WO2018084585A1 - Open-mode protection device and electronic device having same - Google Patents

Open-mode protection device and electronic device having same Download PDF

Info

Publication number
WO2018084585A1
WO2018084585A1 PCT/KR2017/012301 KR2017012301W WO2018084585A1 WO 2018084585 A1 WO2018084585 A1 WO 2018084585A1 KR 2017012301 W KR2017012301 W KR 2017012301W WO 2018084585 A1 WO2018084585 A1 WO 2018084585A1
Authority
WO
WIPO (PCT)
Prior art keywords
protection device
unit
open mode
constant current
lead frame
Prior art date
Application number
PCT/KR2017/012301
Other languages
French (fr)
Korean (ko)
Inventor
이재욱
최재우
조현진
문지우
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160145757A external-priority patent/KR102486920B1/en
Priority claimed from KR1020160146492A external-priority patent/KR102507857B1/en
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Publication of WO2018084585A1 publication Critical patent/WO2018084585A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/54Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits in a series array of LEDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/02Housing; Enclosing; Embedding; Filling the housing or enclosure
    • H01C1/034Housing; Enclosing; Embedding; Filling the housing or enclosure the housing or enclosure being formed as coating or mould without outer sheath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/13Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material current responsive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present invention relates to an open mode protection device, and more particularly, an open mode protection device for simultaneously implementing a function of suppressing abnormal overheating and excellent coupling stability of the protection device or simultaneously implementing a function of suppressing abnormal overheating and high withstand voltage. It relates to an electronic device.
  • Such LED lighting has a constant current lighting circuit that provides a constant current to a load consisting of LEDs.
  • a protection device is provided to protect a circuit when an electrostatic discharge (ESD), an electrical over stress (EOS), or a surge is introduced between the constant current source and the load.
  • protection devices require various breakdown voltages depending on the application to be applied, and in particular, development of a protection device having a high breakdown voltage is required.
  • the present invention has been made in view of the above points, and integrates an overcurrent or overvoltage protection function and a current suppression function to simultaneously prevent abnormal overheating of a protection device according to an open mode operation of a load, and simultaneously provide stability of coupling between dissimilar materials. It is an object of the present invention to provide an open mode protection device that can be implemented and an electronic device having the same.
  • Another object of the present invention is to provide a method of manufacturing an open mode protection device capable of simultaneously implementing a function of suppressing abnormal overheating of a protection device according to an open mode operation of a load and high withstand voltage to withstand high pressure by dividing a PPTC device. There is this.
  • the present invention provides an open mode protection device connected in parallel to a load consisting of a constant current source and an LED, respectively.
  • the open mode protection device may include a protection unit connected to one side of a first lead frame and bypassing an overvoltage or an overcurrent; A current suppressing unit having one side connected to a second lead frame and the other side connected in series with the other side of the protection unit, and reducing the current of the protection unit as the temperature or current of the protection unit increases; And a molding part formed to surround the protection part and the current suppressing part.
  • the protective portion and the current suppressing portion may be coupled through a conductive adhesive layer.
  • the molding part may be made of an epoxy molding compound (EMC).
  • EMC epoxy molding compound
  • the protection unit and the current suppressing unit may be connected to each of the first lead frame and the second lead frame through solder.
  • the open mode protection device may further include a first external electrode connected to the first lead frame and formed at one side of the molding part; And a second external electrode connected to the second lead frame and formed on the other side of the molding part.
  • any one of the first external electrode and the second external electrode may be connected to one side of the constant current source and the load, and the other may be connected to the other side of the constant current source and the load.
  • the current suppressing unit may be made of a positive temperature coefficient (PTC) material or a polymeric positive temperature coefficient (PPTC) material.
  • PTC positive temperature coefficient
  • PPTC polymeric positive temperature coefficient
  • the protection unit may be any one of a varistor, a suppressor, a gas discharge tube (GDT), and a diode.
  • protection unit and the current suppressing unit may be vertically stacked on each other.
  • the current suppressing unit may be formed of a polymer layer in which the conductive filler is dispersed.
  • the conductive filler may be made of a carbon black material.
  • the present invention is a constant current source; A load consisting of LEDs driven by the constant current source; A ground terminal connected to one side of the constant current source and the load; And an open mode protection device as described above connected in parallel to the constant current source and the load, respectively, one side of which is connected to the ground terminal.
  • the constant current source may be any one of a constant current driver and a constant current power source.
  • the present invention is an open mode protection device connected in parallel to the load consisting of a constant current source and LED, respectively, a varistor having one side connected to the first lead frame; A PPTC substrate having one side connected to a second lead frame and the other side connected in series with the other side of the varistor; A conductive adhesive layer coupling the other side of the varistor and the other side of the PPTC substrate; A molding part formed to surround the varistor and the PPTC substrate; A first external electrode connected to the first lead frame and formed on one side of the molding part; And a second external electrode connected to the second lead frame and formed on the other side of the molding part.
  • a function of suppressing abnormal overheating of the protection element and coupling stability can be simultaneously realized, thereby increasing the temperature or current of the protection element. While suppressing and thus preventing damage of the protection element itself due to abnormal overheating, it is possible to easily utilize the manufacturing process to improve manufacturing efficiency and to realize low cost.
  • the present invention by mounting the current suppressing unit and the protection element to each of the lead frame and then bonded using a conductive adhesive layer, the process is simplified, it is possible to apply the existing product can be easy to mass production.
  • the present invention suppresses abnormal overheating of the protection element itself, thereby preventing damage to adjacent circuit components as well as preventing fire due to ignition of the protection element.
  • the present invention by forming a slit on a large-area PPTC substrate and mounting the protective element with the slit in between, it is possible to realize the function of suppressing abnormal overheating and high withstand voltage of the protective element at the same time, thereby increasing the temperature or current of the protective element It is possible to reduce the thickness and prevent the damage of the protection element itself due to abnormal overheating, while reducing the thickness of the material in order to increase the internal pressure, thereby realizing thinning.
  • the present invention improves the reliability of the product by filling the molding member in the slit of the large area PPTC substrate, thereby improving the deterioration of strength due to the slit and improving the bonding force between the PPTC substrate and the protection element in the unit device. You can.
  • the present invention forms a slit on a large area PPTC substrate to mount the protection element, it is possible to mass production and easy adjustment of the size of the product can provide flexibility in standardization.
  • FIG. 1 is a cross-sectional view of an open mode protection device according to a first embodiment of the present invention
  • FIG. 2 is a perspective view of the open mode protection device of FIG.
  • FIG. 3 is an exploded cross-sectional view illustrating a lamination relationship of the open mode protection device of FIG. 1;
  • FIG. 4 is an equivalent circuit diagram of the open mode protection device of FIG. 1;
  • FIG. 5 is a plan view showing a large area lead frame
  • FIG. 6 is a plan view illustrating a state in which a current suppressing unit or a protecting unit is mounted on a large area lead frame;
  • FIG. 7 is a perspective view illustrating a state in which a current suppressing unit and a protecting unit respectively mounted on a large area lead frame are bonded through a conductive adhesive layer;
  • FIG. 8 is a perspective view showing a state before molding by the EMC sheet
  • FIG. 9 is a cross-sectional view showing a molded state by pressure and thermal welding of an EMC sheet
  • 10 and 11 are a perspective view and a cross-sectional view showing a position to cut the molding assembly
  • FIG. 12 is a graph showing temperature characteristics of the open mode protection device of FIG. 1;
  • FIG. 13 is a schematic structural diagram of an electronic device having an open mode protection device according to a first embodiment of the present invention
  • FIG. 14 is a view for explaining the normal operation of the load in the electronic device of FIG.
  • FIG. 15 illustrates an open mode operation of a load in the electronic device of FIG. 13;
  • 16 is a flowchart of a method of manufacturing an open mode protection device according to a second embodiment of the present invention.
  • 17 is a perspective view showing a state in which slits are formed on a large area substrate
  • 18 and 19 are a perspective view and a cross-sectional view showing a state in which a thin protective element is mounted;
  • 20 is a perspective view showing a state before molding by an epoxy sheet
  • 21 and 22 are a perspective view and a cross-sectional view showing a molded state by pressing and heat fusion of the epoxy sheet
  • 23 and 24 are a perspective view and a cross-sectional view showing a position to cut a molded large area substrate
  • 25 is a cross-sectional view of a unit device manufactured by a method of manufacturing an open mode protection device according to a second embodiment of the present invention.
  • FIG. 26 is an equivalent circuit diagram of the open mode protection device of FIG. 25.
  • the open mode protection device 100 includes a protection unit 110, a current suppressing unit 120, and a molding unit 130 as shown in FIGS. 1 to 3. .
  • the open mode protection device 100 is connected in parallel to a load consisting of a constant current source and an LED, respectively, and bypasses an ESD, EOS or surge current flowing from the outside to the ground, thereby protecting a circuit including the constant current source and the load.
  • the protection unit 110 is connected to the first lead frame 106 through one side of the electrode 112 and bypasses overvoltage or overcurrent. That is, the protection unit 110 may bypass the first external electrode 102 or the second external electrode 104 to the ground by passing an overvoltage or overcurrent caused by ESD, EOS, or surge flowing from the outside. .
  • the protection unit 110 bypasses the constant current of the constant current source to ground through the first external electrode 102 or the second external electrode 104 during the open mode operation of the load made of the LED.
  • the protection unit 110 may be a single component manufactured.
  • the protection unit 110 may be any one of a varistor, a suppressor, a gas discharge tube (GDT), and a diode, but is not particularly limited thereto, and may bypass the overvoltage or the overcurrent. It may include a device.
  • the protection unit 110 may include a varistor material layer. That is, the body 110a of the protection unit 110 may be made of a varistor material.
  • the body 110a may be made of a body.
  • the body is ZnO, BaTiO 3, and SrTiO include one or more of the 3, and Pr, Bi, Ni, Mn, Cr, Co, Sb, Nd, Si, Ca, La, Mg, Al, Ti Sn, Nb, and At least one of Y may be included as a dopant.
  • the protection unit 110 may have the electrode 112 connected to the first lead frame 106 through solder or epoxy solder. That is, the protection unit 110 may be mounted on the first lead frame 106 through an SMT soldering process.
  • the first lead frame 106 may be exposed to the outside of the molding unit 130 so that one end thereof is connected to the first external electrode 102.
  • the protection unit 110 may be formed with electrodes 112 and 114 on the upper and lower surfaces, respectively.
  • the protection unit 110 may be a vertical type. That is, the internal electrode of the protection unit 110 may be disposed in a vertical form between the electrodes 112 and 114.
  • the current suppressing unit 120 has one electrode 124 connected to the second lead frame 108, and the other electrode 122 is connected to the other electrode 114 of the protection unit 110 through the conductive adhesive layer 109. It is connected in series and reduces the current of the protection unit 110 as the temperature or current of the protection unit 110 increases.
  • the current suppression unit 120 senses the temperature or current of the protection unit 110, and when the load is opened by any one of the plurality of LEDs to be protected, the current provided from the constant current source is protected. As the temperature or current of the protection unit 110 increases while flowing to the unit 110, the current of the protection unit 110 is reduced.
  • the current suppressing unit 120 may be a single component manufactured.
  • the current suppression unit 120 may be any one of a polymer positive temperature coefficient (PPTC) device and a positive temperature coefficient (PTC) device. That is, the current suppressing unit 120 may be made of a PTC material or a PPTC material.
  • PPTC polymer positive temperature coefficient
  • PTC positive temperature coefficient
  • the current suppressor 120 may include a polymer layer having conductive fillers dispersed therein. That is, in the current suppressing unit 120, the base layer 120a may be formed of a polymer layer. In this case, the conductive filler may be made of a carbon black material.
  • the current suppressing unit 120 may have the electrode 124 connected to the second lead frame 108 through solder or epoxy solder. That is, the current suppressing unit 120 may be mounted on the second lead frame 108 through an SMT soldering process.
  • the second lead frame 108 may be exposed to the outside of the molding unit 130 so that one end thereof is connected to the second external electrode 104.
  • the protection unit 110 and the current suppressing unit 120 may be vertically stacked on each other through the conductive adhesive layer 109.
  • the conductive adhesive layer 109 may be made of any one of Ag-epoxy, epoxy solder and solder.
  • the electrodes 112 and 114 may be formed through the conductive adhesive layer 109 without directly stacking or bonding the body 110a of the protection unit 110 made of different materials and the base layer 110a of the current suppressing unit 120. And by stacking through the electrodes 122, 124, it can be easily and stably coupled between the protection unit 110 and the current suppressing unit 120.
  • the manufacturing process is simplified, mass production It may be easy.
  • the molding part 130 protects the protection part 110 and the current suppressing part 120 and is formed to completely surround the outside of the protection part 110 and the current suppressing part 120 in order to package it into a single device.
  • the molding part 130 includes not only the protection part 110 and the current suppressing part 120, but also the conductive adhesive layer 109, the first lead frame 106, and the second lead frame 108 are embedded therein. It may be formed to completely wrap.
  • the molding part 130 may be made of an epoxy molding compound (EMC) as an example.
  • EMC epoxy molding compound
  • the molding part 130 may be formed by a single or a mixture of a phenol-based resin and a polyimide-based high heat resistant film.
  • the coupling force between the protection unit 110 and the current suppressing unit 120 may be further improved. That is, although the protection unit 110 and the current suppressing unit 120 are coupled through the conductive adhesive layer 109, since the bonding force is lowered due to peeling of the conductive adhesive layer 109, the protection unit 110 and the current suppression are prevented. By fixing all sides of the part 120 with the molding part 130, the coupling stability between the protection part 110 and the current suppressing part 120 may be further improved.
  • the molding unit 130 has an end portion of the first lead frame 106 and one end of the second lead frame 108 to be connected to the first external electrode 102 and the second external electrode 104. It may be formed to be exposed to the outside of the 130.
  • the open mode protection device 100 of the present invention may further include a first external electrode 102 and a second external electrode 104.
  • the first external electrode 102 is connected to the first lead frame 106 and may be formed on one side of the molding part 130.
  • the first external electrode 102 may be connected to the protection unit 110 through the first lead frame 106.
  • the first external electrode 102 is connected to one side of the constant current source and the load. That is, the first external electrode 102 may be connected to a point where one side of the constant current source and one side of the load are connected.
  • the first external electrode 102 is connected to the second lead frame 108 and may be formed on the other side of the molding unit 130.
  • the second external electrode 104 may be connected to the current suppressing unit 120 through the second lead frame 108.
  • the second external electrode 104 is connected to the other side of the constant current source and the load. That is, the second external electrode 104 may be connected to a point at which the other side of the constant current source is connected to the other side of the load.
  • first lead frame 106 and the second lead frame 108 may be exposed to the outside of the molding unit 130 and may be connected to the first external electrode 102 and the second external electrode 104, respectively.
  • first external electrode 102 is shown and described as being connected to the protection unit 110 and the second external electrode 104 is connected to the current suppressing unit 120, it will be understood that the opposite connection can be made. . That is, the first external electrode 102 may be connected to the current suppressing unit 120, and the second external electrode 104 may be connected to the protection unit 110.
  • the open mode protection device 100 may be represented by an equivalent circuit in which a protection unit B such as a varistor and a current suppressing unit P such as a PPTC device or a PTC device are connected in series.
  • a protection unit B such as a varistor
  • a current suppressing unit P such as a PPTC device or a PTC device
  • one end of the current suppression unit P is connected to one external terminal, and one end of the protection unit B is connected to the other external terminal, and the current suppression unit P is provided.
  • the current suppressing unit (P) and the protection unit (P) can be connected in series with respect to the external terminal.
  • the open mode protection device 100 according to the first embodiment of the present invention configured as described above has a low resistance value at a temperature of 80 ° C. to 120 ° C., as shown in FIG. 12. That is, the open mode protection device 100 may function as a protection device such as a varistor to protect the circuit by bypassing ESD, EOS or surge flowing into the static electricity or the load to ground.
  • a protection device such as a varistor to protect the circuit by bypassing ESD, EOS or surge flowing into the static electricity or the load to ground.
  • the current and voltage flowing to the open mode protection device 100 continuously increase, thereby overheating the protection unit 110. That is, when the load is opened because the power of the load is a constant current source, all currents of a constant magnitude provided from the constant current source flow to the open mode protection device 100. At this time, the actual load of the constant current source is the open mode protection device 100, and in this case, a constant magnitude of current flows from the constant current source to the open mode protection device 100, which is a condition that the voltage rises to infinity.
  • the open mode protection device 100 when the load is in an open state, as the voltage across the open mode protection device 100 which is a substantial load rises to the supply power level (200 to 300V), the open mode protection device 100, in particular, the protection unit ( 110) is overheated.
  • the open mode protection device 100 increases the amount of current flowing in the open mode protection device 100 due to a sudden increase in resistance of the current suppressing unit 120.
  • the voltage at both ends of the protection unit 110 can be reduced to reduce the temperature, thereby suppressing heat generation. Accordingly, self damage due to overheating of the protection unit 110 can be prevented.
  • a large area lead frame 150 having a plurality of slits 152 formed at a predetermined interval is prepared.
  • the slits 152 have a comb shape in the longitudinal direction, and the space portion 106a between the slits 152 is a space for mounting the protection unit 110 or the current suppressing unit 120.
  • the protection unit 110 or the current suppressing unit 120 is mounted in the space portion 106a between the slits 152.
  • the protection unit 110 or the current suppressing unit 120 may be disposed to be approximately centered in the space 106a.
  • the protection unit 110 or the current suppressing unit 120 may be mounted on the space portion 106a of the large area lead frame 150 through the SMT soldering process. That is, the protection unit 110 or the current suppressing unit 120 may be soldered or epoxy to the space portion 106a of the large area lead frame 150 corresponding to the first lead frame 106 and the second lead frame 108. It can be connected via solder.
  • the large-area lead frame 150a having the protection unit 110 and the current suppressing unit 120 mounted thereon is stacked on each other through the conductive adhesive layer 109. That is, as shown in FIG. 7, an example of the conductive adhesive layer 109 is disposed between the protection unit 110 and the current suppression unit 120 so as to face each other of the large-area lead frame 150a mounted therebetween.
  • an Ag-epoxy sheet 109a the protection unit 110 and the current suppressing unit 120 can be laminated in combination.
  • the Ag-epoxy sheet 109a is illustrated and described as being composed of one sheet of a large area, the Ag-epoxy sheet 109a may be divided into the sizes of the electrodes of the protection unit 110 and the current suppressing unit 120 that are stacked.
  • the molding member is molded to completely surround the protection unit 110 and the current suppressing unit 120 mounted on the large area lead frame 150a.
  • the molding member may be made of an epoxy molding compound (EMC).
  • the EMC sheet 130a may be disposed above and below the large area lead frame 150a to be thermally fused while pressing toward the large area lead frame 150a.
  • the molding member 130 ′ melted by heat may be molded to fill the upper side and the lower side of the large-area lead frame 150 and therebetween. That is, as shown in FIG. 9, the molten molding member 130 ′ is formed between the large area lead frame 150a through the respective slits 152 from the upper side and the lower side of the large area lead frame 150.
  • the protection unit 110 and the current suppressing unit 120 may be introduced into the mounted area.
  • the large area lead frame 150a, the protection unit 110, and the current suppression unit 120 are molded by pressing and heat-sealing the EMC sheet 130a, but various molding members and molding methods are not limited thereto. Note that it can be molded with.
  • a phenol-based resin and a polyimide-based high heat resistant film may be used singly or in combination.
  • coupling agents or rubber-based mixed polymers can be used for proper work processes, and additional surface treatment can be performed to improve adhesion and reliability of bodies such as varistors. have.
  • the molded large area leadframe 150a is cut into a unit device including one structure in which the protection unit 110 and the current suppressing unit 120 are vertically stacked.
  • the molded large area leadframe 150a may be cut along the longitudinal transmission line a and the width cutting line b corresponding to the size of the unit device.
  • the open mode protection device 100 which is a unit device as shown in FIG. 1, may be completed.
  • the first external electrode 102 and the second external electrode 104 connected to the first lead frame 106 and the second lead frame 108 that are exposed to the outside of the molding unit 130, the molding unit 130. Can be formed on both sides of the).
  • first external electrode 102 and the second external electrode 104 may be plated.
  • first external electrode 102 and the second external electrode 104 may be plated with one of Ag, Pt, and Au.
  • the electrical conductivity of the first external electrode 102 and the second external electrode 104 may be improved, and the first external electrode 102 and the second external electrode 104 may be formed to prevent wear or corrosion. I can protect it.
  • the open mode protection device 100 according to the first embodiment of the present invention can be used in an electronic device having a load consisting of a constant current source and an LED.
  • the electronic device 1 may include a constant current source 10, an LED load 12, and an open mode protection device 100.
  • the electronic device 1 is a device having an LED as a load, and may be any one of a backlight (BLU) of a display device such as a TV, various lamps of a vehicle, and smart lighting using dimming.
  • BLU backlight
  • the constant current source 10 may supply a constant current to the LED load 12.
  • the constant current source 10 may be any one of a constant current power supply and a constant current driver. That is, the constant current source 10 is not limited to a particular form, and may be a source for supplying current in a constant current manner, for example, a power source for supplying power to the electronic device 1 or driving the LED load 12. It may be a driving unit for.
  • the LED load 12 may be composed of a plurality of LEDs.
  • the LED load 12 may be connected in series with a plurality of LEDs, but is not limited thereto.
  • the LED load 12 may be a plurality of LEDs are connected in series, a plurality of LEDs in series may be connected in parallel, or a plurality of LEDs may be connected in parallel, a plurality of LEDs in parallel may be connected in series. .
  • the LED load 12 may have a constant voltage value while the LED is turned on to supply a predetermined amount of current from the constant current source 10. For example, when the constant current source 10 supplies a current of 400 mA and the LED load 12 consists of ten LEDs, a voltage of approximately 25 to 30 V may be output at both ends of the load.
  • one side of the constant current source 10 and the LED load 12 is connected to the ground terminal. That is, the cathode side of the constant current source 10 and the load 12 may be connected to the ground terminal.
  • the ground terminal may be connected to a common ground formed on the circuit board of the electronic device 1.
  • the open mode protection device 100 may be connected in parallel to the constant current source 10 and the LED load 12, respectively. That is, one side of the open mode protection device 100 may be connected to one side of the constant current source 10 and the LED load 12, and the other side thereof may be connected to the other side of the constant current source 10 and the LED load 12. . In this case, one side of the open mode protection device 100 may be connected to the ground terminal.
  • the open mode protection device 100 is substantially protected by the protection unit 110 against ESD, EOS or surge such as a varistor. Function as.
  • the protection unit 110 does not have sufficient protection against ESD, EOS or surge introduced from the outside, some of the LED load 12 is damaged by ESD, EOS or surge, the LED load 12 is open. Often it happens.
  • the constant current source 10 continuously supplies a constant current
  • the voltage also increases greatly while the current flowing in the open mode protection device 100 increases.
  • the protection unit 110 of the open mode protection device 100 gradually increases in temperature due to overcurrent and overvoltage.
  • the resistance value of the current suppressing unit 120 is greatly increased, thereby reducing the current flowing in the protection unit 110, thereby both ends of the protection unit 110.
  • the temperature can be suppressed by reducing the voltage.
  • the adjacent parts are made of a flammable material.
  • white sheet paper is disposed in front of the LED to improve the efficiency of the light emitted from the fire, it is possible to prevent the fire due to the ignition of the protection element.
  • the method 20 for manufacturing the open mode protection device according to the second embodiment of the present invention includes the steps of forming a slit on a substrate (S201), mounting the protection device (S202), and epoxy. Molding (S203), and cutting into unit devices (S205).
  • the open mode protection device manufactured by the manufacturing method 20 includes a constant current source and a load by bypassing an ESD, EOS or surge current introduced from the outside by being connected in parallel to a load consisting of a constant current source and an LED, respectively, to ground. It is to protect the circuit.
  • slits 216 are formed at a predetermined interval on a large area PPTC substrate 210a having electrodes 212 and 214 formed on both surfaces thereof (step S201).
  • the slit 216 may be formed at a predetermined interval corresponding to a space required to cut the large area PPTC substrate 210a into unit devices. That is, according to the cutting precision made in the cutting step S205, for example, the size of the interval for arranging the slits 216 can be determined according to the precision of the cutting mechanism.
  • the electrodes 212 and 214 formed on both surfaces of the large-area PPTC substrate 210a may be prepared in advance.
  • the double-sided electrodes 212 and 214 may be formed in advance by Ni or Cu plating. At this time, in order to improve the adhesion of the Cu surface it may be further plated by any one of Fe, Ni, Cr and Ag.
  • the large area PPTC substrate 210a may be formed of a PPTC material having a base layer between the electrodes 212 and 214.
  • the base layer may be made of a polymer layer in which the conductive filler is dispersed.
  • the conductive filler may be made of a carbon black material.
  • the PPTC device formed by the large area PPTC substrate 210a increases withstand thickness according to its thickness. That is, in the PPTC device, the breakdown voltage increases as the distance between the top electrode 212 and the bottom electrode 214 increases. Accordingly, in order to apply the PPTC device to a backlight (BLU) of a display device such as a TV requiring high breakdown voltage, the PPTC device needs to configure a large distance between the top electrode 212 and the bottom electrode 214. Results in an increase in the overall thickness.
  • BLU backlight
  • the manufacturing method 20 of the open mode protection device according to the second embodiment of the present invention has a large area such that the PPTC devices are spaced apart on the same plane in order to realize thinning without increasing the thickness of the open mode protection device.
  • the slit 216 may be formed in the PPTC substrate 210a. That is, in the finally calculated unit element, since a pair of PPTC elements are arranged on the same plane, the increase in thickness is suppressed, and since they are arranged in series on both sides of the protection element, the two elements on the current path Since the PPTC devices are arranged in series, it is possible to increase the breakdown voltage as a result.
  • the protection device 220 for bypassing the overvoltage or the overcurrent is mounted on the upper surface electrode 212 with the slit 216 therebetween (step S202).
  • the protection element 220 may be disposed such that the slit 216 is positioned at a substantially central portion of the lower portion of the protection element 220 (see FIG. 19).
  • the protection device 220 may be mounted on the top electrode 212 of the large area PPTC substrate 210a through an SMT soldering process. That is, the protection device 220 may be connected to the top electrode 212 of the large area PPTC substrate 210a through solder.
  • the protection elements 220 may be spaced apart at regular intervals to secure a space necessary for cutting the large-area PPTC substrate 210a into unit elements, similar to the intervals in which the slits 216 are disposed. That is, according to the precision of the cutting mechanism, the size of the interval for arranging the protection element 220 can be determined.
  • the slit 216 on the large-area PPTC substrate 210a and mounting the protective element 220, a mass production is possible and an interval for forming the slit 216 or an interval for arranging the protective element 220.
  • the size of the product can be easily adjusted according to the specification, which can be flexibly handled according to various specifications.
  • the protection device 220 may be a single component manufactured.
  • the protection device 220 may be any one of a varistor, a suppressor, a gas discharge tube (GDT), and a diode, but is not particularly limited thereto, and may bypass overvoltage or overcurrent. It may include a device.
  • the existing single component is mounted on a pair of large-area PPTC substrates 210a, which not only simplifies the manufacturing process but also makes it easy to design and arrange PPTC elements in accordance with existing products, thereby increasing manufacturing efficiency. Can improve.
  • the protection device 220 may include a varistor material layer. That is, the body of the protection device 220 may be made of a varistor material.
  • the protective device 220 may be formed of a body 220a.
  • the body comprises one or more of ZnO, BaTiO 3 , and SrTiO 3 , wherein Pr, Bi, Ni, Mn, Cr, Co, Sb, Nd, Si, Ca, La, Mg, Al, Ti Sn, Nb, and At least one of Y may be included as a dopant.
  • the molding member is formed with the molding member so as to cover the upper side of the large area PPTC substrate 210a and the protection device 220 (step S203).
  • the molding member may be made of epoxy.
  • the epoxy sheet 230a may be disposed above the large area PPTC substrate 210a on which the protection device 220 is mounted, and pressurized to the large area PPTC substrate 210a to be heat-sealed. Can be.
  • the molding member 230 ′ melted by heat may be molded to completely cover the upper side of the large area PPTC substrate 210a and the protection device 220 (see FIG. 21).
  • the slit 216 which is a space between the large area PPTC substrate 210a at the lower side of the protection device 220, may be filled with the molding member 230 ′ melted by the heat (see FIG. 22).
  • the molding member 230 ′ melted by the heat flows from the upper side of the large area PPTC substrate 210a to the slit 216 disposed between the protection elements 220, and is disposed below the plurality of protection elements 220. It spreads through the whole slit 216 arrange
  • the strength between the pair of PPTC substrates 210 spaced apart from each other by the space part 202 corresponding to the slit 216 may be compensated for.
  • the bond strength may be weakened between the PPTC substrates 210 or between the protection elements 220.
  • the bonding strength may be improved by filling the space 202 corresponding to the slit 216 disposed between the PPTC substrate 210 with the molding member.
  • the protection device 220 can be protected from external force.
  • the epoxy sheet 230a has been described as molding the large area PPTC substrate 210a and the protection device 220 by pressing and heat fusion.
  • the present invention is not limited thereto, and it can be molded by various molding members and molding methods. Put it.
  • step S205 the molded large area PPTC substrate 210a is cut into a unit device including one protection device 220.
  • the molded large area PPTC substrate 210a may be cut along a longitudinal transmission line a and a width cutting line b corresponding to the size of the unit device.
  • the open mode protection device 200 which is a unit device as shown in FIG. 25 may be completed.
  • the manufacturing method 20 of the open mode protection device according to the second embodiment of the present invention may further comprise the step (S204) of plating the electrode pad.
  • the lower surface electrode 214 of the large area PPTC substrate 210a may be plated (step S204).
  • the lower surface electrode 214 of the large area PPTC substrate 210a may be plated with any one of Ag, Pt, Sn, Cr, Al, Zn, and Au.
  • the flatness and electrical conductivity of the lower surface electrode 214 used as the electrode pad of the unit element can be improved, and the electrode 214 can be protected if it is not easily worn or corroded.
  • the open mode protection device 200 manufactured by the method 20 for manufacturing the open mode protection device of the present invention may include a PPTC substrate 210, a protection device 220, and a molding part 230.
  • the open mode protection device 200 is used in an electronic device having an LED as a load, for example, a backlight (BLU) of a display device such as a TV, various lamps of a vehicle, and smart lighting using dimming to protect a circuit. will be.
  • a backlight (BLU) of a display device such as a TV
  • various lamps of a vehicle various lamps of a vehicle
  • smart lighting using dimming to protect a circuit will be.
  • the open mode protection device 200 may be connected in parallel to the constant current source and the LED load, respectively.
  • the constant current source may supply a constant current to the LED load.
  • the constant current source may be any one of a constant current power supply and a constant current driver.
  • the LED load may be composed of a plurality of LEDs.
  • the LED load may include a plurality of LEDs connected in series, a plurality of LEDs connected in series, a plurality of LEDs connected in series, connected in parallel, a plurality of LEDs connected in parallel, and a plurality of LEDs connected in parallel. It may be connected in series.
  • the open mode protection device 200 may have one side connected to one side of the constant current source and the LED load, and the other side thereof to the other side of the constant current source and the LED load.
  • one side of the open mode protection device 200 may be connected to the ground terminal. That is, the ground terminal may be connected to the cathode side of the constant current source and the load, and may be connected to the common ground formed on the circuit board of the electronic device.
  • the PPTC substrate 210 may be formed in a pair and spaced apart from each other at a predetermined interval.
  • the upper electrode 212 of the PPTC substrate 210 is an internal electrode to be connected to the electrodes 212 and 214 of the protection device 220, and the lower electrode 214 is connected to a constant current source and a load of the electronic device. For external electrodes.
  • the PPTC substrate 210 is electrically connected in series with both ends of the protection device 220 and senses the temperature or current of the protection device 220. At this time, when the load is opened by any one of the plurality of LEDs to be protected by damage, PPTC as the current or current supplied from the constant current source flows to the protection device 220 as the temperature or current of the protection device 220 increases. The substrate 210 reduces the current of the protection device 220.
  • the protection device 220 is connected to both ends of the electrodes 212 and 214 on the internal electrodes 212 formed on the upper surfaces of the pair of PPTC substrates 210, respectively, thereby bypassing the overvoltage or the overcurrent. That is, the protection device 220 may pass an overvoltage or overcurrent caused by ESD, EOS, or surge introduced through one external electrode 214 to another external electrode 214 connected to the ground.
  • the open mode protection device 200 may protect the LED load by bypassing ESD, EOS, or surge flowing from the outside to the ground. That is, since the resistance of the PPTC substrate 210 is very small, the open mode protection device 200 functions as a protection device against ESD, EOS or surge such as a varistor by the protection device 220.
  • the protection device 220 bypasses the constant current of the constant current source to the ground through the external electrode 214 during the open mode operation of the load consisting of the LED.
  • the molding part 230 may be formed to cover the upper side of the pair of PPTC substrates 210a and the protection device 220.
  • the molding unit 230 is to protect the pair of PPTC substrate 210a and the protection device 220, and to package in a single device.
  • the molding part 230 may be filled in the space 202 between the pair of PPTC substrate 210. That is, the space 202 between the pair of PPTC substrates 210 formed as the pair of PPTC substrates 210 are spaced apart may be filled with a molding member.
  • the open mode protection device 200 may be represented by an equivalent circuit in which a protection device B such as a varistor and a PPTC device P are connected in series.
  • the PPTC device P may be dividedly disposed at both ends of the protection device B.
  • one end of a pair of PPTC elements P is connected to a pair of external terminals, respectively, and both ends of the protection element B are connected to the other end of the pair of PPTC elements P.
  • a pair of PPTC elements P and one protection element P may be connected in series with respect to external terminals.
  • the open mode protection device 200 according to the second embodiment of the present invention configured as described above has a low resistance at a constant temperature of 80 ° C to 120 ° C. That is, the open mode protection device 200 may function as a protection device such as a varistor to protect the circuit by bypassing ESD, EOS or surge flowing into the static electricity or the load to ground.
  • a protection device such as a varistor to protect the circuit by bypassing ESD, EOS or surge flowing into the static electricity or the load to ground.
  • the protection device 220 does not have sufficient protection against ESD, EOS, or surges introduced from the outside, some of the LED loads are damaged by ESD, EOS, or surges, and the LED loads are often opened. Occurs.
  • the current and the voltage flowing to the open mode protection device 200 continuously increase, thereby overheating the protection device 220. That is, when the load is opened because the power of the load is a constant current source, all currents of a constant magnitude provided from the constant current source flow to the open mode protection device 200.
  • the substantial load of the constant current source is the open mode protection device 200, and in this case, a constant magnitude current flows from the constant current source to the open mode protection device 200, which is a condition in which the voltage rises indefinitely.
  • the constant current source supplies 400 mA of current and the LED load consists of 10 LEDs
  • a voltage of approximately 25 to 30 V is output at both ends of the load, but if the load is open, the open mode is a substantial load.
  • the open mode protection device 200 in particular, the protection device 220 is overheated.
  • the open mode protection device 200 increases the amount of current flowing in the open mode protection device 200 by a sudden increase in the resistance of the PPTC substrate 210 By reducing, since the voltage across the protection element 220 can be reduced to decrease the temperature, heat generation can be suppressed. Accordingly, self damage due to overheating of the protection device 220 can be prevented.
  • the open mode protection device 200 by suppressing abnormal overheating of the open mode protection device 200, not only does it prevent damage to circuit components adjacent to the open mode protection device 200, but also when the adjacent parts are made of a flammable material.
  • white sheet paper is disposed on the front surface of the LED to improve the efficiency of the emitted light, it is possible to prevent a fire due to the ignition of the protective device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

An open-mode protection device and an electronic device having the same are provided. An open-mode protection device according to an embodiment of the present invention is an open mode protection device connected in parallel to each of a constant current source and a load comprising an LED. The open mode protection device comprises: a protection part connected to one side of a first lead frame and bypassing an overvoltage or an overcurrent; a current suppressing part having one side connected to a second lead frame and the other side connected in series to the other side of the protection part, and reducing the current of the protection part as the temperature or current of the protection part increases; and a molded part formed so as to surround the protection part and the current suppressing part.

Description

오픈모드 보호소자 및 이를 구비한 전자장치Open mode protection device and electronic device having same
본 발명은 오픈모드 보호소자에 관한 것으로, 더욱 상세하게는 보호소자의 이상 과열의 억제 기능과 우수한 결합 안정성을 동시에 구현하거나 이상 과열의 억제 기능과 높은 내압을 동시에 구현하는 오픈모드 보호소자 및 이를 구비한 전자장치에 관한 것이다.The present invention relates to an open mode protection device, and more particularly, an open mode protection device for simultaneously implementing a function of suppressing abnormal overheating and excellent coupling stability of the protection device or simultaneously implementing a function of suppressing abnormal overheating and high withstand voltage. It relates to an electronic device.
최근 전력 효율이 높고 제어가 용이한 LED를 이용한 조명장치가 보편화되고 있다. 특히, 디스플레이 장치의 백라이트, 자동차의 각종 램프, 디밍을 이용한 스마트 조명 등의 분야에서는 그 사용이 급증하고 있다. Recently, lighting devices using LEDs having high power efficiency and easy control are becoming common. In particular, its use is rapidly increasing in fields such as backlight of display devices, various lamps of automobiles, and smart lighting using dimming.
이러한 LED 조명은 LED로 이루어진 부하에 일정한 전류를 제공하는 정전류 방식의 점등 회로를 구비한다. 여기서, 정전류원과 부하 사이에 ESD(ElectroStatic Discharge), EOS(Electrical over stress) 또는 서지(surge)가 유입되는 경우 회로를 보호하기 위해 보호소자가 구비된다. Such LED lighting has a constant current lighting circuit that provides a constant current to a load consisting of LEDs. Here, a protection device is provided to protect a circuit when an electrostatic discharge (ESD), an electrical over stress (EOS), or a surge is introduced between the constant current source and the load.
이와 같은 정전류 방식의 전자장치에서, 전기적 충격에 의해 LED 중 어느 하나가 파손되어 부하가 오픈 상태로 되면, 정전류원의 전류는 모두 보호소자로 흐르며, 이때, 보호소자는 양단 전압이 지속적으로 상승하여 과열되며, 과도한 경우 발화되어 화재의 원인이 된다. In such a constant current type electronic device, when any one of the LEDs is damaged due to an electric shock and the load is opened, the currents of the constant current source all flow to the protection device, and the protection device is constantly overheated because the voltage of both ends continuously rises. Excessive ignition will cause fire.
따라서, LED 부하에 대하여 ESD, EOS 또는 서지에 대한 보호기능과 함께 부하의 오픈모드에 따른 보호소자의 과열을 억제할 수 있는 기술의 개발이 절실한 실정이다. Therefore, there is an urgent need to develop a technology capable of suppressing overheating of the protection device according to the open mode of the load along with the protection against ESD, EOS or surge against the LED load.
아울러, 보호기능과 억제기능을 위한 서로 다른 구성요소를 일체로 제작하기 위한 방안이 요구된다. In addition, a method for integrally manufacturing different components for the protection function and the suppression function is required.
또한, 이러한 보호소자는 적용되는 애플리케이션에 따라 다양한 내압이 요구되며 특히, 높은 내압을 갖는 보호소자의 개발이 요구된다. In addition, such protection devices require various breakdown voltages depending on the application to be applied, and in particular, development of a protection device having a high breakdown voltage is required.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 과전류 또는 과전압 보호기능과 전류억제기능을 일체화하여 부하의 오픈모드 동작에 따른 보호소자의 이상 과열의 억제 기능과 이종재료 사이의 결합 안정성을 동시에 구현할 수 있는 오픈모드 보호소자 및 이를 구비한 전자장치를 제공하는데 그 목적이 있다. The present invention has been made in view of the above points, and integrates an overcurrent or overvoltage protection function and a current suppression function to simultaneously prevent abnormal overheating of a protection device according to an open mode operation of a load, and simultaneously provide stability of coupling between dissimilar materials. It is an object of the present invention to provide an open mode protection device that can be implemented and an electronic device having the same.
또한, 본 발명은 PPTC 소자를 분할 배치하여 부하의 오픈모드 동작에 따른 보호소자의 이상 과열의 억제 기능과 고압에서도 견디기 위한 높은 내압을 동시에 구현할 수 있는 오픈모드 보호소자의 제조 방법을 제공하는데 다른 목적이 있다. Another object of the present invention is to provide a method of manufacturing an open mode protection device capable of simultaneously implementing a function of suppressing abnormal overheating of a protection device according to an open mode operation of a load and high withstand voltage to withstand high pressure by dividing a PPTC device. There is this.
상술한 과제를 해결하기 위하여 본 발명은 정전류원 및 LED로 이루어진 부하에 각각 병렬 연결되는 오픈모드 보호소자를 제공한다. 상기 오픈모드 보호소자는 제1리드프레임에 일측이 연결되며 과전압 또는 과전류를 바이패스시키는 보호부; 제2리드프레임에 일측이 연결되며 타측이 상기 보호부의 타측과 직렬 연결되고, 상기 보호부의 온도 또는 전류가 증가함에 따라 상기 보호부의 전류를 감소시키는 전류억제부; 및 상기 보호부 및 상기 전류억제부를 감싸도록 형성되는 몰딩부;를 포함한다. In order to solve the above problems, the present invention provides an open mode protection device connected in parallel to a load consisting of a constant current source and an LED, respectively. The open mode protection device may include a protection unit connected to one side of a first lead frame and bypassing an overvoltage or an overcurrent; A current suppressing unit having one side connected to a second lead frame and the other side connected in series with the other side of the protection unit, and reducing the current of the protection unit as the temperature or current of the protection unit increases; And a molding part formed to surround the protection part and the current suppressing part.
본 발명의 바람직한 실시예에 의하면, 상기 보호부와 상기 전류억제부는 전도성접착층을 통하여 결합될 수 있다.According to a preferred embodiment of the present invention, the protective portion and the current suppressing portion may be coupled through a conductive adhesive layer.
또한, 상기 몰딩부는 EMC(Epoxy Molding Compound)로 이루어질 수 있다. In addition, the molding part may be made of an epoxy molding compound (EMC).
또한, 상기 보호부와 상기 전류억제부는 상기 제1리드프레임 및 상기 제2리드프레임 각각에 솔더를 통하여 연결될 수 있다.The protection unit and the current suppressing unit may be connected to each of the first lead frame and the second lead frame through solder.
또한, 상기 오픈모드 보호소자는 상기 제1리드프레임과 연결되며 상기 몰딩부의 일측에 형성되는 제1외부전극; 및 상기 제2리드프레임과 연결되며 상기 몰딩부의 타측에 형성되는 제2외부전극을 더 포함할 수 있다.The open mode protection device may further include a first external electrode connected to the first lead frame and formed at one side of the molding part; And a second external electrode connected to the second lead frame and formed on the other side of the molding part.
이때, 상기 제1외부전극 및 상기 제2외부전극 중 어느 하나는 상기 정전류원 및 상기 부하의 일측에 연결되고, 다른 하나는 상기 정전류원 및 상기 부하의 타측에 연결될 수 있다.In this case, any one of the first external electrode and the second external electrode may be connected to one side of the constant current source and the load, and the other may be connected to the other side of the constant current source and the load.
또한, 상기 전류억제부는 PTC(positive temperature coefficient) 재료 또는 PPTC(polymeric positive temperature coefficient) 재료로 이루어질 수 있다. In addition, the current suppressing unit may be made of a positive temperature coefficient (PTC) material or a polymeric positive temperature coefficient (PPTC) material.
또한, 상기 보호부는 바리스터(varistor), 써프레서(suppressor), GDT(Gas discharge tube) 및 다이오드 중 어느 하나일 수 있다. In addition, the protection unit may be any one of a varistor, a suppressor, a gas discharge tube (GDT), and a diode.
또한, 상기 보호부와 상기 전류억제부는 서로 수직 적층될 수 있다.In addition, the protection unit and the current suppressing unit may be vertically stacked on each other.
또한, 상기 전류억제부는 전도성 필러가 분산된 폴리머 층으로 이루어질 수 있다. In addition, the current suppressing unit may be formed of a polymer layer in which the conductive filler is dispersed.
또한, 상기 전도성 필러는 카본블랙(carbon black) 재료로 이루어질 수 있다. In addition, the conductive filler may be made of a carbon black material.
한편, 본 발명은 정전류원; 상기 정전류원에 의해 구동되는 LED로 이루어진 부하; 상기 정전류원 및 상기 부하의 일측이 연결되는 접지단자; 및 상기 정전류원 및 상기 부하에 각각 병렬 연결되고, 일측이 상기 접지단자에 연결되는 상술한 바와 같은 오픈모드 보호소자;를 포함하는 전자장치를 제공한다. On the other hand, the present invention is a constant current source; A load consisting of LEDs driven by the constant current source; A ground terminal connected to one side of the constant current source and the load; And an open mode protection device as described above connected in parallel to the constant current source and the load, respectively, one side of which is connected to the ground terminal.
본 발명의 바람직한 실시예에 의하면, 상기 정전류원은 정전류 구동부 및 정전류 방식의 전원 중 어느 하나일 수 있다. According to a preferred embodiment of the present invention, the constant current source may be any one of a constant current driver and a constant current power source.
한편, 본 발명은 정전류원 및 LED로 이루어진 부하에 각각 병렬 연결되는 오픈모드 보호소자로서, 제1리드프레임에 일측이 연결되는 바리스터; 제2리드프레임에 일측이 연결되며 타측이 상기 바리스터의 타측과 직렬 연결되는 PPTC 기판; 상기 바리스터의 타측과 상기 PPTC 기판의 타측을 결합하는 전도성접착층; 상기 바리스터 및 상기 PPTC 기판을 감싸도록 형성되는 몰딩부; 상기 제1리드프레임과 연결되며 상기 몰딩부의 일측에 형성되는 제1외부전극; 및 상기 제2리드프레임과 연결되며 상기 몰딩부의 타측에 형성되는 제2외부전극;을 포함하는 오픈모드 보호소자를 제공한다.On the other hand, the present invention is an open mode protection device connected in parallel to the load consisting of a constant current source and LED, respectively, a varistor having one side connected to the first lead frame; A PPTC substrate having one side connected to a second lead frame and the other side connected in series with the other side of the varistor; A conductive adhesive layer coupling the other side of the varistor and the other side of the PPTC substrate; A molding part formed to surround the varistor and the PPTC substrate; A first external electrode connected to the first lead frame and formed on one side of the molding part; And a second external electrode connected to the second lead frame and formed on the other side of the molding part.
본 발명에 의하면, PTC 소자 또는 PPTC 소자로 이루어진 전류억제부와 보호소자를 수직 적층하여 일체화함으로써, 보호소자의 이상 과열의 억제 기능과 결합 안정성을 동시에 구현할 수 있으므로, 보호소자의 온도 또는 전류의 상승을 억제하고 따라서 이상 과열에 의한 보호소자 자체의 파손을 방지하면서도, 제조 공정의 활용이 용이하여 제조 효율을 향상시키고, 저가격화를 구현할 수 있다. According to the present invention, by vertically stacking and integrating a current suppressing portion made of a PTC element or a PPTC element and a protection element, a function of suppressing abnormal overheating of the protection element and coupling stability can be simultaneously realized, thereby increasing the temperature or current of the protection element. While suppressing and thus preventing damage of the protection element itself due to abnormal overheating, it is possible to easily utilize the manufacturing process to improve manufacturing efficiency and to realize low cost.
또한, 본 발명은 전류억제부 및 보호소자를 리드프레임에 각각 실장한 후 전도성접착층을 이용하여 결합함으로써, 공정이 단순화되고, 기존의 제품을 적용할 수 있어 대량 생산이 용이할 수 있다.In addition, the present invention by mounting the current suppressing unit and the protection element to each of the lead frame and then bonded using a conductive adhesive layer, the process is simplified, it is possible to apply the existing product can be easy to mass production.
또한, 본 발명은 보호소자 자체의 이상 과열을 억제함으로써, 인접한 회로부품의 손상을 방지할 뿐만 아니라 보호소자의 발화로 인한 화재를 미연에 예방할 수 있다. In addition, the present invention suppresses abnormal overheating of the protection element itself, thereby preventing damage to adjacent circuit components as well as preventing fire due to ignition of the protection element.
또한, 본 발명은 대면적 PPTC 기판에 슬릿을 형성하고 슬릿을 사이에 두고 보호소자를 실장함으로써, 보호소자의 이상 과열의 억제 기능과 높은 내압을 동시에 구현할 수 있으므로, 보호소자의 온도 또는 전류의 상승을 억제하고 따라서 이상 과열에 의한 보호소자 자체의 파손을 방지하면서도, 내압을 높이기 위해 재료의 두께를 증가시킬 필요가 없어 박형화를 구현할 수 있다. In addition, the present invention by forming a slit on a large-area PPTC substrate and mounting the protective element with the slit in between, it is possible to realize the function of suppressing abnormal overheating and high withstand voltage of the protective element at the same time, thereby increasing the temperature or current of the protective element It is possible to reduce the thickness and prevent the damage of the protection element itself due to abnormal overheating, while reducing the thickness of the material in order to increase the internal pressure, thereby realizing thinning.
또한, 본 발명은 대면적 PPTC 기판의 슬릿에 몰딩부재를 채움으로써, 슬릿에 의한 강도의 열화를 향상시키는 동시에 단위 소자 내에서 PPTC 기판과 보호소자 사이의 결합력을 향상시킬 수 있으므로 제품의 신뢰성을 향상시킬 수 있다. In addition, the present invention improves the reliability of the product by filling the molding member in the slit of the large area PPTC substrate, thereby improving the deterioration of strength due to the slit and improving the bonding force between the PPTC substrate and the protection element in the unit device. You can.
또한, 본 발명은 대면적 PPTC 기판에 슬릿을 형성하여 보호소자를 실장함으로써, 대량 생산이 가능하고 제품의 크기의 조정이 용이하여 규격화에 유연성을 제공할 수 있다.In addition, the present invention forms a slit on a large area PPTC substrate to mount the protection element, it is possible to mass production and easy adjustment of the size of the product can provide flexibility in standardization.
도 1은 본 발명의 제1실시예에 따른 오픈모드 보호소자의 단면도,1 is a cross-sectional view of an open mode protection device according to a first embodiment of the present invention;
도 2는 도 1의 오픈모드 보호소자의 사시도,2 is a perspective view of the open mode protection device of FIG.
도 3은 도 1의 오픈모드 보호소자의 적층 관계를 나타낸 분리단면도,3 is an exploded cross-sectional view illustrating a lamination relationship of the open mode protection device of FIG. 1;
도 4는 도 1의 오픈모드 보호소자의 등가회로도,4 is an equivalent circuit diagram of the open mode protection device of FIG. 1;
도 5는 대면적 리드프레임을 나타낸 평면도, 5 is a plan view showing a large area lead frame,
도 6은 대면적 리드프레임에 전류억제부 또는 보호부를 실장한 상태를 나타낸 평면도,6 is a plan view illustrating a state in which a current suppressing unit or a protecting unit is mounted on a large area lead frame;
도 7은 대면적 리드프레임에 각각 실장된 전류억제부 및 보호부를 전도성접착층을 통하여 접합하는 상태를 나타낸 사시도, FIG. 7 is a perspective view illustrating a state in which a current suppressing unit and a protecting unit respectively mounted on a large area lead frame are bonded through a conductive adhesive layer;
도 8은 EMC 시트에 의한 몰딩전 상태를 나타낸 사시도, 8 is a perspective view showing a state before molding by the EMC sheet,
도 9는 EMC 시트의 가압 및 열융착에 의해 몰딩된 상태를 나타낸 단면도,9 is a cross-sectional view showing a molded state by pressure and thermal welding of an EMC sheet,
도 10 및 도 11은 몰딩 조립체를 절단하는 위치를 나타낸 사시도 및 단면도,10 and 11 are a perspective view and a cross-sectional view showing a position to cut the molding assembly,
도 12는 도 1의 오픈모드 보호소자의 온도특성을 나타낸 그래프,12 is a graph showing temperature characteristics of the open mode protection device of FIG. 1;
도 13은 본 발명의 제1실시예에 따른 오픈모드 보호소자를 구비한 전자장치의 개략적 구성도,13 is a schematic structural diagram of an electronic device having an open mode protection device according to a first embodiment of the present invention;
도 14는 도 13의 전자장치에서 부하의 정상 동작을 설명하기 위한 도면, 14 is a view for explaining the normal operation of the load in the electronic device of FIG.
도 15는 도 13의 전자장치에서 부하의 오픈모드 동작을 설명하기 위한 도면,FIG. 15 illustrates an open mode operation of a load in the electronic device of FIG. 13; FIG.
도 16은 본 발명의 제2실시예에 따른 오픈모드 보호소자의 제조 방법의 순서도,16 is a flowchart of a method of manufacturing an open mode protection device according to a second embodiment of the present invention;
도 17은 대면적 기판에 슬릿을 형성한 상태를 나타낸 사시도, 17 is a perspective view showing a state in which slits are formed on a large area substrate;
도 18 및 도 19는 박형 보호소자를 실장한 상태를 나타낸 사시도 및 단면도, 18 and 19 are a perspective view and a cross-sectional view showing a state in which a thin protective element is mounted;
도 20는 에폭시 시트에 의한 몰딩전 상태를 나타낸 사시도,20 is a perspective view showing a state before molding by an epoxy sheet;
도 21 및 도 22는 에폭시 시트의 가압 및 열융착에 의해 몰딩된 상태를 나타낸 사시도 및 단면도,21 and 22 are a perspective view and a cross-sectional view showing a molded state by pressing and heat fusion of the epoxy sheet,
도 23 및 도 24는 몰딩된 대면적 기판을 절단하는 위치를 나타낸 사시도 및 단면도,23 and 24 are a perspective view and a cross-sectional view showing a position to cut a molded large area substrate,
도 25는 본 발명의 제2실시예에 따른 오픈모드 보호소자의 제조 방법에 의해 제조된 단위소자의 단면도, 그리고 25 is a cross-sectional view of a unit device manufactured by a method of manufacturing an open mode protection device according to a second embodiment of the present invention; and
도 26은 도 25의 오픈모드 보호소자의 등가회로도이다. FIG. 26 is an equivalent circuit diagram of the open mode protection device of FIG. 25.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
본 발명의 제1실시예에 따른 오픈모드 보호소자(100)는 도 1 내지 도 3에 도시된 바와 같이, 보호부(110), 전류억제부(120), 및 몰딩부(130)를 포함한다. The open mode protection device 100 according to the first embodiment of the present invention includes a protection unit 110, a current suppressing unit 120, and a molding unit 130 as shown in FIGS. 1 to 3. .
이러한 오픈모드 보호소자(100)는 정전류원 및 LED로 이루어진 부하에 각각 병렬 연결되어 외부에서 유입되는 ESD, EOS 또는 서지 전류를 접지로 바이패스시킴으로써, 정전류원 및 부하를 포함하는 회로를 보호한다. The open mode protection device 100 is connected in parallel to a load consisting of a constant current source and an LED, respectively, and bypasses an ESD, EOS or surge current flowing from the outside to the ground, thereby protecting a circuit including the constant current source and the load.
보호부(110)는 제1리드프레임(106)에 일측이 전극(112)을 통하여 연결되며 과전압 또는 과전류를 바이패스시킨다. 즉, 보호부(110)는 외부로부터 유입되는 ESD, EOS 또는 서지에 의한 과전압 또는 과전류를 통과시킴으로써, 제1외부전극(102) 또는 제2외부전극(104)을 통하여 접지로 바이패스시킬 수 있다. The protection unit 110 is connected to the first lead frame 106 through one side of the electrode 112 and bypasses overvoltage or overcurrent. That is, the protection unit 110 may bypass the first external electrode 102 or the second external electrode 104 to the ground by passing an overvoltage or overcurrent caused by ESD, EOS, or surge flowing from the outside. .
아울러, 보호부(110)는 LED로 이루어진 부하의 오픈모드 동작시 정전류원의 일정한 전류를 제1외부전극(102) 또는 제2외부전극(104)을 통하여 접지로 바이패스시킨다. In addition, the protection unit 110 bypasses the constant current of the constant current source to ground through the first external electrode 102 or the second external electrode 104 during the open mode operation of the load made of the LED.
여기서, 이러한 보호부(110)는 기제작된 단일 부품일 수 있다. 일례로, 보호부(110)는 바리스터(varistor), 써프레서(suppressor), GDT(Gas discharge tube) 및 다이오드 중 어느 하나일 수 있지만, 이에 특별히 한정되지 않고, 과전압 또는 과전류를 바이패스시킬 수 있는 소자를 포함할 수 있다. Here, the protection unit 110 may be a single component manufactured. For example, the protection unit 110 may be any one of a varistor, a suppressor, a gas discharge tube (GDT), and a diode, but is not particularly limited thereto, and may bypass the overvoltage or the overcurrent. It may include a device.
이러한 보호부(110)는 바리스터 물질층을 포함할 수 있다. 즉, 보호부(110)의 몸체(110a)는 바리스터 재료로 이루어질 수 있다. The protection unit 110 may include a varistor material layer. That is, the body 110a of the protection unit 110 may be made of a varistor material.
다른 예로서, 몸체(110a)는 소체로 이루어질 수 있다. 여기서 소체는 ZnO, BaTiO3, 및 SrTiO3 중 하나 이상을 포함하고, Pr, Bi, Ni, Mn, Cr, Co, Sb, Nd, Si, Ca, La, Mg, Al, Ti Sn, Nb, 및 Y 중 적어도 하나를 도펀트로 포함할 수 있다. As another example, the body 110a may be made of a body. The body is ZnO, BaTiO 3, and SrTiO include one or more of the 3, and Pr, Bi, Ni, Mn, Cr, Co, Sb, Nd, Si, Ca, La, Mg, Al, Ti Sn, Nb, and At least one of Y may be included as a dopant.
이때, 보호부(110)는 전극(112)이 솔더 또는 에폭시 솔더를 통하여 제1리드프레임(106)에 연결될 수 있다. 즉, 보호부(110)는 SMT 솔더링 공정을 통하여 제1리드프레임(106) 상에 실장될 수 있다. 여기서, 제1리드프레임(106)은 일단부가 제1외부전극(102)에 연결되도록 몰딩부(130)의 외부로 노출될 수 있다.In this case, the protection unit 110 may have the electrode 112 connected to the first lead frame 106 through solder or epoxy solder. That is, the protection unit 110 may be mounted on the first lead frame 106 through an SMT soldering process. Here, the first lead frame 106 may be exposed to the outside of the molding unit 130 so that one end thereof is connected to the first external electrode 102.
또한, 보호부(110)는 상면 및 하면에 각각 전극(112,114)이 형성될 수 있다. 이러한 보호부(110)는 수직형 타입일 수 있다. 즉, 보호부(110)의 내부 전극은 전극(112,114) 사이에서 수직 형태로 배치될 수 있다.In addition, the protection unit 110 may be formed with electrodes 112 and 114 on the upper and lower surfaces, respectively. The protection unit 110 may be a vertical type. That is, the internal electrode of the protection unit 110 may be disposed in a vertical form between the electrodes 112 and 114.
전류억제부(120)는 일측의 전극(124)이 제2리드프레임(108)에 연결되며, 타측 전극(122)은 전도성접착층(109)을 통하여 보호부(110)의 타측 전극(114)과 직렬 연결되며, 보호부(110)의 온도 또는 전류가 증가함에 따라 보호부(110)의 전류를 감소시킨다. The current suppressing unit 120 has one electrode 124 connected to the second lead frame 108, and the other electrode 122 is connected to the other electrode 114 of the protection unit 110 through the conductive adhesive layer 109. It is connected in series and reduces the current of the protection unit 110 as the temperature or current of the protection unit 110 increases.
즉, 전류억제부(120)는 보호부(110)의 온도 또는 전류를 감지하고, 보호 대상인 복수의 LED 중 어느 하나의 파손에 의해 부하가 오픈 상태로 되면, 정전류원에서 제공되는 전류가 모두 보호부(110)로 흐르면서 보호부(110)의 온도 또는 전류가 증가함에 따라 보호부(110)의 전류를 감소시킨다. That is, the current suppression unit 120 senses the temperature or current of the protection unit 110, and when the load is opened by any one of the plurality of LEDs to be protected, the current provided from the constant current source is protected. As the temperature or current of the protection unit 110 increases while flowing to the unit 110, the current of the protection unit 110 is reduced.
여기서, 이러한 전류억제부(120)는 기제작된 단일 부품일 수 있다. 일례로, 전류억제부(120)는 PPTC(polymeric positive temperature coefficient) 소자 또는 PTC(positive temperature coefficient) 소자 중 어느 하나일 수 있다. 즉, 전류억제부(120)는 PTC 재료 또는 PPTC 재료로 이루어질 수 있다. Here, the current suppressing unit 120 may be a single component manufactured. For example, the current suppression unit 120 may be any one of a polymer positive temperature coefficient (PPTC) device and a positive temperature coefficient (PTC) device. That is, the current suppressing unit 120 may be made of a PTC material or a PPTC material.
또한, 전류억제부(120)는 PPTC 소자인 경우, 전도성 필러가 분산된 폴리머 층을 포함할 수 있다. 즉, 전류억제부(120)는 기재층(120a)이 폴리머 층으로 이루어질 수 있다. 이때, 상기 전도성 필러는 카본블랙(carbon black) 재료로 이루어질 수 있다. In addition, when the current suppressing unit 120 is a PPTC device, the current suppressor 120 may include a polymer layer having conductive fillers dispersed therein. That is, in the current suppressing unit 120, the base layer 120a may be formed of a polymer layer. In this case, the conductive filler may be made of a carbon black material.
이러한 전류억제부(120)는 전극(124)이 솔더 또는 에폭시 솔더를 통하여 제2리드프레임(108)에 연결될 수 있다. 즉, 전류억제부(120)는 SMT 솔더링 공정을 통하여 제2리드프레임(108) 상에 실장될 수 있다. 여기서, 제2리드프레임(108)은 일단부가 제2외부전극(104)에 연결되도록 몰딩부(130)의 외부로 노출될 수 있다.The current suppressing unit 120 may have the electrode 124 connected to the second lead frame 108 through solder or epoxy solder. That is, the current suppressing unit 120 may be mounted on the second lead frame 108 through an SMT soldering process. Here, the second lead frame 108 may be exposed to the outside of the molding unit 130 so that one end thereof is connected to the second external electrode 104.
이와 같은 보호부(110) 및 전류억제부(120)는 전도성접착층(109)을 통하여 서로 수직 적층될 수 있다. 여기서, 전도성접착층(109)은 Ag-에폭시, 에폭시 솔더 및 솔더 중 어느 하나로 이루어질 수 있다. The protection unit 110 and the current suppressing unit 120 may be vertically stacked on each other through the conductive adhesive layer 109. Here, the conductive adhesive layer 109 may be made of any one of Ag-epoxy, epoxy solder and solder.
이를 통해, 이종 재료로 이루어진 보호부(110)와 전류억제부(120) 사이의 결합을 용이하게 달성할 수 있다. 즉, 이종 재료로 이루어진 보호부(110)의 몸체(110a)와 전류억제부(120)의 기재층(110a)을 직접 적층하거나 결합하지 않고, 전도성접착층(109)을 매개로 하여 전극(112,114) 및 전극(122,124)을 통하여 적층 결합함으로써, 보호부(110)와 전류억제부(120) 사이를 용이하고 안정적으로 결합할 수 있다. Through this, coupling between the protection unit 110 and the current suppressing unit 120 made of different materials can be easily achieved. That is, the electrodes 112 and 114 may be formed through the conductive adhesive layer 109 without directly stacking or bonding the body 110a of the protection unit 110 made of different materials and the base layer 110a of the current suppressing unit 120. And by stacking through the electrodes 122, 124, it can be easily and stably coupled between the protection unit 110 and the current suppressing unit 120.
아울러, 보호부(110) 및 전류억제부(120) 각각을 리드프레임에 솔더링한 후 전도성접착층(109)을 통하여 결합하는 공정이 이용가능하므로 제조 공정의 활용이 용이하여 제조 효율을 향상시키고, 저가격화를 구현할 수 있다. In addition, since a process of soldering each of the protection unit 110 and the current suppressing unit 120 to the lead frame and then bonding through the conductive adhesive layer 109 is available, it is easy to utilize the manufacturing process to improve the manufacturing efficiency and low cost. Can be implemented.
더욱이, 기존 제품인 전류억제부(120) 및 보호부(110)를 SMT 공정을 이용하여 리드프레임에 실장한 후 각각을 전도성접착층(109)을 이용하여 결합함으로써, 제조 공정이 단순화되고, 대량 생산이 용이할 수 있다. Furthermore, by mounting the current suppression unit 120 and the protection unit 110 to the lead frame using the SMT process, and then combining the respective using the conductive adhesive layer 109, the manufacturing process is simplified, mass production It may be easy.
몰딩부(130)는 보호부(110) 및 전류억제부(120)를 보호하고, 단일소자로 패키징하기 위하여 보호부(110) 및 전류억제부(120)의 외부를 완전히 감싸도록 현성된다. The molding part 130 protects the protection part 110 and the current suppressing part 120 and is formed to completely surround the outside of the protection part 110 and the current suppressing part 120 in order to package it into a single device.
즉, 몰딩부(130)는 보호부(110) 및 전류억제부(120) 뿐만 아니라, 전도성접착층(109), 제1리드프레임(106) 및 제2리드프레임(108)이 그 내부에 내장되어 완전히 감싸도록 형성될 수 있다. 여기서, 이러한 몰딩부(130)는 일례로서 EMC(Epoxy Molding Compound)로 이루어질 수 있다. 다른 예로서, 몰딩부(130)는 페놀(pennol) 계열의 수지(resin) 및 폴리이미드(Polyimide) 계열의 고내열 필름을 단일 또는 혼합하여 이루어질 수 있다.That is, the molding part 130 includes not only the protection part 110 and the current suppressing part 120, but also the conductive adhesive layer 109, the first lead frame 106, and the second lead frame 108 are embedded therein. It may be formed to completely wrap. Here, the molding part 130 may be made of an epoxy molding compound (EMC) as an example. As another example, the molding part 130 may be formed by a single or a mixture of a phenol-based resin and a polyimide-based high heat resistant film.
이를 통해, 보호부(110)와 전류억제부(120) 사이의 결합력을 더욱 향상시킬 수 있다. 즉, 보호부(110)와 전류억제부(120)가 전도성접착층(109)을 통하여 결합되지만, 전도성접착층(109)의 박리 등에 의해 결합력의 저하를 초래하기 때문에, 보호부(110) 및 전류억제부(120)의 사방을 몰딩부(130)로 고정함으로써, 보호부(110)와 전류억제부(120) 사이의 결합 안정성을 더욱 향상시킬 수 있다. Through this, the coupling force between the protection unit 110 and the current suppressing unit 120 may be further improved. That is, although the protection unit 110 and the current suppressing unit 120 are coupled through the conductive adhesive layer 109, since the bonding force is lowered due to peeling of the conductive adhesive layer 109, the protection unit 110 and the current suppression are prevented. By fixing all sides of the part 120 with the molding part 130, the coupling stability between the protection part 110 and the current suppressing part 120 may be further improved.
이때, 몰딩부(130)는 제1리드프레임(106)의 단부 및 제2리드프레임(108)의 일단부가 제1외부전극(102) 및 제2외부전극(104)과의 연결을 위해 몰딩부(130)의 외부로 노출되도록 형성될 수 있다.In this case, the molding unit 130 has an end portion of the first lead frame 106 and one end of the second lead frame 108 to be connected to the first external electrode 102 and the second external electrode 104. It may be formed to be exposed to the outside of the 130.
한편, 본 발명의 오픈모드 보호소자(100)는 제1외부전극(102) 및 제2외부전극(104)을 더 포함할 수 있다.Meanwhile, the open mode protection device 100 of the present invention may further include a first external electrode 102 and a second external electrode 104.
제1외부전극(102)은 제1리드프레임(106)과 연결되며, 몰딩부(130)의 일측에 형성될 수 있다. 이러한 제1외부전극(102)은 제1리드프레임(106)을 통하여 보호부(110)와 연결될 수 있다.The first external electrode 102 is connected to the first lead frame 106 and may be formed on one side of the molding part 130. The first external electrode 102 may be connected to the protection unit 110 through the first lead frame 106.
여기서, 제1외부전극(102)은 상기 정전류원 및 상기 부하의 일측에 연결된다. 즉, 제1외부전극(102)은 상기 정전류원의 일측과 상기 부하의 일측이 연결된 지점에 연결될 수 있다. Here, the first external electrode 102 is connected to one side of the constant current source and the load. That is, the first external electrode 102 may be connected to a point where one side of the constant current source and one side of the load are connected.
제1외부전극(102)은 제2리드프레임(108)과 연결되며, 몰딩부(130)의 타측에 형성될 수 있다. 이러한 제2외부전극(104)은 제2리드프레임(108)을 통하여 전류억제부(120)와 연결될 수 있다.The first external electrode 102 is connected to the second lead frame 108 and may be formed on the other side of the molding unit 130. The second external electrode 104 may be connected to the current suppressing unit 120 through the second lead frame 108.
여기서, 제2외부전극(104)은 상기 정전류원 및 상기 부하의 타측에 연결된다. 즉, 상기 제2외부전극(104)은 상기 정전류원의 타측과 상기 부하의 타측이 연결된 지점에 연결될 수 있다. Here, the second external electrode 104 is connected to the other side of the constant current source and the load. That is, the second external electrode 104 may be connected to a point at which the other side of the constant current source is connected to the other side of the load.
이때, 제1리드프레임(106) 및 제2리드프레임(108)은 일단부가 몰딩부(130)의 외측으로 노출되어 제1외부전극(102) 및 제2외부전극(104)에 각각 연결될 수 있다.In this case, one end of the first lead frame 106 and the second lead frame 108 may be exposed to the outside of the molding unit 130 and may be connected to the first external electrode 102 and the second external electrode 104, respectively. .
여기서, 제1외부전극(102)은 보호부(110)에 연결되고, 제2외부전극(104)은 전류억제부(120)에 연결되는 것으로 도시되고 설명되었지만, 이와 반대로 연결될 수 있음을 밝혀둔다. 즉, 제1외부전극(102)은 전류억제부(120)에 연결되고, 제2외부전극(104)은 보호부(110)에 연결될 수 있다.Here, although the first external electrode 102 is shown and described as being connected to the protection unit 110 and the second external electrode 104 is connected to the current suppressing unit 120, it will be understood that the opposite connection can be made. . That is, the first external electrode 102 may be connected to the current suppressing unit 120, and the second external electrode 104 may be connected to the protection unit 110.
이와 같은 오픈모드 보호소자(100)는 도 4에 도시된 바와 같이, 바리스터와 같은 보호부(B)와 PPTC 소자 또는 PTC 소자와 같은 전류억제부(P)가 직렬 연결된 등가회로로 나타낼 수 있다. As shown in FIG. 4, the open mode protection device 100 may be represented by an equivalent circuit in which a protection unit B such as a varistor and a current suppressing unit P such as a PPTC device or a PTC device are connected in series.
즉, 오픈모드 보호소자(100)는 하나의 외부단자에 전류억제부(P)의 일단이 연결되고, 다른 하나의 외부단자에 보호부(B)의 일단이 연결되며, 전류억제부(P)의 타단과 보호부(B)의 타단이 서로 연결됨으로써, 전류억제부(P)와 보호부(P)가 외부단자에 대하여 직렬 연결될 수 있다. That is, in the open mode protection device 100, one end of the current suppression unit P is connected to one external terminal, and one end of the protection unit B is connected to the other external terminal, and the current suppression unit P is provided. By connecting the other end of the other end of the protection unit (B) with each other, the current suppressing unit (P) and the protection unit (P) can be connected in series with respect to the external terminal.
이와 같이 구성된 본 발명의 제1실시예에 따른 오픈모드 보호소자(100)는 도 12에 도시된 바와 같이, 80℃ 내지 120℃의 온도에서는 낮은 저항값을 갖는다. 즉, 오픈모드 보호소자(100)는 바리스터와 같은 보호소자로서 기능하여 정전기 또는 부하로 유입되는 ESD, EOS 또는 서지를 접지로 바이패스시켜 회로를 보호할 수 있다. The open mode protection device 100 according to the first embodiment of the present invention configured as described above has a low resistance value at a temperature of 80 ° C. to 120 ° C., as shown in FIG. 12. That is, the open mode protection device 100 may function as a protection device such as a varistor to protect the circuit by bypassing ESD, EOS or surge flowing into the static electricity or the load to ground.
또한, LED로 이루어진 부하가 외부로부터 ESD, EOS 또는 서지에 의해 오픈되면, 오픈모드 보호소자(100)로 흐르는 전류 및 전압이 지속적으로 증가하여 보호부(110)가 과열된다. 즉, 부하의 전원이 정전류원이기 때문에 부하가 오픈된 경우, 정전류원에서 제공되는 일정한 크기의 전류는 모두 오픈모드 보호소자(100)로 흐른다. 이때, 정전류원의 실질적인 부하는 오픈모드 보호소자(100)이며, 이 경우 오픈모드 보호소자(100)에 정전류원으로부터 일정한 크기의 전류가 지속적으로 흐르기 때문에 전압이 무한대로 상승하는 조건이 된다. In addition, when a load made of LED is opened by ESD, EOS, or surge from the outside, the current and voltage flowing to the open mode protection device 100 continuously increase, thereby overheating the protection unit 110. That is, when the load is opened because the power of the load is a constant current source, all currents of a constant magnitude provided from the constant current source flow to the open mode protection device 100. At this time, the actual load of the constant current source is the open mode protection device 100, and in this case, a constant magnitude of current flows from the constant current source to the open mode protection device 100, which is a condition that the voltage rises to infinity.
예를 들면, 부하가 오픈상태인 경우, 실질적인 부하인 오픈모드 보호소자(100)의 양단 전압이 공급전원 수준(200~300V)까지 상승함에 따라 오픈모드 보호소자(100), 특히, 보호부(110)가 과열된다. For example, when the load is in an open state, as the voltage across the open mode protection device 100 which is a substantial load rises to the supply power level (200 to 300V), the open mode protection device 100, in particular, the protection unit ( 110) is overheated.
이때, 오픈모드 보호소자(100)가 150℃ 내지 200℃의 온도로 과열되면, 오픈모드 보호소자(100)는 전류억제부(120)의 저항이 급증하여 오픈모드 보호소자(100) 내에 흐르는 전류량을 감소시킴으로써, 보호부(110)의 양단 전압을 감소시켜 온도를 감소시킬 수 있으므로 발열을 억제할 수 있다. 이에 따라, 보호부(110)의 과열에 의한 자체 파손을 방지할 수 있다. At this time, when the open mode protection device 100 is overheated at a temperature of 150 ° C to 200 ° C, the open mode protection device 100 increases the amount of current flowing in the open mode protection device 100 due to a sudden increase in resistance of the current suppressing unit 120. By reducing the voltage, the voltage at both ends of the protection unit 110 can be reduced to reduce the temperature, thereby suppressing heat generation. Accordingly, self damage due to overheating of the protection unit 110 can be prevented.
이와 같은 오픈모드 보호소자(100)의 제조 방법을 설명하면, 먼저, 도 5에 도시된 바와 같이, 일정간격으로 복수 개의 슬릿(152)이 형성된 대면적 리드프레임(150)을 준비하다. 여기서, 슬릿(152)은 세로방향으로 대략 빗형상으로 이루어지는데, 슬릿(152) 사이의 공간부(106a)는 보호부(110) 또는 전류억제부(120)를 실장하기 위한 공간이다. Referring to the manufacturing method of such an open mode protection device 100, first, as shown in FIG. 5, a large area lead frame 150 having a plurality of slits 152 formed at a predetermined interval is prepared. Here, the slits 152 have a comb shape in the longitudinal direction, and the space portion 106a between the slits 152 is a space for mounting the protection unit 110 or the current suppressing unit 120.
즉, 도 6에 도시된 바와 같이, 보호부(110) 또는 전류억제부(120)를 슬릿(152) 사이의 공간부(106a)에 실장한다. 여기서, 보호부(110) 또는 전류억제부(120)를 공간부(106a)에 대략 중앙에 위치하도록 배치할 수 있다.That is, as shown in FIG. 6, the protection unit 110 or the current suppressing unit 120 is mounted in the space portion 106a between the slits 152. Here, the protection unit 110 or the current suppressing unit 120 may be disposed to be approximately centered in the space 106a.
이때, SMT 솔더링 공정을 통하여 대면적 리드프레임(150)의 공간부(106a) 상에 보호부(110) 또는 전류억제부(120)를 실장할 수 있다. 즉, 보호부(110) 또는 전류억제부(120)는 제1리드프레임(106) 및 제2리드프레임(108)에 대응하는 대면적 리드프레임(150)의 공간부(106a)에 솔더 또는 에폭시 솔더를 통하여 연결될 수 있다.In this case, the protection unit 110 or the current suppressing unit 120 may be mounted on the space portion 106a of the large area lead frame 150 through the SMT soldering process. That is, the protection unit 110 or the current suppressing unit 120 may be soldered or epoxy to the space portion 106a of the large area lead frame 150 corresponding to the first lead frame 106 and the second lead frame 108. It can be connected via solder.
이와 같이, 보호부(110) 및 전류억제부(120)가 각각 실장된 대면적 리드프레임(150a)을 전도성접착층(109)을 통하여 서로 적층한다. 즉, 도 7에 도시된 바와 같이, 보호부(110) 및 전류억제부(120)가 각각 실장된 대면적 리드프레임(150a)의 서로 대향하도록 배치한 후 그 사이에 전도성접착층(109)의 일례로서 Ag-에폭시 시트(109a)를 배치하고, 이에 의해 보호부(110)와 전류억제부(120)를 적층 결합할 수 있다. 여기서, Ag-에폭시 시트(109a)는 대면적의 한 장의 시트로 이루어진 것으로 도시되고 설명되었으나, 적층되는 보호부(110) 및 전류억제부(120)의 전극의 크기로 분할된 것일 수 있다. As such, the large-area lead frame 150a having the protection unit 110 and the current suppressing unit 120 mounted thereon is stacked on each other through the conductive adhesive layer 109. That is, as shown in FIG. 7, an example of the conductive adhesive layer 109 is disposed between the protection unit 110 and the current suppression unit 120 so as to face each other of the large-area lead frame 150a mounted therebetween. As an Ag-epoxy sheet 109a, the protection unit 110 and the current suppressing unit 120 can be laminated in combination. Here, although the Ag-epoxy sheet 109a is illustrated and described as being composed of one sheet of a large area, the Ag-epoxy sheet 109a may be divided into the sizes of the electrodes of the protection unit 110 and the current suppressing unit 120 that are stacked.
다음으로, 대면적 리드프레임(150a)에 실장된 보호부(110) 및 전류억제부(120)를 완전히 감싸도록 몰딩부재로 몰딩한다. 이때, 상기 몰딩부재는 EMC(Epoxy Molding Compound)로 이루어질 수 있다. Next, a molding member is molded to completely surround the protection unit 110 and the current suppressing unit 120 mounted on the large area lead frame 150a. In this case, the molding member may be made of an epoxy molding compound (EMC).
일례로, 도 8에 도시된 바와 같이, EMC 시트(130a)를 대면적 리드프레임(150a)의 상측 및 하측에 배치하여 대면적 리드프레임(150a) 측으로 가압하면서 열융착할 수 있다. For example, as illustrated in FIG. 8, the EMC sheet 130a may be disposed above and below the large area lead frame 150a to be thermally fused while pressing toward the large area lead frame 150a.
이를 통해, 열에 의해 용융된 몰딩부재(130')가 대면적 리드프레임(150)의 상측 및 하측과 그 사이를 채우도록 몰딩할 수 있다. 즉, 도 9에 도시된 바와 같이, 열에 의해 용융된 몰딩부재(130')는 대면적 리드프레임(150)의 상측 및 하측으로부터 각각의 슬릿(152)을 통하여 대면적 리드프레임(150a) 사이에의 보호부(110) 및 전류억제부(120)가 실장된 영역으로 유입될 수 있다. Through this, the molding member 130 ′ melted by heat may be molded to fill the upper side and the lower side of the large-area lead frame 150 and therebetween. That is, as shown in FIG. 9, the molten molding member 130 ′ is formed between the large area lead frame 150a through the respective slits 152 from the upper side and the lower side of the large area lead frame 150. The protection unit 110 and the current suppressing unit 120 may be introduced into the mounted area.
여기서, EMC 시트(130a)를 가압 및 열융착에 의해 대면적 리드프레임(150a), 보호부(110) 및 전류억제부(120)를 몰딩하는 것으로 설명하였으나 이에 한정되지 않고 다양한 몰딩부재와 몰딩방법으로 몰딩할 수 있음을 밝혀둔다.Here, the large area lead frame 150a, the protection unit 110, and the current suppression unit 120 are molded by pressing and heat-sealing the EMC sheet 130a, but various molding members and molding methods are not limited thereto. Note that it can be molded with.
일례로, 몰딩부재로서 페놀(pennol) 계열의 수지(resin) 및 폴리이미드(Polyimide) 계열의 고내열 필름을 단일 또는 혼합하여 사용할 수 있다. For example, as the molding member, a phenol-based resin and a polyimide-based high heat resistant film may be used singly or in combination.
아울러, 적절한 작업 공정을 위해 커플링 에이전트(coupling agent) 또는 고무(rubber) 계열의 혼합 폴리머(polymer)를 사용할 수 있으며, 바리스터 등의 소체의 밀착력과 내신뢰성 향상을 위해 표면 처리를 추가로 진행할 수 있다. In addition, coupling agents or rubber-based mixed polymers can be used for proper work processes, and additional surface treatment can be performed to improve adhesion and reliability of bodies such as varistors. have.
다음으로, 몰딩된 대면적 리드프레임(150a)을 보호부(110) 및 전류억제부(120)가 수직 적층된 하나의 구조를 포함하는 단위소자로 절단한다. Next, the molded large area leadframe 150a is cut into a unit device including one structure in which the protection unit 110 and the current suppressing unit 120 are vertically stacked.
도 10 및 도 11에 도시된 바와 같이, 몰딩된 대면적 리드프레임(150a)을 단위소자의 크기에 대응하는 길이방향 전달선(a) 및 폭방향 절단선(b)을 따라 절단할 수 있다.As shown in FIGS. 10 and 11, the molded large area leadframe 150a may be cut along the longitudinal transmission line a and the width cutting line b corresponding to the size of the unit device.
이를 통해, 도 1에 도시된 바와 같은 단위 소자인 오픈모드 보호소자(100)가 완성될 수 있다. Through this, the open mode protection device 100, which is a unit device as shown in FIG. 1, may be completed.
이때, 몰딩부(130)의 외측으로 노출되는 제1리드프레임(106) 및 제2리드프레임(108)에 연결되는 제1외부전극(102) 및 제2외부전극(104)을 몰딩부(130)의 양측에 각각 형성할 수 있다. At this time, the first external electrode 102 and the second external electrode 104 connected to the first lead frame 106 and the second lead frame 108 that are exposed to the outside of the molding unit 130, the molding unit 130. Can be formed on both sides of the).
여기서, 제1외부전극(102) 및 제2외부전극(104)을 도금할 수 있다. 일례로, 제1외부전극(102) 및 제2외부전극(104)을 Ag, Pt, 및 Au 중 어느 하나로 도금할 수 있다.Here, the first external electrode 102 and the second external electrode 104 may be plated. For example, the first external electrode 102 and the second external electrode 104 may be plated with one of Ag, Pt, and Au.
이를 통해, 제1외부전극(102) 및 제2외부전극(104)의 전기적 전도성을 향상시킬 수 있고, 쉽게 마모되거나 부식되지 않도록 하여 제1외부전극(102) 및 제2외부전극(104)을 보호할 수 있다. Through this, the electrical conductivity of the first external electrode 102 and the second external electrode 104 may be improved, and the first external electrode 102 and the second external electrode 104 may be formed to prevent wear or corrosion. I can protect it.
이와 같은 본 발명의 제1실시예에 따른 오픈모드 보호소자(100)는 정전류원 및 LED로 이루어진 부하를 갖는 전자장치에 사용될 수 있다. The open mode protection device 100 according to the first embodiment of the present invention can be used in an electronic device having a load consisting of a constant current source and an LED.
도 13에 도시된 바와 같이, 전자장치(1)는 정전류원(10), LED 부하(12) 및 오픈모드 보호소자(100)를 포함할 수 있다. As shown in FIG. 13, the electronic device 1 may include a constant current source 10, an LED load 12, and an open mode protection device 100.
여기서, 전자장치(1)는 LED를 부하로 갖는 장치로서, TV 등과 같은 디스플레이 장치의 백라이트(BLU), 자동차의 각종 램프, 및 디밍을 이용한 스마트 조명 중 어느 하나일 수 있다. Here, the electronic device 1 is a device having an LED as a load, and may be any one of a backlight (BLU) of a display device such as a TV, various lamps of a vehicle, and smart lighting using dimming.
정전류원(10)은 일정한 크기의 전류를 LED 부하(12)로 공급할 수 있다. 이러한 정전류원(10)은 정전류 방식의 전원 및 정전류 구동부 중 어느 하나일 수 있다. 즉, 정전류원(10)은 특별한 형태에 한정되지 않으며, 정전류 방식으로 전류를 공급하는 소스일 수 있고, 예를 들면, 전자장치(1)에 전원을 공급하는 전원이거나 LED 부하(12)를 구동하기 위한 구동부일 수 있다. The constant current source 10 may supply a constant current to the LED load 12. The constant current source 10 may be any one of a constant current power supply and a constant current driver. That is, the constant current source 10 is not limited to a particular form, and may be a source for supplying current in a constant current manner, for example, a power source for supplying power to the electronic device 1 or driving the LED load 12. It may be a driving unit for.
LED 부하(12)는 복수의 LED로 구성될 수 있다. 여기서, LED 부하(12)는 복수의 LED가 직렬로 연결될 수 있지만, 이에 한정되지 않는다. 일예로, LED 부하(12)는 복수의 LED가 직렬로 연결되고, 직렬 연결된 복수의 LED가 병렬로 연결될 수 있거나, 복수의 LED가 병렬로 연결되고, 병렬 연결된 복수의 LED가 직렬로 연결될 수 있다. LED load 12 may be composed of a plurality of LEDs. Here, the LED load 12 may be connected in series with a plurality of LEDs, but is not limited thereto. For example, the LED load 12 may be a plurality of LEDs are connected in series, a plurality of LEDs in series may be connected in parallel, or a plurality of LEDs may be connected in parallel, a plurality of LEDs in parallel may be connected in series. .
이러한 LED 부하(12)는 정전류원(10)으로부터 일정 크기의 전류가 공급되어 LED가 점등하면서 일정한 전압값을 가질 수 있다. 일례로, 정전류원(10)이 400㎃의 전류를 공급하고, LED 부하(12)가 10개의 LED로 이루어진 경우, 부하의 양단에 대략 25~30V의 전압이 출력될 수 있다.The LED load 12 may have a constant voltage value while the LED is turned on to supply a predetermined amount of current from the constant current source 10. For example, when the constant current source 10 supplies a current of 400 mA and the LED load 12 consists of ten LEDs, a voltage of approximately 25 to 30 V may be output at both ends of the load.
여기서, 정전류원(10) 및 LED 부하(12)의 일측은 접지단자에 연결된다. 즉, 정전류원(10) 및 부하(12)의 음극 측은 접지 단자에 연결될 수 있다. 이러한 접지단자는 전자장치(1)의 회로기판에 형성되는 공통접지와 연결될 수 있다. Here, one side of the constant current source 10 and the LED load 12 is connected to the ground terminal. That is, the cathode side of the constant current source 10 and the load 12 may be connected to the ground terminal. The ground terminal may be connected to a common ground formed on the circuit board of the electronic device 1.
오픈모드 보호소자(100)는 정전류원(10) 및 LED 부하(12)에 각각 병렬 연결될 수 있다. 즉, 오픈모드 보호소자(100)는 그 일측이 정전류원(10) 및 LED 부하(12)의 일측과 연결되고, 그 타측이 정전류원(10) 및 LED 부하(12)의 타측과 연결될 수 있다. 이때, 오픈모드 보호소자(100)의 일측은 상기 접지단자에 연결될 수 있다. The open mode protection device 100 may be connected in parallel to the constant current source 10 and the LED load 12, respectively. That is, one side of the open mode protection device 100 may be connected to one side of the constant current source 10 and the LED load 12, and the other side thereof may be connected to the other side of the constant current source 10 and the LED load 12. . In this case, one side of the open mode protection device 100 may be connected to the ground terminal.
이와 같이 전자장치(1)는 LED 부하(12)가 정상 동작 상태에서, 외부로부터 LED 부하(12)로 ESD, EOS 또는 서지가 유입되는 경우, 도 14에 도시된 바와 같이, 오픈모드 보호소자(100)로 ESD, EOS 또는 서지에 대응하는 전류(iESD)가 흐르고 결과적으로 접지단자로 바이패스시킴으로써, LED 부하(12)를 ESD, EOS 또는 서지로부터 보호할 수 있다. As such, when the LED load 12 is in a normal operation state and the ESD, EOS, or surge flows into the LED load 12 from the outside, as shown in FIG. The current (i ESD ) corresponding to ESD, EOS, or surge flows to 100 and consequently bypasses the ground terminal, thereby protecting the LED load 12 from ESD, EOS, or surge.
즉, 오픈모드 보호소자(100)는 PPTC 소자 또는 PTC 소자와 같은 전류억제부(120)의 저항이 매우 작기 때문에 실질적으로 보호부(110)에 의해 바리스터와 같은 ESD, EOS 또는 서지에 대한 보호소자로서 기능한다. That is, since the resistance of the current suppression unit 120 such as the PPTC device or the PTC device is very small, the open mode protection device 100 is substantially protected by the protection unit 110 against ESD, EOS or surge such as a varistor. Function as.
한편, 외부에서 유입된 ESD, EOS 또는 서지에 대하여 보호부(110)가 충분한 보호기능을 갖지 못하면, LED 부하(12) 중 일부가 ESD, EOS 또는 서지에 의해 손상되어 LED 부하(12)가 오픈상태로 되는 경우가 종종 발생한다. On the other hand, if the protection unit 110 does not have sufficient protection against ESD, EOS or surge introduced from the outside, some of the LED load 12 is damaged by ESD, EOS or surge, the LED load 12 is open. Often it happens.
이때, 도 15에 도시된 바와 같이, 정전류원(10)의 전류(iopen)는 모두 오픈모드 보호소자(100)로 흐르게 된다. At this time, as shown in FIG. 15, all of the currents i open of the constant current source 10 flow to the open mode protection device 100.
이에 따라, 정전류원(10)이 지속적으로 일정한 전류를 공급하므로 오픈모드 보호소자(100) 내에 흐르는 전류가 증가하면서 전압도 크게 증가한다. 결과적으로, 오픈모드 보호소자(100)의 보호부(110)는 과전류 및 과전압에 의해 온도가 점진적으로 상승한다. Accordingly, since the constant current source 10 continuously supplies a constant current, the voltage also increases greatly while the current flowing in the open mode protection device 100 increases. As a result, the protection unit 110 of the open mode protection device 100 gradually increases in temperature due to overcurrent and overvoltage.
이때, 보호부(110)의 온도가 일정 온도 이상으로 상승하면, 전류억제부(120)의 저항값이 크게 증가함으로, 보호부(110)에 흐르는 전류를 감소시킴으로써, 보호부(110)의 양단 전압을 감소시켜 온도 상승을 억제할 수 있다. At this time, when the temperature of the protection unit 110 rises above a certain temperature, the resistance value of the current suppressing unit 120 is greatly increased, thereby reducing the current flowing in the protection unit 110, thereby both ends of the protection unit 110. The temperature can be suppressed by reducing the voltage.
이에 따라, 오픈모드 보호소자(100)의 이상 과열을 억제함으로써, 오픈모드 보호소자(100)에 인접한 회로부품의 손상을 방지할 뿐만 아니라, 인접 부품이 가연성이 물질로 이루어진 경우, 일례로, LED로부터 발광된 빛의 효율을 향상시키기 위해 LED의 전면에 백색 시트지가 배치되는 경우, 보호소자의 발화로 인한 화재를 미연에 예방할 수 있다. Accordingly, by suppressing abnormal overheating of the open mode protection device 100, in addition to preventing damage to circuit components adjacent to the open mode protection device 100, the adjacent parts are made of a flammable material. When white sheet paper is disposed in front of the LED to improve the efficiency of the light emitted from the fire, it is possible to prevent the fire due to the ignition of the protection element.
본 발명의 제2실시예에 따른 오픈모드 보호소자의 제조 방법(20)은 도 16에 도시된 바와 같이, 기판에 슬릿을 형성하는 단계(S201), 보호소자를 실장하는 단계(S202), 에폭시 몰딩하는 단계(S203), 및 단위소자로 절단하는 단계(S205)를 포함한다. As shown in FIG. 16, the method 20 for manufacturing the open mode protection device according to the second embodiment of the present invention includes the steps of forming a slit on a substrate (S201), mounting the protection device (S202), and epoxy. Molding (S203), and cutting into unit devices (S205).
여기서, 제조 방법(20)에 의해 제조되는 오픈모드 보호소자는 정전류원 및 LED로 이루어진 부하에 각각 병렬 연결되어 외부에서 유입되는 ESD, EOS 또는 서지 전류를 접지로 바이패스시킴으로써, 정전류원 및 부하를 포함하는 회로를 보호하기 위한 것이다.  Here, the open mode protection device manufactured by the manufacturing method 20 includes a constant current source and a load by bypassing an ESD, EOS or surge current introduced from the outside by being connected in parallel to a load consisting of a constant current source and an LED, respectively, to ground. It is to protect the circuit.
먼저, 도 17에 도시된 바와 같이, 양면에 전극(212,214)이 형성된 대면적 PPTC(polymeric positive temperature coefficient) 기판(210a)에 슬릿(216)을 일정간격으로 형성한다(단계 S201).First, as shown in FIG. 17, slits 216 are formed at a predetermined interval on a large area PPTC substrate 210a having electrodes 212 and 214 formed on both surfaces thereof (step S201).
이때, 대면적 PPTC 기판(210a)을 단위 소자로 절단하기 위해 필요한 공간에 대응하는 일정간격으로 슬릿(216)을 형성할 수 있다. 즉, 절단하는 단계(S205)에서 이루어지는 절단 정밀도에 따라, 일례로, 절단 기구의 정밀도에 따라 슬릿(216)을 배치하는 간격의 크기를 결정할 수 있다. In this case, the slit 216 may be formed at a predetermined interval corresponding to a space required to cut the large area PPTC substrate 210a into unit devices. That is, according to the cutting precision made in the cutting step S205, for example, the size of the interval for arranging the slits 216 can be determined according to the precision of the cutting mechanism.
여기서, 상기 대면적 PPTC 기판(210a)의 양면에 형성되는 전극(212,214)은 사전에 준비될 수 있다. 일례로, 상기 양면 전극(212,214)은 Ni 또는 Cu 도금에 의해 사전에 형성될 수 있다. 이때, Cu 표면의 접착성 향상을 위하여 Fe, Ni, Cr 및 Ag 중 어느 하나에 의해 추가로 도금할 수 있다.Here, the electrodes 212 and 214 formed on both surfaces of the large-area PPTC substrate 210a may be prepared in advance. In one example, the double- sided electrodes 212 and 214 may be formed in advance by Ni or Cu plating. At this time, in order to improve the adhesion of the Cu surface it may be further plated by any one of Fe, Ni, Cr and Ag.
아울러, 대면적 PPTC 기판(210a)은 전극(212,214) 사이의 기재층이 PPTC 재료로 이루어질 수 있다. 일례로, 상기 기재층은 전도성 필러가 분산된 폴리머 층으로 이루어질 수 있다. 이때, 상기 전도성 필러는 카본블랙(carbon black) 재료로 이루어질 수 있다. In addition, the large area PPTC substrate 210a may be formed of a PPTC material having a base layer between the electrodes 212 and 214. In one example, the base layer may be made of a polymer layer in which the conductive filler is dispersed. In this case, the conductive filler may be made of a carbon black material.
여기서, 대면적 PPTC 기판(210a)에 의해 형성되는 PPTC 소자는 그 두께에 따라 내압이 증가한다. 즉, PPTC 소자는 상면 전극(212)과 하면 전극(214) 사이의 간격이 증가할수록 내압이 증가한다. 따라서, PPTC 소자는 높은 내압을 요구하는 TV 등과 같은 디스플레이 장치의 백라이트(BLU)에 적용하기 위해서는 상면 전극(212)과 하면 전극(214) 사이의 간격을 크게 구성해야 되지만, 이는 오픈모드 보호소자의 전체 두께의 증가를 초래한다. Here, the PPTC device formed by the large area PPTC substrate 210a increases withstand thickness according to its thickness. That is, in the PPTC device, the breakdown voltage increases as the distance between the top electrode 212 and the bottom electrode 214 increases. Accordingly, in order to apply the PPTC device to a backlight (BLU) of a display device such as a TV requiring high breakdown voltage, the PPTC device needs to configure a large distance between the top electrode 212 and the bottom electrode 214. Results in an increase in the overall thickness.
따라서, 본 발명의 제2실시예에 따른 오픈모드 보호소자의 제조 방법(20)은 오픈모드 보호소자의 두께의 증가 없이 박형화를 구현하기 위해, PPTC 소자가 동일평면 상에 이격되어 배치되도록 대면적 PPTC 기판(210a)에 슬릿(216)을 형성할 수 있다. 즉, 최종적으로 산출되는 단위 소자에서, 한 쌍의 PPTC 소자가 동일평면 상에 배치되기 때문에 두께의 증가를 억제하는 동시에, 보호소자를 중심으로 양측에서 전기적으로 직렬 배치되기 때문에, 전류 경로 상에서 두 개의 PPTC 소자가 직렬로 배치되므로, 결과적으로 내압을 증가시킬 수 있다. Therefore, the manufacturing method 20 of the open mode protection device according to the second embodiment of the present invention has a large area such that the PPTC devices are spaced apart on the same plane in order to realize thinning without increasing the thickness of the open mode protection device. The slit 216 may be formed in the PPTC substrate 210a. That is, in the finally calculated unit element, since a pair of PPTC elements are arranged on the same plane, the increase in thickness is suppressed, and since they are arranged in series on both sides of the protection element, the two elements on the current path Since the PPTC devices are arranged in series, it is possible to increase the breakdown voltage as a result.
다음으로, 도 18에 도시된 바와 같이, 슬릿(216)을 사이에 두고 상면 전극(212) 상에 과전압 또는 과전류를 바이패스시키는 보호소자(220)를 일정간격으로 실장한다(단계 S202). 여기서, 슬릿(216)이 보호소자(220)의 하부에서 대략 중앙부에 위치하도록 보호소자(220)를 배치할 수 있다(도 19 참조).Next, as shown in FIG. 18, the protection device 220 for bypassing the overvoltage or the overcurrent is mounted on the upper surface electrode 212 with the slit 216 therebetween (step S202). Here, the protection element 220 may be disposed such that the slit 216 is positioned at a substantially central portion of the lower portion of the protection element 220 (see FIG. 19).
이때, SMT 솔더링 공정을 통하여 대면적 PPTC 기판(210a)의 상면 전극(212) 상에 보호소자(220)를 실장할 수 있다. 즉, 보호소자(220)는 솔더를 통하여 대면적 PPTC 기판(210a)의 상면 전극(212)에 연결될 수 있다.In this case, the protection device 220 may be mounted on the top electrode 212 of the large area PPTC substrate 210a through an SMT soldering process. That is, the protection device 220 may be connected to the top electrode 212 of the large area PPTC substrate 210a through solder.
여기서, 보호소자(220)는 슬릿(216)이 배치되는 간격과 유사하게 대면적 PPTC 기판(210a)을 단위 소자로 절단하기 위해 필요한 공간을 확보하도록 일정간격으로 이격되어 배치될 수 있다. 즉, 절단 기구의 정밀도에 따라 보호소자(220)를 배치하는 간격의 크기를 결정할 수 있다.Here, the protection elements 220 may be spaced apart at regular intervals to secure a space necessary for cutting the large-area PPTC substrate 210a into unit elements, similar to the intervals in which the slits 216 are disposed. That is, according to the precision of the cutting mechanism, the size of the interval for arranging the protection element 220 can be determined.
이와 같이, 대면적 PPTC 기판(210a)에 슬릿(216)을 형성하여 보호소자(220)를 실장함으로써, 대량 생산이 가능하고 슬릿(216)을 형성하는 간격 또는 보호소자(220)를 배치하는 간격에 따라 제품의 크기를 용이하게 조정할 수 있으므로 다양한 규격에 따라 유연하게 대처할 수 있다.As such, by forming the slit 216 on the large-area PPTC substrate 210a and mounting the protective element 220, a mass production is possible and an interval for forming the slit 216 or an interval for arranging the protective element 220. The size of the product can be easily adjusted according to the specification, which can be flexibly handled according to various specifications.
여기서, 보호소자(220)는 기제작된 단일 부품일 수 있다. 일례로, 보호소자(220)는 바리스터(varistor), 써프레서(suppressor), GDT(Gas discharge tube) 및 다이오드 중 어느 하나일 수 있지만, 이에 특별히 한정되지 않고, 과전압 또는 과전류를 바이패스시킬 수 있는 소자를 포함할 수 있다. Here, the protection device 220 may be a single component manufactured. For example, the protection device 220 may be any one of a varistor, a suppressor, a gas discharge tube (GDT), and a diode, but is not particularly limited thereto, and may bypass overvoltage or overcurrent. It may include a device.
이를 통해, 기존의 단일 부품을 한 쌍의 대면적 PPTC 기판(210a)에 실장하므로, 제조공정이 단순화될 수 있을 뿐만 아니라, 기존의 제품에 맞추어 PPTC 소자를 용이하게 설계 및 배치할 수 있으므로 제조 효율을 향상시킬 수 있다. In this way, the existing single component is mounted on a pair of large-area PPTC substrates 210a, which not only simplifies the manufacturing process but also makes it easy to design and arrange PPTC elements in accordance with existing products, thereby increasing manufacturing efficiency. Can improve.
한편, 보호소자(220)는 바리스터 물질층을 포함할 수 있다. 즉, 보호소자(220)의 몸체가 바리스터 재료로 이루어질 수 있다. Meanwhile, the protection device 220 may include a varistor material layer. That is, the body of the protection device 220 may be made of a varistor material.
다른 예로서, 보호소자(220)는 몸체(220a)가 소체로 이루어질 수 있다. 여기서 소체는 ZnO, BaTiO3, 및 SrTiO3 중 하나 이상을 포함하고, Pr, Bi, Ni, Mn, Cr, Co, Sb, Nd, Si, Ca, La, Mg, Al, Ti Sn, Nb, 및 Y 중 적어도 하나를 도펀트로 포함할 수 있다. As another example, the protective device 220 may be formed of a body 220a. Wherein the body comprises one or more of ZnO, BaTiO 3 , and SrTiO 3 , wherein Pr, Bi, Ni, Mn, Cr, Co, Sb, Nd, Si, Ca, La, Mg, Al, Ti Sn, Nb, and At least one of Y may be included as a dopant.
다음으로, 대면적 PPTC 기판(210a)의 상측 및 보호소자(220)를 덮도록 몰딩부재로 몰딩한다(단계 S203). 이때, 상기 몰딩부재는 에폭시로 이루어질 수 있다. Next, molding is performed with the molding member so as to cover the upper side of the large area PPTC substrate 210a and the protection device 220 (step S203). In this case, the molding member may be made of epoxy.
일례로, 도 20에 도시된 바와 같이, 에폭시 시트(230a)를 보호소자(220)가 실장된 대면적 PPTC 기판(210a)의 상측에 배치하여 대면적 PPTC 기판(210a) 측으로 가압하면서 열융착할 수 있다. For example, as shown in FIG. 20, the epoxy sheet 230a may be disposed above the large area PPTC substrate 210a on which the protection device 220 is mounted, and pressurized to the large area PPTC substrate 210a to be heat-sealed. Can be.
이를 통해, 열에 의해 용융된 몰딩부재(230')가 대면적 PPTC 기판(210a)의 상측 및 보호소자(220)를 완전히 덮도록 몰딩할 수 있다(도 21 참조).Through this, the molding member 230 ′ melted by heat may be molded to completely cover the upper side of the large area PPTC substrate 210a and the protection device 220 (see FIG. 21).
이때, 보호소자(220)의 하측에서 대면적 PPTC 기판(210a) 사이의 공간인 슬릿(216)을 상기 열에 의해 용융된 몰딩부재(230')로 채울 수 있다(도 22 참조). In this case, the slit 216, which is a space between the large area PPTC substrate 210a at the lower side of the protection device 220, may be filled with the molding member 230 ′ melted by the heat (see FIG. 22).
즉, 상기 열에 의해 용융된 몰딩부재(230')는 대면적 PPTC 기판(210a)의 상측으로부터 보호소자(220) 사이의 배치되는 슬릿(216)으로 흐르며, 복수의 보호소자(220)의 하측에 배치되는 슬릿(216) 전체로 퍼진다. 따라서, 단위 소자에서, 한 쌍의 PPTC 기판(210) 사이의 공간부(202)는 몰딩부재에 의해 채워질 수 있다(도 25 참조).That is, the molding member 230 ′ melted by the heat flows from the upper side of the large area PPTC substrate 210a to the slit 216 disposed between the protection elements 220, and is disposed below the plurality of protection elements 220. It spreads through the whole slit 216 arrange | positioned. Therefore, in the unit device, the space 202 between the pair of PPTC substrates 210 may be filled by the molding member (see FIG. 25).
이를 통해, 오픈모드 보호소자(200)에서, 슬릿(216)에 대응하는 공간부(202)에 의해 서로 이격되어 배치되는 한 쌍의 PPTC 기판(210) 사이의 강도를 보완할 수 있다. Through this, in the open mode protection device 200, the strength between the pair of PPTC substrates 210 spaced apart from each other by the space part 202 corresponding to the slit 216 may be compensated for.
즉, 한 쌍의 PPTC 기판(210)은 슬릿(216)에 의해 서로 이격되어 배치되기 때문에, PPTC 기판(210) 사이 또는 보호소자(220)와의 사이에 결합 강도가 약화될 수 있음으로 한 쌍의 PPTC 기판(210) 사이에 배치되는 슬릿(216)에 대응하는 공간부(202)를 몰딩부재로 채움으로써 결합 강도를 향상시킬 수 있다. That is, since the pair of PPTC substrates 210 are disposed to be spaced apart from each other by the slits 216, the bond strength may be weakened between the PPTC substrates 210 or between the protection elements 220. The bonding strength may be improved by filling the space 202 corresponding to the slit 216 disposed between the PPTC substrate 210 with the molding member.
더욱이, 한 쌍의 대면적 PPTC 기판(210a) 사이에서 보호소자(220)의 노출을 방지함으로써, 보호소자(220)를 외력으로부터 안전하게 보호할 수 있다. Furthermore, by preventing the exposure of the protection device 220 between the pair of large area PPTC substrates 210a, the protection device 220 can be protected from external force.
여기서, 에폭시 시트(230a)를 가압 및 열융착에 의해 대면적 PPTC 기판(210a) 및 보호소자(220)를 몰딩하는 것으로 설명하였으나 이에 한정되지 않고 다양한 몰딩부재와 몰딩방법으로 몰딩할 수 있음을 밝혀둔다.Here, the epoxy sheet 230a has been described as molding the large area PPTC substrate 210a and the protection device 220 by pressing and heat fusion. However, the present invention is not limited thereto, and it can be molded by various molding members and molding methods. Put it.
다음으로, 몰딩된 대면적 PPTC 기판(210a)을 하나의 보호소자(220)를 포함하는 단위 소자로 절단한다(단계 S205). Next, the molded large area PPTC substrate 210a is cut into a unit device including one protection device 220 (step S205).
도 23 및 도 24에 도시된 바와 같이, 몰딩된 대면적 PPTC 기판(210a)을 단위 소자의 크기에 대응하는 길이방향 전달선(a) 및 폭방향 절단선(b)을 따라 절단할 수 있다.As shown in FIGS. 23 and 24, the molded large area PPTC substrate 210a may be cut along a longitudinal transmission line a and a width cutting line b corresponding to the size of the unit device.
이를 통해, 도 25에 도시된 바와 같은 단위 소자인 오픈모드 보호소자(200)가 완성될 수 있다. Through this, the open mode protection device 200 which is a unit device as shown in FIG. 25 may be completed.
한편, 본 발명의 제2실시예에 따른 오픈모드 보호소자의 제조 방법(20)은 전극 패드를 도금하는 단계(S204)를 더 포함할 수 있다.On the other hand, the manufacturing method 20 of the open mode protection device according to the second embodiment of the present invention may further comprise the step (S204) of plating the electrode pad.
즉, 몰딩하는 단계(S203) 이후에, 대면적 PPTC 기판(210a)의 하면 전극(214)을 도금할 수 있다(단계 S204). 이때, 대면적 PPTC 기판(210a)의 하면 전극(214)을 Ag, Pt, Sn, Cr, Al, Zn 및 Au 중 어느 하나로 도금할 수 있다.That is, after the molding step S203, the lower surface electrode 214 of the large area PPTC substrate 210a may be plated (step S204). In this case, the lower surface electrode 214 of the large area PPTC substrate 210a may be plated with any one of Ag, Pt, Sn, Cr, Al, Zn, and Au.
이를 통해, 단위 소자의 전극 패드로서 사용되는 하면 전극(214)의 납땡성 및 전기적 전도성을 향상시킬 수 있고, 쉽게 마모되거나 부식되지 않도록 하면 전극(214)을 보호할 수 있다. Through this, the flatness and electrical conductivity of the lower surface electrode 214 used as the electrode pad of the unit element can be improved, and the electrode 214 can be protected if it is not easily worn or corroded.
이와 같이 본 발명의 오픈모드 보호소자의 제조 방법(20)에 의해 제조된 오픈모드 보호소자(200)는 PPTC 기판(210), 보호소자(220) 및 몰딩부(230)를 포함할 수 있다.As described above, the open mode protection device 200 manufactured by the method 20 for manufacturing the open mode protection device of the present invention may include a PPTC substrate 210, a protection device 220, and a molding part 230.
이러한 오픈모드 보호소자(200)는 LED를 부하로 갖는 전자장치, 일례로, TV 등과 같은 디스플레이 장치의 백라이트(BLU), 자동차의 각종 램프, 및 디밍을 이용한 스마트 조명에 사용되어 회로를 보호하기 위한 것이다. The open mode protection device 200 is used in an electronic device having an LED as a load, for example, a backlight (BLU) of a display device such as a TV, various lamps of a vehicle, and smart lighting using dimming to protect a circuit. will be.
이때, 오픈모드 보호소자(200)는 정전류원 및 LED 부하에 각각 병렬 연결될 수 있다. 여기서, 정전류원은 일정한 크기의 전류를 LED 부하로 공급할 수 있다. 이러한 정전류원은 정전류 방식의 전원 및 정전류 구동부 중 어느 하나일 수 있다. In this case, the open mode protection device 200 may be connected in parallel to the constant current source and the LED load, respectively. Here, the constant current source may supply a constant current to the LED load. The constant current source may be any one of a constant current power supply and a constant current driver.
또한, LED 부하는 복수의 LED로 구성될 수 있다. 일례로, LED 부하는 복수의 LED가 직렬로 연결되거나, 복수의 LED가 직렬로 연결되고, 직렬 연결된 복수의 LED가 병렬로 연결되거나, 복수의 LED가 병렬로 연결되고, 병렬 연결된 복수의 LED가 직렬로 연결된 것일 수 있다. In addition, the LED load may be composed of a plurality of LEDs. For example, the LED load may include a plurality of LEDs connected in series, a plurality of LEDs connected in series, a plurality of LEDs connected in series, connected in parallel, a plurality of LEDs connected in parallel, and a plurality of LEDs connected in parallel. It may be connected in series.
일례로, 오픈모드 보호소자(200)는 그 일측이 정전류원 및 LED 부하의 일측과 연결되고, 그 타측이 정전류원 및 LED 부하의 타측과 연결될 수 있다. 여기서, 오픈모드 보호소자(200)의 일측은 접지단자에 연결될 수 있다. 즉, 이러한 접지단자는 정전류원 및 부하의 음극 측에 연결될 수 있고, 전자장치의 회로기판에 형성되는 공통접지와 연결될 수 있다. For example, the open mode protection device 200 may have one side connected to one side of the constant current source and the LED load, and the other side thereof to the other side of the constant current source and the LED load. Here, one side of the open mode protection device 200 may be connected to the ground terminal. That is, the ground terminal may be connected to the cathode side of the constant current source and the load, and may be connected to the common ground formed on the circuit board of the electronic device.
PPTC 기판(210)은 한 쌍으로 이루어지고, 일정간격으로 서로 이격 배치될 수 있다. 여기서, PPTC 기판(210)의 상면 전극(212)은 보호소자(220)의 양단 전극(212,214)과 연결되기 위한 내부전극이고, 하면 전극(214)은 상기 전자장치의 정전류원 및 부하에 연결하기 위한 외부전극이다. The PPTC substrate 210 may be formed in a pair and spaced apart from each other at a predetermined interval. Here, the upper electrode 212 of the PPTC substrate 210 is an internal electrode to be connected to the electrodes 212 and 214 of the protection device 220, and the lower electrode 214 is connected to a constant current source and a load of the electronic device. For external electrodes.
이러한 PPTC 기판(210)은 전기적으로 보호소자(220)를 중심으로 양단에 직렬 연결되고, 보호소자(220)의 온도 또는 전류를 감지한다. 이때, 보호 대상인 복수의 LED 중 어느 하나의 파손에 의해 부하가 오픈 상태로 되면, 정전류원에서 제공되는 전류가 모두 보호소자(220)로 흐르면서 보호소자(220)의 온도 또는 전류가 증가함에 따라 PPTC 기판(210)은 보호소자(220)의 전류를 감소시킨다. The PPTC substrate 210 is electrically connected in series with both ends of the protection device 220 and senses the temperature or current of the protection device 220. At this time, when the load is opened by any one of the plurality of LEDs to be protected by damage, PPTC as the current or current supplied from the constant current source flows to the protection device 220 as the temperature or current of the protection device 220 increases. The substrate 210 reduces the current of the protection device 220.
보호소자(220)는 한 쌍의 PPTC 기판(210) 각각의 상면에 형성된 내부전극(212) 상에 양단 전극(212,214)이 각각 연결되어 과전압 또는 과전류를 바이패시킨다. 즉, 보호소자(220)는 하나의 외부전극(214)을 통하여 유입되는 ESD, EOS 또는 서지(surge)에 의한 과전압 또는 과전류를 접지에 연결되는 다른 외부전극(214)으로 통과시킬 수 있다. The protection device 220 is connected to both ends of the electrodes 212 and 214 on the internal electrodes 212 formed on the upper surfaces of the pair of PPTC substrates 210, respectively, thereby bypassing the overvoltage or the overcurrent. That is, the protection device 220 may pass an overvoltage or overcurrent caused by ESD, EOS, or surge introduced through one external electrode 214 to another external electrode 214 connected to the ground.
결과적으로, 오픈모드 보호소자(200)는 외부로부터 유입되는 ESD, EOS 또는 서지를 접지로 바이패스시킴으로써 LED 부하를 보호할 수 있다. 즉, 오픈모드 보호소자(200)는 PPTC 기판(210)의 저항이 매우 작기 때문에 실질적으로 보호소자(220)에 의해 바리스터와 같은 ESD, EOS 또는 서지에 대한 보호소자로서 기능한다. As a result, the open mode protection device 200 may protect the LED load by bypassing ESD, EOS, or surge flowing from the outside to the ground. That is, since the resistance of the PPTC substrate 210 is very small, the open mode protection device 200 functions as a protection device against ESD, EOS or surge such as a varistor by the protection device 220.
이러한 보호소자(220)는 LED로 이루어진 부하의 오픈모드 동작시 정전류원의 일정한 전류를 외부전극(214)을 통하여 접지로 바이패스시킨다.The protection device 220 bypasses the constant current of the constant current source to the ground through the external electrode 214 during the open mode operation of the load consisting of the LED.
몰딩부(230)는 한 쌍의 PPTC 기판(210a)의 상측 및 보호소자(220)를 덮도록 형성될 수 있다. 이러한 몰딩부(230)는 한 쌍의 PPTC 기판(210a) 및 보호소자(220)를 보호하고, 단일소자로 패키징하기 위한 것이다. The molding part 230 may be formed to cover the upper side of the pair of PPTC substrates 210a and the protection device 220. The molding unit 230 is to protect the pair of PPTC substrate 210a and the protection device 220, and to package in a single device.
이러한 몰딩부(230)는 한 쌍의 PPTC 기판(210) 사이의 공간부(202)에 채워질 수 있다. 즉, 한 쌍의 PPTC 기판(210)이 이격 배치됨에 따라 형성되는 한 쌍의 PPTC 기판(210) 사이의 공간부(202)는 몰딩부재로 채워질 수 있다. The molding part 230 may be filled in the space 202 between the pair of PPTC substrate 210. That is, the space 202 between the pair of PPTC substrates 210 formed as the pair of PPTC substrates 210 are spaced apart may be filled with a molding member.
이와 같은 오픈모드 보호소자(200)는 도 26에 도시된 바와 같이, 바리스터와 같은 보호소자(B)와 PPTC 소자(P)가 직렬 연결된 등가회로로 나타낼 수 있다. 이때, PPTC 소자(P)는 보호소자(B)의 양단에 분할배치될 수 있다. As shown in FIG. 26, the open mode protection device 200 may be represented by an equivalent circuit in which a protection device B such as a varistor and a PPTC device P are connected in series. In this case, the PPTC device P may be dividedly disposed at both ends of the protection device B. FIG.
즉, 오픈모드 보호소자(200)는 한 쌍의 외부단자에 한 쌍의 PPTC 소자(P)의 일단이 각각 연결되고, 한 쌍의 PPTC 소자(P)의 타단에 보호소자(B)의 양단이 연결됨으로써 한 쌍의 PPTC 소자(P)와 하나의 보호소자(P)가 외부단자에 대하여 직렬 연결될 수 있다. That is, in the open mode protection device 200, one end of a pair of PPTC elements P is connected to a pair of external terminals, respectively, and both ends of the protection element B are connected to the other end of the pair of PPTC elements P. By being connected, a pair of PPTC elements P and one protection element P may be connected in series with respect to external terminals.
이와 같이 구성된 본 발명의 제2실시예에 따른 오픈모드 보호소자(200)는 80℃ 내지 120℃의 상시 온도에서는 낮은 저항값을 갖는다. 즉, 오픈모드 보호소자(200)는 바리스터와 같은 보호소자로서 기능하여 정전기 또는 부하로 유입되는 ESD, EOS 또는 서지를 접지로 바이패스시켜 회로를 보호할 수 있다. The open mode protection device 200 according to the second embodiment of the present invention configured as described above has a low resistance at a constant temperature of 80 ° C to 120 ° C. That is, the open mode protection device 200 may function as a protection device such as a varistor to protect the circuit by bypassing ESD, EOS or surge flowing into the static electricity or the load to ground.
한편, 외부에서 유입된 ESD, EOS 또는 서지에 대하여 보호소자(220)가 충분한 보호기능을 갖지 못하면, LED 부하 중 일부가 ESD, EOS 또는 서지에 의해 손상되어 LED 부하가 오픈상태로 되는 경우가 종종 발생한다. On the other hand, when the protection device 220 does not have sufficient protection against ESD, EOS, or surges introduced from the outside, some of the LED loads are damaged by ESD, EOS, or surges, and the LED loads are often opened. Occurs.
이와 같이, LED로 이루어진 부하가 외부로부터 ESD, EOS 또는 서지에 의해 오픈되면, 오픈모드 보호소자(200)로 흐르는 전류 및 전압이 지속적으로 증가하여 보호소자(220)가 과열된다. 즉, 부하의 전원이 정전류원이기 때문에 부하가 오픈된 경우, 정전류원에서 제공되는 일정한 크기의 전류는 모두 오픈모드 보호소자(200)로 흐른다. 이때, 정전류원의 실질적인 부하는 오픈모드 보호소자(200)이며, 이 경우 오픈모드 보호소자(200)에 정전류원으로부터 일정한 크기의 전류가 지속적으로 흐르기 때문에 전압이 무한대로 상승하는 조건이 된다. As such, when the load made of the LED is opened by the ESD, EOS, or surge from the outside, the current and the voltage flowing to the open mode protection device 200 continuously increase, thereby overheating the protection device 220. That is, when the load is opened because the power of the load is a constant current source, all currents of a constant magnitude provided from the constant current source flow to the open mode protection device 200. In this case, the substantial load of the constant current source is the open mode protection device 200, and in this case, a constant magnitude current flows from the constant current source to the open mode protection device 200, which is a condition in which the voltage rises indefinitely.
일례로, 정전류원이 400㎃의 전류를 공급하고, LED 부하가 10개의 LED로 이루어진 경우, 부하의 양단에 대략 25~30V의 전압이 출력되지만, 부하가 오픈상태인 경우, 실질적인 부하인 오픈모드 보호소자(200)의 양단 전압이 공급전원 수준(200~300V)까지 상승함에 따라 오픈모드 보호소자(200), 특히, 보호소자(220)가 과열된다. For example, if the constant current source supplies 400 mA of current and the LED load consists of 10 LEDs, a voltage of approximately 25 to 30 V is output at both ends of the load, but if the load is open, the open mode is a substantial load. As the voltage across the protection device 200 rises to the power supply level (200 to 300V), the open mode protection device 200, in particular, the protection device 220 is overheated.
이때, 오픈모드 보호소자(200)가 150℃ 내지 200℃의 온도로 과열되면, 오픈모드 보호소자(200)는 PPTC 기판(210)의 저항이 급증하여 오픈모드 보호소자(200) 내에 흐르는 전류량을 감소시킴으로써, 보호소자(220)의 양단 전압을 감소시켜 온도를 감소시킬 수 있으므로 발열을 억제할 수 있다. 이에 따라, 보호소자(220)의 과열에 의한 자체 파손을 방지할 수 있다. At this time, when the open mode protection device 200 is overheated to a temperature of 150 ℃ to 200 ℃, the open mode protection device 200 increases the amount of current flowing in the open mode protection device 200 by a sudden increase in the resistance of the PPTC substrate 210 By reducing, since the voltage across the protection element 220 can be reduced to decrease the temperature, heat generation can be suppressed. Accordingly, self damage due to overheating of the protection device 220 can be prevented.
또한, 오픈모드 보호소자(200)의 이상 과열을 억제함으로써, 오픈모드 보호소자(200)에 인접한 회로부품의 손상을 방지할 뿐만 아니라, 인접 부품이 가연성이 물질로 이루어진 경우, 일례로, LED로부터 발광된 빛의 효율을 향상시키기 위해 LED의 전면에 백색 시트지가 배치되는 경우, 보호소자의 발화로 인한 화재를 미연에 예방할 수 있다. In addition, by suppressing abnormal overheating of the open mode protection device 200, not only does it prevent damage to circuit components adjacent to the open mode protection device 200, but also when the adjacent parts are made of a flammable material. When white sheet paper is disposed on the front surface of the LED to improve the efficiency of the emitted light, it is possible to prevent a fire due to the ignition of the protective device.
이상에서 본 발명의 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although the embodiments of the present invention have been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention, within the scope of the same idea, the addition of components, Alterations, deletions, additions, etc. may easily suggest other embodiments, but this is also within the scope of the present invention.

Claims (14)

  1. 정전류원 및 LED로 이루어진 부하에 각각 병렬 연결되는 오픈모드 보호소자로서, An open-mode protection device connected in parallel to a load consisting of a constant current source and an LED,
    제1리드프레임에 일측이 연결되며 과전압 또는 과전류를 바이패스시키는 보호부;A protection unit connected to one side of the first lead frame and bypassing an overvoltage or an overcurrent;
    제2리드프레임에 일측이 연결되며 타측이 상기 보호부의 타측과 직렬 연결되고, 상기 보호부의 온도 또는 전류가 증가함에 따라 상기 보호부의 전류를 감소시키는 전류억제부; 및 A current suppressing unit having one side connected to a second lead frame and the other side connected in series with the other side of the protection unit, and reducing the current of the protection unit as the temperature or current of the protection unit increases; And
    상기 보호부 및 상기 전류억제부를 감싸도록 형성되는 몰딩부;를 포함하는 오픈모드 보호소자.And a molding part formed to surround the protection part and the current suppressing part.
  2. 제1항에 있어서, The method of claim 1,
    상기 보호부와 상기 전류억제부는 전도성접착층을 통하여 결합되는 오픈모드 보호소자.The protection unit and the current suppressing unit is an open mode protection device coupled via a conductive adhesive layer.
  3. 제1항에 있어서,The method of claim 1,
    상기 몰딩부는 EMC(Epoxy Molding Compound)로 이루어진 오픈모드 보호소자.The molding part is an open mode protection device made of EMC (Epoxy Molding Compound).
  4. 제1항에 있어서, The method of claim 1,
    상기 보호부와 상기 전류억제부는 상기 제1리드프레임 및 상기 제2리드프레임 각각에 솔더를 통하여 연결되는 오픈모드 보호소자.The protection unit and the current suppressing unit is an open mode protection device connected to each of the first lead frame and the second lead frame through a solder.
  5. 제1항에 있어서, The method of claim 1,
    상기 제1리드프레임과 연결되며 상기 몰딩부의 일측에 형성되는 제1외부전극; 및 A first external electrode connected to the first lead frame and formed on one side of the molding part; And
    상기 제2리드프레임과 연결되며 상기 몰딩부의 타측에 형성되는 제2외부전극을 더 포함하는 오픈모드 보호소자.And a second external electrode connected to the second lead frame and formed on the other side of the molding part.
  6. 제5항에 있어서, The method of claim 5,
    상기 제1외부전극 및 상기 제2외부전극 중 어느 하나는 상기 정전류원 및 상기 부하의 일측에 연결되고, 다른 하나는 상기 정전류원 및 상기 부하의 타측에 연결되는 오픈모드 보호소자.One of the first external electrode and the second external electrode is connected to one side of the constant current source and the load, the other is connected to the other side of the constant current source and the load.
  7. 제1항에 있어서, The method of claim 1,
    상기 전류억제부는 PTC(positive temperature coefficient) 재료 또는 PPTC(polymeric positive temperature coefficient) 재료로 이루어진 오픈모드 보호소자.The current suppressing unit is an open mode protection device made of a positive temperature coefficient (PTC) material or a polymeric positive temperature coefficient (PPTC) material.
  8. 제1항에 있어서, The method of claim 1,
    상기 보호부는 바리스터(varistor), 써프레서(suppressor), GDT(Gas discharge tube) 및 다이오드 중 어느 하나인 오픈모드 보호소자.The protection unit is any one of a varistor, a suppressor, a gas discharge tube (GDT) and a diode.
  9. 제1항에 있어서,The method of claim 1,
    상기 보호부와 상기 전류억제부는 서로 수직 적층되는 오픈모드 보호소자.An open mode protection device in which the protection unit and the current suppressing unit are vertically stacked on each other.
  10. 제1항에 있어서, The method of claim 1,
    상기 전류억제부는 전도성 필러가 분산된 폴리머 층으로 이루어지는 오픈모드 보호소자.The current suppressing unit is an open mode protection device made of a polymer layer in which a conductive filler is dispersed.
  11. 제10항에 있어서, The method of claim 10,
    상기 전도성 필러는 카본블랙(carbon black) 재료로 이루어진 오픈모드 보호소자.The conductive filler is an open mode protective device made of a carbon black material.
  12. 정전류원; Constant current source;
    상기 정전류원에 의해 구동되는 LED로 이루어진 부하; A load consisting of LEDs driven by the constant current source;
    상기 정전류원 및 상기 부하의 일측이 연결되는 접지단자; 및 A ground terminal connected to one side of the constant current source and the load; And
    상기 정전류원 및 상기 부하에 각각 병렬 연결되고, 일측이 상기 접지단자에 연결되는 제1항 내지 제13항 중 어느 한 항에 기재된 오픈모드 보호소자;를 포함하는 전자장치. The open mode protection device according to any one of claims 1 to 13, which is connected in parallel to the constant current source and the load, respectively, and one side thereof is connected to the ground terminal.
  13. 제12항에 있어서,The method of claim 12,
    상기 정전류원은 정전류 구동부 및 정전류 방식의 전원 중 어느 하나인 전자장치.The constant current source is any one of a constant current driver and a constant current power supply.
  14. 정전류원 및 LED로 이루어진 부하에 각각 병렬 연결되는 오픈모드 보호소자로서, An open-mode protection device connected in parallel to a load consisting of a constant current source and an LED,
    제1리드프레임에 일측이 연결되는 바리스터; A varistor having one side connected to the first lead frame;
    제2리드프레임에 일측이 연결되며 타측이 상기 바리스터의 타측과 직렬 연결되는 PPTC 기판; A PPTC substrate having one side connected to a second lead frame and the other side connected in series with the other side of the varistor;
    상기 바리스터의 타측과 상기 PPTC 기판의 타측을 결합하는 전도성접착층; A conductive adhesive layer coupling the other side of the varistor and the other side of the PPTC substrate;
    상기 바리스터 및 상기 PPTC 기판을 감싸도록 형성되는 몰딩부;A molding part formed to surround the varistor and the PPTC substrate;
    상기 제1리드프레임과 연결되며 상기 몰딩부의 일측에 형성되는 제1외부전극; 및 A first external electrode connected to the first lead frame and formed on one side of the molding part; And
    상기 제2리드프레임과 연결되며 상기 몰딩부의 타측에 형성되는 제2외부전극;을 포함하는 오픈모드 보호소자.And a second external electrode connected to the second lead frame and formed on the other side of the molding part.
PCT/KR2017/012301 2016-11-03 2017-11-02 Open-mode protection device and electronic device having same WO2018084585A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020160145757A KR102486920B1 (en) 2016-11-03 2016-11-03 Method for manufacturing protection device for open mode
KR10-2016-0145757 2016-11-03
KR1020160146492A KR102507857B1 (en) 2016-11-04 2016-11-04 Protection device for open mode and electric apparatus with the same
KR10-2016-0146492 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018084585A1 true WO2018084585A1 (en) 2018-05-11

Family

ID=62076540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012301 WO2018084585A1 (en) 2016-11-03 2017-11-02 Open-mode protection device and electronic device having same

Country Status (1)

Country Link
WO (1) WO2018084585A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050082126A (en) * 2004-02-17 2005-08-22 엘에스전선 주식회사 Ptc overcurrent protector having varistor
KR20050090749A (en) * 2004-03-09 2005-09-14 엘에스전선 주식회사 Ptc-device including overvoltage protection means in a body
KR20060093628A (en) * 2005-02-22 2006-08-25 엘에스전선 주식회사 Ptc device having varistor therin
US20100246171A1 (en) * 2009-03-26 2010-09-30 Scale Timothy J LED Replacement Projector Light Source
KR20120111214A (en) * 2011-03-31 2012-10-10 주식회사 아모텍 Varistor module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050082126A (en) * 2004-02-17 2005-08-22 엘에스전선 주식회사 Ptc overcurrent protector having varistor
KR20050090749A (en) * 2004-03-09 2005-09-14 엘에스전선 주식회사 Ptc-device including overvoltage protection means in a body
KR20060093628A (en) * 2005-02-22 2006-08-25 엘에스전선 주식회사 Ptc device having varistor therin
US20100246171A1 (en) * 2009-03-26 2010-09-30 Scale Timothy J LED Replacement Projector Light Source
KR20120111214A (en) * 2011-03-31 2012-10-10 주식회사 아모텍 Varistor module

Similar Documents

Publication Publication Date Title
WO2016017969A1 (en) Light-emitting element and light source module comprising same
WO2019045167A1 (en) Light emitting device package and light source device having same
WO2019059703A2 (en) Light-emitting device package and lighting module
WO2015012613A1 (en) Flexible printed circuit boards structure
WO2022005099A1 (en) Power module, and method for manufacturing same
WO2017111450A1 (en) Open-mode protection device and electronic device having same
US7965479B2 (en) Over-current and over-voltage protection assembly apparatus
WO2018084585A1 (en) Open-mode protection device and electronic device having same
WO2012002710A2 (en) Optical element device
WO2019088701A1 (en) Light-emitting device package and light source apparatus
US20200321327A1 (en) Transient Voltage Suppression Device with Thermal Cutoff
EP0431586B1 (en) High-power semiconductor device
WO2015012612A1 (en) Flexible printed circuit board structure
WO2015012608A1 (en) Structure for flexible printed circuit boards
WO2011059137A1 (en) Optical element device and a production method therefor
WO2017007181A1 (en) Light-emitting device and light-emitting module
WO2020017922A1 (en) Light-emitting element package and light source module
WO2020071203A1 (en) Protective element
WO2015152600A1 (en) Battery protection circuit module package and battery pack
WO2019231227A1 (en) Light-emitting device package and light source module
US10652982B2 (en) Open-mode protection device and electronic device having same
WO2022260355A1 (en) Insulation sheet for display light source, and insulation light source module, insulation backlight unit, and display device comprising same
WO2021241950A1 (en) Power module
KR102486920B1 (en) Method for manufacturing protection device for open mode
KR102507857B1 (en) Protection device for open mode and electric apparatus with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867080

Country of ref document: EP

Kind code of ref document: A1