전력 파라미터를 수신하는 단계;
    상기 단말 특정 송신전력 파라미터 및 상기 단말에 할당된 서브캐리어 간격(subcarrier spacing)에 기반하여 상기 단말의 송신전력을 결정하는 단계; 및
    상기 결정된 송신전력에 기반하여 상향링크 신호를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 서브캐리어 간격에 기반하여 상기 송신전력 결정에 이용하는 M 값을 적용하는 것을 특징으로 하는 방법.
  3. 제1항에 있어서, 상기 단말 특정 송신전력 파라미터는 빔에 대한 정보를 포함하고,
    상기 송신 전력은 상기 빔에 대한 정보에 기반하여 측정한 경로 손실에 기반하여 결정되는 것을 특징으로 하는 방법.
  4. 제1항에 있어서, 상기 단말 특정 송신전력 파라미터를 수신하는 단계는,
    송신전력 파라미터들의 세트를 포함하는 RRC(radio resource control) 메시지를 수신하는 단계, 그리고
    상기 송신전력 파라미터들의 세트 중 상기 송신전력 결정에 사용하는 송신전력 파라미터를 지시하는 정보를 포함하는 PDCCH(physical downlink control channel)를 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  5. 단말에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    기지국으로부터 단말 특정 송신전력 파라미터를 수신하고, 상기 단말 특정 송신전력 파라미터 및 상기 단말에 할당된 서브캐리어 간격(subcarrier spacing)에 기반하여 상기 단말의 송신전력을 결정하며, 상기 결정된 송신전력에 기반하여 상향링크 신호를 전송하도록 제어하는 제어부를 포함하는 단말.
  6. 제5항에 있어서, 상기 서브캐리어 간격에 기반하여 상기 송신전력 결정에 이용하는 M 값을 적용하는 것을 특징으로 하는 단말.
  7. 제5항에 있어서, 상기 단말 특정 송신전력 파라미터는 빔에 대한 정보를 포함하고,
    상기 송신 전력은 상기 빔에 대한 정보에 기반하여 측정한 경로 손실에 기반하여 결정되는 것을 특징으로 하는 단말.
  8. 제5항에 있어서, 상기 제어부는,
    송신전력 파라미터들의 세트를 포함하는 RRC(radio resource control) 메시지를 수신하고, 상기 송신전력 파라미터들의 세트 중 상기 송신전력 결정에 사용하는 송신전력 파라미터를 지시하는 정보를 포함하는 PDCCH(physical downlink control channel)를 수신하도록 제어하는 것을 특징으로 하는 단말.
  9. 기지국에 동작 방법에 있어서,
    서브캐리어 간격(subcarrier spacing) 설정 정보를 포함하는 메시지를 단말에 전송하는 단계;
    상기 단말에게 단말 특정 송신전력 파라미터를 전송하는 단계; 및
    상기 단말로부터 상향링크 신호를 수신하는 단계를 포함하고,
    상기 상향링크 신호의 송신전력은 상기 단말 특정 송신전력 파라미터 및 상기 서브캐리어 간격 설정 정보에 기반하여 결정되는 것을 특징으로 하는 방법.
  10. 제9항에 있어서, 상기 서브캐리어 간격 설정 정보에 기반하여 상기 송신전력 결정에 이용하는 M 값을 적용하는 것을 특징으로 하는 방법.
  11. 제9항에 있어서, 상기 단말 특정 송신전력 파라미터는 빔에 대한 정보를 포함하고,
    상기 송신전력은 상기 빔에 대한 정보에 기반하여 측정한 경로 손실에 기반하여 결정되는 것을 특징으로 하는 방법.
  12. 제9항에 있어서, 상기 단말 특정 송신전력 파라미터를 전송하는 단계는,
    송신전력 파라미터들의 세트를 포함하는 RRC(radio resource control) 메시지를 전송하는 단계, 그리고
    상기 송신전력 파라미터들의 세트 중 상기 송신전력 결정에 사용하는 송신전력 파라미터를 지시하는 정보를 포함하는 PDCCH(physical downlink control channel)를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  13. 기지국에 있어서,
    신호를 송신 및 수신하는 송수신부; 및
    서브캐리어 간격(subcarrier spacing) 설정 정보를 포함하는 메시지를 단말에 전송하고, 상기 단말에게 단말 특정 송신전력 파라미터를 전송하며, 상기 단말로부터 상향링크 신호를 수신하도록 제어하는 제어부를 포함하고,
    상기 상향링크 신호의 송신전력은 상기 단말 특정 송신전력 파라미터 및 상기 서브캐리어 간격 설정 정보에 기반하여 결정되는 것을 특징으로 하는 기지국.
  14. 제13항에 있어서, 상기 서브캐리어 간격 설정 정보에 기반하여 상기 송신전력 결정에 이용하는 M 값을 적용하고,
    상기 단말 특정 송신전력 파라미터는 빔에 대한 정보를 포함하고,
    상기 송신전력은 상기 빔에 대한 정보에 기반하여 측정한 경로 손실에 기반하여 결정되는 것을 특징으로 하는 기지국.
  15. 제13항에 있어서, 상기 제어부는,
    송신전력 파라미터들의 세트를 포함하는 RRC(radio resource control) 메시지를 전송하고, 상기 송신전력 파라미터들의 세트 중 상기 송신전력 결정에 사용하는 송신전력 파라미터를 지시하는 정보를 포함하는 PDCCH(physical downlink control channel)를 전송하도록 제어하는 것을 특징으로 하는 기지국.
PCT/KR2017/012394 2016-11-03 2017-11-03 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치 WO2018084626A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/347,440 US10736044B2 (en) 2016-11-03 2017-11-03 Method and device for controlling transmission power of user equipment in beamforming system
EP17868254.8A EP3522617A4 (en) 2016-11-03 2017-11-03 METHOD AND DEVICE FOR CONTROLLING THE TRANSMISSION POWER OF A USER DEVICE IN A BEAM FORMING SYSTEM
KR1020197012910A KR102341470B1 (ko) 2016-11-03 2017-11-03 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
CN201780082094.3A CN110140387B (zh) 2016-11-03 2017-11-03 用于在波束成形系统中控制用户设备的传输功率的方法和设备
US16/983,308 US11234196B2 (en) 2016-11-03 2020-08-03 Method and device for controlling transmission power of user equipment in beamforming system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20160146079 2016-11-03
KR10-2016-0146079 2016-11-03
KR10-2017-0002569 2017-01-06
KR20170002569 2017-01-06
KR20170015105 2017-02-02
KR10-2017-0015105 2017-02-02
KR1020170075747A KR20180049781A (ko) 2016-11-03 2017-06-15 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
KR10-2017-0075747 2017-06-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/347,440 A-371-Of-International US10736044B2 (en) 2016-11-03 2017-11-03 Method and device for controlling transmission power of user equipment in beamforming system
US16/983,308 Continuation US11234196B2 (en) 2016-11-03 2020-08-03 Method and device for controlling transmission power of user equipment in beamforming system

Publications (1)

Publication Number Publication Date
WO2018084626A1 true WO2018084626A1 (ko) 2018-05-11

Family

ID=62076302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012394 WO2018084626A1 (ko) 2016-11-03 2017-11-03 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치

Country Status (3)

Country Link
US (1) US11234196B2 (ko)
KR (1) KR102341470B1 (ko)
WO (1) WO2018084626A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972246A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率控制方法、传输功率控制参数确定方法及相关设备
WO2020133294A1 (zh) * 2018-12-28 2020-07-02 华为技术有限公司 通信方法和通信装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11412534B2 (en) * 2016-11-04 2022-08-09 Qualcomm Incorporated System and method for mapping uplink control information
CN110313206B (zh) * 2016-12-27 2023-05-23 株式会社Ntt都科摩 终端、基站、无线通信方法和无线通信系统
BR112019022416A2 (pt) * 2017-04-28 2020-05-19 Ntt Docomo Inc terminal, estação base e método de radiocomunicação
KR102379822B1 (ko) 2017-06-15 2022-03-30 삼성전자 주식회사 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
WO2018230901A1 (ko) 2017-06-15 2018-12-20 삼성전자 주식회사 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
CN110958715A (zh) * 2018-09-26 2020-04-03 华为技术有限公司 一种发送、接收随机接入前导的方法及通信装置
US11690024B2 (en) * 2021-01-27 2023-06-27 Qualcomm Incorporated Configuring client device regulation modes for sidelink communications
US20230319740A1 (en) * 2022-03-29 2023-10-05 Qualcomm Incorporated Use of physical broadcast channel demodulation reference signal to speed up neighbor cell measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140126346A (ko) * 2012-01-30 2014-10-30 퀄컴 인코포레이티드 높은 송신 전력을 이용한 이벌브드 멀티미디어 브로드캐스트 멀티캐스트 서비스에서의 사이클릭 프리픽스
WO2016072052A1 (en) * 2014-11-07 2016-05-12 Nec Corporation Hetnet communication system
KR20160062731A (ko) * 2014-11-25 2016-06-02 한국전자통신연구원 분산 어레이 매시브 mimo 시스템의 신호 송수신 방법 및 장치
US9414332B2 (en) * 2012-04-17 2016-08-09 Ofinno Technologies, Llc Signal power management in a multicarrier wireless device
WO2016146010A1 (en) * 2015-03-13 2016-09-22 Huawei Technologies Co., Ltd. System and method for interference coordination in wireless communications systems

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572896B (zh) 2008-04-29 2011-01-26 大唐移动通信设备有限公司 一种配置上行探测参考信号的方法和装置
KR101497154B1 (ko) * 2008-06-26 2015-03-02 엘지전자 주식회사 Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법
KR101697597B1 (ko) * 2010-04-01 2017-01-18 엘지전자 주식회사 송신 파워를 제어하는 방법 및 이를 위한 장치
KR20110122033A (ko) 2010-05-03 2011-11-09 주식회사 팬택 다중 요소반송파 시스템에서 제어정보의 전송장치 및 방법
US8989129B2 (en) 2010-11-16 2015-03-24 Panasonic Intellectual Property Corporation Of America Communication device and SRS transmission control method
US9787451B2 (en) 2011-03-02 2017-10-10 Lg Electronics Inc. Method and apparatus for transmitting a sounding reference signal by a terminal
CN103621156B (zh) 2011-06-29 2017-05-17 松下电器(美国)知识产权公司 终端装置、基站装置、发送方法及发送功率设定方法
CN102869105B (zh) 2011-07-07 2016-03-30 华为技术有限公司 一种配置参考信号的方法、UE及eNB
US8743791B2 (en) * 2011-09-22 2014-06-03 Samsung Electronics Co., Ltd. Apparatus and method for uplink transmission in wireless communication systems
US9215650B2 (en) * 2011-10-19 2015-12-15 Samsung Electronics Co., Ltd. Uplink control method and apparatus in wireless communication system
US8953478B2 (en) 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
WO2013141505A1 (ko) 2012-03-17 2013-09-26 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호의 송신 전력을 제어하는 방법 및 이를 위한 장치
JP6073073B2 (ja) 2012-05-10 2017-02-01 シャープ株式会社 端末装置、基地局装置および通信方法
US9392639B2 (en) 2013-02-27 2016-07-12 Samsung Electronics Co., Ltd. Methods and apparatus for channel sounding in beamformed massive MIMO systems
KR102065696B1 (ko) 2013-08-01 2020-01-14 삼성전자주식회사 무선 통신 시스템에서 적응적 송신 전력 정규화를 위한 장치 및 방법
CN104468019B (zh) 2013-09-13 2018-05-11 华为终端有限公司 信号资源的指示方法和设备
US10182372B2 (en) 2014-03-20 2019-01-15 Lg Electronics Inc. Method for transmitting D2D signal in wireless communication system and device therefor
EP3136641B1 (en) 2014-04-20 2019-07-24 LG Electronics Inc. Method and terminal for transmitting sounding reference signal in wireless communication system
WO2016013744A1 (en) * 2014-07-24 2016-01-28 Lg Electronics Inc. Method and apparatus for transmitting uplink data in wireless communication system
US10638435B2 (en) 2014-07-30 2020-04-28 Lg Electronics Inc. Method and device for performing device-to-device synchronization in wireless communication system
WO2016047994A1 (ko) 2014-09-24 2016-03-31 엘지전자(주) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
CN107113147B (zh) 2014-12-31 2020-11-06 Lg电子株式会社 在无线通信系统中分配资源的方法和设备
WO2016200093A1 (ko) 2015-06-07 2016-12-15 엘지전자 주식회사 무선 통신 시스템에서 측위를 위한 사운딩 참조 신호 수신 또는 전송 방법 및 이를 위한 장치
CN107637000B (zh) * 2015-06-17 2021-10-22 苹果公司 下一代lte设备和系统的ack/nack信号
US10390357B2 (en) 2015-07-13 2019-08-20 Lg Electronics Inc. Method and apparatus for transmitting or receiving data in wireless communication system
CN105490791B (zh) 2015-11-19 2020-02-04 武汉虹信通信技术有限责任公司 Srs信号发送及触发方法、装置、用户设备和基站
WO2017135773A1 (ko) 2016-02-05 2017-08-10 엘지전자 주식회사 무선 통신 시스템에서 사운딩 참조 신호를 전송하는 방법 및 이를 지원하는 장치
WO2017155290A1 (ko) 2016-03-07 2017-09-14 엘지전자(주) 무선 통신 시스템에서 상/하향링크 데이터 송수신 방법 및 이를 위한 장치
US10716125B2 (en) 2016-04-01 2020-07-14 Qualcomm Incorporated Sounding reference signal triggering for enhanced carrier aggregation
KR102134685B1 (ko) 2016-07-01 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
JP6763229B2 (ja) 2016-08-08 2020-09-30 ソニー株式会社 通信装置、通信方法、及びプログラム
WO2018030872A1 (ko) 2016-08-12 2018-02-15 엘지전자(주) 무선 통신 시스템에서 서빙 셀 변경을 수행하는 방법 및 이를 위한 장치
US10594451B2 (en) * 2016-08-22 2020-03-17 Qualcomm Incorporated Uplink common burst symbol configuration
WO2018062841A1 (ko) 2016-09-29 2018-04-05 엘지전자 주식회사 무선 통신 시스템에서 단말과 기지국 간 신호 송수신 방법 및 이를 지원하는 장치
KR20180049781A (ko) * 2016-11-03 2018-05-11 삼성전자주식회사 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140126346A (ko) * 2012-01-30 2014-10-30 퀄컴 인코포레이티드 높은 송신 전력을 이용한 이벌브드 멀티미디어 브로드캐스트 멀티캐스트 서비스에서의 사이클릭 프리픽스
US9414332B2 (en) * 2012-04-17 2016-08-09 Ofinno Technologies, Llc Signal power management in a multicarrier wireless device
WO2016072052A1 (en) * 2014-11-07 2016-05-12 Nec Corporation Hetnet communication system
KR20160062731A (ko) * 2014-11-25 2016-06-02 한국전자통신연구원 분산 어레이 매시브 mimo 시스템의 신호 송수신 방법 및 장치
WO2016146010A1 (en) * 2015-03-13 2016-09-22 Huawei Technologies Co., Ltd. System and method for interference coordination in wireless communications systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110972246A (zh) * 2018-09-28 2020-04-07 维沃移动通信有限公司 功率控制方法、传输功率控制参数确定方法及相关设备
CN110972246B (zh) * 2018-09-28 2023-09-22 维沃移动通信有限公司 功率控制方法、传输功率控制参数确定方法及相关设备
WO2020133294A1 (zh) * 2018-12-28 2020-07-02 华为技术有限公司 通信方法和通信装置
CN113228747A (zh) * 2018-12-28 2021-08-06 华为技术有限公司 通信方法和通信装置
CN113228747B (zh) * 2018-12-28 2022-05-13 华为技术有限公司 通信方法和通信装置
US11902915B2 (en) 2018-12-28 2024-02-13 Huawei Technologies Co., Ltd. Communication method and communications apparatus

Also Published As

Publication number Publication date
US20200367173A1 (en) 2020-11-19
KR102341470B1 (ko) 2021-12-22
US11234196B2 (en) 2022-01-25
KR20190067834A (ko) 2019-06-17

Similar Documents

Publication Publication Date Title
WO2018084626A1 (ko) 빔포밍 시스템에서 단말의 송신 전력 제어 방법 및 장치
WO2020218892A1 (en) Method and apparatus for v2x sidelink harq procedure in a wireless communication system
WO2020167019A1 (en) Method, terminal device, base station, computer readable medium for measuring cross-link interference, and methods and apparatuses for random access preamble allocation, determination, and data transmission
WO2018203680A1 (ko) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
WO2019103562A1 (en) Method for reporting channel state information in wireless communication system and apparatus for the same
WO2018143776A1 (ko) 무선 통신 시스템에서 단말의 무선 링크 모니터링 수행 방법 및 이를 지원하는 장치
WO2018128351A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018203728A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 이를 위한 장치
WO2019027297A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
WO2018203707A1 (en) Method and apparatus for transmitting power headroom information in a communication system
WO2018016921A1 (ko) 무선 통신 시스템에서 기지국과 단말 간 하향링크 제어 정보를 송수신하는 방법 및 이를 지원하는 장치
WO2019066618A1 (ko) 무선 통신 시스템에서 qcl에 기초하여 데이터를 송수신하기 위한 방법 및 이를 위한 장치
WO2017123060A1 (en) System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
WO2018062845A1 (ko) 무선 통신 시스템에서 단말의 동작 방법 및 이를 지원하는 장치
WO2019143173A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국간 하향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022031133A1 (en) Signaling and trigger mechanisms for handover
WO2018203679A1 (ko) 무선 통신 시스템에서 빔을 이용하여 신호를 송수신하는 방법 및 이를 위한 장치
WO2018194352A1 (en) Method and device for uplink power control
EP3596984A1 (en) Method and device for uplink power control
WO2022145995A1 (en) Method and apparatus of uplink timing adjustment
WO2018147700A1 (ko) 무선 통신 시스템에서 단말과 복수의 trp (transmission and reception point)를 포함하는 기지국의 신호 송수신 방법 및 이를 위한 장치
WO2019194624A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2019066482A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 상향링크 신호를 전송하는 방법 및 이를 지원하는 장치
EP3387756A1 (en) System, method, and apparatus of beam-tracking and beam feedback operation in a beam-forming based system
EP3603231A1 (en) Method and apparatus for transmitting power headroom information in a communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17868254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197012910

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017868254

Country of ref document: EP

Effective date: 20190503