WO2018084524A1 - 무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2018084524A1
WO2018084524A1 PCT/KR2017/012141 KR2017012141W WO2018084524A1 WO 2018084524 A1 WO2018084524 A1 WO 2018084524A1 KR 2017012141 W KR2017012141 W KR 2017012141W WO 2018084524 A1 WO2018084524 A1 WO 2018084524A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
transmission
sidelink
terminal
resource
Prior art date
Application number
PCT/KR2017/012141
Other languages
English (en)
French (fr)
Inventor
김명섭
서한별
이승민
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP17866805.9A priority Critical patent/EP3537830B1/en
Priority to JP2019523851A priority patent/JP6840848B2/ja
Priority to US16/347,053 priority patent/US10999862B2/en
Priority to CN201780081799.3A priority patent/CN110140408B/zh
Publication of WO2018084524A1 publication Critical patent/WO2018084524A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for performing sidelink transmission and an apparatus supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded not only voice but also data service.As a result of the explosive increase in traffic, a shortage of resources and users are demanding higher speed services, a more advanced mobile communication system is required. have.
  • all sidelink subframes are scheduled by sidelink grant using offset information related to the position of sidelink subframes in a time division duplex (TDD) V2X communication.
  • TDD time division duplex
  • an object of the present specification is to provide a method for clearly defining timing between sidelink grant and sidelink transmission in TDD V2X communication.
  • the method performed by the terminal, the sidelink grant (sidelink grant) used for the scheduling of the sidelink transmission (scheduling)
  • the sidelink grant includes control information indicating an offset of a particular subframe associated with the sidelink grant; Determining the specific subframe in consideration of the value indicated by the control information; And performing the sidelink transmission in the specific subframe.
  • the method is characterized in that performed in the case of sidelink transmission mode 3 (sidelink transmission mode 3).
  • the specific subframe is characterized in that the subframe n + k + a.
  • k is '4'.
  • the size of the control information is 2 bits, and when the control information is set to '00', '01', '10' or '11', the value indicated by the control information is '0', respectively. ',' 1 ',' 2 'or' 3 '.
  • the specific subframe is characterized in being included in a sidelink subframe in which the sidelink transmission occurs.
  • control information is included in the sidelink grant only in a time division duplex (TDD) system using an uplink-downlink configuration (0-6).
  • TDD time division duplex
  • a carrier for receiving the sidelink grant and a carrier for performing the sidelink transmission are the same or different.
  • the sidelink transmission is characterized in that the V2V (Vehicle-to-Vehicle) transmission.
  • the present disclosure provides a terminal for performing sidelink transmission in a wireless communication system, comprising: a radio frequency (RF) module for transmitting and receiving a radio signal; And a processor for controlling the RF module, wherein the processor receives a sidelink grant from a base station used for scheduling of the sidelink transmission, and the sidelink grant is a sidelink grant.
  • Control information indicating an offset of a particular subframe associated with the sidelink grant; Determine the specific sidelink subframe in consideration of the value indicated by the control information; And perform the sidelink transmission in the specific subframe.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • FIG. 5 shows an example of a form in which PUCCH formats are mapped to a PUCCH region of an uplink physical resource block in a wireless communication system to which the present invention can be applied.
  • FIG. 6 shows a structure of a CQI channel in the case of a normal CP in a wireless communication system to which the present invention can be applied.
  • FIG. 7 shows a structure of an ACK / NACK channel in case of a normal CP in a wireless communication system to which the present invention can be applied.
  • FIG. 8 shows an example of transport channel processing of an UL-SCH in a wireless communication system to which the present invention can be applied.
  • FIG. 9 shows an example of a signal processing procedure of an uplink shared channel which is a transport channel in a wireless communication system to which the present invention can be applied.
  • FIG. 10 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • FIG. 11 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • FIG. 12 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • FIG. 13 illustrates an example of a subframe structure according to cross carrier scheduling in a wireless communication system to which the present invention can be applied.
  • FIG. 14 illustrates an example of generating and transmitting five SC-FDMA symbols during one slot in a wireless communication system to which the present invention can be applied.
  • 15 is a diagram illustrating a time-frequency resource block in the time frequency domain of a wireless communication system to which the present invention can be applied.
  • FIG. 16 is a diagram illustrating a resource allocation and retransmission process of an asynchronous HARQ scheme in a wireless communication system to which the present invention can be applied.
  • 17 is a diagram illustrating a carrier aggregation based CoMP system in a wireless communication system to which the present invention can be applied.
  • FIG. 19 is a diagram for explaining elements of a D2D technique.
  • 20 is a diagram illustrating an embodiment of a configuration of a resource unit.
  • 21 illustrates a case where an SA resource pool and a subsequent data channel resource pool appear periodically.
  • 22 to 24 are diagrams showing an example of a relay process and resources for relay to which the present invention can be applied.
  • FIG. 25 shows a type of V2X application to which the present invention can be applied.
  • 26 shows examples of scheduling schemes that can be applied to V2V side link communication.
  • FIG. 27 is a diagram illustrating an example of a position of a V2V subframe according to the fixed offset values of Table 19.
  • FIG. 28 illustrates an example of a method in which a V2V subframe is indicated by a sidelink grant using an additional offset field proposed in the present specification.
  • 29 is a flowchart illustrating an example of a method of performing sidelink transmission proposed in the present specification.
  • FIG. 30 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • FIG. 31 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • a base station has a meaning as a terminal node of a network that directly communicates with a terminal.
  • the specific operation described as performed by the base station in this document may be performed by an upper node of the base station in some cases. That is, it is obvious that various operations performed for communication with a terminal in a network composed of a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a 'base station (BS)' may be replaced by terms such as a fixed station, a Node B, an evolved-NodeB (eNB), a base transceiver system (BTS), an access point (AP), and the like. .
  • a 'terminal' may be fixed or mobile, and may include a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an AMS ( Advanced Mobile Station (WT), Wireless Terminal (WT), Machine-Type Communication (MTC) Device, Machine-to-Machine (M2M) Device, Device-to-Device (D2D) Device, etc.
  • UE user equipment
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS Advanced Mobile Station
  • WT Wireless Terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station, and a receiver may be part of a terminal.
  • a transmitter may be part of a terminal and a receiver may be part of a base station.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA).
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A (advanced) is the evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 illustrates a structure of a radio frame in a wireless communication system to which the present invention can be applied.
  • 3GPP LTE / LTE-A supports a type 1 radio frame structure applicable to frequency division duplex (FDD) and a type 2 radio frame structure applicable to time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • a radio frame consists of 10 subframes.
  • One subframe consists of two slots in the time domain.
  • the time taken to transmit one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms and one slot may have a length of 0.5 ms.
  • One slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain and a plurality of resource blocks (RBs) in the frequency domain. Since 3GPP LTE uses OFDMA in downlink, the OFDM symbol is for representing one symbol period. The OFDM symbol may be referred to as one SC-FDMA symbol or symbol period.
  • a resource block is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • FIG. 1B illustrates a frame structure type 2.
  • FIG. Type 2 radio frames consist of two half frames, each of which has five subframes, a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS downlink pilot time slot
  • GP guard period
  • UpPTS uplink pilot time slot
  • One subframe consists of two slots.
  • DwPTS is used for initial cell search, synchronization or channel estimation at the terminal.
  • UpPTS is used for channel estimation at the base station and synchronization of uplink transmission of the terminal.
  • the guard period is a period for removing interference generated in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • an uplink-downlink configuration is a rule indicating whether uplink and downlink are allocated (or reserved) for all subframes.
  • Table 1 shows an uplink-downlink configuration.
  • 'D' represents a subframe for downlink transmission
  • 'U' represents a subframe for uplink transmission
  • 'S' represents DwPTS
  • GP UpPTS
  • UpPTS Indicates a special subframe consisting of three fields.
  • the uplink-downlink configuration can be classified into seven types, and the location and / or number of downlink subframes, special subframes, and uplink subframes are different for each configuration.
  • Switch-point periodicity refers to a period in which an uplink subframe and a downlink subframe are repeatedly switched in the same manner, and both 5ms or 10ms are supported.
  • the special subframe S exists every half-frame, and in case of having a period of 5ms downlink-uplink switching time, it exists only in the first half-frame.
  • subframes 0 and 5 and DwPTS are sections for downlink transmission only.
  • the subframe immediately following the UpPTS and the subframe subframe is always an interval for uplink transmission.
  • the uplink-downlink configuration may be known to both the base station and the terminal as system information.
  • the base station may notify the terminal of the change of the uplink-downlink allocation state of the radio frame by transmitting only an index of the configuration information.
  • the configuration information is a kind of downlink control information, which may be transmitted through a physical downlink control channel (PDCCH) like other scheduling information, and is commonly transmitted to all terminals in a cell through a broadcast channel as broadcast information. May be
  • PDCCH physical downlink control channel
  • Table 2 shows the configuration of the special subframe (length of DwPTS / GP / UpPTS).
  • the structure of the radio frame is only one example, and the number of subcarriers included in the radio frame or the number of slots included in the subframe and the number of OFDM symbols included in the slot may be variously changed.
  • FIG. 2 is a diagram illustrating a resource grid for one downlink slot in a wireless communication system to which the present invention can be applied.
  • one downlink slot includes a plurality of OFDM symbols in the time domain.
  • one downlink slot includes seven OFDM symbols, and one resource block includes 12 subcarriers in a frequency domain, but is not limited thereto.
  • Each element on the resource grid is a resource element, and one resource block (RB) includes 12 ⁇ 7 resource elements.
  • the number NDL of resource blocks included in the downlink slot depends on the downlink transmission bandwidth.
  • the structure of the uplink slot may be the same as the structure of the downlink slot.
  • FIG. 3 shows a structure of a downlink subframe in a wireless communication system to which the present invention can be applied.
  • up to three OFDM symbols in the first slot in a subframe are control regions to which control channels are allocated, and the remaining OFDM symbols are data regions to which PDSCH (Physical Downlink Shared Channel) is allocated. data region).
  • PDSCH Physical Downlink Shared Channel
  • An example of a downlink control channel used in 3GPP LTE includes a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid-ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols (ie, the size of the control region) used for transmission of control channels within the subframe.
  • the PHICH is a response channel for the uplink and carries an ACK (Acknowledgement) / NACK (Not-Acknowledgement) signal for a hybrid automatic repeat request (HARQ).
  • Control information transmitted through the PDCCH is called downlink control information (DCI).
  • the downlink control information includes uplink resource allocation information, downlink resource allocation information or an uplink transmission (Tx) power control command for a certain terminal group.
  • the PDCCH is a resource allocation and transmission format of DL-SCH (Downlink Shared Channel) (also referred to as a downlink grant), resource allocation information of UL-SCH (Uplink Shared Channel) (also called an uplink grant), and PCH ( Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal
  • DL-SCH Downlink Shared Channel
  • UL-SCH Uplink Shared Channel
  • PCH Paging information in paging channel, system information in DL-SCH, resource allocation for upper-layer control message such as random access response transmitted in PDSCH, arbitrary terminal
  • a set of transmission power control commands for individual terminals in a group, activation of voice over IP (VoIP), and the like may be carried.
  • the plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • the PDCCH consists of a set of one or a pluralit
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to the state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of available bits of the PDCCH are determined according to the association between the number of CCEs and the coding rate provided by the CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • FIG. 4 shows a structure of an uplink subframe in a wireless communication system to which the present invention can be applied.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) carrying uplink control information is allocated to the control region.
  • the data region is allocated a Physical Uplink Shared Channel (PUSCH) that carries user data.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • a PUCCH for one UE is allocated a resource block (RB) pair in a subframe.
  • RBs belonging to the RB pair occupy different subcarriers in each of the two slots.
  • This RB pair allocated to the PUCCH is said to be frequency hopping at the slot boundary (slot boundary).
  • PUCCH Physical Uplink Control Channel
  • the uplink control information (UCI) transmitted through the PUCCH may include a scheduling request (SR), HARQ ACK / NACK information, and downlink channel measurement information as follows.
  • SR scheduling request
  • HARQ ACK / NACK information HARQ ACK / NACK information
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-off Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • the CSI may include at least one of a channel quality indicator (CQI), a rank indicator (RI), a precoding matrix indicator (PMI), and a precoding type indicator (PTI). 20 bits are used per subframe.
  • CQI channel quality indicator
  • RI rank indicator
  • PMI precoding matrix indicator
  • PTI precoding type indicator
  • HARQ ACK / NACK information may be generated according to whether the decoding of the downlink data packet on the PDSCH is successful.
  • one bit is transmitted as ACK / NACK information for downlink single codeword transmission, and two bits are transmitted as ACK / NACK information for downlink 2 codeword transmission.
  • Channel measurement information refers to feedback information related to a multiple input multiple output (MIMO) technique, and includes channel quality indicator (CQI), precoding matrix index (PMI), and rank indicator (RI). : Rank Indicator) may be included. These channel measurement information may be collectively expressed as CQI.
  • CQI channel quality indicator
  • PMI precoding matrix index
  • RI rank indicator
  • 20 bits per subframe may be used for transmission of the CQI.
  • PUCCH may be modulated using Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK).
  • Control information of a plurality of terminals may be transmitted through a PUCCH, and a constant amplitude zero autocorrelation (CAZAC) sequence having a length of 12 is performed when code division multiplexing (CDM) is performed to distinguish signals of respective terminals.
  • CAZAC sequence has a characteristic of maintaining a constant amplitude in the time domain and the frequency domain, the coverage is reduced by reducing the Peak-to-Average Power Ratio (PAPR) or the Cubic Metric (CM) of the UE. It has a suitable property to increase.
  • PAPR Peak-to-Average Power Ratio
  • CM Cubic Metric
  • ACK / NACK information for downlink data transmission transmitted through the PUCCH is covered using an orthogonal sequence or an orthogonal cover (OC).
  • control information transmitted on the PUCCH may be distinguished using a cyclically shifted sequence having different cyclic shift (CS) values.
  • the cyclically shifted sequence may be generated by cyclically shifting a base sequence by a specific cyclic shift amount.
  • the specific CS amount is indicated by the cyclic shift index (CS index).
  • the number of cyclic shifts available may vary depending on the delay spread of the channel.
  • Various kinds of sequences may be used as the base sequence, and the above-described CAZAC sequence is one example.
  • control information that can be transmitted in one subframe by the UE depends on the number of SC-FDMA symbols available for transmission of the control information (that is, RS transmission for coherent detection of PUCCH). SC-FDMA symbols except for the SC-FDMA symbol used).
  • PUCCH is defined in seven different formats according to transmitted control information, modulation scheme, amount of control information, and the like, and according to uplink control information (UCI) transmitted according to each PUCCH format,
  • UCI uplink control information
  • PUCCH format 1 is used for single transmission of SR.
  • an unmodulated waveform is applied, which will be described later in detail.
  • PUCCH format 1a or 1b is used for transmission of HARQ ACK / NACK.
  • PUCCH format 1a or 1b may be used.
  • HARQ ACK / NACK and SR may be transmitted in the same subframe using PUCCH format 1a or 1b.
  • PUCCH format 2 is used for transmission of CQI, and PUCCH format 2a or 2b is used for transmission of CQI and HARQ ACK / NACK. In the case of an extended CP, PUCCH format 2 may be used for transmission of CQI and HARQ ACK / NACK.
  • PUCCH format 3 is used to carry 48 bits of encoded UCI.
  • PUCCH format 3 may carry HARQ ACK / NACK for a plurality of serving cells, SR (if present), and CSI report for one serving cell.
  • FIG. 8 shows an example of a form in which PUCCH formats are mapped to a PUCCH region of an uplink physical resource block in a wireless communication system to which the present invention can be applied.
  • N_RB ⁇ UL denotes the number of resource blocks in uplink
  • 0, 1, ..., N_RB ⁇ UL-1 denotes the number of physical resource blocks.
  • the PUCCH is mapped to both edges of the uplink frequency block.
  • the number of PUCCH RBs (N_RB ⁇ (2)) usable by the PUCCH format 2 / 2a / 2b may be indicated to terminals in a cell by broadcasting signaling.
  • PUCCH format 2 / 2a / 2b is a control channel for transmitting channel measurement feedback (CQI, PMI, RI).
  • the reporting period of the channel measurement feedback (hereinafter, collectively referred to as CQI information) and the frequency unit (or frequency resolution) to be measured may be controlled by the base station.
  • CQI information channel measurement feedback
  • the frequency unit (or frequency resolution) to be measured may be controlled by the base station.
  • Periodic and aperiodic CQI reporting can be supported in the time domain.
  • PUCCH format 2 may be used only for periodic reporting and PUSCH may be used for aperiodic reporting.
  • the base station may instruct the terminal to transmit an individual CQI report on a resource scheduled for uplink data transmission.
  • FIG. 6 shows a structure of a CQI channel in the case of a normal CP in a wireless communication system to which the present invention can be applied.
  • SC-FDMA symbols 0 to 6 of one slot SC-FDMA symbols 1 and 5 (second and sixth symbols) are used for demodulation reference signal (DMRS) transmission, and CQI in the remaining SC-FDMA symbols. Information can be transmitted. Meanwhile, in the case of an extended CP, one SC-FDMA symbol (SC-FDMA symbol 3) is used for DMRS transmission.
  • SC-FDMA symbol 3 SC-FDMA symbol 3
  • DMRS Reference signal
  • CQI information is carried on the remaining five SC-FDMA symbols.
  • Two RSs are used in one slot to support a high speed terminal.
  • each terminal is distinguished using a cyclic shift (CS) sequence.
  • the CQI information symbols are modulated and transmitted throughout the SC-FDMA symbol, and the SC-FDMA symbol is composed of one sequence. That is, the terminal modulates and transmits the CQI in each sequence.
  • the number of symbols that can be transmitted in one TTI is 10, and modulation of CQI information is determined up to QPSK.
  • QPSK mapping is used for an SC-FDMA symbol, a 2-bit CQI value may be carried, and thus a 10-bit CQI value may be loaded in one slot. Therefore, a CQI value of up to 20 bits can be loaded in one subframe.
  • a frequency domain spread code is used to spread the CQI information in the frequency domain.
  • a length-12 CAZAC sequence (eg, a ZC sequence) may be used.
  • Each control channel may be distinguished by applying a CAZAC sequence having a different cyclic shift value.
  • IFFT is performed on the frequency domain spread CQI information.
  • 12 different terminals may be orthogonally multiplexed on the same PUCCH RB by means of 12 equally spaced cyclic shifts.
  • the DMRS sequence on SC-FDMA symbol 1 and 5 (on SC-FDMA symbol 3 in extended CP case) in the general CP case is similar to the CQI signal sequence on the frequency domain but no modulation such as CQI information is applied.
  • PUCCH resource index ( ) Is information indicating a PUCCH region used for PUCCH format 2 / 2a / 2b transmission and a cyclic shift (CS) value to be used.
  • a symbol modulated using a BPSK or QPSK modulation scheme is multiply multiplied by a CAZAC sequence having a length of 12.
  • the y (0), ..., y (N-1) symbols may be referred to as a block of symbols.
  • a Hadamard sequence of length 4 is used for general ACK / NACK information, and a Discrete Fourier Transform (DFT) sequence of length 3 is used for shortened ACK / NACK information and a reference signal.
  • DFT Discrete Fourier Transform
  • a Hadamard sequence of length 2 is used for the reference signal in the case of an extended CP.
  • FIG. 7 shows a structure of an ACK / NACK channel in case of a normal CP in a wireless communication system to which the present invention can be applied.
  • a reference signal RS is carried on three consecutive SC-FDMA symbols in the middle of seven SC-FDMA symbols included in one slot, and an ACK / NACK signal is carried on the remaining four SC-FDMA symbols.
  • RS may be carried on two consecutive symbols in the middle.
  • the number and position of symbols used for the RS may vary depending on the control channel, and the number and position of symbols used for the ACK / NACK signal associated therewith may also be changed accordingly.
  • 1 bit and 2 bit acknowledgment information may be represented by one HARQ ACK / NACK modulation symbol using BPSK and QPSK modulation techniques, respectively.
  • the acknowledgment (ACK) may be encoded as '1'
  • the negative acknowledgment (NACK) may be encoded as '0'.
  • two-dimensional spreading is applied to increase the multiplexing capacity. That is, frequency domain spreading and time domain spreading are simultaneously applied to increase the number of terminals or control channels that can be multiplexed.
  • a frequency domain sequence is used as the base sequence.
  • one of the CAZAC sequences may be a Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • CS cyclic shifts
  • the number of CS resources supported in SC-FDMA symbols for PUCCH RBs for HARQ ACK / NACK transmission is set by the cell-specific higher-layer signaling parameter ( ⁇ _shift ⁇ PUCCH).
  • the frequency domain spread ACK / NACK signal is spread in the time domain using an orthogonal spreading code.
  • an orthogonal spreading code a Walsh-Hadamard sequence or a DFT sequence may be used.
  • the ACK / NACK signal may be spread using orthogonal sequences w0, w1, w2, and w3 of length 4 for four symbols.
  • RS is also spread through an orthogonal sequence of length 3 or length 2. This is called orthogonal covering (OC).
  • a plurality of terminals may be multiplexed using a code division multiplexing (CDM) scheme using the CS resource in the frequency domain and the OC resource in the time domain as described above. That is, ACK / NACK information and RS of a large number of terminals may be multiplexed on the same PUCCH RB.
  • CDM code division multiplexing
  • the number of spreading codes supported for ACK / NACK information is limited by the number of RS symbols. That is, since the number of RS transmission SC-FDMA symbols is smaller than the number of ACK / NACK information transmission SC-FDMA symbols, the multiplexing capacity of the RS is smaller than that of the ACK / NACK information.
  • ACK / NACK information may be transmitted in four symbols.
  • three orthogonal spreading codes are used instead of four, which means that the number of RS transmission symbols is three. This is because only three orthogonal spreading codes can be used for the RS.
  • HARQ acknowledgments from a total of 18 different terminals can be multiplexed within one PUCCH RB.
  • HARQ acknowledgments from a total of 12 different terminals can be multiplexed within one PUCCH RB.
  • the scheduling request SR is transmitted in such a manner that the terminal requests or does not request to be scheduled.
  • the SR channel reuses the ACK / NACK channel structure in PUCCH formats 1a / 1b and is configured in an OOK (On-Off Keying) scheme based on the ACK / NACK channel design. Reference signals are not transmitted in the SR channel. Therefore, a sequence of length 7 is used for a general CP, and a sequence of length 6 is used for an extended CP. Different cyclic shifts or orthogonal covers may be assigned for SR and ACK / NACK. That is, for positive SR transmission, the UE transmits HARQ ACK / NACK through resources allocated for SR. In order to transmit a negative SR, the UE transmits HARQ ACK / NACK through a resource allocated for ACK / NACK.
  • the e-PUCCH may correspond to PUCCH format 3 of the LTE-A system.
  • Block spreading can be applied to ACK / NACK transmission using PUCCH format 3.
  • FIG. 8 shows an example of transport channel processing of an UL-SCH in a wireless communication system to which the present invention can be applied.
  • the peak-to-average power ratio (PAPR) characteristic or CM Cubic Metric is designed to maintain good single carrier transmission. That is, in the case of PUSCH transmission in the existing LTE system, the single carrier characteristics are maintained through DFT-precoding for data to be transmitted, and in the case of PUCCH transmission, information is transmitted on a sequence having a single carrier characteristic to transmit single carrier characteristics. I can keep it. However, when the DFT-precoding data is discontinuously allocated on the frequency axis or when PUSCH and PUCCH are simultaneously transmitted, this single carrier characteristic is broken. Accordingly, as shown in FIG. 11, when there is a PUSCH transmission in the same subframe as the PUCCH transmission, uplink control information (UCI) information to be transmitted in the PUCCH is transmitted together with the data through the PUSCH in order to maintain a single carrier characteristic.
  • PUCCH uplink control information
  • a method of multiplexing uplink control information (UCI) (CQI / PMI, HARQ-ACK, RI, etc.) in a PUSCH region in a subframe in which a PUSCH is transmitted use.
  • UCI uplink control information
  • UL-SCH data and CQI / PMI are multiplexed before DFT-spreading and control information. You can send data together.
  • UL-SCH data performs rate-matching in consideration of CQI / PMI resources.
  • control information such as HARQ ACK, RI, and the like is multiplexed in the PUSCH region by puncturing UL-SCH data.
  • FIG. 9 shows an example of a signal processing procedure of an uplink shared channel which is a transport channel in a wireless communication system to which the present invention can be applied.
  • a signal processing procedure of an uplink shared channel (hereinafter, referred to as 'UL-SCH') may be applied to one or more transport channels or control information types.
  • the UL-SCH transmits data to a coding unit in the form of a transport block (TB) once every transmission time interval (TTI).
  • TB transport block
  • TTI transmission time interval
  • CRC parity bits P_0 to P_L-1 are attached to bits a_0 to a_A-1 of the transport block received from the upper layer (S90).
  • A is the size of the transport block
  • L is the number of parity bits.
  • Input bits with a CRC are the same as b_0 ⁇ b_B-1.
  • B represents the number of bits of the transport block including the CRC.
  • b_0 to b_B-1 are segmented into a plurality of code blocks (CBs) according to the TB size, and a CRC is attached to the divided CBs (S91).
  • CBs code blocks
  • S91 code block division and CRC attachment
  • bits are equal to c_r0 to c_r (Kr-1).
  • Kr is the number of bits according to code block r.
  • C represents the total number of code blocks.
  • channel coding is performed (S92).
  • the output bits after channel coding are the same as d_r0 ⁇ (i) to d_r (Dr-1) ⁇ (i).
  • i is an encoded stream index and may have a value of 0, 1, or 2.
  • Dr represents the number of bits of the i th coded stream for the code block r.
  • Each code block may be encoded by turbo coding, respectively.
  • rate matching is performed (S93).
  • the bits after the rate matching are the same as e_r0 to e_r (Er-1).
  • Er represents the number of rate matched bits of the r th code block.
  • control information when control information is transmitted in the PUSCH, channel coding is independently performed on the control information CQI / PMI, RI, and ACK / NACK (S96, S97, and S98). Since different coded symbols are allocated for transmission of each control information, each control information has a different coding rate.
  • the ACK / NACK information bit is composed of 1 bit or 2 bits
  • the ACK / NACK multiplexing is composed of 1 to 4 bits.
  • step S134 multiplexing of the coded bits f_0 to f_G-1 of the UL-SCH data and the coded bits q_0 to q_ (N_L * Q_CQI-1) of the CQI / PMI is performed (S95). .
  • the multiplexed result of data and CQI / PMI is equal to g_0 ⁇ g_H'-1.
  • N_L represents the number of layers to which UL-SCH transport blocks are mapped
  • H represents the total number of encoded bits allocated for UL-SCH data and CQI / PMI information to N_L transport layers to which transport blocks are mapped.
  • the multiplexed data, CQI / PMI, separately channel-coded RI, and ACK / NACK are channel interleaved to generate an output signal (S99).
  • Reference signal ( RS : Reference Signal)
  • the signal Since data is transmitted over a wireless channel in a wireless communication system, the signal may be distorted during transmission. In order to correctly receive the distorted signal at the receiving end, the distortion of the received signal must be corrected using the channel information.
  • a signal transmission method known to both a transmitting side and a receiving side and a method of detecting channel information using a distorted degree when a signal is transmitted through a channel are mainly used.
  • the above-mentioned signal is called a pilot signal or a reference signal (RS).
  • RS can be classified into two types according to its purpose. There are RSs for channel information acquisition and RSs used for data demodulation. Since the former has a purpose for the UE to acquire channel information on the downlink, it should be transmitted over a wide band, and a UE that does not receive downlink data in a specific subframe should be able to receive and measure its RS. It is also used for measurements such as handover.
  • the latter is an RS that the base station sends along with the corresponding resource when the base station transmits the downlink, and the UE can estimate the channel by receiving the RS, and thus can demodulate the data. This RS should be transmitted in the area where data is transmitted.
  • CRS Cell-specific reference signal
  • MBSFN RS multicast-broadcast single-frequency network reference signal
  • DM-RS demodulation reference signal
  • Positioning reference signal PRS
  • CSI-RS Channel state information reference signal
  • One reference signal is transmitted for each downlink antenna port.
  • the CRS is transmitted in all downlink subframes in a cell supporting PDSCH transmission.
  • the CRS is transmitted on one or more of antenna ports 0-3.
  • the MBSFN RS is transmitted in the MBSFN region of the MBSFN subframe only when a physical multicast channel (PMCH) is transmitted.
  • MBSFN RS is transmitted on antenna port 4.
  • MBSFN RS is defined only in Extended CP.
  • the DM-RS is present and valid for PDSCH demodulation only when PDSCH transmission is associated at the corresponding antenna port.
  • the DM-RS is transmitted only in the resource block (RB) to which the corresponding PDSCH is mapped.
  • DM-RS is not transmitted in RE of index pair (k, l).
  • the PRS is transmitted only in resource blocks within a downlink subframe configured for PRS transmission.
  • OFDM symbols in the MBSFN subframe configured for PRS transmission use the same CP as subframe # 0. If only an MBSFN subframe is configured as a positioning subframe in one cell, OFDM symbols configured for PRS in the MBSFN region of the corresponding subframe use an extended CP.
  • the start point of the OFDM symbol configured for PRS transmission is the same as the start point of the subframe in which all OFDM symbols have the same CP length as the OFDM symbol configured for PRS transmission.
  • the PRS is transmitted at antenna port 6.
  • the PRS is not mapped to the RE (k, l) allocated to a physical broadcast channel (PBCH), PSS or SSS regardless of the antenna port p.
  • PBCH physical broadcast channel
  • the reference signal will be described in more detail.
  • the CRS is a reference signal for information acquisition, handover measurement, and the like, of a channel state shared by all terminals in a cell.
  • DM-RS is used for data demodulation only for a specific terminal.
  • Such reference signals may be used to provide information for demodulation and channel measurement. That is, DM-RS is used only for data demodulation, and CRS is used for both purposes of channel information acquisition and data demodulation.
  • the receiving side measures the channel state from the CRS and is associated with channel quality such as Channel Quality Indicator (CQI), Precoding Matrix Index (PMI), Precoding Type Indicator (PTI) and / or Rank Indicator (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Index
  • PTI Precoding Type Indicator
  • RI Rank Indicator
  • the indicator is fed back to the sending side (ie base station).
  • CRS is also referred to as cell-specific RS.
  • CSI-RS a reference signal related to feedback of channel state information
  • the DM-RS may be transmitted through resource elements when data demodulation on the PDSCH is needed.
  • the UE may receive the presence or absence of a DM-RS through a higher layer and is valid only when a corresponding PDSCH is mapped.
  • the DM-RS may be referred to as a UE-specific RS or a demodulation RS (DMRS).
  • FIG. 10 illustrates a reference signal pattern mapped to a downlink resource block pair in a wireless communication system to which the present invention can be applied.
  • a downlink resource block pair is a unit in which a reference signal is mapped to 12 subcarriers in one subframe ⁇ frequency domain in the time domain.
  • one resource block pair on the time axis (x-axis) has a length of 14 OFDM symbols in the case of normal cyclic prefix (normal CP) (in case of (a) of FIG. 10), and the extended cyclic prefix (extended CP: extended Cyclic Prefix) has a length of 12 OFDM symbols (in case of (b) of FIG. 10).
  • the resource elements (REs) described as '0', '1', '2' and '3' in the resource block grid are determined by the CRS of the antenna port indexes '0', '1', '2' and '3', respectively.
  • the location of the resource element described as 'D' means the location of the DRS.
  • the CRS is used to estimate a channel of a physical antenna and is distributed in the entire frequency band as a reference signal that can be commonly received to all terminals located in a cell.
  • the CRS may be used for channel quality information (CSI) and data demodulation.
  • CSI channel quality information
  • the CRS is defined in various formats depending on the antenna arrangement at the transmitting side (base station).
  • the 3GPP LTE system (eg, Release-8) supports various antenna arrangements, and the downlink signal transmitting side has three types of antenna arrangements such as three single transmit antennas, two transmit antennas, and four transmit antennas. .
  • the reference signal for the single antenna port is arranged.
  • the reference signals for the two transmit antenna ports are arranged using time division multiplexing (TDM) and / or FDM frequency division multiplexing (FDM) scheme. That is, the reference signals for the two antenna ports are assigned different time resources and / or different frequency resources so that each is distinguished.
  • TDM time division multiplexing
  • FDM frequency division multiplexing
  • reference signals for the four transmit antenna ports are arranged using the TDM and / or FDM scheme.
  • the channel information measured by the receiving side (terminal) of the downlink signal may be transmitted by a single transmit antenna, transmit diversity, closed-loop spatial multiplexing, open-loop spatial multiplexing, or It may be used to demodulate data transmitted using a transmission scheme such as a multi-user MIMO.
  • a reference signal when a multiple input / output antenna is supported, when a reference signal is transmitted from a specific antenna port, the reference signal is transmitted to a location of resource elements specified according to a pattern of the reference signal, and the location of resource elements specified for another antenna port. Is not sent to. That is, reference signals between different antennas do not overlap each other.
  • mapping CRSs to resource blocks are defined as follows.
  • Equation 1 k and l represent a subcarrier index and a symbol index, respectively, and p represents an antenna port.
  • N_symb ⁇ DL represents the number of OFDM symbols in one downlink slot
  • N_RB ⁇ DL represents the number of radio resources allocated to downlink.
  • n_s represents a slot index and N_ID ⁇ cell represents a cell ID. mod stands for modulo operation.
  • the position of the reference signal depends on the v_shift value in the frequency domain. Since v_shift is dependent on the cell ID (ie, the physical layer cell ID), the position of the reference signal has various frequency shift values depending on the cell.
  • the position of the CRS may be shifted in the frequency domain according to the cell in order to improve channel estimation performance through the CRS.
  • reference signals in one cell are allocated to the 3k th subcarrier, and reference signals in another cell are allocated to the 3k + 1 th subcarrier.
  • the reference signals are arranged at six resource element intervals in the frequency domain, and are separated at three resource element intervals from the reference signal allocated to another antenna port.
  • reference signals are arranged at constant intervals starting from symbol index 0 of each slot.
  • the time interval is defined differently depending on the cyclic prefix length.
  • the reference signal In the case of the normal cyclic prefix, the reference signal is located at symbol indexes 0 and 4 of the slot, and in the case of the extended cyclic prefix, the reference signal is located at symbol indexes 0 and 3 of the slot.
  • the reference signal for the antenna port having the maximum value of two antenna ports is defined in one OFDM symbol.
  • the reference signals for reference signal antenna ports 0 and 1 are located at symbol indices 0 and 4 (symbol indices 0 and 3 for extended cyclic prefix) of slots,
  • the reference signal for is located at symbol index 1 of the slot.
  • the positions in the frequency domain of the reference signal for antenna ports 2 and 3 are swapped with each other in the second slot.
  • the DM-RS is used to demodulate data. Precoding weights used for a specific terminal in multiple I / O antenna transmission are used without change to estimate the corresponding channel by combining with the transmission channel transmitted from each transmission antenna when the terminal receives the reference signal.
  • the 3GPP LTE system (eg, Release-8) supports up to four transmit antennas, and DM-RS for rank 1 beamforming is defined. DM-RS for rank 1 beamforming also indicates a reference signal for antenna port index 5.
  • Equation 13 shows a case of a general cyclic prefix
  • Equation 14 shows a case of an extended cyclic prefix
  • N_sc ⁇ RB represents a resource block size in the frequency domain and is represented by the number of subcarriers.
  • n_PRB represents the number of physical resource blocks.
  • N_RB ⁇ PDSCH represents a frequency band of a resource block for PDSCH transmission.
  • n_s represents a slot index and N_ID ⁇ cell represents a cell ID. mod stands for modulo operation.
  • the position of the reference signal depends on the v_shift value in the frequency domain. Since v_shift is dependent on the cell ID (ie, the physical layer cell ID), the position of the reference signal has various frequency shift values depending on the cell.
  • Equations 1 to 3 k and p represent subcarrier indexes and antenna ports, respectively.
  • N_RB ⁇ DL, ns, and N_ID ⁇ Cell indicate the number of RBs, slot indexes, and cell IDs allocated to downlinks, respectively.
  • the position of RS depends on the value of v_shift in terms of frequency domain.
  • SRS is mainly used for measuring channel quality in order to perform frequency-selective scheduling of uplink and is not related to transmission of uplink data and / or control information.
  • the present invention is not limited thereto, and the SRS may be used for various other purposes for improving power control or supporting various start-up functions of terminals which are not recently scheduled.
  • start-up functions include initial modulation and coding scheme (MCS), initial power control for data transmission, timing advance, and frequency semi-selective scheduling. May be included.
  • MCS initial modulation and coding scheme
  • frequency semi-selective scheduling refers to scheduling in which frequency resources are selectively allocated to the first slot of a subframe, and pseudo-randomly jumps to another frequency in the second slot to allocate frequency resources.
  • the SRS may be used to measure downlink channel quality under the assumption that the radio channel is reciprocal between uplink and downlink. This assumption is particularly valid in time division duplex (TDD) systems where uplink and downlink share the same frequency spectrum and are separated in the time domain.
  • TDD time division duplex
  • Subframes of the SRS transmitted by any terminal in the cell may be represented by a cell-specific broadcast signal.
  • the 4-bit cell-specific 'srsSubframeConfiguration' parameter indicates an array of 15 possible subframes through which the SRS can be transmitted over each radio frame. Such arrangements provide flexibility for the adjustment of the SRS overhead in accordance with a deployment scenario.
  • the sixteenth arrangement of these switches completely switches off the SRS in the cell, which is mainly suitable for a serving cell serving high-speed terminals.
  • FIG. 11 illustrates an uplink subframe including a sounding reference signal symbol in a wireless communication system to which the present invention can be applied.
  • the SRS is always transmitted on the last SC-FDMA symbol on the arranged subframe.
  • the SRS and DMRS are located in different SC-FDMA symbols.
  • PUSCH data transmissions are not allowed in certain SC-FDMA symbols for SRS transmissions.
  • the sounding overhead is equal to the highest sounding overhead, even if all subframes contain SRS symbols. It does not exceed about 7%.
  • Each SRS symbol is generated by a base sequence (random sequence or a set of sequences based on Zadoff-Ch (ZC)) for a given time unit and frequency band, and all terminals in the same cell use the same base sequence.
  • SRS transmissions from a plurality of terminals in the same cell at the same frequency band and at the same time are orthogonal to each other by different cyclic shifts of the basic sequence to distinguish them from each other.
  • SRS sequences from different cells may be distinguished by assigning different base sequences to each cell, but orthogonality between different base sequences is not guaranteed.
  • the communication environment considered in the embodiments of the present invention includes all of the multi-carrier support environments. That is, the multicarrier system or carrier aggregation (CA) system used in the present invention is one or more having a bandwidth smaller than the target band when configuring the target broadband to support the broadband A system that aggregates and uses a component carrier (CC).
  • CA carrier aggregation
  • the multi-carrier means the aggregation of carriers (or carrier aggregation), wherein the aggregation of carriers means not only merging between contiguous carriers but also merging between non-contiguous carriers.
  • the number of component carriers aggregated between downlink and uplink may be set differently.
  • the case where the number of downlink component carriers (hereinafter referred to as 'DL CC') and the number of uplink component carriers (hereinafter referred to as 'UL CC') is the same is called symmetric aggregation. This is called asymmetric aggregation.
  • Such carrier aggregation may be used interchangeably with terms such as carrier aggregation, bandwidth aggregation, spectrum aggregation, and the like.
  • Carrier aggregation in which two or more component carriers are combined, aims to support up to 100 MHz bandwidth in an LTE-A system.
  • the bandwidth of the combining carrier may be limited to the bandwidth used by the existing system to maintain backward compatibility with the existing IMT system.
  • the existing 3GPP LTE system supports ⁇ 1.4, 3, 5, 10, 15, 20 ⁇ MHz bandwidth
  • the 3GPP LTE-advanced system i.e., LTE-A
  • Only bandwidths can be used to support bandwidths greater than 20 MHz.
  • the carrier aggregation system used in the present invention may support carrier aggregation by defining a new bandwidth regardless of the bandwidth used in the existing system.
  • the LTE-A system uses the concept of a cell to manage radio resources.
  • the carrier aggregation environment described above may be referred to as a multiple cell environment.
  • a cell is defined as a combination of a downlink resource (DL CC) and an uplink resource (UL CC), but the uplink resource is not an essential element. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • DL CC downlink resource
  • UL CC uplink resource
  • the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a specific UE When a specific UE has only one configured serving cell, it may have one DL CC and one UL CC, but when a specific UE has two or more configured serving cells, as many DLs as the number of cells Has a CC and the number of UL CCs may be the same or less.
  • the DL CC and the UL CC may be configured on the contrary. That is, when a specific UE has a plurality of configured serving cells, a carrier aggregation environment in which a UL CC has more than the number of DL CCs may be supported. That is, carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell).
  • carrier aggregation may be understood as merging two or more cells, each having a different carrier frequency (center frequency of a cell).
  • the term 'cell' should be distinguished from the 'cell' as an area covered by a generally used base station.
  • Cells used in the LTE-A system include a primary cell (PCell: Primary Cell) and a secondary cell (SCell: Secondary Cell).
  • PCell Primary Cell
  • SCell Secondary Cell
  • P cell and S cell may be used as a serving cell.
  • the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell composed of the PCell.
  • one or more serving cells may exist, and the entire serving cell includes a PCell and one or more SCells.
  • Serving cells may be configured through an RRC parameter.
  • PhysCellId is a cell's physical layer identifier and has an integer value from 0 to 503.
  • SCellIndex is a short identifier used to identify an SCell and has an integer value from 1 to 7.
  • ServCellIndex is a short identifier used to identify a serving cell (P cell or S cell) and has an integer value from 0 to 7. A value of 0 is applied to the Pcell, and SCellIndex is pre-assigned to apply to the Scell. That is, a cell having the smallest cell ID (or cell index) in ServCellIndex becomes a P cell.
  • P cell refers to a cell operating on a primary frequency (or primary CC).
  • the UE may be used to perform an initial connection establishment process or to perform a connection re-establishment process, and may also refer to a cell indicated in a handover process.
  • the P cell refers to a cell serving as a center of control-related communication among serving cells configured in a carrier aggregation environment. That is, the terminal may receive and transmit a PUCCH only in its own Pcell, and may use only the Pcell to acquire system information or change a monitoring procedure.
  • E-UTRAN Evolved Universal Terrestrial Radio Access
  • RRC connection reconfigutaion message of a higher layer including mobility control information to a UE supporting a carrier aggregation environment. It may be.
  • the S cell may refer to a cell operating on a secondary frequency (or, secondary CC). Only one PCell may be allocated to a specific UE, and one or more SCells may be allocated.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PUCCH does not exist in the remaining cells excluding the P cell, that is, the S cell, among the serving cells configured in the carrier aggregation environment.
  • the E-UTRAN adds the SCell to the UE supporting the carrier aggregation environment, the E-UTRAN may provide all system information related to the operation of the related cell in the RRC_CONNECTED state through a dedicated signal.
  • the change of the system information may be controlled by the release and addition of the related SCell, and at this time, an RRC connection reconfigutaion message of a higher layer may be used.
  • the E-UTRAN may perform dedicated signaling having different parameters for each terminal, rather than broadcasting in the related SCell.
  • the E-UTRAN may configure a network including one or more Scells in addition to the Pcells initially configured in the connection establishment process.
  • the Pcell and the SCell may operate as respective component carriers.
  • the primary component carrier (PCC) may be used in the same sense as the PCell
  • the secondary component carrier (SCC) may be used in the same sense as the SCell.
  • FIG. 12 shows an example of a component carrier and carrier aggregation in a wireless communication system to which the present invention can be applied.
  • Component carriers include a DL CC and an UL CC.
  • One component carrier may have a frequency range of 20 MHz.
  • FIG. 12 (b) shows a carrier aggregation structure used in the LTE_A system.
  • three component carriers having a frequency size of 20 MHz are combined.
  • the number of DL CCs and UL CCs is not limited.
  • the UE may simultaneously monitor three CCs, receive downlink signals / data, and transmit uplink signals / data.
  • the network may allocate M (M ⁇ N) DL CCs to the UE.
  • the UE may monitor only M limited DL CCs and receive a DL signal.
  • the network may assign L (L ⁇ M ⁇ N) DL CCs to allocate a main DL CC to the UE, in which case the UE must monitor the L DL CCs. This method can be equally applied to uplink transmission.
  • the linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by a higher layer message or system information such as an RRC message.
  • a combination of DL resources and UL resources may be configured by a linkage defined by SIB2 (System Information Block Type2).
  • SIB2 System Information Block Type2
  • the linkage may mean a mapping relationship between a DL CC on which a PDCCH carrying a UL grant is transmitted and a UL CC using the UL grant, and a DL CC (or UL CC) and HARQ ACK on which data for HARQ is transmitted. It may mean a mapping relationship between UL CCs (or DL CCs) through which a / NACK signal is transmitted.
  • Cross carrier scheduling may be referred to as Cross Component Carrier Scheduling or Cross Cell Scheduling.
  • a DL CC in which a PDCCH (DL Grant) and a PDSCH are transmitted to different DL CCs or a UL CC in which a PUSCH transmitted according to a PDCCH (UL Grant) transmitted in a DL CC is linked to a DL CC having received an UL grant This means that it is transmitted through other UL CC.
  • Whether to perform cross-carrier scheduling may be activated or deactivated UE-specifically and may be known for each UE semi-statically through higher layer signaling (eg, RRC signaling).
  • higher layer signaling eg, RRC signaling
  • a carrier indicator field (CIF: Carrier Indicator Field) indicating a PDSCH / PUSCH indicated by the corresponding PDCCH is transmitted to the PDCCH.
  • the PDCCH may allocate PDSCH resource or PUSCH resource to one of a plurality of component carriers using CIF. That is, when the PDCCH on the DL CC allocates PDSCH or PUSCH resources to one of the multi-aggregated DL / UL CC, CIF is set.
  • the DCI format of LTE-A Release-8 may be extended according to CIF.
  • the set CIF may be fixed as a 3 bit field or the position of the set CIF may be fixed regardless of the DCI format size.
  • the PDCCH structure (same coding and resource mapping based on the same CCE) of LTE-A Release-8 may be reused.
  • the PDCCH on the DL CC allocates PDSCH resources on the same DL CC or PUSCH resources on a single linked UL CC, CIF is not configured.
  • the same PDCCH structure (same coding and resource mapping based on the same CCE) and DCI format as the LTE-A Release-8 may be used.
  • the UE When cross carrier scheduling is possible, the UE needs to monitor the PDCCHs for the plurality of DCIs in the control region of the monitoring CC according to the transmission mode and / or bandwidth for each CC. Therefore, it is necessary to configure the search space and PDCCH monitoring that can support this.
  • the terminal DL CC set represents a set of DL CCs scheduled for the terminal to receive a PDSCH
  • the terminal UL CC set represents a set of UL CCs scheduled for the terminal to transmit a PUSCH.
  • the PDCCH monitoring set represents a set of at least one DL CC that performs PDCCH monitoring.
  • the PDCCH monitoring set may be the same as the terminal DL CC set or may be a subset of the terminal DL CC set.
  • the PDCCH monitoring set may include at least one of DL CCs in the terminal DL CC set. Alternatively, the PDCCH monitoring set may be defined separately regardless of the UE DL CC set.
  • the DL CC included in the PDCCH monitoring set may be configured to always enable self-scheduling for the linked UL CC.
  • the UE DL CC set, the UE UL CC set, and the PDCCH monitoring set may be configured UE-specifically, UE group-specifically, or cell-specifically.
  • cross-carrier scheduling When cross-carrier scheduling is deactivated, it means that the PDCCH monitoring set is always the same as the UE DL CC set. In this case, an indication such as separate signaling for the PDCCH monitoring set is not necessary.
  • a PDCCH monitoring set is defined in the terminal DL CC set. That is, in order to schedule PDSCH or PUSCH for the UE, the base station transmits the PDCCH through only the PDCCH monitoring set.
  • FIG. 13 illustrates an example of a subframe structure according to cross carrier scheduling in a wireless communication system to which the present invention can be applied.
  • DL CC 'A' represents a case in which a PDCCH monitoring DL CC is configured. If CIF is not used, each DL CC may transmit a PDCCH for scheduling its PDSCH without CIF. On the other hand, when the CIF is used through higher layer signaling, only one DL CC 'A' may transmit a PDCCH for scheduling its PDSCH or PDSCH of another CC using the CIF. At this time, DL CCs 'B' and 'C' that are not configured as PDCCH monitoring DL CCs do not transmit the PDCCH.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and attaches a CRC (Cyclic Redundancy Check) to the control information.
  • the CRC is masked with a unique identifier (referred to as RNTI (Radio Network Temporary Identifier)) according to the owner or purpose of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI) may be masked to the CRC.
  • the system information more specifically, the PDCCH for the system information block (SIB), the system information identifier and the system information RNTI (SI-RNTI) may be masked to the CRC.
  • SI-RNTI system information RNTI
  • RA-RNTI random access-RNTI
  • the base station performs channel coding on the control information added with the CRC to generate coded data.
  • channel coding may be performed at a code rate according to the MCS level.
  • the base station performs rate matching according to the CCE aggregation level allocated to the PDCCH format, modulates the coded data, and generates modulation symbols.
  • a modulation sequence according to the MCS level can be used.
  • the modulation symbols constituting one PDCCH may have one of 1, 2, 4, and 8 CCE aggregation levels.
  • the base station maps modulation symbols to physical resource elements (CCE to RE mapping).
  • a plurality of PDCCHs may be transmitted in one subframe. That is, the control region of one subframe includes a plurality of CCEs having indices 0 to N_ (CCE, k) -1.
  • N_ (CCE, k) means the total number of CCEs in the control region of the k-th subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • monitoring means that the UE attempts to decode each of the PDCCHs according to the monitored PDCCH format.
  • the base station does not provide information on where the PDCCH corresponding to the UE is.
  • the UE In order to receive the control channel transmitted from the base station, the UE cannot know where the PDCCH is transmitted in which CCE aggregation level or DCI format. Therefore, the UE monitors the aggregation of PDCCH candidates in a subframe. Find the PDCCH. This is called blind decoding (BD).
  • Blind decoding refers to a method in which a UE de-masks its UE ID in a CRC portion and then checks the CRC error to determine whether the corresponding PDCCH is its control channel.
  • the UE monitors the PDCCH of every subframe in order to receive data transmitted to the UE.
  • the UE wakes up in the monitoring interval of every DRX cycle and monitors the PDCCH in a subframe corresponding to the monitoring interval.
  • a subframe in which PDCCH monitoring is performed is called a non-DRX subframe.
  • the UE In order to receive the PDCCH transmitted to the UE, the UE must perform blind decoding on all CCEs present in the control region of the non-DRX subframe. Since the UE does not know which PDCCH format is to be transmitted, it is necessary to decode all PDCCHs at the possible CCE aggregation level until blind decoding of the PDCCH is successful in every non-DRX subframe. Since the UE does not know how many CCEs the PDCCH uses for itself, the UE should attempt detection at all possible CCE aggregation levels until the blind decoding of the PDCCH succeeds. That is, the UE performs blind decoding for each CCE aggregation level. That is, the terminal attempts to decode the CCE aggregation level unit as 1 first.
  • the decoding is attempted with a CCE aggregation level unit of 2. After that, the CCE aggregation level unit is decoded to 4 and the CCE aggregation level unit is decoded to 8. In addition, the UE attempts blind decoding for all four C-RNTI, P-RNTI, SI-RNTI, and RA-RNTI. In addition, the UE attempts blind decoding for all DCI formats to be monitored.
  • the search space means a PDCCH candidate set for monitoring and may have a different size according to each PDCCH format.
  • the search space may include a common search space (CSS) and a UE-specific / dedicated search space (USS).
  • CCS common search space
  • USS dedicated search space
  • all terminals can know the size of the common search space, but the terminal specific search space can be set individually for each terminal. Accordingly, the UE needs to monitor both the UE-specific search space and the common search space in order to decode the PDCCH, thus performing a maximum of 44 blind decoding (BDs) in one subframe. This does not include blind decoding performed according to different CRC values (eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI).
  • CRC values eg, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI
  • the base station may be unable to secure the CCE resources for transmitting the PDCCH to all of the terminals to transmit the PDCCH in a given subframe. This is because resources remaining after the CCE location is allocated may not be included in the search space of a specific UE.
  • a terminal specific hopping sequence may be applied to the starting point of the terminal specific search space to minimize this barrier that may continue to the next subframe.
  • Table 4 shows the sizes of the common search space and the terminal specific search space.
  • the UE does not simultaneously perform searches according to all defined DCI formats.
  • the UE may always search for DCI formats 0 and 1A in the UE-specific search space.
  • the DCI formats 0 and 1A have the same size, but the UE may distinguish the DCI formats by using a flag used for distinguishing the DCI formats 0 and 1A included in the PDCCH.
  • a DCI format other than 0 and 1A may be required for the UE. Examples of DCI formats include 1, 1B, and 2.
  • the UE may search for DCI formats 1A and 1C.
  • the UE may be configured to search for DCI format 3 or 3A, and DCI formats 3 and 3A have the same size as DCI formats 0 and 1A, but the UE uses a CRC scrambled by an identifier other than the UE specific identifier.
  • the DCI format can be distinguished.
  • Search space S_k ⁇ (L) is the aggregation level PDCCH candidate set according to the.
  • the CCE according to the PDCCH candidate set m of the search space may be determined by Equation 4 below.
  • the UE monitors both the UE-specific search space and the common search space to decode the PDCCH.
  • the common search space (CSS) supports PDCCHs having an aggregation level of ⁇ 4, 8 ⁇
  • the UE specific search space supports PDCCHs having an aggregation level of ⁇ 1, 2, 4, 8 ⁇ . .
  • Table 5 shows PDCCH candidates monitored by the UE.
  • Y_k is defined as in Equation 5.
  • n_RNTI may be defined as one of identification of the terminal.
  • n_s represents a slot number (or index) in a radio frame.
  • the PUCCH An ACK / NACK multiplexing method based on resource selection may be considered.
  • the contents of ACK / NACK responses for multiple data units are identified by the combination of the PUCCH resource and the resource of QPSK modulation symbols used for the actual ACK / NACK transmission.
  • the ACK / NACK result may be identified at the eNB as shown in Table 6 below.
  • HARQ-ACK (i) represents the ACK / NACK results for the i-th data unit (data unit).
  • DTX Discontinuous Transmission
  • the terminal transmits two bits (1, 1) using n_ (PUCCH, 1) ⁇ (1).
  • the UE If the UE fails to decode in the first and third data units and decodes in the second and fourth data units, the UE transmits bit (1, 0) using n_ (PUCCH, 1) ⁇ (3).
  • ACK / NACK channel selection if there is at least one ACK, the NACK and the DTX are coupled. This is because a combination of reserved PUCCH resources and QPSK symbols cannot indicate all ACK / NACK states. However, in the absence of an ACK, the DTX decouples from the NACK.
  • the PUCCH resource linked to the data unit corresponding to one explicit NACK may also be reserved for transmitting signals of multiple ACK / NACKs.
  • the block spreading scheme modulates control signal transmission using the SC-FDMA scheme.
  • a symbol sequence may be spread and transmitted on a time domain using an orthogonal cover code (OCC).
  • OCC orthogonal cover code
  • one symbol sequence is transmitted over a time domain and control signals of a plurality of terminals are multiplexed using a cyclic shift (CS) of a CAZAC sequence
  • a block spread based PUCCH format for example, In the case of PUCCH format 3
  • one symbol sequence is transmitted over a frequency domain, and control signals of a plurality of terminals are multiplexed using time-domain spreading using OCC.
  • FIG. 14 illustrates an example of generating and transmitting five SC-FDMA symbols during one slot in a wireless communication system to which the present invention can be applied.
  • two RS symbols may be used for one slot.
  • an RS symbol may be generated from a CAZAC sequence to which a specific cyclic shift value is applied, and may be transmitted in a form in which a predetermined OCC is applied (or multiplied) over a plurality of RS symbols.
  • a predetermined OCC is applied (or multiplied) over a plurality of RS symbols.
  • control information having an extended size can be transmitted as compared to the PUCCH format 1 series and 2 series.
  • one base station transmits and receives data to and from a plurality of terminals through a wireless channel environment in one cell / sector.
  • the base station receives packet traffic from the wired Internet network and transmits the received packet traffic to each terminal using a predetermined communication scheme. At this time, it is downlink scheduling that the base station determines which terminal uses which frequency domain to transmit data at which timing.
  • the data transmitted from the terminal is received and demodulated to transmit packet traffic to the wired Internet network.
  • Uplink scheduling determines which base station can use which frequency band to transmit uplink data to which terminal at which timing.
  • a terminal having a good channel state transmits and receives data using more time and more frequency resources.
  • 15 is a diagram illustrating a time-frequency resource block in the time frequency domain of a wireless communication system to which the present invention can be applied.
  • This resource may be defined again as a resource block, which is composed of any N subcarriers and any M subframes or a predetermined time unit.
  • N and M may be 1.
  • one rectangle means one resource block, and one resource block includes several subcarriers on one axis and a predetermined time unit on another axis.
  • the base station schedules one or more resource blocks to a selected terminal according to a predetermined scheduling rule, and the base station transmits data using the resource blocks assigned to the terminal.
  • the base station schedules one or more resource blocks to the selected terminal according to a predetermined scheduling rule, and the terminal transmits data on the uplink using the allocated resources.
  • an error control method in the case of a lost or damaged frame includes an ARQ (Automatic Repeat Request) method and a more advanced hybrid ARQ (HARQ) method.
  • ARQ Automatic Repeat Request
  • HARQ more advanced hybrid ARQ
  • the ARQ method waits for an acknowledgment message (ACK) after one frame is transmitted, and the receiving side sends an acknowledgment message (ACK) only when it is properly received. Send and error received frames are deleted from the receiver buffer.
  • the transmitting side receives the ACK signal, the frame is transmitted after that, but when the NACK message is received, the frame is retransmitted.
  • the receiver when the HARQ scheme is unable to demodulate a received frame, the receiver transmits a NACK message to the transmitter, but the received frame is stored in a buffer for a predetermined time and received when the frame is retransmitted. Combine with one frame to increase the reception success rate.
  • HARQ schemes which can be broadly divided into synchronous HARQ and asynchronous HARQ according to timing of retransmission, and reflect channel state with respect to the amount of resources used for retransmission. It can be divided into a channel-adaptive method and a channel-non-adaptive method according to whether or not it exists.
  • retransmission timing may be newly scheduled or additional signaling may be performed.
  • the timing at which retransmission is performed for a previously failed frame varies depending on various factors such as channel conditions.
  • the channel non-adaptive HARQ scheme is a scheme in which a modulation of a frame, a number of resource blocks to be used, adaptive modulation and coding (AMC), etc. are determined as initially determined during initial transmission.
  • the channel adaptive HARQ scheme is a scheme in which they vary according to the state of the channel. For example, the transmitting side transmits data using six resource blocks during initial transmission, and then retransmits using six resource blocks in the same way, and then retransmits the channel non-adaptive HARQ scheme.
  • the channel adaptive HARQ method is a method of retransmitting using resource blocks larger or smaller than six depending on the channel state.
  • the HARQ schemes that are commonly used include asynchronous channel-adaptive HARQ schemes and synchronous channel non-adaptive HARQ schemes. There is a non-adaptive HARQ method.
  • the asynchronous channel adaptive HARQ scheme can maximize retransmission efficiency by adaptively varying retransmission timing and the amount of resources used according to channel conditions, but it is not generally considered for uplink due to the disadvantage of increasing overhead. .
  • the synchronous channel non-adaptive HARQ method has the advantage that there is little overhead for this because the timing and resource allocation for retransmission is promised in the system, but the retransmission efficiency is very low when used in a channel state with a change There are disadvantages.
  • FIG. 16 is a diagram illustrating a resource allocation and retransmission process of an asynchronous HARQ scheme in a wireless communication system to which the present invention can be applied.
  • a time delay occurs as shown in FIG. 16 until after scheduling is performed and data is transmitted, ACK / NACK information is received from the terminal and the next data is transmitted again. This is due to the channel propagation delay and the time it takes to decode and encode data.
  • a method of transmitting using an independent HARQ process is used to transmit data without a gap. For example, if the shortest period between the next data transmission and the next data transmission is 7 subframes, the data transmission can be performed without space if there are 7 independent processes.
  • the LTE physical layer supports HARQ in the PDSCH and the PUSCH and transmits an associated ACK feedback on a separate control channel.
  • cooperative multi-point (CoMP) transmission may be implemented using a carrier aggregation (CA) function in LTE.
  • CA carrier aggregation
  • 17 is a diagram illustrating a carrier aggregation based CoMP system in a wireless communication system to which the present invention can be applied.
  • a primary cell (PCell) carrier and a secondary cell (SCell) carrier use the same frequency band on the frequency axis, and are allocated to two geographically separated eNBs.
  • a serving eNB allocates a PCell to UE1 and allocates a SCell from a neighboring base station which gives a lot of interference, thereby enabling various DL / UL CoMP operations such as JT, CS / CB, and dynamic cell selection.
  • FIG. 17 illustrates an example in which a UE merges two eNBs into a PCell and a SCell, but in reality, a UE merges three or more cells, some of which operate in CoMP operation in the same frequency band, and other cells. It is also possible to perform simple CA operation in other frequency bands, where the PCell does not necessarily participate in CoMP operation.
  • the UE is in the subframe intended for itself in the DCI formats 1, 1A, 1B, 1C, 1D, 2, 2A,
  • the UE decodes the corresponding PDSCH in the same subframe by being limited to the number of transport blocks defined in the higher layer.
  • the UE decodes the PDSCH according to the detected PDCCH having the CRC scrambled by the SI-RNTI or the P-RNTI delivering the DCI formats 1A and 1C intended for the user, and the resource block (RB) to which the PDSCH is delivered. ) Assumes that no PRS exists.
  • a UE in which a carrier indicator field (CIF) is configured for a serving cell assumes that a carrier indication field does not exist in any PDCCH of a serving cell in a common search space.
  • CIF carrier indicator field
  • the terminal in which the CIF is set is assumed to exist in the PDCCH in which the CIF for the serving cell is located in the UE specific search space. do.
  • the UE If the UE is configured by the upper layer to decode the PDCCH having the CRC scrambled by SI-RNTI, the UE decodes the PDCCH and the corresponding PDSCH according to the combination defined in Table 3 below. PDSCH corresponding to this PDCCH (s) is scrambling initialization by SI-RNTI.
  • Table 7 illustrates the PDCCH and PDSCH set by the SI-RNTI.
  • the UE decodes the PDCCH and the corresponding PDSCH according to the combination defined in Table 4 below.
  • the PDSCH corresponding to this PDCCH (s) is scrambling initialized by the P-RNTI.
  • Table 8 illustrates the PDCCH and PDSCH set by the P-RNTI.
  • the UE If the UE is configured by the upper layer to decode the PDCCH having the CRC scrambled by the RA-RNTI, the UE decodes the PDCCH and the corresponding PDSCH according to the combination defined in Table 5 below. PDSCH corresponding to this PDCCH (s) is scrambling initialization by RA-RNTI.
  • Table 9 illustrates the PDCCH and PDSCH set by the RA-RNTI.
  • the UE may be semi-statically configured through higher layer signaling to receive the PDSCH data transmission signaled through the PDCCH according to one of nine transmission modes such as modes 1 to 9. .
  • the UE does not receive the PDSCH RB transmitted on the antenna port 5 in any subframe in which the number of OFDM symbols for the PDCCH having the general CP is four.
  • the UE does not receive PDSCH RBs transmitted on antenna ports 5, 7, 8, 9, 10, 11, 12, 13, or 14 in the two PRBs.
  • the terminal does not receive the PDSCH RB transmitted on antenna port 7 assigned to the distributed VRB resource allocation.
  • the UE may skip decoding the transport block. If the terminal skips decoding, the physical layer instructs the upper layer that the transport block has not been successfully decoded.
  • the UE does not receive the PDSCH RB transmitted on the antenna port 5 in any subframe in which the number of OFDM symbols for the PDCCH having the general CP is four.
  • the UE does not receive the PDSCH RB transmitted at antenna port 5 in the two PRBs.
  • the terminal may perform antenna ports 7, 8, 9, 10, Do not receive PDSCH RB transmitted at 11, 12, 13 or 14.
  • the UE When the general CP is configured, the UE does not receive the PDSCH at the antenna port 5 assigned VRB resource allocation allocated in the special subframe in the uplink-downlink configuration # 1 or # 6.
  • the terminal does not receive the PDSCH at the antenna port 7 assigned to the distributed VRB resource allocation.
  • the UE may skip decoding the transport block. If the terminal skips decoding, the physical layer instructs the upper layer that the transport block has not been successfully decoded.
  • the UE If the UE is configured by the upper layer to decode the PDCCH having the CRC scrambled by the C-RNTI, the UE decodes the PDCCH and the corresponding PDSCH according to each combination defined in Table 6 below.
  • the PDSCH corresponding to this PDCCH (s) is scrambling initialized by the C-RNTI.
  • the UE is configured by the CIF for the serving cell or the UE is set by the higher layer to decode the PDCCH having the CRC scrambled by the C-RNTI, the UE is to determine the PDSCH of the serving cell indicated by the CIF value in the decoded PDCCH Decode
  • the UE When the UE in transmission mode 3, 4, 8, or 9 receives DCI format 1A approval, the UE assumes that PDSCH transmission is related to transport block 1 and that transport block 2 is disabled.
  • the terminal specific reference signal corresponding to this PDCCH (s) is scrambling-initialized by the C-RNTI.
  • the terminal does not support transmission mode 8.
  • the terminal When the terminal is set to transmission mode 9, if the terminal detects a PDCCH having a CRC scrambled by the C-RNTI conveying the DCI format 1A or 2C intended for it, the terminal is a higher layer parameter ('mbsfn) Decode the corresponding PDSCH in the subframe indicated by -SubframeConfigList ').
  • the upper layer is set to decode the PMCH, or the PRS view is set only within the MBSFN subframe, and the CP length used in the subframe # 0 is a general CP, and is set as part of the PRS view by the higher layer. Subframes are excluded.
  • Table 10 illustrates the PDCCH and PDSCH set by the C-RNTI.
  • the UE If the UE is configured by the upper layer to decode the PDCCH having the CRC scrambled by the SPS C-RNTI, the UE decodes the PDCCH of the primary cell and the corresponding PDSCH of the primary cell according to each combination defined in Table 7 below. do. If the PDSCH is transmitted without the corresponding PDCCH, the same PDSCH related configuration is applied. The PDSCH corresponding to this PDCCH and the PDSCH without the PDCCH are scrambling initialized by the SPS C-RNTI.
  • the terminal specific reference signal corresponding to this PDCCH (s) is scrambling initialized by the SPS C-RNTI.
  • the UE When the UE is set to transmission mode 9, the UE is configured without a PDCCH having an CRC scrambled by an SPS C-RNTI carrying an DCI format 1A or 2C intended for it or without an PDCCH intended for it.
  • the UE Upon detecting the PDSCH, the UE decodes the PDSCH in the subframe indicated by the higher layer parameter 'mbsfn-SubframeConfigList'.
  • the upper layer is set to decode the PMCH, or the PRS view is set only within the MBSFN subframe, and the CP length used in the subframe # 0 is a general CP, and is set as part of the PRS view by the higher layer. Subframes are excluded.
  • Table 11 illustrates the PDCCH and PDSCH set by the SPS C-RNTI.
  • the UE is configured to decode PDCCH having a CRC scrambled by Temporary C-RNTI (C-RNTI) by a higher layer and is configured not to decode the PDCCH having a CRC scrambled by C-RNTI, the UE
  • the PDCCH and the corresponding PDSCH are decoded according to the combination defined in Table 8 below.
  • the PDSCH corresponding to this PDCCH (s) is initialized scrambling by a temporary C-RNTI (C-RNTI).
  • Table 12 illustrates the PDCCH and PDSCH set by the temporary C-RNTI.
  • the UE is semi-statically configured through higher layer signaling to transmit the PUSCH transmission signaled through the PDCCH according to any one of two uplink transmission modes of modes 1 and 2 defined in Table 13 below. . If the UE is set by the upper layer to decode the PDCCH having the CRC scrambled by the C-RNTI, the UE decodes the PDCCH according to the combination defined in Table 9 below, and transmits the corresponding PUSCH. PUSCH transmission corresponding to this PDCCH (s) and PUSCH retransmission for the same transport block are scrambling-initialized by C-RNTI.
  • the transmission mode 1 is a default uplink transmission mode for a terminal until the terminal is assigned an uplink transmission mode by higher layer signaling.
  • the UE When the UE is set to transmission mode 2 and receives a DCI format 0 uplink scheduling grant, the UE assumes that PUSCH transmission is associated with transport block 1 and that transport block 2 is disabled.
  • Table 13 illustrates the PDCCH and the PUSCH set by the C-RNTI.
  • the terminal may be configured as shown in the following table. Decode the PDCCH according to the combination defined in 10.
  • Table 14 illustrates a PDCCH set as a PDCCH order for initiating a random access procedure.
  • the UE If the UE is configured to decode the PDCCH having the CRC scrambled by the SPS C-RNTI by the higher layer, the UE decodes the PDCCH according to the combination defined in Table 11 below and transmits the corresponding PUSCH.
  • PUSCH transmission corresponding to this PDCCH (s) and PUSCH retransmission for the same transport block are initialized by scrambling by the SPS C-RNTI.
  • the minimum transmission of this PUSCH and the PUSCH retransmission for the same transport block without the corresponding PDCCH are scrambling-initialized by the SPS C-RNTI.
  • Table 15 illustrates the PDCCH and the PUSCH set by the SPS C-RNTI.
  • the UE is shown in Table 12 below.
  • PDCCH is decoded according to the defined combination and the corresponding PUSCH is transmitted.
  • the PUSCH corresponding to this PDCCH (s) is scrambling initialized by the temporary C-RNTI.
  • the PUSCH transmission corresponding to the random access response grant and the PUSCH retransmission for the same transport block are scrambled by the temporary C-RNTI. Otherwise, the PUSCH transmission corresponding to the random access response grant and the PUSCH retransmission for the same transport block are scrambled by the C-RNTI.
  • Table 16 illustrates the PDCCH set by the temporary C-RNTI.
  • the terminal If the terminal is configured to decode the PDCCH having the CRC scrambled by the TPC-PUCCH-RNTI by the upper layer, the terminal decodes the PDCCH according to the combination defined in Table 13 below.
  • 3 / 3A notation implies that the terminal receives the DCI format 3 or the DCI format according to the configuration.
  • Table 17 illustrates the PDCCH set by the TPC-PUCCH-RNTI.
  • the terminal If the terminal is configured to decode the PDCCH having the CRC scrambled by the TPC-PUSCH-RNTI by the upper layer, the terminal decodes the PDCCH according to the combination defined in Table 14 below.
  • the notation of 3 / 3A in Table 14 implies that the terminal receives the DCI format 3 or the DCI format according to the setting.
  • Table 18 illustrates the PDCCH set by the TPC-PUSCH-RNTI.
  • the relay node transmits data transmitted and received between the base station and the terminal through two different links (backhaul link and access link).
  • the base station may comprise a donor cell.
  • the relay node is wirelessly connected to the radio access network through the donor cell.
  • the band (or spectrum) of the relay node the case in which the backhaul link operates in the same frequency band as the access link is referred to as 'in-band', and the backhaul link and the access link have different frequencies.
  • the case of operating in band is called 'out-band'.
  • a terminal operating in accordance with an existing LTE system eg, Release-8) (hereinafter, referred to as a legacy terminal) should be able to access a donor cell.
  • the relay node may be classified as a transparent relay node or a non-transparent relay node.
  • a transparent means a case where a terminal does not recognize whether or not it communicates with a network through a relay node
  • a non-transparent means a case where a terminal recognizes whether a terminal communicates with a network through a relay node.
  • the relay node may be divided into a relay node configured as part of a donor cell or a relay node controlling a cell by itself.
  • the relay node configured as part of the donor cell may have a relay node identifier, but does not have a cell identity of the relay node itself.
  • RRM Radio Resource Management
  • a relay node configured as part of the donor cell even though the remaining parts of the RRM are located in the relay node.
  • a relay node can support legacy terminals.
  • various types of smart repeaters, decode-and-forward relays, L2 (layer 2) relay nodes, and type 2 relay nodes may be included in these relay nodes. Corresponding.
  • the relay node controls one or a plurality of cells, and a unique physical layer cell identifier is provided to each of the cells controlled by the relay node.
  • each of the cells controlled by the relay node may use the same RRM mechanism. From a terminal perspective, there is no difference between accessing a cell controlled by a relay node and accessing a cell controlled by a general base station.
  • the cell controlled by the relay node may support the legacy terminal. For example, self-backhauling relay nodes, L3 (third layer) relay nodes, type-1 relay nodes, and type-1a relay nodes are such relay nodes.
  • the type-1 relay node controls the plurality of cells as in-band relay nodes, each of which appears to be a separate cell from the donor cell from the terminal's point of view.
  • the plurality of cells have their own physical cell IDs (which are defined in LTE Release-8), and the relay node may transmit its own synchronization channel, reference signal, and the like.
  • the terminal may receive scheduling information and HARQ feedback directly from the relay node and transmit its control channel (scheduling request (SR), CQI, ACK / NACK, etc.) to the relay node.
  • SR scheduling request
  • CQI CQI
  • ACK / NACK etc.
  • the type-1 relay node is seen as a legacy base station (base station operating according to the LTE Release-8 system). That is, it has backward compatibility.
  • the type-1 relay node may be seen as a base station different from the legacy base station, thereby providing a performance improvement.
  • the type-1a relay node has the same features as the type-1 relay node described above in addition to operating out-band.
  • the operation of the type-1a relay node can be configured to minimize or eliminate the impact on L1 (first layer) operation.
  • the type-2 relay node is an in-band relay node and does not have a separate physical cell ID and thus does not form a new cell.
  • the type 2 relay node is transparent to the legacy terminal, and the legacy terminal is not aware of the existence of the type 2 relay node.
  • the type-2 relay node may transmit the PDSCH, but at least do not transmit the CRS and PDCCH.
  • resource partitioning In order for the relay node to operate in-band, some resources in the time-frequency space must be reserved for the backhaul link and these resources can be set not to be used for the access link. This is called resource partitioning.
  • the backhaul downlink and the access downlink may be multiplexed in a time division multiplexed (TDM) manner on one carrier frequency (ie, only one of the backhaul downlink or access downlink is activated at a particular time).
  • TDM time division multiplexed
  • the backhaul uplink and access uplink may be multiplexed in a TDM manner on one carrier frequency (ie, only one of the backhaul uplink or access uplink is activated at a particular time).
  • backhaul downlink transmission may be performed in a downlink frequency band
  • backhaul uplink transmission may be performed in an uplink frequency band
  • backhaul link multiplexing in TDD backhaul downlink transmission may be performed in a downlink subframe of a base station and a relay node
  • backhaul uplink transmission may be performed in an uplink subframe of a base station and a relay node.
  • the relay node may be connected to the relay node by a signal transmitted from the relay node.
  • Signal interference may occur at the receiving end. That is, signal interference or RF jamming may occur at the RF front-end of the relay node.
  • signal interference may occur even when the backhaul uplink transmission to the base station and the access uplink reception from the terminal are simultaneously performed in the same frequency band.
  • the antennas should be sufficiently spaced apart from each other such as installing the transmitting antenna and the receiving antenna on the ground / ground. If not provided, it is difficult to implement.
  • One way to solve this problem of signal interference is to operate the relay node so that it does not transmit a signal to the terminal while receiving a signal from the donor cell. That is, a gap can be created in the transmission from the relay node to the terminal, and during this gap, the terminal (including the legacy terminal) can be set not to expect any transmission from the relay node. This gap can be set by configuring a multicast broadcast single frequency network (MBSFN) subframe.
  • MBSFN multicast broadcast single frequency network
  • a downlink (ie, access downlink) control signal and data are transmitted from a relay node to a terminal as a first subframe, and a second subframe is a MBSFN subframe in a control region of a downlink subframe.
  • the control signal is transmitted from the relay node to the terminal, but no transmission is performed from the relay node to the terminal in the remaining areas of the downlink subframe.
  • the relay node since the PDCCH is expected to be transmitted in all downlink subframes (in other words, the relay node needs to support legacy UEs in its own area to perform the measurement function by receiving the PDCCH in every subframe).
  • N 1, 2 or 3 OFDM symbol intervals of the subframe.
  • the node needs to do access downlink transmission rather than receive the backhaul downlink.
  • the PDCCH is transmitted from the relay node to the terminal in the control region of the second subframe, backward compatibility with respect to the legacy terminal served by the relay node may be provided.
  • the relay node may receive the transmission from the base station while no transmission is performed from the relay node to the terminal. Accordingly, through this resource partitioning scheme, it is possible to prevent access downlink transmission and backhaul downlink reception from being simultaneously performed at the in-band relay node.
  • the control region of the second subframe may be referred to as a relay node non-hearing interval.
  • the relay node non-hearing interval means a period in which the relay node transmits the access downlink signal without receiving the backhaul downlink signal. This interval may be set to 1, 2 or 3 OFDM lengths as described above.
  • the relay node may perform access downlink transmission to the terminal and receive a backhaul downlink from the base station in the remaining areas. At this time, since the relay node cannot simultaneously transmit and receive in the same frequency band, it takes time for the relay node to switch from the transmission mode to the reception mode.
  • a guard time needs to be set for the relay node to transmit / receive mode switching in the first partial period of the backhaul downlink reception region.
  • a guard time for switching the reception / transmission mode of the relay node may be set.
  • the length of this guard time may be given as a value in the time domain, for example, may be given as k (k ⁇ 1) time sample (Ts) values, or may be set to one or more OFDM symbol lengths. have.
  • the guard time of the last part of the subframe may not be defined or set.
  • Such guard time may be defined only in a frequency domain configured for backhaul downlink subframe transmission in order to maintain backward compatibility (when a guard time is set in an access downlink period, legacy terminals cannot be supported).
  • the relay node may receive the PDCCH and the PDSCH from the base station. This may be expressed as a relay-PDCCH (R-PDCCH) and an R-PDSCH (Relay-PDSCH) in the sense of a relay node dedicated physical channel.
  • QC / QCL quadsi co-located or quasi co-location
  • the wide range characteristics include one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • the terminal may assume that one symbol may be inferred from the radio channel through which it is carried.
  • the broad characteristics include one or more of delay spread, Doppler spread, Doppler shift, average gain, and average delay.
  • two antenna ports are in QC / QCL relationship (or QC / QCL), so that the broad characteristics of the radio channel from one antenna port are the same as those of the radio channel from the other antenna port.
  • Means Considering a plurality of antenna ports through which RSs are transmitted, if the antenna ports through which two different RSs are transmitted are in a QCL relationship, the broad characteristics of the radio channel from one antenna port may be obtained from another antenna port. It could be replaced by the broad nature of the wireless channel.
  • the above QC / QCL related definitions are not distinguished. That is, the QC / QCL concept may follow one of the above definitions. Or in another similar form, antenna ports for which QC / QCL assumptions hold can be assumed to be transmitted at the same co-location (eg, antenna ports transmitting at the same transmission point). QC / QCL concept definitions may be modified, and the spirit of the present invention includes such similar variations. In the present invention, the above definitions related to QC / QCL are used interchangeably for convenience of description.
  • the terminal cannot assume the same wide-ranging characteristic among the radio channels from the corresponding antenna ports for non-QC / QCL antenna ports. That is, in this case, the terminal must perform independent processing for each set non-QC / QCL antenna port for timing acquisition and tracking, frequency offset estimation and compensation, delay estimation, and Doppler estimation.
  • the terminal can perform the following operations:
  • the terminal may determine the power-delay profile, delay spreading and Doppler spectrum, and Doppler spreading estimation results for the radio channel from any one antenna port. The same applies to a Wiener filter used for channel estimation for a wireless channel from another antenna port.
  • the terminal may perform time and frequency synchronization for one antenna port and then apply the same synchronization to demodulation of another antenna port.
  • the terminal may average reference signal received power (RSRP) measurements for two or more antenna ports.
  • RSRP reference signal received power
  • the UE estimates the radio channel estimated from its CRS antenna port when estimating the channel through the corresponding DMRS antenna port.
  • large-scale properties large-scale properties
  • the CRS is a reference signal broadcast with a relatively high density (density) throughout every subframe and the entire band, so that an estimate of the wide characteristic can be obtained more stably from the CRS.
  • the DMRS is UE-specifically transmitted for a specific scheduled RB, and since the precoding matrix used by the BS is changed in the precoding resource block group (PRG) unit, the effective channel received by the UE is Since the PRG may vary in units of PRGs, even when a plurality of PRGs are scheduled, performance degradation may occur when DMRS is used to estimate a wide range of characteristics of a wireless channel over a wide band.
  • PRG precoding resource block group
  • the CSI-RS can have a transmission period of several to several tens of ms, and has a low density of 1 resource element per antenna port on average per resource block, the CSI-RS can also be used to estimate the wide characteristics of a radio channel. Performance degradation may occur.
  • the UE can utilize the detection / reception of downlink reference signals, channel estimation, channel state reporting, and the like.
  • Buffer status reporting BSR Buffer status reporting
  • the buffer status reporting procedure may be used to provide a serving eNB with information about the amount of data available (or valid) for transmission in the UL buffers of the terminal.
  • the RRC may control BSR reporting by configuring two timers, where two timers may correspond to periodicBSR-Timer and retxBSR-Timer.
  • the RRC may control BSR reporting by signaling a logical channel group (LCG) that selectively allocates a logical channel for an LCG (Logical Channel Group).
  • LCG logical channel group
  • the terminal should consider all radio bearers that are not suspended. In this case, the terminal may also consider stationary radio bearers.
  • the BSR may be triggered when any one of the following events occurs.
  • the UL resources are allocated and the number of padding bits is equal to or greater than the size of the Buffer status Report MAC control element plus its subheader (i.e. the BSR is described below below).
  • the BSR is described below below.
  • the BSR is described below below.
  • Period BSR-Timer expires (ie, when BSR corresponds to / designated “Periodic BSR”, described below).
  • UL grant is not configured or regular BSR is not triggered due to data that can be transmitted through a logical channel (where the logical channel is a channel for which SR masking (logicalChannelSR-Mask) is set by an upper layer).
  • logicalChannelSR-Mask SR masking
  • the MAC PDU includes at most one MAC BSR control element.
  • the UE may start or restart the retxBSR-Timer.
  • All triggered BSRs may be canceled if the UL grant of the subframe can accommodate all pending transmission data, but not enough to additionally accommodate the sum of the BSR MAC control element and its subheader. All triggered BSRs may be canceled if the BSR is included in the MAC PDU for transmission.
  • the terminal may transmit at most one Regular / Periodic BSR in one TTI. If the UE is requested to transmit a plurality of MAC PDUs in one TTI, the padding BSR may be included in any one of the MAC PDUs not including the Regular / Periodic BSR.
  • All BSRs transmitted within one TTI may always reflect the buffer status after all MAC PDUs configured for the TTI have been transmitted.
  • Each LCG may report at most one buffer status value per TTI, which may be reported in all BSRs reporting buffer status for this LCG.
  • Padding BSR is not allowed to cancel triggered Regular / Periodic BSR. Padding BSR is triggered only for a specific MAC PDU, which trigger is canceled when this MAC PDU is configured.
  • FIG. 19 is a diagram for explaining elements of a D2D technique.
  • a UE means a terminal of a user, but when a network device such as an eNB transmits or receives a signal according to a communication method with the UE, the corresponding network device may also be regarded as a kind of UE.
  • UE1 may operate to select a resource unit corresponding to a specific resource in a resource pool representing a set of resources and transmit a D2D signal using the corresponding resource unit.
  • UE2 which is a receiving UE, configures a resource pool through which UE1 can transmit a signal, and detects a signal of UE1 within the corresponding pool.
  • the resource pool may inform the base station when UE1 is in the connection range of the base station, and may be determined by another UE or determined as a predetermined resource when it is outside the connection range of the base station.
  • a resource pool may include a plurality of resource units, and each UE may select one or a plurality of resource units to use for transmitting their D2D signals.
  • 20 is a diagram illustrating an embodiment of a configuration of a resource unit.
  • a total frequency resource is divided into N_F and a total time resource is divided into N_T, so that a total of N_F * N_T resource units may be defined.
  • the resource pool is repeated every N_T subframes.
  • one resource unit may appear periodically and repeatedly as shown in the figure.
  • an index of a physical resource unit to which one logical resource unit is mapped may change in a predetermined pattern according to time.
  • a resource pool may mean a set of resource units that can be used for transmission by a UE that wants to transmit a D2D signal.
  • resource pools may be classified according to content of D2D signals transmitted from each resource pool.
  • contents of the D2D signal may be classified as follows, and a separate resource pool may be configured for each.
  • SA Scheduling assignment: location of resources used for transmission of D2D data channel performed by each transmitting UE, modulation and coding scheme (MCS) or MIMO transmission scheme required for demodulation of other data channels and / or Signal containing information such as timing advance.
  • MCS modulation and coding scheme
  • This signal may be transmitted multiplexed with D2D data on the same resource unit.
  • an SA resource pool may mean a pool of resources in which an SA is multiplexed with D2D data and transmitted, and may also be referred to as a D2D control channel.
  • D2D data channel A resource pool used by a transmitting UE to transmit user data using resources specified through SA. If it is possible to be multiplexed and transmitted with D2D data on the same resource unit, only a D2D data channel having a form other than SA information may be transmitted in a resource pool for the D2D data channel. In other words, the resource elements used to transmit SA information on individual resource units in the SA resource pool can still be used to transmit D2D data in the D2D data channel resource pool.
  • a transmission timing determination method of a D2D signal for example, is it transmitted when a synchronization reference signal is received or is transmitted by applying a certain timing advance at that time
  • a resource allocation method for example, For example, whether the eNB assigns transmission resources of an individual signal to an individual transmitting UE or whether an individual transmitting UE selects an individual signaling resource on its own within a pool, and a signal format (for example, each D2D signal occupies one subframe).
  • the number of symbols, the number of subframes used for transmission of one D2D signal), the signal strength from the eNB, and the transmission power strength of the D2D UE may be further divided into different resource pools.
  • FIG. 21 illustrates a case in which an SA resource pool and a subsequent data channel resource pool appear periodically.
  • a cycle in which an SA resource pool appears may be referred to as an SA period.
  • the present invention provides a method for selecting a resource for transmitting a relay signal when performing a relay operation in D2D communication.
  • Mode 1 a transmission resource region is set in advance, or the eNB designates a transmission resource region, and the UE directly transmits a resource for a method in which the eNB directly indicates a transmission resource of the D2D transmitting UE in D2D communication.
  • the method of selecting is called Mode 2.
  • D2D discovery when the eNB directly indicates a resource, a type 2 when a UE directly selects a transmission resource in a type 2, a preset resource region, or an eNB-indicated resource region will be referred to as / definition.
  • the above-mentioned D2D may be called sidelink
  • SA is a physical sidelink control channel (PSCCH)
  • D2D synchronization signal is a sidelink synchronization signal (SSS), and transmits the most basic information before D2D communication transmitted with SSS
  • the control channel may be referred to as a physical sidelink broadcast channel (PSBCH), or another name, a PD2DSCH (Physical D2D synchronization channel).
  • PSBCH physical sidelink broadcast channel
  • PD2DSCH Physical D2D synchronization channel
  • PSDCH physical sidelink discovery channel
  • the D2D communication UE transmits the PSBCH with the SSS, and therefore, the measurement of the SSS is performed using the DMRS of the PSBCH.
  • the UE measures the DMRS of the PSBCH and measures the RSRP (reference signal received power) of the signal to determine whether it is to be a synchronization source.
  • 22 to 24 are diagrams showing an example of a relay process and resources for relay to which the present invention can be applied.
  • a terminal in a communication system supporting inter-terminal communication, may substantially expand coverage by transmitting data to a terminal out of coverage through a relay.
  • UEs 1 and / or UE 2 which are UEs within coverage of UE 0, may receive a message transmitted by UE 0.
  • the relay operation may be performed to transmit a message to UE 3 and UE 4 that are outside the coverage of UE 0.
  • the relay operation refers to an operation in which terminals in coverage deliver a message to transmit a message to a terminal existing outside the coverage.
  • FIG. 23 illustrates an example of the relay operation.
  • the data packet may be transmitted to the UE 3 through the UE 1.
  • the UE 0 when the UE 0 intends to transmit the data packet to the UE 3, the UE 0 transmits the data packet by setting a parameter indicating whether the data packet is relayed to perform a relay operation (S26010). .
  • UE 1 receives the data packet and determines whether to relay the data packet through the parameter.
  • the UE 1 transmits the received data packet to UE 3 when the parameter indicates a relay operation, and does not transmit the data packet to UE 3 when the parameter does not indicate a relay operation.
  • the UE 0 may transmit a message to a terminal existing outside the coverage.
  • FIG. 24 shows an example of a method for selecting a resource for the relay operation.
  • a terminal autonomously selects a resource from a resource pool and relays a message. That is, UEs (UE 1, UE 2, UE 3, etc.) relaying the same message may relay the same message by randomly selecting a resource from each resource pool.
  • the receiving terminal may receive the same message through the same resource. Reduce waste of resources.
  • V2X vehicle-to-everything
  • V2X side link communication refers to vehicle-to-vehicle (V2V), which refers to communication between vehicles, vehicle to infrastructure (V2I), which refers to communication between a vehicle and an eNB or roadside unit (RSU). And communication between the vehicle and all entities, such as a vehicle-to-pedestrian (V2P), which refers to the terminal-to-device communication possessed by an individual (pedestrian, cyclist, vehicle driver, or passenger).
  • V2V vehicle-to-vehicle
  • V2I vehicle to infrastructure
  • RSU roadside unit
  • V2P vehicle-to-pedestrian
  • the network entity may be a base station (eNB), a road side unit (RSU), a terminal, or an application server (eg, a traffic safety server).
  • eNB base station
  • RSU road side unit
  • terminal e.g., a terminal
  • application server eg, a traffic safety server
  • the terminal performing the V2X side link communication is not only a general handheld UE, but also a vehicle terminal (V-UE (Vehicle UE)), a pedestrian UE, an RSU of an eNB type, Alternatively, this may mean an RSU of a UE type.
  • V-UE Vehicle UE
  • a pedestrian UE a pedestrian UE
  • RSU of an eNB type a pedestrian UE
  • this may mean an RSU of a UE type.
  • V2X side link communication may be performed directly between terminals or through the network entity (s).
  • the V2X operation mode may be classified according to the method of performing the V2X side link communication.
  • V2X The terminology used in V2X may be defined as follows.
  • a Road Side Unit (RSU) is a V2X service capable device that can send and receive to and from mobile vehicles using V2I services.
  • RSU is also a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • Pseudonymity The conditions under which the processing of personally identifiable information (PII) no longer uses the additional information and is provided to a particular subscriber, such additional information is kept separate and identified or identifiable As long as there are technical and organizational measures to ensure non-attribution to the subscriber.
  • PII personally identifiable information
  • RSU is a commonly used term in the existing ITS specification, and the reason for introducing it in the 3GPP specification is to make the document easier to read in the ITS industry.
  • An RSU is a logical entity that combines V2X application logic with the functionality of an eNB (called an eNB-type RSU) or a UE (called a UE-type RSU).
  • V2I Service A type of V2X service, with entities on one side and vehicle on the other.
  • V2P Service A type of V2X service, one device is a vehicle and the other is an individual device (for example, a portable terminal carried by a pedestrian, cyclist, driver or passenger).
  • V2X Service A type of 3GPP communication service that involves transmitting or receiving devices in a vehicle.
  • V2V service may be further divided into a V2V service, a V2I service, and a V2P service according to the other party participating in the communication.
  • V2I service may be further divided into a V2V service, a V2I service, and a V2P service according to the other party participating in the communication.
  • V2P service may be further divided into a V2V service, a V2I service, and a V2P service according to the other party participating in the communication.
  • V2X enabled UE UE that supports V2X service.
  • V2V Service A type of V2X service, both of which are vehicles.
  • V2V communication range Direct communication range between two vehicles participating in V2V service.
  • V2X Vehicle-to-Everything
  • V2V vehicle-to-vehicle
  • V2I vehicle-to-infrastructure
  • V2N vehicle-to-network
  • V2P vehicle-to-network
  • FIG. 25 shows a type of V2X application to which the present invention can be applied.
  • V2X applications may use "co-operative awareness" to provide more intelligent services for end users.
  • 3GPP only handles the transmission of these messages to support various types of V2X applications.
  • V2X side link communication a communication mode in which the UE can communicate directly over the PC5 interface.
  • This communication mode is supported when the UE is served by the E-UTRAN and when the UE is outside of E-UTRA coverage.
  • V2X side link communication Only UEs authorized to be used for V2X services can perform V2X side link communication.
  • V2X side link communication The user plane protocol stack and functionality shown in FIG. 3A for side link communication is also used for V2X side link communication.
  • V2X side link communication For V2X side link communication:
  • the sidelink transport channel (STCH) for side link communication is also used for V2X side link communication.
  • Non-V2X data transmitted from resources configured for V2X side link communication is not multiplexed with Non-V2X (e.g. public safety) data.
  • the control plane protocol stack for SBCCH is also used for V2X side link communication as shown in FIG. 3B for side link communication.
  • UEs supporting V2X side link communication can operate in two modes for resource allocation:
  • the UE needs to be RRC_CONNECTED to send data.
  • the UE requests transmission resources from eNB.
  • the eNB schedules transmission resources for transmission of side link control information and data.
  • the UE itself selects a resource from a resource pool and performs a transport format selection for transmitting side link control information and data.
  • the UE selects the V2X side link resource pool based on the zone in which the UE is located.
  • the UE performs sensing for (re) selection of side link resources. Based on the detection result, the UE (re) selects some specific side link resources and reserves a number of side link resources.
  • Up to two parallel independent resource reservation processes are allowed to be performed by the UE.
  • the UE is also allowed to perform a single resource selection for V2X side link transmission.
  • the geographic area can be configured by the eNB or preconfigured. When an area is constructed, the world is divided into geographic areas using a single fixed reference point (i.e., geographic coordinates (0, 0)), length, and width.
  • the UE determines the zone identity by modulo operation using the length and width of each zone, the number of zones in length, the number of zones in width, and a single fixed reference point.
  • each zone The length and width of each zone, the number of zones in length and the number of zones in width are provided by the eNB when the UE is in coverage, and preconfigured when the UE is out of coverage.
  • This area can be configured in both the service area and the service area.
  • the eNB may provide a mapping between the zone (s) and the V2X side link transmission resource pools of SIB21.
  • the mapping between zone (s) and V2X side link transmission resource pools may be preconfigured.
  • the UE selects the transmission side link resource from the resource pool corresponding to the zone in which it is currently located.
  • the zone concept does not apply to receive pools as well as exceptional V2X side link transmit pools.
  • Resource pools for V2X side link communication are not organized according to priority.
  • a transmission resource pool configuration including an exceptional transmission resource pool for the target cell may be signaled in the handover command to reduce transmission interruption.
  • the UE can use the transport sidelink resource pools of the target cell before handover is complete as long as synchronization is performed with the target cell.
  • the UE starts using a randomly selected resource in the exceptional transmission resource pool starting from the reception of the handover command. If the UE is configured with scheduled resource allocation in the handover command, the UE continues to use the exceptional transmission resource pool while the timer associated with the handover is running. If the UE is configured with autonomous resource selection in the target cell, the UE continues to use the exceptional transmission resource pool until initial detection is completed in the transmission resource pool for autonomous resource selection.
  • the UE In exceptional cases (eg, during an RLF, during a transition from RRC IDLE to RRC CONNECTED, or during a change of a dedicated side link resource pool in a cell), the UE is in the exception pool provided to SIB21 of the serving cell based on sensing. You can select resources and use them temporarily.
  • the synchronization configuration for the target cell and the reception resource pool configuration may be signaled to the RRC_CONNECTED UEs in the handover command.
  • the RRC_IDLE UE it is up to the UE implementation to minimize the side link transmission / reception downtime associated with the acquisition of SIB21 of the target cell.
  • the UE is considered in-coverage in the carrier used for V2X side link communication whenever it detects a cell on that carrier according to the criteria.
  • scheduled resource allocation or UE autonomous resource selection may be used according to the eNB configuration.
  • V2X side link communication resources are not shared with other Non-V2X applications that are sent over the side link.
  • the UE may transmit a Sidelink UE Information message to the serving cell.
  • the UE receives the configured resources.
  • the serving cell may provide a synchronization configuration for the carrier used for V2X side link communication.
  • the UE follows the synchronization configuration received from the serving cell.
  • the UE follows the preconfigured synchronization configuration.
  • the GNSS is configured as a synchronization source, the UE uses UTC time to directly calculate the frame number and sub frame number.
  • the UE follows the PCell (RRC_CONNECTED) / Serving Cell (RRC_IDLE) for synchronization and DL measurement.
  • PCell RRC_CONNECTED
  • RRC_IDLE Serving Cell
  • a base station indication-based scheduling method of side link communication ie, Mode 3
  • a scheduling method ie, Mode 4 in which the UE selects resources by itself in a specific resource pool may be used.
  • Mode 3 of the V2V side link communication corresponds to Mode 1 of the existing side link communication
  • Mode 4 corresponds to Mode 2 of the existing side link communication
  • Mode 4 may be referred to as a distributed scheduling scheme, and Mode 3 may be referred to as an eNB scheduling scheme.
  • V2V traffic from the terminal is mostly periodic.
  • the V2V traffic is used to detect congestion on a resource and estimate future congestion on that resource. Based on the estimation, the corresponding resources are booked.
  • the use of the channel can be optimized by improving the separation efficiency between transmitters using overlapping resources.
  • Configuration 1 for configuration 4 ie, distributed scheduling
  • configuration 2 for configuration of mode 3 ie, eNB scheduling
  • 26 shows examples of scheduling schemes that can be applied to V2V side link communication.
  • both configurations use a dedicated carrier for V2V communication. That is, the band for the dedicated carrier is used only for PC5 based V2V communication.
  • time synchronization may be performed by a global navigation satellite system (GNSS).
  • GNSS global navigation satellite system
  • scheduling and interference management of V2V traffic is supported based on a distributed algorithm (ie, Mode 4) implemented between the vehicles.
  • the distribution algorithm is based on sensing through semi-persistent transmission.
  • a mechanism is defined in which resource allocation depends on geographical information.
  • configuration 2 scheduling and interference management of V2V traffic is supported by the base station eNB through control signaling through the Uu interface.
  • the base station allocates resources used for V2V signaling in a dynamic manner.
  • the base station transmits a DL grant to the UE in the specific DL subframe to schedule the PDSCH transmitted in a specific DL subframe (e.g. subframe #n).
  • the V2X subframe (the subframe in which V2X transmission occurs) is not related to only the DL subframe or the UL subframe of the TDD system, it is defined in the Salping LTE TDD system.
  • the existing content ie, the timing relationship between grant and data (PDSCH or PUSCH) transmission
  • PDSCH or PUSCH the timing relationship between grant and data
  • V2X scheduling method If the timing relationship between grant and data transmission defined in the existing LTE TDD system is applied to the TDD V2X scheduling method, some V2X subframes are not included in the TDD UL / DL configuration where the number of DL subframes is smaller than the number of V2X subframes.
  • the scheduling may not be performed by the V2X grant (or sidelink grant).
  • the present specification provides a method in which all V2X subframes can be indicated by sidelink grant in a TDD V2X system by defining a new offset indicator (or offset index) to solve the above problem.
  • the sidelink transmission may include transmission of SA and / or transmission of sidelink data.
  • the SA may be represented by Sidelink Control Information (SCI) format 1 or 1A, and may be carried through a Physical Sidelink Control Channel (PSCCH).
  • SCI Sidelink Control Information
  • PSCCH Physical Sidelink Control Channel
  • mode 3 sidelink grant may mean a sidelink grant used in the scheduling method of the salping mode 3 above.
  • a method eg, sidelink mode 3, mode 3 indicating a resource required for V2V transmission (e.g., sidelink mode 3 and mode 3) performs the V2V transmission using a resource of a certain subframe in a V2V carrier through a sidelink grant. You can specify whether or not.
  • the sidelink grant used for the V2V transmission may reuse DCI format 0 or an existing UL grant or may be newly defined for V2V.
  • the sidelink grant used for the V2V transmission includes sidelink scheduling information.
  • a sidelink grant used for V2V or V2X communication will be expressed as a V2V sidelink grant or a V2X sidelink grant, and unless otherwise specified, the sidelink grant used below is considered to mean a V2V or V2X sidelink grant.
  • the V2V sidelink grant may use the same size and the same (or similar) fields as the existing UL grant.
  • the V2V sidelink grant may be represented by DCI format 5 or 5A.
  • the sidelink grant (e.g. downlink subframe or special subframe) should be able to schedule all V2V subframes.
  • the V2V subframes refer to subframes scheduled by the sidelink grant, and may refer to subframes in which a PSCCH or a PSSCH can be transmitted.
  • a sidelink grant that transmits scheduling information does not become a one-to-one mapping (eg, a paired FDD downlink and uplink spectrum) between a subframe to which it is transmitted (or carried) and a scheduled V2V subframe, and a specific constraint occurs, Some V2V subframes may not be scheduled.
  • a one-to-one mapping eg, a paired FDD downlink and uplink spectrum
  • the aforementioned problem may occur in the following cases.
  • V2V uses some or all of the TDD UL subframes of the same carrier as the eNB, and 2) V2V uses some or all of the UL subframes of the carrier different from the eNB.
  • the case 1) may be solved by using or applying the configuration for the UL grant and UL subframe defined in the existing LTE TDD system.
  • 2) may mean cross carrier scheduling.
  • -(LTE) eNB and V2V use the same carrier, and the entire subframe is divided by TDM (Time Division Multiplexing).
  • the subframe configuration is repeated at a predetermined period (hereinafter, referred to as 'T1') in the scheduling carrier and the scheduled carrier.
  • 'T1' a predetermined period
  • the (LTE) TDD downlink-uplink (subframe) configuration shown in Table 1 above is an example.
  • the constant period may be 1 radio frame or 10 subframes.
  • the scheduling carrier may be represented by carrier 1, scheduling carrier, f1, and the like.
  • the scheduled carrier may be represented by carrier 2, scheduled carrier, f2, and the like.
  • the number of subframes (eg, downlink and special subframes) used in the carrier (hereinafter, referred to as "f1") scheduled in the T1 period is used in the scheduled carrier (hereinafter, referred to as "f2"). If the number of subframes (eg, uplink subframes) is different, the above-described problem (that is, some V2V subframes may not be scheduled) may occur.
  • one grant (eg UL grant) transmitted in one subframe on f1 may not indicate only one specific subframe on f2, but a one-to-many mapping structure indicating one or more subframes among a plurality of subframes.
  • a plurality of grants transmitted in one or more subframes on f1 should have a many-to-one mapping structure that can commonly indicate a specific subframe on f2.
  • each grant transmitted in a specific subframe on f1 is an offset indicating the position of a (UL or V2V) subframe on f2 corresponding to each grant. It may include a sidelink related indicator indicating (offset).
  • an offset indicating a position of a UL subframe or a V2V subframe on f2 from a sidelink grant reception time will be referred to as an additional offset.
  • the information indicating the additional offset may be expressed as additional offset information, additional offset field, sidelink related indicator, sidelink indicator, sidelink index, sidelink control information, or control information.
  • the LTE frame structure type on f1 is TDD and the uplink-downlink configuration on f1 is '0' (or TDD configuration 0).
  • f2 is a V2V sidelink spectrum (ie, V2V data can be transmitted and received through all subframes or all subframes are V2V subframes)
  • DCI transmission in the TDD scheme occurs in a downlink pilot time slot (DwPTS) of a downlink subframe and / or a special subframe.
  • DwPTS downlink pilot time slot
  • the D2D transmitting terminal receives a sidelink grant in DL subframe #n on f1 from the base station, and the received sidelink grant schedules subframe # (n + (k + a)) on f2.
  • the subframe # (n + (k + a)) is included in the sidelink subframe.
  • the k value is a value that takes into account a propagation delay of a signal and a processing time of a vehicle UE (hereinafter, “V-UE”), and may be defined in advance, may be transmitted through a physical channel, or an upper layer ( It may be indicated through a higher layer signal.
  • V-UE vehicle UE
  • the k value may be a predetermined value in a specific system, a specific time point or a specific situation, or may be composed of independent values.
  • This table shows an example of a k value that can be specified as evenly as the sidelink transmission time.
  • Table 19 is an example and may be changed according to circumstances.
  • Table 19 assumes a situation in which (E) -PDCCH is transmitted in DwPTS of a special subframe.
  • Table 19 shows an example of a fixed offset (k) value between DL DCI and sidelink transmission.
  • FIG. 27 is a diagram illustrating an example of a position of a V2V subframe according to the fixed offset values of Table 19.
  • SF # 2701 indicates a subframe number
  • TDD SF 2702 indicates a configuration of downlink subframe, special subframe, and uplink subframe in each DL / UL configuration
  • offset 2703 is fixed in Table 19.
  • the offset (k) value, and V2V SF denotes a V2V subframe and is indicated by hatched 2704 in FIG. 27.
  • the portion 2705 denoted by 'V' in the V2V SF indicates a V2V subframe indicated by the corresponding sidelink grant in consideration of the fixed offset value of Table 19.
  • the value of a represents an additional offset additionally required when scheduling a plurality of sidelink subframes in a small number of downlink subframes (as in TDD configuration 0), as described above. Value indicated by offset information or an additional offset field.
  • DL / UL grant may be transmitted in a special subframe as well as a DL subframe.
  • the size of the additional offset field will be larger than if the sidelink grant can also be transmitted in the special subframe.
  • the sidelink grant can be transmitted only in the DL subframe, as shown in Table 1, since TDD configuration 0 has two subframes used as downlinks, the sidelink grants are used as sidelink grants transmitted in the corresponding DL subframe (either SA or sidelink data). In order to indicate scheduling for all sidelink subframe (s), the size of the additional offset field must be larger than 2 bits. Meanwhile, when a sidelink grant can be transmitted not only in a DL subframe but also in a special subframe. As shown in Table 1, since TDD configuration 0 has four subframes used as downlink and special subframes, all sidelink subframes (which can transmit SA or sidelink data) to sidelink grants transmitted in the corresponding DL subframe. In order to indicate scheduling for (s), the size of the additional offset field must be larger than 1 bits.
  • the DCI field (or additional offset field) indicating the additional offset value (a) is equal to (1) (n + 1) bits (first embodiment) or (2) n bits (second embodiment).
  • the a indicating the additional offset value is an example and may be changed to another character.
  • the first embodiment illustrates a case where the size of the additional offset field is 3 bits.
  • the sidelink grant present in the two downlink subframes may indicate all 10 sidelink subframes.
  • the sidelink grant has the same size as the existing DCI (e.g. DCI format 0), it may be difficult to add an additional offset field having a size of 3 bits to the sidelink grant.
  • the existing DCI e.g. DCI format 0
  • the sidelink grant generally contains less information than the existing grant, the sidelink grant is set smaller than the size of the existing grant.
  • a separate (or new) DCI may need to be defined in order for the TDD carrier (f1) to schedule the sidelink carrier (f2).
  • Table 20 below shows an example of displaying an additional offset field in 3 bits.
  • the second embodiment shows a case in which the size of the additional offset field is 2 bits.
  • the sidelink subframe may be scheduled with an additional offset within 2 bits.
  • the size of the additional offset requires 3 bits is assumed that there are 2 DL subframes in TDD configuration 0 and 10 subframes are scheduled. In some cases, the size of the additional offset may be 2 bits.
  • the size of the additional offset field is defined as 2 bits, and a solution method in which some V2V subframes cannot be scheduled by the sidelink grant, such as TDD configuration 0, will be described.
  • Method 1 may use only some subframes (e.g. 8 subframes) of the sidelink mode 3 for all sidelink subframes (e.g. 1 period (or 10 subframes corresponding to 1 radio frame)).
  • an additional offset value (e.g. 0 or 1) may be designated as RRC signaling for scheduling of some sidelink subframes that cannot be scheduled.
  • a field indicating a value may be interpreted as the number indicated by the field value or may be interpreted as meaning a specific configuration corresponding to the number.
  • values 00, 01, 10, and 11 that may be mapped to the corresponding field may respectively indicate (1) offset values 0 to 3 (Table 21 below). Or (2) type 0 to type 3.
  • Table 21 below shows an example in which the size of the additional offset field is expressed as 2 bits.
  • FIG. 28 illustrates an example of a method in which a V2V subframe is indicated by a sidelink grant using an additional offset field proposed in the present specification.
  • FIG. 28 illustrates a V2V subframe indicated by a sidelink grant of a DL when the LTE base station and the V2V use different carriers.
  • the Uu carrier is a carrier used by an LTE base station
  • a PC 5 carrier represents a carrier using V2V
  • both carriers are set to TDD UL / DL configuration 0.
  • the base station and the terminal communicates through the Uu carrier, and the terminals communicate through the PC5 carrier.
  • the subframe 2830 of the hatched portion of the PC 5 carrier of FIG. 28 indicates subframes that are not UL subframes.
  • the base station can transmit the sidelink grant using the subframe 2830 of the hatched portion.
  • the V2V transmitting terminal receives the sidelink grant in subframe #n (or subframe # n + 5), the sublink # n + 7 (or subframe # n + 12 or the next period (or the next radio frame) by the sidelink grant. V2V transmission is performed in subframe # n + 5).
  • the field indicating the additional offset proposed in the present specification may be newly defined in the sidelink grant, and specific fields existing in the existing DCI grant as in the third embodiment to be described later will be described. You can also reuse fields.
  • the third embodiment relates to a method of displaying an additional offset value by reusing fields existing in an existing DCI grant.
  • Parts related to TDD operation in DCI format 0 or the existing UL grant include UL index and downlink assignment index (DAI).
  • DAI downlink assignment index
  • the UL index is a value indicating a subframe in which the UL transmission occurs, and the subframe in which the UL transmission occurs depends on a setting value of the LSB (Least Significant Bit) and / or the MSB (Most Significant Bit) of the UL index. Only present in configuration 0.
  • the DAI may refer to the number of scheduled cells (or CCs) when a plurality of cells (or component carriers) are configured and exist in an uplink-downlink configuration except for TDD configuration 0.
  • the transmission of the UL grant may not be related to the associated PUSCH, PHICH transmission, HARQ operation or CSI request.
  • the UL index and the DAI may be used by changing the side index scheduling purpose, that is, the salpin additional offset value.
  • the size of the additional offset field is 2 bits
  • 2 bits of the UL index may be used to indicate the additional offset field for TDD configuration 0
  • 2 for the TDD configuration 1 to 6 may be used for indicating the additional offset field.
  • bits may be used to indicate the additional offset field.
  • the additional offset field may be displayed by further extending 1 bit (LSB or MSB) of the UL index with respect to the TDD configuration 0.
  • the additional offset field (for example, sidelink offset or sidelink index, etc.) proposed in this specification means that the UL index and the DAI can be recycled when the salping UL index field and the DAI field are not used. It is not meant to be interpreted in the same sense as the fields.
  • the additional offset field proposed in this specification can be indicated by all of the (V2V) subframes by the scheduling grant in order to solve the problem that some (V2V) subframes are not scheduled by the sidelink scheduling grant (in the TDD system). This is because it means the index indicating the offset of the scheduling grant and (V2V) subframe scheduled.
  • the DAI (or UL index) cannot use the existing HARQ reporting method according to DL / UL configuration, which is a characteristic of TDD, thereby bundling (or combining) ACK (Acknowledgement) / NACK (Non-Acknowledgement) reporting. Indicates the indicator used when transmitting.
  • the DAI indicates how much the base station has scheduled a specific (DL) subframe within a window of a range capable of performing ACK / NACK bundling, and if schduling, a counter indicating how many subframes have been scheduled (DL subframe) (DL DAI).
  • the DAI is used to indicate how many subframes are scheduled in the bundling window, that is, information on the number of scheduled subframes in a DL subframe that transmits a UL grant for a specific UL subframe (UL DAI).
  • the first embodiment to the third embodiment of the salping is applicable not only when the LTE base station and the V2V uses different carriers but also when using the same carrier.
  • 29 is a flowchart illustrating an example of a method of performing sidelink transmission proposed in the present specification.
  • the terminal receives a sidelink grant (sidelink grant) used for scheduling of sidelink transmission from the base station (S2910).
  • sidelink grant sidelink grant
  • the terminal is a terminal that performs sidelink transmission, and may be referred to as a sidelink transmission terminal, a D2D transmission terminal, a V2V transmission terminal, and the like.
  • the sidelink grant refers to a DCI (Downlink Control Information) grant associated with the sidelink, and may also be expressed in DCI format 5 or 5A.
  • DCI Downlink Control Information
  • the sidelink grant includes control information indicating an offset of a specific subframe associated with the sidelink grant.
  • the control information may be expressed as a sidelink index or simply an SL index.
  • the size of the control information may be 2 bits or 3 bits.
  • control information is 2 bits, as shown in Table 22, it may be set to '00', '01', '10' or '11'.
  • the value indicated by the control information may correspond to '0', '1', '2' or '3', respectively.
  • the control information may be represented by an offset field, and the value indicated by the control information may be represented by 'a' or 'm'.
  • control information may be included in the sidelink grant only in a time division duplex (TDD) system using an uplink-downlink configuration (0-6).
  • TDD time division duplex
  • the sidelink grant may be transmitted through at least one of a downlink subframe or a special subframe.
  • the terminal determines the specific subframe in consideration of the value indicated by the control information (S2920).
  • the specific subframe may be included in a sidelink subframe in which the sidelink transmission occurs.
  • the terminal performs the sidelink transmission in the specific subframe (S2930).
  • the operation described with reference to FIG. 29 may be performed in the case of salpin sidelink transmission mode 3.
  • the terminal receives the sidelink grant at subframe n, and the value indicated by the control information is 'a', the specific subframe in which sidelink transmission is generated by the sidelink grant is subframe n. may be + k + a.
  • k is a value in consideration of the propagation delay and the processing time of the terminal, for example, k may be 4.
  • a carrier for receiving the sidelink grant and a carrier for performing the sidelink transmission may be the same or different.
  • the sidelink transmission may be performed from the sidelink transmitting terminal to the sidelink receiving terminal through the PC5 interface.
  • the sidelink transmission may be expressed as vehicle-to-vehicle (V2V) transmission or vehicle-to-everything (V2X).
  • V2V vehicle-to-vehicle
  • V2X vehicle-to-everything
  • FIG. 30 is a block diagram illustrating a wireless communication device according to one embodiment of the present invention.
  • a wireless communication system includes a base station (or network) 3010 and a terminal 3020.
  • the base station 3010 includes a processor 3011, a memory 3012, and a communication module 3013.
  • the processor 3011 implements the functions, processes, and / or methods proposed in FIGS. 1 to 29. Layers of the wired / wireless interface protocol may be implemented by the processor 3011.
  • the memory 3012 is connected to the processor 3011 and stores various information for driving the processor 3011.
  • the communication module 3013 is connected to the processor 3011 and transmits and / or receives a wired / wireless signal.
  • the communication module 3013 may include a radio frequency unit (RF) unit for transmitting / receiving a radio signal.
  • RF radio frequency unit
  • the terminal 3020 includes a processor 3021, a memory 3022, and a communication module (or RF unit) 3023.
  • the processor 3021 implements the functions, processes, and / or methods proposed in FIGS. 1 to 29. Layers of the air interface protocol may be implemented by the processor 3021.
  • the memory 3022 is connected to the processor 3021 and stores various information for driving the processor 3021.
  • the communication module 3023 is connected to the processor 3021 to transmit and / or receive a radio signal.
  • the memories 3012 and 3022 may be inside or outside the processors 3011 and 3021, and may be connected to the processors 3011 and 3021 by various well-known means.
  • the base station 3010 and / or the terminal 3020 may have a single antenna or multiple antennas.
  • FIG. 31 is a block diagram illustrating a communication device according to one embodiment of the present invention.
  • FIG. 31 is a diagram illustrating the terminal of FIG. 30 in more detail.
  • a terminal may include a processor (or a digital signal processor (DSP) 3110, an RF module (or RF unit) 3135, and a power management module 3105). ), Antenna 3140, battery 3155, display 3115, keypad 3120, memory 3130, SIM card Subscriber Identification Module card) 3125 (this configuration is optional), a speaker 3145, and a microphone 3150.
  • the terminal may also include a single antenna or multiple antennas. Can be.
  • the processor 3110 implements the functions, processes, and / or methods proposed in FIGS. 1 to 29.
  • the layer of the air interface protocol may be implemented by the processor 3110.
  • the memory 3130 is connected to the processor 3110 and stores information related to the operation of the processor 3110.
  • the memory 3130 may be inside or outside the processor 3110 and may be connected to the processor 3110 by various well-known means.
  • the user enters command information, such as a telephone number, for example by pressing (or touching) a button on the keypad 3120 or by voice activation using the microphone 3150.
  • the processor 3110 receives the command information, processes the telephone number, and performs a proper function. Operational data may be extracted from the SIM card 3125 or the memory 3130. In addition, the processor 3110 may display command information or driving information on the display 3115 for the user to recognize and for convenience.
  • the RF module 3135 is connected to the processor 3110 to transmit and / or receive an RF signal.
  • the processor 3110 communicates command information to the RF module 3135 to transmit, for example, a radio signal constituting voice communication data to initiate communication.
  • the RF module 3135 is configured with a receiver and a transmitter for receiving and transmitting a radio signal.
  • the antenna 3140 functions to transmit and receive radio signals.
  • the RF module 3135 may forward the signal and convert the signal to baseband for processing by the processor 3110.
  • the processed signal may be converted into audible or readable information output through the speaker 3145.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 명세서는 무선 통신 시스템에서 사이드링크 전송을 수행하는 방법 및 단말이 개시된다. 구체적으로, 본 명세서는 무선 통신 시스템에서 사이드링크 전송(sidelink transmission)을 수행하는 방법에 있어서, 단말에 의해 수행되는 방법은, 상기 사이드링크 전송의 스케쥴링(scheduling)을 위해 사용되는 사이드링크 그랜트(sidelink grant)를 기지국으로부터 수신하는 단계, 상기 사이드링크 그랜트(sidelink grant)는 상기 사이드링크 그랜트와 연관된 특정 서브프래임의 오프셋(offset)을 지시하는 제어 정보를 포함하고; 상기 제어 정보에 의해 지시되는 값을 고려하여 상기 특정 서브프래임(sidelink subframe)을 결정하는 단계; 및 상기 특정 서브프래임에서 상기 사이드링크 전송을 수행하는 단계를 포함하는 것을 특징으로 한다.

Description

무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 사이드링크 전송을 수행하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 TDD(Time Division Duplex) V2X 통신에서 사이드링크 서브프래임의 위치와 관련된 오프셋(offset) 정보를 이용하여 모든 사이드링크 서브프래임(sidelink subframe)이 사이드링크 그랜트(sidelink grant)에 의해 스케쥴받는 방법을 제공함에 목적이 있다.
즉, 본 명세서는 TDD V2X 통신에서 사이드링크 그랜트와 사이드링크 전송 간의 타이밍(timing)을 명확하게 정의하는 방법을 제공함에 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 사이드링크 전송(sidelink transmission)을 수행하는 방법에 있어서, 단말에 의해 수행되는 방법은, 상기 사이드링크 전송의 스케쥴링(scheduling)을 위해 사용되는 사이드링크 그랜트(sidelink grant)를 기지국으로부터 수신하는 단계, 상기 사이드링크 그랜트(sidelink grant)는 상기 사이드링크 그랜트와 연관된 특정 서브프래임의 오프셋(offset)을 지시하는 제어 정보를 포함하고; 상기 제어 정보에 의해 지시되는 값을 고려하여 상기 특정 서브프래임(sidelink subframe)을 결정하는 단계; 및 상기 특정 서브프래임에서 상기 사이드링크 전송을 수행하는 단계를 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 사이드링크 전송 모드 3(sidelink transmission mode 3)인 경우에 수행되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 사이드링크 그랜트는 서브프래임 n에서 수신되고, 상기 제어 정보에 의해 지시되는 값이 'a'인 경우, 상기 특정 서브프래임은 서브프래임 n+k+a인 것을 특징으로 한다.
또한, 본 명세서에서 상기 k는 '4'인 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 정보의 크기는 2 bits이며, 상기 제어 정보가 '00', '01', '10' 또는 '11'로 설정된 경우, 상기 제어 정보에 의해 지시되는 값은 각각 '0', '1', '2' 또는 '3'인 것을 특징으로 한다.
또한, 본 명세서에서 상기 특정 서브프래임은 상기 사이드링크 전송이 일어나는 사이드링크 서브프래임(sidelink subframe)에 포함되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 제어 정보는 상향링크-다운링크 구성(uplink-downlink configuration) 0 내지 6을 사용하는 TDD(Time Division Duplex) 시스템에서만 상기 사이드링크 그랜트에 포함되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 사이드링크 그랜트를 수신하는 캐리어(carrier)와 상기 사이드링크 전송을 수행하는 캐리어는 동일하거나 또는 서로 다른 것을 특징으로 한다.
또한, 본 명세서에서 상기 사이드링크 전송은 V2V(Vehicle-to-Vehicle) 전송인 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 사이드링크 전송(sidelink transmission)을 수행하는 단말에 있어서, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈(module); 및 상기 RF 모듈을 제어하는 프로세서를 포함하고, 상기 프로세서는 상기 사이드링크 전송의 스케쥴링(scheduling)을 위해 사용되는 사이드링크 그랜트(sidelink grant)를 기지국으로부터 수신하고, 상기 사이드링크 그랜트(sidelink grant)는 상기 사이드링크 그랜트와 연관된 특정 서브프래임의 오프셋(offset)을 지시하는 제어 정보를 포함하고; 상기 제어 정보에 의해 지시되는 값을 고려하여 상기 특정 서브프래임(sidelink subframe)을 결정하고; 및 상기 특정 서브프래임에서 상기 사이드링크 전송을 수행하도록 구성되는 것을 특징으로 한다.
본 명세서는 사이드링크 서브프래임의 위치와 관련된 오프셋(offset) 정보를 새롭게 정의함으로써, TDD V2X 통신에서 DL 서브프래임의 개수가 UL 서브프래임의 개수 보다 적은 경우에도 사이드링크 그랜트에 의해 모든 사이드링크 서브프래임(sidelink subframe)을 스케쥴링할 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템에서 PUCCH 포맷들이 상향링크 물리자원블록의 PUCCH 영역에 매핑되는 형태의 일례를 나타낸다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 일반 CP의 경우의 CQI 채널의 구조를 나타낸다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 일반 CP의 경우에 ACK/NACK 채널의 구조를 나타낸다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 UL-SCH의 전송 채널 프로세싱의 일례를 나타낸다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 전송 채널(transport channel)인 상향링크 공유채널의 신호 처리 과정의 일례를 나타낸다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 크로스 캐리어 스케줄링에 따른 서브 프레임 구조의 일례를 나타낸다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 슬롯 동안 5 개의 SC-FDMA 심볼을 생성하여 전송하는 일례를 나타낸다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템의 시간 주파수 영역에서의 시간-주파수 자원 블록을 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 비동기 HARQ 방식의 자원 할당 및 재전송 과정을 예시하는 도면이다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 캐리어 병합 기반 CoMP 시스템을 예시하는 도면이다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 릴레이 노드 자원 분할을 예시한다.
도 19는 단말간 직접 통신(D2D) 기법에 대한 요소를 설명하기 위한 도면이다.
도 20은 자원 유닛의 구성 실시예를 도시한 도면이다.
도 21은 SA 자원 풀과 후행하는 데이터 채널 자원 풀이 주기적으로 나타나는 경우를 도시한 것이다.
도 22 내지 도 24는 본 발명이 적용될 수 있는 릴레이 과정 및 릴레이를 위한 자원의 일 예를 나타낸 도이다.
도 25는 본 발명이 적용될 수 있는 V2X 애플리케이션의 타입을 나타낸다.
도 26은 V2V 사이드 링크 통신에 적용될 수 있는 스케줄링 방식의 예들을 나타낸다.
도 27은 표 19의 고정된 오프셋 값에 따른 V2V 서브프래임의 위치의 일례를 나타낸 도이다.
도 28은 본 명세서에서 제안하는 추가 오프셋 필드를 이용하여 사이드링크 그랜트에 의해 V2V 서브프래임이 지시되는 방법의 일례를 나타낸 도이다.
도 29는 본 명세서에서 제안하는 사이드링크 전송을 수행하는 방법의 일례를 나타낸 순서도이다.
도 30은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 31은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 명세서에서 기지국은 단말과 직접적으로 통신을 수행하는 네트워크의 종단 노드(terminal node)로서의 의미를 갖는다. 본 문서에서 기지국에 의해 수행되는 것으로 설명된 특정 동작은 경우에 따라서는 기지국의 상위 노드(upper node)에 의해 수행될 수도 있다. 즉, 기지국을 포함하는 다수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. '기지국(BS: Base Station)'은 고정국(fixed station), Node B, eNB(evolved-NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point) 등의 용어에 의해 대체될 수 있다. 또한, '단말(Terminal)'은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치 등의 용어로 대체될 수 있다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
시스템 일반
도 1은 본 발명이 적용될 수 있는 무선 통신 시스템에서 무선 프레임의 구조를 나타낸다.
3GPP LTE/LTE-A에서는 FDD(Frequency Division Duplex)에 적용 가능한 타입 1 무선 프레임(radio frame) 구조와 TDD(Time Division Duplex)에 적용 가능한 타입 2의 무선 프레임 구조를 지원한다.
도 1의 (a)는 타입 1 무선 프레임의 구조를 예시한다. 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성된다. 하나의 서브프레임은 시간 영역(time domain)에서 2개의 슬롯(slot)으로 구성된다. 하나의 서브프레임을 전송하는데 걸리는 시간을 TTI(transmission time interval)이라 한다. 예를 들어, 하나의 서브 프레임은 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심볼을 포함하고, 주파수 영역에서 다수의 자원블록(RB: Resource Block)을 포함한다. 3GPP LTE는 하향링크에서 OFDMA를 사용하므로 OFDM 심볼은 하나의 심볼 구간(symbol period)을 표현하기 위한 것이다. OFDM 심볼은 하나의 SC-FDMA 심볼 또는 심볼 구간이라고 할 수 있다. 자원 블록(resource block)은 자원 할당 단위이고, 하나의 슬롯에서 복수의 연속적인 부 반송파(subcarrier)를 포함한다.
도 1의 (b)는 타입 2 프레임 구조(frame structure type 2)를 나타낸다. 타입 2 무선 프레임은 2개의 하프 프레임(half frame)으로 구성되며, 각 하프 프레임은 5개의 서브프레임과 DwPTS(Downlink Pilot Time Slot), 보호구간(GP: Guard Period), UpPTS(Uplink Pilot Time Slot)로 구성되며, 이 중 1개의 서브프레임은 2개의 슬롯으로 구성된다. DwPTS는 단말에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 단말의 상향링크 전송 동기를 맞추는 데 사용된다. 보호구간은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD 시스템의 타입 2 프레임 구조에서 상향링크-하향링크 구성(uplink-downlink configuration)은 모든 서브프레임에 대하여 상향링크와 하향링크가 할당(또는 예약)되는지 나타내는 규칙이다. 표 1은 상향링크-하향링크 구성을 나타낸다.
Figure PCTKR2017012141-appb-T000001
표 1을 참조하면, 무선 프레임의 각 서브프레임 별로, 'D'는 하향링크 전송을 위한 서브프레임을 나타내고, 'U'는 상향링크 전송을 위한 서브프레임을 나타내며, 'S'는 DwPTS, GP, UpPTS 3가지의 필드로 구성되는 스페셜 서브프레임(special subframe)을 나타낸다. 상향링크-하향링크 구성은 7가지로 구분될 수 있으며, 각 구성 별로 하향링크 서브프레임, 스페셜 서브프레임, 상향링크 서브프레임의 위치 및/또는 개수가 다르다.
하향링크에서 상향링크로 변경되는 시점 또는 상향링크에서 하향링크로 전환되는 시점을 전환 시점(switching point)이라 한다. 전환 시점의 주기성(Switch-point periodicity)은 상향링크 서브프레임과 하향링크 서브프레임이 전환되는 양상이 동일하게 반복되는 주기를 의미하며, 5ms 또는 10ms가 모두 지원된다. 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 스페셜 서브프레임(S)은 하프-프레임 마다 존재하고, 5ms 하향링크-상향링크 전환 시점의 주기를 가지는 경우에는 첫번째 하프-프레임에만 존재한다.
모든 구성에 있어서, 0번, 5번 서브프레임 및 DwPTS는 하향링크 전송만을 위한 구간이다. UpPTS 및 서브프레임 서브프레임에 바로 이어지는 서브프레임은 항상 상향링크 전송을 위한 구간이다.
이러한, 상향링크-하향링크 구성은 시스템 정보로써 기지국과 단말이 모두 알고 있을 수 있다. 기지국은 상향링크-하향링크 구성 정보가 바뀔 때마다 구성 정보의 인덱스만을 전송함으로써 무선 프레임의 상향링크-하향링크 할당상태의 변경을 단말에 알려줄 수 있다. 또한, 구성 정보는 일종의 하향링크 제어정보로서 다른 스케줄링 정보와 마찬가지로 PDCCH(Physical Downlink Control Channel)를 통해 전송될 수 있으며, 방송 정보로서 브로드캐스트 채널(broadcast channel)을 통해 셀 내의 모든 단말에 공통으로 전송될 수도 있다.
표 2는 스페셜 서브프레임의 구성(DwPTS/GP/UpPTS의 길이)을 나타낸다.
Figure PCTKR2017012141-appb-T000002
무선 프레임의 구조는 하나의 예시에 불과하며, 무선 프레임에 포함되는 부 반송파의 수 또는 서브 프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 OFDM 심볼의 수는 다양하게 변경될 수 있다.
도 2는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 하향링크 슬롯에 대한 자원 그리드(resource grid)를 예시한 도면이다.
도 2를 참조하면, 하나의 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심볼을 포함한다. 여기서, 하나의 하향링크 슬롯은 7개의 OFDM 심볼을 포함하고, 하나의 자원 블록은 주파수 영역에서 12개의 부 반송파를 포함하는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
자원 그리드 상에서 각 요소(element)를 자원 요소(resource element)하고, 하나의 자원 블록(RB: resource block)은 12 × 7 개의 자원 요소를 포함한다. 하향링크 슬롯에 포함되는 자원 블록들의 수 NDL은 하향링크 전송 대역폭(bandwidth)에 종속한다.
상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일할 수 있다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 서브 프레임의 구조를 나타낸다.
도 3을 참조하면, 서브 프레임내의 첫번째 슬롯에서 앞의 최대 3개의 OFDM 심볼들이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심볼들은 PDSCH(Physical Downlink Shared Channel)이 할당되는 데이터 영역(data region)이다. 3GPP LTE에서 사용되는 하향링크 제어 채널의 일례로 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 등이 있다.
PCFICH는 서브 프레임의 첫번째 OFDM 심볼에서 전송되고, 서브 프레임 내에 제어 채널들의 전송을 위하여 사용되는 OFDM 심볼들의 수(즉, 제어 영역의 크기)에 관한 정보를 나른다. PHICH는 상향 링크에 대한 응답 채널이고, HARQ(Hybrid Automatic Repeat Request)에 대한 ACK(Acknowledgement)/NACK(Not-Acknowledgement) 신호를 나른다. PDCCH를 통해 전송되는 제어 정보를 하향링크 제어정보(DCI: downlink control information)라고 한다. 하향링크 제어정보는 상향링크 자원 할당 정보, 하향링크 자원 할당 정보 또는 임의의 단말 그룹에 대한 상향링크 전송(Tx) 파워 제어 명령을 포함한다.
PDCCH는 DL-SCH(Downlink Shared Channel)의 자원 할당 및 전송 포맷(이를 하향링크 그랜트라고도 한다.), UL-SCH(Uplink Shared Channel)의 자원 할당 정보(이를 상향링크 그랜트라고도 한다.), PCH(Paging Channel)에서의 페이징(paging) 정보, DL-SCH에서의 시스템 정보, PDSCH에서 전송되는 랜덤 액세스 응답(random access response)과 같은 상위 레이어(upper-layer) 제어 메시지에 대한 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 파워 제어 명령들의 집합, VoIP(Voice over IP)의 활성화 등을 나를 수 있다. 복수의 PDCCH들은 제어 영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH들을 모니터링할 수 있다. PDCCH는 하나 또는 복수의 연속적인 CCE(control channel elements)의 집합으로 구성된다. CCE는 무선 채널의 상태에 따른 부호화율(coding rate)을 PDCCH에 제공하기 위하여 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)들에 대응된다. PDCCH의 포맷 및 사용 가능한 PDCCH의 비트 수는 CCE들의 수와 CCE들에 의해 제공되는 부호화율 간의 연관 관계에 따라 결정된다.
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(SIB: system information block)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템에서 상향링크 서브 프레임의 구조를 나타낸다.
도 4를 참조하면, 상향링크 서브 프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나눌 수 있다. 제어 영역에는 상향링크 제어 정보를 나르는 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 사용자 데이터를 나르는 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단일 반송파 특성을 유지하기 위해 하나의 단말은 PUCCH와 PUSCH을 동시에 전송하지 않는다.
하나의 단말에 대한 PUCCH에는 서브 프레임 내에 자원 블록(RB: Resource Block) 쌍이 할당된다. RB 쌍에 속하는 RB들은 2개의 슬롯들의 각각에서 서로 다른 부 반송파를 차지한다. 이를 PUCCH에 할당된 RB 쌍은 슬롯 경계(slot boundary)에서 주파수 도약(frequency hopping)된다고 한다.
PUCCH(Physical Uplink Control Channel)
PUCCH를 통하여 전송되는 상향링크 제어 정보(UCI)는, 다음과 같은 스케줄링 요청(SR: Scheduling Request), HARQ ACK/NACK 정보 및 하향링크 채널 측정 정보를 포함할 수 있다.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-off Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드(codeword)에 대한 응답으로 ACK/NACK 1비트가 전송되고, 2 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. CSI는 CQI(Channel Qualoty Indicator), RI(rank indicator), PMI(Precoding Matrix Indicator) 및 PTI(Precoding Type Indicator) 중 적어도 어느 하나를 포함할 수 있다. 서브프레임 당 20비트가 사용된다.
HARQ ACK/NACK 정보는 PDSCH 상의 하향링크 데이터 패킷의 디코딩 성공 여부에 따라 생성될 수 있다. 기존의 무선 통신 시스템에서, 하향링크 단일 코드워드(codeword) 전송에 대해서는 ACK/NACK 정보로서 1 비트가 전송되고, 하향링크 2 코드워드 전송에 대해서는 ACK/NACK 정보로서 2 비트가 전송된다.
채널 측정 정보는 다중입출력(MIMO: Multiple Input Multiple Output) 기법과 관련된 피드백 정보를 지칭하며, 채널품질지시자(CQI: Channel Quality Indicator), 프리코딩매트릭스인덱스(PMI: Precoding Matrix Index) 및 랭크 지시자(RI: Rank Indicator)를 포함할 수 있다. 이들 채널 측정 정보를 통칭하여 CQI 라고 표현할 수도 있다.
CQI 의 전송을 위하여 서브프레임 당 20 비트가 사용될 수 있다.
PUCCH는 BPSK(Binary Phase Shift Keying)과 QPSK(Quadrature Phase Shift Keying) 기법을 사용하여 변조될 수 있다. PUCCH를 통하여 복수개의 단말의 제어 정보가 전송될 수 있고, 각 단말들의 신호를 구별하기 위하여 코드분할다중화(CDM: Code Division Multiplexing)을 수행하는 경우에 길이 12 의 CAZAC(Constant Amplitude Zero Autocorrelation) 시퀀스를 주로 사용한다. CAZAC 시퀀스는 시간 영역(time domain) 및 주파수 영역(frequency domain)에서 일정한 크기(amplitude)를 유지하는 특성을 가지므로 단말의 PAPR(Peak-to-Average Power Ratio) 또는 CM(Cubic Metric)을 낮추어 커버리지를 증가시키기에 적합한 성질을 가진다. 또한, PUCCH를 통해 전송되는 하향링크 데이터 전송에 대한 ACK/NACK 정보는 직교 시퀀스(orthgonal sequence) 또는 직교 커버(OC: orthogonal cover)를 이용하여 커버링된다.
또한, PUCCH 상으로 전송되는 제어정보는 서로 다른 순환 시프트(CS: cyclic shift) 값을 가지는 순환 시프트된 시퀀스(cyclically shifted sequence)를 이용하여 구별될 수 있다. 순환 시프트된 시퀀스는 기본 시퀀스(base sequence)를 특정 CS 양(cyclic shift amount) 만큼 순환 시프트시켜 생성할 수 있다. 특정 CS 양은 순환 시프트 인덱스(CS index)에 의해 지시된다. 채널의 지연 확산(delay spread)에 따라 사용 가능한 순환 시프트의 수는 달라질 수 있다. 다양한 종류의 시퀀스가 기본 시퀀스로 사용될 수 있으며, 전술한 CAZAC 시퀀스는 그 일례이다.
또한, 단말이 하나의 서브프레임에서 전송할 수 있는 제어 정보의 양은 제어 정보의 전송에 이용가능한 SC-FDMA 심볼의 개수(즉, PUCCH 의 코히어런트(coherent) 검출을 위한 참조신호(RS) 전송에 이용되는 SC-FDMA 심볼을 제외한 SC-FDMA 심볼들)에 따라 결정될 수 있다.
3GPP LTE 시스템에서 PUCCH 는, 전송되는 제어 정보, 변조 기법, 제어 정보의 양 등에 따라 총 7 가지 상이한 포맷으로 정의되며, 각각의 PUCCH 포맷에 따라서 전송되는 상향링크 제어 정보(UCI: uplink control information)의 속성은 다음의 표 2와 같이 요약할 수 있다.
Figure PCTKR2017012141-appb-T000003
PUCCH 포맷 1은 SR의 단독 전송에 사용된다. SR 단독 전송의 경우에는 변조되지 않은 파형이 적용되며, 이에 대해서는 후술하여 자세하게 설명한다.
PUCCH 포맷 1a 또는 1b는 HARQ ACK/NACK의 전송에 사용된다. 임의의 서브프레임에서 HARQ ACK/NACK이 단독으로 전송되는 경우에는 PUCCH 포맷 1a 또는 1b를 사용할 수 있다. 또는, PUCCH 포맷 1a 또는 1b를 사용하여 HARQ ACK/NACK 및 SR이 동일 서브프레임에서 전송될 수도 있다.
PUCCH 포맷 2는 CQI의 전송에 사용되고, PUCCH 포맷 2a 또는 2b는 CQI 및 HARQ ACK/NACK의 전송에 사용된다. 확장된 CP 의 경우에는 PUCCH 포맷 2가 CQI 및 HARQ ACK/NACK 의 전송에 사용될 수도 있다.
PUCCH 포맷 3는 48 비트의 인코딩된 UCI를 나르는데 사용된다. PUCCH 포맷 3는 복수의 서빙셀에 대한 HARQ ACK/NACK, SR (존재하는 경우) 및 하나의 서빙셀에 대한 CSI 보고를 나를 수 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 PUCCH 포맷들이 상향링크 물리자원블록의 PUCCH 영역에 매핑되는 형태의 일례를 나타낸다.
도 8에서 N_RB^UL는 상향링크에서의 자원블록의 개수를 나타내고, 0, 1,...,N_RB^UL-1는 물리자원블록의 번호를 의미한다. 기본적으로, PUCCH는 상향링크 주파수 블록의 양쪽 끝단(edge)에 매핑된다. 도 8에서 도시하는 바와 같이, m=0,1로 표시되는 PUCCH 영역에 PUCCH 포맷 2/2a/2b 가 매핑되며, 이는 PUCCH 포맷 2/2a/2b가 대역-끝단(bandedge)에 위치한 자원블록들에 매핑되는 것으로 표현할 수 있다. 또한, m=2 로 표시되는 PUCCH 영역에 PUCCH 포맷 2/2a/2b 및 PUCCH 포맷 1/1a/1b 가 함께(mixed) 매핑될 수 있다. 다음으로, m=3,4,5 로 표시되는 PUCCH 영역에 PUCCH 포맷 1/1a/1b 가 매핑될 수 있다. PUCCH 포맷 2/2a/2b 에 의해 사용가능한 PUCCH RB들의 개수(N_RB^(2))는 브로드캐스팅 시그널링에 의해서 셀 내의 단말들에게 지시될 수 있다.
PUCCH 포맷 2/2a/2b에 대하여 설명한다. PUCCH 포맷 2/2a/2b는 채널 측정 피드백(CQI, PMI, RI)을 전송하기 위한 제어 채널이다.
채널측정피드백(이하에서는, 통칭하여 CQI 정보라고 표현함)의 보고 주기 및 측정 대상이 되는 주파수 단위(또는 주파수 해상도(resolution))는 기지국에 의하여 제어될 수 있다. 시간 영역에서 주기적 및 비주기적 CQI 보고가 지원될 수 있다. PUCCH 포맷 2 는 주기적 보고에만 사용되고, 비주기적 보고를 위해서는 PUSCH가 사용될 수 있다. 비주기적 보고의 경우에 기지국은 단말에게 상향링크 데이터 전송을 위하여 스케줄링된 자원에 개별 CQI 보고를 실어서 전송할 것을 지시할 수 있다.
도 6은 본 발명이 적용될 수 있는 무선 통신 시스템에서 일반 CP의 경우의 CQI 채널의 구조를 나타낸다.
하나의 슬롯의 SC-FDMA 심볼 0 내지 6 중에서, SC-FDMA 심볼 1 및 5 (2 번째 및 6 번째 심볼)는 복조참조신호(DMRS: Demodulation Reference Signal) 전송에 사용되고, 나머지 SC-FDMA 심볼에서 CQI 정보가 전송될 수 있다. 한편, 확장된 CP 의 경우에는 하나의 SC-FDMA 심볼 (SC-FDMA 심볼 3) 이 DMRS 전송에 사용된다.
PUCCH 포맷 2/2a/2b 에서는 CAZAC 시퀀스에 의한 변조를 지원하고, QPSK 변조된 심볼이 길이 12 의 CAZAC 시퀀스로 승산된다. 시퀀스의 순환 시프트(CS)는 심볼 및 슬롯 간에 변경된다. DMRS에 대해서 직교 커버링이 사용된다.
하나의 슬롯에 포함되는 7 개의 SC-FDMA 심볼 중 3개의 SC-FDMA 심볼 간격만큼 떨어진 2개의 SC-FDMA 심볼에는 참조신호(DMRS)가 실리고, 나머지 5개의 SC-FDMA 심볼에는 CQI 정보가 실린다. 한 슬롯 안에 두 개의 RS가 사용된 것은 고속 단말을 지원하기 위해서이다. 또한, 각 단말은 순환 시프트(CS) 시퀀스를 사용하여 구분된다. CQI 정보 심볼들은 SC-FDMA 심볼 전체에 변조되어 전달되고, SC-FDMA 심볼은 하나의 시퀀스로 구성되어 있다. 즉, 단말은 각 시퀀스로 CQI를 변조해서 전송한다.
하나의 TTI에 전송할 수 있는 심볼 수는 10개이고, CQI 정보의 변조는 QPSK까지 정해져 있다. SC-FDMA 심볼에 대해 QPSK 매핑을 사용하는 경우 2비트의 CQI 값이 실릴 수 있으므로, 한 슬롯에 10비트의 CQI 값을 실을 수 있다. 따라서, 한 서브프레임에 최대 20비트의 CQI 값을 실을 수 있다. CQI 정보를 주파수 영역에서 확산시키기 위해 주파수 영역 확산 부호를 사용한다.
주파수 영역 확산 부호로는 길이-12 의 CAZAC 시퀀스(예를 들어, ZC 시퀀스)를 사용할 수 있다. 각 제어채널은 서로 다른 순환 시프트(cyclic shift) 값을 갖는 CAZAC 시퀀스를 적용하여 구분될 수 있다. 주파수 영역 확산된 CQI 정보에 IFFT가 수행된다.
12 개의 동등한 간격을 가진 순환 시프트에 의해서 12 개의 상이한 단말들이 동일한 PUCCH RB 상에서 직교 다중화될 수 있다. 일반 CP 경우에 SC-FDMA 심볼 1 및 5 상의 (확장된 CP 경우에 SC-FDMA 심볼 3 상의) DMRS 시퀀스는 주파수 영역 상의 CQI 신호 시퀀스와 유사하지만 CQI 정보와 같은 변조가 적용되지는 않는다.
단말은 PUCCH 자원 인덱스(
Figure PCTKR2017012141-appb-I000001
,
Figure PCTKR2017012141-appb-I000002
,
Figure PCTKR2017012141-appb-I000003
)로 지시되는 PUCCH 자원 상에서 주기적으로 상이한 CQI, PMI 및 RI 타입을 보고하도록 상위 계층 시그널링에 의하여 반-정적으로(semi-statically) 설정될 수 있다. 여기서, PUCCH 자원 인덱스(
Figure PCTKR2017012141-appb-I000004
)는 PUCCH 포맷 2/2a/2b 전송에 사용되는 PUCCH 영역 및 사용될 순환 시프트(CS) 값을 지시하는 정보이다.
이하, PUCCH 포맷 1a 및 1b에 대하여 설명한다.
PUCCH 포맷 1a/1b에 있어서 BPSK 또는 QPSK 변조 방식을 이용하여 변조된 심볼은 길이 12 의 CAZAC 시퀀스로 승산(multiply)된다. 예를 들어, 변조 심볼 d(0)에 길이 N 의 CAZAC 시퀀스 r(n) (n=0, 1, 2, ..., N-1) 가 승산된 결과는 y(0), y(1), y(2), ..., y(N-1) 이 된다. y(0), ..., y(N-1) 심볼들을 심볼 블록(block of symbol)이라고 칭할 수 있다. 변조 심볼에 CAZAC 시퀀스를 승산한 후에, 직교 시퀀스를 이용한 블록-단위(block-wise)확산이 적용된다.
일반 ACK/NACK 정보에 대해서는 길이 4의 하다마드(Hadamard) 시퀀스가 사용되고, 짧은(shortened) ACK/NACK 정보 및 참조신호(Reference Signal)에 대해서는 길이 3의 DFT(Discrete Fourier Transform) 시퀀스가 사용된다.
확장된 CP의 경우의 참조신호에 대해서는 길이 2의 하다마드 시퀀스가 사용된다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 일반 CP의 경우에 ACK/NACK 채널의 구조를 나타낸다.
도 7에서는 CQI 없이 HARQ ACK/NACK 전송을 위한 PUCCH 채널 구조를 예시적으로 나타낸다.
하나의 슬롯에 포함되는 7 개의 SC-FDMA 심볼 중 중간 부분의 3개의 연속되는 SC-FDMA 심볼에는 참조신호(RS)가 실리고, 나머지 4 개의 SC-FDMA 심볼에는 ACK/NACK 신호가 실린다.
한편, 확장된 CP 의 경우에는 중간의 2 개의 연속되는 심볼에 RS 가 실릴 수 있다. RS에 사용되는 심볼의 개수 및 위치는 제어채널에 따라 달라질 수 있으며 이와 연관된 ACK/NACK 신호에 사용되는 심볼의 개수 및 위치도 그에 따라 변경될 수 있다.
1 비트 및 2 비트의 확인응답 정보(스크램블링되지 않은 상태)는 각각 BPSK 및 QPSK 변조 기법을 사용하여 하나의 HARQ ACK/NACK 변조 심볼로 표현될 수 있다. 긍정확인응답(ACK)은 '1' 로 인코딩될 수 있고, 부정확인응답(NACK)은 '0'으로 인코딩될 수 있다.
할당되는 대역 내에서 제어신호를 전송할 때, 다중화 용량을 높이기 위해 2 차원 확산이 적용된다. 즉, 다중화할 수 있는 단말 수 또는 제어 채널의 수를 높이기 위해 주파수 영역 확산과 시간 영역 확산을 동시에 적용한다.
ACK/NACK 신호를 주파수 영역에서 확산시키기 위해 주파수 영역 시퀀스를 기본 시퀀스로 사용한다. 주파수 영역 시퀀스로는 CAZAC 시퀀스 중 하나인 Zadoff-Chu (ZC) 시퀀스를 사용할 수 있다. 예를 들어, 기본 시퀀스인 ZC 시퀀스에 서로 다른 순환 시프트(CS: Cyclic Shift)가 적용됨으로써, 서로 다른 단말 또는 서로 다른 제어 채널의 다중화가 적용될 수 있다. HARQ ACK/NACK 전송을 위한 PUCCH RB 들을 위한 SC-FDMA 심볼에서 지원되는 CS 자원의 개수는 셀-특정 상위-계층 시그널링 파라미터(Δ_shift^PUCCH)에 의해 설정된다.
주파수 영역 확산된 ACK/NACK 신호는 직교 확산(spreading) 코드를 사용하여 시간 영역에서 확산된다. 직교 확산 코드로는 월시-하다마드(Walsh-Hadamard) 시퀀스 또는 DFT 시퀀스가 사용될 수 있다. 예를 들어, ACK/NACK 신호는 4 심볼에 대해 길이 4의 직교 시퀀스(w0, w1, w2, w3)를 이용하여 확산될 수 있다. 또한, RS도 길이 3 또는 길이 2의 직교 시퀀스를 통해 확산시킨다. 이를 직교 커버링(OC: Orthogonal Covering)이라 한다.
전술한 바와 같은 주파수 영역에서의 CS 자원 및 시간 영역에서의 OC 자원을 이용해서 다수의 단말들이 코드분할다중화(CDM: Code Division Multiplexing) 방식으로 다중화될 수 있다. 즉, 동일한 PUCCH RB 상에서 많은 개수의 단말들의 ACK/NACK 정보 및 RS 가 다중화될 수 있다.
이와 같은 시간 영역 확산 CDM 에 대해서, ACK/NACK 정보에 대해서 지원되는 확산 코드들의 개수는 RS 심볼들의 개수에 의해서 제한된다. 즉, RS 전송 SC-FDMA 심볼들의 개수는 ACK/NACK 정보 전송 SC-FDMA 심볼들의 개수보다 적기 때문에, RS 의 다중화 용량(capacity)이 ACK/NACK 정보의 다중화 용량에 비하여 적게 된다.
예를 들어, 일반 CP 의 경우에 4 개의 심볼에서 ACK/NACK 정보가 전송될 수 있는데, ACK/NACK 정보를 위하여 4 개가 아닌 3개의 직교 확산 코드가 사용되며, 이는 RS 전송 심볼의 개수가 3 개로 제한되어 RS 를 위하여 3 개의 직교 확산 코드만이 사용될 수 있기 때문이다.
일반 CP 의 서브프레임에서 하나의 슬롯에서 3 개의 심볼이 RS 전송을 위해서 사용되고 4 개의 심볼이 ACK/NACK 정보 전송을 위해서 사용되는 경우에, 예를 들어, 주파수 영역에서 6 개의 순환시프트(CS) 및 시간 영역에서 3개의 직교커버(OC) 자원을 사용할 수 있다면, 총 18 개의 상이한 단말로부터의 HARQ 확인응답이 하나의 PUCCH RB 내에서 다중화될 수 있다. 만약, 확장된 CP 의 서브프레임에서 하나의 슬롯에서 2 개의 심볼이 RS 전송을 위해서 사용되고 4 개의 심볼이 ACK/NACK 정보 전송을 위해서 사용되는 경우에, 예를 들어, 주파수 영역에서 6 개의 순환시프트(CS) 및 시간 영역에서 2 개의 직교커버(OC) 자원을 사용할 수 있다면, 총 12 개의 상이한 단말로부터의 HARQ 확인응답이 하나의 PUCCH RB 내에서 다중화될 수 있다.
다음으로, PUCCH 포맷 1에 대하여 설명한다. 스케줄링 요청(SR)은 단말이 스케줄링되기를 요청하거나 또는 요청하지 않는 방식으로 전송된다. SR 채널은 PUCCH 포맷 1a/1b 에서의 ACK/NACK 채널 구조를 재사용하고, ACK/NACK 채널 설계에 기초하여 OOK(On-Off Keying) 방식으로 구성된다. SR 채널에서는 참조신호가 전송되지 않는다. 따라서, 일반 CP 의 경우에는 길이 7 의 시퀀스가 이용되고, 확장된 CP 의 경우에는 길이 6 의 시퀀스가 이용된다. SR 및 ACK/NACK 에 대하여 상이한 순환 시프트 또는 직교 커버가 할당될 수 있다. 즉, 긍정(positive) SR 전송을 위해 단말은 SR용으로 할당된 자원을 통해 HARQ ACK/NACK을 전송한다. 부정(negative) SR 전송을 위해서는 단말은 ACK/NACK용으로 할당된 자원을 통해 HARQ ACK/NACK을 전송한다.
다음으로 개선된-PUCCH(e-PUCCH) 포맷에 대하여 설명한다. e-PUCCH는 LTE-A 시스템의 PUCCH 포맷 3에 대응할 수 있다. PUCCH 포맷 3을 이용한 ACK/NACK 전송에는 블록 확산(block spreading) 기법이 적용될 수 있다.
블록 확산 기법에 대해서는 도 14와 관련하여 이하에서 상세히 후술한다.
PUCCH piggybacking
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 UL-SCH의 전송 채널 프로세싱의 일례를 나타낸다.
3GPP LTE 시스템(=E-UTRA, Rel. 8)에서는 UL의 경우, 단말기의 파워앰프의 효율적인 활용을 위하여, 파워 앰프의 성능에 영향을 미치는 PAPR(Peak-to-Average Power Ratio) 특성이나 CM(Cubic Metric) 특성이 좋은 single carrier 전송을 유지하도록 되어 있다. 즉, 기존 LTE 시스템의 PUSCH 전송의 경우, 전송하고자 하는 데이터를 DFT-precoding을 통해 single carrier 특성을 유지하고, PUCCH 전송의 경우는 single carrier 특성을 가지고 있는 sequence에 정보를 실어 전송함으로써 single carrier 특성을 유지할 수 있다. 그러나 DFT-precoding을 한 데이터를 주파수축으로 비연속적으로 할당하거나 PUSCH와 PUCCH가 동시에 전송하게 되는 경우에는 이러한 single carrier 특성이 깨지게 된다. 따라서, 도 11과 같이 PUCCH 전송과 동일한 subframe에 PUSCH 전송이 있을 경우, single carrier 특성을 유지하기 위해 PUCCH로 전송할 UCI(uplink control information)정보를 PUSCH를 통해 데이터와 함께 전송(Piggyback)하도록 되어 있다.
앞서 설명했듯이 기존의 LTE 단말은 PUCCH와 PUSCH가 동시에 전송될 수 없기 때문에 PUSCH가 전송되는 subframe에서는 Uplink Control Information (UCI) (CQI/PMI, HARQ-ACK, RI등)를 PUSCH 영역에 multiplexing하는 방법을 사용한다.
일례로, PUSCH를 전송하도록 allocation 된 subframe에서 Channel Quality Indicator(CQI) and/or Precoding Matrix Indicator(PMI)를 전송해야 할 경우 UL-SCH data와 CQI/PMI를 DFT-spreading 이전에 multiplexing하여 control 정보와 data를 함께 전송할 수 있다. 이 경우 UL-SCH data는 CQI/PMI resource를 고려하여 rate-matching을 수행하게 된다. 또한 HARQ ACK, RI등의 control 정보는 UL-SCH data를 puncturing 하여 PUSCH 영역에 multiplexing되는 방식이 사용되고 있다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 전송 채널(transport channel)인 상향링크 공유채널의 신호 처리 과정의 일례를 나타낸다.
이하, 상향링크 공유채널(이하, ‘UL-SCH’라 한다.)의 신호 처리 과정은 하나 이상의 전송 채널 또는 제어정보 타입에 적용될 수 있다.
도 9를 참조하면, UL-SCH은 전송 시간 구간(TTI: transmission time interval)마다 한번씩 데이터를 전송 블록(TB: Transport Block)의 형태로 부호화 유닛(conding unit)에 전달된다.
상위 계층으로부터 전달 받은 전송 블록의 비트 a_0~a_A-1에 CRC 패리티 비트(parity bit) P_0~P_L-1를 부착한다(S90). 이때, A는 전송 블록의 크기이며, L은 패리티 비트의 개수다. CRC가 부착된 입력 비트는 b_0~b_B-1과 같다. 이때, B는 CRC를 포함한 전송 블록의 비트 수를 나타낸다.
b_0~b_B-1는 TB 크기에 따라 여러 개의 코드 블록(CB: Code block)으로 분할(segmentation)되고, 분할된 여러 개의 CB들에 CRC가 부착된다(S91). 코드 블록 분할 및 CRC 부착 후 비트는 c_r0~c_r(Kr-1) 과 같다. 여기서 r은 코드 블록의 번호(r=0,…,C-1)이고, Kr은 코드 블록 r에 따른 비트 수이다. 또한, C는 코드 블록의 총 개수를 나타낸다.
이어, 채널 부호화(channel coding)가 수행된다(S92). 채널 부호화 후의 출력 비트는 d_r0^(i)~d_r(Dr-1)^(i) 과 같다. 이때, i는 부호화된 스트림 인덱스이며, 0, 1 또는 2 값을 가질 수 있다. Dr은 코드 블록 r을 위한 i번째 부호화된 스트림의 비트 수를 나타낸다. r은 코드 블록 번호(r=0,…,C-1)이고, C는 코드 블록의 총 개수를 나타낸다. 각 코드 블록은 각각 터보 코딩에 의하여 부호화될 수 있다.
이어, 레이트 매칭(Rate Matching)이 수행된다(S93). 레이트 매칭을 거친 이후의 비트는 e_r0~e_r(Er-1) 과 같다. 이때, r은 코드 블록의 번호이고(r=0,…,C-1), C는 코드 블록의 총 개수를 나타낸다. Er은 r번째 코드 블록의 레이트 매칭된 비트의 개수를 나타낸다.
이어, 다시 코드 블록들 간의 결합(concatenation)이 수행된다(S94). 코드 블록의 결합이 수행된 후의 비트는 f_0~f_G-1과 같다. 이때, G는 전송을 위한 부호화된 비트의 총 개수를 나타내며, 제어정보가 UL-SCH 전송과 다중화될 때, 제어정보 전송을 위해 사용되는 비트 수는 포함되지 않는다.
한편, PUSCH에서 제어정보가 전송될 때, 제어정보인 CQI/PMI, RI, ACK/NACK은 각각 독립적으로 채널 부호화가 수행된다(S96, S97, S98). 각 제어정보의 전송을 위해 각각 서로 다른 부호화된 심볼들이 할당되기 때문에 각각의 제어정보는 서로 다른 코딩 레이트(coding rate)를 가진다.
TDD(Time Division Duplex)에서 ACK/NACK 피드백(feedback) 모드는 상위 계층 설정에 의해 ACK/NACK 번들링(bundling) 및 ACK/NACK 다중화(multiplexing) 두 가지 모드가 지원된다. ACK/NACK 번들링을 위해 ACK/NACK 정보 비트는 1비트 또는 2비트로 구성되고, ACK/NACK 다중화를 위해 ACK/NACK 정보 비트는 1비트에서 4비트 사이로 구성된다.
S134 단계에서 코드 블록 간 결합 단계 이후에, UL-SCH 데이터의 부호화된 비트 f_0~f_G-1와 CQI/PMI의 부호화된 비트 q_0~q_(N_L*Q_CQI-1)의 다중화가 수행된다(S95). 데이터와 CQI/PMI의 다중화된 결과는 g_0~g_H'-1과 같다. 이때, g_i(i=0~H'-1)는 (Q_m*N_L) 길이를 가지는 컬럼(column) 벡터를 나타낸다. H=(G+N_L*Q_CQI)이고, H'=H/(N_L*Q_m)이다. N_L은 UL-SCH 전송 블록이 매핑된 레이어의 개수를 나타내고, H는 전송 블록이 매핑된 N_L개 전송 레이어에 UL-SCH 데이터와 CQI/PMI 정보를 위해 할당된 부호화된 총 비트의 개수를 나타낸다.
이어, 다중화된 데이터와 CQI/PMI, 별도로 채널 부호화된 RI, ACK/NACK은 채널 인터리빙되어 출력 신호가 생성된다(S99).
참조 신호( RS : Reference Signal)
무선 통신 시스템에서 데이터는 무선 채널을 통해 전송되기 때문에, 신호는 전송 중에 왜곡될 수 있다. 수신단에서 왜곡된 신호를 정확하게 수신하기 위하여, 수신된 신호의 왜곡은 채널 정보를 이용하여 보정되어야 한다. 채널 정보를 검출하기 위하여 송신측과 수신측 모두 알고 있는 신호 전송 방법과 신호가 채널을 통해 전송될 때 왜곡된 정도를 이용하여 채널 정보를 검출하는 방법을 주로 이용한다. 상술한 신호를 파일럿 신호 또는 참조 신호(RS: reference signal)라고 한다.
또한 최근 대부분의 이동통신 시스템에서 패킷을 전송할 때, 지금까지 한 개의 송신안테나와 한 개의 수신안테나를 사용했던 것에서 탈피, 다중송신안테나와 다중수신안테나를 채택해 송수신 데이터 효율을 향상시킬 수 있는 방법을 사용한다. 다중 입출력 안테나를 이용하여 데이터를 송수신할 때, 신호를 정확하게 수신하기 위하여 송신 안테나와 수신 안테나 간의 채널 상태가 검출되어야 한다. 따라서 각 송신 안테나는 개별적인 참조 신호를 가져야 한다.
이동 통신 시스템에서 RS는 그 목적에 따라 크게 두 가지로 구분될 수 있다. 채널 정보 획득을 위한 목적의 RS와 데이터 복조를 위해 사용되는 RS가 있다. 전자는 UE가 하향 링크로의 채널 정보를 획득하는데 그 목적이 있으므로, 광대역으로 전송되어야 하고, 특정 서브 프레임에서 하향 링크 데이터를 수신하지 않는 UE라도 그 RS를 수신하고 측정할 수 있어야 한다. 또한 이는 핸드 오버 등의 측정 등을 위해서도 사용된다. 후자는 기지국이 하향링크를 보낼 때 해당 리소스에 함께 보내는 RS로서, UE는 해당 RS를 수신함으로써 채널 추정을 할 수 있고, 따라서 데이터를 복조할 수 있게 된다. 이 RS는 데이터가 전송되는 영역에 전송되어야 한다.
5개 타입의 하향링크 참조 신호가 정의된다.
- 셀 특정 참조 신호(CRS: cell-specific reference signal)
- MBSFN 참조 신호(MBSFN RS: multicast-broadcast single-frequency network reference signal)
- 단말 특정 참조 신호 또는 복조 참조 신호(DM-RS: demodulation reference signal)
- 포지셔닝 참조 신호(PRS: positioning reference signal)
- 채널 상태 정보 참조 신호(CSI-RS: channel state information reference signal)
하향링크 안테나 포트 별로 하나의 참조 신호가 전송된다.
CRS는 PDSCH 전송을 지원하는 셀 내 모든 하향링크 서브프레임에서 전송된다. CRS는 안테나 포트 0-3 중 하나 이상에서 전송된다. CRS는 Δf=15kHz에서만 정의된다.
MBSFN RS는 물리 멀티캐스트 채널(PMCH: Physical Multicast Channel)가 전송될 때만 MBSFN 서브프레임의 MBSFN 영역에서 전송된다. MBSFN RS는 안테나 포트 4에서 전송된다. MBSFN RS는 확장 CP에서만 정의된다.
DM-RS는 PDSCH의 전송을 위해 지원되고, 안테나 포트 p=5, p=7, p=8 또는 p=7,8,...,υ+6에서 전송된다. 여기서,υ
는 PDSCH 전송을 위해 사용되는 레이어의 수이다. DM-RS는 PDSCH 전송이 해당 안테나 포트에서 연계되는 경우에만 PDSCH 복조를 위해 존재하고 유효하다. DM-RS는 해당 PDSCH가 매핑되는 자원 블록(RB)에서만 전송된다.
안테나 포트(p)와 무관하게 DM-RS 이외에 물리 채널 또는 물리 신호 중 어느 하나가 DM-RS가 전송되는 자원 요소(RE)와 동일한 인덱스 쌍 (k,l)의 RE를 사용하여 전송되면, 해당 인덱스 쌍 (k,l)의 RE에서는 DM-RS가 전송되지 않는다.
PRS는 PRS 전송을 위해 설정된 하향링크 서브프레임 내 자원 블록에서만 전송된다.
하나의 셀 내에서 일반 서브프레임 및 MBSFN 서브프레임 모두 포지셔닝 서브프레임으로 설정되면, PRS 전송을 위해 설정된 MBSFN 서브프레임 내 OFDM 심볼들은 서브프레임 #0와 동일한 CP를 사용한다. 하나의 셀 내에서 MBSFN 서브프레임만이 포지셔닝 서브프레임으로 설정되면, 해당 서브프레임의 MBSFN 영역 내 PRS를 위해 설정된 OFDM 심볼들은 확장 CP를 사용한다.
PRS 전송을 위해 설정된 서브프레임 내에서, PRS 전송을 위해 설정된 OFDM 심볼의 시작 지점은 모든 OFDM 심볼이 PRS 전송을 위해 설정된 OFDM 심볼과 동일한 CP 길이를 가지는 서브프레임의 시작 지점과 동일하다.
PRS는 안테나 포트 6에서 전송된다.
PRS는 안테나 포트(p)와 무관하게 물리 방송 채널(PBCH: Physical Broadcast Channel), PSS 또는 SSS 에게 할당된 RE (k,l)에 매핑되지 않는다.
PRS는 Δf=15kHz에서만 정의된다.
CSI-RS는 각각 p=15, p=15,16, p=15,...,18 및 p=15,...,22를 사용하여 1, 2 4 또는 8개의 안테나 포트에서 전송된다.
CSI-RS는 Δf=15kHz에서만 정의된다.
참조 신호에 대하여 보다 상세히 설명한다.
CRS는 셀 내 모든 단말이 공유하는 채널 상태에 대한 정보 획득 및 핸드오버 등의 측정 등을 위한 참조 신호이다. DM-RS는 특정 단말만을 위하여 데이터 복조를 위해 사용된다. 이와 같은 참조 신호들을 이용하여 복조(demodulation)와 채널 측정(channel measurement)을 위한 정보를 제공할 수 있다. 즉, DM-RS는 데이터 복조용으로만 사용되며 CRS는 채널 정보 획득 및 데이터 복조의 두 가지 목적으로 다 사용된다.
수신 측(즉, 단말)은 CRS로부터 채널 상태를 측정하고, CQI(Channel Quality Indicator), PMI(Precoding Matrix Index), PTI(Precoding Type Indicator) 및/또는 RI(Rank Indicator)와 같은 채널 품질과 관련된 지시자를 송신 측(즉, 기지국)으로 피드백한다. CRS는 셀 특정 기준신호(cell-specific RS)라고도 한다. 반면, 채널 상태 정보(CSI: Channel State Information)의 피드백과 관련된 참조 신호를 CSI-RS라고 정의할 수 있다.
DM-RS는 PDSCH 상의 데이터 복조가 필요한 경우 자원 요소들을 통해 전송될 수 있다. 단말은 상위 계층을 통하여 DM-RS의 존재 여부를 수신할 수 있으며, 상응하는 PDSCH가 매핑되었을 때만 유효하다. DM-RS를 단말 특정 참조 신호(UE-specific RS) 또는 복조 참조 신호(DMRS: Demodulation RS)라고 할 수 있다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 자원 블록 쌍에 매핑된 참조 신호 패턴을 예시한다.
도 10을 참조하면, 참조 신호가 매핑되는 단위로 하향링크 자원 블록 쌍은 시간 영역에서 하나의 서브 프레임 × 주파수 영역에서 12개의 부 반송파로
나타낼 수 있다. 즉, 시간 축(x축) 상에서 하나의 자원 블록 쌍은 일반 순환 전치(normal CP: normal Cyclic Prefix) 인 경우 14개의 OFDM 심볼의 길이를 가지고(도 10의 (a)의 경우), 확장 순환 전치(extended CP: extended Cyclic Prefix)인 경우 12개의 OFDM 심볼의 길이를 가진다(도 10의 (b)의 경우). 자원 블록 격자에서 '0', '1', '2' 및 '3'으로 기재된 자원 요소들(REs)은 각각 안테나 포트 인덱스 '0', '1', '2' 및 '3'의 CRS의 위치를 의미하며, 'D'로 기재된 자원 요소들은 DRS의 위치를 의미한다.
이하 CRS에 대하여 좀 더 상세하게 기술하면, CRS는 물리적 안테나의 채널을 추정하기 위해 사용되고, 셀 내에 위치한 모든 단말에 공통적으로 수신될 수 있는 참조 신호로써 전체 주파수 대역에 분포된다. 또한, CRS는 채널 품질 정보(CSI) 및 데이터 복조를 위해 이용될 수 있다.
CRS는 전송 측(기지국)에서의 안테나 배열에 따라 다양한 포맷으로 정의된다. 3GPP LTE 시스템(예를 들어, 릴리즈-8)에서는 다양한 안테나 배열을 지원하고, 하향링크 신호 송신 측은 3개의 단일의 송신 안테나, 2개의 송신 안테나 및 4개의 송신 안테나와 같이 3 종류의 안테나 배열을 가진다. 기지국이 단일의 송신 안테나를 사용하는 경우, 단일 안테나 포트를 위한 참조 신호가 배열된다. 기지국이 2개의 송신 안테나를 사용하는 경우, 2개의 송신 안테나 포트를 위한 참조 신호는 시분할 다중화(TDM: Time Division Multiplexing) 및/또는 주파수 분할 다중화(FDM Frequency Division Multiplexing) 방식을 이용하여 배열된다. 즉, 2개의 안테나 포트를 위한 참조 신호는 각각이 구별되기 위해 서로 다른 시간 자원 및/또는 서로 다른 주파수 자원이 할당된다.
게다가, 기지국이 4개의 송신 안테나를 사용하는 경우, 4개의 송신 안테나 포트를 위한 참조 신호는 TDM 및/또는 FDM 방식을 이용하여 배열된다. 하향링크 신호의 수신 측(단말)에 의하여 측정된 채널 정보는 단일의 송신 안테나 전송, 송신 다이버시티, 폐쇄 루프 공간 다중화(closed-loop spatial multiplexing), 개방 루프 공간 다중화(open-loop spatial multiplexing) 또는 다중 사용자-다중 입출력 안테나(Multi-User MIMO)와 같은 전송 방식을 이용하여 전송된 데이터를 복조하기 위하여 사용될 수 있다.
다중 입출력 안테나가 지원되는 경우 참조 신호가 특정의 안테나 포트로부터 전송될 때, 상기 참조 신호는 참조 신호의 패턴에 따라 특정된 자원 요소들의 위치에 전송되며, 다른 안테나 포트를 위해 특정된 자원 요소들의 위치에 전송되지 않는다. 즉, 서로 다른 안테나 사이의 참조 신호는 서로 겹치지 않는다.
자원 블록에 CRS를 맵핑하는 규칙은 다음과 같이 정의된다.
Figure PCTKR2017012141-appb-M000001
수학식 1에서, k 및 l은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p는 안테나 포트를 나타낸다. N_symb^DL은 하나의 하향링크 슬롯에서의 OFDM 심볼의 수를 나타내고, N_RB^DL은 하향링크에 할당된 무선 자원의 수를 나타낸다. n_s는 슬롯 인덱스를 나타내고, N_ID^cell은 셀 ID를 나타낸다. mod 는 모듈로(modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서 v_shift값에 따라 달라진다. v_shift는 셀 ID(즉, 물리 계층 셀 ID)에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이(frequency shift) 값을 가진다.
보다 구체적으로, CRS를 통해 채널 추정 성능을 향상시키기 위해 CRS의 위치는 셀에 따라 주파수 영역에서 편이될 수 있다. 예를 들어, 참조 신호가 3개의 부 반송파의 간격으로 위치하는 경우, 하나의 셀에서의 참조 신호들은 3k 번째 부반송파에 할당되고, 다른 셀에서의 참조 신호는 3k+1 번째 부반송파에 할당된다. 하나의 안테나 포트의 관점에서 참조 신호들은 주파수 영역에서 6개의 자원 요소 간격으로 배열되고, 또 다른 안테나 포트에 할당된 참조 신호와는 3개의 자원 요소 간격으로 분리된다.
시간 영역에서 참조 신호는 각 슬롯의 심볼 인덱스 0 에서부터 시작하여 동일 간격(constant interval)으로 배열된다. 시간 간격은 순환 전치 길이에 따라 다르게 정의된다. 일반 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 4에 위치하고, 확장 순환 전치의 경우 참조 신호는 슬롯의 심볼 인덱스 0 과 3에 위치한다. 2개의 안테나 포트 중 최대값을 가지는 안테나 포트를 위한 참조 신호는 하나의 OFDM 심볼 내에 정의된다. 따라서, 4개의 송신 안테나 전송의 경우, 참조 신호 안테나 포트 0 과 1을 위한 참조 신호는 슬롯의 심볼 인덱스 0 과 4 (확장 순환 전치의 경우 심볼 인덱스 0 과 3)에 위치하고, 안테나 포트 2 와 3을 위한 참조 신호는 슬롯의 심볼 인덱스 1에 위치한다. 안테나 포트 2 와 3을 위한 참조 신호의 주파수 영역에서의 위치는 2번째 슬롯에서 서로 맞바꿔진다.
이하 DM-RS에 대하여 좀 더 상세하게 기술하면, DM-RS는 데이터를 복조하기 위하여 사용된다. 다중 입출력 안테나 전송에서 특정의 단말을 위해 사용되는 선행 부호화(precoding) 가중치는 단말이 참조 신호를 수신하였을 때 각 송신 안테나에서 전송된 전송 채널과 결합되어 상응하는 채널을 추정하기 위하여 변경 없이 사용된다.
3GPP LTE 시스템(예를 들어, 릴리즈-8)은 최대로 4개의 전송 안테나를 지원하고, 랭크 1 빔포밍(beamforming)을 위한 DM-RS가 정의된다. 랭크 1 빔포밍을 위한 DM-RS는 또한 안테나 포트 인덱스 5 를 위한 참조 신호를 나타낸다.
자원 블록에 DM-RS를 맵핑하는 규칙은 다음과 같이 정의된다. 수학식 13은 일반 순환 전치인 경우를 나타내고, 수학식 14는 확장 순환 전치인 경우를 나타낸다.
Figure PCTKR2017012141-appb-M000002
Figure PCTKR2017012141-appb-M000003
수학식 2 및 3에서, k 및 l 은 각각 부반송파 인덱스 및 심볼 인덱스를 나타내고, p는 안테나 포트를 나타낸다. N_sc^RB은 주파수 영역에서 자원 블록 크기를 나타내고, 부반송파의 수로써 표현된다. n_PRB은 물리 자원 블록의 수를 나타낸다. N_RB^PDSCH은 PDSCH 전송을 위한 자원 블록의 주파수 대역을 나타낸다. n_s는 슬롯 인덱스를 나타내고, N_ID^cell는 셀 ID를 나타낸다. mod 는 모듈로(modulo) 연산을 나타낸다. 참조 신호의 위치는 주파수 영역에서 v_shift 값에 따라 달라진다. v_shift는 셀 ID(즉, 물리 계층 셀 ID)에 종속되므로, 참조 신호의 위치는 셀에 따라 다양한 주파수 편이(frequency shift) 값을 가진다.
상기 수학식 1 내지 수학식 3에서, k 및 p는 각각 부반송파 인덱스 및 안테나 포트를 나타낸다. N_RB^DL, ns, N_ID^Cell는 각각 하향링크에 할당된 RB의 수, 슬롯 인덱스의 수, 셀 ID의 수를 나타낸다. RS의 위치는 주파수 도메인 관점에서 v_shift 값에 따라 달라진다.
사운딩 참조 신호( SRS : Sounding Reference Signal)
SRS는 주로 상향링크의 주파수-선택적 스케줄링을 수행하기 위하여 채널 품질 측정에 사용되며, 상향링크 데이터 및/또는 제어 정보의 전송과 관련되지 않는다. 그러나, 이에 한정되지 않으며 SRS는 전력 제어의 향상 또는 최근에 스케줄되어 있지 않은 단말들의 다양한 스타트-업(start-up) 기능을 지원하기 위한 다양한 다른 목적들을 위해 사용될 수 있다. 스타트-업 기능의 일례로, 초기의 변조 및 부호화 방식(MCS: Modulation and Coding Scheme), 데이터 전송을 위한 초기의 전력 제어, 타이밍 전진(timing advance) 및 주파수 반-선택적(semi-selective) 스케줄링이 포함될 수 있다. 이때, 주파수 반-선택적 스케줄링은 서브 프레임의 처음의 슬롯에 선택적으로 주파수 자원을 할당하고, 두번째 슬롯에서는 다른 주파수로 의사 랜덤(pseudo-randomly)하게 도약하여 주파수 자원을 할당하는 스케줄링을 말한다.
또한, SRS는 상향링크와 하향링크 간에 무선 채널이 상호적(reciprocal)인 가정하에 하향링크 채널 품질을 측정하기 위하여 사용될 수 있다. 이러한 가정은 상향링크와 하향링크가 동일한 주파수 스펙트럼을 공유하고, 시간 영역에서는 분리된 시분할 듀플레스(TDD: Time Division Duplex) 시스템에서 특히 유효하다
셀 내에서 어떠한 단말에 의하여 전송되는 SRS의 서브 프레임들은 셀-특정 방송 신호에 의하여 나타낼 수 있다. 4비트 셀-특정 'srsSubframeConfiguration' 파라미터는 SRS가 각 무선 프레임을 통해 전송될 수 있는 15가지의 가능한 서브 프레임의 배열을 나타낸다. 이러한 배열들에 의하여, 운용 시나리오(deployment scenario)에 따라 SRS 오버헤드(overhead)의 조정에 대한 유동성을 제공하게 된다.
이 중 16번째 배열은 셀 내에서 완전하게 SRS의 스위치를 오프하며, 이는 주로 고속 단말들을 서빙하는 서빙 셀에 적합하다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 사운딩 참조 신호 심볼을 포함한 상향링크 서브 프레임을 예시한다.
도 11을 참조하면, SRS는 배열된 서브 프레임 상에서 항상 마지막 SC-FDMA 심볼을 통해 전송된다. 따라서, SRS와 DMRS는 다른 SC-FDMA 심볼에 위치하게 된다.
PUSCH 데이터 전송은 SRS 전송을 위한 특정의 SC-FDMA 심볼에서는 허용되지 않으며, 결과적으로 사운딩(sounding) 오버헤드가 가장 높은 경우 즉, 모든 서브 프레임에 SRS 심볼이 포함되는 경우라도 사운딩 오버헤드는 약 7%를 초과하지 않는다.
각 SRS 심볼은 주어진 시간 단위와 주파수 대역에 관한 기본 시퀀스(랜덤 시퀀스 또는 Zadoff-Ch(ZC)에 기초한 시퀀스 세트)에 의하여 생성되고, 동일 셀 내의 모든 단말들은 동일한 기본 시퀀스를 사용한다. 이때, 동일한 주파수 대역과 동일한 시간에서 동일 셀 내의 복수의 단말로부터의 SRS 전송은 기본 시퀀스의 서로 다른 순환 이동(cyclic shift)에 의해 직교(orthogonal)되어 서로 구별된다.
각각의 셀 마다 서로 다른 기본 시퀀스가 할당되는 것에 의하여 서로 다른 셀로부터의 SRS 시퀀스가 구별될 수 있으나, 서로 다른 기본 시퀀스 간에 직교성은 보장되지 않는다.
캐리어 병합 일반
본 발명의 실시예들에서 고려하는 통신 환경은 멀티 캐리어(Multi-carrier) 지원 환경을 모두 포함한다. 즉, 본 발명에서 사용되는 멀티 캐리어 시스템 또는 캐리어 병합(CA: Carrier Aggregation) 시스템이라 함은 광대역을 지원하기 위해서, 목표로 하는 광대역을 구성할 때 목표 대역보다 작은 대역폭(bandwidth)을 가지는 1개 이상의 컴포넌트 캐리어(CC: Component Carrier)를 병합(aggregation)하여 사용하는 시스템을 말한다.
본 발명에서 멀티 캐리어는 캐리어의 병합(또는, 반송파 집성)을 의미하며, 이때 캐리어의 병합은 인접한(contiguous) 캐리어 간의 병합뿐 아니라 비 인접한(non-contiguous) 캐리어 간의 병합을 모두 의미한다. 또한, 하향링크와 상향링크 간에 집성되는 컴포넌트 캐리어들의 수는 다르게 설정될 수 있다. 하향링크 컴포넌트 캐리어(이하, 'DL CC'라 한다.) 수와 상향링크 컴포넌트 캐리어(이하, 'UL CC'라 한다.) 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다. 이와 같은 캐리어 병합은 반송파 집성, 대역폭 집성(bandwidth aggregation), 스펙트럼 집성(spectrum aggregation) 등과 같은 용어와 혼용되어 사용될 수 있다.
두 개 이상의 컴포넌트 캐리어가 결합되어 구성되는 캐리어 병합은 LTE-A 시스템에서는 100MHz 대역폭까지 지원하는 것을 목표로 한다. 목표 대역보다 작은 대역폭을 가지는 1개 이상의 캐리어를 결합할 때, 결합하는 캐리어의 대역폭은 기존 IMT 시스템과의 호환성(backward compatibility) 유지를 위해서 기존 시스템에서 사용하는 대역폭으로 제한할 수 있다. 예를 들어서 기존의 3GPP LTE 시스템에서는 {1.4, 3, 5, 10, 15, 20}MHz 대역폭을 지원하며, 3GPP LTE-advanced 시스템(즉, LTE-A)에서는 기존 시스템과의 호환을 위해 상기의 대역폭들만을 이용하여 20MHz보다 큰 대역폭을 지원하도록 할 수 있다. 또한, 본 발명에서 사용되는 캐리어 병합 시스템은 기존 시스템에서 사용하는 대역폭과 상관없이 새로운 대역폭을 정의하여 캐리어 병합을 지원하도록 할 수도 있다.
LTE-A 시스템은 무선 자원을 관리하기 위해 셀(cell)의 개념을 사용한다.
상술한 캐리어 병합 환경은 다중 셀(multiple cells) 환경으로 일컬을 수 있다. 셀은 하향링크 자원(DL CC)과 상향링크 자원(UL CC) 한 쌍의 조합으로 정의되나, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독, 또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 특정 단말이 단 하나의 설정된 서빙 셀(configured serving cell)을 가지는 경우 1개의 DL CC와 1개의 UL CC를 가질 수 있으나, 특정 단말이 2개 이상의 설정된 서빙 셀을 가지는 경우에는 셀의 수만큼의 DL CC를 가지며 UL CC의 수는 그와 같거나 그보다 작을 수 있다.
또는, 그 반대로 DL CC와 UL CC가 구성될 수도 있다. 즉, 특정 단말이 다수의 설정된 서빙 셀을 가지는 경우 DL CC의 수보다 UL CC가 더 많은 캐리어 병합 환경도 지원될 수 있다. 즉, 캐리어 병합(carrier aggregation)은 각각 캐리어 주파수(셀의 중심 주파수)가 서로 다른 둘 이상의 셀들의 병합으로 이해될 수 있다. 여기서, 말하는 '셀(Cell)'은 일반적으로 사용되는 기지국이 커버하는 영역으로서의 '셀'과는 구분되어야 한다.
LTE-A 시스템에서 사용되는 셀은 프라이머리 셀(PCell: Primary Cell) 및 세컨더리 셀(SCell: Secondary Cell)을 포함한다. P셀과 S셀은 서빙 셀(Serving Cell)로 사용될 수 있다. RRC_CONNECTED 상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, P셀로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우 하나 이상의 서빙 셀이 존재할 수 있으며, 전체 서빙 셀에는 P셀과 하나 이상의 S셀이 포함된다.
서빙 셀(P셀과 S셀)은 RRC 파라미터를 통해 설정될 수 있다. PhysCellId는 셀의 물리 계층 식별자로 0부터 503까지의 정수값을 가진다. SCellIndex는 S셀을 식별하기 위하여 사용되는 간략한(short) 식별자로 1부터 7까지의 정수값을 가진다. ServCellIndex는 서빙 셀(P셀 또는 S셀)을 식별하기 위하여 사용되는 간략한(short) 식별자로 0부터 7까지의 정수값을 가진다. 0값은 P셀에 적용되며, SCellIndex는 S셀에 적용하기 위하여 미리 부여된다. 즉, ServCellIndex에서 가장 작은 셀 ID (또는 셀 인덱스)을 가지는 셀이 P셀이 된다.
P셀은 프라이머리 주파수(또는, primary CC) 상에서 동작하는 셀을 의미한다. 단말이 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정 과정을 수행하는데 사용될 수 있으며, 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. 또한, P셀은 캐리어 병합 환경에서 설정된 서빙 셀 중 제어관련 통신의 중심이 되는 셀을 의미한다. 즉, 단말은 자신의 P셀에서만 PUCCH를 할당 받아 전송할 수 있으며, 시스템 정보를 획득하거나 모니터링 절차를 변경하는데 P셀만을 이용할 수 있다. E-UTRAN(Evolved Universal Terrestrial Radio Access)은 캐리어 병합 환경을 지원하는 단말에게 이동성 제어 정보(mobilityControlInfo)를 포함하는 상위 계층의 RRC 연결 재설정(RRCConnectionReconfigutaion) 메시지를 이용하여 핸드오버 절차를 위해 P셀만을 변경할 수도 있다.
S셀은 세컨더리 주파수(또는, Secondary CC) 상에서 동작하는 셀을 의미할 수 있다. 특정 단말에 P셀은 하나만 할당되며, S셀은 하나 이상 할당될 수 있다. S셀은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. 캐리어 병합 환경에서 설정된 서빙 셀 중에서 P셀을 제외한 나머지 셀들, 즉 S셀에는 PUCCH가 존재하지 않는다. E-UTRAN은 S셀을 캐리어 병합 환경을 지원하는 단말에게 추가할 때, RRC_CONNECTED 상태에 있는 관련된 셀의 동작과 관련된 모든 시스템 정보를 특정 시그널(dedicated signal)을 통해 제공할 수 있다. 시스템 정보의 변경은 관련된 S셀의 해제 및 추가에 의하여 제어될 수 있으며, 이 때 상위 계층의 RRC 연결 재설정 (RRCConnectionReconfigutaion) 메시지를 이용할 수 있다. E-UTRAN은 관련된 S셀 안에서 브로드캐스트하기 보다는 단말 별로 상이한 파라미터를 가지는 특정 시그널링(dedicated signaling) 할 수 있다.
초기 보안 활성화 과정이 시작된 이후에, E-UTRAN은 연결 설정 과정에서 초기에 구성되는 P셀에 부가하여 하나 이상의 S셀을 포함하는 네트워크를 구성할 수 있다. 캐리어 병합 환경에서 P셀 및 S셀은 각각의 컴포넌트 캐리어로서 동작할 수 있다. 이하의 실시 예에서는 프라이머리 컴포넌트 캐리어(PCC)는 P셀과 동일한 의미로 사용될 수 있으며, 세컨더리 컴포넌트 캐리어(SCC)는 S셀과 동일한 의미로 사용될 수 있다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 컴포넌트 캐리어 및 캐리어 병합의 일례를 나타낸다.
도 12의 (a)는 LTE 시스템에서 사용되는 단일 캐리어 구조를 나타낸다. 컴포넌트 캐리어에는 DL CC와 UL CC가 있다. 하나의 컴포넌트 캐리어는 20MHz의 주파수 범위를 가질 수 있다.
도 12의 (b)는 LTE_A 시스템에서 사용되는 캐리어 병합 구조를 나타낸다. 도 12의 (b)의 경우에 20MHz의 주파수 크기를 갖는 3 개의 컴포넌트 캐리어가 결합된 경우를 나타낸다. DL CC와 UL CC가 각각 3 개씩 있으나, DL CC와 UL CC의 개수에 제한이 있는 것은 아니다. 캐리어 병합의 경우 단말은 3개의 CC를 동시에 모니터링할 수 있고, 하향링크 신호/데이터를 수신할 수 있고 상향링크 신호/데이터를 송신할 수 있다.
만약, 특정 셀에서 N개의 DL CC가 관리되는 경우에는, 네트워크는 단말에 M (M≤N)개의 DL CC를 할당할 수 있다. 이때, 단말은 M 개의 제한된 DL CC 만을 모니터링하고 DL 신호를 수신할 수 있다. 또한, 네트워크는 L (L≤M≤N)개의 DL CC에 우선순위를 주어 주된 DL CC를 단말에 할당할 수 있으며, 이러한 경우 UE는 L 개의 DL CC는 반드시 모니터링해야 한다. 이러한 방식은 상향링크 전송에도 똑같이 적용될 수 있다.
하향링크 자원의 반송파 주파수(또는 DL CC)와 상향링크 자원의 반송파 주파수(또는, UL CC) 사이의 링키지(linkage)는 RRC 메시지와 같은 상위계층 메시지나 시스템 정보에 의해 지시될 수 있다. 예를 들어, SIB2(System Information Block Type2)에 의해서 정의되는 링키지에 의해서 DL 자원과 UL 자원의 조합이 구성될 수 있다. 구체적으로, 링키지는 UL 그랜트를 나르는 PDCCH가 전송되는 DL CC와 상기 UL 그랜트를 사용하는 UL CC간의 맵핑 관계를 의미할 수 있으며, HARQ를 위한 데이터가 전송되는 DL CC(또는 UL CC)와 HARQ ACK/NACK 신호가 전송되는 UL CC(또는 DL CC)간의 맵핑 관계를 의미할 수도 있다.
크로스 캐리어 스케줄링(Cross Carrier Scheduling)
캐리어 병합 시스템에서는 캐리어(또는 반송파) 또는 서빙 셀(Serving Cell)에 대한 스케줄링 관점에서 자가 스케줄링(Self-Scheduling) 방법 및 크로스 캐리어 스케줄링(Cross Carrier Scheduling) 방법의 두 가지가 있다. 크로스 캐리어 스케줄링은 크로스 컴포넌트 캐리어 스케줄링(Cross Component Carrier Scheduling) 또는 크로스 셀 스케줄링(Cross Cell Scheduling)으로 일컬을 수 있다.
크로스 캐리어 스케줄링은 PDCCH(DL Grant)와 PDSCH가 각각 다른 DL CC로 전송되거나, DL CC에서 전송된 PDCCH(UL Grant)에 따라 전송되는 PUSCH가 UL 그랜트를 수신한 DL CC와 링크되어 있는 UL CC가 아닌 다른 UL CC를 통해 전송되는 것을 의미한다.
크로스 캐리어 스케줄링 여부는 단말 특정(UE-specific)하게 활성화 또는 비활성화될 수 있으며, 상위계층 시그널링(예를 들어, RRC signaling)을 통해서 반정적(semi-static)으로 각 단말 별로 알려질 수 있다.
크로스 캐리어 스케줄링이 활성화된 경우, PDCCH에 해당 PDCCH가 지시하는 PDSCH/PUSCH가 어느 DL/UL CC를 통해서 전송되는지를 알려주는 캐리어 지시자 필드(CIF: Carrier Indicator Field)가 필요하다. 예를 들어, PDCCH는 PDSCH 자원 또는 PUSCH 자원을 CIF를 이용하여 다수의 컴포넌트 캐리어들 중 하나에 할당할 수 있다. 즉, DL CC 상에서의 PDCCH가 다중 집성된 DL/UL CC 중 하나에 PDSCH 또는 PUSCH 자원을 할당하는 경우 CIF가 설정된다. 이 경우, LTE-A Release-8의 DCI 포맷은 CIF에 따라 확장될 수 있다. 이때 설정된 CIF는 3bit 필드로 고정되거나, 설정된 CIF의 위치는 DCI 포맷 크기와 무관하게 고정될 수 있다. 또한, LTE-A Release-8의 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)를 재사용할 수도 있다.
반면, DL CC 상에서의 PDCCH가 동일한 DL CC 상에서의 PDSCH 자원을 할당하거나 단일 링크된 UL CC 상에서의 PUSCH 자원을 할당하는 경우에는 CIF가 설정되지 않는다. 이 경우, LTE-A Release-8과 동일한 PDCCH 구조(동일 코딩 및 동일한 CCE 기반의 자원 매핑)와 DCI 포맷이 사용될 수 있다.
크로스 캐리어 스케줄링이 가능할 때, 단말은 CC별 전송 모드 및/또는 대역폭에 따라 모니터링 CC의 제어영역에서 복수의 DCI에 대한 PDCCH를 모니터링하는 것이 필요하다. 따라서, 이를 지원할 수 있는 검색 공간의 구성과 PDCCH 모니터링이 필요하다.
캐리어 병합 시스템에서, 단말 DL CC 집합은 단말이 PDSCH를 수신하도록 스케줄링된 DL CC의 집합을 나타내고, 단말 UL CC 집합은 단말이 PUSCH를 전송하도록 스케줄링된 UL CC의 집합을 나타낸다. 또한, PDCCH 모니터링 집합(monitoring set)은 PDCCH 모니터링을 수행하는 적어도 하나의 DL CC의 집합을 나타낸다. PDCCH 모니터링 집합은 단말 DL CC 집합과 같거나, 단말 DL CC 집합의 부집합(subset)일 수 있다. PDCCH 모니터링 집합은 단말 DL CC 집합내의 DL CC들 중 적어도 어느 하나를 포함할 수 있다. 또는 PDCCH 모니터링 집합은 단말 DL CC 집합에 상관없이 별개로 정의될 수 있다. PDCCH 모니터링 집합에 포함되는 DL CC는 링크된 UL CC에 대한 자기-스케줄링(self-scheduling)은 항상 가능하도록 설정될 수 있다. 이러한, 단말 DL CC 집합, 단말 UL CC 집합 및 PDCCH 모니터링 집합은 단말 특정(UE-specific), 단말 그룹 특정(UE group-specific) 또는 셀 특정(Cell-specific)하게 설정될 수 있다.
크로스 캐리어 스케줄링이 비활성화된 경우에는 PDCCH 모니터링 집합이 항상 단말 DL CC 집합과 동일하다는 것을 의미하며, 이러한 경우에는 PDCCH 모니터링 집합에 대한 별도의 시그널링과 같은 지시가 필요하지 않다. 그러나, 크로스 캐리어 스케줄링이 활성화된 경우에는 PDCCH 모니터링 집합이 단말 DL CC 집합 내에서 정의되는 것이 바람직하다. 즉, 단말에 대하여 PDSCH 또는 PUSCH를 스케줄링하기 위하여 기지국은 PDCCH 모니터링 집합만을 통해 PDCCH를 전송한다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 크로스 캐리어 스케줄링에 따른 서브 프레임 구조의 일례를 나타낸다.
도 13을 참조하면, LTE-A 단말을 위한 DL 서브프레임은 3개의 DL CC가 결합되어 있으며, DL CC 'A'는 PDCCH 모니터링 DL CC로 설정된 경우를 나타낸다. CIF가 사용되지 않는 경우, 각 DL CC는 CIF 없이 자신의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 반면, CIF가 상위 계층 시그널링을 통해 사용되는 경우, 단 하나의 DL CC 'A'만이 CIF를 이용하여 자신의 PDSCH 또는 다른 CC의 PDSCH를 스케줄링하는 PDCCH를 전송할 수 있다. 이때, PDCCH 모니터링 DL CC로 설정되지 않은 DL CC 'B' 와 'C'는 PDCCH를 전송하지 않는다.
PDCCH 전송
기지국은 단말에게 전송하려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(Cyclic Redundancy Check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다.)가 마스킹된다. 특정의 단말을 위한 PDCCH라면 단말의 고유한 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보, 더욱 구체적으로 시스템 정보 블록(system information block, SIB)를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위하여, RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
이어, 기지국은 CRC가 부가된 제어정보를 채널 코딩을 수행하여 부호화된 데이터(coded data)를 생성한다. 이때, MCS 레벨에 따른 코드 레이트로 채널 코딩을 수행할 수 있다. 기지국은 PDCCH 포맷에 할당된 CCE 집합 레벨에 따른 전송률 매칭(rate matching)을 수행하고, 부호화된 데이터를 변조하여 변조 심벌들을 생성한다. 이때, MCS 레벨에 따른 변조 서열을 사용할 수 있다. 하나의 PDCCH을 구성하는 변조 심벌들은 CCE 집합 레벨이 1, 2, 4, 8 중 하나일 수 있다. 이후, 기지국은 변조심벌들을 물리적인 자원요소에 맵핑(CCE to RE mapping)한다.
하나의 서브프레임 내에서 복수의 PDCCH가 전송될 수 있다. 즉, 하나의 서브프레임의 제어영역은 인덱스 0 ~ N_(CCE, k)-1 을 가지는 복수의 CCE로 구성된다. 여기서, N_(CCE, k)는 k번째 서브프레임의 제어 영역 내에 총 CCE의 개수를 의미한다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다.
여기서, 모니터링이란 단말이 모니터링되는 PDCCH 포맷에 따라 PDCCH들의 각각의 디코딩을 시도하는 것을 말한다. 서브프레임 내에서 할당된 제어영역에서 기지국은 단말에게 해당하는 PDCCH가 어디에 있는지에 관한 정보를 제공하지 않는다. 단말은 기지국으로부터 전송된 제어채널을 수신하기 위해서 자신의 PDCCH가 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷으로 전송되는지 알 수 없으므로, 단말은 서브프레임 내에서 PDCCH 후보(candidate)들의 집합을 모니터링하여 자신의 PDCCH을 찾는다. 이를 블라인드 디코딩(BD: Blind Decoding/Detection)이라 한다. 블라인드 디코딩은 단말이 CRC 부분에 자신의 단말 식별자(UE ID)를 디 마스킹(De-Masking) 시킨 후, CRC 오류를 검토하여 해당 PDCCH가 자신의 제어채널인지 여부를 확인하는 방법을 말한다.
활성 모드(active mode)에서 단말은 자신에게 전송되는 데이터를 수신하기 위해 매 서브프레임의 PDCCH을 모니터링한다. DRX 모드에서 단말은 매 DRX 주기의 모니터링 구간에서 깨어나(wake up) 모니터링 구간에 해당하는 서브프레임에서 PDCCH을 모니터링한다. PDCCH의 모니터링이 수행되는 서브프레임을 non-DRX 서브프레임이라 한다.
단말은 자신에게 전송되는 PDCCH을 수신하기 위해서는 non-DRX 서브프레임의 제어영역에 존재하는 모든 CCE에 대해 블라인드 디코딩을 수행해야 한다. 단말은 어떤 PDCCH 포맷이 전송될지 모르므로, 매 non-DRX 서브프레임 내에서 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 CCE 집단 레벨로 PDCCH을 모두 디코딩해야 한다. 단말은 자신을 위한 PDCCH가 몇 개의 CCE를 사용하는지 모르기 때문에 PDCCH의 블라인드 디코딩이 성공할 때까지 가능한 모든 CCE 집단 레벨로 검출을 시도해야 한다. 즉, 단말은 CCE 집합 레벨 별로 블라인드 디코딩을 수행한다. 즉, 단말은 먼저 CCE 집합 레벨 단위를 1로 하여 디코딩을 시도한다. 디코딩이 모두 실패하면, CCE 집합 레벨 단위를 2로 하여 디코딩을 시도한다. 그 후에 다시 CCE 집합 레벨 단위를 4, CCE 집합 레벨 단위를 8로 디코딩을 시도한다. 또한, 단말은 C-RNTI, P-RNTI, SI-RNTI, RA-RNTI 4개에 대해 모두 블라인드 디코딩을 시도하게 된다. 또한, 단말은 모니터링해야 하는 모든 DCI 포맷에 대해 블라인드 디코딩을 시도하게 된다.
이처럼, 단말이 가능한 모든 RNTI에 대해, 모니터링해야하는 모든 DCI 포맷에 대해, 모든 CCE 집합 레벨 별로 블라인드 디코딩을 시도한다면 검출 시도(detection attempt) 횟수가 지나치게 많아지므로, LTE 시스템에서는 단말의 블라인드 디코딩을 위해서 서치 스페이스(SS: Search Space) 개념을 정의한다. 서치 스페이스는 모니터하기 위한 PDCCH 후보 세트를 의미하며, 각 PDCCH 포맷에 따라 상이한 크기를 가질 수 있다.
서치 스페이스는 공용 서치 스페이스(CSS: Common Search Space)와 단말 특정 서치 스페이스(USS: UE-specific/Dedicated Search Space)로 구성될 수 있다. 공용 서치 스페이스의 경우, 모든 단말이 공용 서치 스페이스의 크기에 대하여 알 수 있으나, 단말 특정 서치 스페이스는 각 단말마다 개별적으로 설정될 수 있다. 따라서, 단말은 PDCCH을 디코딩하기 위해 단말 특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링해야 하며, 따라서 하나의 서브프레임에서 최대 44번의 블라인드 디코딩(BD)을 수행하게 된다. 여기에는 상이한 CRC 값(예를 들어, C-RNTI, P-RNTI, SI-RNTI, RA-RNTI)에 따라 수행하는 블라인드 디코딩은 포함되지 않는다.
작은 서치 스페이스로 인하여, 기지국은 주어진 서브프레임 내에서 PDCCH을 전송하고자 하는 단말들 모두에게 PDCCH을 전송하기 위한 CCE 자원이 확보될 수 없는 경우가 발생할 수 있다. 왜냐하면, CCE 위치가 할당되고 남은 자원들은 특정 단말의 서치 스페이스 내에 포함되지 않을 수 있기 때문이다. 다음 서브프레임에도 계속될 수 있는 이러한 장벽을 최소화하기 위하여 단말 특정 도약(hopping) 시퀀스가 단말 특정 서치 스페이스의 시작 지점에 적용될 수 있다.
표 4는 공용 서치 스페이스와 단말 특정 서치 스페이스의 크기를 나타낸다.
블라인드 디코딩을 시도하는 횟수에 따른 단말의 계산적 로드(load)를 경감하기 위해, 단말은 정의된 모든 DCI 포맷에 따른 서치를 동시에 수행하지 않는다. 구체적으로, 단말은 단말 특정 서치 스페이스에서 항상 DCI 포맷 0 과 1A에 대한 서치를 수행할 수 있다. 이때, DCI 포맷 0과 1A는 동일한 크기를 가지나, 단말은 PDCCH에 포함된 DCI 포맷 0과 1A를 구분하는데 사용되는 플래그(flag for format 0/format 1A differentiation)를 이용하여 DCI 포맷을 구분할 수 있다. 또한, 기지국에 의해 설정된 PDSCH 전송 모드에 따라 단말에 0과 1A 외에 다른 DCI 포맷이 요구될 수 있는데, 그 일례로 DCI 포맷 1, 1B, 2가 있다.
공용 서치 스페이스에서 단말은 DCI 포맷 1A와 1C를 서치할 수 있다. 또한 단말은 DCI 포맷 3 또는 3A를 서치하도록 설정될 수 있으며, DCI 포맷 3과 3A는 DCI 포맷 0과 1A와 동일한 크기를 가지나, 단말은 단말 특정 식별자가 아닌 다른 식별자에 의하여 스크램블된 CRC를 이용하여 DCI 포맷을 구별할 수 있다.
서치 스페이스 S_k^(L)는 집합 레벨
Figure PCTKR2017012141-appb-I000005
에 따른 PDCCH 후보 세트를 의미한다. 서치 스페이스의 PDCCH 후보 세트 m에 따른 CCE는 다음과 같은 수학식 4에 의해 결정될 수 있다.
Figure PCTKR2017012141-appb-M000004
여기서, M_(L)은 서치 스페이스에서 모니터하기 위한 CCE 집합 레벨 L에 따른 PDCCH 후보들의 개수를 나타내며, m=0~M^(L)-1 이다. i는 각 PDCCH 후보들에서 개별 CCE를 지정하는 인덱스로서 i=0~L-1이다.
상술한 바와 같이, 단말은 PDCCH을 디코딩하기 위해 단말 특정 서치 스페이스 및 공용 서치 스페이스를 모두 모니터링한다. 여기서, 공용 서치 스페이스(CSS)는 {4, 8}의 집합 레벨을 갖는 PDCCH들을 지원하고, 단말 특정 서치 스페이스(USS)는 {1, 2, 4, 8}의 집합 레벨을 갖는 PDCCH들을 지원한다.
표 5는 단말에 의하여 모니터링되는 PDCCH 후보를 나타낸다.
Figure PCTKR2017012141-appb-T000005
수학식 4를 참조하면, 공용 서치 스페이스의 경우 2개의 집합 레벨, L=4 및 L=8에 대해 Y_k는 0으로 설정된다. 반면, 집합 레벨 L에 대해 단말 특정 서치 스페이스의 경우 Y_k는 수학식 5와 같이 정의된다.
Figure PCTKR2017012141-appb-M000005
여기서,
Figure PCTKR2017012141-appb-I000006
와 같으며, n_RNTI를 위해 사용되는 RNTI 값은 단말의 식별자(Identification) 중의 하나로 정의될 수 있다. 또한, A=39827이고, D=65537이며,
Figure PCTKR2017012141-appb-I000007
와 같다. 여기서, n_s는 무선 프레임에서 슬롯 번호(또는 인덱스)를 나타낸다.
ACK / NACK 멀티플렉싱 방법
단말이 eNB로부터 수신되는 다수의 데이터 유닛들에 해당하는 다수의 ACK/NACK들을 동시에 전송해야 하는 상황에서, ACK/NACK 신호의 단일-주파수 특성을 유지하고, ACK/NACK 전송 전력을 줄이기 위해, PUCCH 자원 선택에 기초한 ACK/NACK 다중화 방법이 고려될 수 있다.
ACK/NACK 다중화와 함께, 다수의 데이터 유닛들에 대한 ACK/NACK 응답들의 콘텐츠들은 실제 ACK/NACK 전송에 사용되는 PUCCH 자원과 QPSK 변조 심볼들의 자원의 결합에 의해 식별된다.
예를 들어, 만일 하나의 PUCCH 자원이 4 비트를 전송하고 4개의 데이터 유닛들이 최대 전송될 수 있는 경우, ACK/NACK 결과는 아래 표 6과 같이 eNB 에서 식별될 수 있다.
Figure PCTKR2017012141-appb-T000006
상기 표 6에서 HARQ-ACK(i)는 i번째 데이터 유닛(data unit)에 대한 ACK/NACK 결과를 나타낸다. 상기 표 3에서 DTX(DTX(Discontinuous Transmission)는 해당되는 HARQ-ACK(i)을 위해 전송될 데이터 유닛이 없거나 단말이 HARQ-ACK(i)에 대응하는 데이터 유닛을 검출하지 못함을 의미한다.
상기 표 6에 의하면, 최대 4개의 PUCCH 자원이 있고, b(0), b(1)은 선택된 PUCCH을 이용하여 전송되는 2개의 비트이다.
예를 들어, 단말이 4개의 데이터 유닛들을 모두 성공적으로 수신하면, 단말은 n_(PUCCH, 1)^(1)을 이용하여 2 비트 (1,1)을 전송한다.
단말이 첫번째 및 세번째 데이터 유닛에서 디코딩에 실패하고, 두번째 및 네번째 데이터 유닛에서 디코딩에 성공하면, 단말은 n_(PUCCH, 1)^(3)을 이용하여 비트 (1,0)을 전송한다.
ACK/NACK 채널 선택에서, 적어도 하나의 ACK이 있으면, NACK과 DTX는 짝지워진다(couple). 이는 예약된(reserved) PUCCH 자원과 QPSK 심벌의 조합으로는 모든 ACK/NACK 상태를 나타낼 수 없기 때문이다. 하지만, ACK이 없으면, DTX는 NACK과 분리된다(decouple).
이 경우, 한 개의 명확한 NACK에 해당하는 데이터 유닛에 링크된 PUCCH 자원은 다수의 ACK/NACK들의 신호를 전송하기 위해 또한 예약될 수 있다.
블록 확산 기법
블록 확산 기법은, 기존의 PUCCH 포맷 1 계열 또는 2 계열과는 달리, 제어 신호 전송을 SC-FDMA 방식을 이용하여 변조하는 방식이다. 도 14에서 나타내는 바와 같이, 심볼 시퀀스가 OCC(Orthogonal Cover Code)를 이용하여 시간 영역(domain) 상에서 확산되어 전송될 수 있다. OCC를 이용함으로써 동일한 RB 상에 복수개의 단말들의 제어 신호들이 다중화될 수 있다. 전술한 PUCCH 포맷 2의 경우에는 하나의 심볼 시퀀스가 시간 영역에 걸쳐서 전송되고 CAZAC 시퀀스의 CS(cyclic shift)를 이용하여 복수개의 단말들의 제어 신호들이 다중화되는 반면, 블록 확산 기반 PUCCH 포맷(예를 들어, PUCCH 포맷 3)의 경우에는 하나의 심볼 시퀀스가 주파수 영역에 걸쳐서 전송되고, OCC를 이용한 시간 영역 확산을 이용하여 복수개의 단말들의 제어 신호들이 다중화된다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하나의 슬롯 동안 5 개의 SC-FDMA 심볼을 생성하여 전송하는 일례를 나타낸다.
도 14에서는 1 슬롯 동안에 하나의 심볼 시퀀스에 길이=5 (또는 SF=5)의 OCC를 이용하여 5 개의 SC-FDMA 심볼(즉, 데이터 부분)을 생성하여 전송하는 예시를 나타낸다. 이 경우, 1 슬롯 동안 2 개의 RS 심볼이 사용될 수 있다.
도 14의 예시에서, RS 심볼은 특정 순환 시프트 값이 적용된 CAZAC 시퀀스로부터 생성될 수 있으며, 복수개의 RS 심볼에 걸쳐 소정의 OCC가 적용된 (또는 곱해진) 형태로 전송될 수 있다. 또한, 도 8의 예시에서 각각의 OFDM 심볼(또는 SC-FDMA 심볼) 별로 12 개의 변조 심볼이 사용되고, 각각의 변조 심볼은 QPSK에 의해 생성되는 것으로 가정하면, 하나의 슬롯에서 전송할 수 있는 최대 비트 수는 12x2=24 비트가 된다. 따라서, 2개의 슬롯으로 전송할 수 있는 비트수는 총 48비트가 된다. 이와 같이 블록 확산 방식의 PUCCH 채널 구조를 사용하는 경우 기존의 PUCCH 포맷 1계열 및 2 계열에 비하여 확장된 크기의 제어 정보의 전송이 가능해진다.
HARQ (Hybrid - Automatic Repeat and request)
이동 통신 시스템은 한 셀/섹터에 하나의 기지국이 다수의 단말기와 무선 채널 환경을 통하여 데이터를 송수신한다.
다중 반송파 및 이와 유사한 형태로 운영되는 시스템에서 기지국은 유선 인터넷 망으로부터 패킷 트래픽을 수신하고, 수신된 패킷 트래픽을 정해진 통신 방식을 이용하여 각 단말기로 송신한다. 이때 기지국이 어느 타이밍에 어떤 주파수 영역을 사용해서 어떤 단말기에게 데이터를 전송할 것인가를 결정하는 것이 하향 링크 스케줄링이다.
또한, 정해진 형태의 통신 방식을 사용하여 단말기로부터 송신된 데이터를 수신 복조하여 유선 인터넷망으로 패킷 트래픽을 전송한다. 기지국이 어느 타이밍에 어떤 주파수 대역을 이용하여 어느 단말기에게 상향 링크 데이터를 전송할 수 있도록 할 것인가를 결정하는 것이 상향 링크 스케줄링이다. 일반적으로 채널 상태가 좋은 단말이, 보다 많은 시간, 많은 주파수 자원을 이용하여 데이터를 송수신한다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템의 시간 주파수 영역에서의 시간-주파수 자원 블록을 예시하는 도면이다.
다중 반송파 및 이와 유사한 형태로 운영되는 시스템에서의 자원은 크게 시간과 주파수 영역으로 나눌 수 있다. 이 자원은 다시 자원 블록으로 정의될 수 있는데, 이는 임의의 N 개의 부 반송파와 임의의 M 개의 서브프레임 또는 정해진 시간 단위로 이루어진다. 이 때, N 과 M은 1이 될 수 있다.
도 15에서 하나의 사각형은 하나의 자원 블록을 의미하며, 하나의 자원 블록은 여러 개의 부 반송파를 한 축으로 하고, 정해진 시간 단위를 다른 축으로 하여 이루어진다. 하향 링크에서 기지국은 정해진 스케줄링 규칙에 따라 선택된 단말에게 1개 이상의 자원 블록을 스케줄링 하고, 기지국은 이 단말에게 할당된 자원 블록을 이용하여 데이터를 전송한다. 상향 링크에서는 기지국이 정해진 스케줄링 규칙에 따라 선택된 단말에게 1개 이상의 자원 블록을 스케줄링 하고, 단말기는 할당된 자원을 이용하여 상향 링크로 데이터를 전송하게 된다.
스케줄링 이후 데이터를 전송한 후, 프레임을 잃어 버렸거나 손상된 경우의 오류제어 방법으로는 ARQ(Automatic Repeat request) 방식과 좀더 발전된 형태의 HARQ(hybrid ARQ) 방식이 있다.
기본적으로 ARQ 방식은 한 개 프레임 전송 후에 확인 메시지(ACK)가 오기를 기다리고, 수신 측에서는 제대로 받는 경우만 확인 메시지(ACK)를 보내며, 상기 프레임에 오류가 생긴 경우에는 NACK(negative-ACK) 메시지를 보내고, 오류가 생긴 수신 프레임은 수신단 버퍼에서 그 정보를 삭제한다. 송신 측에서 ACK 신호를 받았을 때에는 그 이후 프레임을 전송하지만, NACK 메시지를 받았을 때에는 프레임을 재전송하게 된다.
ARQ 방식과는 달리 HARQ 방식은 수신된 프레임을 복조할 수 없는 경우에, 수신단에서는 송신단으로 NACK 메세지를 전송하지만, 이미 수신한 프레임은 일정 시간 동안 버퍼에 저장하여, 그 프레임이 재전송되었을 때 기 수신한 프레임과 컴바이닝하여 수신 성공률을 높인다.
최근에는 기본적인 ARQ 방식보다는 더 효율적인 HARQ 방식이 더 널리 사용되고 있다. 이러한 HARQ 방식에도 여러 가지 종류가 있는데, 크게는 재전송하는 타이밍에 따라 동기 HARQ(synchronous HARQ)와 비동기 HARQ(asynchronous HARQ)로 나눌 수 있고, 재 전송 시 사용하는 자원의 양에 대해 채널 상태를 반영하는 지의 여부에 따라 채널 적응적(channel-adaptive) 방식과 채널 비적응적(channel-non-adaptive) 방식으로 나눌 수 있다.
동기 HARQ 방식은 초기 전송이 실패했을 경우, 이 후의 재전송이 시스템에 의해 정해진 타이밍에 이루어지는 방식이다. 즉, 재전송이 이루어지는 타이밍은 초기 전송 실패 후에 매 4번째 시간 단위에 이루어 진다고 가정하면, 이는 기지국과 단말기 사이에 이미 약속이 이루어져 있기 때문에 추가로 이 타이밍에 대해 알려줄 필요는 없다. 다만, 데이터 송신 측에서 NACK 메시지를 받았다면, ACK 메시지를 받기까지 매 4번째 시간 단위에 프레임을 재전송하게 된다.
반면, 비동기 HARQ 방식은 재 전송 타이밍이 새로이 스케줄링 되거나 추가적인 시그널링을 통해 이루어 질 수 있다. 이전에 실패했던 프레임에 대한 재전송이 이루어지는 타이밍은 채널 상태 등의 여러 요인에 의해 가변된다.
채널 비적응적 HARQ 방식은 재 전송시 프레임의 변조(modulation)나 이용하는 자원 블록의 수, AMC(Adaptive Modulation and Coding) 등이 초기 전송 시 정해진 대로 이루어지는 방식이다. 이와 달리 채널 적응적 HARQ 방식은 이들이 채널의 상태에 따라 가변 되는 방식이다. 예를 들어, 송신 측에서 초기 전송 시 6개의 자원 블록을 이용하여 데이터를 전송했고, 이후 재전송 시에도 동일하게 6개의 자원 블록을 이용하여 재전송하는 것이 채널 비적응적 HARQ 방식이다. 반면, 초기에는 6개를 이용하여 전송이 이루어 졌다 하여도 이후에 채널 상태에 따라서는 6개보다 크거나 작은 수의 자원 블록을 이용하여 재전송을 하는 방식이 채널 적응적 HARQ 방식이다.
이러한 분류에 의해 각각 네 가지의 HARQ의 조합이 이루어 질 수 있으나, 주로 사용되는 HARQ 방식으로는 비동기 채널 적응적 HARQ(asynchronous and channel-adaptive HARQ) 방식과 동기 채널 비적응적 HARQ(synchronous and channel-non-adaptive HARQ) 방식이 있다.
비동기 채널 적응적 HARQ 방식은 재전송 타이밍과 사용하는 자원의 양을 채널의 상태에 따라 적응적으로 달리함으로써 재전송 효율을 극대화 시킬 수 있으나, 오버헤드가 커지는 단점이 있어서 상향링크를 위해서는 일반적으로 고려되지 않는다.
한편, 동기 채널 비적응적 HARQ 방식은 재전송을 위한 타이밍과 자원할당이 시스템 내에서 약속되어 있기 때문에 이를 위한 오버헤드가 거의 없는 것이 장점이지만, 변화가 심한 채널 상태에서 사용될 경우 재전송 효율이 매우 낮아지는 단점이 있다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 비동기 HARQ 방식의 자원 할당 및 재전송 과정을 예시하는 도면이다.
한편, 하향링크를 예로, 스케줄링이 되어 데이터가 전송된 뒤 단말로부터의 ACK/NACK의 정보가 수신되고 다시 다음 데이터가 전송될 때까지는 도 16과 같이 시간 지연이 발생한다. 이는 채널 확산 지연(Channel propagation delay)와 데이터 디코딩 및 데이터 인코딩에 걸리는 시간으로 인해 발생하는 지연이다.
이러한 지연 구간 동안에 공백없는 데이터 전송을 위하여 독립적인 HARQ 프로세스(process)를 사용하여 전송하는 방법이 사용되고 있다. 예를 들어 다음 데이터 전송과 그 다음 데이터 전송까지의 최단 주기가 7 서브프레임이라면, 7개의 독립적인 프로세스를 둔다면 공백없이 데이터 전송을 할 수 있게 된다.
LTE 물리 계층은 PDSCH 및 PUSCH에서 HARQ를 지원하며, 별도의 제어 채널에서 연관된 수신 응답(ACK) 피드백을 전송한다.
LTE FDD 시스템에서는, MIMO로 동작하지 않을 경우 8 개의 SAW (Stop-And-Wait) HARQ 프로세스가 8 ms의 일정한 RTT (Round-Trip Time)으로 상향링크 및 하향링크 모두에서 지원된다.
CA 기반 CoMP 동작
LTE 이후 시스템에서 LTE에서의 CA(carrier aggregation) 기능을 이용하여 CoMP(cooperative multi-point) 전송을 구현할 수 있다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 캐리어 병합 기반 CoMP 시스템을 예시하는 도면이다.
도 17을 참조하면, 프라이머리 셀(PCell) 캐리어와 세컨더리 셀(SCell) 캐리어는 주파수 축으로 동일한 주파수 대역을 사용하며, 지리적으로 떨어진 두 eNB에 각각 할당된 경우를 예시한다.
UE1에게 서빙 기지국(serving eNB)이 PCell을 할당하고, 많은 간섭을 주는 인접 기지국에서 SCell을 할당하여 JT, CS/CB, 동적 셀 선택 등 다양한 DL/UL CoMP 동작이 가능할 수 있다.
도 17에서는 UE가 두 eNB를 각각 PCell과 SCell로 병합하는 예를 도시하고 있으나, 실제로는 한 UE가 3개 이상의 셀을 병합하고, 그 중 일부 셀들은 동일 주파수 대역에서 CoMP 동작을 하고 다른 셀들은 다른 주파수 대역에서 단순 CA 동작을 하는 것도 가능하며 이 때에 PCell은 반드시 CoMP 동작에 참여할 필요는 없다.
PDSCH 수신을 위한 UE 절차
상위 계층 파라미터 'mbsfn-SubframeConfigList'에 의해 지시된 서브프레임(들)을 제외하고, 단말은 서브프레임 내에서 자신에게 의도된(intended) DCI 포맷 1, 1A, 1B, 1C, 1D, 2, 2A, 2B 또는 2C를 전달하는 서빙 셀의 PDCCH의 검출할 때, 상위 계층에서 정의된 전송 블록(transport block)의 개수에 제한되어 동일한 서브프레임에서 단말은 해당 PDSCH를 디코딩한다.
단말은 자신에게 의도된(intended) DCI 포맷 1A, 1C를 전달하는 SI-RNTI 또는 P-RNTI에 의해 스크램블된 CRC를 가지는 검출된 PDCCH에 따라 PDSCH를 디코딩하고, 해당 PDSCH가 전달되는 자원 블록(RB)에서는 PRS가 존재하지 않는다고 가정한다.
서빙 셀에 대한 캐리어 지시 필드(CIF: carrier indicator field)가 설정되는 단말은 캐리어 지시 필드가 공통 서치 스페이스(common search space) 내 서빙 셀의 어떠한 PDCCH에서도 존재하지 않는다고 가정한다.
그렇지 않으면, PDCCH CRC가 C-RNTI 또는 SPS C-RNTI에 의해 스크램블될 때, CIF가 설정되는 단말은 서빙 셀에 대한 CIF가 단말 특정 서치 스페이스(UE specific search space) 내에 위치하는 PDCCH에 존재한다고 가정한다.
단말이 SI-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 단말은 아래 표 3에서 정의된 조합에 따라 PDCCH 및 해당 PDSCH를 디코딩한다. 이 PDCCH(들)에 대응되는 PDSCH는 SI-RNTI에 의해 스크램블링 초기화(scrambling initialization)된다.
표 7은 SI-RNTI에 의해 설정되는 PDCCH 및 PDSCH를 예시한다.
Figure PCTKR2017012141-appb-T000007
단말이 P-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 단말은 아래 표 4에서 정의된 조합에 따라 PDCCH와 해당 PDSCH를 디코딩한다. 이 PDCCH(들)에 대응되는 PDSCH는 P-RNTI에 의해 스크램블링 초기화(scrambling initialization)된다.
표 8은 P-RNTI에 의해 설정되는 PDCCH 및 PDSCH를 예시한다.
Figure PCTKR2017012141-appb-T000008
단말이 RA-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 단말은 아래 표 5에서 정의된 조합에 따라 PDCCH와 해당 PDSCH를 디코딩한다. 이 PDCCH(들)에 대응되는 PDSCH는 RA-RNTI에 의해 스크램블링 초기화(scrambling initialization)된다.
표 9는 RA-RNTI에 의해 설정되는 PDCCH 및 PDSCH를 예시한다.
Figure PCTKR2017012141-appb-T000009
단말은 모드 1 내지 모드 9와 같이 9가지의 전송 모드(transmission mode) 중 하나에 따라 PDCCH를 통해 시그널링된 PDSCH 데이터 전송을 수신하도록 상위 계층 시그널링을 통해 반정적으로(semi-statically) 설정될 수 있다.
프레임 구조 타입 1의 경우,
- 단말은 일반 CP를 가지는 PDCCH를 위한 OFDM 심볼의 수가 4인 어느 서브프레임 내에서도 안테나 포트 5에서 전송되는 PDSCH RB를 수신하지 않는다.
- 만약, 가상 자원 블록(VRB: virtual RB) 쌍이 매핑되는 2개의 물리 자원 블록(PRB: Physical RB) 중 어느 하나라도 동일 서브프레임 내에서 PBCH 또는 프라이머리 또는 세컨더리 동기 신호가 전송되는 주파수와 중복되면, 단말은 해당 2개의 PRB에서 안테나 포트 5, 7, 8, 9, 10, 11, 12, 13 또는 14에서 전송되는 PDSCH RB를 수신하지 않는다.
- 단말은 분산된 VRB 자원 할당(distributed VRB resource allocation)이 지정된(assigned) 안테나 포트 7에서 전송되는 PDSCH RB를 수신하지 않는다.
- 단말은 할당된 모든 PDSCH RB를 수신하지 못하면 transport block의 디코딩을 생략(skip)할 수 있다. 단말이 디코딩을 생략(skip)하면, 물리 계층은 상위 계층에게 transport block이 성공적으로 디코딩되지 않았다고 지시한다.
프레임 구조 타입 2의 경우,
- 단말은 일반 CP를 가지는 PDCCH를 위한 OFDM 심볼의 수가 4인 어느 서브프레임 내에서도 안테나 포트 5에서 전송되는 PDSCH RB를 수신하지 않는다.
- 만약, VRB 쌍이 매핑되는 2개의 PRB 중 어느 하나라도 동일 서브프레임 내에서 PBCH가 전송되는 주파수와 중복되면, 단말은 해당 2개의 PRB에서 안테나 포트 5에서 전송되는 PDSCH RB를 수신하지 않는다.
- 만약, VRB 쌍이 매핑되는 2개의 PRB 중 어느 하나라도 동일 서브프레임 내에서 프라이머리 또는 세컨더리 동기 신호가 전송되는 주파수와 중복되면, 단말은 해당 2개의 PRB에서 안테나 포트 7, 8, 9, 10, 11, 12, 13 또는 14에서 전송되는 PDSCH RB를 수신하지 않는다.
- 일반 CP가 설정되는 경우, 단말은 상향링크-하향링크 구성 #1 또는 #6에서 스페셜 서브프레임 내에서 분산된 VRB 자원 할당이 지정된(assigned) 안테나 포트 5에서 PDSCH를 수신하지 않는다.
- 단말은 분산된 VRB 자원 할당이 지정된(assigned) 안테나 포트 7에서 PDSCH를 수신하지 않는다.
- 단말은 할당된 모든 PDSCH RB를 수신하지 못하면 transport block의 디코딩을 생략(skip)할 수 있다. 단말이 디코딩을 생략(skip)하면, 물리 계층은 상위 계층에게 transport block이 성공적으로 디코딩되지 않았다고 지시한다.
단말이 C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 아래 표 6에서 정의된 각 조합에 따라 단말은 PDCCH와 해당 PDSCH를 디코딩한다. 이 PDCCH(들)에 대응되는 PDSCH는 C-RNTI에 의해 스크램블링 초기화(scrambling initialization)된다.
단말이 서빙 셀에 대한 CIF가 설정되거나 단말이 C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 단말은 디코딩된 PDCCH 내 CIF 값에 의해 지시된 서빙 셀의 PDSCH를 디코딩한다.
전송 모드 3, 4, 8 또는 9의 단말이 DCI 포맷 1A 승인(assignment)을 수신하면, 단말은 PDSCH 전송이 transport block 1과 관련되고, transport block 2는 사용 불능(disabled)이라고 가정한다.
단말이 전송 모드 7로 설정되면, 이 PDCCH(들)에 해당하는 단말 특정 참조 신호는 C-RNTI에 의해 스크램블링 초기화된다.
확장 CP가 하향링크에서 사용되면, 단말은 전송 모드 8을 지원하지 않는다.
단말이 전송 모드 9로 설정될 때, 단말이 자신에게 의도된(intended) DCI 포맷 1A 또는 2C를 전달하는 C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 검출하면, 단말은 상위 계층 파라미터('mbsfn-SubframeConfigList')에 의해 지시된 서브프레임에서 해당 PDSCH를 디코딩한다. 단, 상위 계층에 의해 PMCH를 디코딩하도록 설정되거나, PRS 시점은 MBSFN 서브프레임 내에서만 설정되고, 서브프레임 #0에서 사용된 CP 길이가 일반 CP이고, 상위 계층에 의해 PRS 시점(occasion)의 일부로 설정된 서브프레임은 제외한다.
표 10은 C-RNTI에 의해 설정되는 PDCCH 및 PDSCH를 예시한다.
Figure PCTKR2017012141-appb-T000010
단말이 SPS C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 단말은 아래 표 7에 정의된 각 조합에 따라 프라이머리 셀의 PDCCH 및 프라이머리 셀의 해당 PDSCH를 디코딩한다. PDSCH가 해당 PDCCH 없이 전송되는 경우, 동일한 PDSCH 관련 구성을 적용한다. 이 PDCCH에 해당 PDSCH와 PDCCH 없는 PDSCH는 SPS C-RNTI에 의해 스크램블링 초기화된다.
단말이 전송 모드 7로 설정될 때, 이 PDCCH(들)와 대응되는 단말 특정 참조 신호는 SPS C-RNTI에 의해 스크램블링 초기화된다.
단말이 전송 모드 9로 설정될 때, 단말이 자신에게 의도된(intended) DCI 포맷 1A 또는 2C를 전달하는 SPS C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH 또는 자신에게 의도된(intended) PDCCH 없이 구성되는 PDSCH를 검출하면, 단말은 상위 계층 파라미터('mbsfn-SubframeConfigList')에 의해 지시된 서브프레임에서 해당 PDSCH를 디코딩한다. 단, 상위 계층에 의해 PMCH를 디코딩하도록 설정되거나, PRS 시점은 MBSFN 서브프레임 내에서만 설정되고, 서브프레임 #0에서 사용된 CP 길이가 일반 CP이고, 상위 계층에 의해 PRS 시점(occasion)의 일부로 설정된 서브프레임은 제외한다.
표 11은 SPS C-RNTI에 의해 설정되는 PDCCH 및 PDSCH를 예시한다.
Figure PCTKR2017012141-appb-T000011
단말이 상위 계층에 의해 임시 C-RNTI(Temporary C-RNTI)에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 설정되고, C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하지 않도록 설정되면, 단말은 아래 표 8에 정의된 조합에 따라 PDCCH 및 해당 PDSCH를 디코딩한다. 이 PDCCH(들)에 대응되는 PDSCH는 임시 C-RNTI(Temporary C-RNTI)에 의해 스크램블링 초기화된다.
표 12는 임시 C-RNTI에 의해 설정되는 PDCCH 및 PDSCH를 예시한다.
Figure PCTKR2017012141-appb-T000012
PUSCH 전송을 위한 UE 절차
단말은 아래 표 13에서 정의된 모드 1, 2의 2가지의 상향링크 전송 모드 중 어느 하나에 따라 PDCCH를 통해 시그널링된 PUSCH 전송을 전송하도록 상위 계층 시그널링을 통해 반정적(semi-statically)으로 설정된다. 단말이 C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 상위 계층에 의해 설정되면, 단말은 아래 표 9에서 정의된 조합에 따라 PDCCH를 디코딩하고, 해당 PUSCH를 전송한다. 이 PDCCH(들)에 대응되는 PUSCH 전송 및 동일 transport block에 대한 PUSCH 재전송은 C-RNTI에 의해 스크램블링 초기화된다. 전송 모드 1은 단말이 상위 계층 시그널링에 의해 상향링크 전송 모드가 지정될(assigned) 때까지 단말을 위한 기본(default) 상향링크 전송 모드이다.
단말이 전송 모드 2로 설정되고 DCI 포맷 0 상향링크 스케줄링 그랜트(scheduling grant)를 수신할 때, 단말은 PUSCH 전송이 transport block 1과 관련되고, transport block 2는 사용 불능(disabled)이라고 가정한다.
표 13은 C-RNTI에 의해 설정되는 PDCCH 및 PUSCH를 예시한다.
Figure PCTKR2017012141-appb-T000013
단말이 상위 계층에 의해 C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 설정되고, 또한 PDCCH 오더(order)에 의해 개시된 랜덤 액세스 절차(random access procedure)를 수신하도록 설정되면, 단말은 아래 표 10에 정의된 조합에 따라 PDCCH를 디코딩한다.
표 14는 랜덤 액세스 절차를 개시하기 위한 PDCCH 오더로서 설정되는 PDCCH를 예시한다.
Figure PCTKR2017012141-appb-T000014
단말이 상위 계층에 의해 SPS C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 설정되면, 단말은 아래 표 11에서 정의된 조합에 따라 PDCCH를 디코딩하고, 해당 PUSCH를 전송한다. 이 PDCCH(들)에 대응되는 PUSCH 전송 및 동일 transport block에 대한 PUSCH 재전송은 SPS C-RNTI에 의해 스크램블링 초기화된다. 해당 PDCCH 없이 이 PUSCH의 최소 전송 및 동일 transport block에 대한 PUSCH 재전송은 SPS C-RNTI에 의해 스크램블링 초기화된다.
표 15는 SPS C-RNTI에 의해 설정된 PDCCH 및 PUSCH를 예시한다.
Figure PCTKR2017012141-appb-T000015
단말이 C-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 설정되었는지 여부와 무관하게, 단말이 상위 계층에 의해 임시 C-RNTI에 의해 스크램블된 PDCCH를 디코딩하도록 설정되면, 단말은 아래 표 12에서 정의된 조합에 따라 PDCCH를 디코딩하고 해당 PUSCH를 전송한다. 이 PDCCH(들)에 대응되는 PUSCH는 임시 C-RNTI에 의해 스크램블링 초기화된다.
임시 C-RNTI가 상위 계층에 의해 셋팅되면, 랜덤 액세스 응답 그랜트(random access response grant)에 대응되는 PUSCH 전송 및 동일 transport block에 대한 PUSCH 재전송은 임시 C-RNTI에 의해 스크램블된다. 그렇지 않으면, 랜덤 액세스 응답 그랜트에 대응되는 PUSCH 전송 및 동일 transport block에 대한 PUSCH 재전송은 C-RNTI에 의해 스크램블된다.
표 16은 임시 C-RNTI에 의해 설정되는 PDCCH를 예시한다.
Figure PCTKR2017012141-appb-T000016
단말이 상위 계층에 의해 TPC-PUCCH-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 설정되면, 단말은 아래 표 13에서 정의된 조합에 따라 PDCCH를 디코딩한다. 표 13에서 3/3A의 표기는 단말이 설정에 따라 DCI 포맷 3 또는 DCI 포맷을 수신하는 것을 내포한다.
표 17은 TPC-PUCCH-RNTI에 의해 설정되는 PDCCH를 예시한다.
Figure PCTKR2017012141-appb-T000017
단말이 상위 계층에 의해 TPC-PUSCH-RNTI에 의해 스크램블된 CRC를 가지는 PDCCH를 디코딩하도록 설정되면, 단말은 아래 표 14에서 정의된 조합에 따라 PDCCH를 디코딩한다. 표 14에서 3/3A의 표기는 단말이 설정에 따라 DCI 포맷 3 또는 DCI 포맷을 수신하는 것을 내포한다.
표 18은 TPC-PUSCH-RNTI에 의해 설정되는 PDCCH를 예시한다.
Figure PCTKR2017012141-appb-T000018
릴레이 노드 (RN: Relay Node)
릴레이 노드는 기지국과 단말 간의 송수신되는 데이터를 두 개의 다른 링크(백홀 링크 및 액세스 링크)를 통해 전달한다. 기지국은 도너(donor) 셀을 포함할 수 있다. 릴레이 노드는 도너 셀을 통해 무선으로 무선 액세스 네트워크에 연결된다.
한편, 릴레이 노드의 대역(또는 스펙트럼) 사용과 관련하여, 백홀 링크가 액세스 링크와 동일한 주파수 대역에서 동작하는 경우를 '인-밴드(in-band)'라고 하고, 백홀 링크와 액세스 링크가 상이한 주파수 대역에서 동작하는 경우를 '아웃-밴드(out-band)'라고 한다. 인-밴드 및 아웃-밴드 경우 모두 기존의 LTE 시스템(예를 들어, 릴리즈-8)에 따라 동작하는 단말(이하, 레거시(legacy) 단말이라 한다.)이 도너 셀에 접속할 수 있어야 한다.
단말에서 릴레이 노드를 인식하는지 여부에 따라 릴레이 노드는 트랜스패런트(transparent) 릴레이 노드 또는 넌-트랜스패런트(non-transparent) 릴레이 노드로 분류될 수 있다. 트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하지 못하는 경우를 의미하고, 넌-트랜스패런트는 단말이 릴레이 노드를 통하여 네트워크와 통신하는지 여부를 인지하는 경우를 의미한다.
릴레이 노드의 제어와 관련하여, 도너 셀의 일부로 구성되는 릴레이 노드 또는 스스로 셀을 제어하는 릴레이 노드로 구분될 수 있다.
도너 셀의 일부로 구성되는 릴레이 노드는 릴레이 노드 식별자(relay ID)를 가질 수는 있지만, 릴레이 노드 자신의 셀 식별자(cell identity)를 가지지 않는다.
도너 셀이 속하는 기지국에 의하여 RRM(Radio Resource Management)의 적어도 일부가 제어되면, RRM의 나머지 부분들이 릴레이 노드에 위치하더라도 도너 셀의 일부로서 구성되는 릴레이 노드라 한다. 바람직하게, 이러한 릴레이 노드는 레거시 단말을 지원할 수 있다. 예를 들어, 스마트 리피터(Smart repeaters), 디코드-앤-포워드 릴레이 노드(decode-and-forward relays), L2(제2계층) 릴레이 노드들의 다양한 종류들 및 타입-2 릴레이 노드가 이러한 릴레이 노드에 해당한다.
스스로 셀을 제어하는 릴레이 노드의 경우에 릴레이 노드는 하나 또는 복수 개의 셀들을 제어하고, 릴레이 노드에 의해 제어되는 셀들 각각에 고유의 물리계층 셀 식별자가 제공된다. 또한, 릴레이 노드에 의해 제어되는 셀들 각각은 동일한 RRM 메커니즘을 이용할 수 있다. 단말 관점에서는 릴레이 노드에 의하여 제어되는 셀에 액세스하는 것과 일반 기지국에 의해 제어되는 셀에 액세스하는 것에 차이점이 없다. 이러한 릴레이 노드에 의해 제어되는 셀은 레거시 단말을 지원할 수 있다. 예를 들어, 셀프-백홀링(Self-backhauling) 릴레이 노드, L3(제3계층) 릴레이 노드, 타입-1 릴레이 노드 및 타입-1a 릴레이 노드가 이러한 릴레이 노드에 해당한다.
타입-1 릴레이 노드는 인-밴드 릴레이 노드로서 복수개의 셀들을 제어하고, 이들 복수개의 셀들의 각각은 단말 입장에서 도너 셀과 구별되는 별개의 셀로 보인다. 또한, 복수개의 셀들은 각자의 물리 셀 ID(이는 LTE 릴리즈-8에서 정의됨)를 가지고, 릴레이 노드는 자신의 동기화 채널, 참조신호 등을 전송할 수 있다. 단일-셀 동작의 경우에, 단말은 릴레이 노드로부터 직접 스케줄링 정보 및 HARQ 피드백을 수신하고 릴레이 노드로 자신의 제어 채널(스케줄링 요청(SR), CQI, ACK/NACK 등)을 전송할 수 있다. 또한, 레거시 단말(LTE 릴리즈-8 시스템에 따라 동작하는 단말)들에게 타입-1 릴레이 노드는 레거시 기지국(LTE 릴리즈-8 시스템에 따라 동작하는 기지국)으로 보인다. 즉, 역방향 호환성(backward compatibility)을 가진다. 한편, LTE-A 시스템에 따라 동작하는 단말들에게는, 타입-1 릴레이 노드는 레거시 기지국과 다른 기지국으로 보여, 성능 향상을 제공할 수 있다.
타입-1a 릴레이 노드는 아웃-밴드로 동작하는 것 외에 전술한 타입-1 릴레이 노드와 동일한 특징들을 가진다. 타입-1a 릴레이 노드의 동작은 L1(제1계층) 동작에 대한 영향이 최소화 또는 없도록 구성될 수 있다.
타입-2 릴레이 노드는 인-밴드 릴레이 노드로서, 별도의 물리 셀 ID를 가지지 않으며, 이에 따라 새로운 셀을 형성하지 않는다. 타입-2 릴레이 노드는 레거시 단말에 대해 트랜스패런트하고, 레거시 단말은 타입-2 릴레이 노드의 존재를 인지하지 못한다. 타입-2 릴레이 노드는 PDSCH를 전송할 수 있지만, 적어도 CRS 및 PDCCH는 전송하지 않는다.
한편, 릴레이 노드가 인-밴드로 동작하도록 하기 위하여, 시간-주파수 공간에서의 일부 자원이 백홀 링크를 위해 예비되어야 하고 이 자원은 액세스 링크를 위해서 사용되지 않도록 설정할 수 있다. 이를 자원 분할(resource partitioning)이라 한다.
릴레이 노드에서의 자원 분할에 있어서의 일반적인 원리는 다음과 같이 설명할 수 있다. 백홀 하향링크 및 액세스 하향링크가 하나의 반송파 주파수 상에서 시간분할다중화(TDM) 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 하향링크 또는 액세스 하향링크 중 하나만이 활성화된다). 유사하게, 백홀 상향링크 및 액세스 상향링크는 하나의 반송파 주파수 상에서 TDM 방식으로 다중화될 수 있다 (즉, 특정 시간에서 백홀 상향링크 또는 액세스 상향링크 중 하나만이 활성화된다).
FDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 하향링크 주파수 대역에서 수행되고, 백홀 상향링크 전송은 상향링크 주파수 대역에서 수행될 수 있다. TDD 에서의 백홀 링크 다중화는, 백홀 하향링크 전송은 기지국과 릴레이 노드의 하향링크 서브프레임에서 수행되고, 백홀 상향링크 전송은 기지국과 릴레이 노드의 상향링크 서브프레임에서 수행될 수 있다.
인-밴드 릴레이 노드의 경우에, 예를 들어, 동일한 주파수 대역에서 기지국으로부터의 백홀 하향링크 수신과 단말로의 액세스 하향링크 전송이 동시에 이루어지면, 릴레이 노드의 송신단으로부터 전송되는 신호에 의하여 릴레이 노드의 수신단에서 신호 간섭이 발생할 수 있다. 즉, 릴레이 노드의 RF 전단(front-end)에서 신호 간섭 또는 RF 재밍(jamming)이 발생할 수 있다. 유사하게, 동일한 주파수 대역에서 기지국으로의 백홀 상향링크 전송과 단말로부터의 액세스 상향링크 수신이 동시에 이루어지는 경우도 신호 간섭이 발생할 수 있다.
따라서, 릴레이 노드에서 동일한 주파수 대역에서의 동시에 신호를 송수신하기 위해서, 수신 신호와 송신 신호간에 충분한 분리(예를 들어, 송신 안테나와 수신 안테나를 지상/지하에 설치하는 것과 같이 지리적으로 충분히 이격시켜 설치함)가 제공되지 않으면 구현하기 어렵다.
이와 같은 신호 간섭의 문제를 해결하는 한 가지 방안은, 릴레이 노드가 도너 셀로부터 신호를 수신하는 동안에 단말로 신호를 전송하지 않도록 동작하게 하는 것이다. 즉, 릴레이 노드로부터 단말로의 전송에 갭(gap)을 생성하고, 이 갭 동안에는 단말(레거시 단말 포함)이 릴레이 노드로부터의 어떠한 전송도 기대하지 않도록 설정할 수 있다. 이러한 갭은 MBSFN (Multicast Broadcast Single Frequency Network) 서브프레임을 구성함으로써 설정할 수 있다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 릴레이 노드 자원 분할을 예시한다.
도 18에서, 첫번째 서브프레임은 일반 서브프레임으로서 릴레이 노드로부터 단말로 하향링크 (즉, 액세스 하향링크) 제어신호 및 데이터가 전송되고, 두번째 서브프레임은 MBSFN 서브프레임으로서 하향링크 서브프레임의 제어 영역에서는 릴레이 노드로부터 단말로 제어 신호가 전송되지만 하향링크 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는다. 여기서, 레거시 단말의 경우에는 모든 하향링크 서브프레임에서 PDCCH의 전송을 기대하게 되므로 (다시 말하자면, 릴레이 노드는 자신의 영역 내의 레거시 단말들이 매 서브프레임에서 PDCCH를 수신하여 측정 기능을 수행하도록 지원할 필요가 있으므로), 레거시 단말의 올바른 동작을 위해서는 모든 하향링크 서브프레임에서 PDCCH를 전송할 필요가 있다. 따라서, 기지국으로부터 릴레이 노드로의 하향링크 (즉, 백홀 하향링크) 전송을 위해 설정된 서브프레임 (두번째 서브프레임)상에서도, 서브프레임의 처음 N (N=1, 2 또는 3) 개의 OFDM 심볼구간에서 릴레이 노드는 백홀 하향링크를 수신하는 것이 아니라 액세스 하향링크 전송을 해야 할 필요가 있다. 이에 대하여, 두번째 서브프레임의 제어 영역에서 PDCCH가 릴레이 노드로부터 단말로 전송되므로 릴레이 노드에서 서빙하는 레거시 단말에 대한 역방향 호환성이 제공될 수 있다. 제 2 서브프레임의 나머지 영역에서는 릴레이 노드로부터 단말로 아무런 전송이 수행되지 않는 동안에 릴레이 노드는 기지국으로부터의 전송을 수신할 수 있다. 따라서, 이러한 자원 분할 방식을 통해서, 인-밴드 릴레이 노드에서 액세스 하향링크 전송과 백홀 하향링크 수신이 동시에 수행되지 않도록 할 수 있다.
MBSFN 서브프레임을 이용하는 두번째 서브프레임에 대하여 구체적으로 설명한다. 두번째 서브프레임의 제어 영역은 릴레이 노드 비-청취(non-hearing) 구간이라고 할 수 있다. 릴레이 노드 비-청취 구간은 릴레이 노드가 백홀 하향링크 신호를 수신하지 않고 액세스 하향링크 신호를 전송하는 구간을 의미한다. 이 구간은 전술한 바와 같이 1, 2 또는 3 OFDM 길이로 설정될 수 있다. 릴레이 노드 비-청취 구간에서 릴레이 노드는 단말로의 액세스 하향링크 전송을 수행하고 나머지 영역에서는 기지국으로부터 백홀 하향링크를 수신할 수 있다. 이 때, 릴레이 노드는 동일한 주파수 대역에서 동시에 송수신을 수행할 수 없으므로, 릴레이 노드가 송신 모드에서 수신 모드로 전환하는 데에 시간이 소요된다. 따라서, 백홀 하향링크 수신 영역의 처음 일부 구간에서 릴레이 노드가 송신/수신 모드 스위칭을 하도록 가드 시간(GT: guard time)이 설정될 필요가 있다. 유사하게 릴레이 노드가 기지국으로부터의 백홀 하향링크를 수신하고 단말로의 액세스 하향링크를 전송하도록 동작하는 경우에도, 릴레이 노드의 수신/송신 모드 스위칭을 위한 가드 시간이 설정될 수 있다. 이러한 가드 시간의 길이는 시간 영역의 값으로 주어질 수 있고, 예를 들어, k (k≥1) 개의 시간 샘플(Ts: time sample) 값으로 주어질 수 있고, 또는 하나 이상의 OFDM 심볼 길이로 설정될 수도 있다. 또는, 릴레이 노드 백홀 하향링크 서브프레임이 연속으로 설정되어 있는 경우에 또는 소정의 서브프레임 타이밍 정렬(timing alignment) 관계에 따라 서브프레임의 마지막 부분의 가드시간은 정의되거나 설정되지 않을 수 있다. 이러한 가드 시간은 역방향 호환성을 유지하기 위하여, 백홀 하향링크 서브프레임 전송을 위해 설정되어 있는 주파수 영역에서만 정의될 수 있다 (액세스 하향링크 구간에서 가드 시간이 설정되는 경우에는 레거시 단말을 지원할 수 없다). 가드 시간을 제외한 백홀 하향링크 수신 구간에서 릴레이 노드는 기지국으로부터 PDCCH 및 PDSCH를 수신할 수 있다. 이를 릴레이 노드 전용 물리 채널이라는 의미에서 R-PDCCH (Relay-PDCCH) 및 R-PDSCH (Relay-PDSCH)로 표현할 수도 있다.
안테나 포트 간 QCL (quasi co-located)
QC/QCL(quasi co-located 혹은 quasi co-location)은 다음과 같이 정의될 수 있다.
두 개의 안테나 포트가 QC/QCL 관계에 있다(혹은 QC/QCL 되었다)고 하면, 하나의 안테나 포트를 통해 전달되는 신호의 광범위 특성(large-scale property)이 다른 하나의 안테나 포트를 통해 전달되는 신호로부터 암시(infer)될 수 있다고 단말이 가정할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
또한, 다음과 같이 정의될 수도 있다. 두 개의 안테나 포트가 QC/QCL 관계에 있다(혹은 QC/QCL 되었다)고 하면, 하나의 안테나 포트를 통해 일 심볼이 전달되는 채널의 광범위 특성(large-scale property)이 다른 하나의 안테나 포트를 통해 일 심볼이 전달되는 무선 채널로부터 암시(infer)될 수 있다고 단말이 가정할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(delay spread), 도플러 확산(Doppler spread), 도플러 쉬프트(Doppler shift), 평균 이득(average gain) 및 평균 지연(average delay) 중 하나 이상을 포함한다.
즉, 두 개의 안테나 포트들이 QC/QCL 관계에 있다(혹은 QC/QCL 되었다)고 함은, 하나의 안테나 포트로부터의 무선 채널의 광범위 특성이 나머지 하나의 안테나 포트로부터의 무선 채널의 광범위 특성과 같음을 의미한다. RS가 전송되는 복수의 안테나 포트를 고려하면, 서로 다른 두 종류의 RS가 전송되는 안테나 포트들이 QCL 관계에 있으면, 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성을 다른 한 종류의 안테나 포트로부터의 무선 채널의 광범위 특성으로 대체할 수 있을 것이다.
본 명세서에서 위 QC/QCL 관련 정의들을 구분하지 않는다. 즉, QC/QCL 개념은 위 정의들 중에 하나를 따를 수 있다. 혹은 유사한 다른 형태로, QC/QCL 가정이 성립하는 안테나 포트 간에는 마치 동일 위치(co-location)에서 전송하는 것처럼 가정할 수 있다는 형태 (예를 들어, 동일 전송 포인트(transmission point)에서 전송하는 안테나 포트라고 단말이 가정할 수 있다는 등)으로 QC/QCL 개념 정의가 변형될 수도 있으며, 본 발명의 사상은 이와 같은 유사 변형예들을 포함한다. 본 발명에서는 설명의 편의상 위 QC/QCL 관련 정의들을 혼용하여 사용한다.
상기 QC/QCL의 개념에 따라, 단말은 비-QC/QCL(Non-QC/QCL) 안테나 포트들에 대해서는 해당 안테나 포트들로부터의 무선 채널 간에 동일한 상기 광범위 특성을 가정할 수 없다. 즉, 이 경우 단말은 타이밍 획득 및 트랙킹(tracking), 주파수 오프셋 추정 및 보상, 지연 추정 및 도플러 추정 등에 대하여 각각의 설정된 비-QC/QCL 안테나 포트 별로 독립적인 프로세싱을 수행하여야 한다.
QC/QCL을 가정할 수 있는 안테나 포트들간에 대해서, 단말은 다음과 같은 동작을 수행할 수 있다는 장점이 있다:
- 지연 확산 및 도플러 확산에 대하여, 단말은 어떤 하나의 안테나 포트로부터의 무선 채널에 대한 전력-지연-프로파일(power-delay profile), 지연 확산 및 도플러 스펙트럼(Doppler spectrum), 도플러 확산 추정 결과를, 다른 안테나 포트로부터의 무선 채널에 대한 채널 추정 시 사용되는 위너 필터(Wiener filter) 등에 동일하게 적용할 수 있다.
- 주파수 쉬프트(shift) 및 수신된 타이밍에 대하여, 단말은 어떤 하나의 안테나 포트에 대한 시간 및 주파수 동기화 수행한 후, 동일한 동기화를 다른 안테나 포트의 복조에 적용할 수 있다.
- 평균 수신 전력에 대하여, 단말은 둘 이상의 안테나 포트들에 대하여 RSRP(Reference Signal Received Power) 측정을 평균할 수 있다.
예를 들어, 단말이 하향링크 데이터 채널 복조를 위한 DMRS 안테나 포트가 서빙 셀의 CRS 안테나 포트와 QC/QCL 되었다면, 단말은 해당 DMRS 안테나 포트를 통한 채널 추정 시 자신의 CRS 안테나 포트로부터 추정했던 무선 채널의 광범위 특성들(large-scale properties)을 동일하게 적용하여 DMRS 기반 하향링크 데이터 채널 수신 성능을 향상시킬 수 있다.
왜냐하면, CRS는 매 서브프레임 그리고 전체 대역에 걸쳐 상대적으로 높은 밀도(density)로 브로드캐스팅되는 참조 신호이므로, 광범위 특성에 관한 추정치는 CRS로부터 보다 안정적으로 획득이 가능하기 때문이다. 반면, DMRS는 특정 스케줄링된 RB에 대해서는 단말 특정하게 전송되며, 또한 PRG(precoding resource block group) 단위가 기지국이 전송에 사용하는 프리코딩 행렬(precoding matrix)가 변할 수 있으므로 단말에게 수신되는 유효 채널은 PRG 단위로 달라질 수 있어 다수의 PRG를 스케줄링 받은 경우라고 하더라도 넓은 대역에 걸쳐 DMRS를 무선 채널의 광범위 특성 추정용으로 사용 시에 성능 열화가 발생할 수 있다. 또한, CSI-RS도 그 전송 주기가 수~수십 ms가 될 수 있고, 자원 블록 당 평균적으로 안테나 포트 당 1 자원 요소의 낮은 밀도를 가지므로 CSI-RS도 마찬가지로 무선 채널의 광범위 특성 추정용으로 사용할 경우 성능 열화가 발생할 수 있다.
즉, 안테나 포트 간의 QC/QCL 가정을 함으로써 단말은 하향링크 참조 신호의 검출/수신, 채널 추정, 채널 상태 보고 등에 활용할 수 있다.
버퍼 상태 보고( BSR ; Buffer status reporting)
버퍼 상태 보고 절차는 서빙 기지국(serving eNB)에 단말의 UL 버퍼들에서 전송을 위해 사용 가능한(또는 유효한) 데이터량에 관한 정보를 제공하기 위해 사용될 수 있다. RRC는 두 개의 타이머들을 구성함으로써 BSR 보고를 제어할 수 있으며, 이때, 두 개의 타이머들은 periodicBSR-Timer 및 retxBSR-Timer에 해당할 수 있다. 또한, RRC는 선택적으로 LCG(Logical Channel Group)를 위한 논리 채널을 할당하는 논리적 채널 그룹(logicalChannelGroup, LCG)을 시그널링함으로써 BSR 보고를 제어할 수 있다.
BSR 절차를 위해 단말은, 정지되어 있지 않은(not suspended) 모든 무선 베어러들을 고려해야 한다. 또한, 이때 단말은 정지되어 있는 무선 베어러들을 고려할 수도 있다.
BSR은 아래와 같은 이벤트 중 어느 하나가 발생하는 경우 트리거될 수 있다.
- UL 데이터(LCG에 속한 논리 채널에 대한)가 RLC 엔티티 또는 PDCP 엔티티에서 전송 가능한 경우, 그리고 특정 LCG에 속한 논리 채널의 우선권보다 높은 우선권을 갖는 논리 채널에 속한 데이터가 이미 전송 가능하거나, LCG에 속한 논리 채널 중 어느 곳에 대해서도(또는 통해서도) 전송 가능한 데이터가 없는 경우(즉, BSR이 아래에서 후술하는 “Regular BSR”로 해당하는/지칭되는 경우)
- UL 자원들이 할당되고, 패딩 비트들의 개수가 버서 상태 보고(Buffer status Report) MAC 제어 요소(control element) 및 그것의 서브 헤더를 더한 사이즈와 동일하거나 이보다 큰 경우(즉, BSR이 아래에서 후술하는 “Padding BSR”에 해당하는/지칭되는 경우)
- retxBSR-Timer가 만료되고, 단말이 LCG에 속하는 논리 채널에 대해 전송 가능한 데이터를 갖는 경우(즉, BSR이 아래에서 후술하는 “Regular BSR”에 해당하는/지칭되는 경우)
- periodicBSR-Timer가 만료되는 경우(즉, BSR이 아래에서 후술하는 “Periodic BSR”에 해당하는/지칭되는 경우)
Regular 및 Periidoc BSR의 경우:
- 만일, BSR이 전송되는 TTI 내에서 하나 이상의 LCG가 전송 가능한 데이터를 갖는 경우: Long BSR을 보고함.
- 그 외에는 short BSR을 보고함.
Padding BSR의 경우:
1) 만일, 패딩 비트들의 수가 Short BSR과 이것의 서브헤더(subheader)를 합한 사이즈와 같거나 그보다 크고, Long BSR과 이것의 서브헤더(subheader)를 합한 사이즈보다 작은 경우:
- 만일, 하나 이상의 LCG가 BSR이 전송되는 TTI 내에서 전송 가능한 데이터를 갖는 경우: 전송 가능한 데이터가 전송되는 가장 높은 우선 순위의 논리 채널을 갖는 LCG의 Truncated BSR을 보고함.
- 그 외의 경우: Short BSR을 보고함.
2) 이외에, 만일 padding bits 수가 Long BSR과 이것의 서브헤더(subheader)를 합한 사이즈와 같거나 그보다 큰 경우: Long BSR을 보고함.
만일, BSR 절차에서 적어도 하나의 BSR이 트리거 되었으며, 취소되지 않았다고 결정한 경우:
1) 만일, 단말이 해당 TTI에서 새로운 전송을 위해 할당된 UL 자원을 갖는 경우:
- BSR MAC 제어 요소(control element)를 생성하기 위해 멀티플렉싱 및 어셈블리 절차를 지시함.
- 모든 생성된 BSR이 truncated BSRs인 경우를 제외하고, periodicBSR-Timer을 시작 또는 재시작함.
- retxBSR-Timer을 시작 또는 재시작함.
2) 그 외에, 만일 Regular BSR이 트리거된 경우:
- 만일 UL grant가 구성되지 않거나 논리 채널을 통해 전송 가능할 데이터로 인해 Regular BSR이 트리거 되지 않은 경우(여기서 상기 논리 채널은 상위 계층(upper layer)에 의해 SR masking(logicalChannelSR-Mask) 이 설정된 채널임): 스케줄링 요청이 트리거됨.
Regular BSR 및 Periodic BSR이 padding BSR보다 우선권을 갖는 경우에 BSR이 전송될 수 있을 때까지 BSR을 트리거하는 복수의 이벤트들이 발생한 경우에도, MAC PDU는 최대 하나의 MAC BSR 제어 요소를 포함한다. 단말은 어느 UL-SCH의 새로운 데이터의 전송에 대한 승인을 지시받은 경우, retxBSR-Timer을 시작 또는 재시작할 수 있다.
모든 트리거된 BSR들은 서브 프레임의 UL grant가 모든 펜딩 전송 데이터를 수용할 수 있으나, BSR MAC 제어 요소 및 이것의 서브헤더(subheader)의 합을 추가적으로 수용하기에는 충분하지 않은 경우 취소될 수 있다. 모든 트리거된 BSR들은 전송을 위한 MAC PDU에 BSR이 포함되어 있는 경우, 취소될 수 있다.
단말은 한 TTI 내에서 최대 하나의 Regular/Periodic BSR을 전송할 수 있다. 만일, 단말이 하나의 TTI 내에서 복수의 MAC PDU들을 전송할 것을 요청받은 경우, Regular/Periodic BSR을 포함하지 않은 MAC PDU들 중 어느 하나에 padding BSR이 포함시킬 수 있다.
하나의 TTI 내에서 전송된 모든 BSR들은 항상 상기 TTI를 위해 구성된 모든 MAC PDUs가 전송된 후에 버퍼 상태를 반영할 수 있다. 각 LCG는 TTI당 최대 하나의 버퍼 상태 값을 보고할 수 있으며, 상기 값은 이러한 LCG를 위한 모든 BSRs 보고 버퍼 상태에서 보고될 수 있다. Padding BSR은 트리거된 Regular/Periodic BSR을 취소하는 것이 허여되지 않는다. Padding BSR은 특정 MAC PDU를 위해서만 트리거 되며, 상기 트리거는 이러한 MAC PDU가 구성될 때에 취소된다.
D2D (Device-to-Device) 통신
도 19는 단말간 직접 통신(D2D) 기법에 대한 요소를 설명하기 위한 도면이다.
도 19에서 UE는 사용자의 단말을 의미하지만 eNB와 같은 네트워크 장비가 UE와의 통신 방식에 따라서 신호를 송수신하는 경우에는, 해당 네트워크 장비 역시 일종의 UE로 간주될 수 있다. 이하에서는 UE1은 일련의 자원의 집합을 의미하는 자원 풀(resource pool) 내에서 특정한 자원에 해당하는 자원 유닛(resource unit)을 선택하고, 해당 자원 유닛을 사용하여 D2D 신호를 송신하도록 동작할 수 있다. 이에 대한 수신 UE인 UE2는 UE1이 신호를 전송할 수 있는 자원 풀을 구성(configure)받고 해당 풀 내에서 UE1의 신호를 검출한다. 여기서 자원 풀은 UE1이 기지국의 연결 범위에 있는 경우 기지국이 알려줄 수 있으며, 기지국의 연결 범위 밖에 있는 경우에는 다른 UE가 알려주거나 혹은 사전에 정해진 자원으로 결정될 수도 있다. 일반적으로 자원 풀은 복수의 자원 유닛들을 포함할 수 있으며 각 UE는 하나 혹은 복수의 자원 유닛을 선정하여 자신의 D2D 신호 송신에 사용할 수 있다.
도 20은 자원 유닛의 구성 실시예를 도시한 도면이다.
도 20을 참조하면, 전체 주파수 자원이 N_F개로 분할되고 전체 시간 자원이 N_T개로 분할되어 총 N_F*N_T 개의 자원 유닛이 정의될 수 있다. 여기서는 해당 자원 풀이 N_T 서브 프레임을 주기로 반복된다고 표현할 수 있다. 특징적으로 한 자원 유닛은 본 도면에 도시한 바와 같이 주기적으로 반복하여 나타날 수 있다. 혹은 시간이나 주파수 차원에서의 다이버시티 효과를 얻기 위해서 하나의 논리적인 자원 유닛이 맵핑되는 물리적 자원 유닛의 인덱스가 시간에 따라서 사전에 정해진 패턴으로 변화할 수도 있다. 이러한 자원 유닛 구조에 있어서 자원 풀이란 D2D 신호를 송신하고자 하는 UE가 송신에 사용할 수 있는 자원 유닛의 집합을 의미할 수 있다.
상기 설명한 자원 풀은 여러 종류로 세분화될 수 있다. 먼저 자원 풀은 각 자원 풀에서 전송되는 D2D 신호의 내용(content)에 따라서 구분될 수 있다. 일 예로 D2D 신호의 내용은 아래와 같이 구분될 수 있으며, 각각에 대하여 별도의 자원 풀이 구성될 수 있다.
스케줄링 할당(Scheduling assignment; SA): 각 송신 UE가 수행하는 D2D 데이터 채널의 전송으로 사용하는 자원의 위치, 그 외 데이터 채널의 복조를 위해서 필요한 MCS(modulation and coding scheme)나 MIMO 전송 방식 및/또는 timing advance 등의 정보를 포함하는 신호. 이 신호는 동일 자원 유닛 상에서 D2D 데이터와 함께 멀티플렉스되어 전송되는 것도 가능함. 본 명세서에서 SA 자원 풀이란 SA가 D2D 데이터와 멀티플렉스되어 전송되는 자원의 풀을 의미할 수 있으며, D2D 제어 채널이라 지칭될 수도 있다.
D2D 데이터 채널: SA를 통하여 지정된 자원을 사용하여 송신 UE가 사용자 데이터(user data)를 전송하는데 사용하는 자원 풀. 만일 동일 자원 유닛 상에서 D2D 데이터와 함께 멀티 플렉스되어 전송되는 것이 가능한 경우에는 D2D 데이터 채널을 위한 자원 풀에서는 SA 정보를 제외한 형태의 D2D 데이터 채널만이 전송될 수 있다. 다시 말하면 SA 자원 풀 내의 개별 자원 유닛 상에서 SA 정보를 전송하는데 사용되었던 자원 요소를 D2D 데이터 채널 자원 풀에서는 여전히 D2D 데이터를 전송하는데 사용할 수 있다.
디스커버리 채널(Discovery channel): 송신 UE가 자신의 ID등의 정보를 전송하여 인접 UE로 하여금 자신을 발견할 수 있도록 하는 메시지를 위한 자원 풀.
상술한 경우와 반대로, D2D 신호의 내용(content)이 동일한 경우에도 D2D 신호의 송수신 속성에 따라서 상이한 자원 풀을 사용할 수 있다. 일 예로 동일한 D2D 데이터 채널이나 디스커버리 메시지라 하더라도 D2D 신호의 송신 타이밍 결정 방식(예를 들어 동기 기준 신호의 수신 시점에서 송신되는지 아니면 해당 시점에서 일정한 timing advance를 적용하여 전송되는지)이나 자원 할당 방식(예를 들어 개별 신호의 전송 자원을 eNB가 개별 송신 UE에게 지정해주는지 아니면 개별 송신 UE가 풀 내에서 자체적으로 개별 신호 전송 자원을 선택하는지), 신호 포맷(예를 들어 각 D2D 신호가 한 서브프레임에서 차지하는 심볼의 개수나, 한 D2D 신호의 전송에 사용되는 서브프레임의 개수), eNB로부터의 신호 세기, D2D UE의 송신 전력 세기 등에 따라서 다시 상이한 자원 풀로 구분될 수 있다.
도 21은 SA 자원 풀과 후행하는 데이터 채널 자원 풀이 주기적으로 나타나는 경우를 도시한 것이며, 이하, SA 자원 풀이 나타나는 주기를 SA 주기라 한다.
본 발명에서는 D2D 통신에서 릴레이 동작을 수행할 때, 릴레이 신호를 전송하기 위한 자원을 선택하는 방법을 제공한다.
본 명세서에서는 설명의 편의상 D2D 통신에서 eNB가 D2D송신 UE의 송신 자원을 직접 지시하는 방법을 Mode 1, 전송 자원 영역이 사전에 설정되어 있거나, eNB가 전송 자원 영역을 지정하고, UE가 직접 송신 자원을 선택하는 방법을 Mode 2라 지칭/정의하기로 한다. D2D 디스커버리의 경우에는 eNB가 직접 자원을 지시하는 경우에는 Type 2, 사전에 설정된 자원 영역 혹은 eNB가 지시한 자원 영역에서 UE가 직접 전송 자원을 선택하는 경우는 Type 1이라 지칭/정의하기로 한다.
상기 언급한 D2D는 사이드링크(sidelink)라고 불릴 수도 있으며, SA는 physical sidelink control channel (PSCCH), D2D synchronization signal은 sidelink synchronization signal (SSS), SSS와 함께 전송되는 D2D 통신 이전에 가장 기본적인 정보를 전송하는 제어 채널을 Physical sidelink broadcast channel (PSBCH), 혹은 다른 이름으로 PD2DSCH (Physical D2D synchronization channel)이라고 부를 수 있다. 특정 단말이 자신이 주변에 있음을 알리기 위한 신호, 이때 이 신호에는 특정 단말의 ID가 포함되어 있을 수 있으며, 이러한 채널을 physical sidelink discovery channel (PSDCH)라 부를 수 있다.
Rel. 12의 D2D에서는 D2D 통신 UE만이 PSBCH를 SSS와 함께 전송하였고 이로 인하여, SSS의 측정은 PSBCH의 DMRS를 이용하여 수행한다. 아웃-커버리지(out-coverage) UE는 PSBCH의 DMRS를 측정해 보고, 이 신호의 RSRP(reference signal received power) 등을 측정하여 자신이 동기화 소스(synchronization source)가 될지 여부를 결정하게 된다.
도 22 내지 도 24는 본 발명이 적용될 수 있는 릴레이 과정 및 릴레이를 위한 자원의 일 예를 나타낸 도이다.
도 22 내지 도 24를 참조하면, 단말 간 통신을 지원하는 통신 시스템에서 단말이 커버리지 밖의 단말로 릴레이를 통해서 데이터를 전송하여 실질적으로 커버리지를 확장할 수 있다.
구체적으로, 도 22에 도시된 바와 같이 UE 0의 커버리지(coverage) 내에 있는 UE들인 UE 1 및/또는 UE 2는 상기 UE 0가 전송한 메시지를 수신할 수 있다.
하지만, 상기 UE 0는 커버리지 밖에 존재하는 UE 3 및 UE 4에게는 메시지를 직접 전송할 수 없다. 따라서, 이러한 경우 UE 0의 커버리지 밖에 있는 UE 3및 UE 4에게도 메시지를 전송하기 위해서, 릴레이 동작을 수행할 수 있다.
상기 릴레이 동작은 커버리지 밖에 존재하는 단말에게 메시지를 전송하기 위해서 커버리지 내의 단말들이 메시지를 전달하는 동작을 의미한다.
도 23은 상기 릴레이 동작의 일 예를 나타내는 것으로, 상기 UE 0가 커버리지 외부의 상기 UE 3으로 데이터 패킷을 전송하고자 하는 경우, 상기 UE 1을 통해서 상기 UE 3에게 상기 데이터 패킷을 전송할 수 있다.
구체적으로, 상기 UE 0가 상기 UE 3으로 상기 데이터 패킷을 전송하고자 하는 경우, 상기 UE 0는 상기 데이터 패킷의 릴레이 여부를 나타내는 파라미터를 릴레이 동작을 수행하도록 설정하여 상기 데이터 패킷을 전송한다(S26010).
UE 1은 상기 데이터 패킷을 수신하고, 상기 파라미터를 통해서 상기 데이터 패킷의 릴레이 여부를 결정한다.
상기 UE 1은 상기 파라미터가 릴레이 동작을 지시하는 경우, 상기 수신된 데이터 패킷을 UE 3으로 전송하고, 릴레이 동작을 지시하지 않은 경우, 상기 데이터 패킷을 UE 3으로 전송하지 않는다.
이와 같은 방법을 통해서 상기 UE 0는 커버리지 외부에 존재하는 단말로 메시지를 전송할 수 있다.
도 24는 상기 릴레이 동작을 위한 자원을 선택하는 방법의 일 예를 나타낸다.
도 24의 (a)를 참조하면, 단말이 자원 풀에서 자율적으로 자원을 선택하여 메시지를 릴레이 할 수 있다. 즉, 동일한 메시지를 릴레이 하는 단말들(UE 1, UE 2, UE 3 등)은 자원 풀에서 각각 임의적으로 자원을 선택하여 동일한 메시지를 릴레이할 수 있다.
하지만, 이러한 경우 메시지를 수신하는 수신 단말은 동일한 메시지를 다른 자원을 통해서 반복적으로 수신한다는 문제점이 존재한다.
따라서, 도 24의 (b)에서와 같이 자원 풀에서 Relay를 위한 자원을 할당하고, 각 릴레이 단말들은 할당된 자원을 통해서 메시지를 전송하는 경우 수신 단말은 동일한 메시지를 동일한 자원을 통해서 전송 받을 수 있어 자원의 낭비를 줄일 수 있다.
V2X (vehicle-to-everything)
(1) V2X 사이드 링크 통신(vehicle-to-everything sidelink communication)
V2X 사이드 링크 통신은 차량 사이의 통신(Communication between vehicles)을 지칭하는 V2V(Vehicle-to-Vehicle), 차량과 eNB 또는 RSU(Road Side Unit) 사이의 통신을 지칭하는 V2I(Vehicle to Infrastructure), 차량 및 개인(보행자, 자전거 운전자, 차량 운전자 또는 승객)이 소지하고 있는 단말 간 통신을 지칭하는 V2P(Vehicle-to-Pedestrian) 등 차량과 모든 개체들 간 통신을 포함한다.
이 경우, V2X 사이드 링크 통신을 지원하는 무선 통신 시스템에는, 상기 차량과 모든 개체들 간의 통신을 지원하기 위한 특정 네트워크 개체(network entity)들이 존재할 수 있다. 예를 들어, 상기 네트워크 개체는, 기지국(eNB), RSU(road side unit), 단말, 또는 어플리케이션 서버(application server)(예: 교통 안전 서버(traffic safety server)) 등일 수 있다.
또한, V2X 사이드 링크 통신을 수행하는 단말은, 일반적인 휴대용 단말(handheld UE)뿐만 아니라, 차량 단말(V-UE(Vehicle UE)), 보행자 단말(pedestrian UE), 기지국 유형(eNB type)의 RSU, 또는 단말 유형(UE type)의 RSU 등을 의미할 수 있다.
V2X 사이드 링크 통신은 단말들 간에 직접 수행되거나, 상기 네트워크 개체(들)를 통해 수행될 수 있다. 이러한 V2X 사이드 링크 통신의 수행 방식에 따라 V2X 동작 모드가 구분될 수 있다.
V2X에서 사용되는 용어는 다음과 같이 정의될 수 있다.
A Road Side Unit (RSU): RSU (Road Side Unit)는 V2I 서비스를 사용하여 이동 차량과 송수신 할 수 있는 V2X 서비스 가능 장치이다.
또한, RSU는 V2X 응용 프로그램을 지원하는 고정 인프라 엔터티로서, V2X 응용 프로그램을 지원하는 다른 엔터티와 메시지를 교환할 수 있다.
Pseudonymity: 개인 식별 정보 (personally identifiable information:PII)의 처리가 데이터가 더 이상 추가 정보를 사용하지 않고 특정 가입자에 제공되지 못할 때의 조건, 이런 추가 정보가 별개로 유지되고 식별된 또는 식별할 수 있는 가입자에 비-귀속(non-attribution)을 보장하기 위한 기술적 및 조직적 조치가 있는 한.
RSU는 기존 ITS 스펙에서 자주 사용되는 용어이며, 3GPP 스펙에 이 용어를 도입한 이유는 ITS 산업에서 문서를 더 쉽게 읽을 수 있도록 하기 위해서이다.
RSU는 V2X application logic을 eNB (eNB- type RSU라고 함) 또는 UE (UE - type RSU라고 함)의 기능과 결합하는 논리적 entity이다.
V2I Service: V2X 서비스의 타입으로, 한 쪽은 vehicle이고 다른 쪽은 infrastructure에 속하는 entity.
V2P Service: V2X 서비스 타입으로, 한 쪽은 vehicle이고, 다른 쪽은 개인이 휴대하는 디바이스(예: 보행자, 자전거 타는 사람, 운전자 또는 동승자가 휴대하는 휴대용 단말기).
V2X Service: 차량에 송신 또는 수신 장치가 관계된 3GPP 통신 서비스 타입.
통신에 참여한 상대방에 따라 V2V 서비스, V2I 서비스 및 V2P 서비스로 더 나눌 수 있다.
V2X 가능(enabled) UE : V2X 서비스를 지원하는 UE.
V2V Service: V2X 서비스의 유형으로, 통신의 양쪽 모두 차량이다.
V2V 통신 범위 : V2V 서비스에 참여하는 두 차량 간의 직접 통신 범위.
V2X 응용 프로그램 지원 타입
V2X (Vehicle-to-Everything)라고 불리는 V2X 어플리케이션은 살핀 것처럼, (1) 차량 대 차량 (V2V), (2) 차량 대 인프라 (V2I), (3) 차량 대 네트워크 (V2N), (4) 차량 대 보행자 (V2P)의 4가지 타입이 있다.
도 25는 본 발명이 적용될 수 있는 V2X 애플리케이션의 타입을 나타낸다.
도 25를 참조하면, 이 4가지 타입의 V2X 어플리케이션은 최종 사용자를 위해 보다 지능적인 서비스를 제공하는 "협력적 인식(co-operative awareness)"을 사용할 수 있다.
이는 차량, 길가 기반 시설, 애플리케이션 서버 및 보행자와 같은 entities이 협동 충돌 경고 또는 자율 주행과 같은 보다 지능적인 정보를 제공하기 위해 해당 지식을 처리하고 공유하도록 해당 지역 환경에 대한 지식(예 : 근접한 다른 차량 또는 센서 장비로부터 받은 정보)을 수집할 수 있음을 의미한다.
이러한 지능형 운송 서비스 및 관련 메시지 세트는 3GPP 밖의 자동차 SDO에 정의되어 있다.
ITS 서비스 제공을 위한 세 가지 기본 클래스: 도로 안전, 교통 효율성 및 기타 응용 프로그램은 예를 들어 ETSI TR 102 638 V1.1.1: " Vehicular Communications; Basic Set of Applications; Definitions"에 기술된다.
3GPP는 다양한 유형의 V2X 응용 프로그램을 지원하기 위해 이러한 메시지의 전송만 처리한다.
V2X 사이드링크 통신에 대해 좀 더 구체적으로 살펴본다.
PC5 인터페이스를 통한 V2X 서비스의 지원은 UE가 PC5 인터페이스를 통해 직접 통신 할 수 있는 통신 모드인 V2X 사이드 링크 통신에 의해 제공된다.
이 통신 모드는 UE가 E-UTRAN에 의해 서빙될 때와, UE가 E-UTRA 커버리지 외부에 있을 때 지원된다.
V2X 서비스에 사용되도록 허가된 UE만이 V2X 사이드 링크 통신을 수행할 수있다.
사이드 링크 통신을 위해 도 3a에 도시된 사용자 평면 프로토콜 스택과 기능은 V2X 사이드 링크 통신에도 사용된다. 또한, V2X 사이드 링크 통신의 경우:
- 사이드 링크 통신을 위한 STCH(sidelink transport channel)은 V2X 사이드 링크 통신에도 사용된다.
- V2X 사이드 링크 통신을 위해 구성된 리소스에서 전송된 V2X 데이터는 Non-V2X(예: 공공 안전) 데이터와 다중 전송되지 않는다.
사이드 링크 통신을 위해 도 3b에서 도시된 바와 같이 SBCCH 용 제어 플레인 프로토콜 스택은 V2X 사이드 링크 통신에도 사용된다.
V2X 사이드 링크 통신을 지원하는 UE는 자원 할당을 위한 두 가지 모드로 동작 할 수 있다:
- 예약된 자원 할당.
- UE는 데이터를 전송하기 위해 RRC_CONNECTED일 필요가 있다.
- UE는 eNB로부터 전송 자원을 요청한다. eNB는 사이드 링크 제어 정보 및 데이터의 전송을 위한 전송 자원을 스케줄링한다.
- UE 자율적인 자원 선택.
- UE가 자체적으로 자원 풀(resource pool)로부터 자원을 선택하고, 사이드 링크 제어 정보 및 데이터를 전송하기 위한 전송 포맷 선택을 수행한다.
- 존(zone)과 V2X 사이드 링크 전송 자원 풀 간의 매핑이 구성되면, UE는 UE가 위치하는 zone에 기초하여 V2X 사이드 링크 자원 풀을 선택한다.
- UE는 사이드 링크 자원들의 (재)선택을 위해 감지를 수행한다. 감지 결과에 기초하여, UE는 몇몇 특정한 사이드 링크 자원을 (재)선택하고, 다수의 사이드 링크 자원을 예약한다.
최대 2 개의 병렬 독립 리소스 예약 프로세스가 UE에 의해 수행되도록 허용된다. UE는 또한 V2X 사이드 링크 전송을 위해 단일 리소스 선택을 수행하는 것이 허용된다.
지리적 영역은 eNB에 의해 구성되거나 미리 구성될 수 있습니다. 영역이 구성될 때, 세계는 단일 고정 참조 점 (즉, 지리적 좌표 (0, 0)), 길이 및 너비(width)를 사용하여 지리적 영역으로 분할된다.
UE는 각각의 존의 길이 및 폭, 길이에서 존의 수, 폭에서 존의 수 및 단일 고정된 기준점을 사용하는 모듈로 동작에 의해 존 식별(identity)를 결정한다.
각 존의 길이 및 폭, 길이에서 존의 수 및 폭에서 존의 수는 UE가 커버리지내에 있을 때 eNB에 의해 제공되고, UE가 커버리지를 벗어 났을 때 사전 구성된다.
이 영역은 서비스 영역 및 서비스 영역 모두에서 구성할 수 있다.
커버리지 내에 있는 UE에 대해, UE가 UE 자율적인 자원 선택을 사용할 때, eNB는 존(들)과 SIB21의 V2X 사이드 링크 전송 자원 풀들 간의 매핑을 제공할 수 있다.
커버리지 밖에 있는 UE들에 대해, 존(들)과 V2X 사이드 링크 전송 자원 풀들 사이의 매핑은 사전에 구성될 수 있다.
존(들)과 V2X 사이드 링크 송신 자원 풀 간의 매핑이 (미리) 구성된 경우, UE는 자신이 현재 위치하는 존에 대응하는 자원 풀로부터 전송 사이드 링크 자원을 선택한다.
존 개념은 예외적인 V2X 사이드 링크 전송 풀뿐 아니라 수신 풀에도 적용되지 않는다.
V2X 사이드 링크 통신을 위한 리소스 풀은 우선 순위에 따라 구성되지 않는다.
V2X 사이드 링크 전송을 위해, 핸드 오버 동안, 타겟 셀에 대한 예외적인 전송 자원 풀을 포함하는 전송 자원 풀 구성이 전송 중단을 줄이도록 핸드 오버 명령에서 시그널링 될 수 있다.
그래서, UE는 동기화가 타겟 셀과 수행되는 한 핸드오버가 완료되기 전에 타겟 셀의 전송 사이드링크 자원 풀들을 사용할 수 있다.
예외적인 전송 자원 풀이 핸드 오버 명령에 포함되면, UE는 핸드 오버 명령의 수신으로부터 시작하여 예외적인 전송 자원 풀에서 랜덤하게 선택된 자원을 사용하기 시작한다. UE가 핸드 오버 명령에서 스케줄링된 자원 할당으로 구성되면, UE는 핸드 오버와 관련된 타이머가 실행되는 동안 예외적인 전송 자원 풀을 계속 사용한다. UE가 타겟 셀에서 자율적인 자원 선택으로 구성되면, 자율적인 자원 선택을 위한 전송 자원 풀에서 초기 감지가 완료 될 때까지 UE는 예외적인 전송 자원 풀을 계속 사용한다.
예외적인 경우 (예를 들어, RLF 동안, RRC IDLE로부터 RRC CONNECTED 로의 천이 동안 또는 셀 내의 전용 사이드 링크 자원 풀의 변경 중에), UE는 감지(sensing)에 기초하여 서빙 셀의 SIB21에 제공된 예외 풀에서 자원을 선택할 수 있고, 그것들을 일시적으로 사용할 수 있다.
타겟 셀로부터 브로드 캐스팅된 수신 풀을 획득하는데 있어서 지연으로 인해 V2X 메시지를 수신할 때 중단 시간을 피하기 위해, 타겟 셀에 대한 동기화 구성 및 수신 리소스 풀 구성이 핸드 오버 명령에서 RRC_CONNECTED UE들에 시그널링될 수 있다.
RRC_IDLE UE의 경우, 타겟 셀의 SIB21의 획득과 관련된 사이드 링크 송신 / 수신 중단 시간을 최소화하는 것은 UE 구현에 달려있다.
UE는 기준에 따라 그 캐리어 상의 셀을 검출할 때마다 V2X 사이드 링크 통신을 위해 사용되는 캐리어에서 커버리지 내(in-coverage)로 간주된다.
V2X 사이드 링크 통신을 위해 허가된 UE가 V2X 사이드 링크 통신을 위한 커버리지 내에 있다면, eNB 구성에 따라 스케줄링된 자원 할당 또는 UE 자율적인 자원 선택을 사용할 수 있다.
UE가 V2X 사이드 링크 통신을 위해 커버리지 밖에 있을 때 데이터에 대한 송신 및 수신 자원 풀 세트는 UE에서 미리 구성된다. V2X 사이드 링크 통신 리소스는 사이드 링크를 통해 전송되는 다른 Non-V2X 응용 프로그램과 공유되지 않는다.
RRC_CONNECTED UE는 사이드 링크 자원을 요청하기 위해 V2X 통신 전송에 관심이 있는 경우, 서빙 셀에 Sidelink UE Information 메시지를 전송할 수 있다.
UE가 V2X 통신을 수신하기 위해 상위 계층에 의해 구성되고, PC5 자원이 제공되면, UE는 구성된 자원을 수신한다.
서빙 셀은 V2X 사이드 링크 통신에 사용되는 캐리어에 대한 동기화 구성을 제공할 수 있다. 이 경우, UE는 서빙 셀로부터 수신된 동기화 구성을 따른다.
V2X 사이드 링크 통신을 위해 사용되는 캐리어 상에서 셀이 검출되지 않고 UE가 서빙 셀로부터 동기화 구성을 수신하지 못하면, UE는 사전 구성된 동기화 구성을 따른다. 동기화 참조(reference)에는 eNB, UE 및 GNSS의 세 가지 유형이 있다. GNSS가 동기화 소스로 구성되는 경우, UE는 직접 프레임 번호 및 서브 프레임 번호를 계산하기 위해 UTC 시간을 이용한다.
eNB 타이밍이 V2X에 대한 전용 캐리어에 대한 UE에 대한 동기화 기준으로서 구성되는 경우, UE는 동기화 및 DL 측정을 위해 PCell (RRC_CONNECTED) / 서빙 셀 (RRC_IDLE)을 따른다.
V2V 사이드 링크 통신에서의 스케줄링(scheduling) 기법
V2V 사이드 링크 통신의 경우, 사이드 링크 통신의 기지국 지시 기반의 스케줄링 방식(즉, Mode 3)과 단말이 특정 자원 풀 내에서 스스로 자원을 선택하는 스케줄링 방식(즉, Mode 4)의 방식이 이용될 수 있다.
여기서, V2V 사이드 링크 통신의 Mode 3은 기존의 사이드 링크 통신의 Mode 1과 대응하며, Mode 4는 기존의 사이드 링크 통신의 Mode 2와 대응한다.
여기에서, 상기 Mode 4는 분산적 스케줄링(distributed scheduling) 방식으로, 상기 Mode 3은 기지국 스케줄링(eNB scheduling) 방식으로 각각 지칭될 수 있다.
특히, 분산적 스케줄링 방식(즉, Mode 4)에 대해서는 반-지속적 전송(semi-persistent transmission) 기반의 메커니즘에 의한 센싱(sensing)이 정의될 수 있다. 단말로부터의 V2V 트래픽(traffic)은 대부분 주기적이다. 상기 V2V 트래픽은 자원(resource)에 대한 혼잡을 감지하고, 해당 자원에 대한 미래의 혼잡을 추정하기 위해 이용된다. 상기 추정에 기반하여 해당 자원들은 예약(book)된다. 이러한 기술을 통해 중첩되는 자원을 이용하는 송신기들 간에 분리 효율을 향상시킴으로써 채널의 이용이 최적화될 수 있다.
상기 Mode 4(즉, 분산적 스케줄링)에 대한 설정 1(Configuration 1)과 상기 Mode 3(즉, eNB 스케줄링)에 대한 설정 2(Configuration 2)는 아래의 도 26과 같이 표현될 수 있다.
도 26은 V2V 사이드 링크 통신에 적용될 수 있는 스케줄링 방식의 예들을 나타낸다.
도 26을 참고하면, 상기 두 개의 설정들 모두 V2V 통신 전용 캐리어(dedicated carrier)를 이용한다. 즉, 상기 전용 캐리어에 대한 대역은 PC5 기반의 V2V 통신에만 이용된다.
또한, 두 경우 모두 시간 동기화는 GNSS(Global Navigation Satellite System)에 의해 수행될 수 있다.
설정 1의 경우, V2V 트래픽의 스케줄링 및 간섭 관리(interference management)는 차량들 간에 구현되는 분산 알고리즘(즉, Mode 4)에 기반하여 지원된다. 상술한 바와 같이, 상기 분산 알고리즘은 반-지속적 전송을 통한 감지(sensing)에 기반한다. 또한, 자원 할당(resource allocation)이 지리적 정보(geographical information)에 의존하는 메커니즘이 정의된다.
이에 반해, 설정 2의 경우, V2V 트래픽의 스케줄링 및 간섭 관리는 Uu 인터페이스를 통한 제어 시그널링(control signaling)을 통해 기지국(eNB)에 의해 지원된다. 기지국은 동적인 방식(dynamic manner)으로 V2V 시그널링에 이용되는 자원을 할당한다.
기존 LTE TDD 시스템의 경우, 기지국은 특정 DL subframe (e.g. subframe #n)에서 전송되는 PDSCH를 스케쥴링(scheduling)하기 위해 상기 특정 DL subframe에서 DL grant를 단말로 전송하였다.
또한, 상기 기지국이 특정 UL subframe에서 단말이 전송하는 PUSCH를 scheduling하기 위해 몇 번째(또는 어떤) DL subframe에서 UL grant를 해당 단말로 전송해야 하는지에 대해 명확히 정의되어 있다.
하지만, TDD V2X (사이드링크) 시스템의 경우, V2X subframe(V2X 전송이 발생하는 subframe)이 TDD 시스템의 DL subframe하고만 또는 UL subframe하고만 관계를 가지는 것이 아니기 때문에, 앞서 살핀 LTE TDD 시스템에서 정의되어 있는 내용(즉, grant와 data(PDSCH 또는 PUSCH) 전송 간의 타이밍 관계)를 그대로 적용할 수는 없다.
만약, TDD V2X scheduling 방식에 기존의 LTE TDD 시스템에서 정의되어 있는 grant와 data 전송 간의 타이밍 관계를 그대로 적용하는 경우, DL subframe의 개수가 V2X subframe의 개수보다 적은 TDD UL/DL configuration에서는 일부 V2X subframe이 V2X grant(또는 sidelink grant)에 의해 scheduling받지 못하는 문제가 발생할 수 있다.
따라서, 본 명세서는 상기와 같은 문제를 해결하기 위해 새로운 offset indicator(또는 offset index)를 정의함으로써, TDD V2X 시스템에서 sidelink grant에 의해 모든 V2X subframe이 지시될 수 있는 방법을 제공한다.
이하, 본 명세서에서 제안하는 V2V(Vehicle-to-Vehicle), V2X(Vehicle-to-Everything) 통신에서 이용되는 (1) 모드 3 사이드링크 그랜트(mode 3 sidelink grant)를 구성하는 방법과, (2) 이를 통해 mode 3 sidelink grant 수신과 sidelink 전송 간의 timing 관계에 대해 살펴보기로 한다.
여기서, 상기 sidelink 전송은 SA의 전송 및/또는 sidelink data의 전송을 포함할 수 있다.
상기 SA는 SCI(Sidelink Control Information) format 1 또는 1A 등으로 표현될 수 있으며, PSCCH(Physical Sidelink Control Channel)을 통해 운반될 수 있다.
또한, 상기 mode 3 sidelink grant는 앞서 살핀 mode 3의 scheduling 방식에서 사용되는 sidelink grant를 의미할 수 있다.
V2V 전송에 필요한 자원을 기지국(예:eNB)가 지시(indication)해주는 방식(예: sidelink mode 3, mode 3)은 sidelink grant를 통해 V2V carrier에서 어떤 subframe의 어떤 자원을 사용하여 상기 V2V 전송을 수행할지를 지정해 줄 수 있다.
상기 V2V 전송에 사용되는 sidelink grant는 DCI format 0 또는 기존의 UL grant를 재사용하거나 또는 V2V를 위해 새롭게 정의될 수도 있다.
상기 V2V 전송에 사용되는 sidelink grant는 sidelink 스케쥴링 정보를 포함한다.
편의상, V2V 또는 V2X communication에 사용되는 sidelink grant를 V2V sidelink grant 또는 V2X sidelink grant로 표현하기로 하고, 특별한 언급이 없으면 이하에서 사용되는 sidelink grant는 V2V 또는 V2X sidelink grant를 의미하는 것으로 본다.
상기 V2V sidelink grant가 새롭게 정의되더라도 상기 V2V sidelink grant는 기존 UL grant와 동일한 크기와 동일한 (또는 유사한) field들을 사용할 수 있다.
상기 V2V sidelink grant는 DCI format 5또는 5A로 표현될 수도 있다.
이때, scheduling 해주는(e.g. downlink subframe 또는 special subframe 상의) sidelink grant는 모든 V2V subframe들을 빠짐없이 scheduling 해줄 수 있어야 한다.
여기서, V2V subframe들은 sidelink grant에 의해 scheduling 되는 subframe들을 의미하며, PSCCH 또는 PSSCH가 전송될 수 있는 subframe들을 의미할 수 있다.
그러나, scheduling 정보를 전송하는 sidelink grant가 전송되는(또는 운반되는) subframe과 scheduled V2V subframe 간에 일대일 매핑 (예: paired 관계에 있는 FDD downlink 및 uplink spectrum)이 되지 않고, 특정한 제약 사항이 발생하는 경우, 일부 V2V subframe은 scheduling 받지 못할 수도 있게 된다.
즉, LTE FDD(Frequency Division Duplex)의 downlink에서 전송되는 UL grant가 UL subframe을 scheduling하는 것과 같은 형태가 아니라면, 앞서 언급한 일부 V2V subframe이 (sidelink grant에 의해) scheduling 받지 못하는 문제가 발생할 수 있다.
예를 들어, 아래와 같은 경우에 앞서 언급한 문제가 발생할 수 있게 된다.
- TDD system에서, 1) V2V가 eNB와 동일한 carrier의 TDD UL subframe의 일부 또는 전부를 사용하는 경우, 2) V2V가 eNB와 다른 carrier의 UL subframe의 일부 또는 전부를 사용하는 경우.
여기서, 1)의 경우는 기존 LTE TDD 시스템에서 정의된 UL grant와 UL subframe에 대한 configuration을 그대로 사용하거나 혹은 응용하여 해결할 수도 있다. 또한 여기서, 2)의 경우는 cross carrier scheduling을 의미할 수 있다.
- (LTE) eNB와 V2V가 동일한 carrier를 사용하며, 전체 subframe을 TDM(Time Division Multiplexing) 방식으로 나눠서 사용하는 경우.
구체적으로, 스케쥴링 하는 carrier 및 스케쥴링 받는 carrier에서 일정한 주기(이하, 'T1'이라고 한다)로 subframe configuration이 반복된다고 가정한다. 앞서 살핀 표 1의 (LTE) TDD downlink-uplink (subframe) configuration을 일례로 들 수 있다.
상기 일정한 주기는 1 radio frame 또는 10 subframes일 수 있다.
여기서, 스케쥴링 하는 carrier는 carrier 1, scheduling carrier, f1 등으로 표현될 수 있으며, 스케쥴링 받는 carrier는 carrier 2, scheduled carrier, f2 등으로 표현될 수 있다.
보다 구체적으로, 상기 T1 주기 내에서 스케쥴링 하는 carrier (이하, "f1"이라고 한다)에서 사용되는 subframe (e.g. downlink 및 special subframe)의 개수가 스케쥴링 받는 carrier (이하, "f2"라고 한다)에서 사용되는 subframe (e.g. uplink subframe)의 개수와 다를 경우, 앞서 언급한 문제(즉, 일부 V2V subframe이 scheduling받지 못하는 문제)가 발생할 수 있다.
이 때, f1 상에서 하나의 subframe에서 전송되는 하나의 grant (e.g. UL grant)가 f2 상의 특정한 하나의 subframe만을 지시할 수 있는 것이 아니라 다수의 subframes 중 하나 또는 그 이상의 subframes를 지시하는 일대다 매핑 구조를 가져야 한다.
또는, 상기 f1 상에서 하나 또는 그 이상의 subframes에서 전송되는 다수 개의 grant들은 f2 상의 특정 subframe을 공통적으로 지시할 수 있는 다대일 매핑 구조를 가져야 한다.
따라서, 일대다 매핑 구조 또는 다대일 매핑 구조에 대한 동작을 가능하게 하기 위해서, f1 상의 특정 subframe에서 전송되는 각각의 grant는 각 grant에 대응되는 f2 상의 (UL 또는 V2V) subframe의 위치를 알려주는 오프셋(offset)을 지시하는 sidelink 관련 지시자를 포함할 수 있다.
이하 편의를 위해, sidelink grant 수신 시점으로부터 상기 f2 상의 UL subframe 또는 V2V subframe의 위치를 알려주는 offset을 추가 offset으로 호칭하기로 한다.
상기 추가 offset을 지시하는 정보는 추가 offset 정보, 추가 offset field, sidelink 관련 지시자, sidelink indicator, sidelink index, sidelink 제어 정보 또는 제어 정보 등으로 표현될 수 있다.
다음, 앞의 표 1을 참조하여 본 명세서에서 제안하는 추가 offset에 대해 보다 구체적으로 설명한다.
예를 들어, f1 상에서의 LTE frame structure type이 TDD이고, f1 상에서의 uplink-downlink configuration이 '0'(또는 TDD configuration 0)이라고 가정한다.
이때, f2가 V2V sidelink spectrum(i.e. 모든 subframe을 통해 V2V data 송수신 가능 또는 모든 subframe이 V2V subframe)이라고 하면, f1 상의 2개의 downlink subframe 및 2개의 special subframe(총 4개의 subframes)에서 전송하는 sidelink grant는 f2 상의 10개의 sidelink subframe들 모두를 지시할 수 있는 유연성(flexibility)를 가져야 한다.
여기서, TDD 방식에서의 DCI 전송은 downlink subframe 및/또는 special subframe의 DwPTS(Downlink Pilot Time Slot)에서 발생하는 것을 가정하였다.
또한, (sidelink) mode 3 방식에서, f1 상의 n번째 downlink subframe(subframe #n)에서 전송되는 sidelink grant가 f2 상의 n+(k+a)번째 sidelink subframe을 scheduling한다고 가정한다.
즉, D2D 송신 단말이 기지국으로부터 f1 상의 DL subframe #n에서 sidelink grant를 수신하고, 상기 수신된 sidelink grant는 f2 상의 subframe #(n+(k+a))를 scheduling하는 것으로 볼 수 있다.
상기 subframe #(n+(k+a))는 sidelink subframe에 포함된다.
상기 k값은 신호의 propagation delay 및 vehicle UE (이하, "V-UE")의 processing time 등을 고려한 값으로, 사전에 정의될 수도 있거나 또는, 물리적 채널을 통해 전달될 수도 있거나 또는, 상위 계층(higher layer)의 신호를 통해 지시될 수도 있다.
또한, 상기 k값은 특정 시스템, 특정 시점 혹은 특정 상황 등에서 정해진 값일 수도 있고, 독립적인 값들로 구성될 수도 있다.
일례로, 아래 표 19는 downlink DCI(예: sidelink grant) 및 sidelink 전송 (예: SCI format 또는 PSCCH) 간에 최소 4 subframes 이상의 offset(k>=4)이 존재한다고 할 때(10 subframe 내에서), sidelink 전송 시점을 최대한 균등하게 지정할 수 있는 k값의 일례를 나타낸 표이다.
상기 표 19는 하나의 예시이며, 상황에 따라 변경될 수 있다.
또한, 표 19는 special subframe의 DwPTS에서 (E)-PDCCH가 전송되는 상황을 가정하였다.
즉, 표 19는 DL DCI와 sidelink 전송 간의 고정된 offset(k) 값의 일례를 나타낸다.
Figure PCTKR2017012141-appb-T000019
도 27은 표 19의 고정된 오프셋 값에 따른 V2V 서브프래임의 위치의 일례를 나타낸 도이다.
도 27에서, SF #(2701)은 subframe의 번호를 나타내며, TDD SF(2702)는 각 DL/UL configuration에서 downlink subframe, special subframe, uplink subframe의 구성을 나타내며, offset(2703)은 표 19의 고정된 offset(k) 값을 나타내며, V2V SF는 V2V subframe을 나타내는 것으로 도 27에서 빗금(2704)로 표시되어 있다.
또한, V2V SF에서 'V'로 표시된 부분(2705)는 downlink subframe 또는 special subframe에서 sidelink grant가 전송되는 경우, 표 19의 고정된 offset 값을 고려하여 해당 sidelink grant에 의해 지시되는 V2V subframe을 나타낸다.
예를 들어, DL/UL configuration 0에서 SF #0에서 sidelink grant가 전송되는 경우, SF #0에서 k값은 '4'이기 때문에, SF #0의 sidelink grant에 의해 지시되는 V2V subframe은 SF #4가 됨을 알 수 있다.
또한, 상기 n+(k+a)에서, a값은 앞서 살핀 것과 같이, (TDD configuration 0에서와 같이) 적은 수의 downlink subframe에서 다수의 sidelink subframes을 scheduling할 때 추가적으로 요구되는 추가 offset을 나타내며, 추가 offset 정보 또는 추가 offset field에 의해 지시되는 값이다.
기존 LTE TDD 시스템에서는 DL subframe은 물론 special subframe에서도 DL / UL grant가 전송될 수 있다. 한편 sidelink grant가 DL subframe에서만 전송될 수 있다고 가정하면 상기 추가 offset field의 크기(size)는 sidelink grant가 special subframe에서도 전송될 수 있는 경우보다 더 커질 것이다.
Sidelink grant가 DL subframe에서만 전송될 수 있는 경우, 표 1에서와 같이, TDD configuration 0은 downlink로 사용되는 subframe의 개수가 2개이기 때문에, 해당 DL subframe에서 전송되는 sidelink grant들로 (SA 또는 sidelink data를 전송할 수 있는) 모든 sidelink subframe(s)에 대한 scheduling을 지시해주기 위해서는 상기 추가 offset field의 크기(size)는 2 bits보다 커야 한다.한편 sidelink grant가 DL subframe은 물론 special subframe 에서도 전송될 수 있는 경우, 표 1에서와 같이, TDD configuration 0은 downlink 및 special subframe으로 사용되는 subframe의 개수가 4개이기 때문에, 해당 DL subframe에서 전송되는 sidelink grant들로 (SA 또는 sidelink data를 전송할 수 있는) 모든 sidelink subframe(s)에 대한 scheduling을 지시해주기 위해서는 상기 추가 offset field의 크기(size)는 1 bits보다 커야 한다.
즉, 상기 추가 offset field의 크기(s)는 s≥n 과 같이 나타낼 수 있으며, n은 2 또는 1(n=2 혹은 n=1)의 값을 가질 수 있다. 또한 TDD configuration 0인 경우를 고려할 경우, s=n+1일 수 있다.
따라서, 상기 추가 offset 값(a)를 지시해주는 DCI의 field(또는 추가 offset field)는 (1) (n+1) bits (제 1 실시 예) 또는 (2) n bits (제 2 실시 예)의 크기를 가질 수 있다.상기 추가 오프셋 값을 나타내는 a는 하나의 예이며, 다른 문자 등으로 변경 가능하다.
하기의 실시 예들은 sidelink grant가 DL subframe에만 발생한다는 가정하에 (즉, n=2인 경우) 서술한 것이다.
제 1 실시 예
제 1 실시 예는 상기 추가 offset field의 크기가 3 bits인 경우를 나타낸다.
상기 추가 offset field의 크기가 3 bits인 경우, TDD configuration 0으로 설정된 경우에도 2개의 downlink subframe에 존재하는 sidelink grant가 10개의 sidelink subframe들을 모두 지시할 수 있게 된다.
하지만, sidelink grant가 기존의 DCI (e.g. DCI format 0)와 동일한 크기(size)를 갖는 경우, 3 bits 크기의 추가 offset field가 상기 sidelink grant에 추가되기는 어려울 수 있다.
왜냐하면, sidelink grant는 기존의 grant보다 적은 양의 정보를 포함하는 것이 일반적이기 때문에 기존 grant의 size보다 작게 설정된다.
따라서, 이 경우에는 TDD carrier (f1)가 sidelink carrier (f2)를 scheduling 해주기 위해 별도의(또는 새로운) DCI가 정의될 필요가 있을 수 있다.
아래 표 20은 추가 offset field를 3 bits로 표시한 일례를 나타낸다.
Figure PCTKR2017012141-appb-T000020
제 2 실시 예
제 2 실시 예는 상기 추가 offset field의 크기가 2 bits인 경우를 나타낸다.
이 경우, TDD configuration 0을 제외한 모든 TDD configuration(TDD configuration 1 내지 6)에서 2 bit 이내의 추가 offset으로 sidelink subframe에 대해 scheduling할 수 있다.
따라서, 상기 TDD configuration 0만을 위해 상기 추가 offset field의 size를 3 bits로 늘리는 것은 바람직하지 않을 수 있다.
다만, TDD configuration 0인 경우 상기 추가 offset의 size가 3 bits가 필요로 하다는 것은 TDD configuration 0의 DL subframe이 2개이고, 스케쥴링 받는 subframe이 10개라고 가정한 경우이고, 만약 scheduling 받는 subframe이 10개보다 적은 경우 상기 추가 offset의 size를 2 bits로 해도 가능할 수 있다.
이하에서는, 상기 추가 offset 필드의 size를 2 bits로 정의하고, TDD configuration 0과 같이 일부 V2V subframe이 sidelink grant에 의해 scheduling 받을 수 없는 경우의 해결 방법에 대해 살펴본다.
즉, 상기 2 bits의 size를 가지는 추가 offset field를 통해 스케쥴링 받는 sidelink subframe에 대한 offset 값을 결정할 때, 일부 sidelink subframe은 스케쥴링되지 않을 수 있다.
이 경우 아래와 같은 방식들(방법 1 및 방법 2)가 적용될 수 있다.
(방법 1)
방법 1은 전체 sidelink subframe (e.g. 1 주기(또는 1 radio frame)에 해당하는 10 subframes) 중 일부의 subframe (e.g. 8 subframe)만을 sidelink mode 3의 용도로 사용할 수 있다.
(방법 2)
방법 2는 scheduling 받을 수 없는 일부 sidelink subframe에 대한 스케쥴링을 위해 추가적인 offset 값(e.g. 0 또는 1)을 RRC signaling 등으로 지정할 수 있다.
본 명세서에서 제안하는 추가 offset field 즉, a값을 지시하는 field는 상기 field 값이 지시하는 숫자 그대로 해석될 수도 있으며, 또는 해당 숫자에 대응하는 특정 configuration을 의미하는 것으로 해석될 수 있다.
예를 들어, a값을 지시하는 field가 2 bits로 구성될 경우 해당 field에 mapping될 수 있는 값 00, 01, 10, 11은 각각 (1) offset 값 0 내지 3을 나타낼 수도 있으며(아래 표 21 참조), 또는 (2) type 0 내지 type 3을 나타낼 수도 있다.
아래 표 21은 추가 offset field의 size를 2 bits로 표시한 일례를 나타낸다.
Figure PCTKR2017012141-appb-T000021
표 21에서, 2 bits field가 '00'으로 설정된 경우, 2 bits field에 의해 지시되는 값은 '0'이고, 2 bits field가 '11'로 설정된 경우, 2 bits field에 의해 지시되는 값은 '3'을 나타낸다.
도 28은 본 명세서에서 제안하는 추가 오프셋 필드를 이용하여 사이드링크 그랜트에 의해 V2V subframe이 지시되는 방법의 일례를 나타낸 도이다.
구체적으로, 도 28은 LTE 기지국과 V2V가 서로 다른 carrier를 사용하는 경우, DL의 sidelink grant에 의해 지시되는 V2V subframe을 나타낸다.
도 28에서, 상기 Uu carrier는 LTE 기지국이 사용하는 carrier이고, PC 5 carrier는 V2V가 사용되는 carrier를 나타내며, 두 개의 carrier 모두 TDD UL/DL configuration 0으로 설정되어 있다.
즉, 기지국과 단말은 Uu carrier를 통해 통신하고, 단말들 간에는 PC5 carrier를 통해 통신한다.
도 28의 PC 5 carrier에서 빗금 친 부분의 subframe(2830)은 UL subframe이 아닌 subframe들을 나타낸다.
따라서, 기지국은 빗금 친 부분의 subframe(2830)을 이용해서 sidelink grant를 전송할 수 있다. 도 28에서, 2810 및 2820은 k=4이고, 추가 offset(a) 값이 3인 경우를 나타낸다.
즉, V2V 송신 단말이 subframe #n(또는 subframe #n+5)에서 sidelink grant를 수신한 경우, 상기 sidelink grant에 의해 subframe #n+7(또는 subframe #n+12 또는 다음 주기(또는 다음 radio frame)의 subframe #n+5)에서 V2V 전송이 수행된다.
앞서 살핀 제 1 실시 예 및 제 2 실시 예와 같이, 본 명세서에서 제안하는 추가 offset을 지시하는 field는 sidelink grant 내에 새롭게 정의될 수도 있으며, 후술할 제 3 실시 예와 같이 기존 DCI grant 내에 존재하는 특정 field를 재사용할 수도 있다.
제 3 실시 예
제 3 실시 예는 추가 offset 값을 기존 DCI grant 내에 존재하는 field들을 재사용하여 표시하는 방법에 관한 것이다.
DCI format 0 또는 기존 UL grant에서 TDD 동작과 관련된 부분은 UL index, DAI(Downlink Assignment Index) 등이 있다.
상기 UL index는 UL 전송이 발생하는 subframe을 지시하는 값으로, UL index의 LSB(Least Significant Bit) 및/또는 MSB(Most Significant Bit)의 설정 값에 따라 UL 전송이 발생하는 subframe이 달라지며, TDD configuration 0에서만 존재한다.
상기 DAI는 복수의 cell들(또는 component carriers)가 설정된 경우, scheduling되는 cell(또는 CC)의 수를 의미할 수 있으며, TDD configuration 0을 제외한 uplink-downlink configuration에서 존재한다.
이 때, 상기 UL grant의 전송은 연관된 PUSCH, PHICH 전송, HARQ operation 또는 CSI request 등과 관계가 없을 수 있다.
따라서, 이 경우 상기 UL index 및 DAI를 sidelink scheduling 용도 즉, 앞서 살핀 추가 offset 값으로 변경하여 사용할 수 있다.
따라서, 상기 추가 offset field의 size가 2 bits인 경우, TDD configuration 0에 대해서는 상기 UL index의 2 bits를 상기 추가 offset field를 표시하기 위해 사용할 수 있으며, 상기 TDD configuration 1 내지 6에 대해서는 상기 DAI의 2 bits를 상기 추가 offset field를 표시하기 위해 사용할 수 있다.
또한, 상기 추가 offset field의 크기가 3 bits인 경우, 상기 TDD configuration 0에 대해서는 상기 UL index의 1 bit (LSB 또는 MSB)를 더 확장하여 상기 추가 offset field를 표시할 수도 있다.
다만, 본 명세서에서 제안하는 추가 offset field(예: sidelink offset 또는 sidelink index 등)은 앞서 살핀 UL index 필드 및 DAI 필드가 사용되지 않는 경우, 상기 UL index 및 상기 DAI를 재활용할 수 있다는 의미일 뿐 해당 필드들과 동일한 의미로 해석되는 것을 말하지는 않는다.
그 이유는, 본 명세서에서 제안하는 추가 offset 필드는 (TDD 시스템에서) sidelink scheduling grant에 의해 일부 (V2V) subframe이 scheduling 받지 못하는 문제를 해결하기 위해 모든 (V2V) subframe이 scheduling grant에 의해 지시 받을 수 있도록 scheduling grant와 scheduling되는 (V2V) subframe의 offset을 나타내는 index를 의미하기 때문이다.
이에 반해, 상기 DAI (혹은 UL index)는 TDD의 특징인 DL / UL configuration에 따라 기존 HARQ reporting 방식을 사용할 수 없게 됨으로써, ACK(Acknowledgement) / NACK(Non-Acknowledgement) reporting을 bundling(또는 조합)하여 전송할 때 사용되는 indicator를 나타낸다.
보다 구체적으로, 상기 DAI는 ACK / NACK bundling을 수행할 수 있는 일정 범위의 window 내에서 기지국이 특정 (DL) subframe을 얼마만큼 scheduling 했는지를 나타내고, 만약 schduling한 경우 몇 번째 subframe으로 scheduling했는지를 나타내는 counter (DL subframe의 경우)로 사용된다(DL DAI).
또는, 상기 DAI는 특정 UL subframe에 대한 UL grant를 전송하는 DL subframe에서는 상기 bundling window 내에 몇 개의 subframe이 scheduling 되었는지 즉, scheduling된 subframe의 개수에 대한 정보를 나타내는 용도로 사용된다(UL DAI).
또한, 앞서 살핀 제 1 실시 예 내지 제 3 실시 예는 LTE 기지국과 V2V가 서로 다른 carrier를 사용하는 경우뿐만 아니라 동일한 carrier를 사용하는 경우에도 적용 가능하다.
즉, 앞서 살핀 TDD system에서 사용하는 방식들이 LTE 기지국과 V2V가 동일한 carrier를 사용하는 경우에도 전부 사용될 수도 있으며, 상기 방식들 중의 일부가 선택적으로 또는 조합하여 사용될 수도 있다.
도 29는 본 명세서에서 제안하는 사이드링크 전송을 수행하는 방법의 일례를 나타낸 순서도이다.
먼저, 단말은 사이드링크 전송의 스케쥴링(scheduling)을 위해 사용되는 사이드링크 그랜트(sidelink grant)를 기지국으로부터 수신한다(S2910).
여기서, 상기 단말은 사이드링크 전송을 수행하는 단말로서, 사이드링크 전송 단말, D2D 전송 단말, V2V 전송 단말 등으로 호칭될 수 있다.
상기 사이드링크 그랜트는 사이드링크와 관련된 DCI(Downlink Control Information) grant를 의미하는 것으로, DCI format 5 또는 5A로도 표현될 수 있다.
여기서, 상기 사이드링크 그랜트(sidelink grant)는 상기 사이드링크 그랜트와 연관된 특정 서브프래임의 오프셋(offset)을 지시하는 제어 정보를 포함한다.
상기 제어 정보는 sidelink index 또는 간략히 SL index로 표현될 수 있다.
상기 제어 정보의 크기는 2 bits 또는 3 bits일 수 있다.
만약 상기 제어 정보가 2 bits인 경우, 표 22에서 살핀 것처럼, '00', '01', '10' 또는 '11'로 설정될 수 있다.
이 경우, 상기 제어 정보에 의해 지시되는 값은 각각 '0', '1', '2' 또는 '3'에 대응될 수 있다.
상기 제어 정보는 offset 필드로 표현될 수 있고, 상기 제어 정보에 의해 지시되는 값은 'a' 또는 'm'으로 표현될 수 있다.
또한, 상기 제어 정보는 상향링크-다운링크 구성(uplink-downlink configuration) 0 내지 6을 사용하는 TDD(Time Division Duplex) 시스템에서만 상기 사이드링크 그랜트에 포함될 수 있다.
상가 TDD 시스템에서, 상기 사이드링크 그랜트는 다운링크 서브프래임(downlink subframe) 또는 스페셜 서브프래임(special subframe) 중 적어도 하나를 통해 전송될 수 있다.
이후, 상기 단말은 상기 제어 정보에 의해 지시되는 값을 고려하여 상기 특정 서브프래임(specific subframe)을 결정한다(S2920).
상기 특정 서브프래임은 상기 사이드링크 전송이 일어나는 사이드링크 서브프래임(sidelink subframe)에 포함될 수 있다.
이후, 상기 단말은 상기 특정 서브프래임에서 상기 사이드링크 전송을 수행한다(S2930).
도 29에서 설명하는 동작은 앞서 살핀 사이드링크 전송 모드 3(sidelink transmission mode 3)인 경우에 수행될 수 있다.
또한, 단말은 서브프래임 n에서 상기 사이드링크 그랜트를 수신하고, 상기 제어 정보에 의해 지시되는 값이 'a'인 경우, 상기 사이드링크 그랜트에 의해 사이드링크 전송이 발생하는 특정 서브프래임은 서브프래임 n+k+a일 수 있다.
여기서, 상기 k는 propagation delay와 단말의 processing time을 고려한 값이며, 일례로 상기 k는 4일 수 있다.
또한, 상기 사이드링크 그랜트를 수신하는 캐리어(carrier)와 상기 사이드링크 전송을 수행하는 캐리어는 동일하거나 또는 서로 다를 수 있다.
상기 사이드링크 전송은 사이드링크 전송 단말에서 사이드링크 수신 단말로 PC5 interface를 통해 수행될 수 있다.
그리고, 상기 사이드링크 전송은 V2V(Vehicle-to-Vehicle) 전송 또는 V2X(Vehicle-to-Everything)으로 표현될 수도 있다.
본 발명이 적용될 수 있는 장치 일반
도 30은 본 발명의 일 실시 예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 30을 참조하면, 무선 통신 시스템은 기지국(또는 네트워크)(3010)와 단말(3020)을 포함한다.
기지국(3010)는 프로세서(processor, 3011), 메모리(memory, 3012) 및 통신 모듈(communication module, 3013)을 포함한다.
프로세서(3011)는 앞서 도 1 내지 도 29에서 제안된 기능, 과정 및/또는 방법을 구현한다. 유/무선 인터페이스 프로토콜의 계층들은 프로세서(3011)에 의해 구현될 수 있다. 메모리(3012)는 프로세서(3011)와 연결되어, 프로세서(3011)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(3013)은 프로세서(3011)와 연결되어, 유/무선 신호를 송신 및/또는 수신한다.
상기 통신 모듈(3013)은 무선 신호를 송/수신하기 위한 RF부(radio frequency unit)을 포함할 수 있다.
단말(3020)은 프로세서(3021), 메모리(3022) 및 통신 모듈(또는 RF부)(3023)을 포함한다. 프로세서(3021)는 앞서 도 1 내지 도 29에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층들은 프로세서(3021)에 의해 구현될 수 있다. 메모리(3022)는 프로세서(3021)와 연결되어, 프로세서(3021)를 구동하기 위한 다양한 정보를 저장한다. 통신 모듈(3023)는 프로세서(3021)와 연결되어, 무선 신호를 송신 및/또는 수신한다.
메모리(3012, 3022)는 프로세서(3011, 3021) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(3011, 3021)와 연결될 수 있다.
또한, 기지국(3010) 및/또는 단말(3020)은 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 가질 수 있다.
도 31은 본 발명의 일 실시 예에 따른 통신 장치의 블록 구성도를 예시한다.
특히, 도 31에서는 앞서 도 30의 단말을 보다 상세히 예시하는 도면이다.
도 31을 참조하면, 단말은 프로세서(또는 디지털 신호 프로세서(DSP: digital signal processor)(3110), RF 모듈(RF module)(또는 RF 유닛)(3135), 파워 관리 모듈(power management module)(3105), 안테나(antenna)(3140), 배터리(battery)(3155), 디스플레이(display)(3115), 키패드(keypad)(3120), 메모리(memory)(3130), 심카드(SIM(Subscriber Identification Module) card)(3125)(이 구성은 선택적임), 스피커(speaker)(3145) 및 마이크로폰(microphone)(3150)을 포함하여 구성될 수 있다. 단말은 또한 단일의 안테나 또는 다중의 안테나를 포함할 수 있다.
프로세서(3110)는 앞서 도 1 내지 도 29에서 제안된 기능, 과정 및/또는 방법을 구현한다. 무선 인터페이스 프로토콜의 계층은 프로세서(3110)에 의해 구현될 수 있다.
메모리(3130)는 프로세서(3110)와 연결되고, 프로세서(3110)의 동작과 관련된 정보를 저장한다. 메모리(3130)는 프로세서(3110) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(3110)와 연결될 수 있다.
사용자는 예를 들어, 키패드(3120)의 버튼을 누르거나(혹은 터치하거나) 또는 마이크로폰(3150)를 이용한 음성 구동(voice activation)에 의해 전화 번호 등과 같은 명령 정보를 입력한다. 프로세서(3110)는 이러한 명령 정보를 수신하고, 전화 번호로 전화를 거는 등 적절한 기능을 수행하도록 처리한다. 구동 상의 데이터(operational data)는 심카드(3125) 또는 메모리(3130)로부터 추출할 수 있다. 또한, 프로세서(3110)는 사용자가 인지하고 또한 편의를 위해 명령 정보 또는 구동 정보를 디스플레이(3115) 상에 디스플레이할 수 있다.
RF 모듈(3135)는 프로세서(3110)에 연결되어, RF 신호를 송신 및/또는 수신한다. 프로세서(3110)는 통신을 개시하기 위하여 예를 들어, 음성 통신 데이터를 구성하는 무선 신호를 전송하도록 명령 정보를 RF 모듈(3135)에 전달한다. RF 모듈(3135)은 무선 신호를 수신 및 송신하기 위하여 수신기(receiver) 및 전송기(transmitter)로 구성된다. 안테나(3140)는 무선 신호를 송신 및 수신하는 기능을 한다. 무선 신호를 수신할 때, RF 모듈(3135)은 프로세서(3110)에 의해 처리하기 위하여 신호를 전달하고 기저 대역으로 신호를 변환할 수 있다. 처리된 신호는 스피커(3145)를 통해 출력되는 가청 또는 가독 정보로 변환될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A/LTE-A Pro 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A/LTE-A Pro 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 사이드링크 전송(sidelink transmission)을 수행하는 방법에 있어서, 단말에 의해 수행되는 방법은,
    상기 사이드링크 전송의 스케쥴링(scheduling)을 위해 사용되는 사이드링크 그랜트(sidelink grant)를 기지국으로부터 수신하는 단계,
    상기 사이드링크 그랜트는 상기 사이드링크 그랜트와 연관된 특정 서브프래임의 오프셋(offset)을 지시하는 제어 정보를 포함하고;
    상기 제어 정보에 의해 지시되는 값을 고려하여 상기 특정 서브프래임을 결정하는 단계; 및
    상기 특정 서브프래임에서 상기 사이드링크 전송을 수행하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 방법은 사이드링크 전송 모드 3(sidelink transmission mode 3)인 경우에 수행되는 것을 특징으로 하는 방법.
  3. 제 1항에 있어서,
    상기 사이드링크 그랜트는 서브프래임 n에서 수신되고,
    상기 제어 정보에 의해 지시되는 값이 'a'인 경우, 상기 특정 서브프래임은 서브프래임 n+k+a인 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기 k는 '4'인 것을 특징으로 하는 방법.
  5. 제 1항에 있어서,
    상기 제어 정보의 크기는 2 bits이며,
    상기 제어 정보가 '00', '01', '10' 또는 '11'로 설정된 경우, 상기 제어 정보에 의해 지시되는 값은 각각 '0', '1', '2' 또는 '3'인 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 특정 서브프래임은 상기 사이드링크 전송이 일어나는 사이드링크 서브프래임(sidelink subframe)에 포함되는 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 제어 정보는 상향링크-다운링크 구성(uplink-downlink configuration) 0 내지 6을 사용하는 TDD(Time Division Duplex) 시스템에서만 상기 사이드링크 그랜트에 포함되는 것을 특징으로 하는 방법.
  8. 제 7항에 있어서,
    상기 사이드링크 그랜트는 다운링크 서브프래임(downlink subframe) 또는 스페셜 서브프래임(special subframe) 중 적어도 하나를 통해 전송되는 것을 특징으로 하는 방법.
  9. 제 1항에 있어서,
    상기 사이드링크 그랜트를 수신하는 캐리어(carrier)와 상기 사이드링크 전송을 수행하는 캐리어는 동일하거나 또는 서로 다른 것을 특징으로 하는 방법.
  10. 제 1항에 있어서,
    상기 사이드링크 전송은 V2V(Vehicle-to-Vehicle) 전송인 것을 특징으로 하는 방법.
  11. 무선 통신 시스템에서 사이드링크 전송(sidelink transmission)을 수행하는 단말에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 모듈(module); 및
    상기 RF 모듈을 제어하는 프로세서를 포함하고, 상기 프로세서는,
    상기 사이드링크 전송의 스케쥴링(scheduling)을 위해 사용되는 사이드링크 그랜트(sidelink grant)를 기지국으로부터 수신하고,
    상기 사이드링크 그랜트는 상기 사이드링크 그랜트와 연관된 특정 서브프래임의 오프셋(offset)을 지시하는 제어 정보를 포함하고;
    상기 제어 정보에 의해 지시되는 값을 고려하여 상기 특정 서브프래임을 결정하고; 및
    상기 특정 서브프래임에서 상기 사이드링크 전송을 수행하도록 구성되는 것을 특징으로 하는 단말.
  12. 제 11항에 있어서,
    상기 사이드링크 그랜트는 서브프래임 n에서 수신되고,
    상기 제어 정보에 의해 지시되는 값이 'a'인 경우, 상기 특정 서브프래임은 서브프래임 n+k+a인 것을 특징으로 하는 단말.
  13. 제 12항에 있어서,
    상기 k는 '4'인 것을 특징으로 하는 단말.
  14. 제 11항에 있어서,
    상기 제어 정보의 크기는 2 bits이며,
    상기 제어 정보가 '00', '01', '10' 또는 '11'로 설정된 경우, 상기 제어 정보에 의해 지시되는 값은 각각 '0', '1', '2' 또는 '3'인 것을 특징으로 하는 단말.
  15. 제 11항에 있어서,
    상기 제어 정보는 상향링크-다운링크 구성(uplink-downlink configuration) 0 내지 6을 사용하는 TDD(Time Division Duplex) 시스템에서만 상기 사이드링크 그랜트에 포함되는 것을 특징으로 하는 단말.
PCT/KR2017/012141 2016-11-02 2017-10-31 무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치 WO2018084524A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17866805.9A EP3537830B1 (en) 2016-11-02 2017-10-31 Method for performing sidelink transmission in wireless communication system and apparatus therefor
JP2019523851A JP6840848B2 (ja) 2016-11-02 2017-10-31 無線通信システムでサイドリンク送信を行うための方法及びこのための装置
US16/347,053 US10999862B2 (en) 2016-11-02 2017-10-31 Method for performing sidelink transmission in wireless communication system and apparatus therefor
CN201780081799.3A CN110140408B (zh) 2016-11-02 2017-10-31 用于在无线通信系统中执行副链路发送的方法及其装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662416160P 2016-11-02 2016-11-02
US62/416,160 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018084524A1 true WO2018084524A1 (ko) 2018-05-11

Family

ID=62077060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012141 WO2018084524A1 (ko) 2016-11-02 2017-10-31 무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (1) US10999862B2 (ko)
EP (1) EP3537830B1 (ko)
JP (1) JP6840848B2 (ko)
CN (1) CN110140408B (ko)
WO (1) WO2018084524A1 (ko)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027487A1 (ko) * 2018-07-30 2020-02-06 엘지전자 주식회사 무선 통신 시스템에서 tti 번들링에 기반한 v2x 동작 방법 및 상기 방법을 이용하는 단말
WO2020028662A1 (en) * 2018-08-01 2020-02-06 Intel Corporation Unified channel access for broadcast, groupcast, and unicast communication in nr v2x sidelink communication
CN111132083A (zh) * 2019-12-02 2020-05-08 北京邮电大学 一种车辆编队模式下基于noma的分布式资源分配方法
CN111294969A (zh) * 2019-01-31 2020-06-16 展讯通信(上海)有限公司 Bsr触发方法及装置、存储介质、用户设备
WO2021018096A1 (zh) * 2019-07-29 2021-02-04 维沃移动通信有限公司 数据传输方法、用户设备及控制节点
WO2021071230A1 (ko) * 2019-10-07 2021-04-15 엘지전자 주식회사 Nr v2x에서 자원 예약을 수행하는 방법 및 장치
CN112752293A (zh) * 2019-10-31 2021-05-04 华硕电脑股份有限公司 无线通信系统中处置装置间反馈传送的方法和设备
CN113273272A (zh) * 2019-01-14 2021-08-17 高通股份有限公司 对用于免准许的上行链路传输的多个传输块的调度
CN113330815A (zh) * 2019-01-16 2021-08-31 三星电子株式会社 在下一代移动通信系统中进行无线链路监听以支持v2x通信的方法和装置
WO2021223046A1 (en) * 2020-05-02 2021-11-11 Qualcomm Incorporated Fbe-based licensed assisted sidelink access
US11510236B2 (en) 2018-10-04 2022-11-22 Asustek Computer Inc. Method and apparatus of requesting resource for sidelink retransmission in a wireless communication system
JP2022549552A (ja) * 2019-07-23 2022-11-28 日本電気株式会社 通信のための方法、端末装置及びコンピュータ可読媒体

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3528566B1 (en) * 2016-11-04 2022-05-25 Huawei Technologies Co., Ltd. Wireless network data transmission method, apparatus and system
CN110447294B (zh) 2017-03-23 2023-06-09 苹果公司 车到车(v2v)侧链路通信中的优先消息和资源选择
US10931426B2 (en) * 2017-08-10 2021-02-23 Futurewei Technologies, Inc. System and method for sidelink feedback
RU2020111322A (ru) * 2017-09-29 2021-09-20 Сони Корпорейшн Устройство связи и способ связи
US11212773B2 (en) * 2018-06-27 2021-12-28 Qualcomm Incorporated Communication of sidelink transmission pattern to wireless wide area network (WWAN)
KR102588204B1 (ko) * 2018-07-05 2023-10-12 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 차량 인터넷에서의 데이터 전송 방법, 단말기 디바이스 및 컴퓨터 프로그램제품
KR20200086920A (ko) * 2019-01-10 2020-07-20 삼성전자주식회사 무선 통신 시스템에서 단말 간 직접 통신을 위한 전송 자원을 할당하는 장치 및 방법
US10867538B1 (en) * 2019-03-05 2020-12-15 Facebook Technologies, Llc Systems and methods for transferring an image to an array of emissive sub pixels
US11476899B2 (en) * 2019-04-18 2022-10-18 Huawei Technologies Co., Ltd. Uplink multi-user equipment (UE) cooperative transmission
US11477762B2 (en) * 2019-05-02 2022-10-18 Ofinno, Llc Sidelink feedback signal transmission
JP2022545725A (ja) * 2019-08-29 2022-10-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるユーザ機器による方法
EP4016899A4 (en) * 2019-10-07 2022-10-12 LG Electronics Inc. METHOD AND DEVICE FOR REPORTING HARQ FEEDBACK TO BASE STATION IN NR V2X
WO2021086163A1 (ko) * 2019-11-03 2021-05-06 엘지전자 주식회사 Nr v2x에서 sl 전송을 수행하는 방법 및 장치
CN112788655B (zh) * 2019-11-08 2022-07-29 华为技术有限公司 一种侧行链路信道状态信息报告的发送方法、装置及系统
US11546937B2 (en) * 2019-11-08 2023-01-03 Huawei Technologies Co., Ltd. System and method for reservation and resource selection for sidelink communication
CN115190579A (zh) * 2019-11-09 2022-10-14 上海朗帛通信技术有限公司 一种被用于无线通信的方法和装置
CN113056020B (zh) * 2019-12-26 2022-05-10 大唐高鸿智联科技(重庆)有限公司 一种资源重选的判定方法及终端
US20210227465A1 (en) * 2020-01-21 2021-07-22 Asustek Computer Inc. Method and apparatus for handling logical channel prioritization regarding sidelink discontinuous reception in a wireless communication system
WO2021206462A1 (ko) * 2020-04-08 2021-10-14 엘지전자 주식회사 무선통신시스템에서 사이드링크 릴레이에 관련된 릴레이 ue의 동작 방법
US20230199807A1 (en) * 2020-05-18 2023-06-22 Samsung Electronics Co., Ltd. Method and device for processing sidelink operation in wireless communication system
CN114765902A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 一种信息处理方法、装置和可读存储介质
CN112995960B (zh) * 2021-03-09 2023-10-31 保定市兆微软件科技有限公司 链式组网终端直通通信的数据传送方法
US20220338169A1 (en) * 2021-04-16 2022-10-20 Qualcomm Incorporated Resource allocations to source user equipment from a user equipment in a hop
CN113727446A (zh) * 2021-07-16 2021-11-30 中国信息通信研究院 一种感知信号动态发送方法和设备
CN113543344B (zh) * 2021-07-27 2022-02-15 西安交通大学医学院第一附属医院 一种基于物联网的危重病人信息采集方法及系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165124A1 (en) * 2015-04-17 2016-10-20 Panasonic Intellectual Property Corporation Of America Multiple prose group communication during a sidelink control period

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331826B2 (en) * 2011-04-13 2016-05-03 Lg Electronics Inc. Method and apparatus for transmitting control information in a wireless communication system
ES2736964T3 (es) * 2011-10-20 2020-01-09 Lg Electronics Inc Método y aparato para transmitir información de control en un sistema de comunicación inalámbrica
TWI620459B (zh) 2012-05-31 2018-04-01 內數位專利控股公司 在蜂巢式通訊系統中賦能直鏈通訊排程及控制方法
US9538518B2 (en) * 2012-08-28 2017-01-03 Lg Electronics Inc. Method for detecting downlink control channel in wireless communication system and apparatus for same
CN104243087B (zh) * 2013-06-13 2019-02-12 中兴通讯股份有限公司 一种数据和控制信息的发送方法、接收方法、基站及终端
CN104811892B (zh) * 2014-01-29 2020-03-13 中兴通讯股份有限公司 一种资源分配方法、装置及系统
EP3131215A4 (en) * 2014-02-12 2017-11-08 LG Electronics Inc. Method for transmitting/receiving signal in wireless communication system, and apparatus therefor
CN106537999B (zh) * 2014-04-08 2019-08-09 Lg电子株式会社 用于在支持无线资源的使用的改变的无线通信系统中发送上行链路控制信息的方法和设备
CN106797530A (zh) 2014-08-14 2017-05-31 Lg 电子株式会社 无线通信系统中控制传输功率的方法和设备
US10531458B2 (en) 2014-09-25 2020-01-07 Kyocera Corporation User terminal, service control apparatus, and base station
WO2016117940A1 (en) 2015-01-23 2016-07-28 Lg Electronics Inc. Method for selecting of sidelink grant for a d2d ue in a d2d communication system and device therefor
JP6724917B2 (ja) * 2015-07-15 2020-07-15 日本電気株式会社 端末及び基地局並びにこれらの方法
US10412754B2 (en) * 2015-08-12 2019-09-10 Intel Corporation Resource access in device to device communication
RU2683977C1 (ru) * 2015-11-06 2019-04-03 Сан Пэтент Траст Управление множественными передачами прямого соединения в течение периода управления прямого соединения
WO2017171908A1 (en) * 2016-04-01 2017-10-05 Intel Corporation Geo-information reporting for vehicle-to-vehicle sidelink communications
US10419264B2 (en) * 2016-07-27 2019-09-17 Qualcomm Incorporated Subframe structure for the co-existence network of sidelink and mission critical mobile devices
CN110447294B (zh) * 2017-03-23 2023-06-09 苹果公司 车到车(v2v)侧链路通信中的优先消息和资源选择

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016165124A1 (en) * 2015-04-17 2016-10-20 Panasonic Intellectual Property Corporation Of America Multiple prose group communication during a sidelink control period

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Discussion on V2V Synchronization Procedure", RI-1609460, 3GPP TSG RAN WG1 MEETING #86BIS, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051159531 *
ERICSSON: "Distributed Synchronization Procedure for V2X over PC5", R1-1609717, 3GPP TSG RAN WG1 MEETING #86BIS, 30 September 2016 (2016-09-30), Lisbon, Portugal, XP051149751 *
NEC: "Discussion on [Determining Timing of Sidelink Synchronization Signals for V2X", RL-1609143, 3GPP TSG RAN WG1 MEETING #86BIS, 30 September 2016 (2016-09-30), Lisbon, Portugal, XP051158446 *
NOKIA ET AL.: "Enhancements to Sidelink Synchronization", RL-1609789, 3GPP TSG RAN WG1 MEETING #86BIS, 1 October 2016 (2016-10-01), Lisbon, Portugal, XP051159669 *
See also references of EP3537830A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027487A1 (ko) * 2018-07-30 2020-02-06 엘지전자 주식회사 무선 통신 시스템에서 tti 번들링에 기반한 v2x 동작 방법 및 상기 방법을 이용하는 단말
US11678154B2 (en) 2018-07-30 2023-06-13 Lg Electronics Inc. V2X operating method based on TTI bundling in wireless communication system and terminal using same
WO2020028662A1 (en) * 2018-08-01 2020-02-06 Intel Corporation Unified channel access for broadcast, groupcast, and unicast communication in nr v2x sidelink communication
US11510236B2 (en) 2018-10-04 2022-11-22 Asustek Computer Inc. Method and apparatus of requesting resource for sidelink retransmission in a wireless communication system
CN113273272A (zh) * 2019-01-14 2021-08-17 高通股份有限公司 对用于免准许的上行链路传输的多个传输块的调度
CN113273272B (zh) * 2019-01-14 2023-11-28 高通股份有限公司 对用于免准许的上行链路传输的多个传输块的调度
CN113330815A (zh) * 2019-01-16 2021-08-31 三星电子株式会社 在下一代移动通信系统中进行无线链路监听以支持v2x通信的方法和装置
WO2020156067A1 (zh) * 2019-01-31 2020-08-06 展讯通信(上海)有限公司 Bsr触发方法及装置、存储介质、用户设备
CN111294969A (zh) * 2019-01-31 2020-06-16 展讯通信(上海)有限公司 Bsr触发方法及装置、存储介质、用户设备
JP2022549552A (ja) * 2019-07-23 2022-11-28 日本電気株式会社 通信のための方法、端末装置及びコンピュータ可読媒体
WO2021018096A1 (zh) * 2019-07-29 2021-02-04 维沃移动通信有限公司 数据传输方法、用户设备及控制节点
WO2021071230A1 (ko) * 2019-10-07 2021-04-15 엘지전자 주식회사 Nr v2x에서 자원 예약을 수행하는 방법 및 장치
CN112752293A (zh) * 2019-10-31 2021-05-04 华硕电脑股份有限公司 无线通信系统中处置装置间反馈传送的方法和设备
US11902940B2 (en) 2019-10-31 2024-02-13 Asustek Computer Inc. Method and apparatus for handling device-to-device feedback transmission in a wireless communication system
CN112752293B (zh) * 2019-10-31 2024-02-09 华硕电脑股份有限公司 无线通信系统中处置装置间反馈传送的方法和设备
CN111132083A (zh) * 2019-12-02 2020-05-08 北京邮电大学 一种车辆编队模式下基于noma的分布式资源分配方法
CN111132083B (zh) * 2019-12-02 2021-10-22 北京邮电大学 一种车辆编队模式下基于noma的分布式资源分配方法
WO2021223046A1 (en) * 2020-05-02 2021-11-11 Qualcomm Incorporated Fbe-based licensed assisted sidelink access

Also Published As

Publication number Publication date
CN110140408A (zh) 2019-08-16
EP3537830A4 (en) 2020-06-24
EP3537830B1 (en) 2022-01-12
US20200077434A1 (en) 2020-03-05
CN110140408B (zh) 2022-08-26
EP3537830A1 (en) 2019-09-11
JP6840848B2 (ja) 2021-03-10
US10999862B2 (en) 2021-05-04
JP2019533962A (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
WO2018084524A1 (ko) 무선 통신 시스템에서 사이드링크 전송을 수행하기 위한 방법 및 이를 위한 장치
WO2017131389A1 (ko) 무선 통신 시스템에서 무선 자원을 할당하는 방법 및 이를 위한 장치
WO2017164698A1 (ko) 무선 통신 시스템에서 무선 자원을 할당 받는 방법 및 이를 위한 장치
WO2017034340A1 (ko) 무선 통신 시스템에서 자원 할당 방법 및 이를 위한 장치
WO2016204573A1 (ko) 무선 통신 시스템에서 비동기 인접 셀로부터 데이터를 수신하기 위한 방법 및 이를 위한 장치
WO2017030412A1 (ko) 무선 통신 시스템에서의 랜덤 액세스 절차 수행 방법 및 이를 위한 장치
WO2017078464A1 (ko) 무선 통신 시스템에서 하향링크 데이터 송수신 방법 및 이를 위한 장치
WO2017155290A1 (ko) 무선 통신 시스템에서 상/하향링크 데이터 송수신 방법 및 이를 위한 장치
WO2018225936A1 (ko) 무선 통신 시스템에서 참조 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2021020955A1 (ko) 무선 통신 시스템에서 상향링크 공유 채널(physical uplink shared channel: pusch)를 송수신하는 방법, 장치 및 시스템
WO2017010761A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2016163721A1 (ko) 단말간 통신을 지원하는 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2016200137A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 장치
WO2018004322A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2016021902A1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
WO2018030872A1 (ko) 무선 통신 시스템에서 서빙 셀 변경을 수행하는 방법 및 이를 위한 장치
WO2017057989A1 (ko) 무선 통신 시스템에서의 하향링크 제어 정보의 전송 방법
WO2020032750A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 위한 장치
WO2016028059A1 (ko) 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
WO2018097586A1 (en) Method and apparatus for multiplexing uplink channels in wireless cellular communication system
WO2017010762A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 디스커버리 참조 신호를 송수신하는 방법 및 장치
WO2016099196A1 (ko) 단말 간 (device-to-device, d2d) 통신을 지원하는 무선 통신 시스템에서 전송 자원을 할당하는 방법
WO2017010764A1 (ko) 비면허 대역 및 캐리어 결합을 지원하는 무선접속시스템에서 데이터 버스트 전송 방법 및 장치
WO2017047973A1 (ko) 비면허 대역을 지원하는 무선접속시스템에서 멀티 캐리어 상에서 lbt 과정을 수행하는 방법 및 장치
WO2017171408A2 (ko) 무선 통신 시스템에서 채널 상태 정보를 전송하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019523851

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017866805

Country of ref document: EP

Effective date: 20190603