WO2018084396A1 - Spinning device for manufacturing side-by-side-type bicomponent complex nanofiber and method for manufacturing bicomponent complex nanofiber using same - Google Patents

Spinning device for manufacturing side-by-side-type bicomponent complex nanofiber and method for manufacturing bicomponent complex nanofiber using same Download PDF

Info

Publication number
WO2018084396A1
WO2018084396A1 PCT/KR2017/004452 KR2017004452W WO2018084396A1 WO 2018084396 A1 WO2018084396 A1 WO 2018084396A1 KR 2017004452 W KR2017004452 W KR 2017004452W WO 2018084396 A1 WO2018084396 A1 WO 2018084396A1
Authority
WO
WIPO (PCT)
Prior art keywords
spinning
tube
solution
spinning solution
hollow portion
Prior art date
Application number
PCT/KR2017/004452
Other languages
French (fr)
Korean (ko)
Inventor
김학용
김태우
채수형
박미라
Original Assignee
주식회사 우리나노
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 우리나노, 전북대학교산학협력단 filed Critical 주식회사 우리나노
Publication of WO2018084396A1 publication Critical patent/WO2018084396A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor

Definitions

  • the present invention relates to a spinning device for the production of side-by-side bicomponent composite nanofibers and a method of manufacturing the side-by-side bicomponent composite nanofibers using the same, and more particularly, having a desired cross-sectional shape with high productivity per unit time and processability.
  • the present invention relates to a spinning tube capable of producing side by side bicomponent composite nanofibers, and also to a method of manufacturing side by side bicomponent composite nanofibers of various cross-sectional shapes using the spinning tube.
  • side by side type bicomponent composite nanofiber of the present invention is used to mean an eccentric side by side bicomponent composite nanofiber.
  • the production of nanofibers through electrospinning is 0.1 ⁇ 1 g per hour and the solution discharge is very low, 1.0 ⁇ 5.0 mL per hour [D. H. H. Renecker et al., Nanotechnology 2006, VOl 17, 1123].
  • Nano Letters, 2007, Vol7 (4) 1081 is a SnO 2 in one nozzle having an internal diameter of 0.4 mm among the composite nozzles in which two nozzles are arranged side by side. Feed the precursor solution and TiO 2 to the remaining nozzles with an internal diameter of 0.7 mm A method of manufacturing TiO 2 / SnO 2 composite inorganic nanofibers in a side-by-side form by electrospinning after supplying a precursor solution is disclosed.
  • the conventional method depends only on electrostatic force, the discharge amount per nozzle per unit time This very low productivity is low, there was a problem that the nozzle replacement and cleaning is difficult.
  • Polymer, 2003, Vol. 44, 6353 uses a teflon needle with an internal diameter of 0.7 mm and a thickness of 0.2 mm, which is used to simultaneously pump two solutions with a cylinder pump so that the two solutions merge at the needle section.
  • a method of producing a composite side-side composite nanofiber by electrospinning by supplying a platinum electrode in a solution is disclosed.
  • the conventional method also depends only on electrostatic force, the discharge amount per nozzle per unit time is very low, resulting in high productivity. Falling, there was a problem that the nozzle replacement and cleaning is difficult.
  • the conventional methods are a phenomenon in which the spinning solution falls on the collector in a solution state rather than fibrous (hereinafter referred to as “droplet phenomenon") is badly generated, the quality of the side-by-side bicomponent composite nanofiber web is degraded There was also.
  • An object of the present invention is to provide a spinner for producing a side by side type bicomponent composite nanofiber, which can easily adjust the cross-sectional shape of a side by side type bicomponent composite nanofiber to be manufactured.
  • Another object of the present invention can minimize the risk of operation due to high voltage applied, can greatly improve the productivity of the side-by-side bicomponent composite nanofibers, and prevent side-by-side by the droplet phenomenon in the production of nanofibers It is to provide a spinning device for the production of side-by-side bicomponent composite nanofibers capable of improving the quality of a bicomponent composite nanofiber web.
  • Still another object of the present invention is to provide a method for producing high quality side by side bicomponent composite nanofibers with high productivity using the spin tube for preparing side by side bicomponent composite nanofibers.
  • the spinneret for producing a side-by-side composite nanofiber is (i) a spinning tube main body (Ta) having one form selected from a cylindrical shape and a conical shape; Diagonally connects the corners of the polygonal tube-shaped hollow portion Tb formed along the longitudinal direction of the radiation tube body Ta and the polygonal tube-shaped hollow portion Tb contacting the radiation tube body Ta. While being located inside the polygonal tubular hollow part Tb along the longitudinal direction of the polygonal tubular hollow part Tb, the solution separation plate Tc divides the internal space of the polygonal tubular hollow part Tb into several sections.
  • Spinning tube (T) consisting of; (ii) a first one disposed at the bottom of the spinning tube (T) and having one of cylindrical and conical shapes and storing one spinning solution of two spinning solutions supplied into the spinning tube (T); Spinning solution reservoir (R1); (iii) located at the bottom of the first spinning solution reservoir (R1), having one form selected from cylindrical and conical, and the other spinning solution of the spinning solution of the two components supplied into the spinning tube (T)
  • the first first spinning solution supply tube (H1); And (v) 2 which is provided inside the second spinning solution storage tank R2 along the longitudinal direction of the second spinning solution storage tank R2 and whose upper end portion communicates with the polygonal tubular hollow portion Tb. It consists of two or more second spinning solution supply tube (H2).
  • the first spinning solution supply tube (H1) and the second spinning solution supply tube (H2) are partition regions (T1, T2) of the polygonal tube-shaped hollow portion (Tb) partitioned by the solution separation plate (Tc) Communicate with each other.
  • the present invention is formed along the longitudinal direction of the radiation tube body Ta, the inside of the radiation tube body Ta, having a shape selected from one of the cylindrical and conical, the radiation tube body (Ta) Polygonal tube along the longitudinal direction of the polygonal tubular hollow part Tb diagonally connecting the corners of the polygonal tubular hollow part Tb and the polygonal tubular hollow part Tb which is in contact with the radiating tube body Ta
  • the voltage generated while rotating the spinning tube (T) consisting of the solution separation plate (Tc) located in the upper hollow portion (Tb) partitioning the internal space of the polygonal tube-shaped hollow portion (Tb) into several sections
  • a high voltage is applied to the spinning tube (T) and the collector (1) located above the spinning tube (T) with the apparatus (2), and then (ii) the pump for supplying the first spinning liquid (spinning liquid A) (P1).
  • the first spinning solution (spinning fluid A) by using the supply tube (S1) (Spinning solution A) is located at the bottom of the spinning tube (T), has a shape selected from the cylindrical and conical, and stores one spinning solution of the spinning solution of the two components supplied into the spinning tube (T) (Iii) using a pump (P2) for supplying the second spinning liquid (spinning liquid B) and a tube S2 for supplying the second spinning liquid (spinning liquid B).
  • the second spinning liquid (spinning liquid B) is located at the bottom of the first spinning liquid storage tank (R1), and has one form selected from a cylindrical shape and a conical shape, and is a chamber of two components supplied into the spinning tube (T).
  • the second spinning liquid (spinning liquid B) stored in the two spinning liquid storage tank R2 was alternately supplied to the partition areas T1 and T2 of the polygonal tubular hollow portion Tc partitioned by the solution separating plate Tc.
  • V Using the centrifugal force and electric force, the first spinning solution (spinning solution A) and the second spinning solution (spinning solution B) supplied into the partition areas T1 and T2 of the polygonal tubular hollow portion Tc were Radiating toward the collector 1 in which high voltage is applied by the voltage generator 2 through the corner portion of the polygonal tubular hollow portion Tb. W side-by-side to produce a two-component composite nanofiber.
  • two types of spinning solutions are formed through the corners of the polygonal tube-shaped hollow part Tb in which the solution separation plates Tc are installed in the polygonal tube-shaped hollow part Tb and contact the spinning tube body Ta. Since the spinning solutions can be effectively prevented from mixing with each other until just before spinning, the cross-sectional shape of the side-by-side bicomponent composite nanofibers manufactured can be easily controlled.
  • bicomponent composite nanofibers can be manufactured with high productivity (discharge amount), solvent volatilization and recovery are easy, and the spinning solution is not fibrous but is in solution state on the collector. Falling phenomenon (drop phenomenon) is also effectively prevented to improve the quality of the two-component composite nanofiber web.
  • FIG. 1 is a process schematic diagram of producing a side-by-side bicomponent composite nanofiber according to the present invention.
  • FIG. 2 is an enlarged schematic view of the radiation tube T in FIG. 1.
  • FIG. 2 is an enlarged schematic view of the radiation tube T in FIG. 1.
  • Figure 3 is a schematic diagram showing the mechanism by which the side-by-side bicomponent composite nanofibers are formed at the corners of the spinning tube (T) constituting the present invention.
  • Figure 4 is a schematic cross-sectional view of the side-by-side bicomponent composite nanofiber produced in Figure 3;
  • Figure 5 is a schematic diagram showing a mechanism in which the side by-side bicomponent composite nanofibers having an eccentric cross-sectional shape at the corners of the spinning tube (T) constituting the present invention.
  • FIG. 6 is a schematic cross-sectional view of the side-by-side bicomponent composite nanofiber manufactured in FIG. 5.
  • Fig. 7 is a cross-sectional schematic view of the radiating tube T constituting the present invention in a transverse direction.
  • Example 8 is a scanning electron micrograph of the side-by-side bicomponent composite nanofibers prepared in Example 1;
  • Figure 9 is an enlarged cross-sectional view of the side-by-side bicomponent composite nanofibers prepared in Example 1.
  • FIG. 10 is a scanning electron microscope photograph of the side-by-side bicomponent composite nanofibers prepared in Example 2.
  • FIG. 10 is a scanning electron microscope photograph of the side-by-side bicomponent composite nanofibers prepared in Example 2.
  • Spinning apparatus for producing a two-component side-by-side composite nanofiber according to the present invention is (i) a spinning tube body (Ta) having one form selected from cylindrical and conical, as shown in Figure 1 and 2, the spinning Polygonal tube-shaped hollow portion Tb formed in the longitudinal direction of the radiation tube body Ta and inside the tube body Ta and polygonal tube-shaped hollow portion Tb contacted with the radiation tube body Ta.
  • Spinning tube (T) consisting of the main solution separation plate (Tc); (ii) a first one disposed at the bottom of the spinning tube (T) and having one of cylindrical and conical shapes and storing one spinning solution of two spinning solutions supplied into the spinning tube (T); Spinning solution reservoir (R1); (iii) located at the bottom of the first spinning solution reservoir (R1), having one form selected from cylindrical and conical, and the other spinning solution of the spinning solution of the two components supplied into the spinning tube (T) A second release liquid storage tank (R2) for storing; (iv) two installed in the first spinning fluid storage tank R1 along the longitudinal direction of the first spinning fluid storage tank R1 and having an upper end communicating with the polygonal tubular hollow portion Tb; The first first spinning solution supply tube (H1); And (v)
  • the first spinning solution supply tube H1 and the second spinning solution supply tube H2 alternate with the partition regions T1 and T2 of the polygonal tubular hollow portion Tb, which are partitioned by the solution separation plate Tc. Communicating with
  • the spinning tube body Ta is in contact with the spinning tube body Ta.
  • the number of corners of the polygonal tubular hollow (Tb) shall be even.
  • the spinning tube (T), the first spinning solution reservoir (R1) and the second spinning solution reservoir (R2) may be formed integrally or separated from each other.
  • the first spinning solution reservoir R1 and the second spinning solution storage tank R1 are rotated together with the spinning tube T during the spinning process for manufacturing the side-by-side bicomponent composite nanofibers.
  • the first spinning solution reservoir R1 and the second spinning solution storage tank may not be rotated. .
  • a polygonal tube-shaped hollow portion Tb formed in the longitudinal direction of the radiation tube body Ta and a polygonal tube-shaped hollow portion abutting with the radiation tube body Ta are formed inside the radiating tube body Ta.
  • the inner space of the polygonal tubular hollow part Tb is divided into several sections by connecting the edges of Tb diagonally and being located inside the polygonal tubular hollow part Tb along the longitudinal direction of the polygonal tubular hollow part Tb.
  • the first spinning liquid (spinning liquid A) is discharged to the bottom of the spinning tube (T) by using the first spinning liquid (spinning liquid A) supplying pump (P1) and the first spinning liquid (spinning liquid A) supplying tube (S1).
  • the first spinning solution storage tank (R1) for storing one spinning solution of the spinning solution of two components supplied into the spinning tube (T) and (iii) using the pump (P2) for supplying the second spinning liquid (spinning liquid B) and the second spinning liquid (spinning liquid B) and the tube S2 for supplying the second spinning liquid (spinning liquid B).
  • the second chamber Located in the bottom of the one-use liquid storage tank (R1), the second chamber having a shape selected from the cylindrical and conical shape, and storing the other one of the spinning solution of the two components of the spinning solution supplied into the spinning tube (T)
  • the path of the first spinning liquid storage tank (R1) At least two first spinning solution supply tubes H1 and the second installed in the first spinning solution storage tank R1 and having an upper end portion communicating with the polygonal tubular hollow portion Tb along the direction; Supply at least two second spinning solution installed in the second spinning solution storage tank R2 along the longitudinal direction of the spinning solution storage tank R2 and having an upper end communicating with the polygonal tubular hollow portion Tb.
  • the first spinning liquid (spinning liquid A) stored in the first spinning liquid storage tank (R1) and the second spinning liquid stored in the second spinning liquid storage tank (R2) (spinning liquid B) are separated into a solution separation plate ( Alternately feed into the compartments T1, T2 of the polygonal tubular hollow part Tc partitioned by Tc), and then (v) into the compartments T1, T2 of the polygonal tubular hollow part Tc.
  • a solution separation plate Alternately feed into the compartments T1, T2 of the polygonal tubular hollow part Tc partitioned by Tc
  • v into the compartments T1, T2 of the polygonal tubular hollow part Tc.
  • Polygonal tube by using centrifugal force and electric force
  • the side by-side type bicomponent composite nanofibers are produced by spinning in the direction of the collector 1 in which the high voltage is applied by the voltage generator 2 through the corner portion of the upper hollow portion Tb.
  • the compartment area of the polygonal tubular hollow portion (Tb) located on the right side adjacent to the corner of the chamber is equal to each other as shown in FIG. 3, and the A component (NA) consisting of the spinning solution A on the cross section as shown in FIG.
  • Orthogonal side-by-side bicomponent composite nanofibers (NC) in which the B component (NB) made of the working liquid B are arranged in the same area may be manufactured, and the polygonal tubular hollow portion in contact with the spinning tube body Ta ( The area of the partitioned area of the polygonal tubular hollow portion Tb located on the left side adjacent to the corner of Tb) and the area of the partitioned area of the polygonal tubular hollow part Tb located on the right adjacent corner of the polygonal tube-shaped hollow portion Tb.
  • an eccentric side by side type two component in which an A component (NA) consisting of the spinning solution A and a B component (NB) consisting of the spinning solution B are arranged on different cross sections on the cross section.
  • Composite nanofibers (NC) may also be prepared.
  • the first spinning solution (spinning solution A) and the second spinning solution (spinning solution B) supplied into the partition regions T1 and T2 of the polygonal tubular hollow part Tb are polymer solutions of the same kind or different molecular weights. It may be a polymer solution of, or may be a precursor solution containing different inorganic materials.
  • the first spinning solution (spinning solution A) supplied into the partition region of the polygonal tubular hollow portion Tb is a polymer solution
  • the second spinning solution (spinning solution B) supplied into the partition region of the polygonal tubular hollow portion Tb is ) May be a precursor solution containing minerals.
  • the first spinning solution supplied in the partition region of the polygonal tubular hollow portion (Tb) is a precursor solution containing an inorganic substance
  • Spinning liquid B may be a polymer solution.
  • the corner portion of the polygonal tubular hollow portion Tb in contact with the spinning tube body Ta is divided into two regions by the solution separation plate Tc, the first spinning solution ( Conventional problem that the spinning solution A) and the second spinning solution (spinning solution B) can be effectively prevented from being mixed until the spinning solution is spun off, whereby the spinning solution is solidified while being mixed and the fiber forming ability is lowered. Can effectively solve the problem.
  • the polyvinyl alcohol polymer was dissolved in water as a solvent to prepare a polyvinyl alcohol solution (first spinning solution / spinning solution A) having a solid content of 18% by weight.
  • polyacrylonitrile was dissolved in dimethylformamide as a solvent to prepare a polyacrylonitrile solution (second spinning solution / spinning solution B) having a solid content of 12% by weight.
  • the distance between the collector (1) and the spinning tube (2) was 35cm
  • the diameter of each of the first spinning solution supply tube (H1) and the second spinning solution supply tube (H2) was 4mm
  • the first chamber The liquid bath (R1) and the second spinning solution tank (R2) were each rotated at 350 rpm.
  • Polymethyl methacrylate was dissolved in dimethylformamide as a solvent to prepare a polymethyl methacrylate solution (first spinning solution / spinning solution A) having a solid content of 10% by weight.
  • Polyacrylonitrile was dissolved in dimethylformamide as a solvent to prepare a polyacrylonitrile solution (second spinning solution / spinning solution B) having a solid content of 12% by weight.
  • a cylindrical spinning tube body Ta having an outer diameter of 56 mm and a length of 8 mm, and formed inside the spinning tube body Ta along the longitudinal direction of the spinning tube body Ta.
  • a cylindrical spinning tube body Ta having an outer diameter of 56 mm and a length of 8 mm, and formed inside the spinning tube body Ta along the longitudinal direction of the spinning tube body Ta.
  • 350rpm spinning tube (T) consisting of solution separation plate (Tc) is located inside the octagonal tube-shaped hollow portion (Tb) partitioning the internal space of the octagonal tube-shaped hollow portion (Tb) into several sections While rotating, applying a voltage of 40 kV to the radiation tube (T) and the collector (1) located above the radiation tube (T) with the voltage generator (2), and then (ii) the first spinning solution (spinning solution) A) Using the pump P1 for supply and the first spinning liquid (spinning liquid A), the first spinning liquid (spinning liquid A) may be obtained by using the supply tube S1.
  • the first spinning use is carried out through four second spinning solution supply tubes (H2) whose upper end portion communicates with the octagonal tubular hollow portion (Tb).
  • the distance between the collector (1) and the spinning tube (2) was 35cm
  • the diameter of each of the first spinning solution supply tube (H1) and the second spinning solution supply tube (H2) was 4mm
  • the first chamber The liquid bath (R1) and the second spinning solution tank (R2) were each rotated at 350 rpm.
  • Tb is the hollow tube-shaped hollow part of the spinning tube
  • Tc Solution separation plate located in the hollow portion on the polygonal tube of the spinning tube.
  • T1 Division area in which spinning solution A is supplied in the hollow portion on the polygonal tube of the spinning tube
  • T2 Division area in which the spinning solution B is supplied among the hollow portions on the polygonal tube of the spinning tube
  • R1 First spinning solution storage tank for supplying spinning solution A to the spinning tube T by a fixed amount
  • R2 second spinning solution reservoir for supplying spinning solution B to the spinning tube (T) by a predetermined amount
  • NA A component in side by side type bicomponent composite nanofiber
  • the present invention can be used to produce high quality bicomponent composite nanofibers with high productivity.

Abstract

A device for spinning a side-by-side-type bicomponent complex nanofiber according to the present invention comprises: (i) a spinning tube (T) comprising a spinning tube body (Ta), a polygonal tube-shaped hollow portion (Tb), and solution separating plates (Tc); (ii) a first spinning solution reservoir (R1) positioned on the lower end of the spinning tube (T); (iii) a second spinning solution reservoir (R2) positioned on the lower end of the first spinning solution reservoir (R1); (iv) two or more first spinning solution supply tubes (H1) installed inside the first spinning solution reservoir (R1) so as to communicate with the polygonal tube-shaped hollow portion (Tb); and (v) two or more second spinning solution supply tubes (H2) installed inside the second spinning solution reservoir (R2) so as to communicate with the polygonal tube-shaped hollow portion (Tb). According to the present invention, solution separating plates (Tc) are installed inside the polygonal tube-shaped hollow portion (Tb) such that, just before spinning two types of spinning solutions through the corner part of the polygonal tube-shaped hollow portion (Tb) abutting the spinning tube body (Ta), intermixing of the spinning solutions is effectively prevented, making it easy to adjust the sectional shape of the manufactured side-by-side-type bicomponent complex nanofiber. In addition, the present invention simultaneously employs electrostatic force and centrifugal force and thus can manufacture a bicomponent complex nanofiber with a high productivity (amount of discharge); volatilization and recovery of the solvent are easy; and it is possible to effectively prevent the spinning solution from dropping onto the collector in a solution state rather than in a fiber state (drop phenomenon), thereby improving the quality of the bicomponent complex nanofiber web.

Description

사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치 및 이를 이용한 2성분 복합 나노섬유의 제조방법Spinning device for the production of side by side type bicomponent composite nanofibers, and method for producing the bicomponent composite nanofibers using the same
본 발명은 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치 및 이를 이용한 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법에 관한 것으로서, 보다 구체적으로는 높은 단위시간당 생산성과 공정성으로 원하는 단면형태를 갖는 사이드 바이 사이드형 2성분 복합 나노섬유를 제조할 수 있는 방사튜브에 관한 것이며, 또한, 상기 방사튜브를 이용하여 다양한 단면 형태의 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하는 방법에 관한 것이다.The present invention relates to a spinning device for the production of side-by-side bicomponent composite nanofibers and a method of manufacturing the side-by-side bicomponent composite nanofibers using the same, and more particularly, having a desired cross-sectional shape with high productivity per unit time and processability. The present invention relates to a spinning tube capable of producing side by side bicomponent composite nanofibers, and also to a method of manufacturing side by side bicomponent composite nanofibers of various cross-sectional shapes using the spinning tube.
본 발명의 상기 사이드 바이 사이드형 "2성분 복합 나노섬유"라는 용어는 편심형 사이드 바이 사이드형 2성분 복합 나노섬유도 포함하는 의미로 사용된다.The term "side by side type bicomponent composite nanofiber" of the present invention is used to mean an eccentric side by side bicomponent composite nanofiber.
사이드 바이 사이드형 복합 나노섬유를 제조하는 종래기술로서는 내측관과 외측관이 동심원 상으로 배열된 2층관 형태(코어/시스 형태)의 노즐을 통해 2성분 복합 나노섬유를 제조할 때 상기 2중관 형태의 노즐을 구성하는 내측관의 위치를 변경시켜 주거나, 상기 외측관을 통해 토출되는 방사용액의 토출량과 상기 내측관을 통해 토출되는 방사용액의 토출량을 변경시켜 주는 방법이 주로 사용되어 왔다.In the prior art for producing side-by-side composite nanofibers, when the two-component composite nanofibers are manufactured through a two-layered tube (core / sheath) nozzle in which the inner tube and the outer tube are arranged concentrically, the double tube form The method of changing the position of the inner tube constituting the nozzle of or changing the discharge amount of the spinning solution discharged through the outer tube and the discharge amount of the spinning solution discharged through the inner tube has been mainly used.
그러나, 상기 종래방법은 2중관 형태의 노즐을 통해 방사되는 2종의 방사용액내 용매가 서로 다른 경우에는 2종의 방사용액이 만나 접촉하게 되는 2중관 형태의 노즐 선단부에서 방사용액들의 고화가 일어나 노즐이 막혀 나노섬유 형성능이 크게 저하되고 사이드 바이 사이드형 2성분 복합 나노섬유의 단면 형태를 원하는 형태로 쉽게 변경하기 어려운 문제점이 있었다.However, in the conventional method, when the solvents in the two kinds of spinning solution radiated through the double-pipe nozzle are different from each other, solidification of the spinning solutions occurs at the tip of the double-pipe nozzle where the two spinning solutions meet and come into contact with each other. There is a problem that the nozzle is clogged, the nanofiber forming ability is greatly reduced, and the cross-sectional shape of the side-by-side bicomponent composite nanofiber is not easily changed to a desired shape.
또한, 상기 종래방법은 정전기력에만 의존하여 전기방사를 하기 때문에 단위시간당 노즐 단위홀당 토출량이 0.01g 수준으로 매우 낮아 생산성이 떨어져 결국 양산화가 곤란하였고, 노즐 교체 및 청소도 매우 번거로운 문제점이 있었다.In addition, since the conventional method is electrospinning only depending on the electrostatic force, the discharge amount per nozzle unit hole per unit time is very low to 0.01g level, so productivity is difficult to eventually mass production, and nozzle replacement and cleaning have been very cumbersome.
일반적으로 전기방사를 통한 나노섬유의 생산량은 시간당 0.1~1 g 수준이고 용액 토출량은 시간당 1.0~5.0 mL 수준으로 매우 낮다[D. H. H. Renecker 등, Nanotechnology 2006, VOl 17, 1123]In general, the production of nanofibers through electrospinning is 0.1 ~ 1 g per hour and the solution discharge is very low, 1.0 ~ 5.0 mL per hour [D. H. H. Renecker et al., Nanotechnology 2006, VOl 17, 1123].
구체적으로, 나노레터(Nano Letters), 2007, Vol7(4) 1081에는 또 다른 종래기술로서 2개의 노즐이 사이드 바이 사이드 형태로 배열된 복합노즐 중 내부직경이 0.4㎜인 하나의 노즐에 SnO2인 프리커서 용액을 공급하고, 내부 직경이 0.7㎜인 나머지 노즐에 TiO2 프리커서 용액을 공급한 후 전기방사하여 사이드-바이-사이드 형태인 TiO2/SnO2 복합 무기나노섬유를 제조하는 방법을 게재하고 있으나, 상기 종래방법은 정전기력만 의존하기 때문에 단위시간당 노즐 1개당 토출량이 매우 낮아 생산성이 떨어지고, 노즐교체 및 청소가 어려운 문제점이 있었다.Specifically, Nano Letters, 2007, Vol7 (4) 1081, as another conventional technique, is a SnO 2 in one nozzle having an internal diameter of 0.4 mm among the composite nozzles in which two nozzles are arranged side by side. Feed the precursor solution and TiO 2 to the remaining nozzles with an internal diameter of 0.7 mm A method of manufacturing TiO 2 / SnO 2 composite inorganic nanofibers in a side-by-side form by electrospinning after supplying a precursor solution is disclosed. However, since the conventional method depends only on electrostatic force, the discharge amount per nozzle per unit time This very low productivity is low, there was a problem that the nozzle replacement and cleaning is difficult.
폴리머(Polymer), 2003, Vol.44, 6353에서는 내부 직경이 0.7mm 이고 두께가 0.2mm인 테프론 니들을 사용하고 여기에 두 종류의 용액이 니들 부분에서 합쳐지도록 실린더 펌프로 동시에 두 종류의 용액을 공급하고 백금 전극을 용액 내에 설치하여 전기방사를 행하여 사이드 바이 사이드 형태의 복합 나노섬유를 제조하는 방법을 게재하고 있으나, 상기 종래방법 역시 정전기력에만 의존하기 때문에 단위시간당 노즐 1개당 토출량이 매우 낮아 생산성이 떨어지고, 노즐 교체 및 청소가 어려운 문제점이 있었다.Polymer, 2003, Vol. 44, 6353 uses a teflon needle with an internal diameter of 0.7 mm and a thickness of 0.2 mm, which is used to simultaneously pump two solutions with a cylinder pump so that the two solutions merge at the needle section. Although a method of producing a composite side-side composite nanofiber by electrospinning by supplying a platinum electrode in a solution is disclosed. However, since the conventional method also depends only on electrostatic force, the discharge amount per nozzle per unit time is very low, resulting in high productivity. Falling, there was a problem that the nozzle replacement and cleaning is difficult.
또한, 상기 종래방법들은 방사용액이 섬유상이 아닌 용액상태로 컬렉터 상에 떨어지는 현상(이하 "드롭렛 현상"이라고 한다)이 심하게 발생되어 사이드 바이 사이드형 2성분 복합 나노섬유 웹의 품질이 저하되는 문제도 있었다.In addition, the conventional methods are a phenomenon in which the spinning solution falls on the collector in a solution state rather than fibrous (hereinafter referred to as "droplet phenomenon") is badly generated, the quality of the side-by-side bicomponent composite nanofiber web is degraded There was also.
본 발명의 과제는 제조되는 사이드 바이드 사이드형 2성분 복합나노 섬유의 단면형태를 원하는 형태로 용이하게 조절할 수 있는 사이드 바이 사이드형 2성분 복합나노 섬유 제조용 방사장치를 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a spinner for producing a side by side type bicomponent composite nanofiber, which can easily adjust the cross-sectional shape of a side by side type bicomponent composite nanofiber to be manufactured.
본 발명의 또 다른 과제는 고전압 인가로 인한 작업 위험성을 최소화할 수 있고, 사이드 바이 사이드형 2성분 복합 나노섬유의 생산성을 크게 향상시킬 수 있고, 나노섬유 제조시 드롭렛 현상을 방지하여 사이드 바이 사이드형 2성분 복합 나노섬유 웹의 품질을 향상시킬 수 있는 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치를 제공하는 것이다.Another object of the present invention can minimize the risk of operation due to high voltage applied, can greatly improve the productivity of the side-by-side bicomponent composite nanofibers, and prevent side-by-side by the droplet phenomenon in the production of nanofibers It is to provide a spinning device for the production of side-by-side bicomponent composite nanofibers capable of improving the quality of a bicomponent composite nanofiber web.
본 발명의 또 다른 과제는 상기 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사튜브를 사용해서 높은 생산성으로 고품질의 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하는 방법을 제공하는 것이다.Still another object of the present invention is to provide a method for producing high quality side by side bicomponent composite nanofibers with high productivity using the spin tube for preparing side by side bicomponent composite nanofibers.
이와 같은 과제를 달성하기 위해서 본 발명에서는 사이드 바이 사이드형 복합 나노섬유 제조용 방사장치를 (i) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 다각형 튜브상 중공부(Tb)의 내부에 위치하여 다각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T); (ii) 상기 방사튜브(T) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 하나의 방사용액을 저장하는 제1방사용액 저장조(R1); (iii) 상기 제1방사용액 저장조(R1) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 나머지 하나의 방사용액을 저장하는 제2방사용액 저장조(R2); (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제1방사용액 공급튜브(H1); 및 (v) 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제2방사용액 공급튜브(H2)들로 구성한다.In order to achieve the above object, in the present invention, the spinneret for producing a side-by-side composite nanofiber is (i) a spinning tube main body (Ta) having one form selected from a cylindrical shape and a conical shape; Diagonally connects the corners of the polygonal tube-shaped hollow portion Tb formed along the longitudinal direction of the radiation tube body Ta and the polygonal tube-shaped hollow portion Tb contacting the radiation tube body Ta. While being located inside the polygonal tubular hollow part Tb along the longitudinal direction of the polygonal tubular hollow part Tb, the solution separation plate Tc divides the internal space of the polygonal tubular hollow part Tb into several sections. Spinning tube (T) consisting of; (ii) a first one disposed at the bottom of the spinning tube (T) and having one of cylindrical and conical shapes and storing one spinning solution of two spinning solutions supplied into the spinning tube (T); Spinning solution reservoir (R1); (iii) located at the bottom of the first spinning solution reservoir (R1), having one form selected from cylindrical and conical, and the other spinning solution of the spinning solution of the two components supplied into the spinning tube (T) A second release liquid storage tank (R2) for storing; (iv) two installed in the first spinning fluid storage tank R1 along the longitudinal direction of the first spinning fluid storage tank R1 and having an upper end communicating with the polygonal tubular hollow portion Tb; The first first spinning solution supply tube (H1); And (v) 2 which is provided inside the second spinning solution storage tank R2 along the longitudinal direction of the second spinning solution storage tank R2 and whose upper end portion communicates with the polygonal tubular hollow portion Tb. It consists of two or more second spinning solution supply tube (H2).
이때, 상기 제1방사용액 공급튜브(H1)와 제2방사용액 공급튜브(H2)들은 용액 분리판(Tc)에 의해 구획되는 다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들과 교호로 연통되도록 한다.In this case, the first spinning solution supply tube (H1) and the second spinning solution supply tube (H2) are partition regions (T1, T2) of the polygonal tube-shaped hollow portion (Tb) partitioned by the solution separation plate (Tc) Communicate with each other.
또한, 본 발명은 (i) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 다각형 튜브상 중공부(Tb)의 내부에 위치하여 다각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T)를 회전시켜 주면서 전압발생장치(2)로 상기 방사튜브(T)와 상기 방사튜브(T) 상부에 위치하는 컬렉터(1)에 고전압을 걸어 준 다음, (ii) 제1방사용액(방사용액 A) 공급용 펌프(P1)와 제1방사용액(방사용액 A) 공급용 튜브(S1)를 이용하여 제1방사용액(방사용액 A)을 상기 방사튜브(T) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 하나의 방사용액을 저장하는 제1방사용액 저장조(R1) 내로 공급함과 동시에, (iii) 제2방사용액(방사용액 B) 공급용 펌프(P2)와 제2방사용액(방사용액 B) 공급용 튜브(S2)를 이용하여 제2방사용액(방사용액B)을 상기 제1방사용액 저장조(R1) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 나머지 하나의 방사용액을 저장하는 제2방사용액 저장조(R2) 내로 공급한 다음, (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제1방사용액 공급튜브(H1) 및 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제2방사용액 공급튜브(H2)를 통해 제1방사용액 저장조(R1) 내에 저장된 제1방사용액(방사용액 A)과 제2방사용액 저장조(R2) 내에 저장된 제2방사용액(방사용액 B)를 용액 분리판(Tc)에 의해 구획되는 다각형 튜브상 중공부(Tc)의 구획영역(T1, T2)에 교호로 공급한 다음, (v) 다각형 튜브상 중공부(Tc)의 구획영역(T1, T2) 내로 공급된 제1방사용액(방사용액 A)와 제2방사용액(방사용액 B)를 원심력과 전기력을 이용하여 다각형 튜브상 중공부(Tb)의 모서리 부분을 통해 전압발생장치(2)에 의해 고전압이 걸려 있는 컬렉터(1) 방향으로 방사하여 사이드 바이 사이드형 2성분 복합 나노섬유를 제조한다.In addition, the present invention (i) is formed along the longitudinal direction of the radiation tube body Ta, the inside of the radiation tube body Ta, having a shape selected from one of the cylindrical and conical, the radiation tube body (Ta) Polygonal tube along the longitudinal direction of the polygonal tubular hollow part Tb diagonally connecting the corners of the polygonal tubular hollow part Tb and the polygonal tubular hollow part Tb which is in contact with the radiating tube body Ta The voltage generated while rotating the spinning tube (T) consisting of the solution separation plate (Tc) located in the upper hollow portion (Tb) partitioning the internal space of the polygonal tube-shaped hollow portion (Tb) into several sections A high voltage is applied to the spinning tube (T) and the collector (1) located above the spinning tube (T) with the apparatus (2), and then (ii) the pump for supplying the first spinning liquid (spinning liquid A) (P1). ) And the first spinning solution (spinning fluid A) by using the supply tube (S1) (Spinning solution A) is located at the bottom of the spinning tube (T), has a shape selected from the cylindrical and conical, and stores one spinning solution of the spinning solution of the two components supplied into the spinning tube (T) (Iii) using a pump (P2) for supplying the second spinning liquid (spinning liquid B) and a tube S2 for supplying the second spinning liquid (spinning liquid B). The second spinning liquid (spinning liquid B) is located at the bottom of the first spinning liquid storage tank (R1), and has one form selected from a cylindrical shape and a conical shape, and is a chamber of two components supplied into the spinning tube (T). After supplying into the second spinning solution reservoir (R2) for storing the other one of the spinning solution, (iv) of the first spinning solution storage tank (R1) along the longitudinal direction of the first spinning solution storage tank (R1) It is installed inside, and the upper end is the polygonal tube-shaped hollow part It is provided in the inside of the said 2nd spinning liquid storage tank R2 along the longitudinal direction of the 2 or more 1st spinning liquid supply tube H1 and the said 2nd spinning liquid storage tank R2 in communication with (Tb), The first spinning liquid (spinning liquid A) and the first spinning liquid stored in the first spinning liquid storage tank R1 through two or more second spinning liquid supply tubes H2 whose upper end portion communicates with the polygonal tubular hollow portion Tb. The second spinning liquid (spinning liquid B) stored in the two spinning liquid storage tank R2 was alternately supplied to the partition areas T1 and T2 of the polygonal tubular hollow portion Tc partitioned by the solution separating plate Tc. (V) Using the centrifugal force and electric force, the first spinning solution (spinning solution A) and the second spinning solution (spinning solution B) supplied into the partition areas T1 and T2 of the polygonal tubular hollow portion Tc were Radiating toward the collector 1 in which high voltage is applied by the voltage generator 2 through the corner portion of the polygonal tubular hollow portion Tb. W side-by-side to produce a two-component composite nanofiber.
본 발명은 상기 다각형 튜브상 중공부(Tb) 내에 용액 분리판(Tc)들이 설치되어 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 부분을 통해 2종의 방사용액들을 방사하기 직전까지 방사용액들이 서로 혼합되는 것을 효과적으로 방지할 수 있어서 제조되는 사이드 바이 사이드형 2성분 복합 나노섬유의 단면 형태를 용이하게 조절할 수 있다.According to the present invention, two types of spinning solutions are formed through the corners of the polygonal tube-shaped hollow part Tb in which the solution separation plates Tc are installed in the polygonal tube-shaped hollow part Tb and contact the spinning tube body Ta. Since the spinning solutions can be effectively prevented from mixing with each other until just before spinning, the cross-sectional shape of the side-by-side bicomponent composite nanofibers manufactured can be easily controlled.
또한, 본 발명은 정전기력과 원심력을 동시에 이용하기 때문에 2성분 복합 나노섬유를 높은 생산성(토출량)으로 제조할 수 있고, 용매 휘발 및 회수가 용이하고, 방사액이 섬유상이 아닌 용액상태로 컬렉터 상에 떨어지는 현상(드롭 현상)도 효과적으로 방지하여 2성분 복합 나노섬유 웹의 품질을 향상시키는 효과가 있다.In addition, since the present invention uses electrostatic force and centrifugal force simultaneously, bicomponent composite nanofibers can be manufactured with high productivity (discharge amount), solvent volatilization and recovery are easy, and the spinning solution is not fibrous but is in solution state on the collector. Falling phenomenon (drop phenomenon) is also effectively prevented to improve the quality of the two-component composite nanofiber web.
도 1은 본 발명에 따른 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하는 공정 개략도.1 is a process schematic diagram of producing a side-by-side bicomponent composite nanofiber according to the present invention.
도 2는 도 1 중 방사튜브(T)의 확대 모식도.FIG. 2 is an enlarged schematic view of the radiation tube T in FIG. 1. FIG.
도 3은 본 발명을 구성하는 방사튜브(T) 모서리 부분에서 사이드 바이 사이드형 2성분 복합 나노섬유가 형성되는 메카니즘을 나타내는 모식도.Figure 3 is a schematic diagram showing the mechanism by which the side-by-side bicomponent composite nanofibers are formed at the corners of the spinning tube (T) constituting the present invention.
도 4는 도 3에서 제조되는 사이드 바이 사이드형 2성분 복합나노 섬유의 단면 개략도.Figure 4 is a schematic cross-sectional view of the side-by-side bicomponent composite nanofiber produced in Figure 3;
도 5는 본 발명을 구성하는 방사튜브(T) 모서리 부분에서 단면형태가 편심형인 사이드 바이 사이드형 2성분 복합 나노섬유가 형성되는 메카니즘을 나타내는 모식도.Figure 5 is a schematic diagram showing a mechanism in which the side by-side bicomponent composite nanofibers having an eccentric cross-sectional shape at the corners of the spinning tube (T) constituting the present invention.
도 6은 도 5에서 제조되는 사이드 바이 사이드형 2성분 복합나노 섬유의 단면 개략도.6 is a schematic cross-sectional view of the side-by-side bicomponent composite nanofiber manufactured in FIG. 5.
도 7은 본 발명을 구성하는 방사튜브(T) 일례를 횡방향으로 절개한 단면 개략도.Fig. 7 is a cross-sectional schematic view of the radiating tube T constituting the present invention in a transverse direction.
도 8은 실시예 1로 제조한 사이드 바이 사이드형 2성분 복합 나노섬유의 주사전자현미경 사진.8 is a scanning electron micrograph of the side-by-side bicomponent composite nanofibers prepared in Example 1;
도 9는 실시예 1로 제조한 사이드 바이 사이드형 2성분 복합 나노섬유의 단면 확대사진.Figure 9 is an enlarged cross-sectional view of the side-by-side bicomponent composite nanofibers prepared in Example 1.
도 10은 실시예 2로 제조한 사이드 바이 사이드형 2성분 복합 나노섬유의 주사전자현미경 사진.10 is a scanning electron microscope photograph of the side-by-side bicomponent composite nanofibers prepared in Example 2. FIG.
이하, 첨부한 도면 등을 통하여 본 발명을 상세하게 설명한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
본 발명에 따른 2성분 사이드 바이 사이드형 복합 나노섬유 제조용 방사장치는 도 1 및 도 2에 도시된 바와 같이 (i) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 다각형 튜브상 중공부(Tb)의 내부에 위치하여 다각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T); (ii) 상기 방사튜브(T) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 하나의 방사용액을 저장하는 제1방사용액 저장조(R1); (iii) 상기 제1방사용액 저장조(R1) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 나머지 하나의 방사용액을 저장하는 제2방사용액 저장조(R2); (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제1방사용액 공급튜브(H1); 및 (v) 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제2방사용액 공급튜브(H2)를 포함한다.Spinning apparatus for producing a two-component side-by-side composite nanofiber according to the present invention is (i) a spinning tube body (Ta) having one form selected from cylindrical and conical, as shown in Figure 1 and 2, the spinning Polygonal tube-shaped hollow portion Tb formed in the longitudinal direction of the radiation tube body Ta and inside the tube body Ta and polygonal tube-shaped hollow portion Tb contacted with the radiation tube body Ta. While connecting the corners of the polygonal tube-shaped hollow portion (Tb) along the longitudinal direction of the polygonal tube-shaped hollow portion (Tb) located in the interior space of the polygonal tube-shaped hollow portion (Tb) divided into several sections Spinning tube (T) consisting of the main solution separation plate (Tc); (ii) a first one disposed at the bottom of the spinning tube (T) and having one of cylindrical and conical shapes and storing one spinning solution of two spinning solutions supplied into the spinning tube (T); Spinning solution reservoir (R1); (iii) located at the bottom of the first spinning solution reservoir (R1), having one form selected from cylindrical and conical, and the other spinning solution of the spinning solution of the two components supplied into the spinning tube (T) A second release liquid storage tank (R2) for storing; (iv) two installed in the first spinning fluid storage tank R1 along the longitudinal direction of the first spinning fluid storage tank R1 and having an upper end communicating with the polygonal tubular hollow portion Tb; The first first spinning solution supply tube (H1); And (v) 2 which is provided inside the second spinning solution storage tank R2 along the longitudinal direction of the second spinning solution storage tank R2 and whose upper end portion communicates with the polygonal tubular hollow portion Tb. And at least two second spinning solution feed tubes (H2).
상기 제1방사용액 공급튜브(H1)와 제2방사용액 공급튜브(H2)들은 용액 분리판(Tc)에 의해 구획되는 다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들과 교호로 연통하고 있다.The first spinning solution supply tube H1 and the second spinning solution supply tube H2 alternate with the partition regions T1 and T2 of the polygonal tubular hollow portion Tb, which are partitioned by the solution separation plate Tc. Communicating with
방사튜브 본체(Ta)와 맞닿은 다각형 튜브상 중공부(Tb)의 모서리 부분에서 2종류의 방사용액이 만나서 사이드 바이 사이드형 2성분 복합나노 섬유가 형성되기 위해서는 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 개수는 짝수로 하여야 한다.In order to form the side-by-side bicomponent composite nanofibers at the corners of the polygonal tubular hollow portion Tb, which is in contact with the spinning tube body Ta, to form a side-by-side type bicomponent composite nanofiber, the spinning tube body Ta is in contact with the spinning tube body Ta. The number of corners of the polygonal tubular hollow (Tb) shall be even.
상기 방사튜브(T)와 제1방사용액 저장조(R1) 및 제2방사용액 저장조(R2)는 일체를 이루도록 형성하거나 서로 분리되게 형성될 수 있다. 일체로 형성된 경우에는 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하는 방사공정 중 방사튜브(T)와 함께 제1방사용액 저장조(R1) 및 제2방사용액 저장조(R1)도 회전하게 되고, 서로 분리되게 형성된 경우에는 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하는 방사공정 중 방사튜브(T)만 회전하게 되고 제1방사용액 저장조(R1) 및 제2방사용액 저장조는 회전하지 않게 할 수도 있다.The spinning tube (T), the first spinning solution reservoir (R1) and the second spinning solution reservoir (R2) may be formed integrally or separated from each other. When formed integrally, the first spinning solution reservoir R1 and the second spinning solution storage tank R1 are rotated together with the spinning tube T during the spinning process for manufacturing the side-by-side bicomponent composite nanofibers. When formed separately, only the spinning tube T is rotated during the spinning process of manufacturing the side by side type bicomponent composite nanofibers, and the first spinning solution reservoir R1 and the second spinning solution storage tank may not be rotated. .
다음으로는, 본 발명에 따른 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법을 살펴보면, 도 1에 도시된 바와 같이 (i) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 다각형 튜브상 중공부(Tb)의 내부에 위치하여 다각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T)를 회전시켜 주면서 전압발생장치(2)로 상기 방사튜브(T)와 상기 방사튜브(T) 상부에 위치하는 컬렉터(1)에 고전압을 걸어 준 다음, (ii) 제1방사용액(방사용액 A) 공급용 펌프(P1)와 제1방사용액(방사용액 A) 공급용 튜브(S1)를 이용하여 제1방사용액(방사용액 A)을 상기 방사튜브(T) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 하나의 방사용액을 저장하는 제1방사용액 저장조(R1) 내로 공급함과 동시에, (iii) 제2방사용액(방사용액 B) 공급용 펌프(P2)와 제2방사용액(방사용액 B) 공급용 튜브(S2)를 이용하여 제2방사용액(방사용액B)을 상기 제1방사용액 저장조(R1) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 나머지 하나의 방사용액을 저장하는 제2방사용액 저장조(R2) 내로 공급한 다음, (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제1방사용액 공급튜브(H1) 및 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제2방사용액 공급튜브(H2)를 통해 제1방사용액 저장조(R1) 내에 저장된 제1방사용액(방사용액 A)과 제2방사용액 저장조(R2) 내에 저장된 제2방사용액(방사용액 B)를 용액 분리판(Tc)에 의해 구획되는 다각형 튜브상 중공부(Tc)의 구획영역(T1, T2)에 교호로 공급한 다음, (v) 다각형 튜브상 중공부(Tc)의 구획영역(T1, T2) 내로 공급된 제1방사용액(방사용액 A)와 제2방사용액(방사용액 B)를 원심력과 전기력을 이용하여 다각형 튜브상 중공부(Tb)의 모서리 부분을 통해 전압발생장치(2)에 의해 고전압이 걸려 있는 컬렉터(1) 방향으로 방사하여 사이드 바이 사이드형 2성분 복합 나노섬유를 제조한다.Next, looking at the side-by-side bicomponent composite nanofiber manufacturing method according to the present invention, as shown in Figure 1, (i) a spinning tube body (Ta) having one form selected from cylindrical and conical A polygonal tube-shaped hollow portion Tb formed in the longitudinal direction of the radiation tube body Ta and a polygonal tube-shaped hollow portion abutting with the radiation tube body Ta are formed inside the radiating tube body Ta. The inner space of the polygonal tubular hollow part Tb is divided into several sections by connecting the edges of Tb diagonally and being located inside the polygonal tubular hollow part Tb along the longitudinal direction of the polygonal tubular hollow part Tb. The collector (1) located above the radiation tube (T) and the radiation tube (T) with the voltage generator (2) while rotating the spinning tube (T) consisting of the solution separation plate (Tc) partitioned by ) And (ii) The first spinning liquid (spinning liquid A) is discharged to the bottom of the spinning tube (T) by using the first spinning liquid (spinning liquid A) supplying pump (P1) and the first spinning liquid (spinning liquid A) supplying tube (S1). Located in, and having a form selected from the cylindrical and conical, and feeding into the first spinning solution storage tank (R1) for storing one spinning solution of the spinning solution of two components supplied into the spinning tube (T) and (iii) using the pump (P2) for supplying the second spinning liquid (spinning liquid B) and the second spinning liquid (spinning liquid B) and the tube S2 for supplying the second spinning liquid (spinning liquid B). Located in the bottom of the one-use liquid storage tank (R1), the second chamber having a shape selected from the cylindrical and conical shape, and storing the other one of the spinning solution of the two components of the spinning solution supplied into the spinning tube (T) After supplying into the used liquid storage tank (R2), and (iv) the path of the first spinning liquid storage tank (R1) At least two first spinning solution supply tubes H1 and the second installed in the first spinning solution storage tank R1 and having an upper end portion communicating with the polygonal tubular hollow portion Tb along the direction; Supply at least two second spinning solution installed in the second spinning solution storage tank R2 along the longitudinal direction of the spinning solution storage tank R2 and having an upper end communicating with the polygonal tubular hollow portion Tb. Through the tube (H2), the first spinning liquid (spinning liquid A) stored in the first spinning liquid storage tank (R1) and the second spinning liquid stored in the second spinning liquid storage tank (R2) (spinning liquid B) are separated into a solution separation plate ( Alternately feed into the compartments T1, T2 of the polygonal tubular hollow part Tc partitioned by Tc), and then (v) into the compartments T1, T2 of the polygonal tubular hollow part Tc. Polygonal tube by using centrifugal force and electric force The side by-side type bicomponent composite nanofibers are produced by spinning in the direction of the collector 1 in which the high voltage is applied by the voltage generator 2 through the corner portion of the upper hollow portion Tb.
본 발명에서는 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 인접 좌측에 위치하는 다각형 튜브상 중공부(Tb)의 구획영역 면적과 상기 다각형 튜브상 중공부(Tb)의 모서리 인접 우측에 위치하는 다각형 튜브상 중공부(Tb)의 구획영역 면적을 도 3과 같이 서로 동일하게 하여 도 4에 도시된 바와 같이 단면 상에 방사용액 A로 이루어진 A성분(NA)과 방사용액 B로 이루어진 B성분(NB)이 동일한 면적으로 배열된 정규 사이드 바이 사이드형 2성분 복합 나노섬유(NC)를 제조할 수도 있고, 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 인접 좌측에 위치하는 다각형 튜브상 중공부(Tb)의 구획영역 면적과 상기 다각형 튜브상 중공부(Tb)의 모서리 인접 우측에 위치하는 다각형 튜브상 중공부(Tb)의 구획영역 면적을 도 5와 같이 서로 상이하게 하여 도 6에 도시된 바와 같이 단면 상에 방사용액 A로 이루어진 A성분(NA)과 방사용액 B로 이루어진 B성분(NB)이 서로 상이한 면적으로 배열된 편심형 사이드 바이 사이드형 2성분 복합 나노섬유(NC)를 제조할 수도 있다.In the present invention, the partition area of the polygonal tube-shaped hollow portion Tb located on the left adjacent to the corner of the polygonal tube-shaped hollow portion Tb in contact with the radiation tube body Ta and the polygonal tube-shaped hollow portion Tb. The compartment area of the polygonal tubular hollow portion (Tb) located on the right side adjacent to the corner of the chamber is equal to each other as shown in FIG. 3, and the A component (NA) consisting of the spinning solution A on the cross section as shown in FIG. Orthogonal side-by-side bicomponent composite nanofibers (NC) in which the B component (NB) made of the working liquid B are arranged in the same area may be manufactured, and the polygonal tubular hollow portion in contact with the spinning tube body Ta ( The area of the partitioned area of the polygonal tubular hollow portion Tb located on the left side adjacent to the corner of Tb) and the area of the partitioned area of the polygonal tubular hollow part Tb located on the right adjacent corner of the polygonal tube-shaped hollow portion Tb. As shown in FIG. As shown in Fig. 6, an eccentric side by side type two component in which an A component (NA) consisting of the spinning solution A and a B component (NB) consisting of the spinning solution B are arranged on different cross sections on the cross section. Composite nanofibers (NC) may also be prepared.
다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들 내로 공급되는 제1방사용액(방사용액 A)과 제2방사용액(방사용액 B)들은 서로 고분자 용액이거나, 분자량이 서로 상이한 동종의 고분자 용액이거나, 서로 다른 무기물이 포함된 프리커서 용액일 수 있다.The first spinning solution (spinning solution A) and the second spinning solution (spinning solution B) supplied into the partition regions T1 and T2 of the polygonal tubular hollow part Tb are polymer solutions of the same kind or different molecular weights. It may be a polymer solution of, or may be a precursor solution containing different inorganic materials.
다각형 튜브상 중공부(Tb)의 구획영역 내로 공급되는 제1방사용액(방사용액 A)은 고분자 용액이고, 다각형 튜브상 중공부(Tb)의 구획영역 내로 공급되는 제2방사용액(방사용액 B)은 무기물이 포함된 프리커서 용액일 수도 있다.The first spinning solution (spinning solution A) supplied into the partition region of the polygonal tubular hollow portion Tb is a polymer solution, and the second spinning solution (spinning solution B) supplied into the partition region of the polygonal tubular hollow portion Tb is ) May be a precursor solution containing minerals.
다각형 튜브상 중공부(Tb)의 구획영역 공급되는 제1방사용액(방사용액 A)은 무기물이 포함된 프리커서 용액이고, 다각형 튜브상 중공부(Tb)의 구획영역 내로 공급되는 제2방사용액(방사용액 B)은 고분자 용액일 수도 있다.The first spinning solution supplied in the partition region of the polygonal tubular hollow portion (Tb) (spinning liquid A) is a precursor solution containing an inorganic substance, and the second spinning solution supplied into the partition region of the polygonal tubular hollow portion (Tb). (Spinning liquid B) may be a polymer solution.
본 발명에서는 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 부분이 용액 분리판(Tc)에 의해 2개 영역으로 구획되어 있기 때문에 상기 모서리 부분에서 제1방사용액(방사용액 A)과 제2방사용액(방사용액 B)가 방사될 때까지 상기 방사용액들 혼합되는 것을 효과적으로 방지할 수 있고, 그로 인해 상기 방사용액들이 혼합되면서 고화되어 섬유형성능이 저하되는 종래의 문제점을 효과적으로 해결할 수 있게 된다.In the present invention, since the corner portion of the polygonal tubular hollow portion Tb in contact with the spinning tube body Ta is divided into two regions by the solution separation plate Tc, the first spinning solution ( Conventional problem that the spinning solution A) and the second spinning solution (spinning solution B) can be effectively prevented from being mixed until the spinning solution is spun off, whereby the spinning solution is solidified while being mixed and the fiber forming ability is lowered. Can effectively solve the problem.
이하, 실시예들을 통하여 본 발명을 보다 구체적으로 살펴본다.Hereinafter, the present invention will be described in more detail with reference to the following examples.
그러나, 본 발명은 하기 실시예들에 의해 보호범위가 한정되는 것은 아니다.However, the present invention is not limited by the following examples.
실시예Example 1 One
폴리비닐알코올 고분자로 용매인 물에 용해하여 고형분이 18중량%인 폴리비닐알코올 용액(제1방사용액 / 방사용액 A)을 제조하였다.The polyvinyl alcohol polymer was dissolved in water as a solvent to prepare a polyvinyl alcohol solution (first spinning solution / spinning solution A) having a solid content of 18% by weight.
한편, 폴리아크릴로니트릴을 용매인 디메틸포름아미드에 용해하여 고형분이 12중량%인 폴리아크릴로니트릴 용액(제2방사용액 / 방사용액 B)를 제조하였다.Meanwhile, polyacrylonitrile was dissolved in dimethylformamide as a solvent to prepare a polyacrylonitrile solution (second spinning solution / spinning solution B) having a solid content of 12% by weight.
다음으로는, 도 1에 도시된 바와 같이 (i) 외경이 48㎜이고 길이가 8㎜인 원통형인 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 6각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 6각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 6각형 튜브상 중공부(Tb)의 내부에 위치하여 6각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T)를 350rpm으로 회전시켜 주면서 전압발생장치(2)로 상기 방사튜브(T)와 상기 방사튜브(T) 상부에 위치하는 컬렉터(1)에 40kV의 전압을 걸어 준 다음, (ii) 제1방사용액(방사용액 A) 공급용 펌프(P1)와 제1방사용액(방사용액 A) 공급용 튜브(S1)를 이용하여 제1방사용액(방사용액 A)을 상기 방사튜브(T) 하단에 위치하는 원통형 구조의 제1방사용액 저장조(R1) 내로 분당 0.15cc로 공급함과 동시에, (iii) 제2방사용액(방사용액 B) 공급용 펌프(P2)와 제2방사용액(방사용액 B) 공급용 튜브(S2)를 이용하여 제2방사용액(방사용액B)을 상기 제1방사용액 저장조(R1) 하단에 위치하는 원통형 구조의 제2방사용액 저장조(R2) 내로 분당 0.15cc로 공급한 다음, (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 6각형 튜브상 중공부(Tb)와 연통하고 있는 3개의 제1방사용액 공급튜브(H1) 및 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 3개의 제2방사용액 공급튜브(H2)를 통해 제1방사용액 저장조(R1) 내에 저장된 제1방사용액(방사용액 A)과 제2방사용액 저장조(R2) 내에 저장된 제2방사용액(방사용액 B)를 용액 분리판(Tc)에 의해 구획되는 6각형 튜브상 중공부(Tc)의 구획영역(T1, T2)에 교호로 공급한 다음, (v) 6각형 튜브상 중공부(Tc)의 구획영역(T1, T2) 내로 공급된 제1방사용액(방사용액 A)와 제2방사용액(방사용액 B)를 원심력과 전기력을 이용하여 6각형 튜브상 중공부(Tb)의 모서리 부분을 통해 전압발생장치(2)에 의해 고전압이 걸려 있는 컬렉터(1) 방향으로 방사하는 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하였다.Next, as shown in FIG. 1, (i) a cylindrical spinning tube body Ta having an outer diameter of 48 mm and a length of 8 mm, and the spinning tube body Ta inside the spinning tube body Ta. Polygonal tube-shaped hollow portion while diagonally connecting the corners of the hexagonal tubular hollow portion (Tb) formed in the longitudinal direction of the hexagonal tubular hollow portion (Tb) abutting with the radiating tube body (Ta) ( Located in the hexagonal tubular hollow portion (Tb) along the longitudinal direction of the Tb) consisting of solution separation plates (Tc) for partitioning the inner space of the hexagonal tube-shaped hollow portion (Tb) into several sections While rotating the spinning tube (T) at 350rpm, the voltage generator (2) is applied a voltage of 40kV to the radiation tube (T) and the collector (1) located above the radiation tube (T), (ii ) Using the pump (P1) for supplying the first spinning liquid (spinning liquid A) and the tube (S1) for supplying the first spinning liquid (spinning liquid A) While supplying one spinning solution (spinning liquid A) at a rate of 0.15cc per minute into the first spinning solution storage tank R1 having a cylindrical structure located at the bottom of the spinning tube T, (iii) the second spinning liquid (spinning liquid B) ) A cylindrical shape in which a second spinning fluid (spinning fluid B) is positioned at the bottom of the first spinning fluid storage tank R1 by using a supply pump P2 and a second spinning fluid (spinning fluid B) and a tubing S2. It is supplied at 0.15cc per minute into the second spinning solution storage tank (R2) of the structure, and (iv) is installed inside the first spinning solution storage tank (R1) along the longitudinal direction of the first spinning solution storage tank (R1) And the second spinning fluid storage tank along the longitudinal direction of the three first spinning fluid supply tubes H1 and the second spinning fluid storage tank R2 whose upper end portions communicate with the hexagonal tubular hollow portion Tb. Three second spinning uses provided in the inside of (R2) and having an upper end communicating with the polygonal tube-shaped hollow part Tb. Separating solution of the first spinning liquid (spinning liquid A) stored in the first spinning liquid storage tank (R1) and the second spinning liquid stored in the second spinning liquid storage tank (R2) through the supply tube (H2) Alternately supplied to the partition areas T1 and T2 of the hexagonal tubular hollow part Tc partitioned by (Tc), and then (v) the partition areas T1 and T2 of the hexagonal tubular hollow part Tc. 2) The voltage generating device (2) through the corner portion of the hexagonal tube-shaped hollow part (Tb) by using the centrifugal force and the electric force of the first spinning liquid (spinning liquid A) and the second spinning liquid (spinning liquid B) supplied into The side-by-side type bicomponent composite nanofibers were produced by spinning in the direction of the collector 1 under high voltage.
이때, 컬렉터(1)와 방사튜브(2) 간의 거리는 35㎝로 하였고, 제1방사용액 공급튜브(H1) 및 제2방사용액 공급튜브(H2) 각각의 직경은 4㎜하였고, 상기 제1방사용액 저장조(R1)와 제2방사용액 저장조(R2)들로 각각 350rpm으로 회전시켰다.At this time, the distance between the collector (1) and the spinning tube (2) was 35cm, the diameter of each of the first spinning solution supply tube (H1) and the second spinning solution supply tube (H2) was 4mm, the first chamber The liquid bath (R1) and the second spinning solution tank (R2) were each rotated at 350 rpm.
상기와 같이 제조된 사이드 바이 사이드형 2성분 복합 나노섬유의 주사전자현미경사진은 도 8과 같았고, 상기와 같이 제조된 사이드 바이 사이드형 2성분 복합 나노섬유의 단면확대 사진은 도 9와 같았다.Scanning electron micrographs of the side-by-side bicomponent composite nanofibers prepared as described above were as shown in FIG. 8, and the enlarged cross-sectional photograph of the side-by-side bicomponent composite nanofibers prepared as described above was illustrated in FIG. 9.
실시예Example 2 2
폴리메틸메타아크릴레이트를 용매인 디메틸포름아미드에 용해하여 고형분이 10중량%인 폴리메틸메타아크릴레이트 용액(제1방사용액 / 방사용액 A)을 제조하였다.Polymethyl methacrylate was dissolved in dimethylformamide as a solvent to prepare a polymethyl methacrylate solution (first spinning solution / spinning solution A) having a solid content of 10% by weight.
폴리아크릴로니트릴을 용매인 디메틸포름아미드에 용해하여 고형분이 12중량%인 폴리아크릴로니트릴 용액(제2방사용액 / 방사용액 B)을 제조하였다.Polyacrylonitrile was dissolved in dimethylformamide as a solvent to prepare a polyacrylonitrile solution (second spinning solution / spinning solution B) having a solid content of 12% by weight.
다음으로는 (i) 외경이 56㎜이고 길이가 8㎜인 원통형의 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 8각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 8각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 8각형 튜브상 중공부(Tb)의 길이방향을 따라 8각형 튜브상 중공부(Tb)의 내부에 위치하여 8각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T)를 350rpm 회전시켜 주면서 전압발생장치(2)로 상기 방사튜브(T)와 상기 방사튜브(T) 상부에 위치하는 컬렉터(1)에 40kV의 전압을 걸어 준 다음, (ii) 제1방사용액(방사용액 A) 공급용 펌프(P1)와 제1방사용액(방사용액 A) 공급용 튜브(S1)를 이용하여 제1방사용액(방사용액 A)을 상기 방사튜브(T) 하단에 위치하는 원통형 구조의 제1방사용액 저장조(R1) 내로 분당 0.166cc로 공급함과 동시에, (iii) 제2방사용액(방사용액 B) 공급용 펌프(P2)와 제2방사용액(방사용액 B) 공급용 튜브(S2)를 이용하여 제2방사용액(방사용액B)을 상기 제1방사용액 저장조(R1) 하단에 위치하는 원통형 구조의 제2방사용액 저장조(R2) 내로 분당 0.2cc로 공급한 다음, (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 8각형 튜브상 중공부(Tb)와 연통하고 있는 4개의 제1방사용액 공급튜브(H1) 및 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 8각형 튜브상 중공부(Tb)와 연통하고 있는 4개의 제2방사용액 공급튜브(H2)를 통해 제1방사용액 저장조(R1) 내에 저장된 제1방사용액(방사용액 A)과 제2방사용액 저장조(R2) 내에 저장된 제2방사용액(방사용액 B)를 용액 분리판(Tc)에 의해 구획되는 8각형 튜브상 중공부(Tc)의 구획영역(T1, T2)에 교호로 공급한 다음, (v) 8각형 튜브상 중공부(Tc)의 구획영역(T1, T2) 내로 공급된 제1방사용액(방사용액 A)와 제2방사용액(방사용액 B)를 원심력과 전기력을 이용하여 8각형 튜브상 중공부(Tb)의 모서리 부분을 통해 전압발생장치(2)에 의해 고전압이 걸려 있는 컬렉터(1) 방향으로 방사하여 하는 사이드 바이 사이드형 2성분 복합 나노섬유를 제조하였다.Next, (i) a cylindrical spinning tube body Ta having an outer diameter of 56 mm and a length of 8 mm, and formed inside the spinning tube body Ta along the longitudinal direction of the spinning tube body Ta. Along the longitudinal direction of the octagonal tubular hollow portion Tb while connecting the corners of the octagonal tubular hollow portion Tb and the octagonal tubular hollow portion Tb abutting against the radiating tube body Ta. 350rpm spinning tube (T) consisting of solution separation plate (Tc) is located inside the octagonal tube-shaped hollow portion (Tb) partitioning the internal space of the octagonal tube-shaped hollow portion (Tb) into several sections While rotating, applying a voltage of 40 kV to the radiation tube (T) and the collector (1) located above the radiation tube (T) with the voltage generator (2), and then (ii) the first spinning solution (spinning solution) A) Using the pump P1 for supply and the first spinning liquid (spinning liquid A), the first spinning liquid (spinning liquid A) may be obtained by using the supply tube S1. While supplying 0.166cc per minute into the first spinning solution reservoir R1 having a cylindrical structure located at the bottom of the spinning tube T, (iii) the second spinning solution (spinning solution B) and the pump P2 for supplying A second spinning solution storage tank (R2) having a cylindrical structure in which a second spinning solution (a spinning solution B) is positioned below the first spinning solution storage tank (R1) using a spinning solution (spinning solution B) supplying tube (S2). 0.2cc per minute into the container, and (iv) the inside of the first spinning fluid storage tank R1 is installed along the longitudinal direction of the first spinning fluid storage tank R1, and an upper end thereof is hollow in the octagonal tube shape. It is provided in the inside of the said 2nd spinning liquid storage tank R2 along the longitudinal direction of the four 1st spinning liquid supply tube H1 and the 2nd spinning liquid storage tank R2 which communicate with the part Tb, The first spinning use is carried out through four second spinning solution supply tubes (H2) whose upper end portion communicates with the octagonal tubular hollow portion (Tb). An octagonal tube shape in which the first spinning liquid (spinning liquid A) stored in the storage tank R1 and the second spinning liquid (spinning liquid B) stored in the second spinning liquid storage tank R2 are partitioned by the solution separation plate Tc. (V) a first spinning solution supplied in the compartments T1 and T2 of the hollow part Tc and then into the compartments T1 and T2 of the octagonal tubular hollow part Tc A) and the second spinning liquid (spinning liquid B) are directed to the collector 1 in which high voltage is applied by the voltage generator 2 through the corner portion of the octagonal tube-shaped hollow part Tb by using centrifugal force and electric force. Side-by-side bicomponent composite nanofibers were prepared by spinning.
이때, 컬렉터(1)와 방사튜브(2) 간의 거리는 35㎝로 하였고, 제1방사용액 공급튜브(H1) 및 제2방사용액 공급튜브(H2) 각각의 직경은 4㎜하였고, 상기 제1방사용액 저장조(R1)와 제2방사용액 저장조(R2)들로 각각 350rpm으로 회전시켰다.At this time, the distance between the collector (1) and the spinning tube (2) was 35cm, the diameter of each of the first spinning solution supply tube (H1) and the second spinning solution supply tube (H2) was 4mm, the first chamber The liquid bath (R1) and the second spinning solution tank (R2) were each rotated at 350 rpm.
상기와 같이 제조된 사이드 바이 사이드형 2성분 복합 나노섬유의 주사전자현미경사진은 도 8과 같았고, 상기와 같이 제조된 사이드 바이 사이드형 2성분 복합 나노섬유의 단면확대 사진은 도 10과 같았다.Scanning electron micrographs of the side-by-side bicomponent composite nanofibers prepared as described above were as shown in FIG. 8, and the enlarged cross-sectional photograph of the side-by-side bicomponent composite nanofibers prepared as described above was illustrated in FIG. 10.
* 부호의 설명 ** Explanation of Codes *
1 : 컬렉터1: collector
2 : 전압발생장치2: voltage generator
T : 방사튜브T: Spinning Tube
Ta : 방사튜브 본체Ta: Spinning tube body
Tb : 방사튜브의 다각형 튜브상 중공부Tb is the hollow tube-shaped hollow part of the spinning tube
Tc : 방사튜브의 다각형 튜브상 중공부 내에 위치하는 용액 분리판.Tc: Solution separation plate located in the hollow portion on the polygonal tube of the spinning tube.
T1 : 방사튜브의 다각형 튜브상 중공부 중에서 방사용액 A가 공급되는 구획영역T1: Division area in which spinning solution A is supplied in the hollow portion on the polygonal tube of the spinning tube
T2 : 방사튜브의 다각형 튜브상 중공부 중에서 방사용액 B가 공급되는 구획 영역T2: Division area in which the spinning solution B is supplied among the hollow portions on the polygonal tube of the spinning tube
H1 : 방사용액 A를 방사튜브(T)에 공급하는 제1방사용액 공급 튜브H1: First spinning solution supply tube for supplying spinning solution A to spinning tube (T)
H2 : 방사용액 B를 방사튜브(T)에 공급하는 제2방사용액 공급 튜브H2: Second spinning solution supply tube for supplying spinning solution B to spinning tube (T)
R1 : 방사용액 A를 방사튜브(T)에 일정량씩 공급하기 위한 제1방사용액 저장조R1: First spinning solution storage tank for supplying spinning solution A to the spinning tube T by a fixed amount
R2 : 방사용액 B를 방사튜브(T)에 일정량씩 공급하기 위한 제2방사용액 저장조R2: second spinning solution reservoir for supplying spinning solution B to the spinning tube (T) by a predetermined amount
S1 : 방사용액 A를 제1방사용액 저장조(R1)으로 공급하는 튜브S1: Tube supplying the spinning solution A to the first spinning solution reservoir R1
S2 : 방사용액 B를 제2방사용액 저장조(R2)로 공급하는 튜브S2: Tube supplying the spinning solution B to the second spinning solution reservoir (R2)
P1 : 방사용액 A 공급용 펌프P1: Pump for spinning solution A supply
P2 : 방사용액 B 공급용 펌프P2: Pump for spinning solution B supply
Nc : 사이드 바이 사이드형 2성분 복합 나노섬유Nc: Side by Side Bicomponent Composite Nanofiber
NA : 사이드 바이 사이드형 2성분 복합 나노섬유 중 A성분 NA: A component in side by side type bicomponent composite nanofiber
NB : 사이드 바이 사이드형 2성분 복합 나노섬유 중 B성분 NB: B component in side by side type bicomponent composite nanofiber
본 발명은 고품질의 2성분 복합 나노섬유를 높은 생산성으로 제조하는데 사용될 수 있다.The present invention can be used to produce high quality bicomponent composite nanofibers with high productivity.

Claims (11)

  1. (i) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 다각형 튜브상 중공부(Tb)의 내부에 위치하여 다각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T);(i) a spinning tube body Ta having one of cylindrical and conical shapes, and a polygonal tubular hollow formed along the longitudinal direction of the spinning tube main Ta inside the spinning tube main Ta. Polygonal tubular hollow part Tb along the longitudinal direction of polygonal tubular hollow part Tb diagonally connecting the edges of the polygonal tubular hollow part Tb which is in contact with the part Tb and the radiating tube main body Ta. Spinning tube (T) consisting of a solution separation plate (Tc) located in the inside of the polygonal tube-shaped hollow portion (Tb) partitioning the internal space in several sections;
    (ii) 상기 방사튜브(T) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 하나의 방사용액을 저장하는 제1방사용액 저장조(R1);(ii) a first one disposed at the bottom of the spinning tube (T) and having one of cylindrical and conical shapes and storing one spinning solution of two spinning solutions supplied into the spinning tube (T); Spinning solution reservoir (R1);
    (iii) 상기 제1방사용액 저장조(R1) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 공급되는 2개 성분의 방사용액 중 나머지 하나의 방사용액을 저장하는 제2방사용액 저장조(R2);(iii) located at the bottom of the first spinning solution reservoir (R1), having one form selected from cylindrical and conical, and the other spinning solution of the spinning solution of the two components supplied into the spinning tube (T) A second release liquid storage tank (R2) for storing;
    (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제1방사용액 공급튜브(H1); 및 (iv) two installed in the first spinning fluid storage tank R1 along the longitudinal direction of the first spinning fluid storage tank R1 and having an upper end communicating with the polygonal tubular hollow portion Tb; The first first spinning solution supply tube (H1); And
    (v) 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제2방사용액 공급튜브(H2); 를 포함하며, (v) two inside the second spinning fluid storage tank R2 along the longitudinal direction of the second spinning fluid storage tank R2 and having an upper end communicating with the polygonal tubular hollow portion Tb; The second spinning solution supply tube (H2); Including;
    상기 제1방사용액 공급튜브(H1)와 제2방사용액 공급튜브(H2)들은 용액 분리판(Tc)에 의해 구획되는 다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들과 교호로 연통하고 있는 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치.The first spinning solution supply tube H1 and the second spinning solution supply tube H2 alternate with the partition regions T1 and T2 of the polygonal tubular hollow portion Tb, which are partitioned by the solution separation plate Tc. Spinning device for the production of side-by-side bicomponent composite nanofiber, characterized in that it is in communication with.
  2. 제1항에 있어서, 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 개수는 짝수인 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치.The spinneret according to claim 1, wherein the number of corners of the polygonal tubular hollow portion (Tb) in contact with the spinning tube body (Ta) is an even number.
  3. 제1항에 있어서, 상기 방사튜브(T)와 제1방사용액 저장조(R1) 및 제2방사용액 저장조(R2)는 일체를 이루도록 형성되어 있는 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치.The side-by-side type bicomponent composite nanofiber according to claim 1, wherein the spinning tube (T), the first spinning solution storage tank (R1), and the second spinning solution storage tank (R2) are formed to be integral. Spinning apparatus for manufacturing.
  4. 제1항에 있어서, 상기 방사튜브(T)와 제1방사용액 저장조(R1) 및 제2방사용액 저장조(R2)는 분리되게 형성되어 있는 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치.The method of claim 1, wherein the spinning tube (T), the first spinning solution storage tank (R1) and the second spinning solution storage tank (R2) are formed separately from each other for side-by-side type two-component composite nanofiber manufacturing Spinning device.
  5. (i) 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하는 방사튜브 본체(Ta), 상기 방사튜브 본체(Ta)의 내부에 상기 방사튜브 본체(Ta)의 길이방향을 따라 형성되어 있는 다각형 튜브상 중공부(Tb) 및 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리들을 대각으로 연결하면서 다각형 튜브상 중공부(Tb)의 길이방향을 따라 다각형 튜브상 중공부(Tb)의 내부에 위치하여 다각형 튜브상 중공부(Tb)의 내부 공간을 여러 구간으로 구획시켜 주는 용액분리판(Tc)들로 구성되는 방사튜브(T)를 회전시켜 주면서 전압발생장치(2)로 상기 방사튜브(T)와 상기 방사튜브(T) 상부에 위치하는 컬렉터(1)에 고전압을 걸어 준 다음, (ii) 제1방사용액(방사용액 A) 공급용 펌프(P1)와 제1방사용액(방사용액 A) 공급용 튜브(S1)를 이용하여 제1방사용액(방사용액 A)을 상기 방사튜브(T) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 2개 성분의 방사용액 중 하나의 방사용액을 저장하는 제1방사용액 저장조(R1) 내로 공급함과 동시에, (iii) 제2방사용액(방사용액 B) 공급용 펌프(P2)와 제2방사용액(방사용액 B) 공급용 튜브(S2)를 이용하여 제2방사용액(방사용액B)을 상기 제1방사용액 저장조(R1) 하단에 위치하고, 원통형 및 원추형 중에서 선택된 하나의 형태를 구비하고, 상기 방사튜브(T) 내로 2개 성분의 방사용액 중 나머지 하나의 방사용액을 저장하는 제2방사용액 저장조(R2) 내로 공급한 다음, (iv) 상기 제1방사용액 저장조(R1)의 길이방향을 따라 상기 제1방사용액 저장조(R1)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제1방사용액 공급튜브(H1) 및 상기 제2방사용액 저장조(R2)의 길이방향을 따라 상기 제2방사용액 저장조(R2)의 내부에 설치되어 있고, 상단부가 상기 다각형 튜브상 중공부(Tb)와 연통하고 있는 2개 이상의 제2방사용액 공급튜브(H2)를 통해 제1방사용액 저장조(R1) 내에 저장된 제1방사용액(방사용액 A)과 제2방사용액 저장조(R2) 내에 저장된 제2방사용액(방사용액 B)를 용액 분리판(Tc)에 의해 구획되는 다각형 튜브상 중공부(Tc)의 구획영역(T1, T2)에 교호로 공급한 다음, (v) 다각형 튜브상 중공부(Tc)의 구획영역(T1, T2) 내로 공급된 제1방사용액(방사용액 A)와 제2방사용액(방사용액 B)를 원심력과 전기력을 이용하여 다각형 튜브상 중공부(Tb)의 모서리 부분을 통해 전압발생장치(2)에 의해 고전압이 걸려 있는 컬렉터(1) 방향으로 방사하는 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.(i) a spinning tube body Ta having one of cylindrical and conical shapes, and a polygonal tubular hollow formed along the longitudinal direction of the spinning tube main Ta inside the spinning tube main Ta. Polygonal tubular hollow part Tb along the longitudinal direction of polygonal tubular hollow part Tb diagonally connecting the edges of the polygonal tubular hollow part Tb which is in contact with the part Tb and the radiating tube main body Ta. ) To the voltage generator (2) while rotating the spinning tube (T) consisting of the solution separation plate (Tc) is located in the interior of the polygonal tube-shaped hollow portion (Tb) partitioning the internal space in several sections After applying a high voltage to the spinning tube (T) and the collector (1) located on the top of the spinning tube (T), (ii) the pump (P1) for supplying the first spinning liquid (spinning liquid A) and the first chamber Using liquid (Spinning liquid A) Using the supply tube (S1), Located in the bottom of the spinning tube (T), having a shape selected from the cylindrical and conical, the first spinning solution storage tank (R1) for storing one spinning solution of the spinning solution of two components into the spinning tube (T) ) And at the same time, (iii) the second spinning liquid (spinning liquid B) using the second pump (spinning liquid B) and the second spinning liquid (spinning liquid B) using the feed tube (S2). B) is located at the bottom of the first spinning solution storage tank (R1), having a shape selected from cylindrical and conical, and storing the other spinning solution of the spinning solution of the two components into the spinning tube (T) After supplying into the second spinning liquid storage tank (R2), (iv) is installed inside the first spinning liquid storage tank (R1) along the longitudinal direction of the first spinning liquid storage tank (R1), the upper end is the polygon Two or more first communicating with the tubular hollow portion Tb; It is installed inside the second room-use liquid storage tank R2 along the length direction of the use liquid supply tube H1 and the second room-use liquid storage tank R2, and an upper end portion communicates with the polygonal tube-shaped hollow portion Tb. The first release liquid stored in the first release liquid storage tank R1 (the release liquid A) and the second release liquid stored in the second release liquid storage tank R2 through the two or more second release liquid supply tubes H2; (Spinning liquid B) was alternately supplied to the partition areas T1 and T2 of the polygonal tubular hollow portion Tc partitioned by the solution separator plate Tc, and then (v) the polygonal tubular hollow portion Tc. The first and second spinning liquids (spinning liquid A) and the second spinning liquid (spinning liquid B) supplied into the partition areas T1 and T2 of the polyvinyl tubular hollow part Tb are formed by using centrifugal force and electric force. The side bar characterized by radiating toward the collector 1 in which the high voltage is applied by the voltage generator 2. The method of producing a composite nano-fiber-side type bicomponent.
  6. 제5항에 있어서, 방사튜브 본체(Ta)와 맞닿아 있는 다각형 튜브상 중공부(Tb)의 모서리 인접 좌측에 위치하는 다각형 튜브상 중공부(Tb)의 구획영역 면적과 상기 다각형 튜브상 중공부(Tb)의 모서리 인접 우측에 위치하는 다각형 튜브상 중공부(Tb)의 구획영역 면적을 서로 상이하게 형성하는 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.7. The polygonal tube-shaped hollow portion Tb and the polygonal tube-shaped hollow portion Tb which are located on the left side adjacent to the corner of the polygonal tube-shaped hollow portion Tb in contact with the radiation tube body Ta. A method for producing a side by side type bicomponent composite nanofiber, characterized in that the partition area areas of the polygonal tubular hollow portion (Tb) located on the right side adjacent to the corner of (Tb) are different from each other.
  7. 제5항에 있어서, 다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들 내로 공급되는 제1방사용액(방사용액 A)과 제2방사용액(방사용액 B)들은 서로 다른 고분자 용액인 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.The polymer solution according to claim 5, wherein the first spinning solution (spinning solution A) and the second spinning solution (spinning solution B) supplied into the partition regions T1 and T2 of the polygonal tubular hollow part Tb are different from each other. Method for producing a side-by-side bicomponent composite nanofiber, characterized in that.
  8. 제5항에 있어서, 다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들 내로 공급되는 제1방사용액(방사용액 A)과 제2방사용액(방사용액 B)들은 분자량이 서로 상이한 동종의 고분자용액인 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.The method of claim 5, wherein the first spinning solution (spinning solution A) and the second spinning solution (spinning solution B) supplied into the partition regions T1 and T2 of the polygonal tubular hollow portion Tb have different molecular weights. Method for producing a side-by-side bicomponent composite nanofiber, characterized in that the same type of polymer solution.
  9. 제5항에 있어서, 다각형 튜브상 중공부(Tb)의 구획영역(T1, T2)들 내로 공급되는 제1방사용액(방사용액 A)과 제2방사용액(방사용액 B)들은 서로 다른 무기물이 포함된 프리커서 용액인 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.6. The method according to claim 5, wherein the first spinning fluid (spinning fluid A) and the second spinning fluid (spinning fluid B) supplied into the partition regions T1 and T2 of the polygonal tubular hollow portion Tb are made of different inorganic materials. Method for producing a side-by-side bicomponent composite nanofiber, characterized in that the precursor solution included.
  10. 제5항에 있어서, 다각형 튜브상 중공부(Tb)의 구획영역 내로 공급되는 제1방사용액(방사용액 A)은 고분자 용액이고, 다각형 튜브상 중공부(Tb)의 구획영역 내로 공급되는 제2방사용액(방사용액 B)은 무기물이 포함된 프리커서 용액인 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.6. The first spinning solution (spinning solution A) supplied into the partition region of the polygonal tubular hollow portion Tb is a polymer solution, and the second spraying liquid is supplied into the partition region of the polygonal tubular hollow portion Tb. Spinning solution (spinning solution B) is a method of producing a side-by-side bicomponent composite nanofiber, characterized in that the precursor solution containing an inorganic material.
  11. 제5항에 있어서, 다각형 튜브상 중공부(Tb)의 구획영역 공급되는 제1방사용액(방사용액 A)은 무기물이 포함된 프리커서 용액이고, 다각형 튜브상 중공부(Tb)의 구획영역 내로 공급되는 제2방사용액(방사용액 B)은 고분자 용액인 것을 특징으로 하는 사이드 바이 사이드형 2성분 복합 나노섬유의 제조방법.The partitioning part of the polygonal tubular hollow portion Tb is a first spinning solution (spinning liquid A) supplied as a precursor solution containing an inorganic substance, and into the partitioning region of the polygonal tubular hollow portion Tb. Method for producing a side-by-side bicomponent composite nanofiber, characterized in that the second spinning solution (spinning solution B) supplied is a polymer solution.
PCT/KR2017/004452 2016-11-07 2017-04-26 Spinning device for manufacturing side-by-side-type bicomponent complex nanofiber and method for manufacturing bicomponent complex nanofiber using same WO2018084396A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160147335A KR101855660B1 (en) 2016-11-07 2016-11-07 Spinning device for sdie by side type two-component composited nanofibers and method of manufacturing sdie by side type two-component composited nanofibers thereby
KR10-2016-0147335 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018084396A1 true WO2018084396A1 (en) 2018-05-11

Family

ID=62076936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/004452 WO2018084396A1 (en) 2016-11-07 2017-04-26 Spinning device for manufacturing side-by-side-type bicomponent complex nanofiber and method for manufacturing bicomponent complex nanofiber using same

Country Status (2)

Country Link
KR (1) KR101855660B1 (en)
WO (1) WO2018084396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252229A (en) * 2018-10-26 2019-01-22 大连民族大学 The model turntable of electrospinning fibre jet shaper

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102106268B1 (en) * 2018-10-08 2020-05-06 주식회사 우리나노 Spinning device for side by side type three-component composite nanofibers and method of manufacturing side by side type three-component composite nanofibers thereby
KR102077722B1 (en) * 2018-10-08 2020-02-17 주식회사 우리나노 Spinning device for side by side type multi-component composite nanofibers and method of manufacturing side by side type multi-component composite nanofibers thereby

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245714A (en) * 1997-02-27 1998-09-14 Teijin Ltd Composite spinneret
JP2003313721A (en) * 2002-04-25 2003-11-06 Toray Ind Inc Multi-lobar cross-sectional filament
KR101249643B1 (en) * 2010-03-29 2013-04-01 웅진케미칼 주식회사 Upper distribution plate of spinneret for preparing island-in-the-sea yarns and Spinneret thereof
KR20160000113A (en) * 2014-06-24 2016-01-04 코오롱인더스트리 주식회사 Spinneret of synthetic fiber
KR20160116236A (en) * 2015-03-27 2016-10-07 주식회사 우리나노 Multi-component nanofibers spinning device by centrifugal force and method of manufacturing multi-component nanofibers thereby

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101263296B1 (en) 2012-02-22 2013-05-15 주식회사 우리나노 Electrospinning device comprising cylindrical spinning tube with polygon hollow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10245714A (en) * 1997-02-27 1998-09-14 Teijin Ltd Composite spinneret
JP2003313721A (en) * 2002-04-25 2003-11-06 Toray Ind Inc Multi-lobar cross-sectional filament
KR101249643B1 (en) * 2010-03-29 2013-04-01 웅진케미칼 주식회사 Upper distribution plate of spinneret for preparing island-in-the-sea yarns and Spinneret thereof
KR20160000113A (en) * 2014-06-24 2016-01-04 코오롱인더스트리 주식회사 Spinneret of synthetic fiber
KR20160116236A (en) * 2015-03-27 2016-10-07 주식회사 우리나노 Multi-component nanofibers spinning device by centrifugal force and method of manufacturing multi-component nanofibers thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252229A (en) * 2018-10-26 2019-01-22 大连民族大学 The model turntable of electrospinning fibre jet shaper

Also Published As

Publication number Publication date
KR101855660B1 (en) 2018-05-09

Similar Documents

Publication Publication Date Title
CN101298724B (en) Method for producing continuous high-efficiency nano fibre nonwoven fabric and production device thereof
WO2018084396A1 (en) Spinning device for manufacturing side-by-side-type bicomponent complex nanofiber and method for manufacturing bicomponent complex nanofiber using same
KR101040059B1 (en) An apparatus for manufacturing nano-fiber and the method for manufacturing nano-fiber
WO2018199355A1 (en) Spinning apparatus for producing two-ingredient composite nanofibers, and method for producing two-ingredient composite nanofibers using same
Teo et al. A review on electrospinning design and nanofibre assemblies
KR101816733B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
CN104389037B (en) A kind of nested type spinning body
JP7011131B2 (en) Cyclic electrostatic spinning mechanism and electrostatic spinning device
US20100001438A1 (en) Process for producing microfiber assembly
KR101806317B1 (en) Spinning tube for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
CN109208090B (en) Novel needle-free electrostatic spinning device and spinning method thereof
CN102575385A (en) Electrospinning process and apparatus for aligned fiber production
CN102140701A (en) Porous sprayer electrostatic spinning device for preparing nano fibrofelt and preparation method thereof
CN104928777A (en) Centrifugal spinning equipment for manufacturing composite nano-micron fiber with diversified structures
KR20030093892A (en) Electrospinning apparatus having multiple-nozzle and the method for producing nanofiber by using the same
KR20130085384A (en) Combined spinning nozzle for the manufacture of nanofibrous and microfibrous materials
KR100734181B1 (en) The syringe for dual electrospinng
KR101558213B1 (en) Electrospining tube system for manfacturing nanofiber
KR101806316B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
WO2018199353A1 (en) Spinning tube for producing two-ingredient composite nanofibers, and method for producing two-ingredient composite nanofibers using same
KR101959839B1 (en) Spinning device for two-component composited nanofiber and method of manufacturing two-component composited nanofiber thereby
Vysloužilová et al. Design of coaxial needleless electrospinning electrode with respect to the distribution of electric field
WO2018199354A1 (en) Spinning apparatus for producing two-ingredient composite nanofibers, and method for producing two-ingredient composite nanofibers using same
KR102106268B1 (en) Spinning device for side by side type three-component composite nanofibers and method of manufacturing side by side type three-component composite nanofibers thereby
US10351972B2 (en) Multifunctional spinning device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867833

Country of ref document: EP

Kind code of ref document: A1