WO2018084319A1 - Negative electrode for lithium-ion battery, and lithium-ion battery - Google Patents

Negative electrode for lithium-ion battery, and lithium-ion battery Download PDF

Info

Publication number
WO2018084319A1
WO2018084319A1 PCT/JP2017/040163 JP2017040163W WO2018084319A1 WO 2018084319 A1 WO2018084319 A1 WO 2018084319A1 JP 2017040163 W JP2017040163 W JP 2017040163W WO 2018084319 A1 WO2018084319 A1 WO 2018084319A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
group
ion battery
Prior art date
Application number
PCT/JP2017/040163
Other languages
French (fr)
Japanese (ja)
Inventor
南 和也
勇輔 中嶋
大澤 康彦
雄樹 草地
佐藤 一
赤間 弘
堀江 英明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017213671A external-priority patent/JP7143069B2/en
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201780068741.5A priority Critical patent/CN109923699B/en
Priority to EP17866935.4A priority patent/EP3537513B1/en
Priority to US16/346,707 priority patent/US10930920B2/en
Publication of WO2018084319A1 publication Critical patent/WO2018084319A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/666Composites in the form of mixed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • H01M2300/0022Room temperature molten salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion battery and a lithium ion battery.
  • lithium ion secondary batteries As for lithium ion secondary batteries, various studies have been conducted in order to further improve battery characteristics such as output. For example, as lithium ion secondary batteries capable of increasing capacity, nano-sized oxidation is performed on conductive carbon powder. A battery using a negative electrode active material on which tin particles are supported is known (see JP 2011-253620 A).
  • a thin film is also formed on components other than the electrode active material layer (positive electrode active material layer or negative electrode active material layer), such as separators and current collectors. It is necessary to make it. However, if the separator is made too thin, there is a problem that an internal short circuit is likely to occur due to precipitated lithium, and if the current collector is made too thin, there is a problem that the internal resistance of the battery increases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a negative electrode for a lithium ion battery having high energy density and excellent quick charge characteristics.
  • the present invention is a lithium battery comprising a negative electrode current collector, a negative electrode active material layer formed on the surface of the negative electrode current collector, a nonaqueous electrolyte solution containing an electrolyte containing lithium ions and a nonaqueous solvent.
  • the negative electrode for an ion battery wherein the negative electrode active material layer includes a negative electrode active material and a void, and the void is filled with the non-aqueous electrolyte, and the battery capacity based on the total amount of the negative electrode active material
  • a negative electrode for a lithium ion battery wherein the ratio of the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is 3 to 17%; and
  • the present invention relates to a lithium ion battery.
  • a lithium ion battery includes a lithium ion secondary battery.
  • the present invention relates to a lithium ion battery comprising a negative electrode current collector, a negative electrode active material layer formed on the surface of the negative electrode current collector, a nonaqueous electrolyte solution containing an electrolyte containing lithium ions and a nonaqueous solvent.
  • the negative electrode active material layer includes a negative electrode active material and a void, and the void is filled with the non-aqueous electrolyte, and the battery capacity based on the total amount of the negative electrode active material is A negative electrode for a lithium ion battery, wherein a ratio of a battery capacity based on a total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is 3 to 17%.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”.
  • the problem with rapid charging is the movement rate of lithium ions from the positive electrode to the negative electrode inside the lithium ion battery (also called the diffusion rate), but there is a sufficient amount of lithium ions around the negative electrode active material.
  • the charging reaction when the charging reaction is started, first, lithium ions present around the negative electrode active material are taken into the negative electrode active material. In the case where charging does not end even when lithium ions around the negative electrode active material are taken into the negative electrode active material, it is considered that lithium ions desorbed from the positive electrode are taken into the negative electrode active material and the charging reaction proceeds.
  • the lithium ions existing around the negative electrode active material before the start of charging can respond to rapid charging because the distance between the lithium ions and the negative electrode active material is very close.
  • the diffusion rate of lithium ions is rate-limiting and cannot be used for rapid charging.
  • the non-aqueous electrolyte is filled in the voids present around the negative electrode active material, and the negative electrode active material layer with respect to the battery capacity based on the total amount of the negative electrode active material Since the battery capacity ratio (battery capacity ratio) based on the total amount of lithium ions in the non-aqueous electrolyte present in the battery is 3 to 17%, lithium that can be rapidly charged around the negative electrode active material It can be said that there are enough ions.
  • the ratio of the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is less than 3%, there are not enough lithium ions that can be used for rapid charging around the negative electrode active material. If it exceeds 17%, the rapid charge characteristics deteriorate due to an increase in solution resistance due to the increase in the concentration of the electrolyte and precipitation of lithium salts.
  • the battery capacity ratio is preferably 5 to 17%, more preferably 10 to 17%.
  • the negative electrode active material in the negative electrode for a lithium ion battery of the present invention since a sufficient amount of lithium ions is present around the negative electrode active material in the negative electrode for a lithium ion battery of the present invention, it is not necessary to consider the diffusion rate of lithium ions between the positive electrode and the negative electrode in rapid charging. That is, in the negative electrode for a lithium ion battery of the present invention, even if the energy density is increased by increasing the amount of the negative electrode active material, the diffusion rate of lithium ions between the positive electrode and the negative electrode does not affect the charging rate. Therefore, the quick charge characteristic is not deteriorated.
  • the lithium ion battery using the negative electrode for the lithium ion battery of the present invention can achieve both rapid charging and improved energy density.
  • the battery capacity based on the total amount of the negative electrode active material is a theoretical battery capacity based on the weight of the negative electrode active material constituting the negative electrode active material layer.
  • the theoretical value of the battery capacity refers to that which can withstand repeated charge and discharge, and excludes the initial charge capacity when repeated charge and discharge is difficult due to irreversible reaction.
  • the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer means that all the lithium ions in the non-aqueous electrolyte contained in the negative electrode active material layer are converted into the negative electrode active material. It is the battery capacity when inserted.
  • the battery capacity based on the total amount of the negative electrode active material is calculated according to the following formula.
  • Battery capacity [mAh / cm 2 ] negative electrode active material capacity [mAh / g] ⁇ negative electrode active material basis weight [mg / cm 2 ] / 10 3
  • the negative electrode active material capacity [mAh / g] represents the negative electrode active material (in the case where the negative electrode active material is a coated negative electrode active material coated with a coating layer containing a polymer compound), ethylene carbonate
  • a mixture of non-aqueous electrolyte prepared by dissolving LiN (FSO 2 ) 2 at a ratio of 3 mol / L in a mixed solvent of (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) to form an aramid
  • a separator manufactured by Japan Vilene Co., Ltd.
  • the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer can be uniquely derived from the thickness of the negative electrode active material layer, the porosity, and the electrolyte concentration of the non-aqueous electrolyte. It can be adjusted by combining them in a timely manner.
  • the calculation formula is as follows.
  • Battery capacity [mAh / cm 2 ] based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer electrode void volume [cm 3 ] ⁇ the electrolyte concentration of the non-aqueous electrolyte [mol / L] / 10 3 ⁇ capacity conversion constant [mAh / mol] / electrode area [cm 2 ] Capacity conversion constant [mAh / mol]: 26806 The capacity conversion constant represents the battery capacity per lithium ion.
  • Electrode void volume [cm 3 ] Porosity [volume%] ⁇ Electrode film thickness [ ⁇ m] / 10 4 ⁇ electrode area [cm 2 ]
  • the battery capacity ratio (battery capacity ratio) based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer with respect to the battery capacity based on the total amount of negative electrode active material is the type of negative electrode active material, negative electrode active It can be controlled by the weight of the negative electrode active material in the material layer, the porosity of the negative electrode active material layer, the electrolyte concentration of the non-aqueous electrolyte, and the like.
  • the battery capacity based on the total amount of the negative electrode active material is increased and the battery capacity ratio is decreased.
  • increasing the electrolyte concentration of the non-aqueous electrolyte or increasing the porosity of the negative electrode active material layer increases the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer. As a result, the battery capacity ratio increases.
  • the negative electrode active material constituting the negative electrode for a lithium ion battery of the present invention those conventionally used as an active material for a negative electrode of a lithium ion battery can be suitably used.
  • the negative electrode active material examples include carbon-based materials [for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, Needle coke and petroleum coke etc.), silicon carbide and carbon fiber etc.], conductive polymers (eg polyacetylene and polypyrrole etc.), metals (tin, silicon, aluminum, zirconium and titanium etc.), metal oxides (titanium oxide, Lithium-titanium oxide, silicon oxide, etc.) and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy and lithium-aluminum-manganese alloy). Two or more negative electrode active materials may be used in combination.
  • carbon-based materials for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin
  • those that do not contain lithium or lithium ions may be subjected to a pre-doping treatment in which lithium or lithium ions are included in part or all of the active material in advance.
  • a carbon-based material or a metal oxide is preferably used as the negative electrode active material.
  • the volume average particle diameter of the negative electrode active material is preferably from 0.01 to 100 ⁇ m, more preferably from 0.1 to 20 ⁇ m, and even more preferably from 2 to 20 ⁇ m, from the viewpoint of the electric characteristics of the battery.
  • the volume average particle diameter of the negative electrode active material means a particle diameter (Dv50) at an integrated value of 50% in a particle size distribution obtained by a microtrack method (laser diffraction / scattering method).
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light.
  • the Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
  • the negative electrode active material layer includes a negative electrode active material and voids.
  • a sufficient amount of lithium ions can be disposed around the negative electrode active material by filling the voids with the non-aqueous electrolyte containing lithium ions in the negative electrode active material layer.
  • the void volume in the negative electrode active material layer is such that the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is 3 to 17% of the battery capacity based on the total amount of negative electrode active material.
  • the total volume of the voids is preferably 35 to 60% by volume, more preferably 35 to 50% by volume, based on the total volume of the negative electrode active material layer.
  • voids of 35 to 60% by volume of the total volume are formed in the negative electrode active material layer, a sufficient amount of lithium ions is arranged around the negative electrode active material by filling the voids with a non-aqueous electrolyte. can do.
  • the void refers to a void included in the negative electrode active material layer in a state where the negative electrode is not impregnated with the non-aqueous electrolyte.
  • the porosity can also be obtained by image analysis of the cross section of the negative electrode active material layer by X-ray computed tomography (CT) or the like.
  • the measurement is performed by the following method.
  • the porosity is the total volume value of each component obtained by dividing the weight of each solid component (excluding the electrolyte) constituting the negative electrode active material layer having a constant volume by the true density of each component. The value obtained by subtracting from the volume of can be calculated by further dividing by the volume of the negative electrode active material layer.
  • the weight and true density of each solid component can be determined by solid-liquid separation of a cleaning solution obtained by cleaning the negative electrode with a non-aqueous solvent, and removing the non-aqueous solvent.
  • the solid component is not separated into a component that dissolves in a non-aqueous solvent and a component that does not dissolve, and as a mixture of solid components, the weight is divided by the true density to obtain the volume of the entire solid component, You may replace with the method of measuring a weight and a true density for every component.
  • the thickness of the negative electrode active material layer (hereinafter also simply referred to as “film thickness”) is not particularly limited, but is preferably 100 ⁇ m or more and 1500 ⁇ m or less, and preferably 150 ⁇ m or more and 1200 ⁇ m from the viewpoint of achieving both energy density and input / output characteristics. Or less, more preferably 200 ⁇ m or more and 800 ⁇ m or less.
  • the amount of the non-aqueous electrolyte that the negative electrode active material layer can hold per unit area is not particularly limited, but is preferably 6 to 120 ⁇ L / cm 2 .
  • the reference surface per unit area is a surface parallel to the surface of the negative electrode current collector.
  • the amount of the non-aqueous electrolyte that the negative electrode active material layer can hold per unit area is 6 ⁇ L / cm 2 or more, the total amount of lithium ions present around the negative electrode active material is sufficiently obtained, and the rate characteristics are excellent.
  • the amount of the non-aqueous electrolyte solution that can be held per unit area can be determined by calculating from the porosity and film thickness of the negative electrode active material layer.
  • the negative electrode current collector is not particularly limited, but copper, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer (polymer having an electron conductive skeleton) or non-conductive polymer material as a resin Examples thereof include a material to which a conductive material is added if necessary, and a foil containing a conductive material such as conductive glass. Among these, from the viewpoint of safety, it is preferable to use a resin current collector containing a conductive material and a resin as the negative electrode current collector.
  • the conductive material contained in the resin current collector is selected from conductive materials. Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. , And mixtures thereof, but are not limited thereto. These conductive materials may be used alone or in combination of two or more. Alternatively, an alloy or metal oxide of the above metal may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. In addition, as these conductive materials, a particulate ceramic material or a resin material may be coated with a conductive material (a metal material among the above-described conductive materials) by plating or the like.
  • a conductive material a metal material among the above-described conductive materials
  • the average particle diameter of the conductive material is not particularly limited, but is preferably from 0.01 to 10 ⁇ m, more preferably from 0.02 to 5 ⁇ m, from the viewpoint of the electric characteristics of the battery. More preferably, the thickness is 03 to 1 ⁇ m.
  • the “particle diameter of the conductive material” means the maximum distance among any two points on the contour line of the conductive material.
  • the value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
  • the shape (form) of the conductive material is not limited to the particle form, and may be a form other than the particle form, and in a form that is put into practical use as a so-called filler-based conductive resin composition such as carbon nanofiller and carbon nanotube. There may be.
  • the conductive material may be a conductive fiber having a fibrous shape.
  • conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel.
  • examples thereof include fiberized metal fibers, conductive fibers in which the surface of organic fiber is coated with metal, and conductive fibers in which the surface of organic fiber is coated with a resin containing a conductive substance.
  • carbon fibers are preferable.
  • a polypropylene resin in which graphene is kneaded is also preferable.
  • the average fiber diameter is preferably 0.1 to 20 ⁇ m.
  • the resins contained in the resin current collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), polytetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof Is mentioned.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PTFE polytetra Fluoroethylene
  • SBR styrene butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethyl acrylate
  • PMMA polymethyl methacryl
  • polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
  • non-aqueous electrolyte a non-aqueous electrolyte containing an electrolyte and a non-aqueous solvent used in the production of a lithium ion battery can be used.
  • electrolyte those used in known electrolyte solutions can be used, and preferable examples include lithium salt electrolytes of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , A sulfonylimide-based electrolyte having fluorine atoms such as LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2, and a fluorine atom such as LiC (CF 3 SO 2 ) 3 are used. Examples thereof include a sulfonylmethide-based electrolyte.
  • a sulfonylimide-based electrolyte having a fluorine atom is preferable from the viewpoint of ion conductivity at a high concentration and a thermal decomposition temperature, and LiN (FSO 2 ) 2 is more preferable.
  • LiN (FSO 2 ) 2 may be used in combination with other electrolytes, but is more preferably used alone.
  • the electrolyte concentration of the non-aqueous electrolyte is not particularly limited, but is preferably 1 to 5 mol / L, and preferably 1.5 to 4 mol / L from the viewpoints of the handleability of the non-aqueous electrolyte and battery capacity. More preferably, it is 2 to 3 mol / L.
  • non-aqueous solvent those used in known non-aqueous electrolytes can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphate esters. , Nitrile compounds, amide compounds, sulfones and the like and mixtures thereof.
  • lactone compound examples include 5-membered rings (such as ⁇ -butyrolactone and ⁇ -valerolactone) and 6-membered lactone compounds (such as ⁇ -valerolactone).
  • cyclic carbonate examples include propylene carbonate, ethylene carbonate and butylene carbonate.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • chain carboxylic acid ester examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • cyclic ether examples include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • chain ether examples include dimethoxymethane and 1,2-dimethoxyethane.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
  • nitrile compounds include acetonitrile.
  • amide compound examples include N, N-dimethylformamide (hereinafter referred to as DMF).
  • sulfone include chain sulfones such as dimethyl sulfone and diethyl sulfone, and cyclic sulfones such as sulfolane.
  • the non-aqueous solvent may be used alone or in combination of two or more.
  • lactone compounds, cyclic carbonates, chain carbonates, and phosphates are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and preferably do not contain a nitrile compound. More preferred are lactone compounds, cyclic carbonates and chain carbonates, and particularly preferred is a mixture of cyclic carbonate and chain carbonate. Most preferred is a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • the negative electrode active material layer may further contain a conductive material.
  • the conductive material include conductive fibers.
  • the negative electrode active material layer further includes a conductive fiber
  • the conductive fiber can function to assist electronic conduction in the negative electrode active material layer, and the conductive fiber described above with respect to the resin current collector is used as the conductive fiber.
  • the same thing as a property fiber can be used.
  • the negative electrode active material layer further contains conductive fibers, it is preferable to use a coated negative electrode active material described later as the negative electrode active material.
  • the content of the conductive fibers contained in the negative electrode active material layer is preferably 25% by weight or less with respect to the total weight of the negative electrode active material layer.
  • a conductive agent having no fibrous form may be used.
  • a conductive agent having a particulate (for example, spherical) form can be used.
  • the shape of the particles is not particularly limited, and may be any shape such as powder, sphere, plate, column, indefinite shape, flake shape, and spindle shape.
  • the conductive agent having a particulate (for example, spherical) form the same conductive material as that described for the resin current collector can be used.
  • the negative electrode active material is preferably partially or entirely covered with a coating layer containing a polymer compound.
  • a negative electrode active material in which part or all of the surface is coated with a coating layer is also referred to as a coated negative electrode active material.
  • the surface of the negative electrode active material is coated with the coating layer, the volume change of the negative electrode is relieved and the negative electrode can be prevented from expanding. Furthermore, the wettability of the negative electrode active material with respect to the non-aqueous solvent can be improved.
  • Examples of the polymer compound constituting the coating layer include a polymer compound having a liquid absorption rate of 10% or more when immersed in a non-aqueous electrolyte and a tensile elongation at break in a saturated liquid absorption state of 10% or more. preferable.
  • the liquid absorption rate when immersed in the non-aqueous electrolyte is obtained by the following equation by measuring the weight of the polymer compound before and after being immersed in the non-aqueous electrolyte.
  • Absorption rate (%) [(weight of polymer compound after immersion in non-aqueous electrolyte ⁇ weight of polymer compound before immersion in non-aqueous electrolyte) / weight of polymer compound before immersion in non-aqueous electrolyte] ⁇ 100
  • a nonaqueous electrolytic solution dissolved to a concentration of L is used.
  • the saturated liquid absorption state refers to a state in which the weight of the polymer compound does not increase even when immersed in the non-aqueous electrolyte.
  • non-aqueous electrolyte used when manufacturing a lithium ion battery is not limited to the said non-aqueous electrolyte, You may use another non-aqueous electrolyte.
  • the polymer compound sufficiently absorbs the non-aqueous electrolyte, and lithium ions can easily permeate the polymer compound. The movement of lithium ions between electrolytes is not hindered. If the liquid absorption rate is less than 10%, the non-aqueous electrolyte does not easily penetrate into the polymer compound, so that the lithium ion conductivity is lowered and the performance as a lithium ion battery may not be sufficiently exhibited.
  • the liquid absorption is more preferably 20% or more, and further preferably 30% or more.
  • a preferable upper limit of a liquid absorption rate it is 400%, and as a more preferable upper limit, it is 300%.
  • the tensile elongation at break in the saturated liquid absorption state is obtained by punching the polymer compound into a dumbbell shape and immersing in a non-aqueous electrolyte at 50 ° C. for 3 days in the same manner as the measurement of the liquid absorption rate described above to saturate the polymer compound.
  • As a liquid absorption state it can measure based on ASTM D683 (test piece shape Type II).
  • the tensile elongation at break is a value obtained by calculating the elongation until the test piece breaks in the tensile test according to the following formula.
  • Tensile elongation at break (%) [(length of specimen at break ⁇ length of specimen before test) / length of specimen before test] ⁇ 100
  • the tensile elongation at break is more preferably 20% or more, and further preferably 30% or more.
  • the preferable upper limit value of the tensile elongation at break is 400%, and the more preferable upper limit value is 300%.
  • the polymer compound constituting the coating layer examples include thermoplastic resins and thermosetting resins, such as vinyl resins, urethane resins, polyester resins, polyamide resins, epoxy resins, polyimide resins, silicone resins, phenol resins, Examples include melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, polysaccharides (such as sodium alginate), and mixtures thereof. Of these, vinyl resins are preferred.
  • the vinyl resin is a resin comprising a polymer (A1) having the vinyl monomer (a) as an essential constituent monomer.
  • the polymer (A1) is a monomer containing a vinyl monomer (a1) having a carboxyl group or an acid anhydride group as the vinyl monomer (a) and a vinyl monomer (a2) represented by the following general formula (1).
  • a polymer of the composition is preferred.
  • CH 2 C (R 1 ) COOR 2 (1)
  • R 1 is a hydrogen atom or a methyl group
  • R 2 is a straight chain or branched alkyl group having 4 to 36 carbon atoms.
  • vinyl resins those having a liquid absorption rate of 10% or more when immersed in a non-aqueous electrolyte and a tensile elongation at break in a saturated liquid absorption state of 10% or more are more preferable.
  • Examples of the vinyl monomer (a1) having a carboxyl group or an acid anhydride group include monocarboxylic acids having 3 to 15 carbon atoms such as (meth) acrylic acid (a11), crotonic acid and cinnamic acid; (anhydrous) maleic acid, fumaric acid Dicarboxylic acids having 4 to 24 carbon atoms such as acid, (anhydrous) itaconic acid, citraconic acid and mesaconic acid; polycarboxylic acids having 6 to 24 carbon atoms such as aconitic acid and the like having a valence of 3 to 4 or more. Is mentioned. Among these, (meth) acrylic acid (a11) is preferable, and methacrylic acid is more preferable. In addition, (meth) acrylic acid shows acrylic acid and / or methacrylic acid.
  • R 1 represents a hydrogen atom or a methyl group.
  • R 1 is preferably a methyl group.
  • R 2 is preferably a linear or branched alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 13 to 36 carbon atoms.
  • (A21) R 2 is a linear or branched alkyl group having 4 to 12 carbon atoms.
  • Examples of the linear alkyl group having 4 to 12 carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, Nonyl group, decyl group, undecyl group, dodecyl group can be mentioned.
  • Examples of the branched alkyl group having 4 to 12 carbon atoms include 1-methylpropyl group (sec-butyl group), 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), 1-methylbutyl group, 1 , 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group 1-methylhexyl group, 2-methylhexyl group, 2-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1-ethy
  • R 2 is a branched alkyl group having 13 to 36 carbon atoms.
  • the branched alkyl group having 13 to 36 carbon atoms include a 1-alkylalkyl group [1-methyldodecyl group, 1-butyleicosyl group, 1-hexyloctadecyl group, 1-octylhexadecyl group, 1-decyltetradecyl group, 1-undecyltridecyl group, etc.], 2-alkylalkyl group [2-methyldodecyl group, 2-hexyloctadecyl group, 2- Octylhexadecyl group, 2-decyltetradecyl group, 2-undecyltridecyl group, 2-dodecylhexadecyl group, 2-tridecylpentadecyl group, 2-decyloctadecyl group, 2-te
  • the polymer (A1) preferably further contains an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid.
  • Examples of the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a3) include methanol, ethanol, 1-propanol and 2-propanol.
  • the content of the ester compound (a3) is preferably 10 to 60% by weight, and preferably 15 to 55% by weight based on the total weight of the polymer (A1) from the viewpoint of suppressing volume change of the negative electrode active material. More preferred is 20 to 50% by weight.
  • the polymer (A1) may further contain an anionic monomer salt (a4) having a polymerizable unsaturated double bond and an anionic group.
  • Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styryl group, and a (meth) acryloyl group.
  • anionic group examples include a sulfonic acid group and a carboxyl group.
  • An anionic monomer having a polymerizable unsaturated double bond and an anionic group is a compound obtained by a combination thereof, such as vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid and (meth) acrylic acid. It is done.
  • the (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • Examples of the cation constituting the salt (a4) of the anionic monomer include lithium ion, sodium ion, potassium ion and ammonium ion.
  • the anionic monomer salt (a4) When the anionic monomer salt (a4) is contained, its content is preferably 0.1 to 15% by weight based on the total weight of the polymer compound from the viewpoint of internal resistance and the like. It is more preferably ⁇ 15% by weight, and further preferably 2-10% by weight.
  • the polymer (A1) preferably contains (meth) acrylic acid (a11) and an ester compound (a21), and more preferably contains an ester compound (a3).
  • methacrylic acid is used as (meth) acrylic acid (a11)
  • 2-ethylhexyl methacrylate is used as ester compound (a21)
  • methyl methacrylate is used as ester compound (a3).
  • Methacrylic acid, 2-ethylhexyl Most preferred is a copolymer of methacrylate and methyl methacrylate.
  • the polymer compound includes (meth) acrylic acid (a11), the above vinyl monomer (a2), an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid, and if necessary.
  • a monomer composition comprising a salt (a4) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group to be used is polymerized, and the vinyl monomer (a2) and the (meta ) Acrylic acid (a11) weight ratio [the ester compound (a21) / (meth) acrylic acid (a11)] is preferably 10/90 to 90/10.
  • the weight ratio of vinyl monomer (a2) to (meth) acrylic acid (a11) is 10/90 to 90/10, the polymer obtained by polymerizing this has good adhesion to the negative electrode active material and is peeled off. It becomes difficult to do.
  • the weight ratio is, for example, 20/80 to 85/15, preferably 30/70 to 85/15, and more preferably 40/60 to 70/30.
  • the monomer constituting the polymer (A1) includes a vinyl monomer (a1) having a carboxyl group or an acid anhydride group, a vinyl monomer (a2) represented by the above general formula (1), and a carbon number of 1
  • a vinyl monomer (a1) having a carboxyl group or an acid anhydride group a vinyl monomer (a2) represented by the above general formula (1)
  • a carbon number of 1 In addition to the ester compound (a3) of a monovalent aliphatic alcohol of 1 to 3 and (meth) acrylic acid and a salt of an anionic monomer having a polymerizable unsaturated double bond and an anionic group (a4)
  • the vinyl monomer (a1), the vinyl monomer (a2) represented by the general formula (1), and a monovalent aliphatic alcohol having 1 to 3 carbon atoms It can be copolymerized with an ester compound (a3) with (meth) acrylic acid and may contain a radical polymerizable monomer (a5).
  • the radical polymerizable monomer (a5) is preferably a monomer not containing active hydrogen, and the following monomers (a51) to (a58) can be used.
  • the monool (i) linear aliphatic monool (tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, arachidyl alcohol Etc.), (ii) alicyclic monools (cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, cyclooctyl alcohol etc.), (iii) araliphatic monools (benzyl alcohol etc.) and mixtures of two or more thereof Can be mentioned.
  • (A52) Poly (n 2 to 30) oxyalkylene (carbon number 2 to 4) alkyl (carbon number 1 to 18) ether (meth) acrylate [methanol ethylene oxide (hereinafter abbreviated as EO) 10 mol adduct (meta ) Propylene oxide of acrylate, methanol (hereinafter abbreviated as PO), 10 mol adduct (meth) acrylate, etc.]
  • (a54) Vinyl hydrocarbon (a54-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms (ethylene, propylene, Butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), diene having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7- Octadiene etc.) (a54-2) Alicyclic vinyl hydrocarbon charcoal Cyclic unsaturated compounds having 4 to 18 or more primes, such as cycloalkene (eg cyclohexene), (di) cycloalkadiene [eg (di) cyclopentadiene], terpene (eg pinene and limonene), indene (a54-3) Aromatic vinyl hydrocarbons C8-20 aromatic unsaturated
  • a vinyl monomer (a1) having a carboxyl group or an acid anhydride group a vinyl monomer (a2) represented by the above general formula (1), a monovalent aliphatic alcohol having 1 to 3 carbon atoms And (meth) acrylic acid ester compound (a3), a salt of an anionic monomer having a polymerizable unsaturated double bond and an anionic group (a4), and a radically polymerizable monomer containing no active hydrogen (a5) )
  • (a1) is 0.1 to 80% by weight
  • (a2) is 0.1 to 99.9% by weight
  • (a3) is 0 to 60% by weight.
  • (a4) is 0 to 15% by weight, and (a5) is 0 to 99.8% by weight.
  • the content of the monomer is within the above range, the liquid absorptivity to the non-aqueous electrolyte is good.
  • the preferable lower limit of the number average molecular weight of the polymer (A1) is 3,000, more preferably 50,000, still more preferably 100,000, particularly preferably 200,000, and the preferable upper limit is 2,000,000. It is preferably 1,500,000, more preferably 1,000,000, and particularly preferably 800,000.
  • the number average molecular weight of the polymer (A1) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
  • GPC gel permeation chromatography
  • Apparatus Alliance GPC V2000 (manufactured by Waters) Solvent: Orthodichlorobenzene Reference material: Polystyrene detector: RI Sample concentration: 3 mg / ml
  • Column stationary phase PLgel 10 ⁇ m, MIXED-B 2 in series (manufactured by Polymer Laboratories) Column temperature: 135 ° C.
  • the polymer (A1) is a known polymerization initiator ⁇ azo initiator [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc. ⁇ (Bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
  • the amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomers, from the viewpoint of adjusting the number average molecular weight within a preferable range. More preferably, it is 0.1 to 1.5% by weight, and the polymerization temperature and polymerization time are adjusted according to the type of the polymerization initiator, etc., but the polymerization temperature is preferably -5 to 150 ° C. (more preferably 30 to 120 ° C.), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
  • Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms).
  • the amount used is preferably 5 to 900% by weight, more preferably 10 to 400% by weight, based on the total weight of the monomers. More preferably, it is 30 to 300% by weight, and the monomer concentration is 10 to 9 Preferably wt%, more preferably 20 to 90 wt%, more preferably 30 to 80 wt%.
  • Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha and the like, and examples of the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt.
  • alcohol for example, ethanol
  • ester for example, ethyl propionate
  • emulsifier include higher fatty acid (carbon number 10 to 24) metal salt.
  • sulfate metal salt for example, sodium lauryl sulfate
  • ethoxylated tetramethyldecynediol sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc.
  • the monomer concentration of the solution or dispersion is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, more preferably 30 to 80% by weight.
  • the amount of the polymerization initiator used in the solution or dispersion is The content is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the above.
  • chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used.
  • mercapto compounds such as dodecyl mercaptan and n-butyl mercaptan
  • halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide and benzyl chloride
  • the polymer (A1) contained in the vinyl resin is a crosslinking agent (A ′) having a reactive functional group that reacts the polymer (A1) with a carboxyl group ⁇ preferably a polyepoxy compound (a′1) [polyglycidyl ether].
  • Examples of the method of crosslinking the polymer (A1) using the crosslinking agent (A ′) include a method of crosslinking after coating the negative electrode active material with the polymer (A1). Specifically, a negative electrode active material and a resin solution containing the polymer (A1) are mixed and removed to produce a coated negative electrode active material in which the negative electrode active material is coated with the polymer (A1), and then crosslinked. The solution containing the agent (A ′) is mixed with the coated negative electrode active material and heated to cause solvent removal and a crosslinking reaction, and the polymer (A1) is crosslinked by the crosslinking agent (A ′). A method of causing a reaction to be a molecular compound on the surface of the negative electrode active material is exemplified.
  • heating temperature is adjusted according to the kind of crosslinking agent, when using a polyepoxy compound (a'1) as a crosslinking agent, 70 degreeC or more is preferable, and when using a polyol compound (a'2), it is 120 degreeC. The above is preferable.
  • the coating layer may further contain a conductive agent, and as the conductive agent that can be contained in the coating layer, the same conductive material as that contained in the resin current collector can be suitably used. The same applies to preferred forms, average particle diameters, and the like.
  • the ratio of the total weight of the polymer compound and the conductive agent contained in the coating layer is not particularly limited, but is preferably 0 to 25% by weight with respect to the weight of the negative electrode active material.
  • the ratio of the weight of the polymer compound to the weight of the negative electrode active material is not particularly limited, but is preferably 0.1 to 11% by weight.
  • the ratio of the weight of the conductive agent to the weight of the negative electrode active material is not particularly limited, but is preferably 0 to 14% by weight.
  • the coated negative electrode active material can be produced, for example, by mixing a polymer compound and a negative electrode active material.
  • the coating layer contains a conductive agent, it may be produced, for example, by mixing a polymer compound, a conductive agent, and a negative electrode active material.
  • a coating material was prepared by mixing a polymer compound and a conductive agent. Then, you may manufacture by mixing this coating
  • at least a part of the surface of the negative electrode active material is coated with the coating layer containing the polymer compound.
  • negative electrode active material and the polymer compound those described for the coated negative electrode active material can be preferably used.
  • the coated negative electrode active material is prepared by, for example, dropping and mixing a polymer solution containing a polymer compound over a period of 1 to 90 minutes in a state where the negative electrode active material is put in a universal mixer and stirred at 300 to 1000 rpm. Stir further. Further, if necessary, a conductive agent is mixed, and then, if necessary, stirring is continued for 10 minutes to 1 hour. After reducing the pressure to 0.007 to 0.04 MPa while stirring, the stirring and the degree of vacuum are maintained. It can be obtained by raising the temperature to 50 to 200 ° C. and holding for 10 minutes to 10 hours, preferably 1 to 10 hours. Thereafter, the coated negative electrode active material obtained as a powder may be classified.
  • Examples of the method for producing a negative electrode for a lithium ion battery according to the present invention include, for example, a negative electrode active material and a conductive agent to be used as needed, based on the weight of a non-aqueous electrolyte or a non-aqueous solvent of the non-aqueous electrolyte.
  • a coating device such as a bar coater
  • Examples include a method in which a negative electrode active material layer obtained by removing a solvent and the like is pressed with a press if necessary, and the obtained negative electrode active material layer is impregnated with a predetermined amount of a non-aqueous electrolyte.
  • the negative electrode active material layer obtained from the dispersion does not need to be directly formed on the negative electrode current collector, for example, a negative electrode active material layer obtained by applying the dispersion on the surface of an aramid separator or the like, You may arrange
  • the drying performed as necessary after applying the dispersion liquid can be performed using a known dryer such as a forward air dryer, and the drying temperature is determined by the dispersion medium (non-aqueous electrolyte or It can be adjusted according to the type of nonaqueous solvent of the nonaqueous electrolytic solution.
  • a binder such as polyvinylidene fluoride (PVdF) contained in a known negative electrode for a lithium ion battery may be added to the dispersion, but the negative electrode active material is the above-described coated negative electrode active material. It is preferable not to add a binder.
  • the binder content is preferably 1% by weight or less, more preferably 0.5% by weight or less, with respect to 100% by weight of the total solid content contained in the negative electrode active material layer.
  • the amount is preferably 0.2% by weight or less, particularly preferably 0.1% by weight or less, and most preferably 0% by weight.
  • the binder is a polymer material added to bind the negative electrode active material particles and other members and maintain the structure of the negative electrode active material layer, and is a polymer compound for the coating layer contained in the coating layer.
  • the binder is an insulating material that does not cause a side reaction (oxidation-reduction reaction) during charge and discharge, and generally satisfies the following three points: (1) A slurry used for the production of an active material layer is stable. Maintaining the state (having a dispersing action and a thickening action); (2) Electrode active particles, conductive assistants, etc. are adhered to each other, the mechanical strength as an electrode is maintained, and the particles are electrically Keeping contact; (3) Has adhesion (binding force) to the current collector.
  • a negative electrode for a lithium ion battery it is necessary to maintain a conductive path by fixing a negative electrode active material in the negative electrode with a binder.
  • the coated negative electrode active material it is not necessary to add a binder because the conductive path can be maintained without fixing the negative electrode active material in the negative electrode by the action of the coating layer.
  • the amount of addition is determined from the point that the active material layer can be molded while a sufficient amount of voids are formed in the negative electrode active material layer. It is preferably 0.1 to 20% by weight based on the minute weight.
  • binder examples include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.
  • the pressure at which the dried slurry is pressed is not particularly limited. However, if the pressure is too high, a sufficient amount of voids cannot be formed in the negative electrode active material layer. Since it is not observed, it is preferable to press at 1 to 200 MPa.
  • the preferred form of the negative electrode current collector is as described above.
  • the dispersion medium is a non-aqueous electrolyte or a non-aqueous solvent of the non-aqueous electrolyte, and when the applied dispersion is dried, the negative electrode active material layer obtained after drying
  • the weight of the non-aqueous electrolyte obtained by impregnating the non-aqueous electrolyte into the negative electrode active material layer depends on the amount of voids in the negative electrode active material layer and the electrolyte concentration of the non-aqueous electrolyte. Can be adjusted.
  • the impregnation of the non-aqueous electrolyte with respect to the negative electrode active material layer is performed by a method in which the non-aqueous electrolyte is dropped and impregnated on the surface of the negative electrode active material layer formed by the above method using a dropper or the like. Can do.
  • the lithium ion battery of the present invention is a battery using the above-described negative electrode for lithium ion battery, and is combined with an electrode serving as a counter electrode of the above negative electrode for lithium ion battery, and stored in a cell container together with a separator, It can be manufactured by a method of injecting and sealing the cell container.
  • a positive electrode active material layer containing the positive electrode active material is formed on the other surface of the negative electrode current collector. It is also possible to produce a bipolar electrode by laminating the bipolar electrode with a separator and storing it in a cell container, injecting a non-aqueous electrolyte, and sealing the cell container.
  • separator examples include a microporous film made of polyethylene or polypropylene, a laminated film of a porous polyethylene film and porous polypropylene, a nonwoven fabric containing synthetic fibers (such as polyester fibers and aramid fibers) or glass fibers, and silica on the surface thereof.
  • synthetic fibers such as polyester fibers and aramid fibers
  • glass fibers such as glass fibers, and silica on the surface thereof.
  • separators for lithium ion batteries such as those to which ceramic fine particles such as alumina and titania are attached, may be mentioned.
  • non-aqueous electrolyte those described in the negative electrode for lithium ion batteries of the present invention can be suitably used.
  • the positive electrode used for a known lithium ion battery can be used as the electrode (positive electrode) that is the counter electrode of the negative electrode for the lithium ion battery.
  • the lithium ion battery of the present invention is characterized by using the negative electrode for a lithium ion battery of the present invention. Since the lithium ion battery of the present invention uses the negative electrode for a lithium ion battery of the present invention, it is possible to obtain a lithium ion battery that can be rapidly charged and has a high energy density.
  • ⁇ Production Example 2 Production of coated negative electrode active material particles> It was obtained in Production Example 1 with 100 parts of non-graphitizable carbon powder 1 (volume average particle diameter 20 ⁇ m) being put into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] and stirred at room temperature at 720 rpm. 6.1 parts of the polymer compound solution for coating layer was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
  • a universal mixer high speed mixer FS25 manufactured by Earth Technica Co., Ltd.
  • acetylene black [DENKA BLACK (registered trademark) manufactured by Denka Co., Ltd.], which is a conductive agent, was added in 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of vacuum, and the volatile matter was distilled off by maintaining the stirring, the degree of vacuum and the temperature for 8 hours. . The obtained powder was classified with a sieve having an opening of 212 ⁇ m to obtain coated negative electrode active material particles.
  • ⁇ Production Example 3 Production of coated negative electrode active material particles>
  • the non-graphitizable carbon powder 1 volume average particle diameter 20 ⁇ m
  • artificial graphite volume average particle diameter 18 ⁇ m
  • SiO silicon oxide
  • Example 1 [Preparation of negative electrode active material slurry for lithium ion battery] 20 parts of non-aqueous electrolyte prepared by dissolving LiN (FSO 2 ) 2 at a rate of 3 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) and carbon fiber [ Osaka Gas Chemical Co., Ltd. Donakabo Milled S-243: average fiber length 500 ⁇ m, average fiber diameter 13 ⁇ m: electrical conductivity 200 mS / cm 2 parts and planetary agitation type mixing kneader ⁇ Awatori Kentaro [Sinky Co., Ltd.
  • the obtained negative electrode active material slurry was applied to one side of an aramid separator [manufactured by Japan Vilene Co., Ltd.], pressed at a pressure of 10 MPa for about 10 seconds, and a negative electrode active material layer having a thickness of about 250 ⁇ m on the aramid separator (3 cm ⁇ 3 cm) was fixed.
  • the basis weight (also referred to as basis weight) of the negative electrode active material layer was determined from the weight change of the aramid separator before and after forming the negative electrode active material layer, and found to be 20.7 mg / cm 2 .
  • an X-ray CT image is obtained as a cross-sectional image in two directions: a thickness direction of an aramid separator and a direction perpendicular thereto. Thereafter, for the 50 ⁇ m ⁇ 50 ⁇ m region extracted at 10 random locations in the cross-sectional images in each direction, the area occupied by the voids in the entire region was determined, and the average value thereof was taken as the porosity.
  • Laminated copper foil (3cm x 3cm, thickness 50 ⁇ m) is laminated in the same direction in the direction of two terminals, and sandwiched between two commercially available heat-sealing aluminum laminate films (8cm x 8cm) The one side where the terminal comes out was heat-sealed to produce a laminate cell for negative electrode evaluation.
  • an aramid separator (3 cm ⁇ 3 cm) having a negative electrode active material layer fixed between one copper foil and the separator is inserted so that the negative electrode active material layer and the copper foil are in contact with each other, and an electrode (3 cm ⁇ 3 cm negative electrode active material)
  • the negative electrode for a lithium ion battery according to Example 1 was prepared by injecting 70 ⁇ L of the non-aqueous electrolyte into the layer) and causing the electrode to absorb the non-aqueous electrolyte.
  • 70 ⁇ L of nonaqueous electrolyte was injected onto the separator. Thereafter, a lithium foil was inserted between the separator and the other copper foil, and two sides orthogonal to the one side heat-sealed first were heat sealed.
  • the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is compared with the battery capacity based on the total amount of the negative electrode active material.
  • the ratio hereinafter also referred to as battery capacity ratio
  • Example 2 A lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 2 according to Example 2 were prepared in the same procedure as in Example 1 except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 1 mol / L. .
  • the porosity of the negative electrode active material layer was the same as in Example 1.
  • the battery capacity ratio was 3.3%.
  • Example 3 A lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 3 according to Example 3 were prepared in the same procedure as in Example 1, except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 5 mol / L. .
  • the porosity of the negative electrode active material layer was the same as in Example 1.
  • the battery capacity ratio was 16.7%.
  • Example 4 The same procedure as in Example 1 was followed to Example 4 except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 2 mol / L and the type of electrolyte was changed from LiN (FSO 2 ) 2 to LiPF 6.
  • the negative electrode for lithium ion batteries and the lithium ion battery 4 for negative electrode evaluation were produced.
  • the porosity of the negative electrode active material layer was the same as in Example 1.
  • the battery capacity ratio was 6.7%.
  • Example 5 was performed in the same manner as in Example 1 except that the mixture was changed to a mixture, and the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 38.4 mg / cm 2 to change the film thickness to 445 ⁇ m.
  • the negative electrode for lithium ion batteries which concerns on this, and the lithium ion battery 5 for negative electrode evaluation were produced.
  • the porosity of the negative electrode active material layer was the same as in Example 1.
  • the battery capacity ratio was 6.6%.
  • Example 6> For a lithium ion battery according to Example 6 in the same procedure as in Example 1 except that the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 8.6 mg / cm 2 and the film thickness was changed to 100 ⁇ m. A negative electrode and a lithium ion battery 6 for negative electrode evaluation were prepared. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 9.7%.
  • Example 7> For a lithium ion battery according to Example 7 in the same procedure as in Example 1 except that the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 103.2 mg / cm 2 and the film thickness was changed to 1200 ⁇ m. A negative electrode and a lithium ion battery 7 for negative electrode evaluation were prepared. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 9.7%.
  • Example 8> A negative electrode for a lithium ion battery according to Example 8 according to the same procedure as in Example 1 except that the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 6 mg / cm 2 and the film thickness was changed to 70 ⁇ m. A lithium ion battery 8 for negative electrode evaluation was produced. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 9.6%.
  • Example 9 The electrolyte concentration of the non-aqueous electrolyte is changed from 3 mol / L to 1 mol / L, and the negative electrode active material slurry is placed on the aramid separator so that the film thickness of the negative electrode active material layer is 306 ⁇ m and the porosity is 55% by volume.
  • a negative electrode for a lithium ion battery and a lithium ion battery 9 for negative electrode evaluation according to Example 9 were produced in the same procedure as in Example 1 except that the press condition after coating was changed to about 10 seconds at 4 MPa.
  • the film thickness of the negative electrode active material layer was 306 ⁇ m, and the porosity was 55% by volume.
  • the battery capacity ratio was 5.0%.
  • Example 10> instead of the coated negative electrode active material particles produced in Production Example 2, the coated negative electrode active material particles produced in Production Example 3 were used, and the press conditions after applying the negative electrode active material slurry on the aramid separator were 15 MPa.
  • a lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 10 according to Example 10 were produced in the same procedure as in Example 1 except that the time was changed to about 10 seconds.
  • the basis weight of the negative electrode active material layer was 50 mg / cm 2
  • the film thickness of the negative electrode active material layer was 380 ⁇ m
  • the porosity 40% by volume.
  • the battery capacity ratio was 8.1%.
  • Example 11 Instead of 98 parts of the coated negative electrode active material particles produced in Production Example 2 used in the production of the negative electrode active material slurry for a lithium ion battery, 98 parts of the negative electrode active material particles prepared in Production Example 4 were used, and a non-aqueous electrolyte solution was used.
  • a lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 11 according to Example 11 were prepared in the same procedure as in Example 1 except that the electrolyte concentration was changed to 2 mol / L.
  • the basis weight of the negative electrode active material layer was 33.2 mg / cm 2 , the film thickness of the negative electrode active material layer was 323 ⁇ m, and the porosity was 45% by volume.
  • the battery capacity ratio was 4.8%.
  • Example 2 In Example 1, the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 5.5 mol / L, but the electrolyte salt was precipitated in the electrolyte, and a non-aqueous electrolyte that could be used for a battery could not be produced. The battery was not manufactured. Note that the battery capacity ratio is 18.1% when it is assumed that a battery is manufactured in the same manner as in Example 1 using a non-aqueous electrolyte having an electrolyte concentration of 5.5 mol / L.
  • a negative electrode for a lithium ion battery and a lithium ion battery 4 for comparative evaluation of negative electrode according to Comparative Example 4 were prepared in the same procedure as in Example 1 except that the pressing conditions after the change were changed to about 10 seconds at 50 MPa.
  • the film thickness of the negative electrode active material layer was 214 ⁇ m, and the porosity was 30% by volume.
  • the battery capacity ratio was 1.9%.
  • the coated negative electrode active material particles prepared in Production Examples 2 and 3 and the negative electrode active material particles prepared in Production Example 4 were respectively mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) in a mixed solvent (volume ratio 1: 1) with LiN. (FSO 2 ) 2 was mixed with a non-aqueous electrolyte prepared by dissolving at a rate of 3 mol / L to form a slurry, which was applied to one side of an aramid separator [manufactured by Japan Vilene Co., Ltd.] and then 10 seconds at a pressure of 10 MPa.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the electrode was produced by pressing and incorporated into the battery pack, and the discharge capacity when discharged from 0.0 V to 1.5 V was measured with a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Corporation], and The discharge capacity (0.0 V ⁇ 1.5 V discharge capacity) of the negative electrode active material was determined.
  • the coated negative electrode active material prepared in Production Example 2 was 434 mAh / g
  • the coated negative electrode active material prepared in Production Example 3 was 300 mAh / g
  • the negative electrode active material particles prepared in Production Example 4 was 492 mAh / g. It was.
  • the lithium ion batteries 1 to 11 for negative electrode evaluation and the lithium ion batteries 1, 3 and 4 for comparative evaluation of negative electrode were charged to 4.2 V at a current of 2.0 C, respectively, and the capacity at the time of charging (2.0 C charge capacity) was measured.
  • the lithium ion battery using the negative electrode for a lithium ion battery of the present invention has high energy density and excellent quick charge characteristics.
  • the negative electrode for lithium ion batteries of the present invention is particularly useful as a negative electrode for bipolar secondary batteries and lithium ion secondary batteries used for mobile phones, personal computers, hybrid vehicles and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[Problem] To provide a negative electrode for a lithium-ion battery having high energy density and excellent quick charge characteristics. [Solution] A negative electrode for a lithium-ion battery, the negative electrode comprising: a negative electrode collector; a negative electrode active material layer formed on the surface of the negative electrode collector; and a non-aqueous electrolyte solution containing a non-aqueous solvent and an electrolyte including lithium ions. The negative electrode for a lithium-ion battery is characterized in that the negative electrode active material layer contains a negative electrode active material and voids, the voids are filled with the nonaqueous electrolyte solution, and the ratio of the battery capacity based on the total amount of lithium ions in the nonaqueous electrolyte solution present in the negative electrode active material layer to the battery capacity based on the total amount of the negative electrode active material is 3-17%.

Description

リチウムイオン電池用負極及びリチウムイオン電池Negative electrode for lithium ion battery and lithium ion battery
 本発明は、リチウムイオン電池用負極及びリチウムイオン電池に関する。 The present invention relates to a negative electrode for a lithium ion battery and a lithium ion battery.
 近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン二次電池に注目が集まっている。 In recent years, reduction of carbon dioxide emissions has been strongly desired for environmental protection. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and we are eager to develop secondary batteries for motor drives that hold the key to their practical application. Has been done. As a secondary battery, attention is focused on a lithium ion secondary battery that can achieve a high energy density and a high output density.
 リチウムイオン二次電池については、出力等の電池特性のさらなる向上を求めて種々の検討が行われており、例えば高容量化できるリチウムイオン二次電池としては、導電性炭素粉末にナノサイズの酸化スズ粒子が担持されている負極活物質を用いた電池等が知られている(特開2011-253620号公報を参照)。 As for lithium ion secondary batteries, various studies have been conducted in order to further improve battery characteristics such as output. For example, as lithium ion secondary batteries capable of increasing capacity, nano-sized oxidation is performed on conductive carbon powder. A battery using a negative electrode active material on which tin particles are supported is known (see JP 2011-253620 A).
 一方、急速充電に対応できることも求められている。一般に、電池のエネルギー密度を低下させることなく急速充電を可能とするためには、電極活物質層(正極活物質層または負極活物質層)以外の構成部分、例えばセパレータや集電体についても薄膜化する必要がある。しかしながら、セパレータを薄くしすぎると析出したリチウムによって内部短絡が発生しやすくなるという問題があり、集電体を薄くしすぎると電池の内部抵抗が増加してしまうという問題があった。すなわち、電極を薄膜化することによって充電速度を向上させようとすると、電池全体におけるセパレータ及び集電体が占める体積が増加し、電池全体としてのエネルギー密度が低下してしまうという問題がある。また、薄膜化した電極においてエネルギー密度を向上させるために単位体積あたりの負極活物質の量を増加させる(負極活物質の充填密度を上げる)と、負極活物質の周囲に存在する非水電解液の量が相対的に減少して急速充電に対応できないという問題がある、そのため、特開2011-253620号公報等に記載の従来の高容量化できる電池であっても急速充電への対応と高容量化(エネルギー密度の向上)を両立させることが困難であるという課題があった。 On the other hand, it is also required to be able to handle rapid charging. In general, in order to enable rapid charging without lowering the energy density of the battery, a thin film is also formed on components other than the electrode active material layer (positive electrode active material layer or negative electrode active material layer), such as separators and current collectors. It is necessary to make it. However, if the separator is made too thin, there is a problem that an internal short circuit is likely to occur due to precipitated lithium, and if the current collector is made too thin, there is a problem that the internal resistance of the battery increases. That is, if the charging rate is increased by reducing the thickness of the electrode, there is a problem that the volume occupied by the separator and the current collector in the entire battery increases, and the energy density of the entire battery decreases. In addition, when the amount of the negative electrode active material per unit volume is increased in order to improve the energy density in the thinned electrode (increasing the packing density of the negative electrode active material), the nonaqueous electrolyte present around the negative electrode active material Therefore, even if the conventional battery capable of increasing the capacity described in Japanese Patent Application Laid-Open No. 2011-253620 is used, it is difficult to cope with rapid charging. There was a problem that it was difficult to achieve both capacity enhancement (energy density improvement).
 本発明は、上記課題を解決するためになされたものであり、エネルギー密度が高く、急速充電特性に優れるリチウムイオン電池用負極を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a negative electrode for a lithium ion battery having high energy density and excellent quick charge characteristics.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。すなわち、本発明は、負極集電体と、上記負極集電体の表面に形成された負極活物質層と、リチウムイオンを含む電解質と非水溶媒とを含む非水電解液とを備えたリチウムイオン電池用負極であって、上記負極活物質層は、負極活物質と空隙とを含み、上記空隙には上記非水電解液が充填されており、上記負極活物質の総量に基づく電池容量に対する、上記負極活物質層中に存在する上記非水電解液中のリチウムイオンの総量に基づく電池容量の割合が、3~17%であることを特徴とするリチウムイオン電池用負極;およびこれを用いたリチウムイオン電池に関する。 The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems. That is, the present invention is a lithium battery comprising a negative electrode current collector, a negative electrode active material layer formed on the surface of the negative electrode current collector, a nonaqueous electrolyte solution containing an electrolyte containing lithium ions and a nonaqueous solvent. The negative electrode for an ion battery, wherein the negative electrode active material layer includes a negative electrode active material and a void, and the void is filled with the non-aqueous electrolyte, and the battery capacity based on the total amount of the negative electrode active material A negative electrode for a lithium ion battery, wherein the ratio of the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is 3 to 17%; and The present invention relates to a lithium ion battery.
 以下、本発明を詳細に説明する。なお、本明細書において、リチウムイオン電池と記載する場合、リチウムイオン二次電池も含む概念とする。 Hereinafter, the present invention will be described in detail. Note that in this specification, a lithium ion battery includes a lithium ion secondary battery.
 本発明は、負極集電体と、上記負極集電体の表面に形成された負極活物質層と、リチウムイオンを含む電解質と非水溶媒とを含む非水電解液とを備えたリチウムイオン電池用負極であって、上記負極活物質層は、負極活物質と空隙とを含み、上記空隙には上記非水電解液が充填されており、上記負極活物質の総量に基づく電池容量に対する、上記負極活物質層中に存在する上記非水電解液中のリチウムイオンの総量に基づく電池容量の割合が、3~17%であることを特徴とするリチウムイオン電池用負極である。本発明のリチウムイオン電池用負極を用いると、エネルギー密度が高く、急速充電特性に優れるリチウムイオン電池を得ることができる。なお、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。 The present invention relates to a lithium ion battery comprising a negative electrode current collector, a negative electrode active material layer formed on the surface of the negative electrode current collector, a nonaqueous electrolyte solution containing an electrolyte containing lithium ions and a nonaqueous solvent. The negative electrode active material layer includes a negative electrode active material and a void, and the void is filled with the non-aqueous electrolyte, and the battery capacity based on the total amount of the negative electrode active material is A negative electrode for a lithium ion battery, wherein a ratio of a battery capacity based on a total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is 3 to 17%. When the negative electrode for a lithium ion battery of the present invention is used, a lithium ion battery having high energy density and excellent quick charge characteristics can be obtained. In this specification, “X to Y” indicating a range includes X and Y, and means “X or more and Y or less”.
 従来の方法により電極を薄膜化したリチウムイオン電池の問題点について、発明者らが鋭意研究したところ、電極の薄膜化に伴って負極活物質の周囲に存在するリチウムイオンの数が減少していることが原因であると推測された。 As a result of diligent research on the problems of lithium ion batteries whose electrodes have been thinned by conventional methods, the number of lithium ions present around the negative electrode active material has decreased with the thinning of the electrodes. It was speculated that this was the cause.
 従来技術では、セパレータの薄膜化によって正極-負極間の距離が短くなると、リチウムイオンの拡散距離が短くなり、急速充電に対応することができたと考えられる。一方、これを高エネルギー密度化するために、負極活物質の充填密度を増加させた場合には、負極活物質の周囲に存在する非水電解液の量が相対的に減少してしまい、急速充電に対応できなくなると考えられる。また、負極活物質の充填密度を増加させずに負極活物質量を増やした場合には、正極-負極間の距離が長くなるため、リチウムイオンの拡散に時間が掛かり、急速充電に対応できないと考えられる。 In the prior art, when the distance between the positive electrode and the negative electrode is shortened by thinning the separator, the diffusion distance of lithium ions is shortened, and it is considered that rapid charging can be supported. On the other hand, when the packing density of the negative electrode active material is increased in order to increase the energy density, the amount of the non-aqueous electrolyte present around the negative electrode active material is relatively reduced, and the It is thought that charging will not be possible. In addition, if the amount of the negative electrode active material is increased without increasing the packing density of the negative electrode active material, the distance between the positive electrode and the negative electrode becomes long. Conceivable.
 急速充電に際して問題となるのはリチウムイオン電池内部における正極から負極へのリチウムイオンの移動速度(拡散速度ともいう)であるが、負極活物質の周囲に充分な量のリチウムイオンが存在している場合、充電反応が開始されると、まず負極活物質の周囲に存在するリチウムイオンが負極活物質に取り込まれる。負極活物質の周囲のリチウムイオンが負極活物質に取り込まれても充電が終わらない場合には、正極から脱離したリチウムイオンが負極活物質に取り込まれて充電反応が進行すると考えられる。 The problem with rapid charging is the movement rate of lithium ions from the positive electrode to the negative electrode inside the lithium ion battery (also called the diffusion rate), but there is a sufficient amount of lithium ions around the negative electrode active material. In this case, when the charging reaction is started, first, lithium ions present around the negative electrode active material are taken into the negative electrode active material. In the case where charging does not end even when lithium ions around the negative electrode active material are taken into the negative electrode active material, it is considered that lithium ions desorbed from the positive electrode are taken into the negative electrode active material and the charging reaction proceeds.
 ここで、充電開始前から負極活物質の周囲に存在していたリチウムイオンは、リチウムイオンと負極活物質との距離が極めて接近しているため、急速充電に対応することができると考えられる。一方、正極に存在するリチウムイオンが負極に取り込まれるためには、正極-負極間を移動する必要があるため、リチウムイオンの拡散速度が律速となって急速充電に対応できないという問題があった。 Here, it is considered that the lithium ions existing around the negative electrode active material before the start of charging can respond to rapid charging because the distance between the lithium ions and the negative electrode active material is very close. On the other hand, in order for lithium ions present in the positive electrode to be taken into the negative electrode, it is necessary to move between the positive electrode and the negative electrode, so that the diffusion rate of lithium ions is rate-limiting and cannot be used for rapid charging.
 これに対して、本発明のリチウムイオン電池用負極では、負極活物質の周囲に存在する空隙に非水電解液が充填されており、負極活物質の総量に基づく電池容量に対する、負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量の割合(電池容量割合)が、3~17%であるため、負極活物質の周囲には、急速充電に対応可能なリチウムイオンが充分に存在しているといえる。負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量の割合が、3%未満であると負極活物質の周囲の急速充電に対応可能なリチウムイオンが充分ではなく、17%を超えると電解液の高濃度化による溶液抵抗の増加やリチウム塩の析出により急速充電特性が悪化する。上記電池容量割合は、好ましくは5~17%であり、より好ましくは10~17%である。 On the other hand, in the negative electrode for lithium ion batteries of the present invention, the non-aqueous electrolyte is filled in the voids present around the negative electrode active material, and the negative electrode active material layer with respect to the battery capacity based on the total amount of the negative electrode active material Since the battery capacity ratio (battery capacity ratio) based on the total amount of lithium ions in the non-aqueous electrolyte present in the battery is 3 to 17%, lithium that can be rapidly charged around the negative electrode active material It can be said that there are enough ions. When the ratio of the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is less than 3%, there are not enough lithium ions that can be used for rapid charging around the negative electrode active material. If it exceeds 17%, the rapid charge characteristics deteriorate due to an increase in solution resistance due to the increase in the concentration of the electrolyte and precipitation of lithium salts. The battery capacity ratio is preferably 5 to 17%, more preferably 10 to 17%.
 さらに、本発明のリチウムイオン電池用負極は、負極活物質の周囲に充分な量のリチウムイオンが存在するため、急速充電において正極-負極間のリチウムイオンの拡散速度を考慮する必要がない。すなわち、本発明のリチウムイオン電池用負極は、負極活物質の量を増加させることによってエネルギー密度の増加を図ったとしても、正極-負極間のリチウムイオンの拡散速度が充電速度に影響を及ぼさないため、急速充電特性を劣化させることがない。 Furthermore, since a sufficient amount of lithium ions is present around the negative electrode active material in the negative electrode for a lithium ion battery of the present invention, it is not necessary to consider the diffusion rate of lithium ions between the positive electrode and the negative electrode in rapid charging. That is, in the negative electrode for a lithium ion battery of the present invention, even if the energy density is increased by increasing the amount of the negative electrode active material, the diffusion rate of lithium ions between the positive electrode and the negative electrode does not affect the charging rate. Therefore, the quick charge characteristic is not deteriorated.
 従って、本発明のリチウムイオン電池用負極を用いたリチウムイオン電池は、急速充電への対応とエネルギー密度の向上を両立させることができる。 Therefore, the lithium ion battery using the negative electrode for the lithium ion battery of the present invention can achieve both rapid charging and improved energy density.
 なお、負極活物質の総量に基づく電池容量とは、負極活物質層を構成する負極活物質重量に基づいた理論上の電池容量のことである。ただし、電池容量の理論値は、繰り返しの充放電に耐えうる程度のものを指し、不可逆反応となって繰り返しの充放電が困難な場合の初回の充電容量等は除く。また、負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量とは、負極活物質層中に含まれる非水電解液中のリチウムイオンが全て、負極活物質に挿入された時の電池容量のことである。 In addition, the battery capacity based on the total amount of the negative electrode active material is a theoretical battery capacity based on the weight of the negative electrode active material constituting the negative electrode active material layer. However, the theoretical value of the battery capacity refers to that which can withstand repeated charge and discharge, and excludes the initial charge capacity when repeated charge and discharge is difficult due to irreversible reaction. Also, the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer means that all the lithium ions in the non-aqueous electrolyte contained in the negative electrode active material layer are converted into the negative electrode active material. It is the battery capacity when inserted.
 負極活物質の総量に基づく電池容量は以下の式に従って計算する。
電池容量[mAh/cm]=負極活物質容量[mAh/g]×負極活物質目付[mg/cm]/10
 なお、負極活物質容量[mAh/g]は、負極活物質(負極活物質が高分子化合物を含む被覆層により被覆された被覆負極活物質である場合は、被覆負極活物質)を、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)にLiN(FSOを3mol/Lの割合で溶解させて作製した非水電解液と混合してスラリー化し、アラミドセパレータ[日本バイリーン株式会社製]の片面に塗布した後、10MPaの圧力で10秒プレスして電極を作製して、セパレータを介して対極(金属リチウム)と対向させた状態で電池パックに組み込み、0.0Vから1.5Vまで放電(放電レート:1/20C)した際の放電容量を室温で充放電測定装置「バッテリーアナライザー1470型」[株式会社東陽テクニカ製]等で測定して得られる。
The battery capacity based on the total amount of the negative electrode active material is calculated according to the following formula.
Battery capacity [mAh / cm 2 ] = negative electrode active material capacity [mAh / g] × negative electrode active material basis weight [mg / cm 2 ] / 10 3
Note that the negative electrode active material capacity [mAh / g] represents the negative electrode active material (in the case where the negative electrode active material is a coated negative electrode active material coated with a coating layer containing a polymer compound), ethylene carbonate A mixture of non-aqueous electrolyte prepared by dissolving LiN (FSO 2 ) 2 at a ratio of 3 mol / L in a mixed solvent of (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) to form an aramid After applying to one side of a separator [manufactured by Japan Vilene Co., Ltd.], press for 10 seconds at a pressure of 10 MPa to prepare an electrode, and it is incorporated into the battery pack in a state facing the counter electrode (metal lithium) through the separator, Discharge capacity when discharged from 0.0 V to 1.5 V (discharge rate: 1/20 C) at room temperature, charge / discharge measuring device “Battery Analyzer 1470 type” [Stock Board Toyo obtained by measuring at Technica Ltd.] and the like.
 負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量は、負極活物質層の厚さ、空隙率及び非水電解液の上記電解質濃度から一義的に導き出すことができ、これらを適時組み合わせることで調整できる。計算式は以下の通りである。
負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量[mAh/cm]=電極空隙体積[cm]×非水電解液の上記電解質濃度[モル/L]/10×容量換算定数[mAh/モル]/電極面積[cm
容量換算定数[mAh/モル]:26806
 なお、容量換算定数はリチウムイオン1個あたりの電池容量を表す。
電極空隙体積[cm]=空隙率[体積%]×電極の膜厚[μm]/10×電極面積[cm
 負極活物質の総量に基づく電池容量に対する、負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量の割合(電池容量割合)は、負極活物質の種類、負極活物質層における負極活物質の目付、負極活物質層の空隙率、非水電解液の電解質濃度などによって制御することができる。
The battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer can be uniquely derived from the thickness of the negative electrode active material layer, the porosity, and the electrolyte concentration of the non-aqueous electrolyte. It can be adjusted by combining them in a timely manner. The calculation formula is as follows.
Battery capacity [mAh / cm 2 ] based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer = electrode void volume [cm 3 ] × the electrolyte concentration of the non-aqueous electrolyte [mol / L] / 10 3 × capacity conversion constant [mAh / mol] / electrode area [cm 2 ]
Capacity conversion constant [mAh / mol]: 26806
The capacity conversion constant represents the battery capacity per lithium ion.
Electrode void volume [cm 3 ] = Porosity [volume%] × Electrode film thickness [μm] / 10 4 × electrode area [cm 2 ]
The battery capacity ratio (battery capacity ratio) based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer with respect to the battery capacity based on the total amount of negative electrode active material is the type of negative electrode active material, negative electrode active It can be controlled by the weight of the negative electrode active material in the material layer, the porosity of the negative electrode active material layer, the electrolyte concentration of the non-aqueous electrolyte, and the like.
 例えば、負極活物質層の目付を大きくする、または空隙率を小さくすると、負極活物質の総量に基づく電池容量が増加して電池容量割合は小さくなる。一方、非水電解液の電解質濃度を高くする、または、負極活物質層の空隙率を大きくすると、負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量が増加して電池容量割合が増加する。 For example, when the basis weight of the negative electrode active material layer is increased or the porosity is decreased, the battery capacity based on the total amount of the negative electrode active material is increased and the battery capacity ratio is decreased. On the other hand, increasing the electrolyte concentration of the non-aqueous electrolyte or increasing the porosity of the negative electrode active material layer increases the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer. As a result, the battery capacity ratio increases.
 本発明のリチウムイオン電池用負極を構成する負極活物質としては、従来からリチウムイオン電池の負極用の活物質として用いられているものを好適に使用することができる。 As the negative electrode active material constituting the negative electrode for a lithium ion battery of the present invention, those conventionally used as an active material for a negative electrode of a lithium ion battery can be suitably used.
 負極活物質としては、炭素系材料[例えば黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)、炭化ケイ素及び炭素繊維等]、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属(スズ、シリコン、アルミニウム、ジルコニウム及びチタン等)、金属酸化物(チタン酸化物、リチウム・チタン酸化物及びケイ素酸化物等)及び金属合金(例えばリチウム-スズ合金、リチウム-シリコン合金、リチウム-アルミニウム合金及びリチウム-アルミニウム-マンガン合金等)等が挙げられる。2種以上の負極活物質が併用されてもよい。 Examples of the negative electrode active material include carbon-based materials [for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch coke, Needle coke and petroleum coke etc.), silicon carbide and carbon fiber etc.], conductive polymers (eg polyacetylene and polypyrrole etc.), metals (tin, silicon, aluminum, zirconium and titanium etc.), metal oxides (titanium oxide, Lithium-titanium oxide, silicon oxide, etc.) and metal alloys (for example, lithium-tin alloy, lithium-silicon alloy, lithium-aluminum alloy and lithium-aluminum-manganese alloy). Two or more negative electrode active materials may be used in combination.
 上記負極活物質のうち、内部にリチウム又はリチウムイオンを含まないものについては、予め活物質の一部又は全部にリチウム又はリチウムイオンを含ませるプレドープ処理を施してもよい。なかでも、容量、出力特性の観点から、炭素系材料または金属酸化物が、負極活物質として好ましく用いられる。 Among the negative electrode active materials described above, those that do not contain lithium or lithium ions may be subjected to a pre-doping treatment in which lithium or lithium ions are included in part or all of the active material in advance. Among these, from the viewpoint of capacity and output characteristics, a carbon-based material or a metal oxide is preferably used as the negative electrode active material.
 負極活物質の体積平均粒子径は、電池の電気特性の観点から、0.01~100μmが好ましく、0.1~20μmであることがより好ましく、2~20μmであることがさらに好ましい。 The volume average particle diameter of the negative electrode active material is preferably from 0.01 to 100 μm, more preferably from 0.1 to 20 μm, and even more preferably from 2 to 20 μm, from the viewpoint of the electric characteristics of the battery.
 本明細書において、負極活物質の体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法である。なお、体積平均粒子径の測定には、日機装株式会社製のマイクロトラック等を用いることができる。 In the present specification, the volume average particle diameter of the negative electrode active material means a particle diameter (Dv50) at an integrated value of 50% in a particle size distribution obtained by a microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light. In addition, the Nikkiso Co., Ltd. microtrack etc. can be used for the measurement of a volume average particle diameter.
 本発明のリチウムイオン電池用負極では、負極活物質層は負極活物質と空隙とを含む。負極活物質層が空隙を含み、リチウムイオンを含む非水電解液を該空隙に充填することで、負極活物質の周囲に充分な量のリチウムイオンを配置することができる。 In the negative electrode for a lithium ion battery of the present invention, the negative electrode active material layer includes a negative electrode active material and voids. A sufficient amount of lithium ions can be disposed around the negative electrode active material by filling the voids with the non-aqueous electrolyte containing lithium ions in the negative electrode active material layer.
 負極活物質層における空隙の体積は、負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量が、負極活物質の総量に基づく電池容量の3~17%となるようであれば特に限定されないが、空隙の総体積が負極活物質層の総体積の35~60体積%であることが好ましく、35~50体積%であることがより好ましい。総体積の35~60体積%の空隙が負極活物質層中に形成されていると、該空隙に非水電解液を充填することにより、負極活物質の周囲に充分な量のリチウムイオンを配置することができる。 The void volume in the negative electrode active material layer is such that the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is 3 to 17% of the battery capacity based on the total amount of negative electrode active material. The total volume of the voids is preferably 35 to 60% by volume, more preferably 35 to 50% by volume, based on the total volume of the negative electrode active material layer. When voids of 35 to 60% by volume of the total volume are formed in the negative electrode active material layer, a sufficient amount of lithium ions is arranged around the negative electrode active material by filling the voids with a non-aqueous electrolyte. can do.
 本明細書において、空隙とは、負極が非水電解液を含浸していない状態で負極活物質層が有する空隙のことを指す。空隙率は負極活物質層の断面をX線コンピュータ断層撮影(CT)等による画像解析で求めることもできる。 In the present specification, the void refers to a void included in the negative electrode active material layer in a state where the negative electrode is not impregnated with the non-aqueous electrolyte. The porosity can also be obtained by image analysis of the cross section of the negative electrode active material layer by X-ray computed tomography (CT) or the like.
 ただし、負極活物質層が電解液や他の成分を含んでおり、空隙を含む負極活物質層のX線CT画像を得られない場合には、以下の方法により測定するものとする。
空隙率は、一定体積の負極活物質層を構成する各固体成分(電解質を除く)の重量を各成分の真密度でそれぞれ除して得られる各成分の体積値の合計値を負極活物質層の体積から引いて得られる値をさらに負極活物質層の体積で除することにより算出することができる。
However, when the negative electrode active material layer contains an electrolytic solution and other components and an X-ray CT image of the negative electrode active material layer including voids cannot be obtained, the measurement is performed by the following method.
The porosity is the total volume value of each component obtained by dividing the weight of each solid component (excluding the electrolyte) constituting the negative electrode active material layer having a constant volume by the true density of each component. The value obtained by subtracting from the volume of can be calculated by further dividing by the volume of the negative electrode active material layer.
 各固体成分の重量及び真密度は、負極を非水溶媒等で洗浄した洗浄液を固液分離し、非水溶媒を除去することにより求めることができる。 The weight and true density of each solid component can be determined by solid-liquid separation of a cleaning solution obtained by cleaning the negative electrode with a non-aqueous solvent, and removing the non-aqueous solvent.
 なお、上記固体成分は、非水溶媒に溶解する成分と溶解しない成分とに分離せずに、固体成分の混合物として、その重量を真密度で除して固体成分全体の体積を求めることで、各成分ごとに重量及び真密度を測定する方法に代えてもよい。 The solid component is not separated into a component that dissolves in a non-aqueous solvent and a component that does not dissolve, and as a mixture of solid components, the weight is divided by the true density to obtain the volume of the entire solid component, You may replace with the method of measuring a weight and a true density for every component.
 負極活物質層の厚さ(以下、単に膜厚ともいう)は、特に限定されないが、エネルギー密度と入出力特性との両立の観点から100μm以上、1500μm以下であることが好ましく、150μm以上、1200μm以下であることがより好ましく、200μm以上、800μm以下であることがさらに好ましい。 The thickness of the negative electrode active material layer (hereinafter also simply referred to as “film thickness”) is not particularly limited, but is preferably 100 μm or more and 1500 μm or less, and preferably 150 μm or more and 1200 μm from the viewpoint of achieving both energy density and input / output characteristics. Or less, more preferably 200 μm or more and 800 μm or less.
 負極活物質層が単位面積あたりに保持できる非水電解液の量は特に限定されないが、6~120μL/cmであることが好ましい。 The amount of the non-aqueous electrolyte that the negative electrode active material layer can hold per unit area is not particularly limited, but is preferably 6 to 120 μL / cm 2 .
 なお、単位面積あたりの基準となる面は、負極集電体の表面に平行な面である。負極活物質層が単位面積あたりに保持できる非水電解液の量が6μL/cm以上であると、負極活物質の周囲に存在するリチウムイオンの総量が十分に得られ、レート特性に優れる。単位面積あたりに保持できる非水電解液の量は、負極活物質層の空隙率と膜厚から計算して求めることができる。 The reference surface per unit area is a surface parallel to the surface of the negative electrode current collector. When the amount of the non-aqueous electrolyte that the negative electrode active material layer can hold per unit area is 6 μL / cm 2 or more, the total amount of lithium ions present around the negative electrode active material is sufficiently obtained, and the rate characteristics are excellent. The amount of the non-aqueous electrolyte solution that can be held per unit area can be determined by calculating from the porosity and film thickness of the negative electrode active material layer.
 負極集電体としては、特に限定されないが、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、樹脂として導電性高分子(電子伝導性の骨格を有する高分子)または非導電性高分子材料に必要に応じて導電材料が添加された材料、及び導電性ガラス等の導電性材料を含む箔等が挙げられる。なかでも、安全性の観点から負極集電体として、導電材料と樹脂とを含む樹脂集電体を用いることが好ましい。 The negative electrode current collector is not particularly limited, but copper, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer (polymer having an electron conductive skeleton) or non-conductive polymer material as a resin Examples thereof include a material to which a conductive material is added if necessary, and a foil containing a conductive material such as conductive glass. Among these, from the viewpoint of safety, it is preferable to use a resin current collector containing a conductive material and a resin as the negative electrode current collector.
 樹脂集電体に含まれる導電材料は、導電性を有する材料から選択される。具体的には、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、及びこれらの混合物等が挙げられるが、これらに限定されるわけではない。これらの導電材料は1種単独で用いてもよいし、2種以上併用してもよい。また、上記金属の合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電材料としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電材料の材料のうち金属のもの)をめっき等でコーティングしたものでもよい。 The conductive material contained in the resin current collector is selected from conductive materials. Specifically, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.], carbon [graphite and carbon black (acetylene black, ketjen black, furnace black, channel black, thermal lamp black, etc.), etc. , And mixtures thereof, but are not limited thereto. These conductive materials may be used alone or in combination of two or more. Alternatively, an alloy or metal oxide of the above metal may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. In addition, as these conductive materials, a particulate ceramic material or a resin material may be coated with a conductive material (a metal material among the above-described conductive materials) by plating or the like.
 導電材料の平均粒子径は、特に限定されるものではないが、電池の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。なお、「導電材料の粒子径」とは、導電材料の輪郭線上の任意の2点間の距離のうち、最大の距離を意味する。「平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle diameter of the conductive material is not particularly limited, but is preferably from 0.01 to 10 μm, more preferably from 0.02 to 5 μm, from the viewpoint of the electric characteristics of the battery. More preferably, the thickness is 03 to 1 μm. The “particle diameter of the conductive material” means the maximum distance among any two points on the contour line of the conductive material. The value of “average particle size” is the average value of the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The calculated value shall be adopted.
 導電材料の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、カーボンナノフィラー、カーボンナノチューブ等、いわゆるフィラー系導電性樹脂組成物として実用化されている形態であってもよい。 The shape (form) of the conductive material is not limited to the particle form, and may be a form other than the particle form, and in a form that is put into practical use as a so-called filler-based conductive resin composition such as carbon nanofiller and carbon nanotube. There may be.
 導電材料は、その形状が繊維状である導電性繊維であってもよい。導電性繊維としては、PAN系炭素繊維、ピッチ系炭素繊維等の炭素繊維、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物繊維の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。これらの導電性繊維の中では炭素繊維が好ましい。また、グラフェンを練りこんだポリプロピレン樹脂も好ましい。導電材料が導電性繊維である場合、その平均繊維径は0.1~20μmであることが好ましい。 The conductive material may be a conductive fiber having a fibrous shape. Examples of conductive fibers include carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, conductive fibers obtained by uniformly dispersing highly conductive metal and graphite in synthetic fibers, and metals such as stainless steel. Examples thereof include fiberized metal fibers, conductive fibers in which the surface of organic fiber is coated with metal, and conductive fibers in which the surface of organic fiber is coated with a resin containing a conductive substance. Among these conductive fibers, carbon fibers are preferable. A polypropylene resin in which graphene is kneaded is also preferable. When the conductive material is a conductive fiber, the average fiber diameter is preferably 0.1 to 20 μm.
 樹脂集電体に含まれる樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 The resins contained in the resin current collector include polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), polytetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof Is mentioned. From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
 非水電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する非水電解液を使用することができる。 As the non-aqueous electrolyte, a non-aqueous electrolyte containing an electrolyte and a non-aqueous solvent used in the production of a lithium ion battery can be used.
 電解質としては、公知の電解液に用いられているもの等が使用でき、好ましいものとしては、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩系電解質、LiN(FSO、LiN(CFSO及びLiN(CSO等のフッ素原子を有するスルホニルイミド系電解質、LiC(CFSO等のフッ素原子を有するスルホニルメチド系電解質等が挙げられる。これらの内、高濃度時のイオン伝導性及び熱分解温度の観点から好ましいのはフッ素原子を有するスルホニルイミド系電解質であり、LiN(FSOがより好ましい。LiN(FSOは、他の電解質と併用してもよいが、単独で使用することがより好ましい。 As the electrolyte, those used in known electrolyte solutions can be used, and preferable examples include lithium salt electrolytes of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4 , A sulfonylimide-based electrolyte having fluorine atoms such as LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2, and a fluorine atom such as LiC (CF 3 SO 2 ) 3 are used. Examples thereof include a sulfonylmethide-based electrolyte. Among these, a sulfonylimide-based electrolyte having a fluorine atom is preferable from the viewpoint of ion conductivity at a high concentration and a thermal decomposition temperature, and LiN (FSO 2 ) 2 is more preferable. LiN (FSO 2 ) 2 may be used in combination with other electrolytes, but is more preferably used alone.
 非水電解液の電解質濃度は、特に限定されないが、非水電解液の取り扱い性及び電池容量等の観点から1~5mol/Lであることが好ましく、1.5~4mol/Lであることがより好ましく、2~3mol/Lであることがさらに好ましい。 The electrolyte concentration of the non-aqueous electrolyte is not particularly limited, but is preferably 1 to 5 mol / L, and preferably 1.5 to 4 mol / L from the viewpoints of the handleability of the non-aqueous electrolyte and battery capacity. More preferably, it is 2 to 3 mol / L.
 非水溶媒としては、公知の非水電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン等及びこれらの混合物を用いることができる。 As the non-aqueous solvent, those used in known non-aqueous electrolytes can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers, phosphate esters. , Nitrile compounds, amide compounds, sulfones and the like and mixtures thereof.
 ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。 Examples of the lactone compound include 5-membered rings (such as γ-butyrolactone and γ-valerolactone) and 6-membered lactone compounds (such as δ-valerolactone).
 環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。 Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate.
 鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。 Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
 鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。 Examples of the chain carboxylic acid ester include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
 環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。 Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
 鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。 Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
 リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
 ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、N,N-ジメチルホルムアミド(以下、DMFと記載する)等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等の鎖状スルホン及びスルホラン等の環状スルホン等が挙げられる。 Examples of nitrile compounds include acetonitrile. Examples of the amide compound include N, N-dimethylformamide (hereinafter referred to as DMF). Examples of the sulfone include chain sulfones such as dimethyl sulfone and diethyl sulfone, and cyclic sulfones such as sulfolane.
 非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。 The non-aqueous solvent may be used alone or in combination of two or more.
 非水溶媒の内、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルであり、ニトリル化合物を含まないことが好ましい。更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。 Among the nonaqueous solvents, lactone compounds, cyclic carbonates, chain carbonates, and phosphates are preferable from the viewpoint of battery output and charge / discharge cycle characteristics, and preferably do not contain a nitrile compound. More preferred are lactone compounds, cyclic carbonates and chain carbonates, and particularly preferred is a mixture of cyclic carbonate and chain carbonate. Most preferred is a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) or a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC).
 負極活物質層はさらに導電材を含んでもよい。導電材としては、例えば導電性繊維が挙げられる。 The negative electrode active material layer may further contain a conductive material. Examples of the conductive material include conductive fibers.
 負極活物質層がさらに導電性繊維を含む場合、導電性繊維は負極活物質層中での電子伝導を補助する働きをすることができ、導電性繊維としては上記樹脂集電体で説明した導電性繊維と同じものを用いることができる。負極活物質層がさらに導電性繊維を含む場合、負極活物質には、後述する被覆負極活物質を用いることが好ましい。 When the negative electrode active material layer further includes a conductive fiber, the conductive fiber can function to assist electronic conduction in the negative electrode active material layer, and the conductive fiber described above with respect to the resin current collector is used as the conductive fiber. The same thing as a property fiber can be used. When the negative electrode active material layer further contains conductive fibers, it is preferable to use a coated negative electrode active material described later as the negative electrode active material.
 負極活物質層がさらに導電性繊維を含む場合、負極活物質層に含まれる導電性繊維の含有量は、負極活物質層の合計重量に対して25重量%以下であることが好ましい。 When the negative electrode active material layer further contains conductive fibers, the content of the conductive fibers contained in the negative electrode active material layer is preferably 25% by weight or less with respect to the total weight of the negative electrode active material layer.
 ただし、繊維状の形態を有しない導電剤が用いられてももちろんよい。例えば、粒子状(例えば、球状)の形態を有する導電剤が用いられうる。導電剤が粒子状である場合、粒子の形状は特に限定されず、粉末状、球状、板状、柱状、不定形状、燐片状、紡錘状等、いずれの形状であっても構わない。粒子状(例えば、球状)の形態を有する導電剤としては、上記樹脂集電体で説明した導電材料と同じものを用いることができる。 However, it goes without saying that a conductive agent having no fibrous form may be used. For example, a conductive agent having a particulate (for example, spherical) form can be used. When the conductive agent is in the form of particles, the shape of the particles is not particularly limited, and may be any shape such as powder, sphere, plate, column, indefinite shape, flake shape, and spindle shape. As the conductive agent having a particulate (for example, spherical) form, the same conductive material as that described for the resin current collector can be used.
 負極活物質は、その表面の一部又は全部が、高分子化合物を含む被覆層により被覆されていることが好ましい。表面の一部又は全部が被覆層により被覆された負極活物質を、被覆負極活物質ともいう。負極活物質の表面が被覆層で被覆されていると、負極の体積変化が緩和され、負極の膨張を抑制することができる。さらに、負極活物質の非水溶媒に対する濡れ性を向上させることができる。 The negative electrode active material is preferably partially or entirely covered with a coating layer containing a polymer compound. A negative electrode active material in which part or all of the surface is coated with a coating layer is also referred to as a coated negative electrode active material. When the surface of the negative electrode active material is coated with the coating layer, the volume change of the negative electrode is relieved and the negative electrode can be prevented from expanding. Furthermore, the wettability of the negative electrode active material with respect to the non-aqueous solvent can be improved.
 被覆層を構成する高分子化合物としては、非水電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上である高分子化合物が好ましい。 Examples of the polymer compound constituting the coating layer include a polymer compound having a liquid absorption rate of 10% or more when immersed in a non-aqueous electrolyte and a tensile elongation at break in a saturated liquid absorption state of 10% or more. preferable.
 非水電解液に浸漬した際の吸液率は、非水電解液に浸漬する前、浸漬した後の高分子化合物の重量を測定して、以下の式で求められる。
吸液率(%)=[(非水電解液浸漬後の高分子化合物の重量-非水電解液浸漬前の高分子化合物の重量)/非水電解液浸漬前の高分子化合物の重量]×100
吸液率を求めるための非水電解液としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を体積割合でEC:DEC=3:7で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した非水電解液を用いる。
The liquid absorption rate when immersed in the non-aqueous electrolyte is obtained by the following equation by measuring the weight of the polymer compound before and after being immersed in the non-aqueous electrolyte.
Absorption rate (%) = [(weight of polymer compound after immersion in non-aqueous electrolyte−weight of polymer compound before immersion in non-aqueous electrolyte) / weight of polymer compound before immersion in non-aqueous electrolyte] × 100
As a non-aqueous electrolyte for obtaining the liquid absorption rate, LiPF 6 as an electrolyte was added at a concentration of 1 mol / liter in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of EC: DEC = 3: 7. A nonaqueous electrolytic solution dissolved to a concentration of L is used.
 吸液率を求める際の非水電解液への浸漬は、50℃、3日間行う。50℃、3日間の浸漬を行うことにより高分子化合物が飽和吸液状態となる。なお、飽和吸液状態とは、それ以上非水電解液に浸漬しても高分子化合物の重量が増えない状態をいう。 Immersing in non-aqueous electrolyte when calculating the liquid absorption rate is performed at 50 ° C. for 3 days. By immersing at 50 ° C. for 3 days, the polymer compound becomes saturated. The saturated liquid absorption state refers to a state in which the weight of the polymer compound does not increase even when immersed in the non-aqueous electrolyte.
 なお、リチウムイオン電池を製造する際に使用する非水電解液は、上記非水電解液に限定されるものではなく、他の非水電解液を使用してもよい。 In addition, the non-aqueous electrolyte used when manufacturing a lithium ion battery is not limited to the said non-aqueous electrolyte, You may use another non-aqueous electrolyte.
 吸液率が10%以上であると、高分子化合物が充分に非水電解液を吸液しており、リチウムイオンが高分子化合物を容易に透過することができるため、負極活物質と非水電解液の間でのリチウムイオンの移動が妨げられることがない。吸液率が10%未満であると、非水電解液が高分子化合物内に浸透しにくいためにリチウムイオンの伝導性が低くなり、リチウムイオン電池としての性能が充分に発揮されないことがある。吸液率は20%以上であることがより好ましく、30%以上であることがさらに好ましい。また、吸液率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。 When the liquid absorption rate is 10% or more, the polymer compound sufficiently absorbs the non-aqueous electrolyte, and lithium ions can easily permeate the polymer compound. The movement of lithium ions between electrolytes is not hindered. If the liquid absorption rate is less than 10%, the non-aqueous electrolyte does not easily penetrate into the polymer compound, so that the lithium ion conductivity is lowered and the performance as a lithium ion battery may not be sufficiently exhibited. The liquid absorption is more preferably 20% or more, and further preferably 30% or more. Moreover, as a preferable upper limit of a liquid absorption rate, it is 400%, and as a more preferable upper limit, it is 300%.
 飽和吸液状態での引張破断伸び率は、高分子化合物をダンベル状に打ち抜き、上記吸液率の測定と同様に非水電解液への浸漬を50℃、3日間行って高分子化合物を飽和吸液状態として、ASTM D683(試験片形状TypeII)に準拠して測定することができる。引張破断伸び率は、引張試験において試験片が破断するまでの伸び率を下記式によって算出した値である。
引張破断伸び率(%)=[(破断時試験片長さ-試験前試験片長さ)/試験前試験片長さ]×100
 高分子化合物の飽和吸液状態での引張破断伸び率が10%以上であると、高分子化合物が適度な柔軟性を有するため、充放電時の負極活物質の体積変化によって被覆層が剥離することを抑制しやすくなる。引張破断伸び率は20%以上であることがより好ましく、30%以上であることがさらに好ましい。また、引張破断伸び率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。
The tensile elongation at break in the saturated liquid absorption state is obtained by punching the polymer compound into a dumbbell shape and immersing in a non-aqueous electrolyte at 50 ° C. for 3 days in the same manner as the measurement of the liquid absorption rate described above to saturate the polymer compound. As a liquid absorption state, it can measure based on ASTM D683 (test piece shape Type II). The tensile elongation at break is a value obtained by calculating the elongation until the test piece breaks in the tensile test according to the following formula.
Tensile elongation at break (%) = [(length of specimen at break−length of specimen before test) / length of specimen before test] × 100
When the tensile elongation at break in the saturated liquid absorption state of the polymer compound is 10% or more, the polymer compound has an appropriate flexibility, so that the coating layer peels off due to the volume change of the negative electrode active material during charge / discharge. It becomes easy to suppress this. The tensile elongation at break is more preferably 20% or more, and further preferably 30% or more. Further, the preferable upper limit value of the tensile elongation at break is 400%, and the more preferable upper limit value is 300%.
 続いて、被覆層を構成する高分子化合物について具体的に説明する。被覆層を構成する高分子化合物としては、熱可塑性樹脂や熱硬化性樹脂などが挙げられ、例えば、ビニル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート、ポリサッカロイド(アルギン酸ナトリウム等)及びこれらの混合物等が挙げられる。これらの中ではビニル樹脂が好ましい。 Subsequently, the polymer compound constituting the coating layer will be specifically described. Examples of the polymer compound constituting the coating layer include thermoplastic resins and thermosetting resins, such as vinyl resins, urethane resins, polyester resins, polyamide resins, epoxy resins, polyimide resins, silicone resins, phenol resins, Examples include melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, polysaccharides (such as sodium alginate), and mixtures thereof. Of these, vinyl resins are preferred.
 ビニル樹脂は、ビニルモノマー(a)を必須構成単量体とする重合体(A1)を含んでなる樹脂である。
特に、重合体(A1)は、ビニルモノマー(a)としてカルボキシル基又は酸無水物基を有するビニルモノマー(a1)及び下記一般式(1)で表されるビニルモノマー(a2)を含む単量体組成物の重合体であることが好ましい。
CH=C(R)COOR  (1)
[式(1)中、Rは水素原子又はメチル基であり、Rは炭素数4~12の直鎖又は炭素数4~36の分岐アルキル基である。]
ビニル樹脂のうち、非水電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上であるものがより好ましい。
The vinyl resin is a resin comprising a polymer (A1) having the vinyl monomer (a) as an essential constituent monomer.
In particular, the polymer (A1) is a monomer containing a vinyl monomer (a1) having a carboxyl group or an acid anhydride group as the vinyl monomer (a) and a vinyl monomer (a2) represented by the following general formula (1). A polymer of the composition is preferred.
CH 2 = C (R 1 ) COOR 2 (1)
[In Formula (1), R 1 is a hydrogen atom or a methyl group, and R 2 is a straight chain or branched alkyl group having 4 to 36 carbon atoms. ]
Among the vinyl resins, those having a liquid absorption rate of 10% or more when immersed in a non-aqueous electrolyte and a tensile elongation at break in a saturated liquid absorption state of 10% or more are more preferable.
 カルボキシル基又は酸無水物基を有するビニルモノマー(a1)としては、(メタ)アクリル酸(a11)、クロトン酸、桂皮酸等の炭素数3~15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4~24のジカルボン酸;アコニット酸等の炭素数6~24の3価~4価又はそれ以上の価数のポリカルボン酸等が挙げられる。これらの中でも(メタ)アクリル酸(a11)が好ましく、メタクリル酸がより好ましい。なお、(メタ)アクリル酸は、アクリル酸および/またはメタクリル酸を示す。 Examples of the vinyl monomer (a1) having a carboxyl group or an acid anhydride group include monocarboxylic acids having 3 to 15 carbon atoms such as (meth) acrylic acid (a11), crotonic acid and cinnamic acid; (anhydrous) maleic acid, fumaric acid Dicarboxylic acids having 4 to 24 carbon atoms such as acid, (anhydrous) itaconic acid, citraconic acid and mesaconic acid; polycarboxylic acids having 6 to 24 carbon atoms such as aconitic acid and the like having a valence of 3 to 4 or more. Is mentioned. Among these, (meth) acrylic acid (a11) is preferable, and methacrylic acid is more preferable. In addition, (meth) acrylic acid shows acrylic acid and / or methacrylic acid.
 上記一般式(1)で表されるビニルモノマー(a2)において、Rは水素原子又はメチル基を表す。Rはメチル基であることが好ましい。Rは、炭素数4~12の直鎖若しくは分岐アルキル基、又は、炭素数13~36の分岐アルキル基であることが好ましい。 In the vinyl monomer (a2) represented by the general formula (1), R 1 represents a hydrogen atom or a methyl group. R 1 is preferably a methyl group. R 2 is preferably a linear or branched alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 13 to 36 carbon atoms.
 (a21)Rが炭素数4~12の直鎖又は分岐アルキル基であるエステル化合物
炭素数4~12の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が挙げられる。
(A21) R 2 is a linear or branched alkyl group having 4 to 12 carbon atoms. Examples of the linear alkyl group having 4 to 12 carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, Nonyl group, decyl group, undecyl group, dodecyl group can be mentioned.
 炭素数4~12の分岐アルキル基としては、1-メチルプロピル基(sec-ブチル基)、2-メチルプロピル基、1,1-ジメチルエチル基(tert-ブチル基)、1-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基(ネオペンチル基)、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルヘキシル基、2-メチルヘキシル基、2-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1,1-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2-エチルペンチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、6-メチルヘプチル基、1,1-ジメチルヘキシル基、1,2-ジメチルヘキシル基、1,3-ジメチルヘキシル基、1,4-ジメチルヘキシル基、1,5-ジメチルヘキシル基、1-エチルヘキシル基、2-エチルヘキシル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、5-メチルオクチル基、6-メチルオクチル基、7-メチルオクチル基、1,1-ジメチルヘプチル基、1,2-ジメチルヘプチル基、1,3-ジメチルヘプチル基、1,4-ジメチルヘプチル基、1,5-ジメチルヘプチル基、1,6-ジメチルヘプチル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルノニル基、2-メチルノニル基、3-メチルノニル基、4-メチルノニル基、5-メチルノニル基、6-メチルノニル基、7-メチルノニル基、8-メチルノニル基、1,1-ジメチルオクチル基、1,2-ジメチルオクチル基、1,3-ジメチルオクチル基、1,4-ジメチルオクチル基、1,5-ジメチルオクチル基、1,6-ジメチルオクチル基、1,7-ジメチルオクチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルデシル基、2-メチルデシル基、3-メチルデシル基、4-メチルデシル基、5-メチルデシル基、6-メチルデシル基、7-メチルデシル基、8-メチルデシル基、9-メチルデシル基、1,1-ジメチルノニル基、1,2-ジメチルノニル基、1,3-ジメチルノニル基、1,4-ジメチルノニル基、1,5-ジメチルノニル基、1,6-ジメチルノニル基、1,7-ジメチルノニル基、1,8-ジメチルノニル基、1-エチルノニル基、2-エチルノニル基、1-メチルウンデシル基、2-メチルウンデシル基、3-メチルウンデシル基、4-メチルウンデシル基、5-メチルウンデシル基、6-メチルウンデシル基、7-メチルウンデシル基、8-メチルウンデシル基、9-メチルウンデシル基、10-メチルウンデシル基、1,1-ジメチルデシル基、1,2-ジメチルデシル基、1,3-ジメチルデシル基、1,4-ジメチルデシル基、1,5-ジメチルデシル基、1,6-ジメチルデシル基、1,7-ジメチルデシル基、1,8-ジメチルデシル基、1,9-ジメチルデシル基、1-エチルデシル基、2-エチルデシル基等が挙げられる。これらの中では、2-エチルヘキシル基が好ましい。 Examples of the branched alkyl group having 4 to 12 carbon atoms include 1-methylpropyl group (sec-butyl group), 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), 1-methylbutyl group, 1 , 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group 1-methylhexyl group, 2-methylhexyl group, 2-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1-ethylpentyl group, -Ethylpentyl group, 3-ethylpentyl group, 1,1-dimethylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group 2-ethylpentyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 6-methylheptyl group, 1,1-dimethylhexyl group 1,2-dimethylhexyl group, 1,3-dimethylhexyl group, 1,4-dimethylhexyl group, 1,5-dimethylhexyl group, 1-ethylhexyl group, 2-ethylhexyl group, 1-methyloctyl group, 2 -Methyloctyl group, 3-methyloctyl group, 4-methyloctyl group, 5-methyloctyl group, 6-methyloctyl group, 7-methyloctyl group Tyl group, 1,1-dimethylheptyl group, 1,2-dimethylheptyl group, 1,3-dimethylheptyl group, 1,4-dimethylheptyl group, 1,5-dimethylheptyl group, 1,6-dimethylheptyl group 1-ethylheptyl group, 2-ethylheptyl group, 1-methylnonyl group, 2-methylnonyl group, 3-methylnonyl group, 4-methylnonyl group, 5-methylnonyl group, 6-methylnonyl group, 7-methylnonyl group, 8- Methylnonyl group, 1,1-dimethyloctyl group, 1,2-dimethyloctyl group, 1,3-dimethyloctyl group, 1,4-dimethyloctyl group, 1,5-dimethyloctyl group, 1,6-dimethyloctyl group 1,7-dimethyloctyl group, 1-ethyloctyl group, 2-ethyloctyl group, 1-methyldecyl group, 2-methyldecyl group, 3-methyloctyl group, Tildecyl group, 4-methyldecyl group, 5-methyldecyl group, 6-methyldecyl group, 7-methyldecyl group, 8-methyldecyl group, 9-methyldecyl group, 1,1-dimethylnonyl group, 1,2-dimethylnonyl group, 1 , 3-dimethylnonyl group, 1,4-dimethylnonyl group, 1,5-dimethylnonyl group, 1,6-dimethylnonyl group, 1,7-dimethylnonyl group, 1,8-dimethylnonyl group, 1-ethylnonyl Group, 2-ethylnonyl group, 1-methylundecyl group, 2-methylundecyl group, 3-methylundecyl group, 4-methylundecyl group, 5-methylundecyl group, 6-methylundecyl group, 7 -Methylundecyl group, 8-methylundecyl group, 9-methylundecyl group, 10-methylundecyl group, 1,1-dimethyldecyl group, 1,2-dimethyl Sil group, 1,3-dimethyldecyl group, 1,4-dimethyldecyl group, 1,5-dimethyldecyl group, 1,6-dimethyldecyl group, 1,7-dimethyldecyl group, 1,8-dimethyldecyl group 1,9-dimethyldecyl group, 1-ethyldecyl group, 2-ethyldecyl group and the like. Among these, a 2-ethylhexyl group is preferable.
 (a22)Rが炭素数13~36の分岐アルキル基であるエステル化合物
炭素数13~36の分岐アルキル基としては、1-アルキルアルキル基[1-メチルドデシル基、1-ブチルエイコシル基、1-ヘキシルオクタデシル基、1-オクチルヘキサデシル基、1-デシルテトラデシル基、1-ウンデシルトリデシル基等]、2-アルキルアルキル基[2-メチルドデシル基、2-ヘキシルオクタデシル基、2-オクチルヘキサデシル基、2-デシルテトラデシル基、2-ウンデシルトリデシル基、2-ドデシルヘキサデシル基、2-トリデシルペンタデシル基、2-デシルオクタデシル基、2-テトラデシルオクタデシル基、2-ヘキサデシルオクタデシル基、2-テトラデシルエイコシル基、2-ヘキサデシルエイコシル基等]、3~34-アルキルアルキル基(3-アルキルアルキル基、4-アルキルアルキル基、5-アルキルアルキル基、32-アルキルアルキル基、33-アルキルアルキル基及び34-アルキルアルキル基等)、並びに、プロピレンオリゴマー(7~11量体)、エチレン/プロピレン(モル比16/1~1/11)オリゴマー、イソブチレンオリゴマー(7~8量体)及びα-オレフィン(炭素数5~20)オリゴマー(4~8量体)等から得られるオキソアルコールから水酸基を除いた残基のような1又はそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
(A22) An ester compound in which R 2 is a branched alkyl group having 13 to 36 carbon atoms. Examples of the branched alkyl group having 13 to 36 carbon atoms include a 1-alkylalkyl group [1-methyldodecyl group, 1-butyleicosyl group, 1-hexyloctadecyl group, 1-octylhexadecyl group, 1-decyltetradecyl group, 1-undecyltridecyl group, etc.], 2-alkylalkyl group [2-methyldodecyl group, 2-hexyloctadecyl group, 2- Octylhexadecyl group, 2-decyltetradecyl group, 2-undecyltridecyl group, 2-dodecylhexadecyl group, 2-tridecylpentadecyl group, 2-decyloctadecyl group, 2-tetradecyloctadecyl group, 2- Hexadecyl octadecyl group, 2-tetradecyleicosyl group, 2-hexadecyleicosyl group, etc.], 3 to 34-alkylalkyl groups (3-alkylalkyl groups, 4-alkylalkyl groups, 5-alkylalkyl groups, 32-alkylalkyl groups, 33-alkylalkyl groups, 34-alkylalkyl groups, etc.), and propylene oligomers (7 To 11-mer), ethylene / propylene (molar ratio 16/1 to 1/11) oligomer, isobutylene oligomer (7 to 8-mer), and α-olefin (5 to 20 carbon atoms) oligomer (4 to 8-mer) And a mixed alkyl group containing one or more branched alkyl groups such as a residue obtained by removing a hydroxyl group from an oxo alcohol obtained from the above.
 重合体(A1)は、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)をさらに含んでいることが好ましい。 The polymer (A1) preferably further contains an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid.
 エステル化合物(a3)を構成する炭素数1~3の1価の脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール及び2-プロパノール等が挙げられる。 Examples of the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a3) include methanol, ethanol, 1-propanol and 2-propanol.
 エステル化合物(a3)の含有量は、負極活物質の体積変化抑制等の観点から、重合体(A1)の合計重量に基づいて、10~60重量%であることが好ましく、15~55重量%であることがより好ましく、20~50重量%であることがさらに好ましい。 The content of the ester compound (a3) is preferably 10 to 60% by weight, and preferably 15 to 55% by weight based on the total weight of the polymer (A1) from the viewpoint of suppressing volume change of the negative electrode active material. More preferred is 20 to 50% by weight.
 また、重合体(A1)は、さらに重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)を含有してもよい。 The polymer (A1) may further contain an anionic monomer salt (a4) having a polymerizable unsaturated double bond and an anionic group.
 重合性不飽和二重結合を有する構造としてはビニル基、アリル基、スチレニル基及び(メタ)アクリロイル基等が挙げられる。 Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styryl group, and a (meth) acryloyl group.
 アニオン性基としては、スルホン酸基及びカルボキシル基等が挙げられる。 Examples of the anionic group include a sulfonic acid group and a carboxyl group.
 重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体はこれらの組み合わせにより得られる化合物であり、例えばビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸及び(メタ)アクリル酸が挙げられる。 An anionic monomer having a polymerizable unsaturated double bond and an anionic group is a compound obtained by a combination thereof, such as vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid and (meth) acrylic acid. It is done.
 なお、(メタ)アクリロイル基は、アクリロイル基及び/又はメタクリロイル基を意味する。 In addition, the (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
 アニオン性単量体の塩(a4)を構成するカチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン及びアンモニウムイオン等が挙げられる。 Examples of the cation constituting the salt (a4) of the anionic monomer include lithium ion, sodium ion, potassium ion and ammonium ion.
 アニオン性単量体の塩(a4)を含有する場合、その含有量は、内部抵抗等の観点から、高分子化合物の合計重量に基づいて0.1~15重量%であることが好ましく、1~15重量%であることがより好ましく、2~10重量%であることがさらに好ましい。 When the anionic monomer salt (a4) is contained, its content is preferably 0.1 to 15% by weight based on the total weight of the polymer compound from the viewpoint of internal resistance and the like. It is more preferably ˜15% by weight, and further preferably 2-10% by weight.
 重合体(A1)は、(メタ)アクリル酸(a11)とエステル化合物(a21)とを含むことが好ましく、さらにエステル化合物(a3)を含むことがより好ましい。特に好ましくは、(メタ)アクリル酸(a11)としてメタクリル酸を用い、エステル化合物(a21)として2-エチルヘキシルメタクリレートを用い、エステル化合物(a3)としてメタクリル酸メチルを用いた、メタクリル酸、2-エチルヘキシルメタクリレート及びメタクリル酸メチルの共重合体であることが最も好ましい。 The polymer (A1) preferably contains (meth) acrylic acid (a11) and an ester compound (a21), and more preferably contains an ester compound (a3). Particularly preferably, methacrylic acid is used as (meth) acrylic acid (a11), 2-ethylhexyl methacrylate is used as ester compound (a21), and methyl methacrylate is used as ester compound (a3). Methacrylic acid, 2-ethylhexyl Most preferred is a copolymer of methacrylate and methyl methacrylate.
 高分子化合物は、(メタ)アクリル酸(a11)、上記のビニルモノマー(a2)、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)及び必要により用いる重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)を含んでなる単量体組成物を重合してなり、上記ビニルモノマー(a2)と上記(メタ)アクリル酸(a11)の重量比[上記エステル化合物(a21)/上記(メタ)アクリル酸(a11)]が10/90~90/10であることが好ましい。ビニルモノマー(a2)と(メタ)アクリル酸(a11)の重量比が10/90~90/10であると、これを重合してなる重合体は、負極活物質との接着性が良好で剥離しにくくなる。上記重量比は、例えば20/80~85/15であり、30/70~85/15であることが好ましく、40/60~70/30であることがさらに好ましい。 The polymer compound includes (meth) acrylic acid (a11), the above vinyl monomer (a2), an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid, and if necessary. A monomer composition comprising a salt (a4) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group to be used is polymerized, and the vinyl monomer (a2) and the (meta ) Acrylic acid (a11) weight ratio [the ester compound (a21) / (meth) acrylic acid (a11)] is preferably 10/90 to 90/10. When the weight ratio of vinyl monomer (a2) to (meth) acrylic acid (a11) is 10/90 to 90/10, the polymer obtained by polymerizing this has good adhesion to the negative electrode active material and is peeled off. It becomes difficult to do. The weight ratio is, for example, 20/80 to 85/15, preferably 30/70 to 85/15, and more preferably 40/60 to 70/30.
 また、重合体(A1)を構成する単量体には、カルボキシル基又は酸無水物基を有するビニルモノマー(a1)、上記一般式(1)で表されるビニルモノマー(a2)、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)及び重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)の他に、重合体(A1)の物性を損なわない範囲で、ビニルモノマー(a1)、上記一般式(1)で表されるビニルモノマー(a2)、及び炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)と共重合可能であり、ラジカル重合性モノマー(a5)が含まれていてもよい。 The monomer constituting the polymer (A1) includes a vinyl monomer (a1) having a carboxyl group or an acid anhydride group, a vinyl monomer (a2) represented by the above general formula (1), and a carbon number of 1 In addition to the ester compound (a3) of a monovalent aliphatic alcohol of 1 to 3 and (meth) acrylic acid and a salt of an anionic monomer having a polymerizable unsaturated double bond and an anionic group (a4) As long as the physical properties of the polymer (A1) are not impaired, the vinyl monomer (a1), the vinyl monomer (a2) represented by the general formula (1), and a monovalent aliphatic alcohol having 1 to 3 carbon atoms, It can be copolymerized with an ester compound (a3) with (meth) acrylic acid and may contain a radical polymerizable monomer (a5).
 ラジカル重合性モノマー(a5)としては、活性水素を含有しないモノマーが好ましく、下記(a51)~(a58)のモノマーを用いることができる。 The radical polymerizable monomer (a5) is preferably a monomer not containing active hydrogen, and the following monomers (a51) to (a58) can be used.
 (a51)炭素数13~20の直鎖脂肪族モノオール、炭素数5~20の脂環式モノオール又は炭素数7~20の芳香脂肪族モノオールと(メタ)アクリル酸から形成されるハイドロカルビル(メタ)アクリレート
 上記モノオールとしては、(i)直鎖脂肪族モノオール(トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、アラキジルアルコール等)、(ii)脂環式モノオール(シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール等)、(iii)芳香脂肪族モノオール(ベンジルアルコール等)及びこれらの2種以上の混合物が挙げられる。
(A51) Hydrocarbons formed from (meth) acrylic acid and straight chain aliphatic monools having 13 to 20 carbon atoms, alicyclic monools having 5 to 20 carbon atoms, or araliphatic monools having 7 to 20 carbon atoms Carbyl (meth) acrylate As the monool, (i) linear aliphatic monool (tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, arachidyl alcohol Etc.), (ii) alicyclic monools (cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, cyclooctyl alcohol etc.), (iii) araliphatic monools (benzyl alcohol etc.) and mixtures of two or more thereof Can be mentioned.
 (a52)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキサイド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキサイド(以下POと略記)10モル付加物(メタ)アクリレート等]
 (a53)窒素含有ビニル化合物
 (a53-1)アミド基含有ビニル化合物
(i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)又はジアラルキル(炭素数7~15)(メタ)アクリルアミド(N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド等)、ジアセトンアクリルアミド
(ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド[ピロリドン化合物(炭素数6~13、例えば、N-ビニルピロリドン等)]
 (a53-2)(メタ)アクリレート化合物
(i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート等]
(ii)4級アンモニウム基含有(メタ)アクリレート{3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等]の4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)等}
 (a53-3)複素環含有ビニル化合物
ピリジン化合物(炭素数7~14、例えば2-又は4-ビニルピリジン)、イミダゾール化合物(炭素数5~12、例えばN-ビニルイミダゾール)、ピロール化合物(炭素数6~13、例えばN-ビニルピロール)、ピロリドン化合物(炭素数6~13、例えばN-ビニル-2-ピロリドン)
 (a53-4)ニトリル基含有ビニル化合物
炭素数3~15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1~4)アクリレート
 (a53-5)その他の窒素含有ビニル化合物
ニトロ基含有ビニル化合物(炭素数8~16、例えばニトロスチレン)等
 (a54)ビニル炭化水素
 (a54-1)脂肪族ビニル炭化水素
炭素数2~18又はそれ以上のオレフィン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン等)、炭素数4~10又はそれ以上のジエン(ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン、1,7-オクタジエン等)等
 (a54-2)脂環式ビニル炭化水素
炭素数4~18又はそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン及びリモネン)、インデン
 (a54-3)芳香族ビニル炭化水素
炭素数8~20又はそれ以上の芳香族不飽和化合物、例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン
 (a55)ビニルエステル
脂肪族ビニルエステル[炭素数4~15、例えば脂肪族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]
芳香族ビニルエステル[炭素数9~20、例えば芳香族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル-4-ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]
 (a56)ビニルエーテル
脂肪族ビニルエーテル[炭素数3~15、例えばビニルアルキル(炭素数1~10)エーテル(ビニルメチルエーテル、ビニルブチルエーテル、ビニル2-エチルヘキシルエーテル等)、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル(ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル-2-エチルメルカプトエチルエーテル等)、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)(ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタン等)]、芳香族ビニルエーテル(炭素数8~20、例えばビニルフェニルエーテル、フェノキシスチレン)
 (a57)ビニルケトン
脂肪族ビニルケトン(炭素数4~25、例えばビニルメチルケトン、ビニルエチルケトン)、芳香族ビニルケトン(炭素数9~21、例えばビニルフェニルケトン)
 (a58)不飽和ジカルボン酸ジエステル
炭素数4~34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)
 上記(a5)として例示したもののうち耐電圧の観点から好ましいのは、(a51)、(a52)及び(a53)である。
(A52) Poly (n = 2 to 30) oxyalkylene (carbon number 2 to 4) alkyl (carbon number 1 to 18) ether (meth) acrylate [methanol ethylene oxide (hereinafter abbreviated as EO) 10 mol adduct (meta ) Propylene oxide of acrylate, methanol (hereinafter abbreviated as PO), 10 mol adduct (meth) acrylate, etc.]
(A53) Nitrogen-containing vinyl compound (a53-1) Amide group-containing vinyl compound (i) (Meth) acrylamide compound having 3 to 30 carbon atoms such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7 to 15) (meth) acrylamide (N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.), diacetone acrylamide (ii) amide group having 4 to 20 carbon atoms, excluding the above (meth) acrylamide compounds Vinyl compounds such as N-methyl-N-vinylacetamide, cyclic amides [pyrrolidone compounds (having 6 to 13 carbon atoms, such as N-vinylpyrrolidone)]
(A53-2) (meth) acrylate compound (i) dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, etc.]
(Ii) Quaternary ammonium group-containing (meth) acrylate {quaternary amino group-containing (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, etc.]] (Quaternized with a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate, etc.)}
(A53-3) Heterocycle-containing vinyl compound pyridine compound (carbon number 7-14, such as 2- or 4-vinylpyridine), imidazole compound (carbon number 5-12, such as N-vinylimidazole), pyrrole compound (carbon number) 6 to 13, for example, N-vinylpyrrole), pyrrolidone compound (6 to 13 carbon atoms, for example, N-vinyl-2-pyrrolidone)
(A53-4) Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth) acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate (a53-5) Other nitrogen-containing compounds Vinyl compound Nitro group-containing vinyl compound (carbon number 8 to 16, for example, nitrostyrene) etc. (a54) Vinyl hydrocarbon (a54-1) Aliphatic vinyl hydrocarbon Olefin having 2 to 18 or more carbon atoms (ethylene, propylene, Butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), diene having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7- Octadiene etc.) (a54-2) Alicyclic vinyl hydrocarbon charcoal Cyclic unsaturated compounds having 4 to 18 or more primes, such as cycloalkene (eg cyclohexene), (di) cycloalkadiene [eg (di) cyclopentadiene], terpene (eg pinene and limonene), indene (a54-3) Aromatic vinyl hydrocarbons C8-20 aromatic unsaturated compounds such as styrene, α-methylstyrene, vinyltoluene, 2,4-dimethylstyrene, ethylstyrene, isopropylstyrene, butylstyrene, phenylstyrene, Cyclohexyl styrene, benzyl styrene (a55) Vinyl ester Aliphatic vinyl ester [C4-15, for example, alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) (for example, vinyl acetate, vinyl propionate, vinyl butyrate, diallyl azide) Page , Isopropenyl acetate, vinyl methoxyacetate)]
Aromatic vinyl esters [containing 9 to 20 carbon atoms, eg alkenyl esters of aromatic carboxylic acids (mono- or dicarboxylic acids) (eg vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aromatic ring containing aliphatic carboxylic acid Ester (eg acetoxystyrene)]
(A56) Vinyl ether aliphatic vinyl ether [C3-15, such as vinylalkyl (C1-10) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (C1-6) Alkyl (1 to 4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2-ethyl Mercaptoethyl ether, etc.), poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.)] Aromatic vinyl ether (carbon number 8-20, eg vinyl phenyl ether , Phenoxystyrene)
(A57) Vinyl ketone aliphatic vinyl ketone (having 4 to 25 carbon atoms, such as vinyl methyl ketone, vinyl ethyl ketone), aromatic vinyl ketone (having 9 to 21 carbon atoms, such as vinyl phenyl ketone)
(A58) Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms, such as dialkyl fumarate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms) ), Dialkyl maleate (two alkyl groups are straight, branched or alicyclic groups having 1 to 22 carbon atoms)
Of those exemplified as (a5) above, (a51), (a52) and (a53) are preferable from the viewpoint of withstand voltage.
 重合体(A1)において、カルボキシル基又は酸無水物基を有するビニルモノマー(a1)、上記一般式(1)で表されるビニルモノマー(a2)、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)、重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)及び活性水素を含有しないラジカル重合性モノマー(a5)の含有量は、重合体(A1)の重量を基準として、(a1)が0.1~80重量%、(a2)が0.1~99.9重量%、(a3)が0~60重量%、(a4)が0~15重量%、(a5)が0~99.8重量%であることが好ましい。モノマーの含有量が上記範囲内であると、非水電解液への吸液性が良好となる。 In the polymer (A1), a vinyl monomer (a1) having a carboxyl group or an acid anhydride group, a vinyl monomer (a2) represented by the above general formula (1), a monovalent aliphatic alcohol having 1 to 3 carbon atoms And (meth) acrylic acid ester compound (a3), a salt of an anionic monomer having a polymerizable unsaturated double bond and an anionic group (a4), and a radically polymerizable monomer containing no active hydrogen (a5) ) Based on the weight of the polymer (A1), (a1) is 0.1 to 80% by weight, (a2) is 0.1 to 99.9% by weight, and (a3) is 0 to 60% by weight. It is preferable that (a4) is 0 to 15% by weight, and (a5) is 0 to 99.8% by weight. When the content of the monomer is within the above range, the liquid absorptivity to the non-aqueous electrolyte is good.
 重合体(A1)の数平均分子量の好ましい下限は3,000、より好ましくは50,000、さらに好ましくは100,000、特に好ましくは200,000であり、好ましい上限は2,000,000、より好ましくは1,500,000、さらに好ましくは1,000,000、特に好ましくは800,000である。 The preferable lower limit of the number average molecular weight of the polymer (A1) is 3,000, more preferably 50,000, still more preferably 100,000, particularly preferably 200,000, and the preferable upper limit is 2,000,000. It is preferably 1,500,000, more preferably 1,000,000, and particularly preferably 800,000.
 重合体(A1)の数平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記)測定により求めることができる。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
検出器:RI
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃。
The number average molecular weight of the polymer (A1) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
Apparatus: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene Reference material: Polystyrene detector: RI
Sample concentration: 3 mg / ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135 ° C.
 重合体(A1)は、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル等)]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)により製造することができる。 The polymer (A1) is a known polymerization initiator {azo initiator [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.} (Bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
 重合開始剤の使用量は、数平均分子量を好ましい範囲に調整する等の観点から、モノマーの全重量に基づいて好ましくは0.01~5重量%、より好ましくは0.05~2重量%、さらに好ましくは0.1~1.5重量%であり、重合温度及び重合時間は重合開始剤の種類等に応じて調整されるが、重合温度は-5~150℃が好ましく、(さらに好ましくは30~120℃)、反応時間は0.1~50時間が好ましく(さらに好ましくは2~24時間)で行われる。 The amount of the polymerization initiator used is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the monomers, from the viewpoint of adjusting the number average molecular weight within a preferable range. More preferably, it is 0.1 to 1.5% by weight, and the polymerization temperature and polymerization time are adjusted according to the type of the polymerization initiator, etc., but the polymerization temperature is preferably -5 to 150 ° C. (more preferably 30 to 120 ° C.), and the reaction time is preferably 0.1 to 50 hours (more preferably 2 to 24 hours).
 溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサン及びトルエン)及びケトン(炭素数3~9、例えばメチルエチルケトン)、アミド(例えばジメチルホルムアミド(以下DMFと略記)、ジメチルアセトアミド、N-メチル-2-ピロリドン(以下NMPと略記))が挙げられ、数平均分子量を好ましい範囲に調整する等の観点から、その使用量はモノマーの合計重量に基づいて5~900重量%が好ましく、さらに好ましくは10~400重量%、より好ましくは30~300重量%であり、モノマー濃度としては、10~95重量%が好ましく、さらに好ましくは20~90重量%、より好ましくは30~80重量%である。 Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms). 4 to 8, for example, n-butane, cyclohexane and toluene) and ketone (having 3 to 9, for example, methyl ethyl ketone), amide (for example, dimethylformamide (hereinafter abbreviated as DMF), dimethylacetamide, N-methyl-2-pyrrolidone (hereinafter, In view of adjusting the number average molecular weight to a preferred range, the amount used is preferably 5 to 900% by weight, more preferably 10 to 400% by weight, based on the total weight of the monomers. More preferably, it is 30 to 300% by weight, and the monomer concentration is 10 to 9 Preferably wt%, more preferably 20 to 90 wt%, more preferably 30 to 80 wt%.
 乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチル等が挙げられる。さらに安定剤としてポリビニルアルコール、ポリビニルピロリドン等を加えてもよい。 Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha and the like, and examples of the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt. (For example, sodium oleate and sodium stearate), higher alcohol (10 to 24 carbon atoms) sulfate metal salt (for example, sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. Is mentioned. Furthermore, you may add polyvinyl alcohol, polyvinylpyrrolidone, etc. as a stabilizer.
 溶液又は分散液のモノマー濃度は10~95重量%が好ましく、さらに好ましくは20~90重量%、より好ましくは30~80重量%であり、溶液又は分散液における重合開始剤の使用量は、モノマーの全重量に基づいて0.01~5重量%が好ましく、さらに好ましくは0.05~2重量%である。 The monomer concentration of the solution or dispersion is preferably 10 to 95% by weight, more preferably 20 to 90% by weight, more preferably 30 to 80% by weight. The amount of the polymerization initiator used in the solution or dispersion is The content is preferably 0.01 to 5% by weight, more preferably 0.05 to 2% by weight, based on the total weight of the above.
 重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。 In the polymerization, known chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used. .
 ビニル樹脂に含まれる重合体(A1)は、重合体(A1)をカルボキシル基と反応する反応性官能基を有する架橋剤(A’){好ましくはポリエポキシ化合物(a’1)[ポリグリシジルエーテル(ビスフェノールAジグリシジルエーテル、プロピレングリコールジグリシジルエーテル及びグリセリントリグリシジルエーテル等)及びポリグリシジルアミン(N,N-ジグリシジルアニリン及び1,3-ビス(N,N-ジグリシジルアミノメチル))等]及び/又はポリオール化合物(a’2)(エチレングリコール等)}で架橋してなる架橋重合体であってもよい。 The polymer (A1) contained in the vinyl resin is a crosslinking agent (A ′) having a reactive functional group that reacts the polymer (A1) with a carboxyl group {preferably a polyepoxy compound (a′1) [polyglycidyl ether]. (Bisphenol A diglycidyl ether, propylene glycol diglycidyl ether, glycerin triglycidyl ether, etc.) and polyglycidylamine (N, N-diglycidylaniline and 1,3-bis (N, N-diglycidylaminomethyl)), etc.] And / or a crosslinked polymer formed by crosslinking with a polyol compound (a′2) (ethylene glycol or the like)}.
 架橋剤(A’)を用いて重合体(A1)を架橋する方法としては、負極活物質を重合体(A1)で被覆した後に架橋する方法が挙げられる。具体的には、負極活物質と重合体(A1)を含む樹脂溶液を混合し脱溶剤することにより、負極活物質が重合体(A1)で被覆された被覆負極活物質を製造した後に、架橋剤(A’)を含む溶液を該被覆負極活物質に混合して加熱することにより、脱溶剤と架橋反応を生じさせて、重合体(A1)が架橋剤(A’)によって架橋されて高分子化合物となる反応を負極活物質の表面で起こす方法が挙げられる。 Examples of the method of crosslinking the polymer (A1) using the crosslinking agent (A ′) include a method of crosslinking after coating the negative electrode active material with the polymer (A1). Specifically, a negative electrode active material and a resin solution containing the polymer (A1) are mixed and removed to produce a coated negative electrode active material in which the negative electrode active material is coated with the polymer (A1), and then crosslinked. The solution containing the agent (A ′) is mixed with the coated negative electrode active material and heated to cause solvent removal and a crosslinking reaction, and the polymer (A1) is crosslinked by the crosslinking agent (A ′). A method of causing a reaction to be a molecular compound on the surface of the negative electrode active material is exemplified.
 加熱温度は、架橋剤の種類に応じて調整されるが、架橋剤としてポリエポキシ化合物(a’1)を用いる場合は70℃以上が好ましく、ポリオール化合物(a’2)を用いる場合は120℃以上であることが好ましい。 Although heating temperature is adjusted according to the kind of crosslinking agent, when using a polyepoxy compound (a'1) as a crosslinking agent, 70 degreeC or more is preferable, and when using a polyol compound (a'2), it is 120 degreeC. The above is preferable.
 被覆層はさらに導電剤を含んでいてもよく、被覆層に含まれうる導電剤としては、樹脂集電体に含まれる導電材料と同様のものを好適に用いることができる。好ましい形態、平均粒子径等も同様である。 The coating layer may further contain a conductive agent, and as the conductive agent that can be contained in the coating layer, the same conductive material as that contained in the resin current collector can be suitably used. The same applies to preferred forms, average particle diameters, and the like.
 被覆層が含有する高分子化合物と導電剤との合計重量の割合は、特に限定されるものではないが、負極活物質の重量に対して0~25重量%であることが好ましい。 The ratio of the total weight of the polymer compound and the conductive agent contained in the coating layer is not particularly limited, but is preferably 0 to 25% by weight with respect to the weight of the negative electrode active material.
 負極活物質の重量に対する高分子化合物の重量の割合は、特に限定されないが、0.1~11重量%であることが好ましい。負極活物質の重量に対する導電剤の重量の割合は、特に限定されないが、0~14重量%であることが好ましい。 The ratio of the weight of the polymer compound to the weight of the negative electrode active material is not particularly limited, but is preferably 0.1 to 11% by weight. The ratio of the weight of the conductive agent to the weight of the negative electrode active material is not particularly limited, but is preferably 0 to 14% by weight.
 以下、上述した被覆負極活物質を製造する方法について説明する。被覆負極活物質は、例えば、高分子化合物と負極活物質を混合することによって製造することができる。被覆層が導電剤を含む場合には、例えば、高分子化合物、導電剤及び負極活物質を混合することによって製造してもよく、高分子化合物と導電剤とを混合して被覆材を準備したのち、該被覆材と負極活物質とを混合することにより製造してもよい。上記方法により、高分子化合物を含む被覆層によって負極活物質の表面の少なくとも一部が被覆される。 Hereinafter, a method for producing the above-described coated negative electrode active material will be described. The coated negative electrode active material can be produced, for example, by mixing a polymer compound and a negative electrode active material. When the coating layer contains a conductive agent, it may be produced, for example, by mixing a polymer compound, a conductive agent, and a negative electrode active material. A coating material was prepared by mixing a polymer compound and a conductive agent. Then, you may manufacture by mixing this coating | covering material and a negative electrode active material. By the above method, at least a part of the surface of the negative electrode active material is coated with the coating layer containing the polymer compound.
 負極活物質、高分子化合物としては、被覆負極活物質において説明したものを好適に用いることができる。 As the negative electrode active material and the polymer compound, those described for the coated negative electrode active material can be preferably used.
 被覆負極活物質は、例えば、負極活物質を万能混合機に入れて300~1000rpmで撹拌した状態で、高分子化合物を含む高分子溶液を1~90分かけて滴下混合し、必要に応じてさらに撹拌する。さらに必要に応じて導電剤を混合し、その後さらに必要に応じて10分~1時間撹拌を継続し、撹拌したまま0.007~0.04MPaまで減圧した後に、撹拌と減圧度を維持したまま50~200℃に昇温し、10分~10時間、好ましくは1~10時間保持することにより得ることができる。その後、粉体として得られた被覆負極活物質を分級してもよい。 The coated negative electrode active material is prepared by, for example, dropping and mixing a polymer solution containing a polymer compound over a period of 1 to 90 minutes in a state where the negative electrode active material is put in a universal mixer and stirred at 300 to 1000 rpm. Stir further. Further, if necessary, a conductive agent is mixed, and then, if necessary, stirring is continued for 10 minutes to 1 hour. After reducing the pressure to 0.007 to 0.04 MPa while stirring, the stirring and the degree of vacuum are maintained. It can be obtained by raising the temperature to 50 to 200 ° C. and holding for 10 minutes to 10 hours, preferably 1 to 10 hours. Thereafter, the coated negative electrode active material obtained as a powder may be classified.
 負極活物質と高分子化合物との配合比率は特に限定されるものではないが、重量比率で負極活物質:高分子化合物=1:0.001~0.1であることが好ましい。 The mixing ratio of the negative electrode active material and the polymer compound is not particularly limited, but it is preferable that the negative electrode active material: polymer compound = 1: 0.001 to 0.1 by weight ratio.
 続いて、本発明のリチウムイオン電池用負極を製造する方法について説明する。本発明のリチウムイオン電池用負極を製造する方法としては、例えば、負極活物質及び必要により用いる導電剤を、非水電解液又は非水電解液の非水溶媒等の重量に基づいて30~70重量%の濃度で分散してスラリー化した分散液を、負極集電体にバーコーター等の塗工装置で塗布後、必要に応じて乾燥して非水電解液又は非水電解液の非水溶媒等を除去して得られた負極活物質層を必要によりプレス機でプレスし、得られた負極活物質層に所定量の非水電解液を含侵させる方法が挙げられる。なお、上記分散液から得られる負極活物質層は、負極集電体上に直接形成する必要はなく、例えば、アラミドセパレータ等の表面に上記分散液を塗布して得られる負極活物質層を、負極集電体と接触するように配置してよい。 Subsequently, a method for producing the negative electrode for a lithium ion battery of the present invention will be described. Examples of the method for producing a negative electrode for a lithium ion battery according to the present invention include, for example, a negative electrode active material and a conductive agent to be used as needed, based on the weight of a non-aqueous electrolyte or a non-aqueous solvent of the non-aqueous electrolyte. After applying the dispersion liquid in the form of a slurry at a concentration of% by weight to the negative electrode current collector with a coating device such as a bar coater, the dispersion liquid is dried as necessary to obtain a nonaqueous electrolyte or a nonaqueous electrolyte solution. Examples include a method in which a negative electrode active material layer obtained by removing a solvent and the like is pressed with a press if necessary, and the obtained negative electrode active material layer is impregnated with a predetermined amount of a non-aqueous electrolyte. Note that the negative electrode active material layer obtained from the dispersion does not need to be directly formed on the negative electrode current collector, for example, a negative electrode active material layer obtained by applying the dispersion on the surface of an aramid separator or the like, You may arrange | position so that a negative electrode electrical power collector may be contacted.
 また、上記分散液を塗布した後に必要により行う乾燥は、順風式乾燥機等の公知の乾燥機を用いて行うことができ、その乾燥温度は分散液に含まれる分散媒(非水電解液又は非水電解液の非水溶媒等)の種類に応じて調整することができる。 In addition, the drying performed as necessary after applying the dispersion liquid can be performed using a known dryer such as a forward air dryer, and the drying temperature is determined by the dispersion medium (non-aqueous electrolyte or It can be adjusted according to the type of nonaqueous solvent of the nonaqueous electrolytic solution.
 上記分散液には、必要に応じて公知のリチウムイオン電池用の負極に含まれるポリフッ化ビニリデン(PVdF)等のバインダを添加してもよいが、負極活物質が上述した被覆負極活物質の場合には、バインダを添加しないことが好ましい。具体的には、バインダの含有量は、負極活物質層に含まれる全固形分量100重量%に対して、好ましくは1重量%以下であり、より好ましくは0.5重量%以下であり、さらに好ましくは0.2重量%以下であり、特に好ましくは0.1重量%以下であり、最も好ましくは0重量%である。 If necessary, a binder such as polyvinylidene fluoride (PVdF) contained in a known negative electrode for a lithium ion battery may be added to the dispersion, but the negative electrode active material is the above-described coated negative electrode active material. It is preferable not to add a binder. Specifically, the binder content is preferably 1% by weight or less, more preferably 0.5% by weight or less, with respect to 100% by weight of the total solid content contained in the negative electrode active material layer. The amount is preferably 0.2% by weight or less, particularly preferably 0.1% by weight or less, and most preferably 0% by weight.
 ここで、バインダは、負極活物質粒子とその他の部材とを結着させ、負極活物質層の構造を維持するために添加されるポリマー材料であり、被覆層に含まれる被覆層用高分子化合物を含まない。バインダは、絶縁性材料であって充放電時に副反応(酸化還元反応)を起こさない材料であり、一般に、以下の3つの点を満たす(1)活物質層の作製に用いられるスラリーを安定な状態に保つ(分散作用や増粘作用を有している);(2)電極活物質、導電助剤等の粒子同士を固着させ電極としての機械的強度を維持させ、かつ粒子同士の電気的接触を保つ;(3)集電体に対して接着力(結着力)を有する。 Here, the binder is a polymer material added to bind the negative electrode active material particles and other members and maintain the structure of the negative electrode active material layer, and is a polymer compound for the coating layer contained in the coating layer. Not included. The binder is an insulating material that does not cause a side reaction (oxidation-reduction reaction) during charge and discharge, and generally satisfies the following three points: (1) A slurry used for the production of an active material layer is stable. Maintaining the state (having a dispersing action and a thickening action); (2) Electrode active particles, conductive assistants, etc. are adhered to each other, the mechanical strength as an electrode is maintained, and the particles are electrically Keeping contact; (3) Has adhesion (binding force) to the current collector.
 従来のリチウムイオン電池用の負極においては、バインダで負極活物質を負極内に固定することで導電経路を維持する必要がある。しかし、被覆負極活物質を用いた場合は、被覆層の働きによって負極活物質を負極内に固定することなく導電経路を維持することができるため、バインダを添加する必要がない。バインダを添加しないことによって、負極活物質が負極内に固定化されないため負極活物質の体積変化に対する緩和能力が更に良好となる。 In a conventional negative electrode for a lithium ion battery, it is necessary to maintain a conductive path by fixing a negative electrode active material in the negative electrode with a binder. However, when the coated negative electrode active material is used, it is not necessary to add a binder because the conductive path can be maintained without fixing the negative electrode active material in the negative electrode by the action of the coating layer. By not adding a binder, since the negative electrode active material is not immobilized in the negative electrode, the ability to relax the volume change of the negative electrode active material is further improved.
 負極活物質をスラリー化した分散液にバインダを添加する場合、負極活物質層に充分な量の空隙を形成したまま活物質層を成型することができる点から、その添加量は、スラリーの固形分重量に対して0.1~20重量%であることが好ましい。 When a binder is added to the dispersion in which the negative electrode active material is slurried, the amount of addition is determined from the point that the active material layer can be molded while a sufficient amount of voids are formed in the negative electrode active material layer. It is preferably 0.1 to 20% by weight based on the minute weight.
 バインダとしてはデンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン、スチレン-ブタジエンゴム、ポリエチレン及びポリプロピレン等が挙げられる。 Examples of the binder include starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, styrene-butadiene rubber, polyethylene, and polypropylene.
 乾燥させたスラリーをプレスする際の圧力は、特に限定されないが、圧力が高すぎると負極活物質層に充分な量の空隙を形成することができず、圧力が低すぎると、プレスによる効果がみられないことから、1~200MPaでプレスすることが好ましい。 The pressure at which the dried slurry is pressed is not particularly limited. However, if the pressure is too high, a sufficient amount of voids cannot be formed in the negative electrode active material layer. Since it is not observed, it is preferable to press at 1 to 200 MPa.
 負極集電体の好ましい形態は上述の通りである。 The preferred form of the negative electrode current collector is as described above.
 本発明のリチウムイオン電池用負極は、上記分散媒が非水電解液又は非水電解液の非水溶媒等であり、塗布した分散液を乾燥した場合、乾燥後に得られた上記負極活物質層に上記非水電解液を含侵することで得られ、負極活物質層に含侵する非水電解液の重量は、負極活物質層の空隙量と非水電解液の電解質濃度とに応じて調整することができる。 In the negative electrode for a lithium ion battery of the present invention, the dispersion medium is a non-aqueous electrolyte or a non-aqueous solvent of the non-aqueous electrolyte, and when the applied dispersion is dried, the negative electrode active material layer obtained after drying The weight of the non-aqueous electrolyte obtained by impregnating the non-aqueous electrolyte into the negative electrode active material layer depends on the amount of voids in the negative electrode active material layer and the electrolyte concentration of the non-aqueous electrolyte. Can be adjusted.
 上記負極活物質層に対する上記非水電解液の含侵は、上記の方法で形成した負極活物質層の表面にスポイト等を用いて非水電解液を滴下して含侵させる方法等により行うことができる。 The impregnation of the non-aqueous electrolyte with respect to the negative electrode active material layer is performed by a method in which the non-aqueous electrolyte is dropped and impregnated on the surface of the negative electrode active material layer formed by the above method using a dropper or the like. Can do.
 本発明のリチウムイオン電池は上記のリチウムイオン電池用負極を用いた電池であり、上記のリチウムイオン電池用負極の対極となる電極を組み合わせて、セパレータと共にセル容器に収容し、非水電解液を注入し、セル容器を密封する方法等により製造することができる。 The lithium ion battery of the present invention is a battery using the above-described negative electrode for lithium ion battery, and is combined with an electrode serving as a counter electrode of the above negative electrode for lithium ion battery, and stored in a cell container together with a separator, It can be manufactured by a method of injecting and sealing the cell container.
 また、負極集電体の一方の面だけに負極活物質層を形成した本発明のリチウムイオン電池用負極の、負極集電体の他方の面に正極活物質を含む正極活物質層を形成して双極型電極を作製し、双極型電極をセパレータと積層してセル容器に収容し、非水電解液を注入し、セル容器を密閉することでも得られる。 Further, in the negative electrode for a lithium ion battery of the present invention in which the negative electrode active material layer is formed only on one surface of the negative electrode current collector, a positive electrode active material layer containing the positive electrode active material is formed on the other surface of the negative electrode current collector. It is also possible to produce a bipolar electrode by laminating the bipolar electrode with a separator and storing it in a cell container, injecting a non-aqueous electrolyte, and sealing the cell container.
 セパレータとしては、ポリエチレン又はポリプロピレン製の微多孔フィルム、多孔性ポリエチレンフィルムと多孔性ポリプロピレンとの積層フィルム、合成繊維(ポリエステル繊維及びアラミド繊維等)又はガラス繊維等を含む不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等の公知のリチウムイオン電池用のセパレータが挙げられる。 Examples of the separator include a microporous film made of polyethylene or polypropylene, a laminated film of a porous polyethylene film and porous polypropylene, a nonwoven fabric containing synthetic fibers (such as polyester fibers and aramid fibers) or glass fibers, and silica on the surface thereof. In addition, known separators for lithium ion batteries, such as those to which ceramic fine particles such as alumina and titania are attached, may be mentioned.
 非水電解液としては、本発明のリチウムイオン電池用負極において説明したものを好適に用いることができる。 As the non-aqueous electrolyte, those described in the negative electrode for lithium ion batteries of the present invention can be suitably used.
 上記のリチウムイオン電池用負極の対極となる電極(正極)は、公知のリチウムイオン電池に用いられる正極を用いることができる。 The positive electrode used for a known lithium ion battery can be used as the electrode (positive electrode) that is the counter electrode of the negative electrode for the lithium ion battery.
 本発明のリチウムイオン電池は、本発明のリチウムイオン電池用負極を用いたことを特徴とする。本発明のリチウムイオン電池は、本発明のリチウムイオン電池用負極を用いているため、急速充電が可能であり、かつ、エネルギー密度の高いリチウムイオン電池を得ることができる。 The lithium ion battery of the present invention is characterized by using the negative electrode for a lithium ion battery of the present invention. Since the lithium ion battery of the present invention uses the negative electrode for a lithium ion battery of the present invention, it is possible to obtain a lithium ion battery that can be rapidly charged and has a high energy density.
 次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は重量部、%は重量%を意味する。 Next, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by weight” and “%” means “% by weight”.
 <製造例1:被覆層用高分子化合物とその溶液の作製>
 撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF407.9部を仕込み75℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、及びDMF116.5部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.7部及び2,2’-アゾビス(2-メチルブチロニトリル)4.7部をDMF58.3部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂濃度50%の共重合体溶液を得た。これにDMFを789.8部加えて、樹脂固形分濃度30重量%である被覆層用高分子化合物溶液を得た。得られた被覆層用高分子化合物のGPC測定による数平均分子量は7±1万であった。
<Production Example 1: Preparation of polymer compound for coating layer and solution thereof>
A 4-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen gas inlet tube was charged with 407.9 parts of DMF and heated to 75 ° C. Next, a monomer mixture containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate, and 116.5 parts of DMF, and 2,2′-azobis (2,4-dimethyl) (Valeronitrile) 1.7 parts and 2,2′-azobis (2-methylbutyronitrile) 4.7 parts dissolved in DMF 58.3 parts and a four-necked flask were blown with nitrogen, Under stirring, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Subsequently, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin concentration of 50%. To this, 789.8 parts of DMF was added to obtain a polymer compound solution for a coating layer having a resin solid content concentration of 30% by weight. The number average molecular weight by GPC measurement of the obtained polymer compound for coating layers was 7 ± 10,000.
 <製造例2:被覆負極活物質粒子の作製>
 難黒鉛化性炭素粉末1(体積平均粒子径20μm)100部を万能混合機ハイスピードミキサーFS25[株式会社アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、製造例1で得られた被覆層用高分子化合物溶液6.1部を2分かけて滴下し、さらに5分撹拌した。
<Production Example 2: Production of coated negative electrode active material particles>
It was obtained in Production Example 1 with 100 parts of non-graphitizable carbon powder 1 (volume average particle diameter 20 μm) being put into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] and stirred at room temperature at 720 rpm. 6.1 parts of the polymer compound solution for coating layer was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes.
 次いで、撹拌した状態で導電剤であるアセチレンブラック[デンカ株式会社製 デンカブラック(登録商標)]11.3部を分割しながら2分間で投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き212μmの篩いで分級し、被覆負極活物質粒子を得た。 Next, 11.3 parts of acetylene black [DENKA BLACK (registered trademark) manufactured by Denka Co., Ltd.], which is a conductive agent, was added in 2 minutes while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of vacuum, and the volatile matter was distilled off by maintaining the stirring, the degree of vacuum and the temperature for 8 hours. . The obtained powder was classified with a sieve having an opening of 212 μm to obtain coated negative electrode active material particles.
 <製造例3:被覆負極活物質粒子の作製>
 製造例2において、難黒鉛化性炭素粉末1(体積平均粒子径20μm)を、人造黒鉛(体積平均粒子径18μm)に変更したことを除いては、製造例2と同様にして、被覆負極活物質粒子を得た。
<Production Example 3: Production of coated negative electrode active material particles>
In the production example 2, the non-graphitizable carbon powder 1 (volume average particle diameter 20 μm) was changed to artificial graphite (volume average particle diameter 18 μm), and the same procedure as in Production Example 2 was repeated. Material particles were obtained.
 <製造例4:負極活物質粒子の調製>
 製造例2で得られた被覆負極活物質粒子とケイ素酸化物(SiO)(体積平均粒子径6μm)とを製造例2で得られた被覆負極活物質粒子:SiO=95:5(重量比)で混合して得られた混合物を製造例4の負極活物質粒子とした。
<Production Example 4: Preparation of negative electrode active material particles>
Coated negative electrode active material particles obtained in Production Example 2 and silicon oxide (SiO) (volume average particle diameter 6 μm) were coated negative electrode active material particles obtained in Production Example 2: SiO = 95: 5 (weight ratio) The mixture obtained by mixing was used as negative electrode active material particles of Production Example 4.
 <実施例1>
 [リチウムイオン電池用負極活物質スラリーの作製]
エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)にLiN(FSOを3mol/Lの割合で溶解させて作製した非水電解液20部と炭素繊維[大阪ガスケミカル株式会社製 ドナカーボ・ミルド S-243:平均繊維長500μm、平均繊維径13μm:電気伝導度200mS/cm]2部とを遊星撹拌型混合混練装置{あわとり練太郎[株式会社シンキー製]}を用いて2000rpmで7分間混合し、続いて上記非水電解液50部と製造例2で製造した被覆負極活物質粒子98部を追加した後、更にあわとり練太郎で2000rpmで1.5分間混合し、上記非水電解液25部を更に追加した後あわとり練太郎による撹拌を2000rpmで1分間行い、更に上記非水電解液50部を更に追加した後あわとり練太郎による撹拌を2000rpmで1.5分間混合して、負極活物質スラリーを作製した。
<Example 1>
[Preparation of negative electrode active material slurry for lithium ion battery]
20 parts of non-aqueous electrolyte prepared by dissolving LiN (FSO 2 ) 2 at a rate of 3 mol / L in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) (volume ratio 1: 1) and carbon fiber [ Osaka Gas Chemical Co., Ltd. Donakabo Milled S-243: average fiber length 500 μm, average fiber diameter 13 μm: electrical conductivity 200 mS / cm 2 parts and planetary agitation type mixing kneader {Awatori Kentaro [Sinky Co., Ltd. ] Was added at 2000 rpm for 7 minutes, and then 50 parts of the non-aqueous electrolyte and 98 parts of the coated negative electrode active material particles produced in Production Example 2 were added. Mix for 5 minutes, add 25 parts of the non-aqueous electrolyte, and then stir with Awatori Netaro for 1 minute at 2000 rpm, and then add 50 parts of the non-aqueous electrolyte. Was further mixed for 1.5 minutes with agitation by Awatori Rentaro was added in 2000 rpm, to prepare a negative active material slurry.
 [リチウムイオン電池用負極及び負極評価用リチウムイオン電池の作製]
 得られた負極活物質スラリーをアラミドセパレータ[日本バイリーン株式会社製]の片面に塗布し、10MPaの圧力で約10秒プレスし、アラミドセパレータ上に厚さが約250μmの負極活物質層(3cm×3cm)を固定した。負極活物質層を形成する前後におけるアラミドセパレータの重量変化から負極活物質層の目付(目付量ともいう)を求めたところ、20.7mg/cmであった。また固定した負極活物質層をX線CT装置により測定して得られたX線CT画像から下記の方法により空隙率を求めたところ、45体積%であった。
[Preparation of negative electrode for lithium ion battery and lithium ion battery for negative electrode evaluation]
The obtained negative electrode active material slurry was applied to one side of an aramid separator [manufactured by Japan Vilene Co., Ltd.], pressed at a pressure of 10 MPa for about 10 seconds, and a negative electrode active material layer having a thickness of about 250 μm on the aramid separator (3 cm × 3 cm) was fixed. The basis weight (also referred to as basis weight) of the negative electrode active material layer was determined from the weight change of the aramid separator before and after forming the negative electrode active material layer, and found to be 20.7 mg / cm 2 . Moreover, when the porosity was calculated | required with the following method from the X-ray CT image obtained by measuring the fixed negative electrode active material layer with the X-ray CT apparatus, it was 45 volume%.
 まず、アラミドセパレータの厚さ方向及びこれに垂直な方向の2つの方向における断面画像としてX線CT画像を得る。その後、各方向の断面画像において無作為に10箇所抽出した50μm×50μmの領域について、領域全体のうち空隙が占める面積をそれぞれ求め、これを平均した値を空隙率とした。
続いて、端子(5mm×3cm)付き銅箔(3cm×3cm、厚さ50μm)とセパレータ[セルガード社製 セルガード(登録商標)3501 PP製](5cm×5cm)1枚と端子(5mm×3cm)付き銅箔(3cm×3cm、厚さ50μm)とを、同じ方向に2つの端子が出る向きで順に積層し、それを2枚の市販の熱融着型アルミラミネートフィルム(8cm×8cm)に挟み、端子の出ている1辺を熱融着し、負極評価用ラミネートセルを作製した。次いで一方の銅箔とセパレータの間に負極活物質層を固定したアラミドセパレータ(3cm×3cm)を負極活物質層と銅箔とが接する向きに挿入し、更に電極(3cm×3cmの負極活物質層)に非水電解液を70μL注液して非水電解液を電極に吸収させることにより実施例1に係るリチウムイオン電池用負極を作製した。次いでセパレータ上に非水電解液を70μL注液した。その後、セパレータと他方の銅箔との間にリチウム箔を挿入し、先に熱融着した1辺に直交する2辺をヒートシールした。その後、開口部から非水電解液を70μL注液し、真空シーラーを用いてセル内を真空にしながら開口部をヒートシールすることでラミネートセルを密封し、負極評価用リチウムイオン電池1を得た。
First, an X-ray CT image is obtained as a cross-sectional image in two directions: a thickness direction of an aramid separator and a direction perpendicular thereto. Thereafter, for the 50 μm × 50 μm region extracted at 10 random locations in the cross-sectional images in each direction, the area occupied by the voids in the entire region was determined, and the average value thereof was taken as the porosity.
Subsequently, a copper foil (3 cm × 3 cm, thickness 50 μm) with a terminal (5 mm × 3 cm) and a separator [Celguard (registered trademark) 3501 PP made by Celgard) (5 cm × 5 cm) and a terminal (5 mm × 3 cm) Laminated copper foil (3cm x 3cm, thickness 50μm) is laminated in the same direction in the direction of two terminals, and sandwiched between two commercially available heat-sealing aluminum laminate films (8cm x 8cm) The one side where the terminal comes out was heat-sealed to produce a laminate cell for negative electrode evaluation. Next, an aramid separator (3 cm × 3 cm) having a negative electrode active material layer fixed between one copper foil and the separator is inserted so that the negative electrode active material layer and the copper foil are in contact with each other, and an electrode (3 cm × 3 cm negative electrode active material) The negative electrode for a lithium ion battery according to Example 1 was prepared by injecting 70 μL of the non-aqueous electrolyte into the layer) and causing the electrode to absorb the non-aqueous electrolyte. Next, 70 μL of nonaqueous electrolyte was injected onto the separator. Thereafter, a lithium foil was inserted between the separator and the other copper foil, and two sides orthogonal to the one side heat-sealed first were heat sealed. Thereafter, 70 μL of nonaqueous electrolyte was injected from the opening, and the laminate was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain a lithium ion battery 1 for negative electrode evaluation. .
 負極活物質層の空隙率と非水電解液の濃度から、負極活物質の総量に基づく電池容量に対する、負極活物質層中に存在する非水電解液中のリチウムイオンの総量に基づく電池容量の割合(以下、電池容量割合ともいう)を求めたところ、10.0%であった。 From the porosity of the negative electrode active material layer and the concentration of the non-aqueous electrolyte, the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer is compared with the battery capacity based on the total amount of the negative electrode active material. When the ratio (hereinafter also referred to as battery capacity ratio) was determined, it was 10.0%.
 <実施例2>
 非水電解液の電解質濃度を3mol/Lから1mol/Lに変更した以外は、実施例1と同様の手順で実施例2に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池2を作製した。
<Example 2>
A lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 2 according to Example 2 were prepared in the same procedure as in Example 1 except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 1 mol / L. .
 負極活物質層の空隙率は実施例1と同様であった。また電池容量割合は3.3%であった。 The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 3.3%.
 <実施例3>
 非水電解液の電解質濃度を3mol/Lから5mol/Lに変更した以外は、実施例1と同様の手順で実施例3に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池3を作製した。負極活物質層の空隙率は実施例1と同様であった。また電池容量割合は16.7%であった。
<Example 3>
A lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 3 according to Example 3 were prepared in the same procedure as in Example 1, except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 5 mol / L. . The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 16.7%.
 <実施例4>
 非水電解液の電解質濃度を3mol/Lから2mol/Lに変更し、電解質の種類をLiN(FSOからLiPFに変更した以外は、実施例1と同様の手順で実施例4に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池4を作製した。負極活物質層の空隙率は実施例1と同様であった。また電池容量割合は、6.7%であった。
<Example 4>
The same procedure as in Example 1 was followed to Example 4 except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 2 mol / L and the type of electrolyte was changed from LiN (FSO 2 ) 2 to LiPF 6. The negative electrode for lithium ion batteries and the lithium ion battery 4 for negative electrode evaluation were produced. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 6.7%.
 <実施例5>
 非水電解液の電解質濃度を3mol/Lから2mol/Lに変更し、電解質の種類をLiN(FSOからLiPF:LiN(CFSO=1:1(重量比)の混合物に変更し、負極活物質の目付量を20.7mg/cmから38.4mg/cmに変更して膜厚を445μmとした以外は、実施例1と同様の手順により、実施例5に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池5を作製した。負極活物質層の空隙率は実施例1と同様であった。また電池容量割合は6.6%であった。
<Example 5>
The electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 2 mol / L, and the electrolyte type was changed from LiN (FSO 2 ) 2 to LiPF 6 : LiN (CF 3 SO 2 ) 2 = 1: 1 (weight ratio). Example 5 was performed in the same manner as in Example 1 except that the mixture was changed to a mixture, and the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 38.4 mg / cm 2 to change the film thickness to 445 μm. The negative electrode for lithium ion batteries which concerns on this, and the lithium ion battery 5 for negative electrode evaluation were produced. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 6.6%.
 <実施例6>
 負極活物質の目付量を20.7mg/cmから8.6mg/cmに変更し、膜厚を100μmとした以外は、実施例1と同様の手順で実施例6に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池6を作製した。負極活物質層の空隙率は実施例1と同様であった。電池容量割合は9.7%であった。
<Example 6>
For a lithium ion battery according to Example 6 in the same procedure as in Example 1 except that the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 8.6 mg / cm 2 and the film thickness was changed to 100 μm. A negative electrode and a lithium ion battery 6 for negative electrode evaluation were prepared. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 9.7%.
 <実施例7>
 負極活物質の目付量を20.7mg/cmから103.2mg/cmに変更し、膜厚を1200μmとした以外は、実施例1と同様の手順で実施例7に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池7を作製した。負極活物質層の空隙率は実施例1と同様であった。電池容量割合は9.7%であった。
<Example 7>
For a lithium ion battery according to Example 7 in the same procedure as in Example 1 except that the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 103.2 mg / cm 2 and the film thickness was changed to 1200 μm. A negative electrode and a lithium ion battery 7 for negative electrode evaluation were prepared. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 9.7%.
 <実施例8>
 負極活物質の目付量を20.7mg/cmから6mg/cmに変更し、膜厚を70μmとした以外は、実施例1と同様の手順で実施例8に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池8を作製した。負極活物質層の空隙率は実施例1と同様であった。電池容量割合は9.6%であった。
<Example 8>
A negative electrode for a lithium ion battery according to Example 8 according to the same procedure as in Example 1 except that the basis weight of the negative electrode active material was changed from 20.7 mg / cm 2 to 6 mg / cm 2 and the film thickness was changed to 70 μm. A lithium ion battery 8 for negative electrode evaluation was produced. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 9.6%.
 <実施例9>
 非水電解液の電解質濃度を3mol/Lから1mol/Lに変更し、負極活物質層の膜厚が306μmとなり、空隙率が55体積%となるように、負極活物質スラリーをアラミドセパレータ上に塗布した後のプレス条件を4MPaで約10秒に変更した以外は、実施例1と同様の手順により、実施例9に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池9を作製した。負極活物質層の膜厚が306μmであり、空隙率は55体積%であった。また、電池容量割合は5.0%であった。
<Example 9>
The electrolyte concentration of the non-aqueous electrolyte is changed from 3 mol / L to 1 mol / L, and the negative electrode active material slurry is placed on the aramid separator so that the film thickness of the negative electrode active material layer is 306 μm and the porosity is 55% by volume. A negative electrode for a lithium ion battery and a lithium ion battery 9 for negative electrode evaluation according to Example 9 were produced in the same procedure as in Example 1 except that the press condition after coating was changed to about 10 seconds at 4 MPa. The film thickness of the negative electrode active material layer was 306 μm, and the porosity was 55% by volume. The battery capacity ratio was 5.0%.
 <実施例10>
 製造例2で製造した被覆負極活物質粒子に代えて、製造例3で製造した被覆負極活物質粒子を用いたこと、および負極活物質スラリーをアラミドセパレータ上に塗布した後のプレス条件を15MPaで約10秒に変更したこと以外は、実施例1と同様の手順で実施例10に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池10を作製した。負極活物質層の目付量は50mg/cmであり、負極活物質層の膜厚は380μmであり、空隙率は40体積%であった。また、電池容量割合は8.1%であった。
<Example 10>
Instead of the coated negative electrode active material particles produced in Production Example 2, the coated negative electrode active material particles produced in Production Example 3 were used, and the press conditions after applying the negative electrode active material slurry on the aramid separator were 15 MPa. A lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 10 according to Example 10 were produced in the same procedure as in Example 1 except that the time was changed to about 10 seconds. The basis weight of the negative electrode active material layer was 50 mg / cm 2 , the film thickness of the negative electrode active material layer was 380 μm, and the porosity was 40% by volume. The battery capacity ratio was 8.1%.
 <実施例11>
 リチウムイオン電池用負極活物質スラリーの作製において用いた製造例2で製造した被覆負極活物質粒子98部に代えて、製造例4で調製した負極活物質粒子98部を使用し、非水電解液の電解質濃度を2mol/Lに変更した以外は、実施例1と同様の手順で実施例11に係るリチウムイオン電池用負極及び負極評価用リチウムイオン電池11を作製した。負極活物質層の目付量は33.2mg/cmであり、負極活物質層の膜厚は323μmであり、空隙率は45体積%であった。また、電池容量割合は4.8%であった。
<Example 11>
Instead of 98 parts of the coated negative electrode active material particles produced in Production Example 2 used in the production of the negative electrode active material slurry for a lithium ion battery, 98 parts of the negative electrode active material particles prepared in Production Example 4 were used, and a non-aqueous electrolyte solution was used. A lithium ion battery negative electrode and a negative electrode evaluation lithium ion battery 11 according to Example 11 were prepared in the same procedure as in Example 1 except that the electrolyte concentration was changed to 2 mol / L. The basis weight of the negative electrode active material layer was 33.2 mg / cm 2 , the film thickness of the negative electrode active material layer was 323 μm, and the porosity was 45% by volume. The battery capacity ratio was 4.8%.
 <比較例1>
 非水電解液の電解質濃度を3mol/Lから0.5mol/Lに変更した以外は、実施例1と同様の手順で比較例1に係るリチウムイオン電池用負極及び負極比較評価用リチウムイオン電池1を作製した。負極活物質層の空隙率は、実施例1と同様であった。また電池容量割合は1.7%であった。
<Comparative Example 1>
A lithium ion battery negative electrode and a negative electrode comparative evaluation lithium ion battery 1 according to Comparative Example 1 in the same procedure as Example 1, except that the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 0.5 mol / L. Was made. The porosity of the negative electrode active material layer was the same as in Example 1. The battery capacity ratio was 1.7%.
 <比較例2>
 実施例1において、非水電解液の電解質濃度を3mol/Lから5.5mol/Lに変更したが、電解質塩が電解液中で析出し、電池に使用できる非水電解液が作製できなかったため、電池の作製を行わなかった。なお、電解質濃度5.5mol/Lの非水電解液を用いて実施例1と同様に電池を作製したと仮定した場合の電池容量割合は18.1%である。
<Comparative example 2>
In Example 1, the electrolyte concentration of the non-aqueous electrolyte was changed from 3 mol / L to 5.5 mol / L, but the electrolyte salt was precipitated in the electrolyte, and a non-aqueous electrolyte that could be used for a battery could not be produced. The battery was not manufactured. Note that the battery capacity ratio is 18.1% when it is assumed that a battery is manufactured in the same manner as in Example 1 using a non-aqueous electrolyte having an electrolyte concentration of 5.5 mol / L.
 <比較例3>
 非水電解液の電解質濃度を2mol/Lから0.5mol/Lに変更した以外は、実施例5と同様の手順で比較例3に係るリチウムイオン電池用負極及び負極比較評価用リチウムイオン電池3を作製した。負極活物質層の膜厚、空隙率は実施例5と同様であった。また、電池容量割合は1.6%であった。
<Comparative Example 3>
A negative electrode for a lithium ion battery and a lithium ion battery 3 for comparative evaluation of negative electrode according to Comparative Example 3 in the same procedure as in Example 5 except that the electrolyte concentration of the nonaqueous electrolytic solution was changed from 2 mol / L to 0.5 mol / L. Was made. The film thickness and porosity of the negative electrode active material layer were the same as in Example 5. The battery capacity ratio was 1.6%.
 <比較例4>
 非水電解液の電解質濃度を3mol/Lから1mol/Lに変更し、負極活物質の空隙率が30体積%に、膜厚が214μmとなるように、負極活物質スラリーをアラミドセパレータ上に塗布した後のプレス条件を50MPaで約10秒に変更した以外は、実施例1と同様の手順により、比較例4に係るリチウムイオン電池用負極及び負極比較評価用リチウムイオン電池4を作製した。負極活物質層の膜厚は214μmであり、空隙率は30体積%であった。また、電池容量割合は1.9%であった。
<Comparative example 4>
Change the electrolyte concentration of the non-aqueous electrolyte from 3 mol / L to 1 mol / L, and apply the negative electrode active material slurry on the aramid separator so that the negative electrode active material has a porosity of 30% by volume and a film thickness of 214 μm. A negative electrode for a lithium ion battery and a lithium ion battery 4 for comparative evaluation of negative electrode according to Comparative Example 4 were prepared in the same procedure as in Example 1 except that the pressing conditions after the change were changed to about 10 seconds at 50 MPa. The film thickness of the negative electrode active material layer was 214 μm, and the porosity was 30% by volume. The battery capacity ratio was 1.9%.
 <負極活物質の放電容量の測定>
製造例2、3で調製した被覆負極活物質粒子および製造例4で調製した負極活物質粒子をそれぞれ、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合溶媒(体積比率1:1)にLiN(FSOを3mol/Lの割合で溶解させて作製した非水電解液と混合してスラリー化し、アラミドセパレータ[日本バイリーン株式会社製]の片面に塗布した後、10MPaの圧力で10秒プレスして電極を作製して電池パックに組み込み、0.0Vから1.5Vまで放電した際の放電容量を充放電測定装置「バッテリーアナライザー1470型」[株式会社東陽テクニカ製]で測定し、各負極活物質の放電容量(0.0V→1.5V放電容量)を求めた。結果は、製造例2で調製した被覆負極活物質:434mAh/g、製造例3で調製した被覆負極活物質:300mAh/g、および製造例4で調製した負極活物質粒子:492mAh/gであった。
<Measurement of discharge capacity of negative electrode active material>
The coated negative electrode active material particles prepared in Production Examples 2 and 3 and the negative electrode active material particles prepared in Production Example 4 were respectively mixed with ethylene carbonate (EC) and diethyl carbonate (DEC) in a mixed solvent (volume ratio 1: 1) with LiN. (FSO 2 ) 2 was mixed with a non-aqueous electrolyte prepared by dissolving at a rate of 3 mol / L to form a slurry, which was applied to one side of an aramid separator [manufactured by Japan Vilene Co., Ltd.] and then 10 seconds at a pressure of 10 MPa. The electrode was produced by pressing and incorporated into the battery pack, and the discharge capacity when discharged from 0.0 V to 1.5 V was measured with a charge / discharge measuring device “Battery Analyzer 1470” [manufactured by Toyo Corporation], and The discharge capacity (0.0 V → 1.5 V discharge capacity) of the negative electrode active material was determined. As a result, the coated negative electrode active material prepared in Production Example 2 was 434 mAh / g, the coated negative electrode active material prepared in Production Example 3 was 300 mAh / g, and the negative electrode active material particles prepared in Production Example 4 was 492 mAh / g. It was.
 <ハイレート時の充電容量の測定>
 室温下、充放電測定装置「バッテリーアナライザー1470型」[株式会社東陽テクニカ製]を用いて以下の方法により負極評価用リチウムイオン電池1~11ならびに負極比較評価用リチウムイオン電池1、3、4の評価を行った。
<Measurement of charge capacity at high rate>
Using a charge / discharge measuring device “Battery Analyzer 1470” (manufactured by Toyo Technica Co., Ltd.) at room temperature, negative electrode evaluation lithium ion batteries 1 to 11 and negative electrode comparative evaluation lithium ion batteries 1, 3, and 4 were Evaluation was performed.
 45℃の条件下において、負極評価用リチウムイオン電池1~11ならびに負極比較評価用リチウムイオン電池1、3、4を、2.0Cの電流で4.2Vまでそれぞれ充電して、充電時の容量(2.0C充電容量)を測定した。上記<負極活物質の放電容量の測定>で求めた各負極活物質の放電容量(0.0V→1.5V放電容量)より計算される負極活物質の総量に基づく電池容量に対する2.0C充電容量の割合[%](以下、単に電池容量に対する2.0C充電容量の割合ともいう)を[(2.0C充電容量)/(負極活物質の総量に基づく電池容量)×100]で求め、結果を表1に記載した。電池容量に対する2.0C充電容量の割合が大きいほど良好で高速充電が可能であることを意味する。 Under conditions of 45 ° C., the lithium ion batteries 1 to 11 for negative electrode evaluation and the lithium ion batteries 1, 3 and 4 for comparative evaluation of negative electrode were charged to 4.2 V at a current of 2.0 C, respectively, and the capacity at the time of charging (2.0 C charge capacity) was measured. 2.0 C charge for the battery capacity based on the total amount of negative electrode active material calculated from the discharge capacity (0.0 V → 1.5 V discharge capacity) of each negative electrode active material obtained in <Measurement of discharge capacity of negative electrode active material> above The capacity ratio [%] (hereinafter, also simply referred to as the ratio of the 2.0 C charge capacity to the battery capacity) is determined by [(2.0 C charge capacity) / (battery capacity based on the total amount of negative electrode active material) × 100]. The results are shown in Table 1. The larger the ratio of the 2.0 C charging capacity to the battery capacity, the better and faster charging is possible.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1より、電池容量割合が3~17%であるリチウムイオン電池は、電池容量に対する2.0C充電容量に優れていることがわかる。また、実施例1と実施例1から負極活物質層の膜厚を変更した実施例6~8および比較例1との比較から、電池容量に対する2.0充電容量の割合は負極活物質層の膜厚が厚くなるにつれて低下するが、実施例1、6~8のいずれもが、比較例1よりも2.0C充電容量が高かった。 From Table 1, it can be seen that a lithium ion battery having a battery capacity ratio of 3 to 17% is excellent in a 2.0 C charge capacity with respect to the battery capacity. Further, from the comparison between Example 1 and Examples 6 to 8 in which the film thickness of the negative electrode active material layer was changed from Example 1 and Comparative Example 1, the ratio of the 2.0 charge capacity to the battery capacity was Although it decreased as the film thickness increased, all of Examples 1 and 6 to 8 had a 2.0 C charging capacity higher than that of Comparative Example 1.
 また、実施例1と実施例1から負極活物質層の空隙率または負極活物質の種類を変更した実施例9~11および比較例4との比較から、負極活物質層の空隙率または負極活物質の種類を変えた場合であっても、電池容量割合が3~17%であれば良好な結果が得られることがわかる。 Further, from the comparison between Examples 1 to 11 and Comparative Example 4 in which the porosity of the negative electrode active material layer or the type of the negative electrode active material was changed from Example 1 and Example 1, the porosity of the negative electrode active material layer or the negative electrode active material layer was compared. It can be seen that even when the type of substance is changed, good results can be obtained if the battery capacity ratio is 3 to 17%.
 以上より、本発明のリチウムイオン電池用負極を用いたリチウムイオン電池はエネルギー密度が高く、急速充電特性に優れることがわかる。 From the above, it can be seen that the lithium ion battery using the negative electrode for a lithium ion battery of the present invention has high energy density and excellent quick charge characteristics.
 本発明のリチウムイオン電池用負極は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用に用いられる双極型二次電池用及びリチウムイオン二次電池用等の負極として有用である。 The negative electrode for lithium ion batteries of the present invention is particularly useful as a negative electrode for bipolar secondary batteries and lithium ion secondary batteries used for mobile phones, personal computers, hybrid vehicles and electric vehicles.
 本出願は、2016年11月7日に出願された日本国特許出願第2016-217173号および2017年11月6日に出願された日本国特許出願第2017-213671号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2016-217173 filed on November 7, 2016 and Japanese Patent Application No. 2017-213671 filed on November 6, 2017, the disclosure of which is incorporated herein by reference. The contents are cited as a whole by reference.

Claims (10)

  1.  負極集電体と、前記負極集電体の表面に形成された負極活物質層と、リチウムイオンを含む電解質と非水溶媒とを含む非水電解液とを備えたリチウムイオン電池用負極であって、
     前記負極活物質層は、負極活物質と空隙とを含み、
     前記空隙には前記非水電解液が充填されており、
     前記負極活物質の総量に基づく電池容量に対する、前記負極活物質層中に存在する前記非水電解液中のリチウムイオンの総量に基づく電池容量の割合が、3~17%であることを特徴とするリチウムイオン電池用負極。
    A negative electrode for a lithium ion battery, comprising: a negative electrode current collector; a negative electrode active material layer formed on a surface of the negative electrode current collector; and a nonaqueous electrolyte solution containing an electrolyte containing lithium ions and a nonaqueous solvent. And
    The negative electrode active material layer includes a negative electrode active material and voids,
    The void is filled with the non-aqueous electrolyte,
    The ratio of the battery capacity based on the total amount of lithium ions in the non-aqueous electrolyte present in the negative electrode active material layer to the battery capacity based on the total amount of the negative electrode active material is 3 to 17%. A negative electrode for a lithium ion battery.
  2.  前記負極活物質層の厚さが100~1500μmである請求項1に記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to claim 1, wherein the thickness of the negative electrode active material layer is 100 to 1500 µm.
  3.  前記空隙の総体積が、前記負極活物質層の総体積の35~60体積%である請求項1又は2に記載のリチウムイオン電池用負極。 3. The negative electrode for a lithium ion battery according to claim 1, wherein the total volume of the voids is 35 to 60% by volume of the total volume of the negative electrode active material layer.
  4.  前記非水電解液の前記電解質濃度は1~5mol/Lである請求項1~3のいずれかに記載のリチウムイオン電池用負極。 4. The negative electrode for a lithium ion battery according to claim 1, wherein the electrolyte concentration of the non-aqueous electrolyte is 1 to 5 mol / L.
  5.  前記電解質は、フッ素原子を有するスルホニルイミド系電解質である請求項1~4のいずれかに記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to any one of claims 1 to 4, wherein the electrolyte is a sulfonylimide-based electrolyte having a fluorine atom.
  6.  前記電解質は、少なくともLiN(FSOを含む請求項1~5のいずれかに記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to any one of claims 1 to 5, wherein the electrolyte contains at least LiN (FSO 2 ) 2 .
  7.  前記電解質は、LiN(FSOのみからなる請求項1~6のいずれかに記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to any one of claims 1 to 6, wherein the electrolyte comprises only LiN (FSO 2 ) 2 .
  8.  前記負極集電体は、導電材料と樹脂とを含む樹脂集電体である請求項1~7のいずれかに記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to any one of claims 1 to 7, wherein the negative electrode current collector is a resin current collector containing a conductive material and a resin.
  9.  前記負極活物質は、その表面の一部又は全部が高分子化合物を含む被覆層により被覆された被覆負極活物質である請求項1~8のいずれかに記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to any one of claims 1 to 8, wherein the negative electrode active material is a coated negative electrode active material in which part or all of the surface thereof is coated with a coating layer containing a polymer compound.
  10.  請求項1~9のいずれかに記載のリチウムイオン電池用負極を用いたリチウムイオン電池。
     
    A lithium ion battery using the negative electrode for a lithium ion battery according to any one of claims 1 to 9.
PCT/JP2017/040163 2016-11-07 2017-11-07 Negative electrode for lithium-ion battery, and lithium-ion battery WO2018084319A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780068741.5A CN109923699B (en) 2016-11-07 2017-11-07 Negative electrode for lithium ion battery and lithium ion battery
EP17866935.4A EP3537513B1 (en) 2016-11-07 2017-11-07 Negative electrode for lithium-ion battery and lithium-ion battery
US16/346,707 US10930920B2 (en) 2016-11-07 2017-11-07 Negative electrode for lithium ion battery and lithium ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016217173 2016-11-07
JP2016-217173 2016-11-07
JP2017213671A JP7143069B2 (en) 2016-11-07 2017-11-06 Negative electrode for lithium ion battery and lithium ion battery
JP2017-213671 2017-11-06

Publications (1)

Publication Number Publication Date
WO2018084319A1 true WO2018084319A1 (en) 2018-05-11

Family

ID=62076689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040163 WO2018084319A1 (en) 2016-11-07 2017-11-07 Negative electrode for lithium-ion battery, and lithium-ion battery

Country Status (2)

Country Link
CN (1) CN109923699B (en)
WO (1) WO2018084319A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110444750B (en) * 2019-08-07 2021-08-13 宁德新能源科技有限公司 Negative electrode material, and electrochemical device and electronic device comprising same
CN110459810A (en) * 2019-08-15 2019-11-15 萨姆蒂萨(天津)数据信息技术有限公司 A kind of preparation method of lithium battery
CN112420998B (en) * 2019-08-22 2022-03-01 宁德时代新能源科技股份有限公司 Secondary battery
CN113224297A (en) * 2020-02-06 2021-08-06 宁德新能源科技有限公司 Negative pole piece, battery applying negative pole piece and electronic device
CN114024021B (en) * 2021-10-25 2022-08-30 珠海冠宇电池股份有限公司 Battery with a battery cell

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2007184261A (en) * 2005-12-06 2007-07-19 Matsushita Battery Industrial Co Ltd Lithium-ion secondary battery
WO2011036759A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 Lithium secondary battery and process for producing same
JP2011253620A (en) 2009-09-30 2011-12-15 K & W Ltd Negative electrode active material, its manufacturing method, and lithium ion secondary battery using negative electrode active material
JP2012138322A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Nonaqueous secondary battery
JP2013084590A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Laminated alkali metal battery
WO2013128679A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
WO2015005117A1 (en) * 2013-07-08 2015-01-15 三洋化成工業株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
JP2015011823A (en) * 2013-06-27 2015-01-19 住友電気工業株式会社 Lithium battery
WO2015118988A1 (en) * 2014-02-06 2015-08-13 日産自動車株式会社 Non-aqueous electrolyte secondary battery
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JP2016217173A (en) 2015-05-15 2016-12-22 株式会社Ihi Turbine blade mounting structure
JP2017213671A (en) 2016-03-02 2017-12-07 センブレ エス.ピー.エー. Hydrodynamic compression or cutting tool

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731967B2 (en) * 2005-03-31 2011-07-27 富士重工業株式会社 Lithium ion capacitor
WO2008084675A1 (en) * 2006-12-26 2008-07-17 Mitsubishi Chemical Corporation Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
CN105070943B (en) * 2015-08-27 2018-03-30 深圳市鑫峰昌技术股份有限公司 A kind of quick charge lithium battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2002151055A (en) * 2000-08-28 2002-05-24 Nissan Motor Co Ltd Lithium ion secondary battery
JP2007184261A (en) * 2005-12-06 2007-07-19 Matsushita Battery Industrial Co Ltd Lithium-ion secondary battery
WO2011036759A1 (en) * 2009-09-25 2011-03-31 トヨタ自動車株式会社 Lithium secondary battery and process for producing same
JP2011253620A (en) 2009-09-30 2011-12-15 K & W Ltd Negative electrode active material, its manufacturing method, and lithium ion secondary battery using negative electrode active material
JP2012138322A (en) * 2010-12-28 2012-07-19 Hitachi Ltd Nonaqueous secondary battery
JP2013084590A (en) * 2011-09-26 2013-05-09 Nippon Shokubai Co Ltd Laminated alkali metal battery
WO2013128679A1 (en) * 2012-02-29 2013-09-06 新神戸電機株式会社 Lithium-ion battery
JP2015011823A (en) * 2013-06-27 2015-01-19 住友電気工業株式会社 Lithium battery
WO2015005117A1 (en) * 2013-07-08 2015-01-15 三洋化成工業株式会社 Resin for coating lithium-ion-battery active material, resin composition for coating lithium-ion-battery active material, and coated active material for lithium-ion battery
WO2015118988A1 (en) * 2014-02-06 2015-08-13 日産自動車株式会社 Non-aqueous electrolyte secondary battery
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JP2016217173A (en) 2015-05-15 2016-12-22 株式会社Ihi Turbine blade mounting structure
JP2017213671A (en) 2016-03-02 2017-12-07 センブレ エス.ピー.エー. Hydrodynamic compression or cutting tool

Also Published As

Publication number Publication date
CN109923699A (en) 2019-06-21
CN109923699B (en) 2022-03-15

Similar Documents

Publication Publication Date Title
JP7143069B2 (en) Negative electrode for lithium ion battery and lithium ion battery
JP7058491B2 (en) Positive electrode for lithium-ion batteries and lithium-ion batteries
JP6998194B2 (en) Method for manufacturing negative electrode for lithium ion battery and negative electrode for lithium ion battery
WO2018084319A1 (en) Negative electrode for lithium-ion battery, and lithium-ion battery
JP7058515B2 (en) Coated positive electrode active material for lithium-ion batteries
JP2018101623A (en) Negative electrode for lithium-ion battery and lithium-ion battery
WO2018194164A1 (en) Adhesive for lithium-ion electrode, electrode for lithium-ion battery and method for manufacturing electrode for lithium-ion battery
JP7046732B2 (en) Coating active material for lithium-ion batteries and negative electrode for lithium-ion batteries
US20230317953A1 (en) Coated negative electrode active material particles for lithium ion batteries, negative electrode for lithium ion batteries, lithium ion battery, and method for producing coated negative electrode active material particles for lithium ion batteries
JP2018101624A (en) Electrode for lithium-ion battery and lithium-ion battery
WO2021230360A1 (en) Lithium-ion battery
JP7297529B2 (en) Coated negative electrode active material for lithium ion battery, negative electrode slurry for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
WO2018084320A1 (en) Positive electrode for lithium-ion battery, and lithium-ion battery
WO2018117087A1 (en) Negative electrode for lithium-ion battery, and lithium-ion battery
JP7097271B2 (en) Coated positive electrode active material for lithium ion batteries, positive electrode slurry for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion batteries
JP7297528B2 (en) Electrodes for lithium ion batteries and lithium ion batteries
WO2018117089A1 (en) Electrode for lithium-ion battery and lithium-ion battery
WO2022260183A1 (en) Coated positive electrode active material particles for lithium ion batteries, positive electrode for lithium ion batteries, method for producing coated positive electrode active material particles for lithium ion batteries, and lithium ion battery
JP6845733B2 (en) Manufacturing method of electrodes for lithium-ion batteries
WO2018117086A1 (en) Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries
WO2022270488A1 (en) Method for manufacturing electrode composition for lithium ion battery
WO2023191032A1 (en) Electrode for lithium-ion battery, and lithium-ion battery
JP2022182076A (en) Coated electrode active material particles for lithium-ion battery, electrode for lithium-ion battery, lithium-ion battery, and manufacturing method for coated electrode active material particles for lithium-ion battery
JP2023013685A (en) Coated positive electrode active material particle for lithium ion battery, positive electrode for lithium ion battery, and manufacturing method of coated positive electrode active material particle for lithium ion battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866935

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866935

Country of ref document: EP

Effective date: 20190607