WO2018117086A1 - Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries - Google Patents

Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries Download PDF

Info

Publication number
WO2018117086A1
WO2018117086A1 PCT/JP2017/045484 JP2017045484W WO2018117086A1 WO 2018117086 A1 WO2018117086 A1 WO 2018117086A1 JP 2017045484 W JP2017045484 W JP 2017045484W WO 2018117086 A1 WO2018117086 A1 WO 2018117086A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
carbon
silicon
Prior art date
Application number
PCT/JP2017/045484
Other languages
French (fr)
Japanese (ja)
Inventor
和也 土田
勇輔 中嶋
大澤 康彦
雄樹 草地
佐藤 一
赤間 弘
堀江 英明
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017238949A external-priority patent/JP6998194B2/en
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/470,610 priority Critical patent/US10673057B2/en
Priority to EP17884512.9A priority patent/EP3561912B1/en
Priority to MYPI2019003383A priority patent/MY174406A/en
Priority to CN201780079031.2A priority patent/CN110088948A/en
Publication of WO2018117086A1 publication Critical patent/WO2018117086A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode for a lithium ion battery and a method for producing a negative electrode for a lithium ion battery.
  • silicon-based materials such as silicon and silicon compounds
  • carbon materials conventionally used as negative electrode active materials have attracted attention.
  • silicon-based materials such as silicon and silicon compounds
  • the volume change of the material accompanying charge / discharge is large.
  • the silicon-based material is self-destructed by volume change or is easily peeled off from the current collector surface, so that it is difficult to improve cycle characteristics.
  • Patent Document 1 the mixing ratio of at least one of silicon (hereinafter also referred to as silicon) and silicon compound (hereinafter also referred to as silicon compound) and carbon, and the particle diameter thereof are adjusted to a predetermined range. Discloses a lithium ion battery in which expansion of the negative electrode is suppressed.
  • Patent Document 2 includes carbon particles and fibrous carbon in which a carbonaceous material containing Si and / or Si compound is attached to at least a part of the surface of carbon particles having a graphite structure, and the carbonaceous material contains a polymer.
  • a carbon material obtained by heat-treating a composition is disclosed.
  • an electrode paste including the carbon material and a binder (binder) and an electrode including the electrode paste are also disclosed.
  • the electrode (negative electrode) described in Patent Documents 1 and 2 uses a binder, if the electrode thickness is excessively increased, the negative electrode active material is peeled off from the surface of the negative electrode current collector. There was a problem. Moreover, since the proportion of the active material is reduced by the amount of the binder used, there is a problem that the energy density is lowered. In addition, the binder may limit the expansion and contraction of silicon and silicon compound, and may easily break. Furthermore, the effect of suppressing the expansion of the negative electrode during charging is not sufficient, and there is room for further improvement.
  • silicon and silicon compounds used as the negative electrode active material are collectively referred to as “silicon-based negative electrode active material” in this specification.
  • the volume change of the silicon-based negative electrode active material becomes most remarkable at the first charge / discharge when the silicon-based negative electrode active material occludes / releases lithium ions. Therefore, it is considered important to suppress the volume change at the first charge / discharge for improving the characteristics of the negative electrode.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a negative electrode for a lithium ion battery in which the volume change of the silicon-based negative electrode active material due to charge / discharge is small and a method for producing the same.
  • the inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
  • this invention has the process of forming a coating film on a collector or a separator using the slurry containing the negative electrode active material composition containing a silicon type negative electrode active material and a carbon type negative electrode active material, and a dispersion medium.
  • the present invention relates to a method for producing a negative electrode for a lithium ion battery.
  • the manufacturing method includes a step of doping a lithium-based negative electrode active material with lithium ions before or after a step of forming a coating film and before assembling a lithium-ion battery, and a step of doping lithium ions into a carbon-based negative electrode active material. Including the step of. And it has the characteristics in the point which does not contain the process of drying a coating film substantially.
  • the method for producing a negative electrode for a lithium ion battery of the present invention it is possible to provide a negative electrode for a lithium ion battery in which the volume change of the silicon-based negative electrode active material due to charge / discharge is small.
  • the negative electrode for a lithium ion battery obtained by the production method of the present invention is obtained by a production method described later, and includes a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions. And a negative electrode active material layer made of a non-binding body.
  • the negative electrode for a lithium ion battery of the present invention includes a negative electrode active material layer.
  • the negative electrode active material layer is composed of a non-binding body of a negative electrode active material composition including a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions.
  • the negative electrode active material layer is preferably disposed on the negative electrode current collector.
  • the silicon-based negative electrode active material is preferably silicon and / or a silicon compound.
  • the silicon may be crystalline silicon, amorphous silicon, or a mixture thereof.
  • Examples of the silicon compound include silicon oxide (SiO x ), Si—C composite, Si—Al alloy, Si—Li alloy, Si—Ni alloy, Si—Fe alloy, Si—Ti alloy, Si—Mn alloy, It is preferably at least one selected from the group consisting of Si—Cu alloys and Si—Sn alloys.
  • the Si—C composite include silicon carbide, carbon particles whose surfaces are covered with silicon and / or silicon carbide, and silicon particles or silicon oxide particles whose surfaces are covered with carbon and / or silicon carbide. included.
  • the silicon particles and / or silicon compound particles are preferably aggregated to form composite particles (that is, secondary particles obtained by aggregating primary particles).
  • the composite particles may be those in which only silicon particles and / or silicon oxide particles are aggregated, or may be those in which silicon particles and / or silicon oxide particles are aggregated via a polymer compound.
  • the polymer compound in this case for example, the same polymer compound used as a coating resin for a carbon-based coated negative electrode active material described later can be used.
  • the composite particles may contain a conductive aid as necessary.
  • the conductive assistant at this time the same conductive assistant as that contained in the negative electrode coating layer of the carbon-based coated negative electrode active material described later can be used.
  • Examples of the method for forming the composite particles include a method of mixing primary particles of silicon and / or silicon compound particles and a coating resin described later.
  • the volume average particle size of the silicon-based negative electrode active material is not particularly limited, but the primary particle size is preferably 0.01 to 10 ⁇ m from the viewpoint of durability, and when the composite particles are formed, the secondary particles More preferably, the diameter is 10 to 30 ⁇ m.
  • the volume average particle diameter here means the particle diameter of the silicon-type negative electrode active material before being doped with lithium ion.
  • the volume average particle diameter means a particle diameter (Dv50) at an integrated value of 50% in a particle size distribution obtained by a microtrack method (laser diffraction / scattering method).
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light, and a microtrack manufactured by Nikkiso Co., Ltd. can be used for the measurement.
  • the silicon-based negative electrode active material is doped with lithium ions. By being doped with lithium ions, the first charge of the silicon-based negative electrode active material has already been completed. Therefore, the negative electrode for a lithium ion battery is not affected by the first charge / discharge at which the largest volume change occurs and the volume change of the silicon-based negative electrode active material due to the subsequent charge / discharge is small.
  • Examples of the carbon-based negative electrode active material include carbon-based materials [for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch) Coke, needle coke, petroleum coke, etc.)], or conductive polymers (such as polyacetylene and polypyrrole), metal oxides (titanium oxide and lithium / titanium oxide), and metal alloys (lithium-tin alloys, lithium- A mixture of an aluminum alloy, an aluminum-manganese alloy, etc.) with a carbon-based material.
  • carbon-based materials for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch) Coke, needle coke, petroleum coke, etc.)
  • conductive polymers such as polyacetylene and poly
  • the volume average particle diameter of the carbon-based negative electrode active material is preferably from 0.1 to 50 ⁇ m, and more preferably from 15 to 20 ⁇ m, from the viewpoint of the electrical characteristics of the negative electrode for a lithium ion battery.
  • the volume average particle diameter here is a volume average particle diameter before being doped with lithium ions.
  • the volume average particle diameter means the particle diameter (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method).
  • the microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light, and a microtrack manufactured by Nikkiso Co., Ltd. can be used for the measurement.
  • the carbon-based negative electrode active material is also doped with lithium ions.
  • the negative electrode active material layer is composed of a non-binding body of a negative electrode active material composition including a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions.
  • the positive electrode active material that supplies lithium ions during charging is generally expensive, the amount of the positive electrode active material used can be reduced by doping lithium ions in advance. Furthermore, since lithium ions are pre-doped to prevent the electrolyte from decomposing and generating gas during the first charge, there is a possibility that the degassing step can be omitted during the manufacture of the lithium ion battery.
  • the non-binding body of the negative electrode active material composition means that the silicon-based negative electrode active material and the carbon-based negative electrode active material are not fixed to each other by a binder (also referred to as a binder).
  • the negative electrode active material layer in a conventional lithium ion battery is coated on the surface of a negative electrode current collector or the like with a slurry in which a silicon negative electrode active material, a carbon negative electrode active material, and a binder are dispersed in a dispersion medium (solvent).
  • a dispersion medium solvent
  • the negative electrode active materials are fixed to each other by the binder, and the positions of the silicon-based negative electrode active material and the carbon-based negative electrode active material are fixed.
  • the negative electrode active material layer is hardened with a binder, excessive stress is applied to the silicon-based negative electrode active material due to expansion / contraction during charge / discharge, and the self-destructing is likely to occur.
  • the negative electrode active material layer is fixed on the negative electrode current collector or separator by the binder, the negative electrode active material layer solidified by the binder due to expansion / contraction during charge / discharge of the silicon-based negative electrode active material Cracks may occur, and the negative electrode active material layer may be peeled off from the surface of the negative electrode current collector.
  • a coating film made of slurry is dried when forming the negative electrode active material layer in a method for producing a negative electrode for a lithium ion battery described later.
  • the method of making it not include substantially the process to make is mentioned.
  • a negative electrode active material composed of a non-binding material of a negative electrode active material composition can be obtained by a method in which the negative electrode active material layer (slurry for forming the negative electrode active material layer) does not substantially contain a binder.
  • a material layer can be formed.
  • the negative electrode active material layer (slurry for forming the negative electrode active material layer) does not substantially contain a binder.
  • the content of the binder is determined by the negative electrode active material layer ( This means that it is 1% by mass or less with respect to 100% by mass of the total solid content contained in the slurry for forming the negative electrode active material layer.
  • the content of the binder is more preferably 0.5% by mass or less, further preferably 0.2% by mass or less, particularly preferably 0.1% by mass or less, and most preferably 0% by mass. %.
  • the binder that the negative electrode active material layer does not substantially contain is a known solvent used for binding and fixing the negative electrode active material particles to each other and the negative electrode active material particles and the current collector.
  • (Dispersion medium) A dry binder for lithium ion batteries, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, and styrene-butadiene rubber. These binders for lithium ion batteries are used by being dissolved or dispersed in water or an organic solvent, and are dried and solidified by volatilizing a solvent (dispersion medium) component to form negative electrode active material particles and negative electrode active material particles. And the current collector are firmly fixed.
  • the negative electrode active material particles are a concept including all silicon-based active material particles and carbon-based negative electrode active material particles.
  • the method for producing a negative electrode for a lithium ion battery does not substantially include a step of drying the slurry of the binder, or the negative electrode active material layer (slurry for forming the negative electrode active material layer) substantially contains the binder. Otherwise, the negative electrode active material particles are not firmly fixed by the binder, and expansion / contraction during charging / discharging of the silicon negative electrode active material is not restricted. Can be suppressed. Furthermore, since the negative electrode active material layer constituting the negative electrode for a lithium ion battery of the present invention is not fixed to the negative electrode current collector surface by a binder, The negative electrode active material layer is not cracked or peeled off due to the shrinkage. Therefore, deterioration of cycle characteristics can be suppressed. Therefore, the negative electrode for lithium ion batteries of the present invention is excellent in energy density and cycle characteristics. Since the negative electrode active material layer contains a silicon-based negative electrode active material having a large theoretical capacity, the energy density is excellent.
  • the mass mixing ratio of the silicon-based negative electrode active material and the carbon-based negative electrode active material is preferably 5:95 to 50:50. More preferably, it is 30:70 to 45:55.
  • the mass mixing ratio is within the above range, the effect of improving the energy density by the silicon-based negative electrode active material is sufficient. Moreover, the volume expansion at the time of charge of a negative electrode active material layer does not become large too much.
  • the mass of a silicon type negative electrode active material is defined as the total amount.
  • the thickness of the negative electrode active material layer is not particularly limited, but is preferably 100 to 1500 ⁇ m, more preferably 200 to 800 ⁇ m, and further preferably 300 to 600 ⁇ m.
  • the electrode can be thicker than the conventional negative electrode, and the amount of the active material contained in the negative electrode is increased. Furthermore, since the energy density is increased by including the silicon-based negative electrode active material in the negative electrode active material layer, a negative electrode having a high energy density and a high capacity can be obtained.
  • the thickness of the negative electrode active material layer is determined before the negative electrode active material layer is charged or when the negative electrode active material layer is discharged to the value of the electrode potential +0.05 V (vs. Li / Li + ) or less. Of thickness.
  • the carbon-based negative electrode active material contained in the negative electrode active material layer may be the carbon-based negative electrode active material itself, and includes a polymer compound in which a part or all of the surface of the carbon-based negative electrode active material is a coating resin.
  • the carbon-based coated negative electrode active material coated with the negative electrode coating layer may be a carbon-based coated negative electrode active material.
  • the carbon-based negative electrode active material is a carbon-based coated negative electrode active material doped with lithium ions
  • lithium ions are not doped in the negative electrode coating layer covering the periphery of the carbon-based coated negative electrode active material, but lithium ions are doped in the carbon-based negative electrode active material at the center of the carbon-based coated negative electrode active material. It is preferable.
  • the ratio of the mass of the polymer compound to the mass of the carbon-based coated negative electrode active material is not particularly limited, but is preferably 0.01 to 20% by mass.
  • the negative electrode coating layer comprises a polymer compound that is a coating resin. Moreover, the conductive support agent mentioned later may be further included as needed.
  • the carbon-based negative electrode active material is a part of or the entire surface of the carbon-based negative electrode active material covered with a negative electrode coating layer containing a polymer compound.
  • a negative electrode coating layer containing a polymer compound.
  • the negative electrode active material layer is made of a non-binding body of the negative electrode active material composition is determined when the negative electrode active material layer is completely impregnated in the electrolytic solution. It can be confirmed by observing whether or not.
  • the negative electrode active material layer is composed of a binder of the negative electrode active material composition, the shape can be maintained for one minute or longer, but the negative electrode active material layer is composed of a non-binder of the negative electrode active material composition. In some cases, shape collapse occurs in less than a minute.
  • thermoplastic resins and thermosetting resins examples include thermoplastic resins and thermosetting resins.
  • examples thereof include resins, silicone resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, polysaccharides (such as sodium alginate), and mixtures thereof.
  • acrylic resins, urethane resins, polyester resins and polyamide resins are preferable, and acrylic resins are more preferable.
  • a polymer compound having a liquid absorption rate of 10% or more when immersed in an electrolytic solution and a tensile elongation at break in a saturated liquid absorption state of 10% or more is more preferable.
  • the liquid absorption rate when immersed in the electrolytic solution is obtained by the following equation by measuring the mass of the polymer compound before the immersion in the electrolytic solution and after the immersion.
  • Absorption rate (%) [(mass of polymer compound after immersion in electrolyte ⁇ mass of polymer compound before immersion in electrolyte) / mass of polymer compound before immersion in electrolyte] ⁇ 100
  • An electrolytic solution dissolved to a concentration of L is used.
  • the immersion in the electrolytic solution for determining the liquid absorption rate is performed at 50 ° C. for 3 days.
  • the saturated liquid absorption state refers to a state in which the mass of the polymer compound does not increase even when immersed in the electrolyte.
  • the electrolyte solution used when manufacturing a lithium ion battery using the negative electrode for lithium ion batteries of this invention is not limited to the said electrolyte solution, You may use another electrolyte solution.
  • the liquid absorption is 10% or more, lithium ions can easily permeate the polymer compound, so that the ionic resistance in the negative electrode active material layer can be kept low.
  • the liquid absorption is less than 10%, the lithium ion conductivity is lowered, and the performance as a lithium ion battery may not be sufficiently exhibited.
  • the liquid absorption is preferably 20% or more, and more preferably 30% or more.
  • a preferable upper limit of a liquid absorption rate it is 400%, and as a more preferable upper limit, it is 300%.
  • the tensile elongation at break in the saturated liquid absorption state was determined by punching the polymer compound into a dumbbell shape and immersing it in an electrolytic solution at 50 ° C. for 3 days in the same manner as the measurement of the liquid absorption rate.
  • the state can be measured according to ASTM D683 (test piece shape Type II).
  • the tensile elongation at break is a value obtained by calculating the elongation until the test piece breaks in the tensile test according to the following formula.
  • Tensile elongation at break (%) [(length of specimen at break ⁇ length of specimen before test) / length of specimen before test] ⁇ 100
  • the tensile elongation at break is preferably 20% or more, and more preferably 30% or more. Further, the preferable upper limit value of the tensile elongation at break is 400%, and the more preferable upper limit value is 300%.
  • the acrylic resin is preferably a resin comprising a polymer (A1) having an acrylic monomer (a) as an essential constituent monomer.
  • the polymer (A1) is a monomer composition comprising a monomer (a1) having a carboxyl group or an acid anhydride group as the acrylic monomer (a) and a monomer (a2) represented by the following general formula (1).
  • a polymer is preferred.
  • CH 2 C (R 1 ) COOR 2 (1)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a straight chain having 4 to 12 carbon atoms or a branched alkyl group having 3 to 36 carbon atoms.
  • Monomers (a1) having a carboxyl group or an acid anhydride group include (meth) acrylic acid (a11), monocarboxylic acids having 3 to 15 carbon atoms such as crotonic acid and cinnamic acid; (anhydrous) maleic acid and fumaric acid Dicarboxylic acids having 4 to 24 carbon atoms such as itaconic acid, citraconic acid and mesaconic acid; polycarboxylic acids having a valence of 6 to 24 carbon atoms such as aconitic acid and the like. Can be mentioned. Among these, (meth) acrylic acid (a11) is preferable, and methacrylic acid is more preferable.
  • R 1 is preferably a methyl group.
  • R 2 is preferably a linear or branched alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 13 to 36 carbon atoms.
  • R 2 is a linear or branched alkyl group having 4 to 12 carbon atoms.
  • linear alkyl group having 4 to 12 carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, Nonyl group, decyl group, undecyl group, dodecyl group can be mentioned.
  • Examples of the branched alkyl group having 4 to 12 carbon atoms include 1-methylpropyl group (sec-butyl group), 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), 1-methylbutyl group, 1 , 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group 1-methylhexyl group, 2-methylhexyl group, 2-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1-ethy
  • R 2 is a branched alkyl group having 13 to 36 carbon atoms
  • the branched alkyl group having 13 to 36 carbon atoms include a 1-alkylalkyl group [1-methyldodecyl group, 1-butyleicosyl group, 1-hexyloctadecyl group, 1-octylhexadecyl group, 1-decyltetradecyl group, 1-undecyltridecyl group, etc.], 2-alkylalkyl group [2-methyldodecyl group, 2-hexyloctadecyl group, 2- Octylhexadecyl group, 2-decyltetradecyl group, 2-undecyltridecyl group, 2-dodecylhexadecyl group, 2-tridecylpentadecyl group, 2-decyloctadecyl group, 2-tetrade
  • the polymer (A1) preferably further contains an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid.
  • Examples of the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a3) include methanol, ethanol, 1-propanol and 2-propanol.
  • the content of the ester compound (a3) is preferably 10 to 60% by mass, and preferably 15 to 55% by mass based on the total mass of the polymer (A1) from the viewpoint of suppressing volume change of the negative electrode active material. More preferably, it is more preferably 20 to 50% by mass.
  • the polymer (A1) may further contain an anionic monomer salt (a4) having a polymerizable unsaturated double bond and an anionic group.
  • Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styryl group, and a (meth) acryloyl group.
  • the (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • anionic group examples include a sulfonic acid group and a carboxyl group.
  • An anionic monomer having a polymerizable unsaturated double bond and an anionic group is a compound obtained by a combination thereof, such as vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid and (meth) acrylic acid. It is done.
  • Examples of the cation constituting the salt (a4) of the anionic monomer include lithium ion, sodium ion, potassium ion and ammonium ion.
  • the content thereof is preferably 0.1 to 15% by mass based on the total mass of the polymer compound from the viewpoint of internal resistance and the like. It is more preferably ⁇ 15% by mass, and further preferably 2-10% by mass.
  • the polymer (A1) preferably contains (meth) acrylic acid (a11) and an ester compound (a21), and more preferably contains an ester compound (a3).
  • methacrylic acid is used as (meth) acrylic acid (a11), 2-ethylhexyl methacrylate is used as ester compound (a21), and methyl methacrylate is used as ester compound (a3).
  • the polymer compound is (meth) acrylic acid (a11), the above-described monomer (a2), an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid, and if necessary.
  • a monomer composition comprising a salt (a4) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group is polymerized to produce the monomer (a2) and the (meth) acrylic.
  • the mass ratio of the acid (a11) [the monomer (a2) / the (meth) acrylic acid (a11)] is preferably 10/90 to 90/10.
  • the mass ratio of the monomer (a2) and the (meth) acrylic acid (a11) is 10/90 to 90/10, the polymer obtained by polymerizing the monomer has good adhesion to the carbon-based negative electrode active material. It becomes difficult to peel.
  • the mass ratio is preferably 20/80 to 80/20, more preferably 30/70 to 85/15, and still more preferably 40/60 to 70/30.
  • the monomer constituting the polymer (A1) includes a monomer (a1) having a carboxyl group or an acid anhydride group, a monomer (a2) represented by the above general formula (1), a carbon number of 1 to 3
  • a monomer (a2) represented by the above general formula (1) a carbon number of 1 to 3
  • the ester compound (a3) of a monovalent aliphatic alcohol of (meth) acrylic acid and an anionic monomer salt (a4) having a polymerizable unsaturated double bond and an anionic group As long as the physical properties of the coalescence (A1) are not impaired, the monomer (a1), the monomer (a2) represented by the general formula (1), a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic
  • a radical polymerizable monomer (a5) that can be copolymerized with the ester compound (a3) with an acid may be contained.
  • the radical polymerizable monomer (a5) is preferably a monomer not containing active hydrogen, and the following monomers (a51) to (a58) can be used.
  • the monool (i) linear aliphatic monool (tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, arachidyl alcohol Etc.), (ii) alicyclic monools (cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, cyclooctyl alcohol etc.), (iii) araliphatic monools (benzyl alcohol etc.) and mixtures of two or more thereof Can be mentioned.
  • Nitrogen-containing vinyl compound (a53-1) Amide group-containing vinyl compound (i) (Meth) acrylamide compound having 3 to 30 carbon atoms, such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7 to 15) (meth) acrylamide (N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.), diacetone acrylamide (ii) Contains amide group having 4 to 20 carbon atoms excluding the above (meth) acrylamide compound Vinyl compounds such as N-methyl-N-vinylacetamide, cyclic amides [pyrrolidone compounds (having 6 to 13 carbon atoms, such as N-vinylpyrrolidone)] (A53-2) (Meth) acrylate compound (i) Dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoeth
  • Vinyl hydrocarbon (a54-1) Aliphatic vinyl hydrocarbon An olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc.
  • Alicyclic vinyl hydrocarbons 18 or more cyclic unsaturated compounds such as cycloalkenes (eg cyclohexene), (di) cycloalkadiene [eg (di) cyclopentadiene], terpenes (eg pinene and limonene), indene (a54-3) aromatic vinyl Hydrocarbons Aromatic unsaturated compounds having 8 to 20 or more carbon atoms, eg If styrene, alpha-methyl styrene, vinyl toluene, 2,4-dimethylstyrene, ethylstyrene, isopropyl styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene.
  • cycloalkenes eg cyclohexene
  • cycloalkadiene eg (d
  • alkenyl ester of aliphatic carboxylic acid mono- or dicarboxylic acid
  • aromatic vinyl ester for example, alkenyl ester of aromatic carboxylic acid (mono- or dicarboxylic acid) (for example, vinyl benzoate
  • Vinyl ether Aliphatic vinyl ether [C3-15, such as vinyl alkyl (C1-10) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (C1-6) Alkyl (1 to 4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2-ethyl Mercaptoethyl ether, etc.), poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.)] Aromatic vinyl ethers (8-20 carbon atoms, eg vinyl phenyl ether) , Phenoxy
  • Vinyl ketone Aliphatic vinyl ketone (having 4 to 25 carbon atoms, such as vinyl methyl ketone, vinyl ethyl ketone) and aromatic vinyl ketone (having 9 to 21 carbon atoms, such as vinyl phenyl ketone).
  • Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms such as dialkyl fumarate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms) ), Dialkyl maleate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms).
  • (a5) Of those exemplified as (a5) above, (a51), (a52) and (a53) are preferable from the viewpoint of withstand voltage.
  • a monomer (a1) having a carboxyl group or an acid anhydride group a monomer (a2) represented by the general formula (1), a monovalent aliphatic alcohol having 1 to 3 carbon atoms and ( The content of the ester compound (a3) with meth) acrylic acid, the salt (a4) of the anionic monomer having a polymerizable unsaturated double bond and an anionic group, and the radical polymerizable monomer (a5)
  • A1) is 0.1 to 80% by mass
  • (a2) is 0.1 to 99.9% by mass
  • (a3) is 0 to 60% by mass
  • (a4) is based on the mass of the combined (A1).
  • the content is preferably 0 to 15% by mass and (a5) is preferably 0 to 99.8% by mass.
  • the preferable lower limit of the number average molecular weight of the polymer (A1) is 3,000, more preferably 50,000, still more preferably 60,000, and the preferable upper limit is 2,000,000, more preferably 1,500, 000, more preferably 1,000,000, particularly preferably 120,000.
  • the number average molecular weight of the polymer (A1) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
  • GPC gel permeation chromatography
  • Apparatus Alliance GPC V2000 (manufactured by Waters) Solvent: Orthodichlorobenzene Reference material: Polystyrene detector: RI Sample concentration: 3 mg / ml
  • Column stationary phase PLgel 10 ⁇ m, MIXED-B 2 in series (manufactured by Polymer Laboratories) Column temperature: 135 ° C.
  • the polymer (A1) is a known polymerization initiator ⁇ azo initiator [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc. ⁇ (Bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
  • the use amount of the polymerization initiator is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, based on the total mass of the monomers, from the viewpoint of adjusting the number average molecular weight within a preferable range. More preferably, the content is 0.1 to 1.5% by mass.
  • the polymerization temperature and polymerization time are adjusted according to the type of the polymerization initiator, etc., but the polymerization temperature is preferably ⁇ 5 to 150 ° C. (more preferably 30 to 120 ° C.), and the reaction time is preferably 0.1 to It is carried out for 50 hours (more preferably 2 to 24 hours).
  • Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms). Examples thereof include 4 to 8, such as n-butane, cyclohexane and toluene, ketones (having 3 to 9 carbon atoms such as methyl ethyl ketone) and amide compounds (such as N, N-dimethylformamide).
  • the amount used is preferably 5 to 900% by mass, more preferably 10 to 400% by mass, and still more preferably 30 to 300% by mass based on the total mass of the monomers.
  • the monomer concentration is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and still more preferably 30 to 80% by mass.
  • Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha and the like, and examples of the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt.
  • alcohol for example, ethanol
  • ester for example, ethyl propionate
  • emulsifier include higher fatty acid (carbon number 10 to 24) metal salt.
  • sulfate metal salt for example, sodium lauryl sulfate
  • ethoxylated tetramethyldecynediol sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc.
  • the monomer concentration of the solution or dispersion is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 15 to 85% by mass.
  • the amount of the polymerization initiator used is based on the total mass of the monomers. It is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass.
  • chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used.
  • mercapto compounds such as dodecyl mercaptan and n-butyl mercaptan
  • halogenated hydrocarbons such as carbon tetrachloride, carbon tetrabromide and benzyl chloride
  • the polymer (A1) contained in the acrylic resin is a crosslinking agent (A ′) having a reactive functional group that reacts the polymer (A1) with a carboxyl group ⁇ preferably a polyepoxy compound (a′1) [polyglycidyl ether].
  • Examples of the method of crosslinking the polymer (A1) using the crosslinking agent (A ′) include a method of crosslinking after coating the carbon-based negative electrode active material with the polymer (A1). Specifically, the carbon-based negative electrode active material in which the carbon-based negative electrode active material is coated with the polymer (A1) by mixing and removing the solvent containing the carbon-based negative electrode active material and the polymer (A1).
  • a solution containing the crosslinking agent (A ′) is mixed with the carbon-based coated negative electrode active material and heated to cause solvent removal and a crosslinking reaction, so that the polymer (A1) becomes a crosslinking agent (
  • a method of causing a reaction that is crosslinked by A ′) to become a polymer compound on the surface of the carbon-based negative electrode active material may be mentioned.
  • the heating temperature is adjusted according to the type of the crosslinking agent, but when the polyepoxy compound (a′1) is used as the crosslinking agent, it is preferably 70 ° C. or higher, and when the polyol compound (a′2) is used. Preferably it is 120 degreeC or more.
  • the negative electrode coating layer preferably further contains a conductive additive.
  • the conductive auxiliary agent is selected from conductive materials. Specifically, carbon [graphite and carbon black (acetylene black, ketjen black (registered trademark), furnace black, channel black, thermal lamp black, etc.), etc.] Carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, carbon nanofibers and carbon nanotubes, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.] can be used. These conductive assistants may be used alone or in combination of two or more. Alternatively, an alloy or metal oxide containing the above metal may be used.
  • the average particle size of the conductive auxiliary agent is not particularly limited, but is preferably 0.01 to 10 ⁇ m and preferably 0.02 to 5 ⁇ m from the viewpoint of the electrical characteristics of the negative electrode for a lithium ion battery. More preferably, it is 0.03 to 1 ⁇ m.
  • the particle diameter of a conductive support agent means the largest distance L among the distances between arbitrary two points on the outline of the particle
  • the value of the “average particle size of the conductive additive” is the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of is assumed to be adopted.
  • the shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, for example, a fibrous conductive auxiliary agent.
  • Fibrous conductive assistants include conductive fibers in which synthetically conductive metals and graphite are uniformly dispersed in synthetic fibers, metal fibers made from metal such as stainless steel, and the surface of organic fibers. Examples thereof include conductive fibers coated with metal, and conductive fibers whose organic surface is coated with a resin containing a conductive substance.
  • the average fiber diameter of the fibrous conductive additive is preferably 0.1 to 30 ⁇ m, and more preferably 0.1 to 20 ⁇ m.
  • the mass of the conductive auxiliary contained in the negative electrode coating layer is 15 to 75% by mass with respect to the total mass of the polymer compound as the coating resin and the conductive auxiliary. It is preferable that
  • the negative electrode coating layer of the carbon-based coated negative electrode active material contains a conductive additive, the conductivity contained in the negative electrode coating layer even when the SEI film is formed on the surface of the carbon-based negative electrode active material after precharging.
  • the conduction path between the active materials can be maintained by the effect of the auxiliary agent, and the increase in resistance due to the formation of the SEI film can be suppressed, and it is more preferable that the ratio of the conductive auxiliary agent is within this range because the resistance can be easily suppressed. .
  • the negative electrode active material composition constituting the negative electrode active material layer may contain a conductive material in addition to the above-mentioned conductive aid. It is preferable that the negative electrode active material layer contains a conductive material because a conductive path between the active materials can be easily maintained.
  • the conductive material the same materials as the conductive auxiliary agent can be used, and preferable materials are also the same.
  • the ratio of the mass of the conductive material to the mass of the negative electrode active material is not particularly limited, but is preferably 0 to 10% by mass.
  • the negative electrode for a lithium ion battery of the present invention preferably has a negative electrode active material layer provided on a negative electrode current collector.
  • the negative electrode current collector examples include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof. Among these, copper is preferable from the viewpoints of weight reduction, corrosion resistance, and high conductivity.
  • the negative electrode current collector may be a current collector made of baked carbon, conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.
  • the shape of the negative electrode current collector is not particularly limited, and may be a sheet-like current collector made of the above material and a deposited layer made of fine particles made of the above material.
  • the thickness of the negative electrode current collector is not particularly limited, but is preferably 50 to 500 ⁇ m.
  • the same conductive material as an optional component of the negative electrode active material layer can be suitably used.
  • the resin constituting the resin current collector includes polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), polytetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof Is mentioned.
  • PE polyethylene
  • PP polypropylene
  • PMP polymethylpentene
  • PCO polycycloolefin
  • PET polyethylene terephthalate
  • PEN polyether nitrile
  • PTFE polytetra Fluoroethylene
  • SBR styrene butadiene rubber
  • PAN polyacrylonitrile
  • PMA polymethyl acrylate
  • PMMA polymethyl methacrylate
  • polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
  • the method for producing a negative electrode for a lithium ion battery according to the present invention is applied on a current collector or separator using a slurry containing a negative electrode active material composition containing a silicon-based negative electrode active material and a carbon-based negative electrode active material, and a dispersion medium. Forming a film.
  • the manufacturing method includes a step of doping a lithium-based negative electrode active material with lithium ions before or after a step of forming a coating film and before assembling a lithium-ion battery, and a step of doping lithium ions into a carbon-based negative electrode active material. Including the step of. And it has the characteristics in the point which does not contain the process of drying a coating film substantially.
  • the order of the above steps is not particularly limited.
  • the step of doping a lithium ion into a silicon-based negative electrode active material and the step of doping lithium ions into a carbon-based negative electrode active material may be performed simultaneously or separately, and then a step of forming a coating film may be performed.
  • the step of doping the silicon-based negative electrode active material with lithium ions and the step of doping the carbon-based negative electrode active material with lithium ions may be performed simultaneously.
  • the silicon-based negative electrode active material and the carbon-based negative electrode active material contained in the slurry may be a silicon-based negative electrode active material and a carbon-based negative electrode active material before being doped with lithium ions, or doped with lithium ions. It may be a later silicon-based negative electrode active material and carbon-based negative electrode active material.
  • a step of forming a coating film may be performed, and then the step of doping lithium ions into the carbon-based negative electrode active material may be performed; It is also possible to perform a step of forming a coating film after the step of doping the active material with lithium ions, and then perform a step of doping lithium ions into the silicon-based negative electrode active material.
  • the step of forming a coating film, the step of doping lithium ions into the silicon-based negative electrode active material, and the step of doping lithium ions into the carbon-based negative electrode active material are performed in a lithium ion battery (according to the present invention). It is essential to be performed before the assembly of the lithium ion battery to which the negative electrode for lithium ion battery is applied.
  • the silicon-based negative electrode active material and the carbon-based negative electrode active material are separately doped with lithium ions, and the lithium-doped silicon-based negative electrode active material and the lithium-ion-doped carbon-based negative electrode active material A form further comprising a step of mixing the substances.
  • the step of doping lithium ions into the carbon-based negative electrode active material is a step of doping lithium ions into the carbon-based negative electrode active material contained in the mixture of the carbon-based negative electrode active material and the silicon-based negative electrode active material doped with lithium ions.
  • the step of doping lithium ions into the silicon-based negative electrode active material is a step of doping lithium ions into the silicon-based negative electrode active material contained in the mixture of the silicon-based negative electrode active material and the carbon-based negative electrode active material doped with lithium ions.
  • lithium ions are simultaneously doped into a mixed active material including a silicon-based negative electrode active material and a carbon-based negative electrode active material.
  • a precharge negative electrode having a negative electrode active material layer including a silicon-based negative electrode active material and a carbon-based negative electrode active material is prepared, and a precharge battery including a precharge negative electrode and a precharge positive electrode is provided. Examples thereof include a method of pre-charging the battery for pre-charging and a method of doping lithium ions by bringing a lithium ion source into contact with the mixed active material in the raw slurry.
  • a method for pre-charging the pre-charging battery will be described in the following (3-1) to (3-3).
  • a raw material slurry is applied on a film, and pressurized or depressurized to obtain a silicon-based negative electrode active material and a carbon-based negative electrode active material (that is, A method of preparing a negative electrode for precharging by fixing the mixed active material) on the film can be mentioned.
  • the raw slurry is a mixture of a mixed active material and a dispersion medium.
  • the dispersion medium contained in the raw material slurry examples include an electrolytic solution and a non-aqueous solvent.
  • electrolyte solution is preferable. That is, the raw material slurry is preferably an electrolytic solution slurry containing a particulate mixed active material and an electrolytic solution.
  • the electrolytic solution a nonaqueous electrolytic solution containing an electrolyte and a nonaqueous solvent, which is used in the manufacture of a lithium ion battery, can be used.
  • electrolyte contained in the electrolytic solution those used in known electrolytic solutions can be used, for example, lithium salt electrolytes of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4. , Sulfonylimide-based electrolytes having fluorine atoms such as LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 , fluorine atoms such as LiC (CF 3 SO 2 ) 3 Sulfonylmethide-based electrolytes having
  • nonaqueous solvent contained in the electrolytic solution those used in known electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers. , Phosphate esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like, and mixtures thereof.
  • a non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together.
  • lactone compound examples include 5-membered rings (such as ⁇ -butyrolactone and ⁇ -valerolactone) and 6-membered lactone compounds (such as ⁇ -valerolactone).
  • cyclic carbonate examples include propylene carbonate, ethylene carbonate and butylene carbonate.
  • chain carbonate examples include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate.
  • chain carboxylic acid esters examples include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate.
  • Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like.
  • Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one.
  • Examples of the nitrile compound include acetonitrile.
  • Examples of the amide compound include N, N-dimethylformamide (hereinafter also referred to as DMF).
  • Examples of the sulfone include chain sulfones such as dimethyl sulfone and diethyl sulfone, and cyclic sulfones such as sulfolane.
  • lactone compounds Among nonaqueous solvents, lactone compounds, cyclic carbonates, chain carbonates, and phosphates are preferable from the viewpoint of battery output and charge / discharge cycle characteristics. More preferred are lactone compounds, cyclic carbonates and chain carbonates, and particularly preferred are cyclic carbonates and a mixture of cyclic carbonates and chain carbonates. Most preferred is a mixture of ethylene carbonate (EC) and propylene carbonate (PC), a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). It is.
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • the electrolyte concentration of the non-aqueous electrolyte is not particularly limited, but is preferably 0.5 to 5 mol / L, and preferably 0.8 to 3 mol / L from the viewpoint of the handleability of the electrolyte and the battery capacity. Is more preferably 1 to 2 mol / L.
  • the non-aqueous solvent used as the dispersion medium contained in the raw slurry can be the same as the non-aqueous solvent contained in the electrolytic solution.
  • the membrane is preferably a membrane capable of separating the mixed active material and the dispersion medium in the subsequent pressurization or decompression.
  • the film is made of a highly conductive material (conductive material) because the film can be used instead of the current collector, and even if the current collector is in contact with the film, the conductivity is not hindered.
  • a material having an electric conductivity of 100 mS / cm or more can be preferably used. Examples of materials having such characteristics include filter papers, metal meshes and the like in which conductive fibers such as carbon fibers are blended.
  • the metal mesh it is preferable to use a stainless steel mesh, for example, a SUS316 twilled woven wire mesh (manufactured by Sunnet Kogyo) and the like.
  • the mesh opening of the metal mesh is preferably set so that the active material particles and the conductive member do not pass through, for example, a 2300 mesh mesh is preferably used.
  • the raw material slurry can be applied onto the film using an arbitrary coating apparatus such as a bar coater or a brush.
  • the mixed active material is fixed on the film by applying pressure or reduced pressure.
  • a method of the pressurizing operation a method of pressing using a press machine from above the coating surface of the raw slurry can be mentioned.
  • a method of pressure reduction operation a method of applying a filter paper or a mesh or the like to the surface of the membrane on which the raw material slurry is not applied and sucking with a vacuum pump can be mentioned.
  • the dispersion medium is removed from the raw slurry by pressurization or decompression, and the mixed active material is fixed on the film.
  • the film when the film is made of a conductive material, the film can be used as a current collector, or the current collector and the film can be brought into contact with each other to function as a single current collector. Further, when the film is a material that does not have conductivity, the film may be disposed on the separator side.
  • the membrane may be a separator. Examples of the film made of a material having no conductivity include an aramid separator (manufactured by Japan Vilene Co., Ltd.).
  • the dispersion medium is an electrolytic solution
  • the membrane is a membrane that allows the electrolytic solution to permeate without permeating the mixed active material, and only the electrolytic solution may be permeated through the membrane by pressurization or decompression.
  • the raw material slurry may be pressurized with a stronger pressure.
  • This step (also referred to as a pressing step) is a step of increasing the density of the mixed active material by further increasing the pressure difference as compared with the pressurizing or depressurizing step described above.
  • the pressing step includes both an aspect in which pressurization is performed after the pressure reduction process and an aspect in which the pressure to be pressurized after the pressurization process is further increased.
  • a step of transferring the precharging negative electrode fixed on the film to the main surface of the current collector or the separator may be performed.
  • the film is made of a conductive material and the film is used in place of the current collector, it is preferable to transfer the main surface opposite to the film in contact with the main surface of the separator.
  • the preparation of the negative electrode for precharging can also be performed by the following method. That is, a step of applying a raw material slurry on a current collector to form a slurry layer on the current collector, and placing a separator on the slurry layer, absorbing liquid from the upper surface side of the separator, and mixing A step of fixing an active material between the current collector and the separator.
  • a raw material slurry containing a mixed active material is applied on a current collector to form a slurry layer.
  • the current collector include aluminum, copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
  • the slurry the same slurry as the raw material slurry can be used.
  • a conductive fiber as a conductive member may be further added to the slurry to disperse the conductive fiber in the slurry.
  • the slurry is preferably an electrolyte slurry containing an electrolyte.
  • the electrolytic solution the same electrolyte solution slurry as described above can be used.
  • the slurry may be a solvent slurry containing a solvent.
  • the slurry can be applied onto the current collector using an arbitrary coating apparatus such as a bar coater or a brush.
  • a separator is placed on the slurry layer, and liquid is absorbed from the upper surface side of the separator, so that the mixed active material is fixed between the current collector and the separator.
  • a separator is placed on the slurry layer. And it absorbs from the upper surface side of a separator.
  • an aramid separator manufactured by Japan Vilene Co., Ltd.
  • a polyethylene a microporous film made of a polypropylene film, a multilayer film of a porous polyethylene film and polypropylene, a polyester fiber, an aramid fiber, a non-woven fabric made of glass fiber, and the like, and Those having ceramic fine particles such as silica, alumina and titania attached to the surface thereof can be mentioned.
  • the liquid absorption may be performed by sucking the liquid that has been pressed from the upper surface side or the lower surface side of the separator and leached out from the upper surface of the separator, or by sucking the liquid by reducing the pressure from the upper surface side of the separator. May be performed.
  • liquid absorption from the upper surface side of the separator may be performed by placing a liquid absorbing material on the upper surface of the separator.
  • a liquid-absorbing cloth such as towel, paper, liquid-absorbing resin, or the like can be used.
  • the electrolyte solution or the solvent is removed from the slurry by the liquid absorption, and the mixed active material is fixed between the current collector and the separator, and the shape is maintained so loose that it does not flow.
  • the method of pressurization is not particularly limited, it can be carried out by various methods. For example, a method using a known press machine and a method of applying pressure by placing a heavy object or the like as a weight may be mentioned, and the pressurization may be performed while vibrating with an ultrasonic vibrator or the like. Pressure when pressurized from the upper side or the lower side of the separator is preferably 0.8 ⁇ 41kg / cm 2, more preferably 0.9 ⁇ 10kg / cm 2. When the pressure is within this range, it is preferable because the capacity of the battery can be increased.
  • the first main surface of the negative electrode for precharging is in contact with the separator, and the second main surface of the negative electrode for precharging is in contact with the current collector.
  • the electrode is produced in a state where the electrode is sandwiched between a separator and a current collector. Therefore, it is not necessary to separately perform a step of disposing a separator and a current collector on both sides of the electrode, and this is preferable because the number of electrodes in a preferable form as a bipolar electrode can be obtained with a small number of steps.
  • a precharge battery including a precharge negative electrode and a precharge positive electrode is fabricated.
  • a preliminary charging battery can be obtained by combining a negative electrode for preliminary charging with a positive electrode for preliminary charging that serves as a counter electrode, storing the separator together with a separator in a cell container, injecting an electrolyte, and sealing the cell container.
  • a positive electrode for precharging is formed on one surface of the current collector, a negative electrode for precharging is formed on the other surface to produce a bipolar electrode, and the bipolar electrode is laminated with a separator to form a cell container.
  • a battery for preliminary charging can also be obtained by storing, injecting an electrolyte, and sealing the cell container.
  • the positive electrode for precharging a positive electrode having a positive electrode active material or a metal lithium electrode can be used.
  • the positive electrode active material is expensive, it is preferable to use a metal lithium electrode.
  • the positive electrode having a positive electrode active material can be produced by applying the positive electrode active material to a current collector using a binder (binder) and drying it.
  • the positive electrode active material include a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2, and LiMn 2 O 4 ), a phosphate of lithium and a transition metal (for example, LiFePO 4 ), and the like. .
  • a binder what was mentioned as a binder which a negative electrode active material layer does not contain in this specification is mentioned.
  • the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass.
  • the separator mentioned above can be used as a separator which can be used for preparation of the negative electrode for precharge.
  • the electrolytic solution the electrolytic solution described above as the electrolytic solution contained in the raw material slurry can be used.
  • the battery for precharging Precharge the battery for precharging.
  • lithium ion can be simultaneously doped with respect to the mixed active material containing a silicon-type negative electrode active material and a carbon-type negative electrode active material.
  • the method of preliminary charging is not particularly limited, a method of charging and discharging one cycle with respect to the preliminary charging battery is preferable.
  • a silicon-based negative electrode active material doped with lithium ions and a carbon-based negative electrode active material doped with lithium ions can be obtained.
  • the negative electrode for lithium-ion batteries of the present invention examples include the following methods.
  • the precharge battery is disassembled, the mixed active material doped with lithium ions is taken out, and a slurry (dispersion) dispersed at a concentration of 30 to 60% by mass based on the mass of the solvent is placed on the negative electrode current collector.
  • a coating device such as a coater
  • the solvent is removed by a method of allowing the nonwoven fabric to stand on the surface and absorbing the liquid, a method of pressurizing or depressurizing, and pressing with a press if necessary.
  • the negative electrode active material layer need not be formed directly on the negative electrode current collector.
  • a layered material (negative electrode active material layer) obtained by applying the slurry to the surface of an aramid separator or the like and removing the solvent is used.
  • the negative electrode for lithium ion batteries of the present invention can also be produced by laminating on the negative electrode current collector.
  • the solvent for dispersing the mixed active material doped with lithium ions it is preferable to use an electrolytic solution, and the electrolytic solution can be the same as that used for the above-described electrolytic slurry.
  • the negative electrode for preliminary charging which is disassembled and removed from the battery for preliminary charging, can be used as the negative electrode for lithium ion batteries.
  • lithium ions are doped into each of the silicon-based negative electrode active material and the carbon-based negative electrode active material.
  • a raw material slurry containing only a silicon-based negative electrode active material and a raw material slurry containing only a carbon-based negative electrode active material are prepared.
  • each of the silicon-based negative electrode active material and the carbon-based negative electrode active material contained in the raw slurry is doped with lithium ions.
  • a silicon-based negative electrode active material doped with lithium ions and a carbon-based negative electrode active material doped with lithium ions are prepared separately.
  • the precharge battery is disassembled for precharge. After removing the negative electrode, a dispersion medium is added to the silicon-based negative electrode active material and the carbon-based negative electrode active material fixed on the negative electrode for precharging to make a slurry again. Then, a slurry containing a silicon-based negative electrode active material doped with lithium ions and a slurry containing a carbon-based negative electrode active material doped with lithium ions are obtained, and by mixing these two slurries, lithium ions are doped.
  • a mixed slurry containing the silicon-based negative electrode active material and the carbon-based negative electrode active material doped with lithium ions is obtained.
  • a dispersion medium may be added to a mixture of the silicon-based negative electrode active material and the carbon-based negative electrode active material fixed on the preliminary charging negative electrode to form a mixed slurry.
  • a negative electrode for a lithium ion battery can be produced.
  • lithium ions are doped only into the silicon-based negative electrode active material.
  • a raw material slurry containing only a silicon-based negative electrode active material is prepared.
  • the silicon-based negative electrode active material contained in the raw slurry is doped with lithium ions to produce a silicon-based negative electrode active material doped with lithium ions.
  • the silicon-based negative electrode active material doped with lithium ions is obtained in the battery for precharging, the silicon-based material fixed to the negative electrode for precharging after disassembling the battery for precharging and removing the negative electrode for precharging A dispersion medium is added to the negative electrode active material to form a slurry again. Then, a slurry containing a silicon-based negative electrode active material doped with lithium ions is obtained. The slurry is mixed with a silicon-based negative electrode active material doped with lithium ions and lithium ions by mixing a carbon-based negative electrode active material not doped with lithium ions in a powder state or in a slurry state. A mixed slurry containing a carbon-based negative electrode active material is obtained. And the carbon-type negative electrode active material contained in this mixed slurry is doped with lithium ions.
  • lithium ions are doped only into the carbon-based negative electrode active material.
  • a raw material slurry containing only the carbon-based negative electrode active material is prepared.
  • the carbon-based negative electrode active material contained in the raw slurry is doped with lithium ions to produce a carbon-based negative electrode active material doped with lithium ions.
  • the carbon-based negative electrode active material doped with lithium ions When the carbon-based negative electrode active material doped with lithium ions is obtained in the battery for preliminary charging, the carbon-based material fixed on the negative electrode for preliminary charging after disassembling the preliminary charging battery and removing the negative electrode for preliminary charging. A dispersion medium is added to the negative electrode active material to form a slurry again. Then, a slurry containing a carbon-based negative electrode active material doped with lithium ions is obtained. By mixing this slurry with a silicon-based negative electrode active material not doped with lithium ions in a powdered state or in a slurry state, a carbon-based negative electrode active material doped with lithium ions and lithium ions are doped. A mixed slurry containing a non-conductive silicon-based negative electrode active material is obtained. The silicon-based negative electrode active material contained in this mixed slurry is doped with lithium ions.
  • lithium having a negative electrode active material layer composed of a non-binding body of a negative electrode active material composition comprising a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions.
  • the slurry does not substantially contain a binder. In this specification, the slurry does not substantially contain a binder.
  • the content of the binder is 1% by mass or less with respect to 100% by mass of the total solid content contained in the slurry. It means that.
  • the content of the binder is more preferably 0.5% by mass or less, further preferably 0.2% by mass or less, particularly preferably 0.1% by mass or less, and most preferably 0% by mass. %.
  • backup charge corresponds to this process .
  • lithium having a negative electrode active material layer composed of a non-binding body of a negative electrode active material composition comprising a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions.
  • substantially not including the step of drying the coating film means that the dispersion medium (solvent) is removed so that the solid content concentration of the coating film (negative electrode active material layer) is 99% by mass or more. It means not to do.
  • the method of removing the excess dispersion medium from the slurry after coating by the above-described liquid absorption or pressurization or depressurization does not cause the solid content concentration of the coating film to be 99% by mass or more. It is not included in the process of drying the coating film.
  • the negative electrode active material layer which consists of a non-binding body of the negative electrode active material composition containing the carbon negative electrode active material doped with lithium ions and the silicon negative electrode active material doped with lithium ions
  • the negative electrode for lithium ion batteries of the present invention can be obtained.
  • a carbon-based coated negative electrode active material may be used as the carbon-based negative electrode active material.
  • the carbon-based coated negative electrode active material is, for example, dropped and mixed with a polymer solution containing a polymer compound over 1 to 90 minutes in a state where the carbon-based negative electrode active material is placed in a universal mixer and stirred at 30 to 50 rpm, Furthermore, it can be obtained by mixing a conductive additive as necessary, raising the temperature to 50 to 200 ° C. while stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes.
  • Examples of the solvent used for producing the carbon-based coated negative electrode active material include 1-methyl-2-pyrrolidone, methyl ethyl ketone, DMF, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
  • a carbon-based negative electrode active material doped with lithium ions is obtained by doping lithium ions into the carbon-based negative electrode active material. It is done.
  • the carbon-based negative electrode active material at the center of the carbon-based coated negative electrode active material is doped with lithium ions.
  • a counter electrode is combined and housed in a cell container together with a separator, and a non-aqueous electrolyte is injected if necessary. It can be manufactured by a sealing method or the like.
  • a positive electrode active material layer made of the positive electrode active material is formed on the other surface of the negative electrode current collector. It is also possible to produce a bipolar electrode, stack the bipolar electrode with a separator and store it in a cell container, inject a non-aqueous electrolyte if necessary, and seal the cell container.
  • the electrode (positive electrode) that is the counter electrode of the negative electrode for a lithium ion battery of the present invention a positive electrode used for a known lithium ion battery can be used.
  • the separator and non-aqueous electrolyte include known separators for lithium-ion batteries and non-aqueous electrolytes (electrolyte and non-aqueous solvent) that can be used for the preparation of the negative electrode for precharging.
  • ⁇ Production Example 1 Production of resin current collector>
  • 70 parts of polypropylene [trade name “Sun Allomer PL500A”, manufactured by Sun Allomer Co., Ltd.]
  • 25 parts of carbon nanotube [trade name: “FloTube 9000”, manufactured by CNano Co., Ltd.] “Sanyo Kasei Kogyo Co., Ltd.] 5 parts was melt kneaded at 200 ° C. and 200 rpm to obtain a resin mixture.
  • the obtained resin mixture was passed through a T-die extrusion film forming machine and stretched and rolled to obtain a resin current collector with a film thickness of 100 ⁇ m.
  • the resin current collector was cut into 3 cm ⁇ 3 cm, and after nickel deposition was performed on one surface, a current extraction terminal (5 mm ⁇ 3 cm) was connected.
  • ⁇ Production Example 4 Preparation of carbon-based coated negative electrode active material particles 2> The same as in Production Example 3 except that the non-graphitizable carbon powder is changed to a non-graphitizable carbon powder having a different particle size [manufactured by Kureha Battery Materials Japan, volume average particle size of 0.1 ⁇ m]. Thus, carbon-based coated negative electrode active material particles 2 were obtained.
  • ⁇ Production Example 5 Production of carbon-coated silicon particles> Chemical vapor deposition of silicon particles [Sigma Aldrich Japan Co., Ltd., volume average particle size 1.5 ⁇ m] in a horizontal heating furnace and 1100 ° C./1000 Pa, average residence time of about 2 hours while venting methane gas into the horizontal heating furnace The operation was performed to obtain silicon-based negative electrode active material particles (volume average particle diameter of 1.5 ⁇ m) having a carbon amount of 2 mass% and having a surface coated with carbon.
  • ⁇ Production Example 6 Preparation of carbon-coated silicon oxide particles> Silicon oxide particles [Sigma-Aldrich Japan, volume average particle size 1.5 ⁇ m] are placed in a horizontal heating furnace, and a chemical vapor deposition operation is performed at 1100 ° C./1000 Pa and an average residence time of about 2 hours while venting methane gas. Silicon-based negative electrode active material particles having a carbon content of 2% by mass and a surface coated with carbon (volume average particle diameter of 1.5 ⁇ m) were obtained.
  • ⁇ Production Example 7 Production of silicon composite particles> 3 parts of silicon particles [manufactured by Sigma-Aldrich Japan, volume average particle size 1.5 ⁇ m] are put into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] and stirred at room temperature at 720 rpm. 10 parts of an acid resin solution (solvent: ultrapure water, solid content concentration 10%) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, 1 part of acetylene black [Denka Co., Ltd., Denka Black (registered trademark)] was added while stirring, and stirring was continued for 30 minutes.
  • solvent ultrapure water, solid content concentration 10%
  • the obtained powder was classified with a sieve having an opening of 20 ⁇ m to obtain silicon composite particles (volume average particle diameter of 30 ⁇ m).
  • a resin composition was prepared by melt-kneading using a single screw extruder. The resin composition was melt-extruded and spun at 390 ° C. The spun resin composition was placed in an electric furnace and held at 270 ° C. for 3 hours under a nitrogen atmosphere to stabilize the carbon precursor. Next, the electric furnace was heated to 500 ° C. over 1 hour and held at 500 ° C.
  • the electric furnace was heated up to 1000 ° C. over 2 hours and held at 1000 ° C. for 30 minutes, and the remaining stabilized carbon precursor was used as a conductive fiber.
  • 90 parts by mass of the obtained conductive fibers, 500 parts by mass of water, and 1000 parts by mass of zirconia balls having a diameter of 0.1 mm were placed in a pot mill container and pulverized for 5 minutes.
  • the zirconia balls were classified and then dried at 100 ° C. to obtain carbon fibers. From the measurement result by SEM, the average fiber diameter of the obtained carbon fiber was 0.3 ⁇ m, the average fiber length was 26 ⁇ m (aspect ratio 87), and the electric conductivity was 600 mS / cm.
  • Example 1 [Preparation of negative electrode active material slurry] Carbon system obtained in Production Example 3 in 90 parts of an electrolyte prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1: 1) at a ratio of 1 mol / L. After adding 6 parts of coated negative electrode active material particles 1, 3 parts of carbon-coated silicon particles obtained in Production Example 5, and 1 part of carbon fiber obtained in Production Example 8 as a conductive material, a planetary stirring type mixing and kneading apparatus ⁇ Awatori Nerita [Sinky Co., Ltd.] ⁇ was used and mixed at 2000 rpm for 5 minutes to prepare a negative electrode active material slurry.
  • EC ethylene carbonate
  • PC propylene carbonate
  • a butyl rubber sheet (hereinafter referred to as a mask) having a ⁇ 15 mm hole is stacked on a ⁇ 23 mm aramid non-woven fabric (model number 2415R: manufactured by Japan Vilene). It was dripped so that it might become 9 mg / cm ⁇ 2 >. Further, a negative negative electrode active material layer having a diameter of 15 mm was produced by suction filtration (reduced pressure) from the aramid nonwoven fabric side. Subsequently, the negative electrode for precharging was produced by pressing at a pressure of 5 MPa for about 10 seconds. Using the produced precharge negative electrode, a precharge battery was prepared and precharged by the following method to produce a lithium ion battery negative electrode of the present invention.
  • a separator (5 cm ⁇ 5 cm, thickness 23 ⁇ m, Celgard 3501 PP) was allowed to stand on the negative electrode for preliminary charging, and 100 ⁇ L of electrolyte was further added.
  • a metallic lithium foil (3 cm ⁇ 3 cm) was left to face the negative electrode for precharging through a separator, 100 ⁇ L of electrolyte was added, the other copper foil in the laminate cell was covered, and heat-sealed first. Two sides orthogonal to one side were heat sealed. Thereafter, the laminate cell was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain a precharge battery.
  • Example 2 A battery for precharging was prepared in the same manner as in Example 1 except that the carbon-coated silicon particles were changed to SiO particles that were silicon oxide (manufactured by Sigma-Aldrich Japan, volume average particle diameter 5 ⁇ m) in the preparation of the negative electrode active material slurry. Then, preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 2 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 2 included in the obtained negative electrode for a lithium ion battery of the present invention was 350 ⁇ m.
  • Example 3 In the preparation of the negative electrode active material slurry, the blending amount of the carbon-based coated negative electrode active material particles 1 was changed to 8.5 parts, and the carbon-coated silicon particles were changed to silicon particles [Sigma-Aldrich Japan, volume average particle diameter 5 ⁇ m]. Except for changing to 5 parts, a battery for preliminary charging was prepared in the same manner as in Example 1, and preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 3 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 3 included in the obtained negative electrode for a lithium ion battery of the present invention was 380 ⁇ m.
  • Example 4 [Preparation of two types of negative electrode active material slurry] After adding 10 parts of carbon-based coated negative electrode active material particles 2 (number average particle diameter 0.1 ⁇ m) obtained in Production Example 4 to 90 parts of the electrolytic solution, the mixture was mixed at 2000 rpm for 5 minutes using a planetary stirring type kneader. Thus, a negative electrode active material slurry 4-1 was produced. After adding 10 parts of silicon particles [volume average particle diameter 0.01 ⁇ m, manufactured by Sigma-Aldrich Japan Co., Ltd.] to 90 parts of the electrolytic solution, the mixture is mixed at 2000 rpm for 5 minutes using a planetary stirring type kneading apparatus, and the negative electrode active material A slurry 4-2 was produced.
  • the pre-charging carbon-based negative electrode 4-1 and the pre-charging silicon-based negative electrode 4-2 were prepared by pressing for about 10 seconds at a pressure of 25 MPa.
  • a precharge battery was prepared and precharged separately by the following method, and the lithium ion battery of the present invention was prepared.
  • a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions were prepared.
  • a separator (12 cm ⁇ 11 cm, thickness 23 ⁇ m, Celgard 3501 PP) was allowed to stand on each negative electrode for precharging, and 100 ⁇ L of electrolyte was further added.
  • a metallic lithium foil (7.5 cm ⁇ 7.5 cm) is left to face each negative electrode for precharging through a separator, 100 ⁇ L of electrolyte is added, and the other copper foil in the laminate cell is covered, The two sides orthogonal to the one side heat-sealed to were heat sealed. Then, the laminate cell was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain two types of precharge batteries.
  • a negative negative electrode active material layer having a diameter of 15 mm was produced by suction filtration (reduced pressure) from the aramid nonwoven fabric side.
  • the negative electrode 4 for lithium ion batteries of this invention was obtained by pressing at a pressure of 5 MPa for about 10 seconds.
  • the thickness of the negative electrode active material layer 4 included in the obtained negative electrode for a lithium ion battery of the present invention was 360 ⁇ m.
  • Example 5 In the production of the negative electrode of Example 4, the carbon-based negative electrode active material 4-1 doped with lithium ions was added to 3.5 parts, and the silicon-based negative electrode active material 4-2 doped with lithium ions was added to 3.5 parts.
  • the negative electrode 5 for a lithium ion battery of the present invention was obtained in the same manner as in Example 4 except that the basis weight of the negative electrode active material when the electrode was produced after the change and doping was changed to 47.8 mg / cm 2 .
  • the thickness of the negative electrode active material layer 5 which the obtained negative electrode for lithium ion batteries of this invention has was 610 micrometers.
  • Example 6> In preparation of the negative electrode active material slurry of Example 1, the compounding quantity of the carbon-type covering negative electrode active material particle 1 was changed into 8.5 parts, and the silicon type negative electrode active material particle which produced the silicon type negative electrode active material in manufacture example 6 (Carbon-coated silicon oxide particles) Except for changing to 0.5 part, a battery for preliminary charging was prepared in the same manner as in Example 1, and preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 6 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 6 included in the obtained negative electrode for a lithium ion battery of the present invention was 370 ⁇ m.
  • Example 7 In the production of the negative electrode active material slurry of Example 1, the compounding amount of the carbon-based coated negative electrode active material particles 1 was changed to 8.5 parts, and the carbon-coated silicon particles produced in Production Example 7 were 0.5 parts. A battery for preliminary charging was produced in the same manner as in Example 1 except that it was changed to, and preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 7 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 7 included in the obtained negative electrode for a lithium ion battery of the present invention was 380 ⁇ m.
  • the carbon-based coated negative electrode active material particles 1 are uncoated non-graphitizable carbon powder [Carbotron (registered trademark) PS (F), manufactured by Kureha Battery Materials Japan, Inc., number The average particle diameter was changed to 6 parts], and Example 1 except that 50 parts of an N-methylpyrrolidone solution containing 5 parts of polyvinylidene fluoride (manufactured by Sigma-Aldrich) from which water was removed was added to the negative electrode active material slurry. Similarly, a negative electrode active material slurry used in Comparative Example 1 was produced.
  • a mask having a hole of ⁇ 15 mm was overlapped on a ⁇ 23 mm aramid nonwoven fabric, and a negative electrode active material slurry was dropped into the hole portion of the mask so as to have a basis weight of 23.9 mg / cm 2 . Further, a negative negative electrode active material layer having a diameter of 15 mm was produced by suction filtration (reduced pressure) from the aramid nonwoven fabric side. Next, after pressing at 5 MPa for 10 seconds, the aramid nonwoven fabric was peeled off, and then dried at 100 ° C. for 15 minutes to prepare a negative electrode for precharging. The solid content concentration in the negative electrode active material layer of the negative electrode for precharging was 99% by mass or more. Next, preliminary charging was performed in the same manner as in Example 1 to obtain a comparative lithium ion battery negative electrode (thickness: 300 ⁇ m).
  • a battery for evaluation was produced by the following method, and a negative electrode for a lithium ion battery was evaluated.
  • a copper foil (3 cm ⁇ 3 cm, thickness 17 ⁇ m) with a terminal (5 mm ⁇ 3 cm) is stacked so that each terminal comes out in the same direction, and two commercially available heat-sealing aluminum laminate films (10 cm ⁇ 8 cm) ) And heat-bonded one side of the terminal to produce a laminate cell for evaluation.
  • the negative electrode for a lithium ion battery obtained in each example or comparative example was placed on one copper foil of the laminate cell for evaluation. After adding 30 ⁇ L of the electrolytic solution to the negative electrode, the separator was placed on the negative electrode, and 100 ⁇ L of the electrolytic solution was further added.
  • a Li metal ( ⁇ 15, thickness 0.5 mm) made by Honjo Metal was placed so as to face the negative electrode with a separator interposed therebetween, and 100 ⁇ L of an electrolytic solution was added.
  • the other copper foil in the laminate cell for evaluation was placed thereon, and two sides orthogonal to one side heat-sealed previously were heat sealed. Thereafter, the laminate cell was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain a lithium ion battery for evaluation.
  • the amount of change in the thickness of the negative electrode active material after the first charge is obtained by subtracting the thickness of the negative electrode active material before the first charge from the thickness of the negative electrode active material after the first charge.
  • the thickness of the negative electrode active material layer was measured using a contact-type film thickness meter [ABS Digimatic Indicator ID-CX manufactured by Mitutoyo Corporation].
  • the preliminary charging method 1 is a method of simultaneously performing a step of doping lithium ions into a silicon-based negative electrode active material and a step of doping lithium ions into a carbon-based negative electrode active material. It means a method in which the step of doping lithium ion into the negative electrode active material and the step of doping lithium ion into the carbon negative electrode active material are performed separately.
  • the negative electrode for lithium ion batteries of the present invention is particularly useful as a negative electrode for bipolar secondary batteries and lithium ion batteries used for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[Problem] To provide: a negative electrode for lithium ion batteries, wherein volume change of a silicon-based negative electrode active material due to charge and discharge is suppressed; and a method for producing this negative electrode for lithium ion batteries. [Solution] A method for producing a negative electrode for lithium ion batteries, which comprises a step for forming a coating film on a collector or a separator with use of a slurry that contains a dispersion medium and a negative electrode active material composition containing a silicon-based negative electrode active material and a carbon-based negative electrode active material. This method for producing a negative electrode for lithium ion batteries comprises, before or after the step for forming a coating film and before the assembly of a lithium ion battery, a step for doping the silicon-based negative electrode active material with lithium ions and a step for doping the carbon-based negative electrode active material with lithium ions, without substantially comprising a step for drying the coating film.

Description

リチウムイオン電池用負極及びリチウムイオン電池用負極の製造方法Negative electrode for lithium ion battery and method for producing negative electrode for lithium ion battery
 本発明は、リチウムイオン電池用負極及びリチウムイオン電池用負極の製造方法に関する。 The present invention relates to a negative electrode for a lithium ion battery and a method for producing a negative electrode for a lithium ion battery.
 近年、環境保護のため二酸化炭素排出量の低減が切に望まれている。自動車業界では、電気自動車(EV)やハイブリッド電気自動車(HEV)の導入による二酸化炭素排出量の低減に期待が集まっており、これらの実用化の鍵を握るモータ駆動用二次電池の開発が鋭意行われている。二次電池としては、高エネルギー密度、高出力密度が達成できるリチウムイオン電池に注目が集まっている。 In recent years, reduction of carbon dioxide emissions has been strongly desired for environmental protection. In the automobile industry, there are high expectations for reducing carbon dioxide emissions by introducing electric vehicles (EVs) and hybrid electric vehicles (HEVs), and we are eager to develop secondary batteries for motor drives that hold the key to their practical application. Has been done. As a secondary battery, attention is focused on a lithium ion battery that can achieve a high energy density and a high output density.
 リチウムイオン電池の高エネルギー密度化のために、従来から負極活物質として用いられている炭素材料よりも理論容量の大きい珪素系材料(珪素及び珪素化合物等)が注目されている。しかしながら、珪素系材料を負極活物質として使用した場合には、充放電に伴う材料の体積変化が大きい。そのため、体積変化によって珪素系材料が自壊したり、集電体表面から剥離しやすくなるため、サイクル特性を向上させることが困難であった。 In order to increase the energy density of lithium ion batteries, silicon-based materials (such as silicon and silicon compounds) having a larger theoretical capacity than carbon materials conventionally used as negative electrode active materials have attracted attention. However, when a silicon-based material is used as the negative electrode active material, the volume change of the material accompanying charge / discharge is large. For this reason, the silicon-based material is self-destructed by volume change or is easily peeled off from the current collector surface, so that it is difficult to improve cycle characteristics.
 特許文献1には、シリコン(以下、珪素ともいう)及びシリコン化合物(以下、珪素化合物ともいう)のうち少なくとも1つと炭素との混合比率、及び、これらの粒子径を所定の範囲に調整することで負極の膨張を抑制したリチウムイオン電池が開示されている。 In Patent Document 1, the mixing ratio of at least one of silicon (hereinafter also referred to as silicon) and silicon compound (hereinafter also referred to as silicon compound) and carbon, and the particle diameter thereof are adjusted to a predetermined range. Discloses a lithium ion battery in which expansion of the negative electrode is suppressed.
 特許文献2には、黒鉛構造を有する炭素粒子の表面の少なくとも一部にSi及び/又はSi化合物を含む炭素質材料が付着した炭素粒子及び繊維状炭素を含み、炭素質材料が重合体を含む組成物を熱処理して得られることを特徴とする炭素材料が開示されている。さらに、この炭素材料とバインダ(結着剤)とを含む電極ペースト及びこの電極ペーストを含む電極も開示されている。 Patent Document 2 includes carbon particles and fibrous carbon in which a carbonaceous material containing Si and / or Si compound is attached to at least a part of the surface of carbon particles having a graphite structure, and the carbonaceous material contains a polymer. A carbon material obtained by heat-treating a composition is disclosed. Furthermore, an electrode paste including the carbon material and a binder (binder) and an electrode including the electrode paste are also disclosed.
特開2016-103337号公報(米国特許出願公開第2016/156025号明細書)Japanese Unexamined Patent Application Publication No. 2016-103337 (U.S. Patent Application Publication No. 2016/156025) 特開2004-182512号公報JP 2004-182512 A
 しかしながら、特許文献1及び2に記載された電極(負極)には、結着剤が用いられているため、電極厚さを厚くしすぎると負極集電体表面から負極活物質が剥離してしまうという問題があった。また、結着剤を使用する分だけ活物質の割合が減るのでエネルギー密度が低くなるという問題があった。また、結着剤によってシリコン及びシリコン化合物の膨張・収縮が制限されて自壊しやすくなることがあった。さらに、充電時の負極の膨張を抑制する効果も充分ではなく、さらなる改善の余地があった。なお、以下、本明細書では負極活物質として用いられるシリコン及びシリコン化合物をまとめて「珪素系負極活物質」ともいう。 However, since the electrode (negative electrode) described in Patent Documents 1 and 2 uses a binder, if the electrode thickness is excessively increased, the negative electrode active material is peeled off from the surface of the negative electrode current collector. There was a problem. Moreover, since the proportion of the active material is reduced by the amount of the binder used, there is a problem that the energy density is lowered. In addition, the binder may limit the expansion and contraction of silicon and silicon compound, and may easily break. Furthermore, the effect of suppressing the expansion of the negative electrode during charging is not sufficient, and there is room for further improvement. Hereinafter, silicon and silicon compounds used as the negative electrode active material are collectively referred to as “silicon-based negative electrode active material” in this specification.
 また、珪素系負極活物質の体積変化は、珪素系負極活物質がリチウムイオンを吸蔵/放出する最初の充放電において最も顕著になる。そのため、最初の充放電時の体積変化を抑制することが、負極の特性改善のために重要であると考えられる。 In addition, the volume change of the silicon-based negative electrode active material becomes most remarkable at the first charge / discharge when the silicon-based negative electrode active material occludes / releases lithium ions. Therefore, it is considered important to suppress the volume change at the first charge / discharge for improving the characteristics of the negative electrode.
 本発明は、上記課題を鑑みてなされたものであり、充放電による珪素系負極活物質の体積変化が少ないリチウムイオン電池用負極及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a negative electrode for a lithium ion battery in which the volume change of the silicon-based negative electrode active material due to charge / discharge is small and a method for producing the same.
 本発明者らは、上記課題を解決するために鋭意検討した結果、本発明に到達した。 The inventors of the present invention have arrived at the present invention as a result of intensive studies to solve the above problems.
 すなわち、本発明は、珪素系負極活物質及び炭素系負極活物質を含む負極活物質組成物と、分散媒とを含むスラリーを用いて集電体又はセパレータ上に塗膜を形成する工程を有するリチウムイオン電池用負極の製造方法に関する。当該製造方法は、塗膜を形成する工程の前又は後であってリチウムイオン電池の組立前に、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを含む。そして、塗膜を乾燥させる工程を実質的に含まない点に特徴を有する。 That is, this invention has the process of forming a coating film on a collector or a separator using the slurry containing the negative electrode active material composition containing a silicon type negative electrode active material and a carbon type negative electrode active material, and a dispersion medium. The present invention relates to a method for producing a negative electrode for a lithium ion battery. The manufacturing method includes a step of doping a lithium-based negative electrode active material with lithium ions before or after a step of forming a coating film and before assembling a lithium-ion battery, and a step of doping lithium ions into a carbon-based negative electrode active material. Including the step of. And it has the characteristics in the point which does not contain the process of drying a coating film substantially.
 本発明のリチウムイオン電池用負極の製造方法によると、充放電による珪素系負極活物質の体積変化が少ないリチウムイオン電池用負極を提供することができる。 According to the method for producing a negative electrode for a lithium ion battery of the present invention, it is possible to provide a negative electrode for a lithium ion battery in which the volume change of the silicon-based negative electrode active material due to charge / discharge is small.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 まず、本発明の製造方法により得られるリチウムイオン電池用負極について説明する。本発明のリチウムイオン電池用負極は、後述の製造方法によって得られ、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる負極活物質層を有することを特徴とする。 First, the negative electrode for a lithium ion battery obtained by the production method of the present invention will be described. The negative electrode for a lithium ion battery of the present invention is obtained by a production method described later, and includes a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions. And a negative electrode active material layer made of a non-binding body.
 本発明のリチウムイオン電池用負極は、負極活物質層を含む。負極活物質層は、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる。負極活物質層は、負極集電体の上に配置されていることが好ましい。 The negative electrode for a lithium ion battery of the present invention includes a negative electrode active material layer. The negative electrode active material layer is composed of a non-binding body of a negative electrode active material composition including a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions. The negative electrode active material layer is preferably disposed on the negative electrode current collector.
 珪素系負極活物質は、珪素及び/又は珪素化合物であることが好ましい。珪素は、結晶質珪素であってもよく、非晶質珪素であってもよく、これらの混合物であってもよい。珪素化合物としては、例えば、酸化珪素(SiO)、Si-C複合体、Si-Al合金、Si-Li合金、Si-Ni合金、Si-Fe合金、Si-Ti合金、Si-Mn合金、Si-Cu合金及びSi-Sn合金からなる群から選択される少なくとも1種であることが好ましい。Si-C複合体としては、炭化珪素、炭素粒子の表面を珪素及び/又は炭化珪素で被覆したもの、並びに、珪素粒子又は酸化珪素粒子の表面を炭素及び/又は炭化珪素で被覆したもの等が含まれる。 The silicon-based negative electrode active material is preferably silicon and / or a silicon compound. The silicon may be crystalline silicon, amorphous silicon, or a mixture thereof. Examples of the silicon compound include silicon oxide (SiO x ), Si—C composite, Si—Al alloy, Si—Li alloy, Si—Ni alloy, Si—Fe alloy, Si—Ti alloy, Si—Mn alloy, It is preferably at least one selected from the group consisting of Si—Cu alloys and Si—Sn alloys. Examples of the Si—C composite include silicon carbide, carbon particles whose surfaces are covered with silicon and / or silicon carbide, and silicon particles or silicon oxide particles whose surfaces are covered with carbon and / or silicon carbide. included.
 珪素粒子及び/又は珪素化合物粒子は、凝集して複合粒子(すなわち、1次粒子が凝集して得られた2次粒子)を形成していることが好ましい。複合粒子は、珪素粒子及び/又は酸化珪素粒子のみが凝集したものであってもよいし、珪素粒子及び/又は酸化珪素粒子が高分子化合物を介して凝集したものであってもよい。この際の高分子化合物としては、例えば、後述の炭素系被覆負極活物質の被覆用樹脂として用いられる高分子化合物と同様のものを使用できる。また、複合粒子は、必要に応じて導電助剤を含んでもよい。この際の導電助剤としては、後述の炭素系被覆負極活物質の負極被覆層に含まれる導電助剤と同様のものを使用できる。複合粒子を形成させるための方法としては、例えば、珪素及び/又は珪素化合物粒子の1次粒子と後述する被覆用樹脂を混合する方法が挙げられる。 The silicon particles and / or silicon compound particles are preferably aggregated to form composite particles (that is, secondary particles obtained by aggregating primary particles). The composite particles may be those in which only silicon particles and / or silicon oxide particles are aggregated, or may be those in which silicon particles and / or silicon oxide particles are aggregated via a polymer compound. As the polymer compound in this case, for example, the same polymer compound used as a coating resin for a carbon-based coated negative electrode active material described later can be used. Further, the composite particles may contain a conductive aid as necessary. As the conductive assistant at this time, the same conductive assistant as that contained in the negative electrode coating layer of the carbon-based coated negative electrode active material described later can be used. Examples of the method for forming the composite particles include a method of mixing primary particles of silicon and / or silicon compound particles and a coating resin described later.
 珪素系負極活物質の体積平均粒子径は特に限定されないが、耐久性の観点から1次粒子径が0.01~10μmであることが好ましく、複合粒子を形成している場合は、2次粒子径が10~30μmであることがより好ましい。なお、珪素系負極活物質はリチウムイオンがドープされることで膨張するが、ここでいう体積平均粒子径は、リチウムイオンがドープされる前の珪素系負極活物質の粒子径を意味する。体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法であり、測定には日機装(株)製のマイクロトラック等を用いることができる。 The volume average particle size of the silicon-based negative electrode active material is not particularly limited, but the primary particle size is preferably 0.01 to 10 μm from the viewpoint of durability, and when the composite particles are formed, the secondary particles More preferably, the diameter is 10 to 30 μm. In addition, although a silicon-type negative electrode active material expand | swells when lithium ion is doped, the volume average particle diameter here means the particle diameter of the silicon-type negative electrode active material before being doped with lithium ion. The volume average particle diameter means a particle diameter (Dv50) at an integrated value of 50% in a particle size distribution obtained by a microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light, and a microtrack manufactured by Nikkiso Co., Ltd. can be used for the measurement.
 珪素系負極活物質には、リチウムイオンがドープされている。リチウムイオンがドープされていることによって、珪素系負極活物質の最初の充電が既に済んだ状態となっている。そのため、最も大きな体積変化が生じる最初の充放電の影響を受けることがなく、その後の充放電による珪素系負極活物質の体積変化が少ないリチウムイオン電池用負極となる。 The silicon-based negative electrode active material is doped with lithium ions. By being doped with lithium ions, the first charge of the silicon-based negative electrode active material has already been completed. Therefore, the negative electrode for a lithium ion battery is not affected by the first charge / discharge at which the largest volume change occurs and the volume change of the silicon-based negative electrode active material due to the subsequent charge / discharge is small.
 炭素系負極活物質としては、炭素系材料[例えば黒鉛、難黒鉛化性炭素、アモルファス炭素、樹脂焼成体(例えばフェノール樹脂及びフラン樹脂等を焼成し炭素化したもの等)、コークス類(例えばピッチコークス、ニードルコークス及び石油コークス等)]、又は、導電性高分子(例えばポリアセチレン及びポリピロール等)、金属酸化物(チタン酸化物及びリチウム・チタン酸化物)及び金属合金(リチウム-スズ合金、リチウム-アルミニウム合金、アルミニウム-マンガン合金等)等と炭素系材料との混合物等が挙げられる。 Examples of the carbon-based negative electrode active material include carbon-based materials [for example, graphite, non-graphitizable carbon, amorphous carbon, resin fired bodies (for example, those obtained by firing and carbonizing phenol resin, furan resin, etc.), cokes (for example, pitch) Coke, needle coke, petroleum coke, etc.)], or conductive polymers (such as polyacetylene and polypyrrole), metal oxides (titanium oxide and lithium / titanium oxide), and metal alloys (lithium-tin alloys, lithium- A mixture of an aluminum alloy, an aluminum-manganese alloy, etc.) with a carbon-based material.
 炭素系負極活物質の体積平均粒子径は、リチウムイオン電池用負極の電気特性の観点から、0.1~50μmが好ましく、15~20μmであることがより好ましい。なお、炭素系負極活物質はリチウムイオンがドープされることで膨張するが、ここでいう体積平均粒子径はリチウムイオンがドープされる前の体積平均粒子径である。また、体積平均粒子径は、マイクロトラック法(レーザー回折・散乱法)によって求めた粒度分布における積算値50%での粒径(Dv50)を意味する。マイクロトラック法とは、レーザー光を粒子に照射することによって得られる散乱光を利用して粒度分布を求める方法であり、測定には日機装(株)製のマイクロトラック等を用いることができる。 The volume average particle diameter of the carbon-based negative electrode active material is preferably from 0.1 to 50 μm, and more preferably from 15 to 20 μm, from the viewpoint of the electrical characteristics of the negative electrode for a lithium ion battery. In addition, although a carbon-type negative electrode active material expand | swells by being doped with lithium ion, the volume average particle diameter here is a volume average particle diameter before being doped with lithium ions. The volume average particle diameter means the particle diameter (Dv50) at an integrated value of 50% in the particle size distribution obtained by the microtrack method (laser diffraction / scattering method). The microtrack method is a method for obtaining a particle size distribution using scattered light obtained by irradiating particles with laser light, and a microtrack manufactured by Nikkiso Co., Ltd. can be used for the measurement.
 炭素系負極活物質にも、リチウムイオンがドープされている。 The carbon-based negative electrode active material is also doped with lithium ions.
 そして、負極活物質層は、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる。 The negative electrode active material layer is composed of a non-binding body of a negative electrode active material composition including a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions.
 一般的に、リチウムイオン電池において初回の充放電を行った場合、放電時に負極から放出されないリチウムイオンが存在するが、珪素系負極活物質及び炭素系負極活物質にリチウムイオンがドープされていると、負極から放出されない分のリチウムイオンを正極活物質が負担する割合は小さくなる。そのため、初回の充電に費やした電気量を放電に費やすことができるため、不可逆容量を小さくすることができる。 In general, when the first charge / discharge is performed in a lithium ion battery, there are lithium ions that are not released from the negative electrode during discharge, but when the lithium ions are doped in the silicon-based negative electrode active material and the carbon-based negative electrode active material The proportion of the positive electrode active material that bears lithium ions that are not released from the negative electrode is small. Therefore, since the amount of electricity spent for the first charge can be spent for discharging, the irreversible capacity can be reduced.
 また、充電時にリチウムイオンを供給する正極活物質は一般的に高価であるため、あらかじめリチウムイオンをドープすることによって、正極活物質の使用量を低減することもできる。さらに、リチウムイオンをあらかじめドープすることによって、初回の充電時に電解液が分解してガスが発生することが防止されるため、リチウムイオン電池の製造時にデガス工程を省略できる可能性がある。 In addition, since the positive electrode active material that supplies lithium ions during charging is generally expensive, the amount of the positive electrode active material used can be reduced by doping lithium ions in advance. Furthermore, since lithium ions are pre-doped to prevent the electrolyte from decomposing and generating gas during the first charge, there is a possibility that the degassing step can be omitted during the manufacture of the lithium ion battery.
 負極活物質組成物の非結着体とは、珪素系負極活物質及び炭素系負極活物質が結着剤(バインダともいう)により互いの位置を固定されていない状態であることを意味する。従来のリチウムイオン電池における負極活物質層は、珪素系負極活物質及び炭素系負極活物質と結着剤とを分散媒(溶媒)中に分散させたスラリーを負極集電体等の表面に塗布し、加熱・乾燥させることにより製造されるため、負極活物質層は結着剤により固められた状態となっている。このとき、負極活物質は結着剤により互いに固定されており、珪素系負極活物質及び炭素系負極活物質の位置が固定されている。そして、負極活物質層が結着剤により固められていると、充放電時の膨張・収縮によって珪素系負極活物質に過度の応力が係り、自壊しやすくなる。さらに、負極活物質層が結着剤によって負極集電体又はセパレータ上固定されているため、珪素系負極活物質の充放電時の膨張・収縮によって結着剤により固められた負極活物質層に亀裂が生じたり、負極活物質層が負極集電体の表面から剥離、脱落してしまうことがある。 The non-binding body of the negative electrode active material composition means that the silicon-based negative electrode active material and the carbon-based negative electrode active material are not fixed to each other by a binder (also referred to as a binder). The negative electrode active material layer in a conventional lithium ion battery is coated on the surface of a negative electrode current collector or the like with a slurry in which a silicon negative electrode active material, a carbon negative electrode active material, and a binder are dispersed in a dispersion medium (solvent). However, since it is manufactured by heating and drying, the negative electrode active material layer is in a state of being hardened by a binder. At this time, the negative electrode active materials are fixed to each other by the binder, and the positions of the silicon-based negative electrode active material and the carbon-based negative electrode active material are fixed. When the negative electrode active material layer is hardened with a binder, excessive stress is applied to the silicon-based negative electrode active material due to expansion / contraction during charge / discharge, and the self-destructing is likely to occur. Further, since the negative electrode active material layer is fixed on the negative electrode current collector or separator by the binder, the negative electrode active material layer solidified by the binder due to expansion / contraction during charge / discharge of the silicon-based negative electrode active material Cracks may occur, and the negative electrode active material layer may be peeled off from the surface of the negative electrode current collector.
 負極活物質組成物の非結着体からなる負極活物質層とするためには、後述のリチウムイオン電池用負極の製造方法において、負極活物質層を形成する際にスラリーからなる塗膜を乾燥させる工程を実質的に含まないようにする、といった手法が挙げられる。また、負極活物質層(負極活物質層を形成するためのスラリー)が実質的に結着剤を含まないようにする、といった手法によっても負極活物質組成物の非結着体からなる負極活物質層を形成することができる。ここで、負極活物質層(負極活物質層を形成するためのスラリー)が実質的に結着剤を含まないとは、具体的には、結着剤の含有量が、負極活物質層(負極活物質層を形成するためのスラリー)に含まれる全固形分量100質量%に対して、1質量%以下であることを意味する。当該結着剤の含有量は、より好ましくは0.5質量%以下であり、さらに好ましくは0.2質量%以下であり、特に好ましくは0.1質量%以下であり、最も好ましくは0質量%である。 In order to obtain a negative electrode active material layer composed of a non-binding body of the negative electrode active material composition, a coating film made of slurry is dried when forming the negative electrode active material layer in a method for producing a negative electrode for a lithium ion battery described later. The method of making it not include substantially the process to make is mentioned. Further, a negative electrode active material composed of a non-binding material of a negative electrode active material composition can be obtained by a method in which the negative electrode active material layer (slurry for forming the negative electrode active material layer) does not substantially contain a binder. A material layer can be formed. Here, the negative electrode active material layer (slurry for forming the negative electrode active material layer) does not substantially contain a binder. Specifically, the content of the binder is determined by the negative electrode active material layer ( This means that it is 1% by mass or less with respect to 100% by mass of the total solid content contained in the slurry for forming the negative electrode active material layer. The content of the binder is more preferably 0.5% by mass or less, further preferably 0.2% by mass or less, particularly preferably 0.1% by mass or less, and most preferably 0% by mass. %.
 なお、本明細書において負極活物質層が実質的に含まないとする結着剤とは負極活物質粒子同士及び負極活物質粒子と集電体とを結着固定するために用いられる公知の溶媒(分散媒)乾燥型のリチウムイオン電池用結着剤を意味し、デンプン、ポリフッ化ビニリデン、ポリビニルアルコール、カルボキシメチルセルロース、ポリビニルピロリドン、テトラフルオロエチレン及びスチレン-ブタジエンゴムが挙げられる。これらのリチウムイオン電池用結着剤は、水又は有機溶媒に溶解又は分散して使用され、溶媒(分散媒)成分を揮発させることで乾燥、固体化して負極活物質粒子同士及び負極活物質粒子と集電体とを強固に固定する。なお、ここでいう負極活物質粒子とは、珪素系活物質粒子及び炭素系負極活物質粒子を全て含む概念である。 In this specification, the binder that the negative electrode active material layer does not substantially contain is a known solvent used for binding and fixing the negative electrode active material particles to each other and the negative electrode active material particles and the current collector. (Dispersion medium) A dry binder for lithium ion batteries, and includes starch, polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose, polyvinylpyrrolidone, tetrafluoroethylene, and styrene-butadiene rubber. These binders for lithium ion batteries are used by being dissolved or dispersed in water or an organic solvent, and are dried and solidified by volatilizing a solvent (dispersion medium) component to form negative electrode active material particles and negative electrode active material particles. And the current collector are firmly fixed. Here, the negative electrode active material particles are a concept including all silicon-based active material particles and carbon-based negative electrode active material particles.
 リチウムイオン電池用負極の製造方法において結着剤のスラリーを乾燥させる工程を実質的に含まない、あるいは、負極活物質層(負極活物質層を形成するためのスラリー)が結着剤を実質的に含まないと、結着剤によって負極活物質粒子が強固に固定されず、珪素系負極活物質の充放電時の膨張・収縮が制限されることがないので、珪素系負極活物質の自壊を抑制することができる。さらに、本発明のリチウムイオン電池用負極を構成する負極活物質層は、負極集電体表面に結着剤により固定されているわけではないため、珪素系負極活物質の充放電時の膨張・収縮によって負極活物質層に亀裂が生じたり、剥離することがない。そのため、サイクル特性の劣化を抑制することができる。
従って、本発明のリチウムイオン電池用負極は、エネルギー密度及びサイクル特性に優れる。負極活物質層中には、理論容量の大きい珪素系負極活物質が含まれるため、エネルギー密度に優れる。
The method for producing a negative electrode for a lithium ion battery does not substantially include a step of drying the slurry of the binder, or the negative electrode active material layer (slurry for forming the negative electrode active material layer) substantially contains the binder. Otherwise, the negative electrode active material particles are not firmly fixed by the binder, and expansion / contraction during charging / discharging of the silicon negative electrode active material is not restricted. Can be suppressed. Furthermore, since the negative electrode active material layer constituting the negative electrode for a lithium ion battery of the present invention is not fixed to the negative electrode current collector surface by a binder, The negative electrode active material layer is not cracked or peeled off due to the shrinkage. Therefore, deterioration of cycle characteristics can be suppressed.
Therefore, the negative electrode for lithium ion batteries of the present invention is excellent in energy density and cycle characteristics. Since the negative electrode active material layer contains a silicon-based negative electrode active material having a large theoretical capacity, the energy density is excellent.
 負極活物質層が珪素系負極活物質と炭素系負極活物質を含む場合、珪素系負極活物質と炭素系負極活物質との質量混合比が5:95~50:50であることが好ましい。より好ましくは30:70~45:55である。質量混合比が上記範囲内であると、珪素系負極活物質によってエネルギー密度を向上させる効果が充分となる。また、負極活物質層の充電時の体積膨張が大きくなりすぎることがない。なお、珪素系負極活物質が珪素と珪素化合物とを含む場合、珪素系負極活物質の質量はその合計量として定める。 When the negative electrode active material layer contains a silicon-based negative electrode active material and a carbon-based negative electrode active material, the mass mixing ratio of the silicon-based negative electrode active material and the carbon-based negative electrode active material is preferably 5:95 to 50:50. More preferably, it is 30:70 to 45:55. When the mass mixing ratio is within the above range, the effect of improving the energy density by the silicon-based negative electrode active material is sufficient. Moreover, the volume expansion at the time of charge of a negative electrode active material layer does not become large too much. In addition, when a silicon type negative electrode active material contains silicon and a silicon compound, the mass of a silicon type negative electrode active material is defined as the total amount.
 負極活物質層の厚さは、特に限定されないが、100~1500μmであることが好ましく、200~800μmであることがより好ましく、300~600μmであることがさらに好ましい。負極活物質層の厚さを上記範囲にすることにより、従来の負極よりも厚い電極とすることができ、負極に含まれる活物質の量が多くなる。さらに、負極活物質層に珪素系負極活物質が含まれることによってエネルギー密度も高くなるので、エネルギー密度が高く高容量の負極とすることができる。また、負極活物質層の厚さは、負極活物質層に対して充電を行う前、又は、負極活物質層を電極電位の値+0.05V(vs.Li/Li)以下まで放電した際の厚さとする。 The thickness of the negative electrode active material layer is not particularly limited, but is preferably 100 to 1500 μm, more preferably 200 to 800 μm, and further preferably 300 to 600 μm. By setting the thickness of the negative electrode active material layer in the above range, the electrode can be thicker than the conventional negative electrode, and the amount of the active material contained in the negative electrode is increased. Furthermore, since the energy density is increased by including the silicon-based negative electrode active material in the negative electrode active material layer, a negative electrode having a high energy density and a high capacity can be obtained. In addition, the thickness of the negative electrode active material layer is determined before the negative electrode active material layer is charged or when the negative electrode active material layer is discharged to the value of the electrode potential +0.05 V (vs. Li / Li + ) or less. Of thickness.
 負極活物質層に含まれる炭素系負極活物質は、炭素系負極活物質そのものであってもよく、該炭素系負極活物質の表面の一部又は全部が被覆用樹脂である高分子化合物を含んでなる負極被覆層により被覆された炭素系被覆負極活物質であってもよいが、炭素系被覆負極活物質であることが好ましい。炭素系負極活物質の表面が被覆層で被覆されていると、負極活物質間の距離を一定に保つことが容易になり、導電経路を維持することが容易になり好ましい。 The carbon-based negative electrode active material contained in the negative electrode active material layer may be the carbon-based negative electrode active material itself, and includes a polymer compound in which a part or all of the surface of the carbon-based negative electrode active material is a coating resin. The carbon-based coated negative electrode active material coated with the negative electrode coating layer may be a carbon-based coated negative electrode active material. When the surface of the carbon-based negative electrode active material is covered with a coating layer, it is easy to maintain a constant distance between the negative electrode active materials, and it is easy to maintain a conductive path, which is preferable.
 炭素系負極活物質が、リチウムイオンがドープされた炭素系被覆負極活物質である場合、リチウムイオンが炭素系負極活物質にドープされていることが好ましい。言い換えれば、炭素系被覆負極活物質の周囲を被覆する負極被覆層にリチウムイオンがドープされているのではなく、炭素系被覆負極活物質の中心にある炭素系負極活物質にリチウムイオンがドープされていることが好ましい。 When the carbon-based negative electrode active material is a carbon-based coated negative electrode active material doped with lithium ions, it is preferable that lithium ions are doped into the carbon-based negative electrode active material. In other words, lithium ions are not doped in the negative electrode coating layer covering the periphery of the carbon-based coated negative electrode active material, but lithium ions are doped in the carbon-based negative electrode active material at the center of the carbon-based coated negative electrode active material. It is preferable.
 炭素系被覆負極活物質の質量に対する高分子化合物の質量の割合は、特に限定されないが、0.01~20質量%であることが好ましい。 The ratio of the mass of the polymer compound to the mass of the carbon-based coated negative electrode active material is not particularly limited, but is preferably 0.01 to 20% by mass.
 負極被覆層は、被覆用樹脂である高分子化合物を含んでなる。また、必要に応じて、さらに、後述する導電助剤を含んでいてもよい。 The negative electrode coating layer comprises a polymer compound that is a coating resin. Moreover, the conductive support agent mentioned later may be further included as needed.
 なお、炭素系被覆負極活物質は、炭素系負極活物質の表面の一部又は全部が、高分子化合物を含んでなる負極被覆層によって被覆されたものであるが、負極活物質層中において、たとえ炭素系被覆負極活物質同士が接触したとしても、接触面において負極被覆層同士が不可逆的に接着することはなく、接着は一時的なもので、容易に手でほぐすことができる。このため、炭素系被覆負極活物質同士が負極被覆層によって固定されることはない。従って、炭素系被覆負極活物質を含んでなる負極活物質層は、炭素系負極活物質が互いに結着されているものではない(つまり、負極活物質組成物の非結着体である)。 The carbon-based negative electrode active material is a part of or the entire surface of the carbon-based negative electrode active material covered with a negative electrode coating layer containing a polymer compound. In the negative electrode active material layer, Even if the carbon-based coated negative electrode active materials are in contact with each other, the negative electrode coating layers are not irreversibly adhered on the contact surface, and the adhesion is temporary and can be easily loosened by hand. For this reason, the carbon-based coated negative electrode active materials are not fixed by the negative electrode coating layer. Accordingly, in the negative electrode active material layer containing the carbon-based coated negative electrode active material, the carbon-based negative electrode active materials are not bound to each other (that is, a non-binding body of the negative electrode active material composition).
 より具体的には、負極活物質層が負極活物質組成物の非結着体からなるか否かは、負極活物質層を電解液中に完全に含浸した場合に負極活物質層が崩壊するか否かを観察することで確認できる。負極活物質層が負極活物質組成物の結着体からなる場合には、一分以上その形状を維持することができるが、負極活物質層が負極活物質組成物の非結着体からなる場合には、一分未満で形状の崩壊が起こる。 More specifically, whether or not the negative electrode active material layer is made of a non-binding body of the negative electrode active material composition is determined when the negative electrode active material layer is completely impregnated in the electrolytic solution. It can be confirmed by observing whether or not. When the negative electrode active material layer is composed of a binder of the negative electrode active material composition, the shape can be maintained for one minute or longer, but the negative electrode active material layer is composed of a non-binder of the negative electrode active material composition. In some cases, shape collapse occurs in less than a minute.
 負極被覆層を構成する高分子化合物としては、熱可塑性樹脂や熱硬化性樹脂などが挙げられ、例えば、フッ素樹脂、アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、ポリエーテル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、アニリン樹脂、アイオノマー樹脂、ポリカーボネート、ポリサッカロイド(アルギン酸ナトリウム等)及びこれらの混合物等が挙げられる。これらの中ではアクリル樹脂、ウレタン樹脂、ポリエステル樹脂及びポリアミド樹脂が好ましく、アクリル樹脂がさらに好ましい。 Examples of the polymer compound constituting the negative electrode coating layer include thermoplastic resins and thermosetting resins. For example, fluororesins, acrylic resins, urethane resins, polyester resins, polyether resins, polyamide resins, epoxy resins, polyimides Examples thereof include resins, silicone resins, phenol resins, melamine resins, urea resins, aniline resins, ionomer resins, polycarbonates, polysaccharides (such as sodium alginate), and mixtures thereof. Among these, acrylic resins, urethane resins, polyester resins and polyamide resins are preferable, and acrylic resins are more preferable.
 これらの中では、電解液に浸漬した際の吸液率が10%以上であり、飽和吸液状態での引張破断伸び率が10%以上である高分子化合物がより好ましい。 Among these, a polymer compound having a liquid absorption rate of 10% or more when immersed in an electrolytic solution and a tensile elongation at break in a saturated liquid absorption state of 10% or more is more preferable.
 電解液に浸漬した際の吸液率は、電解液に浸漬する前、浸漬した後の高分子化合物の質量を測定して、以下の式で求められる。
吸液率(%)=[(電解液浸漬後の高分子化合物の質量-電解液浸漬前の高分子化合物の質量)/電解液浸漬前の高分子化合物の質量]×100
 吸液率を求めるための電解液としては、好ましくはエチレンカーボネート(EC)、プロピレンカーボネート(PC)を体積割合でEC:PC=1:1で混合した混合溶媒に、電解質としてLiPFを1mol/Lの濃度になるように溶解した電解液を用いる。吸液率を求める際の電解液への浸漬は、50℃、3日間行う。50℃、3日間の浸漬を行うことにより高分子化合物が飽和吸液状態となる。なお、飽和吸液状態とは、それ以上電解液に浸漬しても高分子化合物の質量が増えない状態をいう。なお、本発明のリチウムイオン電池用負極を用いてリチウムイオン電池を製造する際に使用する電解液は、上記電解液に限定されるものではなく、他の電解液を使用してもよい。
The liquid absorption rate when immersed in the electrolytic solution is obtained by the following equation by measuring the mass of the polymer compound before the immersion in the electrolytic solution and after the immersion.
Absorption rate (%) = [(mass of polymer compound after immersion in electrolyte−mass of polymer compound before immersion in electrolyte) / mass of polymer compound before immersion in electrolyte] × 100
As an electrolytic solution for obtaining the liquid absorption rate, LiPF 6 is preferably added at 1 mol / liter as an electrolyte in a mixed solvent in which ethylene carbonate (EC) and propylene carbonate (PC) are mixed at a volume ratio of EC: PC = 1: 1. An electrolytic solution dissolved to a concentration of L is used. The immersion in the electrolytic solution for determining the liquid absorption rate is performed at 50 ° C. for 3 days. By immersing at 50 ° C. for 3 days, the polymer compound becomes saturated. The saturated liquid absorption state refers to a state in which the mass of the polymer compound does not increase even when immersed in the electrolyte. In addition, the electrolyte solution used when manufacturing a lithium ion battery using the negative electrode for lithium ion batteries of this invention is not limited to the said electrolyte solution, You may use another electrolyte solution.
 吸液率が10%以上であると、リチウムイオンが高分子化合物を容易に透過することができるため、負極活物質層内でのイオン抵抗を低く保つことができる。吸液率が10%未満であると、リチウムイオンの伝導性が低くなり、リチウムイオン電池としての性能が充分に発揮されないことがある。吸液率は20%以上であることが好ましく、30%以上であることがより好ましい。また、吸液率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。 When the liquid absorption is 10% or more, lithium ions can easily permeate the polymer compound, so that the ionic resistance in the negative electrode active material layer can be kept low. When the liquid absorption is less than 10%, the lithium ion conductivity is lowered, and the performance as a lithium ion battery may not be sufficiently exhibited. The liquid absorption is preferably 20% or more, and more preferably 30% or more. Moreover, as a preferable upper limit of a liquid absorption rate, it is 400%, and as a more preferable upper limit, it is 300%.
 飽和吸液状態での引張破断伸び率は、高分子化合物をダンベル状に打ち抜き、上記吸液率の測定と同様に電解液への浸漬を50℃、3日間行って高分子化合物を飽和吸液状態として、ASTM D683(試験片形状TypeII)に準拠して測定することができる。引張破断伸び率は、引張試験において試験片が破断するまでの伸び率を下記式によって算出した値である。
引張破断伸び率(%)=[(破断時試験片長さ-試験前試験片長さ)/試験前試験片長さ]×100
 高分子化合物の飽和吸液状態での引張破断伸び率が10%以上であると、高分子化合物が適度な柔軟性を有するため、充放電時の炭素系負極活物質の体積変化によって負極被覆層が剥離することを抑制しやすくなる。引張破断伸び率は20%以上であることが好ましく、30%以上であることがより好ましい。また、引張破断伸び率の好ましい上限値としては、400%であり、より好ましい上限値としては300%である。
The tensile elongation at break in the saturated liquid absorption state was determined by punching the polymer compound into a dumbbell shape and immersing it in an electrolytic solution at 50 ° C. for 3 days in the same manner as the measurement of the liquid absorption rate. The state can be measured according to ASTM D683 (test piece shape Type II). The tensile elongation at break is a value obtained by calculating the elongation until the test piece breaks in the tensile test according to the following formula.
Tensile elongation at break (%) = [(length of specimen at break−length of specimen before test) / length of specimen before test] × 100
When the tensile elongation at break in the saturated liquid absorption state of the polymer compound is 10% or more, the polymer compound has appropriate flexibility, and therefore the negative electrode coating layer is formed by the volume change of the carbon-based negative electrode active material during charge / discharge. It becomes easy to suppress peeling. The tensile elongation at break is preferably 20% or more, and more preferably 30% or more. Further, the preferable upper limit value of the tensile elongation at break is 400%, and the more preferable upper limit value is 300%.
 アクリル樹脂は、アクリルモノマー(a)を必須構成単量体とする重合体(A1)を含んでなる樹脂であることが好ましい。 The acrylic resin is preferably a resin comprising a polymer (A1) having an acrylic monomer (a) as an essential constituent monomer.
 重合体(A1)は特に、アクリルモノマー(a)としてカルボキシル基又は酸無水物基を有するモノマー(a1)及び下記一般式(1)で表されるモノマー(a2)を含む単量体組成物の重合体であることが好ましい。
CH=C(R)COOR  (1)
[式(1)中、Rは水素原子又はメチル基であり、Rは炭素数4~12の直鎖又は炭素数3~36の分岐アルキル基である。]
 カルボキシル基又は酸無水物基を有するモノマー(a1)としては、(メタ)アクリル酸(a11)、クロトン酸、桂皮酸等の炭素数3~15のモノカルボン酸;(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸、メサコン酸等の炭素数4~24のジカルボン酸;アコニット酸等の炭素数6~24の3価~4価又はそれ以上の価数のポリカルボン酸等が挙げられる。これらの中でも(メタ)アクリル酸(a11)が好ましく、メタクリル酸がより好ましい。
The polymer (A1) is a monomer composition comprising a monomer (a1) having a carboxyl group or an acid anhydride group as the acrylic monomer (a) and a monomer (a2) represented by the following general formula (1). A polymer is preferred.
CH 2 = C (R 1 ) COOR 2 (1)
[In the formula (1), R 1 represents a hydrogen atom or a methyl group, and R 2 represents a straight chain having 4 to 12 carbon atoms or a branched alkyl group having 3 to 36 carbon atoms. ]
Monomers (a1) having a carboxyl group or an acid anhydride group include (meth) acrylic acid (a11), monocarboxylic acids having 3 to 15 carbon atoms such as crotonic acid and cinnamic acid; (anhydrous) maleic acid and fumaric acid Dicarboxylic acids having 4 to 24 carbon atoms such as itaconic acid, citraconic acid and mesaconic acid; polycarboxylic acids having a valence of 6 to 24 carbon atoms such as aconitic acid and the like. Can be mentioned. Among these, (meth) acrylic acid (a11) is preferable, and methacrylic acid is more preferable.
 上記一般式(1)で表されるモノマー(a2)において、Rはメチル基であることが好ましい。Rは、炭素数4~12の直鎖若しくは分岐アルキル基、又は、炭素数13~36の分岐アルキル基であることが好ましい。 In the monomer (a2) represented by the general formula (1), R 1 is preferably a methyl group. R 2 is preferably a linear or branched alkyl group having 4 to 12 carbon atoms or a branched alkyl group having 13 to 36 carbon atoms.
 (a21)Rが炭素数4~12の直鎖又は分岐アルキル基であるエステル化合物
 炭素数4~12の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基が挙げられる。
(A21) An ester compound in which R 2 is a linear or branched alkyl group having 4 to 12 carbon atoms. Examples of the linear alkyl group having 4 to 12 carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, Nonyl group, decyl group, undecyl group, dodecyl group can be mentioned.
 炭素数4~12の分岐アルキル基としては、1-メチルプロピル基(sec-ブチル基)、2-メチルプロピル基、1,1-ジメチルエチル基(tert-ブチル基)、1-メチルブチル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基(ネオペンチル基)、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1-メチルヘキシル基、2-メチルヘキシル基、2-メチルヘキシル基、4-メチルヘキシル基、5-メチルヘキシル基、1-エチルペンチル基、2-エチルペンチル基、3-エチルペンチル基、1,1-ジメチルペンチル基、1,2-ジメチルペンチル基、1,3-ジメチルペンチル基、2,2-ジメチルペンチル基、2,3-ジメチルペンチル基、2-エチルペンチル基、1-メチルヘプチル基、2-メチルヘプチル基、3-メチルヘプチル基、4-メチルヘプチル基、5-メチルヘプチル基、6-メチルヘプチル基、1,1-ジメチルヘキシル基、1,2-ジメチルヘキシル基、1,3-ジメチルヘキシル基、1,4-ジメチルヘキシル基、1,5-ジメチルヘキシル基、1-エチルヘキシル基、2-エチルヘキシル基、1-メチルオクチル基、2-メチルオクチル基、3-メチルオクチル基、4-メチルオクチル基、5-メチルオクチル基、6-メチルオクチル基、7-メチルオクチル基、1,1-ジメチルヘプチル基、1,2-ジメチルヘプチル基、1,3-ジメチルヘプチル基、1,4-ジメチルヘプチル基、1,5-ジメチルヘプチル基、1,6-ジメチルヘプチル基、1-エチルヘプチル基、2-エチルヘプチル基、1-メチルノニル基、2-メチルノニル基、3-メチルノニル基、4-メチルノニル基、5-メチルノニル基、6-メチルノニル基、7-メチルノニル基、8-メチルノニル基、1,1-ジメチルオクチル基、1,2-ジメチルオクチル基、1,3-ジメチルオクチル基、1,4-ジメチルオクチル基、1,5-ジメチルオクチル基、1,6-ジメチルオクチル基、1,7-ジメチルオクチル基、1-エチルオクチル基、2-エチルオクチル基、1-メチルデシル基、2-メチルデシル基、3-メチルデシル基、4-メチルデシル基、5-メチルデシル基、6-メチルデシル基、7-メチルデシル基、8-メチルデシル基、9-メチルデシル基、1,1-ジメチルノニル基、1,2-ジメチルノニル基、1,3-ジメチルノニル基、1,4-ジメチルノニル基、1,5-ジメチルノニル基、1,6-ジメチルノニル基、1,7-ジメチルノニル基、1,8-ジメチルノニル基、1-エチルノニル基、2-エチルノニル基、1-メチルウンデシル基、2-メチルウンデシル基、3-メチルウンデシル基、4-メチルウンデシル基、5-メチルウンデシル基、6-メチルウンデシル基、7-メチルウンデシル基、8-メチルウンデシル基、9-メチルウンデシル基、10-メチルウンデシル基、1,1-ジメチルデシル基、1,2-ジメチルデシル基、1,3-ジメチルデシル基、1,4-ジメチルデシル基、1,5-ジメチルデシル基、1,6-ジメチルデシル基、1,7-ジメチルデシル基、1,8-ジメチルデシル基、1,9-ジメチルデシル基、1-エチルデシル基、2-エチルデシル基等が挙げられる。これらの中では、特に、2-エチルヘキシル基が好ましい。 Examples of the branched alkyl group having 4 to 12 carbon atoms include 1-methylpropyl group (sec-butyl group), 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), 1-methylbutyl group, 1 , 1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group 1-methylhexyl group, 2-methylhexyl group, 2-methylhexyl group, 4-methylhexyl group, 5-methylhexyl group, 1-ethylpentyl group, -Ethylpentyl group, 3-ethylpentyl group, 1,1-dimethylpentyl group, 1,2-dimethylpentyl group, 1,3-dimethylpentyl group, 2,2-dimethylpentyl group, 2,3-dimethylpentyl group 2-ethylpentyl group, 1-methylheptyl group, 2-methylheptyl group, 3-methylheptyl group, 4-methylheptyl group, 5-methylheptyl group, 6-methylheptyl group, 1,1-dimethylhexyl group 1,2-dimethylhexyl group, 1,3-dimethylhexyl group, 1,4-dimethylhexyl group, 1,5-dimethylhexyl group, 1-ethylhexyl group, 2-ethylhexyl group, 1-methyloctyl group, 2 -Methyloctyl group, 3-methyloctyl group, 4-methyloctyl group, 5-methyloctyl group, 6-methyloctyl group, 7-methyloctyl group Tyl group, 1,1-dimethylheptyl group, 1,2-dimethylheptyl group, 1,3-dimethylheptyl group, 1,4-dimethylheptyl group, 1,5-dimethylheptyl group, 1,6-dimethylheptyl group 1-ethylheptyl group, 2-ethylheptyl group, 1-methylnonyl group, 2-methylnonyl group, 3-methylnonyl group, 4-methylnonyl group, 5-methylnonyl group, 6-methylnonyl group, 7-methylnonyl group, 8- Methylnonyl group, 1,1-dimethyloctyl group, 1,2-dimethyloctyl group, 1,3-dimethyloctyl group, 1,4-dimethyloctyl group, 1,5-dimethyloctyl group, 1,6-dimethyloctyl group 1,7-dimethyloctyl group, 1-ethyloctyl group, 2-ethyloctyl group, 1-methyldecyl group, 2-methyldecyl group, 3-methyloctyl group, Tildecyl group, 4-methyldecyl group, 5-methyldecyl group, 6-methyldecyl group, 7-methyldecyl group, 8-methyldecyl group, 9-methyldecyl group, 1,1-dimethylnonyl group, 1,2-dimethylnonyl group, 1 , 3-dimethylnonyl group, 1,4-dimethylnonyl group, 1,5-dimethylnonyl group, 1,6-dimethylnonyl group, 1,7-dimethylnonyl group, 1,8-dimethylnonyl group, 1-ethylnonyl Group, 2-ethylnonyl group, 1-methylundecyl group, 2-methylundecyl group, 3-methylundecyl group, 4-methylundecyl group, 5-methylundecyl group, 6-methylundecyl group, 7 -Methylundecyl group, 8-methylundecyl group, 9-methylundecyl group, 10-methylundecyl group, 1,1-dimethyldecyl group, 1,2-dimethyl Sil group, 1,3-dimethyldecyl group, 1,4-dimethyldecyl group, 1,5-dimethyldecyl group, 1,6-dimethyldecyl group, 1,7-dimethyldecyl group, 1,8-dimethyldecyl group 1,9-dimethyldecyl group, 1-ethyldecyl group, 2-ethyldecyl group and the like. Of these, 2-ethylhexyl group is particularly preferable.
 (a22)Rが炭素数13~36の分岐アルキル基であるエステル化合物
 炭素数13~36の分岐アルキル基としては、1-アルキルアルキル基[1-メチルドデシル基、1-ブチルエイコシル基、1-ヘキシルオクタデシル基、1-オクチルヘキサデシル基、1-デシルテトラデシル基、1-ウンデシルトリデシル基等]、2-アルキルアルキル基[2-メチルドデシル基、2-ヘキシルオクタデシル基、2-オクチルヘキサデシル基、2-デシルテトラデシル基、2-ウンデシルトリデシル基、2-ドデシルヘキサデシル基、2-トリデシルペンタデシル基、2-デシルオクタデシル基、2-テトラデシルオクタデシル基、2-ヘキサデシルオクタデシル基、2-テトラデシルエイコシル基、2-ヘキサデシルエイコシル基等]、3~34-アルキルアルキル基(3-アルキルアルキル基、4-アルキルアルキル基、5-アルキルアルキル基、32-アルキルアルキル基、33-アルキルアルキル基及び34-アルキルアルキル基等)、並びに、プロピレンオリゴマー(7~11量体)、エチレン/プロピレン(モル比16/1~1/11)オリゴマー、イソブチレンオリゴマー(7~8量体)及びα-オレフィン(炭素数5~20)オリゴマー(4~8量体)等から得られるオキソアルコールから水酸基を除いた残基のような1又はそれ以上の分岐アルキル基を含有する混合アルキル基等が挙げられる。
(A22) An ester compound in which R 2 is a branched alkyl group having 13 to 36 carbon atoms Examples of the branched alkyl group having 13 to 36 carbon atoms include a 1-alkylalkyl group [1-methyldodecyl group, 1-butyleicosyl group, 1-hexyloctadecyl group, 1-octylhexadecyl group, 1-decyltetradecyl group, 1-undecyltridecyl group, etc.], 2-alkylalkyl group [2-methyldodecyl group, 2-hexyloctadecyl group, 2- Octylhexadecyl group, 2-decyltetradecyl group, 2-undecyltridecyl group, 2-dodecylhexadecyl group, 2-tridecylpentadecyl group, 2-decyloctadecyl group, 2-tetradecyloctadecyl group, 2- Hexadecyloctadecyl group, 2-tetradecyleicosyl group, 2-hexadecyleicosyl group, etc.], 3 34-alkylalkyl groups (3-alkylalkyl groups, 4-alkylalkyl groups, 5-alkylalkyl groups, 32-alkylalkyl groups, 33-alkylalkyl groups, 34-alkylalkyl groups, etc.), and propylene oligomers (7 To 11-mer), ethylene / propylene (molar ratio 16/1 to 1/11) oligomer, isobutylene oligomer (7 to 8-mer), and α-olefin (5 to 20 carbon atoms) oligomer (4 to 8-mer) And a mixed alkyl group containing one or more branched alkyl groups such as a residue obtained by removing a hydroxyl group from an oxo alcohol obtained from the above.
 重合体(A1)は、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)をさらに含んでいることが好ましい。 The polymer (A1) preferably further contains an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid.
 エステル化合物(a3)を構成する炭素数1~3の1価の脂肪族アルコールとしては、メタノール、エタノール、1-プロパノール及び2-プロパノール等が挙げられる。 Examples of the monovalent aliphatic alcohol having 1 to 3 carbon atoms constituting the ester compound (a3) include methanol, ethanol, 1-propanol and 2-propanol.
 エステル化合物(a3)の含有量は、負極活物質の体積変化抑制等の観点から、重合体(A1)の合計質量に基づいて、10~60質量%であることが好ましく、15~55質量%であることがより好ましく、20~50質量%であることがさらに好ましい。 The content of the ester compound (a3) is preferably 10 to 60% by mass, and preferably 15 to 55% by mass based on the total mass of the polymer (A1) from the viewpoint of suppressing volume change of the negative electrode active material. More preferably, it is more preferably 20 to 50% by mass.
 また、重合体(A1)は、さらに重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)を含有してもよい。 The polymer (A1) may further contain an anionic monomer salt (a4) having a polymerizable unsaturated double bond and an anionic group.
 重合性不飽和二重結合を有する構造としてはビニル基、アリル基、スチレニル基及び(メタ)アクリロイル基等が挙げられる。なお、(メタ)アクリロイル基は、アクリロイル基及び/又はメタクリロイル基を意味する。 Examples of the structure having a polymerizable unsaturated double bond include a vinyl group, an allyl group, a styryl group, and a (meth) acryloyl group. The (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
 アニオン性基としては、スルホン酸基及びカルボキシル基等が挙げられる。 Examples of the anionic group include a sulfonic acid group and a carboxyl group.
 重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体はこれらの組み合わせにより得られる化合物であり、例えばビニルスルホン酸、アリルスルホン酸、スチレンスルホン酸及び(メタ)アクリル酸が挙げられる。 An anionic monomer having a polymerizable unsaturated double bond and an anionic group is a compound obtained by a combination thereof, such as vinyl sulfonic acid, allyl sulfonic acid, styrene sulfonic acid and (meth) acrylic acid. It is done.
 アニオン性単量体の塩(a4)を構成するカチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン及びアンモニウムイオン等が挙げられる。 Examples of the cation constituting the salt (a4) of the anionic monomer include lithium ion, sodium ion, potassium ion and ammonium ion.
 アニオン性単量体の塩(a4)を含有する場合、その含有量は、内部抵抗等の観点から、高分子化合物の合計質量に基づいて0.1~15質量%であることが好ましく、1~15質量%であることがより好ましく、2~10質量%であることがさらに好ましい。 When the anionic monomer salt (a4) is contained, the content thereof is preferably 0.1 to 15% by mass based on the total mass of the polymer compound from the viewpoint of internal resistance and the like. It is more preferably ˜15% by mass, and further preferably 2-10% by mass.
 重合体(A1)は、(メタ)アクリル酸(a11)とエステル化合物(a21)とを含むことが好ましく、さらにエステル化合物(a3)を含むことがより好ましい。 The polymer (A1) preferably contains (meth) acrylic acid (a11) and an ester compound (a21), and more preferably contains an ester compound (a3).
 特に好ましくは、(メタ)アクリル酸(a11)としてメタクリル酸を用い、エステル化合物(a21)として2-エチルヘキシルメタクリレートを用い、エステル化合物(a3)としてメタクリル酸メチルを用いた、メタクリル酸、2-エチルヘキシルメタクリレート及びメタクリル酸メチルの共重合体である。 Particularly preferably, methacrylic acid is used as (meth) acrylic acid (a11), 2-ethylhexyl methacrylate is used as ester compound (a21), and methyl methacrylate is used as ester compound (a3). Methacrylic acid, 2-ethylhexyl A copolymer of methacrylate and methyl methacrylate.
 高分子化合物は、(メタ)アクリル酸(a11)、上記のモノマー(a2)、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)及び必要により用いる重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)を含んでなる単量体組成物を重合してなり、上記モノマー(a2)と上記(メタ)アクリル酸(a11)の質量比[上記モノマー(a2)/上記(メタ)アクリル酸(a11)]が10/90~90/10であることが好ましい。モノマー(a2)と(メタ)アクリル酸(a11)の質量比が10/90~90/10であると、これを重合してなる重合体は、炭素系負極活物質との接着性が良好で剥離しにくくなる。上記質量比は、20/80~80/20であることが好ましく、30/70~85/15であることがより好ましく、40/60~70/30であることがさらに好ましい。 The polymer compound is (meth) acrylic acid (a11), the above-described monomer (a2), an ester compound (a3) of a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic acid, and if necessary. A monomer composition comprising a salt (a4) of an anionic monomer having a polymerizable unsaturated double bond and an anionic group is polymerized to produce the monomer (a2) and the (meth) acrylic. The mass ratio of the acid (a11) [the monomer (a2) / the (meth) acrylic acid (a11)] is preferably 10/90 to 90/10. When the mass ratio of the monomer (a2) and the (meth) acrylic acid (a11) is 10/90 to 90/10, the polymer obtained by polymerizing the monomer has good adhesion to the carbon-based negative electrode active material. It becomes difficult to peel. The mass ratio is preferably 20/80 to 80/20, more preferably 30/70 to 85/15, and still more preferably 40/60 to 70/30.
 また、重合体(A1)を構成する単量体には、カルボキシル基又は酸無水物基を有するモノマー(a1)、上記一般式(1)で表されるモノマー(a2)、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)及び重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)の他に、重合体(A1)の物性を損なわない範囲で、モノマー(a1)、上記一般式(1)で表されるモノマー(a2)、及び炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)と共重合可能な、ラジカル重合性モノマー(a5)が含まれていてもよい。 The monomer constituting the polymer (A1) includes a monomer (a1) having a carboxyl group or an acid anhydride group, a monomer (a2) represented by the above general formula (1), a carbon number of 1 to 3 In addition to the ester compound (a3) of a monovalent aliphatic alcohol of (meth) acrylic acid and an anionic monomer salt (a4) having a polymerizable unsaturated double bond and an anionic group, As long as the physical properties of the coalescence (A1) are not impaired, the monomer (a1), the monomer (a2) represented by the general formula (1), a monovalent aliphatic alcohol having 1 to 3 carbon atoms and (meth) acrylic A radical polymerizable monomer (a5) that can be copolymerized with the ester compound (a3) with an acid may be contained.
 ラジカル重合性モノマー(a5)としては、活性水素を含有しないモノマーが好ましく、下記(a51)~(a58)のモノマーを用いることができる。 The radical polymerizable monomer (a5) is preferably a monomer not containing active hydrogen, and the following monomers (a51) to (a58) can be used.
 (a51)炭素数13~20の直鎖脂肪族モノオール、炭素数5~20の脂環式モノオール又は炭素数7~20の芳香脂肪族モノオールと(メタ)アクリル酸から形成されるハイドロカルビル(メタ)アクリレート
 上記モノオールとしては、(i)直鎖脂肪族モノオール(トリデシルアルコール、ミリスチルアルコール、ペンタデシルアルコール、セチルアルコール、ヘプタデシルアルコール、ステアリルアルコール、ノナデシルアルコール、アラキジルアルコール等)、(ii)脂環式モノオール(シクロペンチルアルコール、シクロヘキシルアルコール、シクロヘプチルアルコール、シクロオクチルアルコール等)、(iii)芳香脂肪族モノオール(ベンジルアルコール等)及びこれらの2種以上の混合物が挙げられる。
(A51) Hydrocarbons formed from (meth) acrylic acid and straight chain aliphatic monools having 13 to 20 carbon atoms, alicyclic monools having 5 to 20 carbon atoms, or araliphatic monools having 7 to 20 carbon atoms Carbyl (meth) acrylate As the monool, (i) linear aliphatic monool (tridecyl alcohol, myristyl alcohol, pentadecyl alcohol, cetyl alcohol, heptadecyl alcohol, stearyl alcohol, nonadecyl alcohol, arachidyl alcohol Etc.), (ii) alicyclic monools (cyclopentyl alcohol, cyclohexyl alcohol, cycloheptyl alcohol, cyclooctyl alcohol etc.), (iii) araliphatic monools (benzyl alcohol etc.) and mixtures of two or more thereof Can be mentioned.
 (a52)ポリ(n=2~30)オキシアルキレン(炭素数2~4)アルキル(炭素数1~18)エーテル(メタ)アクリレート[メタノールのエチレンオキサイド(以下EOと略記)10モル付加物(メタ)アクリレート、メタノールのプロピレンオキサイド(以下POと略記)10モル付加物(メタ)アクリレート等]。 (A52) Poly (n = 2 to 30) oxyalkylene (carbon number 2 to 4) alkyl (carbon number 1 to 18) ether (meth) acrylate [methanol ethylene oxide (hereinafter abbreviated as EO) 10 mol adduct (meta ) Acrylate, propylene oxide of methanol (hereinafter abbreviated as PO), 10 mol adduct (meth) acrylate, etc.].
 (a53)窒素含有ビニル化合物
 (a53-1)アミド基含有ビニル化合物
 (i)炭素数3~30の(メタ)アクリルアミド化合物、例えばN,N-ジアルキル(炭素数1~6)又はジアラルキル(炭素数7~15)(メタ)アクリルアミド(N,N-ジメチルアクリルアミド、N,N-ジベンジルアクリルアミド等)、ジアセトンアクリルアミド
 (ii)上記(メタ)アクリルアミド化合物を除く、炭素数4~20のアミド基含有ビニル化合物、例えばN-メチル-N-ビニルアセトアミド、環状アミド[ピロリドン化合物(炭素数6~13、例えば、N-ビニルピロリドン等)]
 (a53-2)(メタ)アクリレート化合物
 (i)ジアルキル(炭素数1~4)アミノアルキル(炭素数1~4)(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、t-ブチルアミノエチル(メタ)アクリレート、モルホリノエチル(メタ)アクリレート等]
 (ii)4級アンモニウム基含有(メタ)アクリレート{3級アミノ基含有(メタ)アクリレート[N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート等]の4級化物(メチルクロライド、ジメチル硫酸、ベンジルクロライド、ジメチルカーボネート等の4級化剤を用いて4級化したもの)等}
 (a53-3)複素環含有ビニル化合物
 ピリジン化合物(炭素数7~14、例えば2-又は4-ビニルピリジン)、イミダゾール化合物(炭素数5~12、例えばN-ビニルイミダゾール)、ピロール化合物(炭素数6~13、例えばN-ビニルピロール)、ピロリドン化合物(炭素数6~13、例えばN-ビニル-2-ピロリドン)
 (a53-4)ニトリル基含有ビニル化合物
 炭素数3~15のニトリル基含有ビニル化合物、例えば(メタ)アクリロニトリル、シアノスチレン、シアノアルキル(炭素数1~4)アクリレート
 (a53-5)その他の窒素含有ビニル化合物
 ニトロ基含有ビニル化合物(炭素数8~16、例えばニトロスチレン)等。
(A53) Nitrogen-containing vinyl compound (a53-1) Amide group-containing vinyl compound (i) (Meth) acrylamide compound having 3 to 30 carbon atoms, such as N, N-dialkyl (1 to 6 carbon atoms) or diaralkyl (carbon number) 7 to 15) (meth) acrylamide (N, N-dimethylacrylamide, N, N-dibenzylacrylamide, etc.), diacetone acrylamide (ii) Contains amide group having 4 to 20 carbon atoms excluding the above (meth) acrylamide compound Vinyl compounds such as N-methyl-N-vinylacetamide, cyclic amides [pyrrolidone compounds (having 6 to 13 carbon atoms, such as N-vinylpyrrolidone)]
(A53-2) (Meth) acrylate compound (i) Dialkyl (1 to 4 carbon atoms) aminoalkyl (1 to 4 carbon atoms) (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N -Diethylaminoethyl (meth) acrylate, t-butylaminoethyl (meth) acrylate, morpholinoethyl (meth) acrylate, etc.]
(Ii) Quaternary ammonium group-containing (meth) acrylate {quaternary amino group-containing (meth) acrylate [N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, etc.]] (Quaternized with a quaternizing agent such as methyl chloride, dimethyl sulfate, benzyl chloride, dimethyl carbonate, etc.)}
(A53-3) Heterocycle-containing vinyl compound Pyridine compound (carbon number 7 to 14, for example, 2- or 4-vinylpyridine), imidazole compound (carbon number 5 to 12, for example, N-vinylimidazole), pyrrole compound (carbon number) 6 to 13, for example, N-vinylpyrrole), pyrrolidone compound (6 to 13 carbon atoms, for example, N-vinyl-2-pyrrolidone)
(A53-4) Nitrile group-containing vinyl compound A nitrile group-containing vinyl compound having 3 to 15 carbon atoms, such as (meth) acrylonitrile, cyanostyrene, cyanoalkyl (1 to 4 carbon atoms) acrylate (a53-5) other nitrogen-containing compounds Vinyl compound A nitro group-containing vinyl compound (8 to 16, for example, nitrostyrene).
 (a54)ビニル炭化水素
 (a54-1)脂肪族ビニル炭化水素
 炭素数2~18又はそれ以上のオレフィン(エチレン、プロピレン、ブテン、イソブチレン、ペンテン、ヘプテン、ジイソブチレン、オクテン、ドデセン、オクタデセン等)、炭素数4~10又はそれ以上のジエン(ブタジエン、イソプレン、1,4-ペンタジエン、1,5-ヘキサジエン、1,7-オクタジエン等)等
 (a54-2)脂環式ビニル炭化水素
 炭素数4~18又はそれ以上の環状不飽和化合物、例えばシクロアルケン(例えばシクロヘキセン)、(ジ)シクロアルカジエン[例えば(ジ)シクロペンタジエン]、テルペン(例えばピネン及びリモネン)、インデン
 (a54-3)芳香族ビニル炭化水素
 炭素数8~20又はそれ以上の芳香族不飽和化合物、例えばスチレン、α-メチルスチレン、ビニルトルエン、2,4-ジメチルスチレン、エチルスチレン、イソプロピルスチレン、ブチルスチレン、フェニルスチレン、シクロヘキシルスチレン、ベンジルスチレン。
(A54) Vinyl hydrocarbon (a54-1) Aliphatic vinyl hydrocarbon An olefin having 2 to 18 or more carbon atoms (ethylene, propylene, butene, isobutylene, pentene, heptene, diisobutylene, octene, dodecene, octadecene, etc.), Dienes having 4 to 10 or more carbon atoms (butadiene, isoprene, 1,4-pentadiene, 1,5-hexadiene, 1,7-octadiene, etc.), etc. (a54-2) Alicyclic vinyl hydrocarbons 18 or more cyclic unsaturated compounds such as cycloalkenes (eg cyclohexene), (di) cycloalkadiene [eg (di) cyclopentadiene], terpenes (eg pinene and limonene), indene (a54-3) aromatic vinyl Hydrocarbons Aromatic unsaturated compounds having 8 to 20 or more carbon atoms, eg If styrene, alpha-methyl styrene, vinyl toluene, 2,4-dimethylstyrene, ethylstyrene, isopropyl styrene, butyl styrene, phenyl styrene, cyclohexyl styrene, benzyl styrene.
 (a55)ビニルエステル
 脂肪族ビニルエステル[炭素数4~15、例えば脂肪族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えば酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、ジアリルアジペート、イソプロペニルアセテート、ビニルメトキシアセテート)]、芳香族ビニルエステル[炭素数9~20、例えば芳香族カルボン酸(モノ-又はジカルボン酸)のアルケニルエステル(例えばビニルベンゾエート、ジアリルフタレート、メチル-4-ビニルベンゾエート)、脂肪族カルボン酸の芳香環含有エステル(例えばアセトキシスチレン)]。
(A55) Vinyl ester Aliphatic vinyl ester [C4-15, for example, alkenyl ester of aliphatic carboxylic acid (mono- or dicarboxylic acid) (for example, vinyl acetate, vinyl propionate, vinyl butyrate, diallyl adipate, isopropenyl acetate, Vinyl methoxyacetate)], aromatic vinyl ester [carbon number 9-20, for example, alkenyl ester of aromatic carboxylic acid (mono- or dicarboxylic acid) (for example, vinyl benzoate, diallyl phthalate, methyl-4-vinyl benzoate), aliphatic Aromatic ring-containing esters of carboxylic acids (eg acetoxystyrene)].
 (a56)ビニルエーテル
 脂肪族ビニルエーテル[炭素数3~15、例えばビニルアルキル(炭素数1~10)エーテル(ビニルメチルエーテル、ビニルブチルエーテル、ビニル2-エチルヘキシルエーテル等)、ビニルアルコキシ(炭素数1~6)アルキル(炭素数1~4)エーテル(ビニル-2-メトキシエチルエーテル、メトキシブタジエン、3,4-ジヒドロ-1,2-ピラン、2-ブトキシ-2’-ビニロキシジエチルエーテル、ビニル-2-エチルメルカプトエチルエーテル等)、ポリ(2~4)(メタ)アリロキシアルカン(炭素数2~6)(ジアリロキシエタン、トリアリロキシエタン、テトラアリロキシブタン、テトラメタアリロキシエタン等)]、芳香族ビニルエーテル(炭素数8~20、例えばビニルフェニルエーテル、フェノキシスチレン)。
(A56) Vinyl ether Aliphatic vinyl ether [C3-15, such as vinyl alkyl (C1-10) ether (vinyl methyl ether, vinyl butyl ether, vinyl 2-ethylhexyl ether, etc.), vinyl alkoxy (C1-6) Alkyl (1 to 4 carbon atoms) ether (vinyl-2-methoxyethyl ether, methoxybutadiene, 3,4-dihydro-1,2-pyran, 2-butoxy-2'-vinyloxydiethyl ether, vinyl-2-ethyl Mercaptoethyl ether, etc.), poly (2-4) (meth) allyloxyalkanes (2-6 carbon atoms) (diallyloxyethane, triaryloxyethane, tetraallyloxybutane, tetrametaallyloxyethane, etc.)] Aromatic vinyl ethers (8-20 carbon atoms, eg vinyl phenyl ether) , Phenoxy styrene).
 (a57)ビニルケトン
 脂肪族ビニルケトン(炭素数4~25、例えばビニルメチルケトン、ビニルエチルケトン)、芳香族ビニルケトン(炭素数9~21、例えばビニルフェニルケトン)。
(A57) Vinyl ketone Aliphatic vinyl ketone (having 4 to 25 carbon atoms, such as vinyl methyl ketone, vinyl ethyl ketone) and aromatic vinyl ketone (having 9 to 21 carbon atoms, such as vinyl phenyl ketone).
 (a58)不飽和ジカルボン酸ジエステル
 炭素数4~34の不飽和ジカルボン酸ジエステル、例えばジアルキルフマレート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)、ジアルキルマレエート(2個のアルキル基は、炭素数1~22の、直鎖、分岐鎖又は脂環式の基)。
(A58) Unsaturated dicarboxylic acid diester Unsaturated dicarboxylic acid diester having 4 to 34 carbon atoms such as dialkyl fumarate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms) ), Dialkyl maleate (two alkyl groups are linear, branched or alicyclic groups having 1 to 22 carbon atoms).
 上記(a5)として例示したもののうち耐電圧の観点から好ましいのは、(a51)、(a52)及び(a53)である。 Of those exemplified as (a5) above, (a51), (a52) and (a53) are preferable from the viewpoint of withstand voltage.
 重合体(A1)において、カルボキシル基又は酸無水物基を有するモノマー(a1)、上記一般式(1)で表されるモノマー(a2)、炭素数1~3の1価の脂肪族アルコールと(メタ)アクリル酸とのエステル化合物(a3)、重合性不飽和二重結合とアニオン性基とを有するアニオン性単量体の塩(a4)及びラジカル重合性モノマー(a5)の含有量は、重合体(A1)の質量を基準として、(a1)が0.1~80質量%、(a2)が0.1~99.9質量%、(a3)が0~60質量%、(a4)が0~15質量%、(a5)が0~99.8質量%であることが好ましい。モノマーの含有量が上記範囲内であると、非水電解液への吸液性が良好となる。 In the polymer (A1), a monomer (a1) having a carboxyl group or an acid anhydride group, a monomer (a2) represented by the general formula (1), a monovalent aliphatic alcohol having 1 to 3 carbon atoms and ( The content of the ester compound (a3) with meth) acrylic acid, the salt (a4) of the anionic monomer having a polymerizable unsaturated double bond and an anionic group, and the radical polymerizable monomer (a5) (A1) is 0.1 to 80% by mass, (a2) is 0.1 to 99.9% by mass, (a3) is 0 to 60% by mass, and (a4) is based on the mass of the combined (A1). The content is preferably 0 to 15% by mass and (a5) is preferably 0 to 99.8% by mass. When the content of the monomer is within the above range, the liquid absorptivity to the non-aqueous electrolyte is good.
 重合体(A1)の数平均分子量の好ましい下限は3,000、より好ましくは50,000、さらに好ましくは60,000、であり、好ましい上限は2,000,000、より好ましくは1,500,000、さらに好ましくは1,000,000、特に好ましくは120,000である。 The preferable lower limit of the number average molecular weight of the polymer (A1) is 3,000, more preferably 50,000, still more preferably 60,000, and the preferable upper limit is 2,000,000, more preferably 1,500, 000, more preferably 1,000,000, particularly preferably 120,000.
 重合体(A1)の数平均分子量は、以下の条件でゲルパーミエーションクロマトグラフィー(以下GPCと略記)測定により求めることができる。
装置:Alliance GPC V2000(Waters社製)
溶媒:オルトジクロロベンゼン
標準物質:ポリスチレン
検出器:RI
サンプル濃度:3mg/ml
カラム固定相:PLgel 10μm、MIXED-B 2本直列(ポリマーラボラトリーズ社製)
カラム温度:135℃。
The number average molecular weight of the polymer (A1) can be determined by gel permeation chromatography (hereinafter abbreviated as GPC) measurement under the following conditions.
Apparatus: Alliance GPC V2000 (manufactured by Waters)
Solvent: Orthodichlorobenzene Reference material: Polystyrene detector: RI
Sample concentration: 3 mg / ml
Column stationary phase: PLgel 10 μm, MIXED-B 2 in series (manufactured by Polymer Laboratories)
Column temperature: 135 ° C.
 重合体(A1)は、公知の重合開始剤{アゾ系開始剤[2,2’-アゾビス(2-メチルプロピオニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル等)]、パーオキサイド系開始剤(ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ラウリルパーオキサイド等)等}を使用して公知の重合方法(塊状重合、溶液重合、乳化重合、懸濁重合等)により製造することができる。 The polymer (A1) is a known polymerization initiator {azo initiator [2,2′-azobis (2-methylpropionitrile), 2,2′-azobis (2-methylbutyronitrile), 2, 2′-azobis (2,4-dimethylvaleronitrile, etc.)], peroxide-based initiators (benzoyl peroxide, di-t-butyl peroxide, lauryl peroxide, etc.), etc.} (Bulk polymerization, solution polymerization, emulsion polymerization, suspension polymerization, etc.).
 重合開始剤の使用量は、数平均分子量を好ましい範囲に調整する等の観点から、モノマーの全質量に基づいて好ましくは0.01~5質量%、より好ましくは0.05~2質量%、さらに好ましくは0.1~1.5質量%である。重合温度及び重合時間は重合開始剤の種類等に応じて調整されるが、重合温度は好ましくは-5~150℃、(より好ましくは30~120℃)、反応時間は好ましくは0.1~50時間(より好ましくは2~24時間)で行われる。 The use amount of the polymerization initiator is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass, based on the total mass of the monomers, from the viewpoint of adjusting the number average molecular weight within a preferable range. More preferably, the content is 0.1 to 1.5% by mass. The polymerization temperature and polymerization time are adjusted according to the type of the polymerization initiator, etc., but the polymerization temperature is preferably −5 to 150 ° C. (more preferably 30 to 120 ° C.), and the reaction time is preferably 0.1 to It is carried out for 50 hours (more preferably 2 to 24 hours).
 溶液重合の場合に使用される溶媒としては、例えばエステル(炭素数2~8、例えば酢酸エチル及び酢酸ブチル)、アルコール(炭素数1~8、例えばメタノール、エタノール及びオクタノール)、炭化水素(炭素数4~8、例えばn-ブタン、シクロヘキサン及びトルエン)、ケトン(炭素数3~9、例えばメチルエチルケトン)及びアミド化合物(例えば、N,N-ジメチルホルムアミド)等が挙げられる。数平均分子量を好ましい範囲に調整する等の観点から、その使用量はモノマーの合計質量に基づいて好ましくは5~900質量%、より好ましくは10~400質量%、さらにより好ましくは30~300質量%であり、モノマー濃度としては、好ましくは10~95質量%、より好ましくは20~90質量%、さらに好ましくは30~80質量%である。 Examples of the solvent used in the solution polymerization include esters (having 2 to 8 carbon atoms such as ethyl acetate and butyl acetate), alcohols (having 1 to 8 carbon atoms such as methanol, ethanol and octanol), hydrocarbons (having carbon atoms). Examples thereof include 4 to 8, such as n-butane, cyclohexane and toluene, ketones (having 3 to 9 carbon atoms such as methyl ethyl ketone) and amide compounds (such as N, N-dimethylformamide). From the viewpoint of adjusting the number average molecular weight within a preferable range, the amount used is preferably 5 to 900% by mass, more preferably 10 to 400% by mass, and still more preferably 30 to 300% by mass based on the total mass of the monomers. The monomer concentration is preferably 10 to 95% by mass, more preferably 20 to 90% by mass, and still more preferably 30 to 80% by mass.
 乳化重合及び懸濁重合における分散媒としては、水、アルコール(例えばエタノール)、エステル(例えばプロピオン酸エチル)、軽ナフサ等が挙げられ、乳化剤としては、高級脂肪酸(炭素数10~24)金属塩(例えばオレイン酸ナトリウム及びステアリン酸ナトリウム)、高級アルコール(炭素数10~24)硫酸エステル金属塩(例えばラウリル硫酸ナトリウム)、エトキシ化テトラメチルデシンジオール、メタクリル酸スルホエチルナトリウム、メタクリル酸ジメチルアミノメチル等が挙げられる。さらに安定剤としてポリビニルアルコール、ポリビニルピロリドン等を加えてもよい。 Examples of the dispersion medium in emulsion polymerization and suspension polymerization include water, alcohol (for example, ethanol), ester (for example, ethyl propionate), light naphtha and the like, and examples of the emulsifier include higher fatty acid (carbon number 10 to 24) metal salt. (For example, sodium oleate and sodium stearate), higher alcohol (10 to 24 carbon atoms) sulfate metal salt (for example, sodium lauryl sulfate), ethoxylated tetramethyldecynediol, sodium sulfoethyl methacrylate, dimethylaminomethyl methacrylate, etc. Is mentioned. Furthermore, you may add polyvinyl alcohol, polyvinylpyrrolidone, etc. as a stabilizer.
 溶液又は分散液のモノマー濃度は好ましくは5~95質量%、より好ましくは10~90質量%、さらに好ましくは15~85質量%であり、重合開始剤の使用量は、モノマーの全質量に基づいて好ましくは0.01~5質量%、より好ましくは0.05~2質量%である。 The monomer concentration of the solution or dispersion is preferably 5 to 95% by mass, more preferably 10 to 90% by mass, and still more preferably 15 to 85% by mass. The amount of the polymerization initiator used is based on the total mass of the monomers. It is preferably 0.01 to 5% by mass, more preferably 0.05 to 2% by mass.
 重合に際しては、公知の連鎖移動剤、例えばメルカプト化合物(ドデシルメルカプタン、n-ブチルメルカプタン等)及び/又はハロゲン化炭化水素(四塩化炭素、四臭化炭素、塩化ベンジル等)を使用することができる。 In the polymerization, known chain transfer agents such as mercapto compounds (such as dodecyl mercaptan and n-butyl mercaptan) and / or halogenated hydrocarbons (such as carbon tetrachloride, carbon tetrabromide and benzyl chloride) can be used. .
 アクリル樹脂に含まれる重合体(A1)は、重合体(A1)をカルボキシル基と反応する反応性官能基を有する架橋剤(A’){好ましくはポリエポキシ化合物(a’1)[ポリグリシジルエーテル(ビスフェノールAジグリシジルエーテル、プロピレングリコールジグリシジルエーテル及びグリセリントリグリシジルエーテル等)及びポリグリシジルアミン(N,N-ジグリシジルアニリン及び1,3-ビス(N,N-ジグリシジルアミノメチル))等]及び/又はポリオール化合物(a’2)(エチレングリコール等)}で架橋してなる架橋重合体であってもよい。 The polymer (A1) contained in the acrylic resin is a crosslinking agent (A ′) having a reactive functional group that reacts the polymer (A1) with a carboxyl group {preferably a polyepoxy compound (a′1) [polyglycidyl ether]. (Bisphenol A diglycidyl ether, propylene glycol diglycidyl ether, glycerin triglycidyl ether, etc.) and polyglycidylamine (N, N-diglycidylaniline and 1,3-bis (N, N-diglycidylaminomethyl)), etc.] And / or a crosslinked polymer formed by crosslinking with a polyol compound (a′2) (ethylene glycol or the like)}.
 架橋剤(A’)を用いて重合体(A1)を架橋する方法としては、炭素系負極活物質を重合体(A1)で被覆した後に架橋する方法が挙げられる。具体的には、炭素系負極活物質と重合体(A1)を含む樹脂溶液を混合し脱溶媒することにより、炭素系負極活物質が重合体(A1)で被覆された炭素系被覆負極活物質を製造した後に、架橋剤(A’)を含む溶液を該炭素系被覆負極活物質に混合して加熱することにより、脱溶媒と架橋反応を生じさせて、重合体(A1)が架橋剤(A’)によって架橋されて高分子化合物となる反応を炭素系負極活物質の表面で起こす方法が挙げられる。 Examples of the method of crosslinking the polymer (A1) using the crosslinking agent (A ′) include a method of crosslinking after coating the carbon-based negative electrode active material with the polymer (A1). Specifically, the carbon-based negative electrode active material in which the carbon-based negative electrode active material is coated with the polymer (A1) by mixing and removing the solvent containing the carbon-based negative electrode active material and the polymer (A1). Then, a solution containing the crosslinking agent (A ′) is mixed with the carbon-based coated negative electrode active material and heated to cause solvent removal and a crosslinking reaction, so that the polymer (A1) becomes a crosslinking agent ( A method of causing a reaction that is crosslinked by A ′) to become a polymer compound on the surface of the carbon-based negative electrode active material may be mentioned.
 加熱温度は、架橋剤の種類に応じて調整されるが、架橋剤としてポリエポキシ化合物(a’1)を用いる場合は好ましくは70℃以上であり、ポリオール化合物(a’2)を用いる場合は好ましくは120℃以上である。 The heating temperature is adjusted according to the type of the crosslinking agent, but when the polyepoxy compound (a′1) is used as the crosslinking agent, it is preferably 70 ° C. or higher, and when the polyol compound (a′2) is used. Preferably it is 120 degreeC or more.
 負極被覆層はさらに導電助剤を含んでいることが好ましい。導電助剤は、導電性を有する材料から選択され、具体的には、カーボン[グラファイト及びカーボンブラック(アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラック、サーマルランプブラック等)等]、PAN系炭素繊維及びピッチ系炭素繊維等のカーボンファイバー、カーボンナノファイバー並びにカーボンナノチューブ、金属[ニッケル、アルミニウム、ステンレス(SUS)、銀、銅及びチタン等]を用いることができる。これらの導電助剤は1種単独で用いてもよいし、2種以上併用してもよい。また、上記金属を含む合金又は金属酸化物を用いてもよい。電気的安定性の観点から、好ましくはアルミニウム、ステンレス、カーボン、銀、銅、チタン及びこれらの混合物であり、より好ましくは銀、アルミニウム、ステンレス及びカーボンであり、さらに好ましくはカーボンである。またこれらの導電助剤としては、粒子系セラミック材料や樹脂材料の周りに導電性材料(上記した導電助剤のうち金属のもの)をめっき等でコーティングしたものでもよい。グラフェンを練り込んだポリプロピレン樹脂も導電助剤として好ましい。 The negative electrode coating layer preferably further contains a conductive additive. The conductive auxiliary agent is selected from conductive materials. Specifically, carbon [graphite and carbon black (acetylene black, ketjen black (registered trademark), furnace black, channel black, thermal lamp black, etc.), etc.] Carbon fibers such as PAN-based carbon fibers and pitch-based carbon fibers, carbon nanofibers and carbon nanotubes, metals [nickel, aluminum, stainless steel (SUS), silver, copper, titanium, etc.] can be used. These conductive assistants may be used alone or in combination of two or more. Alternatively, an alloy or metal oxide containing the above metal may be used. From the viewpoint of electrical stability, aluminum, stainless steel, carbon, silver, copper, titanium and a mixture thereof are preferable, silver, aluminum, stainless steel and carbon are more preferable, and carbon is more preferable. Moreover, as these conductive support agents, the thing which coated the electroconductive material (metal thing among the above-mentioned conductive support agents) by plating etc. around the particulate ceramic material or the resin material may be used. Polypropylene resin kneaded with graphene is also preferable as a conductive aid.
 導電助剤の平均粒子径は、特に限定されるものではないが、リチウムイオン電池用負極の電気特性の観点から、0.01~10μmであることが好ましく、0.02~5μmであることがより好ましく、0.03~1μmであることがさらに好ましい。なお、本明細書中において、導電助剤の粒子径は、導電助剤が形成する粒子の輪郭線上の任意の2点間の距離のうち、最大の距離Lを意味する。「導電助剤の平均粒子径」の値としては、走査型電子顕微鏡(SEM)や透過型電子顕微鏡(TEM)等の観察手段を用い、数~数十視野中に観察される粒子の粒子径の平均値として算出される値を採用するものとする。 The average particle size of the conductive auxiliary agent is not particularly limited, but is preferably 0.01 to 10 μm and preferably 0.02 to 5 μm from the viewpoint of the electrical characteristics of the negative electrode for a lithium ion battery. More preferably, it is 0.03 to 1 μm. In addition, in this specification, the particle diameter of a conductive support agent means the largest distance L among the distances between arbitrary two points on the outline of the particle | grains which a conductive support agent forms. The value of the “average particle size of the conductive additive” is the particle size of particles observed in several to several tens of fields using an observation means such as a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The value calculated as the average value of is assumed to be adopted.
 導電助剤の形状(形態)は、粒子形態に限られず、粒子形態以外の形態であってもよく、例えば、繊維状の導電助剤であってもよい。 The shape (form) of the conductive auxiliary agent is not limited to the particle form, and may be a form other than the particle form, for example, a fibrous conductive auxiliary agent.
 繊維状の導電助剤としては、合成繊維の中に導電性のよい金属や黒鉛を均一に分散させてなる導電性繊維、ステンレス鋼のような金属を繊維化した金属繊維、有機物繊維の表面を金属で被覆した導電性繊維、有機物の表面を導電性物質を含む樹脂で被覆した導電性繊維等が挙げられる。繊維状の導電助剤の平均繊維径は、0.1~30μmであることが好ましく、0.1~20μmであることがより好ましい。 Fibrous conductive assistants include conductive fibers in which synthetically conductive metals and graphite are uniformly dispersed in synthetic fibers, metal fibers made from metal such as stainless steel, and the surface of organic fibers. Examples thereof include conductive fibers coated with metal, and conductive fibers whose organic surface is coated with a resin containing a conductive substance. The average fiber diameter of the fibrous conductive additive is preferably 0.1 to 30 μm, and more preferably 0.1 to 20 μm.
 負極被覆層が導電助剤を含んでいる場合、負極被覆層に含まれる導電助剤の質量は、被覆用樹脂である高分子化合物と導電助剤との合計質量に対して15~75質量%であることが好ましい。 When the negative electrode coating layer contains a conductive auxiliary, the mass of the conductive auxiliary contained in the negative electrode coating layer is 15 to 75% by mass with respect to the total mass of the polymer compound as the coating resin and the conductive auxiliary. It is preferable that
 炭素系被覆負極活物質が有する負極被覆層が導電助剤を含んでいる場合、予備充電後に炭素系負極活物質の表面にSEI膜が形成された場合であっても負極被覆層に含まれる導電助剤の効果によって活物質間の導通経路を維持することができ、SEI膜の形成による抵抗上昇が抑制できるため好ましく、導電助剤の割合がこの範囲であると抵抗抑制が容易になり更に好ましい。 When the negative electrode coating layer of the carbon-based coated negative electrode active material contains a conductive additive, the conductivity contained in the negative electrode coating layer even when the SEI film is formed on the surface of the carbon-based negative electrode active material after precharging. The conduction path between the active materials can be maintained by the effect of the auxiliary agent, and the increase in resistance due to the formation of the SEI film can be suppressed, and it is more preferable that the ratio of the conductive auxiliary agent is within this range because the resistance can be easily suppressed. .
 負極活物質層を構成する負極活物質組成物は、上記の導電助剤とは別に導電材料を含んでも良い。負極活物質層が導電材料を含むと活物質間の導電経路を維持し易くなり好ましい。導電材料としては、前記の導電助剤と同じものを用いることができ、好ましいものも同じである。 The negative electrode active material composition constituting the negative electrode active material layer may contain a conductive material in addition to the above-mentioned conductive aid. It is preferable that the negative electrode active material layer contains a conductive material because a conductive path between the active materials can be easily maintained. As the conductive material, the same materials as the conductive auxiliary agent can be used, and preferable materials are also the same.
 負極活物質層が導電材料を含む場合、負極活物質の質量に対する導電材料の質量の割合は、特に限定されないが、0~10質量%であることが好ましい。 When the negative electrode active material layer contains a conductive material, the ratio of the mass of the conductive material to the mass of the negative electrode active material is not particularly limited, but is preferably 0 to 10% by mass.
 本発明のリチウムイオン電池用負極は、負極活物質層が負極集電体の上に設けられたものであることが好ましい。 The negative electrode for a lithium ion battery of the present invention preferably has a negative electrode active material layer provided on a negative electrode current collector.
 負極集電体を構成する材料としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル及びこれらの合金等の金属材料等が挙げられる。なかでも、軽量化、耐食性、高導電性の観点から、好ましくは銅である。負極集電体としては、焼成炭素、導電性高分子及び導電性ガラス等からなる集電体であってもよく、導電剤と樹脂からなる樹脂集電体であってもよい。 Examples of the material constituting the negative electrode current collector include metal materials such as copper, aluminum, titanium, stainless steel, nickel, and alloys thereof. Among these, copper is preferable from the viewpoints of weight reduction, corrosion resistance, and high conductivity. The negative electrode current collector may be a current collector made of baked carbon, conductive polymer, conductive glass, or the like, or may be a resin current collector made of a conductive agent and a resin.
 負極集電体の形状は特に限定されず、上記の材料からなるシート状の集電体、及び、上記の材料で構成された微粒子からなる堆積層であってもよい。 The shape of the negative electrode current collector is not particularly limited, and may be a sheet-like current collector made of the above material and a deposited layer made of fine particles made of the above material.
 負極集電体の厚さは、特に限定されないが、50~500μmであることが好ましい。 The thickness of the negative electrode current collector is not particularly limited, but is preferably 50 to 500 μm.
 樹脂集電体を構成する導電剤としては、負極活物質層の任意成分である導電材料と同様のものを好適に用いることができる。 As the conductive agent constituting the resin current collector, the same conductive material as an optional component of the negative electrode active material layer can be suitably used.
 樹脂集電体を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)、ポリシクロオレフィン(PCO)、ポリエチレンテレフタレート(PET)、ポリエーテルニトリル(PEN)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)、ポリメチルアクリレート(PMA)、ポリメチルメタクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、エポキシ樹脂、シリコーン樹脂又はこれらの混合物等が挙げられる。電気的安定性の観点から、ポリエチレン(PE)、ポリプロピレン(PP)、ポリメチルペンテン(PMP)及びポリシクロオレフィン(PCO)が好ましく、さらに好ましくはポリエチレン(PE)、ポリプロピレン(PP)及びポリメチルペンテン(PMP)である。 The resin constituting the resin current collector includes polyethylene (PE), polypropylene (PP), polymethylpentene (PMP), polycycloolefin (PCO), polyethylene terephthalate (PET), polyether nitrile (PEN), polytetra Fluoroethylene (PTFE), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), polymethyl acrylate (PMA), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVdF), epoxy resin, silicone resin or a mixture thereof Is mentioned. From the viewpoint of electrical stability, polyethylene (PE), polypropylene (PP), polymethylpentene (PMP) and polycycloolefin (PCO) are preferable, and polyethylene (PE), polypropylene (PP) and polymethylpentene are more preferable. (PMP).
 以下、本発明のリチウムイオン電池用負極の製造方法について説明する。 Hereinafter, the manufacturing method of the negative electrode for lithium ion batteries of this invention is demonstrated.
 本発明のリチウムイオン電池用負極の製造方法は、珪素系負極活物質及び炭素系負極活物質を含む負極活物質組成物と、分散媒とを含むスラリーを用いて集電体又はセパレータ上に塗膜を形成する工程を有する。当該製造方法は、塗膜を形成する工程の前又は後であってリチウムイオン電池の組立前に、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを含む。そして、塗膜を乾燥させる工程を実質的に含まない点に特徴を有する。 The method for producing a negative electrode for a lithium ion battery according to the present invention is applied on a current collector or separator using a slurry containing a negative electrode active material composition containing a silicon-based negative electrode active material and a carbon-based negative electrode active material, and a dispersion medium. Forming a film. The manufacturing method includes a step of doping a lithium-based negative electrode active material with lithium ions before or after a step of forming a coating film and before assembling a lithium-ion battery, and a step of doping lithium ions into a carbon-based negative electrode active material. Including the step of. And it has the characteristics in the point which does not contain the process of drying a coating film substantially.
 なお、上記の各工程の順序は特に限定されない。例えば、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを、それぞれ同時にあるいは別々に行った後に、塗膜を形成する工程を行ってもよいし;塗膜を形成する工程を行った後に、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを同時に行っても構わない。すなわち、上記スラリーに含まれる珪素系負極活物質及び炭素系負極活物質は、リチウムイオンをドープする前の珪素系負極活物質及び炭素系負極活物質であってもよいし、リチウムイオンをドープした後の珪素系負極活物質及び炭素系負極活物質であっても構わない。 Note that the order of the above steps is not particularly limited. For example, the step of doping a lithium ion into a silicon-based negative electrode active material and the step of doping lithium ions into a carbon-based negative electrode active material may be performed simultaneously or separately, and then a step of forming a coating film may be performed. Alternatively, after the step of forming the coating film, the step of doping the silicon-based negative electrode active material with lithium ions and the step of doping the carbon-based negative electrode active material with lithium ions may be performed simultaneously. That is, the silicon-based negative electrode active material and the carbon-based negative electrode active material contained in the slurry may be a silicon-based negative electrode active material and a carbon-based negative electrode active material before being doped with lithium ions, or doped with lithium ions. It may be a later silicon-based negative electrode active material and carbon-based negative electrode active material.
 さらに、珪素系負極活物質にリチウムイオンをドープする工程の後に、塗膜を形成する工程を行い、その後、炭素系負極活物質にリチウムイオンをドープする工程を行ってもよいし;炭素系負極活物質にリチウムイオンをドープする工程の後に、塗膜を形成する工程を行い、その後、珪素系負極活物質にリチウムイオンをドープする工程を行うことも可能である。 Further, after the step of doping lithium ions into the silicon-based negative electrode active material, a step of forming a coating film may be performed, and then the step of doping lithium ions into the carbon-based negative electrode active material may be performed; It is also possible to perform a step of forming a coating film after the step of doping the active material with lithium ions, and then perform a step of doping lithium ions into the silicon-based negative electrode active material.
 なお、いずれの場合においても、塗膜を形成する工程、珪素系負極活物質にリチウムイオンをドープする工程、及び炭素系負極活物質にリチウムイオンをドープする工程は、リチウムイオン電池(本発明に係るリチウムイオン電池用負極が適用されるリチウムイオン電池)の組立前に行われることを必須とする。 In any case, the step of forming a coating film, the step of doping lithium ions into the silicon-based negative electrode active material, and the step of doping lithium ions into the carbon-based negative electrode active material are performed in a lithium ion battery (according to the present invention). It is essential to be performed before the assembly of the lithium ion battery to which the negative electrode for lithium ion battery is applied.
 具体的な実施形態の例としては、以下の4つの実施形態が挙げられる。 Specific examples of the embodiment include the following four embodiments.
 (第1実施形態)
 珪素系負極活物質にリチウムイオンをドープする工程と、リチウムイオンをドープする工程とを同時に行う形態。
(First embodiment)
A mode in which a step of doping a lithium-based negative electrode active material with lithium ions and a step of doping lithium ions are performed simultaneously.
 (第2実施形態)
 珪素系負極活物質と炭素系負極活物質のそれぞれに対してリチウムイオンをドープする工程を別々に行い、リチウムイオンがドープされた珪素系負極活物質と、リチウムイオンがドープされた炭素系負極活物質を混合する工程をさらに含む形態。
(Second Embodiment)
The silicon-based negative electrode active material and the carbon-based negative electrode active material are separately doped with lithium ions, and the lithium-doped silicon-based negative electrode active material and the lithium-ion-doped carbon-based negative electrode active material A form further comprising a step of mixing the substances.
 (第3実施形態)
 炭素系負極活物質にリチウムイオンをドープする工程が、炭素系負極活物質とリチウムイオンがドープされた珪素系負極活物質との混合物に含まれる炭素系負極活物質にリチウムイオンをドープする工程である形態。
(Third embodiment)
The step of doping lithium ions into the carbon-based negative electrode active material is a step of doping lithium ions into the carbon-based negative electrode active material contained in the mixture of the carbon-based negative electrode active material and the silicon-based negative electrode active material doped with lithium ions. Some form.
 (第4実施形態)
 珪素系負極活物質にリチウムイオンをドープする工程が、珪素系負極活物質とリチウムイオンがドープされた炭素系負極活物質との混合物に含まれる珪素系負極活物質にリチウムイオンをドープする工程である形態。
(Fourth embodiment)
The step of doping lithium ions into the silicon-based negative electrode active material is a step of doping lithium ions into the silicon-based negative electrode active material contained in the mixture of the silicon-based negative electrode active material and the carbon-based negative electrode active material doped with lithium ions. Some form.
 以下に上記実施形態のそれぞれについて説明する。 Each of the above embodiments will be described below.
 (第1実施形態)
 第1実施形態では、珪素系負極活物質と炭素系負極活物質とを含む混合活物質に対してリチウムイオンを同時にドープする。具体的には、珪素系負極活物質と炭素系負極活物質とを含む負極活物質層を有する予備充電用負極を作製し、予備充電用負極と予備充電用正極とを備える予備充電用電池を作製した後、予備充電用電池に対して予備充電を行う方法や、原料スラリー中の混合活物質にリチウムイオン源を接触させてリチウムイオンをドープする方法等が挙げられる。まず、予備充電用電池に対して予備充電を行う方法の一例について、以下の(3-1)~(3-3)で説明する。
(First embodiment)
In the first embodiment, lithium ions are simultaneously doped into a mixed active material including a silicon-based negative electrode active material and a carbon-based negative electrode active material. Specifically, a precharge negative electrode having a negative electrode active material layer including a silicon-based negative electrode active material and a carbon-based negative electrode active material is prepared, and a precharge battery including a precharge negative electrode and a precharge positive electrode is provided. Examples thereof include a method of pre-charging the battery for pre-charging and a method of doping lithium ions by bringing a lithium ion source into contact with the mixed active material in the raw slurry. First, an example of a method for pre-charging the pre-charging battery will be described in the following (3-1) to (3-3).
 (3-1-a)予備充電用負極を作製する方法の例としては、原料スラリーを膜の上に塗布し、加圧又は減圧して、珪素系負極活物質及び炭素系負極活物質(すなわち混合活物質)を膜の上に定着させることにより、予備充電用負極を作製する方法が挙げられる。原料スラリーは混合活物質と分散媒を混合したものである。 (3-1-a) As an example of a method for producing a negative electrode for precharging, a raw material slurry is applied on a film, and pressurized or depressurized to obtain a silicon-based negative electrode active material and a carbon-based negative electrode active material (that is, A method of preparing a negative electrode for precharging by fixing the mixed active material) on the film can be mentioned. The raw slurry is a mixture of a mixed active material and a dispersion medium.
 原料スラリーに含まれる分散媒としては、電解液、非水溶媒等が挙げられる。これらの中では、電解液が好ましい。すなわち、原料スラリーは、粒子状の混合活物質及び電解液を含む電解液スラリーであることが好ましい。電解液としては、リチウムイオン電池の製造に用いられる、電解質及び非水溶媒を含有する非水電解液を使用することができる。 Examples of the dispersion medium contained in the raw material slurry include an electrolytic solution and a non-aqueous solvent. In these, electrolyte solution is preferable. That is, the raw material slurry is preferably an electrolytic solution slurry containing a particulate mixed active material and an electrolytic solution. As the electrolytic solution, a nonaqueous electrolytic solution containing an electrolyte and a nonaqueous solvent, which is used in the manufacture of a lithium ion battery, can be used.
 電解液に含有される電解質としては、公知の電解液に用いられているもの等が使用でき、例えば、LiPF、LiBF、LiSbF、LiAsF及びLiClO等の無機酸のリチウム塩系電解質、LiN(FSO、LiN(CFSO及びLiN(CSO等のフッ素原子を有するスルホニルイミド系電解質、LiC(CFSO等のフッ素原子を有するスルホニルメチド系電解質等が挙げられる。 As the electrolyte contained in the electrolytic solution, those used in known electrolytic solutions can be used, for example, lithium salt electrolytes of inorganic acids such as LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 and LiClO 4. , Sulfonylimide-based electrolytes having fluorine atoms such as LiN (FSO 2 ) 2 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 , fluorine atoms such as LiC (CF 3 SO 2 ) 3 Sulfonylmethide-based electrolytes having
 電解液に含有される非水溶媒としては、公知の電解液に用いられているもの等が使用でき、例えば、ラクトン化合物、環状又は鎖状炭酸エステル、鎖状カルボン酸エステル、環状又は鎖状エーテル、リン酸エステル、ニトリル化合物、アミド化合物、スルホン、スルホラン等及びこれらの混合物を用いることができる。非水溶媒は1種を単独で用いてもよいし、2種以上を併用してもよい。 As the nonaqueous solvent contained in the electrolytic solution, those used in known electrolytic solutions can be used, for example, lactone compounds, cyclic or chain carbonates, chain carboxylates, cyclic or chain ethers. , Phosphate esters, nitrile compounds, amide compounds, sulfones, sulfolanes, and the like, and mixtures thereof. A non-aqueous solvent may be used individually by 1 type, and may use 2 or more types together.
 ラクトン化合物としては、5員環(γ-ブチロラクトン及びγ-バレロラクトン等)及び6員環のラクトン化合物(δ-バレロラクトン等)等を挙げることができる。環状炭酸エステルとしては、プロピレンカーボネート、エチレンカーボネート及びブチレンカーボネート等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート及びジ-n-プロピルカーボネート等が挙げられる。鎖状カルボン酸エステルとしては、酢酸メチル、酢酸エチル、酢酸プロピル及びプロピオン酸メチル等が挙げられる。環状エーテルとしては、テトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン及び1,4-ジオキサン等が挙げられる。鎖状エーテルとしては、ジメトキシメタン及び1,2-ジメトキシエタン等が挙げられる。リン酸エステルとしては、リン酸トリメチル、リン酸トリエチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリプロピル、リン酸トリブチル、リン酸トリ(トリフルオロメチル)、リン酸トリ(トリクロロメチル)、リン酸トリ(トリフルオロエチル)、リン酸トリ(トリパーフルオロエチル)、2-エトキシ-1,3,2-ジオキサホスホラン-2-オン、2-トリフルオロエトキシ-1,3,2-ジオキサホスホラン-2-オン及び2-メトキシエトキシ-1,3,2-ジオキサホスホラン-2-オン等が挙げられる。ニトリル化合物としては、アセトニトリル等が挙げられる。アミド化合物としては、N,N-ジメチルホルムアミド(以下、DMFともいう)等が挙げられる。スルホンとしては、ジメチルスルホン及びジエチルスルホン等の鎖状スルホン及びスルホラン等の環状スルホン等が挙げられる。 Examples of the lactone compound include 5-membered rings (such as γ-butyrolactone and γ-valerolactone) and 6-membered lactone compounds (such as δ-valerolactone). Examples of the cyclic carbonate include propylene carbonate, ethylene carbonate and butylene carbonate. Examples of the chain carbonate include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, and di-n-propyl carbonate. Examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, and methyl propionate. Examples of the cyclic ether include tetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 1,4-dioxane and the like. Examples of the chain ether include dimethoxymethane and 1,2-dimethoxyethane. Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, ethyl dimethyl phosphate, diethyl methyl phosphate, tripropyl phosphate, tributyl phosphate, tri (trifluoromethyl) phosphate, tri (trichloromethyl) phosphate, Tri (trifluoroethyl) phosphate, tri (triperfluoroethyl) phosphate, 2-ethoxy-1,3,2-dioxaphosphoran-2-one, 2-trifluoroethoxy-1,3,2- Examples include dioxaphospholan-2-one and 2-methoxyethoxy-1,3,2-dioxaphosphoran-2-one. Examples of the nitrile compound include acetonitrile. Examples of the amide compound include N, N-dimethylformamide (hereinafter also referred to as DMF). Examples of the sulfone include chain sulfones such as dimethyl sulfone and diethyl sulfone, and cyclic sulfones such as sulfolane.
 非水溶媒のうち、電池出力及び充放電サイクル特性の観点から好ましいのは、ラクトン化合物、環状炭酸エステル、鎖状炭酸エステル及びリン酸エステルである。更に好ましいのはラクトン化合物、環状炭酸エステル及び鎖状炭酸エステルであり、特に好ましいのは環状炭酸エステル、及び環状炭酸エステルと鎖状炭酸エステルの混合液である。最も好ましいのはエチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合液、エチレンカーボネート(EC)とジメチルカーボネート(DMC)の混合液、又は、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液である。 Among nonaqueous solvents, lactone compounds, cyclic carbonates, chain carbonates, and phosphates are preferable from the viewpoint of battery output and charge / discharge cycle characteristics. More preferred are lactone compounds, cyclic carbonates and chain carbonates, and particularly preferred are cyclic carbonates and a mixture of cyclic carbonates and chain carbonates. Most preferred is a mixture of ethylene carbonate (EC) and propylene carbonate (PC), a mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC), or a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC). It is.
 非水電解液の電解質濃度としては、特に限定されないが、電解液の取り扱い性及び電池容量の観点から、0.5~5mol/Lであることが好ましく、0.8~3mol/Lであることがより好ましく、1~2mol/Lであることがさらに好ましい。 The electrolyte concentration of the non-aqueous electrolyte is not particularly limited, but is preferably 0.5 to 5 mol / L, and preferably 0.8 to 3 mol / L from the viewpoint of the handleability of the electrolyte and the battery capacity. Is more preferably 1 to 2 mol / L.
 原料スラリーに含まれる分散媒として使用する非水溶媒も、電解液に含有される非水溶媒と同じものを使用することができる。 The non-aqueous solvent used as the dispersion medium contained in the raw slurry can be the same as the non-aqueous solvent contained in the electrolytic solution.
 膜としては、その後の加圧又は減圧において混合活物質と分散媒とを分離できるものが好ましい。また、膜が導電性の高い材料(導電性材料)からなると、集電体の代わりに膜を用いることができ、また、集電体と膜を接触させても導電性が阻害されないため好ましい。例えば、電気伝導度が100mS/cm以上である材料を好適に用いることができる。このような特性を有する材料の例としては、炭素繊維等の導電性繊維を配合した濾紙、金属メッシュ等が挙げられる。 The membrane is preferably a membrane capable of separating the mixed active material and the dispersion medium in the subsequent pressurization or decompression. Further, it is preferable that the film is made of a highly conductive material (conductive material) because the film can be used instead of the current collector, and even if the current collector is in contact with the film, the conductivity is not hindered. For example, a material having an electric conductivity of 100 mS / cm or more can be preferably used. Examples of materials having such characteristics include filter papers, metal meshes and the like in which conductive fibers such as carbon fibers are blended.
 金属メッシュとしては、ステンレス製メッシュを用いることが好ましく、例えばSUS316製の綾畳織金網(サンネット工業製)等が挙げられる。金属メッシュの目開きは、活物質粒子及び導電部材が通過しない程度とすることが好ましく、例えば2300メッシュのものを用いることが好ましい。 As the metal mesh, it is preferable to use a stainless steel mesh, for example, a SUS316 twilled woven wire mesh (manufactured by Sunnet Kogyo) and the like. The mesh opening of the metal mesh is preferably set so that the active material particles and the conductive member do not pass through, for example, a 2300 mesh mesh is preferably used.
 原料スラリーは、バーコーター、刷毛等の任意の塗工装置を用いて膜の上に塗布することができる。 The raw material slurry can be applied onto the film using an arbitrary coating apparatus such as a bar coater or a brush.
 続いて、加圧又は減圧して混合活物質を膜の上に定着させる。加圧操作の方法としては、原料スラリーの塗布面の上からプレス機を用いてプレスする方法が挙げられる。また、減圧操作の方法としては、膜の原料スラリーが塗布されていない側の面に濾紙やメッシュ等を当てて、真空ポンプにより吸引する方法が挙げられる。加圧又は減圧により原料スラリーから分散媒が除去されて、混合活物質が膜の上に定着される。 Subsequently, the mixed active material is fixed on the film by applying pressure or reduced pressure. As a method of the pressurizing operation, a method of pressing using a press machine from above the coating surface of the raw slurry can be mentioned. Moreover, as a method of pressure reduction operation, a method of applying a filter paper or a mesh or the like to the surface of the membrane on which the raw material slurry is not applied and sucking with a vacuum pump can be mentioned. The dispersion medium is removed from the raw slurry by pressurization or decompression, and the mixed active material is fixed on the film.
 上述のとおり、膜が導電性材料からなるとき、膜は集電体として使用することができ、また、集電体と膜を接触させて1つの集電体として機能させることもできる。また、膜が導電性を有さない材料であるときは、膜をセパレータ側に配置するようにするとよい。また、膜をセパレータとしてもよい。導電性を有さない材料からなる膜の例としては、アラミドセパレータ(日本バイリーン株式会社製)等が挙げられる。分散媒が電解液である場合、膜は混合活物質を透過させず電解液を透過させる膜であり、加圧又は減圧して電解液のみを膜に透過させて除去してもよい。 As described above, when the film is made of a conductive material, the film can be used as a current collector, or the current collector and the film can be brought into contact with each other to function as a single current collector. Further, when the film is a material that does not have conductivity, the film may be disposed on the separator side. The membrane may be a separator. Examples of the film made of a material having no conductivity include an aramid separator (manufactured by Japan Vilene Co., Ltd.). When the dispersion medium is an electrolytic solution, the membrane is a membrane that allows the electrolytic solution to permeate without permeating the mixed active material, and only the electrolytic solution may be permeated through the membrane by pressurization or decompression.
 また、加圧又は減圧の後、原料スラリーをさらに強い圧力で加圧してもよい。この工程(プレス工程ともいう)は、前述の加圧又は減圧工程よりも、さらに圧力差を大きくして混合活物質の密度を向上させる工程である。プレス工程は、減圧工程の後に加圧するという態様と、加圧工程の後に加圧する圧力をさらに高くするという態様の両方を含む。 Further, after pressurization or decompression, the raw material slurry may be pressurized with a stronger pressure. This step (also referred to as a pressing step) is a step of increasing the density of the mixed active material by further increasing the pressure difference as compared with the pressurizing or depressurizing step described above. The pressing step includes both an aspect in which pressurization is performed after the pressure reduction process and an aspect in which the pressure to be pressurized after the pressurization process is further increased.
 さらに、膜の上に定着された予備充電用負極を、集電体又はセパレータの主面に転写する工程を行ってもよい。この場合、予備充電用負極の主面のうち、膜と反対側の主面を集電体又はセパレータの主面に接触させて転写することが好ましい。膜が導電性材料からなり、集電体の代わりに膜を用いる場合、膜と反対側の主面をセパレータの主面に接触させて転写させることが好ましい。また、膜を集電体として用いない場合は、転写後に、膜を剥離する工程を行うことが好ましい。 Furthermore, a step of transferring the precharging negative electrode fixed on the film to the main surface of the current collector or the separator may be performed. In this case, it is preferable to transfer the main surface of the precharge negative electrode on the side opposite to the membrane in contact with the main surface of the current collector or separator. When the film is made of a conductive material and the film is used in place of the current collector, it is preferable to transfer the main surface opposite to the film in contact with the main surface of the separator. Moreover, when not using a film | membrane as a collector, it is preferable to perform the process of peeling a film | membrane after transcription | transfer.
 (3-1-b)予備充電用負極の作製は、下記の方法により行うこともできる。すなわち、原料スラリーを集電体上に塗布して集電体上にスラリー層を形成する工程と、上記スラリー層の上にセパレータを載置して、セパレータの上面側から吸液して、混合活物質を上記集電体と上記セパレータの間に定着する工程とを含むことを特徴とする方法である。 (3-1-b) The preparation of the negative electrode for precharging can also be performed by the following method. That is, a step of applying a raw material slurry on a current collector to form a slurry layer on the current collector, and placing a separator on the slurry layer, absorbing liquid from the upper surface side of the separator, and mixing A step of fixing an active material between the current collector and the separator.
 まず、混合活物質を含む原料スラリーを、集電体上に塗布してスラリー層を形成する。集電体としては、アルミ、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。スラリーとしては、上記原料スラリーと同様のスラリーを用いることができる。スラリーにさらに導電部材としての導電性繊維を加えてスラリー中に導電性繊維を分散させてもよい。スラリーは、電解液を含む電解液スラリーであることが好ましい。電解液としては上述した電解液スラリーと同様のものを用いることができる。また、スラリーは溶媒を含む溶媒スラリーであってもよい。スラリーは集電体上にバーコーター、刷毛等の任意の塗工装置を用いて塗布することができる。 First, a raw material slurry containing a mixed active material is applied on a current collector to form a slurry layer. Examples of the current collector include aluminum, copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass. As the slurry, the same slurry as the raw material slurry can be used. A conductive fiber as a conductive member may be further added to the slurry to disperse the conductive fiber in the slurry. The slurry is preferably an electrolyte slurry containing an electrolyte. As the electrolytic solution, the same electrolyte solution slurry as described above can be used. The slurry may be a solvent slurry containing a solvent. The slurry can be applied onto the current collector using an arbitrary coating apparatus such as a bar coater or a brush.
 続いて、スラリー層の上にセパレータを載置して、セパレータの上面側から吸液して、混合活物質を集電体とセパレータの間に定着する。まず、スラリー層上にセパレータを載置する。そして、セパレータの上面側から吸液する。セパレータとしては、アラミドセパレータ(日本バイリーン株式会社製)、ポリエチレン、ポリプロピレン製フィルムの微多孔膜、多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルム、ポリエステル繊維、アラミド繊維、ガラス繊維等からなる不織布、及びそれらの表面にシリカ、アルミナ、チタニア等のセラミック微粒子を付着させたもの等が挙げられる。 Subsequently, a separator is placed on the slurry layer, and liquid is absorbed from the upper surface side of the separator, so that the mixed active material is fixed between the current collector and the separator. First, a separator is placed on the slurry layer. And it absorbs from the upper surface side of a separator. As the separator, an aramid separator (manufactured by Japan Vilene Co., Ltd.), a polyethylene, a microporous film made of a polypropylene film, a multilayer film of a porous polyethylene film and polypropylene, a polyester fiber, an aramid fiber, a non-woven fabric made of glass fiber, and the like, and Those having ceramic fine particles such as silica, alumina and titania attached to the surface thereof can be mentioned.
 吸液は、セパレータの上面側又は下面側から加圧してセパレータの上面から浸み出した液体を吸液することにより行ってもよく、また、セパレータの上面側から減圧して液体を吸引することにより行ってもよい。さらに、セパレータの上面に吸液性材料を置くことでセパレータの上面側からの吸液を行ってもよい。吸液性材料としては、タオル等の吸液性布、紙、吸液性樹脂等を使用することができる。吸液によりスラリーから電解液又は溶媒が除去されて、混合活物質が集電体とセパレータの間に定着されて、流動しない程度に緩くその形状が維持された状態となる。加圧の方法は特に限定されないが、種々の方法で実施できる。たとえば、公知のプレス機を用いる方法及び重量物等を重りとして載置して加圧する方法が挙げられ、加圧は超音波振動機等で加振しながら行っても良い。セパレータの上面側又は下面側から加圧する場合の圧力は、0.8~41kg/cmが好ましく、0.9~10kg/cmがより好ましい。圧力がこの範囲にあると電池をより高容量化でき好ましい。 The liquid absorption may be performed by sucking the liquid that has been pressed from the upper surface side or the lower surface side of the separator and leached out from the upper surface of the separator, or by sucking the liquid by reducing the pressure from the upper surface side of the separator. May be performed. Furthermore, liquid absorption from the upper surface side of the separator may be performed by placing a liquid absorbing material on the upper surface of the separator. As the liquid-absorbing material, a liquid-absorbing cloth such as towel, paper, liquid-absorbing resin, or the like can be used. The electrolyte solution or the solvent is removed from the slurry by the liquid absorption, and the mixed active material is fixed between the current collector and the separator, and the shape is maintained so loose that it does not flow. Although the method of pressurization is not particularly limited, it can be carried out by various methods. For example, a method using a known press machine and a method of applying pressure by placing a heavy object or the like as a weight may be mentioned, and the pressurization may be performed while vibrating with an ultrasonic vibrator or the like. Pressure when pressurized from the upper side or the lower side of the separator is preferably 0.8 ~ 41kg / cm 2, more preferably 0.9 ~ 10kg / cm 2. When the pressure is within this range, it is preferable because the capacity of the battery can be increased.
 このように製造される予備充電用負極においては、予備充電用負極の第1主面がセパレータと接しており、予備充電用負極の第2主面が集電体と接することとなる。このような予備充電用負極の製造方法であると、電極がセパレータと集電体で挟まれた状態で製造される。そのため、電極の両側にセパレータと集電体を配置する工程を別途行う必要がなく、双極型電極として好ましい形態の電極が少ない工程で得られるため好ましい。 In the negative electrode for precharging manufactured in this way, the first main surface of the negative electrode for precharging is in contact with the separator, and the second main surface of the negative electrode for precharging is in contact with the current collector. In such a method for producing a precharge negative electrode, the electrode is produced in a state where the electrode is sandwiched between a separator and a current collector. Therefore, it is not necessary to separately perform a step of disposing a separator and a current collector on both sides of the electrode, and this is preferable because the number of electrodes in a preferable form as a bipolar electrode can be obtained with a small number of steps.
 (3-2)次に、予備充電用負極と予備充電用正極とを備える予備充電用電池を作製する。例えば、予備充電用負極を、対極となる予備充電用正極を組み合わせて、セパレータとともにセル容器に収納し、電解液を注入し、セル容器を密封することで予備充電用電池を得ることができる。また、集電体の一方の面に予備充電用正極を形成し、もう一方の面に予備充電用負極を形成して双極型電極を作製し、双極型電極をセパレータと積層してセル容器に収納し、電解液を注入し、セル容器を密封することでも予備充電用電池を得ることができる。 (3-2) Next, a precharge battery including a precharge negative electrode and a precharge positive electrode is fabricated. For example, a preliminary charging battery can be obtained by combining a negative electrode for preliminary charging with a positive electrode for preliminary charging that serves as a counter electrode, storing the separator together with a separator in a cell container, injecting an electrolyte, and sealing the cell container. Also, a positive electrode for precharging is formed on one surface of the current collector, a negative electrode for precharging is formed on the other surface to produce a bipolar electrode, and the bipolar electrode is laminated with a separator to form a cell container. A battery for preliminary charging can also be obtained by storing, injecting an electrolyte, and sealing the cell container.
 予備充電用正極としては、正極活物質を有する正極又は金属リチウム極を用いることができるが、正極活物質は高価であることから、金属リチウム極を用いることが好ましい。正極活物質を有する正極を用いる場合、正極活物質を有する正極は、結着剤(バインダ)を用いて正極活物質を集電体に塗布して乾燥させることにより作製することができる。正極活物質としては、リチウムと遷移金属との複合酸化物(例えばLiCoO、LiNiO、LiMnO及びLiMn)、リチウムと遷移金属とのリン酸塩(例えばLiFePO)等が挙げられる。なお、結着剤としては、本明細書において負極活物質層が含まないとする結着剤として挙げたものが挙げられる。集電体としては、銅、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子及び導電性ガラス等が挙げられる。セパレータとしては、予備充電用負極の作製に使用できるセパレータとして上述したセパレータを使用することができる。電解液としては、原料スラリーに含まれる電解液として上述した電解液を使用することができる。 As the positive electrode for precharging, a positive electrode having a positive electrode active material or a metal lithium electrode can be used. However, since the positive electrode active material is expensive, it is preferable to use a metal lithium electrode. In the case of using a positive electrode having a positive electrode active material, the positive electrode having a positive electrode active material can be produced by applying the positive electrode active material to a current collector using a binder (binder) and drying it. Examples of the positive electrode active material include a composite oxide of lithium and a transition metal (for example, LiCoO 2 , LiNiO 2 , LiMnO 2, and LiMn 2 O 4 ), a phosphate of lithium and a transition metal (for example, LiFePO 4 ), and the like. . In addition, as a binder, what was mentioned as a binder which a negative electrode active material layer does not contain in this specification is mentioned. Examples of the current collector include copper, aluminum, titanium, stainless steel, nickel, baked carbon, conductive polymer, and conductive glass. As a separator, the separator mentioned above can be used as a separator which can be used for preparation of the negative electrode for precharge. As the electrolytic solution, the electrolytic solution described above as the electrolytic solution contained in the raw material slurry can be used.
 (3-3)予備充電用電池に対して予備充電を行う。これにより、珪素系負極活物質と炭素系負極活物質とを含む混合活物質に対してリチウムイオンを同時にドープすることができる。予備充電の方法は特に限定されないが、予備充電用電池に対して1サイクルの充放電を行う方法が好ましい。上記の方法により、リチウムイオンがドープされた珪素系負極活物質と、リチウムイオンがドープされた炭素系負極活物質を得ることができる。 (3-3) Precharge the battery for precharging. Thereby, lithium ion can be simultaneously doped with respect to the mixed active material containing a silicon-type negative electrode active material and a carbon-type negative electrode active material. Although the method of preliminary charging is not particularly limited, a method of charging and discharging one cycle with respect to the preliminary charging battery is preferable. By the above method, a silicon-based negative electrode active material doped with lithium ions and a carbon-based negative electrode active material doped with lithium ions can be obtained.
 リチウムイオンがドープされた珪素系負極活物質及びリチウムイオンがドープされた炭素系負極活物質(合わせて、リチウムイオンがドープされた混合活物質という)を用いて、本発明のリチウムイオン電池用負極を作製する方法としては、例えば以下の方法が挙げられる。 Using a silicon-based negative electrode active material doped with lithium ions and a carbon-based negative electrode active material doped with lithium ions (also referred to as a mixed active material doped with lithium ions), the negative electrode for lithium-ion batteries of the present invention Examples of the method for manufacturing the following include the following methods.
 予備充電用電池を解体してリチウムイオンがドープされた混合活物質を取り出し、溶媒の質量に基づいて30~60質量%の濃度で分散したスラリー(分散液)を、負極集電体上にバーコーター等の塗工装置で塗布後、その表面に不織布を静置して吸液する方法、加圧又は減圧する方法等で溶媒を除去して、必要によりプレス機でプレスする。なお、負極活物質層は、負極集電体上に直接形成する必要はなく、例えば、アラミドセパレータ等の表面に上記スラリーを塗布し溶媒を除去して得られる層状物(負極活物質層)を負極集電体上に積層することでも本発明のリチウムイオン電池用負極を製造することができる。リチウムイオンがドープされた混合活物質を分散する溶媒としては、電解液を用いることが好ましく、電解液としては上述した電解液スラリーに用いるものと同様のものを用いることができる。 The precharge battery is disassembled, the mixed active material doped with lithium ions is taken out, and a slurry (dispersion) dispersed at a concentration of 30 to 60% by mass based on the mass of the solvent is placed on the negative electrode current collector. After coating with a coating device such as a coater, the solvent is removed by a method of allowing the nonwoven fabric to stand on the surface and absorbing the liquid, a method of pressurizing or depressurizing, and pressing with a press if necessary. The negative electrode active material layer need not be formed directly on the negative electrode current collector. For example, a layered material (negative electrode active material layer) obtained by applying the slurry to the surface of an aramid separator or the like and removing the solvent is used. The negative electrode for lithium ion batteries of the present invention can also be produced by laminating on the negative electrode current collector. As the solvent for dispersing the mixed active material doped with lithium ions, it is preferable to use an electrolytic solution, and the electrolytic solution can be the same as that used for the above-described electrolytic slurry.
 また、予備充電用電池を解体して取り外した予備充電用負極をリチウムイオン電池用負極として使用することもできる。 Moreover, the negative electrode for preliminary charging, which is disassembled and removed from the battery for preliminary charging, can be used as the negative electrode for lithium ion batteries.
 (第2実施形態)
 第2実施形態では、珪素系負極活物質と炭素系負極活物質のそれぞれに対してリチウムイオンをドープする。第1実施形態における「混合活物質」に代えて珪素系負極活物質のみを含む原料スラリー、及び炭素系負極活物質のみを含む原料スラリーをそれぞれ作製する。そして、第1実施形態と同様の方法を用いて、原料スラリーに含まれる珪素系負極活物質と炭素系負極活物質のそれぞれに対してリチウムイオンをドープする。そして、リチウムイオンがドープされた珪素系負極活物質と、リチウムイオンがドープされた炭素系負極活物質を別々に作製する。
(Second Embodiment)
In the second embodiment, lithium ions are doped into each of the silicon-based negative electrode active material and the carbon-based negative electrode active material. Instead of the “mixed active material” in the first embodiment, a raw material slurry containing only a silicon-based negative electrode active material and a raw material slurry containing only a carbon-based negative electrode active material are prepared. Then, using the same method as in the first embodiment, each of the silicon-based negative electrode active material and the carbon-based negative electrode active material contained in the raw slurry is doped with lithium ions. Then, a silicon-based negative electrode active material doped with lithium ions and a carbon-based negative electrode active material doped with lithium ions are prepared separately.
 リチウムイオンがドープされた珪素系負極活物質と、リチウムイオンがドープされた炭素系負極活物質とがそれぞれ予備充電用電池内で得られる場合には、予備充電用電池を解体して予備充電用負極を取り外した後、予備充電用負極に定着した珪素系負極活物質及び炭素系負極活物質に分散媒を加えて再びスラリー化する。そして、リチウムイオンがドープされた珪素系負極活物質を含むスラリーと、リチウムイオンがドープされた炭素系負極活物質を含むスラリーを得て、この2つのスラリーを混合することによって、リチウムイオンがドープされた珪素系負極活物質とリチウムイオンがドープされた炭素系負極活物質を含む混合スラリーを得る。なお、予備充電用負極に定着した珪素系負極活物質及び炭素系負極活物質との混合物に分散媒を加えて混合スラリーとしてもよい。この混合スラリーを使用して、リチウムイオン電池用負極を作製することができる。 When a lithium-doped silicon-based negative electrode active material and a lithium-ion-doped carbon-based negative electrode active material are respectively obtained in a precharge battery, the precharge battery is disassembled for precharge. After removing the negative electrode, a dispersion medium is added to the silicon-based negative electrode active material and the carbon-based negative electrode active material fixed on the negative electrode for precharging to make a slurry again. Then, a slurry containing a silicon-based negative electrode active material doped with lithium ions and a slurry containing a carbon-based negative electrode active material doped with lithium ions are obtained, and by mixing these two slurries, lithium ions are doped. A mixed slurry containing the silicon-based negative electrode active material and the carbon-based negative electrode active material doped with lithium ions is obtained. Note that a dispersion medium may be added to a mixture of the silicon-based negative electrode active material and the carbon-based negative electrode active material fixed on the preliminary charging negative electrode to form a mixed slurry. Using this mixed slurry, a negative electrode for a lithium ion battery can be produced.
 (第3実施形態)
 第3実施形態では、まず、珪素系負極活物質に対してのみリチウムイオンをドープする。第1実施形態における「混合活物質」に代えて珪素系負極活物質のみを含む原料スラリーを作製する。そして、第1実施形態と同様の方法を用いて、原料スラリーに含まれる珪素系負極活物質にリチウムイオンをドープして、リチウムイオンがドープされた珪素系負極活物質を作製する。
(Third embodiment)
In the third embodiment, first, lithium ions are doped only into the silicon-based negative electrode active material. Instead of the “mixed active material” in the first embodiment, a raw material slurry containing only a silicon-based negative electrode active material is prepared. Then, using the same method as in the first embodiment, the silicon-based negative electrode active material contained in the raw slurry is doped with lithium ions to produce a silicon-based negative electrode active material doped with lithium ions.
 リチウムイオンがドープされた珪素系負極活物質が予備充電用電池内で得られる場合には、予備充電用電池を解体して予備充電用負極を取り外した後、予備充電用負極に定着した珪素系負極活物質に分散媒を加えて再びスラリー化する。そして、リチウムイオンがドープされた珪素系負極活物質を含むスラリーを得る。このスラリーに、リチウムイオンがドープされていない炭素系負極活物質を粉末の状態、又は、スラリー化した状態で混合することによって、リチウムイオンがドープされた珪素系負極活物質とリチウムイオンがドープされていない炭素系負極活物質を含む混合スラリーを得る。そして、この混合スラリーに含まれる炭素系負極活物質にリチウムイオンをドープする。 When the silicon-based negative electrode active material doped with lithium ions is obtained in the battery for precharging, the silicon-based material fixed to the negative electrode for precharging after disassembling the battery for precharging and removing the negative electrode for precharging A dispersion medium is added to the negative electrode active material to form a slurry again. Then, a slurry containing a silicon-based negative electrode active material doped with lithium ions is obtained. The slurry is mixed with a silicon-based negative electrode active material doped with lithium ions and lithium ions by mixing a carbon-based negative electrode active material not doped with lithium ions in a powder state or in a slurry state. A mixed slurry containing a carbon-based negative electrode active material is obtained. And the carbon-type negative electrode active material contained in this mixed slurry is doped with lithium ions.
 (第4実施形態)
 第4実施形態では、まず、炭素系負極活物質に対してのみリチウムイオンをドープする。第1実施形態における「混合活物質」に代えて炭素系負極活物質のみを含む原料スラリーを作製する。そして、第1実施形態と同様の方法を用いて、原料スラリーに含まれる炭素系負極活物質にリチウムイオンをドープして、リチウムイオンがドープされた炭素系負極活物質又を作製する。
(Fourth embodiment)
In the fourth embodiment, first, lithium ions are doped only into the carbon-based negative electrode active material. Instead of the “mixed active material” in the first embodiment, a raw material slurry containing only the carbon-based negative electrode active material is prepared. Then, using the same method as in the first embodiment, the carbon-based negative electrode active material contained in the raw slurry is doped with lithium ions to produce a carbon-based negative electrode active material doped with lithium ions.
 リチウムイオンがドープされた炭素系負極活物質が予備充電用電池内で得られる場合には、予備充電用電池を解体して予備充電用負極を取り外した後、予備充電用負極に定着した炭素系負極活物質に分散媒を加えて再びスラリー化する。そして、リチウムイオンがドープされた炭素系負極活物質を含むスラリーを得る。このスラリーに、リチウムイオンがドープされていない珪素系負極活物質を粉末の状態、又は、スラリー化した状態で混合することによって、リチウムイオンがドープされた炭素系負極活物質とリチウムイオンがドープされていない珪素系負極活物質を含む混合スラリーを得る。そして、この混合スラリーに含まれる珪素系負極活物質にリチウムイオンをドープする。 When the carbon-based negative electrode active material doped with lithium ions is obtained in the battery for preliminary charging, the carbon-based material fixed on the negative electrode for preliminary charging after disassembling the preliminary charging battery and removing the negative electrode for preliminary charging. A dispersion medium is added to the negative electrode active material to form a slurry again. Then, a slurry containing a carbon-based negative electrode active material doped with lithium ions is obtained. By mixing this slurry with a silicon-based negative electrode active material not doped with lithium ions in a powdered state or in a slurry state, a carbon-based negative electrode active material doped with lithium ions and lithium ions are doped. A mixed slurry containing a non-conductive silicon-based negative electrode active material is obtained. The silicon-based negative electrode active material contained in this mixed slurry is doped with lithium ions.
 次に、珪素系負極活物質及び炭素系負極活物質を含む負極活物質組成物と、分散媒とを含むスラリーを用いて集電体又はセパレータ上に塗膜を形成する工程について説明する。本発明では、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる負極活物質層を有するリチウムイオン電池用負極を得るために、スラリーは、結着剤を実質的に含まないことが好ましい。本明細書において、スラリーが実質的に結着剤を含まないとは、具体的には、結着剤の含有量が、スラリーに含まれる全固形分量100質量%に対して、1質量%以下であることを意味する。当該結着剤の含有量は、より好ましくは0.5質量%以下であり、さらに好ましくは0.2質量%以下であり、特に好ましくは0.1質量%以下であり、最も好ましくは0質量%である。 Next, a process of forming a coating film on a current collector or separator using a slurry containing a negative electrode active material composition containing a silicon-based negative electrode active material and a carbon-based negative electrode active material and a dispersion medium will be described. In the present invention, lithium having a negative electrode active material layer composed of a non-binding body of a negative electrode active material composition comprising a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions. In order to obtain a negative electrode for an ion battery, it is preferable that the slurry does not substantially contain a binder. In this specification, the slurry does not substantially contain a binder. Specifically, the content of the binder is 1% by mass or less with respect to 100% by mass of the total solid content contained in the slurry. It means that. The content of the binder is more preferably 0.5% by mass or less, further preferably 0.2% by mass or less, particularly preferably 0.1% by mass or less, and most preferably 0% by mass. %.
 なお、リチウムイオンをドープした後の予備充電用負極をリチウムイオン電池用負極として用いる場合は、予備充電用負極の負極活物質層を形成するための塗膜の形成工程が、本工程に該当する。 In addition, when using the negative electrode for preliminary | backup charge after doping lithium ion as a negative electrode for lithium ion batteries, the formation process of the coating film for forming the negative electrode active material layer of the negative electrode for preliminary | backup charge corresponds to this process .
 本発明では、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる負極活物質層を有するリチウムイオン電池用負極を得るために、塗膜を乾燥させる工程を実質的に含まないことを必須とする。本明細書において、塗膜を乾燥させる工程を実質的に含まないとは、塗膜(負極活物質層)の固形分濃度が99質量%以上となるような分散媒(溶媒)の除去工程を行わないことを意味する。塗膜を乾燥させる工程を実質的に含まないことにより、スラリーに結着剤が含まれている場合であっても、結着剤が固体化して活物質同士及び活物質粒子と集電体とが固定化されないため、非結着体の状態を維持することができる。 In the present invention, lithium having a negative electrode active material layer composed of a non-binding body of a negative electrode active material composition comprising a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions. In order to obtain the negative electrode for an ion battery, it is essential that the process of drying a coating film is not included substantially. In this specification, substantially not including the step of drying the coating film means that the dispersion medium (solvent) is removed so that the solid content concentration of the coating film (negative electrode active material layer) is 99% by mass or more. It means not to do. By substantially not including the step of drying the coating film, even when the binder contains the binder, the binder is solidified and the active materials and the active material particles and the current collector Is not immobilized, the non-bound state can be maintained.
 なお、前述の吸液や、加圧又は減圧によって塗布後のスラリーから余分な分散媒を除去する方法は、塗膜の固形分濃度が99質量%以上となることはないため、本明細書における塗膜を乾燥させる工程には含まれない。 In addition, the method of removing the excess dispersion medium from the slurry after coating by the above-described liquid absorption or pressurization or depressurization does not cause the solid content concentration of the coating film to be 99% by mass or more. It is not included in the process of drying the coating film.
 以上の方法により、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる負極活物質層を有する、本発明のリチウムイオン電池用負極を得ることができる。 By the above method, it has the negative electrode active material layer which consists of a non-binding body of the negative electrode active material composition containing the carbon negative electrode active material doped with lithium ions and the silicon negative electrode active material doped with lithium ions The negative electrode for lithium ion batteries of the present invention can be obtained.
 いずれの実施形態においても、炭素系負極活物質として炭素系被覆負極活物質を用いてもよい。炭素系被覆負極活物質は、例えば、炭素系負極活物質を万能混合機に入れて30~50rpmで撹拌した状態で、高分子化合物を含む高分子溶液を1~90分かけて滴下混合し、さらに必要に応じて導電助剤を混合し、撹拌したまま50~200℃に昇温し、0.007~0.04MPaまで減圧した後に10~150分保持することにより得ることができる。 In any of the embodiments, a carbon-based coated negative electrode active material may be used as the carbon-based negative electrode active material. The carbon-based coated negative electrode active material is, for example, dropped and mixed with a polymer solution containing a polymer compound over 1 to 90 minutes in a state where the carbon-based negative electrode active material is placed in a universal mixer and stirred at 30 to 50 rpm, Furthermore, it can be obtained by mixing a conductive additive as necessary, raising the temperature to 50 to 200 ° C. while stirring, reducing the pressure to 0.007 to 0.04 MPa, and holding for 10 to 150 minutes.
 炭素系負極活物質と高分子化合物との配合割合は特に限定されるものではないが、質量比率で炭素系負極活物質:高分子化合物=1:0.001~0.1であることが好ましい。 The blending ratio of the carbon-based negative electrode active material and the polymer compound is not particularly limited, but is preferably carbon-based negative electrode active material: polymer compound = 1: 0.001 to 0.1 by mass ratio. .
 炭素系被覆負極活物質の作製に用いる溶媒としては、1-メチル-2-ピロリドン、メチルエチルケトン、DMF、ジメチルアセトアミド、N,N-ジメチルアミノプロピルアミン及びテトラヒドロフラン等が挙げられる。 Examples of the solvent used for producing the carbon-based coated negative electrode active material include 1-methyl-2-pyrrolidone, methyl ethyl ketone, DMF, dimethylacetamide, N, N-dimethylaminopropylamine, and tetrahydrofuran.
 このようにして得た炭素系被覆負極活物質を炭素系負極活物質として、炭素系負極活物質に対してリチウムイオンをドープすることで、リチウムイオンがドープされた炭素系被覆負極活物質が得られる。リチウムイオンがドープされた炭素系被覆負極活物質においては、炭素系被覆負極活物質の中心にある炭素系負極活物質にリチウムイオンがドープされている。 Using the carbon-based negative electrode active material thus obtained as a carbon-based negative electrode active material, a carbon-based negative electrode active material doped with lithium ions is obtained by doping lithium ions into the carbon-based negative electrode active material. It is done. In the carbon-based coated negative electrode active material doped with lithium ions, the carbon-based negative electrode active material at the center of the carbon-based coated negative electrode active material is doped with lithium ions.
 本発明のリチウムイオン電池用負極を用いてリチウムイオン電池を作製する際には、対極となる電極を組み合わせて、セパレータと共にセル容器に収容し、必要により非水電解液を注入し、セル容器を密封する方法等により製造することができる。 When producing a lithium ion battery using the negative electrode for a lithium ion battery of the present invention, a counter electrode is combined and housed in a cell container together with a separator, and a non-aqueous electrolyte is injected if necessary. It can be manufactured by a sealing method or the like.
 また、負極集電体の一方の面だけに負極活物質層を形成した本発明のリチウムイオン電池用負極の、負極集電体の他方の面に正極活物質からなる正極活物質層を形成して双極型電極を作製し、双極型電極をセパレータと積層してセル容器に収容し、必要により非水電解液を注入し、セル容器を密閉することでも得られる。 Further, in the negative electrode for a lithium ion battery of the present invention in which the negative electrode active material layer is formed only on one surface of the negative electrode current collector, a positive electrode active material layer made of the positive electrode active material is formed on the other surface of the negative electrode current collector. It is also possible to produce a bipolar electrode, stack the bipolar electrode with a separator and store it in a cell container, inject a non-aqueous electrolyte if necessary, and seal the cell container.
 本発明のリチウムイオン電池用負極の対極となる電極(正極)には、公知のリチウムイオン電池に用いられる正極を用いることができる。セパレータ及び非水電解液としては、予備充電用負極の作製に使用可能なものと同様の、公知のリチウムイオン電池用のセパレータ及び非水電解液(電解質及び非水溶媒)が挙げられる。 As the electrode (positive electrode) that is the counter electrode of the negative electrode for a lithium ion battery of the present invention, a positive electrode used for a known lithium ion battery can be used. Examples of the separator and non-aqueous electrolyte include known separators for lithium-ion batteries and non-aqueous electrolytes (electrolyte and non-aqueous solvent) that can be used for the preparation of the negative electrode for precharging.
 次に本発明を実施例によって具体的に説明するが、本発明の主旨を逸脱しない限り本発明は実施例に限定されるものではない。なお、特記しない限り部は質量部、%は質量%を意味する。 Next, the present invention will be specifically described by way of examples. However, the present invention is not limited to the examples without departing from the gist of the present invention. Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.
 <製造例1:樹脂集電体の作製>
 2軸押出機にて、ポリプロピレン[商品名「サンアロマーPL500A」、サンアロマー(株)製]70部、カーボンナノチューブ[商品名:「FloTube9000」、CNano社製]25部及び分散剤[商品名「ユーメックス1001」、三洋化成工業(株)製]5部を200℃、200rpmの条件で溶融混練して樹脂混合物を得た。得られた樹脂混合物を、Tダイ押出しフィルム成形機に通して、それを延伸圧延することで、膜厚100μmの樹脂集電体を得た。樹脂集電体は3cm×3cmに切断し、片面にニッケル蒸着を施した後、電流取り出し用の端子(5mm×3cm)を接続した。
<Production Example 1: Production of resin current collector>
In a twin-screw extruder, 70 parts of polypropylene [trade name “Sun Allomer PL500A”, manufactured by Sun Allomer Co., Ltd.], 25 parts of carbon nanotube [trade name: “FloTube 9000”, manufactured by CNano Co., Ltd.] “Sanyo Kasei Kogyo Co., Ltd.] 5 parts was melt kneaded at 200 ° C. and 200 rpm to obtain a resin mixture. The obtained resin mixture was passed through a T-die extrusion film forming machine and stretched and rolled to obtain a resin current collector with a film thickness of 100 μm. The resin current collector was cut into 3 cm × 3 cm, and after nickel deposition was performed on one surface, a current extraction terminal (5 mm × 3 cm) was connected.
 <製造例2:被覆層用高分子化合物溶液の作製>
 撹拌機、温度計、還流冷却管、滴下ロート及び窒素ガス導入管を付した4つ口フラスコにDMF407.9部を仕込み75℃に昇温した。次いで、メタクリル酸242.8部、メチルメタクリレート97.1部、2-エチルヘキシルメタクリレート242.8部、及びDMF116.5部を配合したモノマー配合液と、2,2’-アゾビス(2,4-ジメチルバレロニトリル)1.7部及び2,2’-アゾビス(2-メチルブチロニトリル)4.7部をDMF58.3部に溶解した開始剤溶液とを4つ口フラスコ内に窒素を吹き込みながら、撹拌下、滴下ロートで2時間かけて連続的に滴下してラジカル重合を行った。滴下終了後、75℃で反応を3時間継続した。次いで80℃に昇温し反応を3時間継続し樹脂固形分濃度が50質量%の共重合体溶液を得た。これにDMFを789.8部加えて、樹脂固形分濃度が30質量%である被覆層用高分子化合物溶液を得た。
<Production Example 2: Production of polymer compound solution for coating layer>
A 4-necked flask equipped with a stirrer, thermometer, reflux condenser, dropping funnel and nitrogen gas inlet tube was charged with 407.9 parts of DMF and heated to 75 ° C. Next, a monomer mixture containing 242.8 parts of methacrylic acid, 97.1 parts of methyl methacrylate, 242.8 parts of 2-ethylhexyl methacrylate, and 116.5 parts of DMF, and 2,2′-azobis (2,4-dimethyl) (Valeronitrile) 1.7 parts and 2,2′-azobis (2-methylbutyronitrile) 4.7 parts dissolved in DMF 58.3 parts and a four-necked flask were blown with nitrogen, Under stirring, radical polymerization was carried out by continuously dropping with a dropping funnel over 2 hours. After completion of dropping, the reaction was continued at 75 ° C. for 3 hours. Next, the temperature was raised to 80 ° C., and the reaction was continued for 3 hours to obtain a copolymer solution having a resin solid content concentration of 50 mass%. To this, 789.8 parts of DMF was added to obtain a polymer compound solution for a coating layer having a resin solid content concentration of 30% by mass.
 <製造例3:炭素系被覆負極活物質粒子1の作製>
 難黒鉛化性炭素粉末[(株)クレハ・バッテリー・マテリアルズ・ジャパン製カーボトロン(登録商標)PS(F)、体積平均粒子径18μm]90部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、150rpmで撹拌した状態で、上記被覆層用高分子化合物溶液30部を樹脂固形分として5質量部になるように60分かけて滴下混合し、さらに30分撹拌した。次いで、撹拌を維持したままアセチレンブラック[デンカ(株)製 デンカブラック(登録商標)]5部を3回に分けて混合し、30分撹拌したままで70℃に昇温し、0.01MPaまで減圧し30分保持した。上記操作により炭素系被覆負極活物質粒子1を得た。
<Production Example 3: Production of carbon-based coated negative electrode active material particles 1>
90 parts of non-graphitizable carbon powder [Carbotron (registered trademark) PS (F) manufactured by Kureha Battery Materials Japan Co., Ltd., volume average particle size 18 μm] 90 parts universal mixer high speed mixer FS25 [Earth Co., Ltd. In a state of stirring at room temperature and 150 rpm, 30 parts of the polymer compound solution for coating layer was mixed dropwise over 60 minutes so that the resin solid content was 5 parts by mass, and further stirred for 30 minutes. . Next, 5 parts of acetylene black [DENKA BLACK (registered trademark) manufactured by Denka Co., Ltd.] was mixed in 3 portions while maintaining the stirring, and the temperature was raised to 70 ° C. while stirring for 30 minutes until the pressure reached 0.01 MPa. The pressure was reduced and held for 30 minutes. By the above operation, carbon-based coated negative electrode active material particles 1 were obtained.
 <製造例4:炭素系被覆負極活物質粒子2の作製>
 難黒鉛化性炭素粉末を粒子径の異なる難黒鉛化性炭素粉末[(株)クレハ・バッテリー・マテリアルズ・ジャパン製、体積平均粒子径0.1μm]に変更する他は製造例3と同様にして炭素系被覆負極活物質粒子2を得た。
<Production Example 4: Preparation of carbon-based coated negative electrode active material particles 2>
The same as in Production Example 3 except that the non-graphitizable carbon powder is changed to a non-graphitizable carbon powder having a different particle size [manufactured by Kureha Battery Materials Japan, volume average particle size of 0.1 μm]. Thus, carbon-based coated negative electrode active material particles 2 were obtained.
 <製造例5:炭素被覆珪素粒子の作製>
 珪素粒子[シグマ・アルドリッチジャパン社製、体積平均粒子径1.5μm]を横型加熱炉中に入れ、横型加熱炉内にメタンガスを通気しながら1100℃/1000Pa、平均滞留時間約2時間の化学蒸着操作を行い、炭素量2質量%で、表面が炭素で被覆された珪素系負極活物質粒子(体積平均粒子径1.5μm)を得た。
<Production Example 5: Production of carbon-coated silicon particles>
Chemical vapor deposition of silicon particles [Sigma Aldrich Japan Co., Ltd., volume average particle size 1.5 μm] in a horizontal heating furnace and 1100 ° C./1000 Pa, average residence time of about 2 hours while venting methane gas into the horizontal heating furnace The operation was performed to obtain silicon-based negative electrode active material particles (volume average particle diameter of 1.5 μm) having a carbon amount of 2 mass% and having a surface coated with carbon.
 <製造例6:炭素被覆された酸化珪素粒子の作製>
 酸化珪素粒子[シグマ・アルドリッチジャパン社製、体積平均粒子径1.5μm]を横型加熱炉中に入れ、メタンガスを通気しながら1100℃/1000Pa、平均滞留時間約2時間の化学蒸着操作を行い、炭素含有量が2質量%で、表面が炭素で被覆された珪素系負極活物質粒子(体積平均粒子径1.5μm)を得た。
<Production Example 6: Preparation of carbon-coated silicon oxide particles>
Silicon oxide particles [Sigma-Aldrich Japan, volume average particle size 1.5 μm] are placed in a horizontal heating furnace, and a chemical vapor deposition operation is performed at 1100 ° C./1000 Pa and an average residence time of about 2 hours while venting methane gas. Silicon-based negative electrode active material particles having a carbon content of 2% by mass and a surface coated with carbon (volume average particle diameter of 1.5 μm) were obtained.
 <製造例7:珪素複合粒子の作製>
 珪素粒子[シグマ・アルドリッチジャパン社製、体積平均粒子径1.5μm]3部を万能混合機ハイスピードミキサーFS25[(株)アーステクニカ製]に入れ、室温、720rpmで撹拌した状態で、ポリアクリル酸樹脂溶液(溶媒:超純水、固形分濃度10%)10部を2分かけて滴下し、さらに5分撹拌した。次いで、撹拌した状態でアセチレンブラック[デンカ(株)製、デンカブラック(登録商標)]1部を投入し、30分撹拌を継続した。その後、撹拌を維持したまま0.01MPaまで減圧し、次いで撹拌と減圧度を維持したまま温度を140℃まで昇温し、撹拌、減圧度及び温度を8時間維持して揮発分を留去した。得られた粉体を目開き20μmの篩いで分級し、珪素複合粒子(体積平均粒子径30μm)を得た。
<Production Example 7: Production of silicon composite particles>
3 parts of silicon particles [manufactured by Sigma-Aldrich Japan, volume average particle size 1.5 μm] are put into a universal mixer high speed mixer FS25 [manufactured by Earth Technica Co., Ltd.] and stirred at room temperature at 720 rpm. 10 parts of an acid resin solution (solvent: ultrapure water, solid content concentration 10%) was added dropwise over 2 minutes, and the mixture was further stirred for 5 minutes. Next, 1 part of acetylene black [Denka Co., Ltd., Denka Black (registered trademark)] was added while stirring, and stirring was continued for 30 minutes. Thereafter, the pressure was reduced to 0.01 MPa while maintaining the stirring, and then the temperature was raised to 140 ° C. while maintaining the stirring and the degree of vacuum, and the volatile matter was distilled off by maintaining the stirring, the degree of vacuum and the temperature for 8 hours. . The obtained powder was classified with a sieve having an opening of 20 μm to obtain silicon composite particles (volume average particle diameter of 30 μm).
 <製造例8:炭素繊維の作製>
 炭素繊維は、Eiichi Yasuda,Asao Oya,Shinya Komura,Shigeki Tomonoh,Takashi Nishizawa,Shinsuke Nagata,Takashi Akatsu、CARBON、50、2012、1432-1434及びEiichi Yasuda,Takashi Akatsu,Yasuhiro Tanabe,Kazumasa Nakamura,Yasuto Hoshikawa,Naoya Miyajima、TANSO、255、2012、254~265頁の製造方法を参考にして以下の方法で製造した。炭素前駆体として合成メソフェーズピッチAR・MPH[三菱ガス化学(株)製]10質量部とポリメチルペンテンTPX RT18[三井化学(株)製]90質量部を、バレル温度310℃、窒素雰囲気下で一軸押出機を用いて溶融混練し、樹脂組成物を調製した。上記樹脂組成物を390℃で溶融押出し紡糸した。紡糸した樹脂組成物を電気炉に入れ、窒素雰囲気下270℃で3時間保持し炭素前駆体を安定化させた。ついで、電気炉を1時間かけて500℃まで昇温し、500℃で1時間保持し、ポリメチルペンテンを分解除去した。電気炉を2時間かけて1000℃まで昇温し1000℃で30分間保持し、残った安定化させた炭素前駆体を導電性繊維とした。得られた導電性繊維90質量部、水500質量部とφ0.1mmのジルコニアボール1000質量部をポットミル容器に入れ5分間粉砕した。ジルコニアボールを分級後、100℃で乾燥し、炭素繊維を得た。SEMでの測定結果より、得られた炭素繊維の平均繊維径は、0.3μm、平均繊維長は26μm(アスペクト比87)であり、電気伝導度は600mS/cmであった。
<Production Example 8: Production of carbon fiber>
Carbon fibers, Eiichi Yasuda, Asao Oya, Shinya Komura, Shigeki Tomonoh, Takashi Nishizawa, Shinsuke Nagata, Takashi Akatsu, CARBON, 50,2012,1432-1434 and Eiichi Yasuda, Takashi Akatsu, Yasuhiro Tanabe, Kazumasa Nakamura, Yasuto Hoshikawa, It was manufactured by the following method with reference to the manufacturing method of Naoya Miyajima, TANSO, 255, 2012, pages 254 to 265. As a carbon precursor, 10 parts by mass of synthetic mesophase pitch AR · MPH [manufactured by Mitsubishi Gas Chemical Co., Ltd.] and 90 parts by mass of polymethylpentene TPX RT18 [manufactured by Mitsui Chemicals, Inc.] under a barrel temperature of 310 ° C. under a nitrogen atmosphere A resin composition was prepared by melt-kneading using a single screw extruder. The resin composition was melt-extruded and spun at 390 ° C. The spun resin composition was placed in an electric furnace and held at 270 ° C. for 3 hours under a nitrogen atmosphere to stabilize the carbon precursor. Next, the electric furnace was heated to 500 ° C. over 1 hour and held at 500 ° C. for 1 hour to decompose and remove polymethylpentene. The electric furnace was heated up to 1000 ° C. over 2 hours and held at 1000 ° C. for 30 minutes, and the remaining stabilized carbon precursor was used as a conductive fiber. 90 parts by mass of the obtained conductive fibers, 500 parts by mass of water, and 1000 parts by mass of zirconia balls having a diameter of 0.1 mm were placed in a pot mill container and pulverized for 5 minutes. The zirconia balls were classified and then dried at 100 ° C. to obtain carbon fibers. From the measurement result by SEM, the average fiber diameter of the obtained carbon fiber was 0.3 μm, the average fiber length was 26 μm (aspect ratio 87), and the electric conductivity was 600 mS / cm.
 <実施例1>
 [負極活物質スラリーの作製]
 エチレンカーボネート(EC)とプロピレンカーボネート(PC)の混合溶媒(体積比率1:1)にLiPFを1mol/Lの割合で溶解させて作製した電解液90部に製造例3で得られた炭素系被覆負極活物質粒子1を6部、製造例5で得られた炭素被覆珪素粒子3部、導電材料として製造例8で得られた炭素繊維1部を添加した後、遊星撹拌型混合混練装置{あわとり練太郎[(株)シンキー製]}を用いて2000rpmで5分間混合して、負極活物質スラリーを作製した。
<Example 1>
[Preparation of negative electrode active material slurry]
Carbon system obtained in Production Example 3 in 90 parts of an electrolyte prepared by dissolving LiPF 6 in a mixed solvent of ethylene carbonate (EC) and propylene carbonate (PC) (volume ratio 1: 1) at a ratio of 1 mol / L. After adding 6 parts of coated negative electrode active material particles 1, 3 parts of carbon-coated silicon particles obtained in Production Example 5, and 1 part of carbon fiber obtained in Production Example 8 as a conductive material, a planetary stirring type mixing and kneading apparatus { Awatori Nerita [Sinky Co., Ltd.]} was used and mixed at 2000 rpm for 5 minutes to prepare a negative electrode active material slurry.
 [負極活物質層の作製]
 φ23mmのアラミド不織布(型番2415R:日本バイリーン製)にφ15mmの穴をあけたブチルゴムシート(以下、マスクと記載する)を重ね、マスクの穴の部分に負極活物質スラリーを活物質の目付量が23.9mg/cmとなるように滴下した。更にアラミド不織布側から吸引濾過(減圧)することでφ15mmの円形の負極活物質層を作製した。次いで、5MPaの圧力で約10秒プレスすることで予備充電用負極を作製した。作製した予備充電用負極を用いて以下の方法で予備充電用電池の作製と予備充電を行い、本発明のリチウムイオン電池用負極を作製した。
[Preparation of negative electrode active material layer]
A butyl rubber sheet (hereinafter referred to as a mask) having a φ15 mm hole is stacked on a φ23 mm aramid non-woven fabric (model number 2415R: manufactured by Japan Vilene). It was dripped so that it might become 9 mg / cm < 2 >. Further, a negative negative electrode active material layer having a diameter of 15 mm was produced by suction filtration (reduced pressure) from the aramid nonwoven fabric side. Subsequently, the negative electrode for precharging was produced by pressing at a pressure of 5 MPa for about 10 seconds. Using the produced precharge negative electrode, a precharge battery was prepared and precharged by the following method to produce a lithium ion battery negative electrode of the present invention.
 [予備充電用電池の作製]
 端子(5mm×3cm)付き銅箔(3cm×3cm、厚さ17μm)2枚を、同じ方向にそれぞれの端子が出るように重ね、それを2枚の市販の熱融着型アルミラミネートフィルム(10cm×8cm)に挟み、端子の出ている1辺を熱融着し、予備充電用ラミネートセルを作製した。予備充電用負極からアラミド不織布を剥がし、予備充電用ラミネートセル内の一方の銅箔上に静置し、電解液を100μL添加した。次いで、セパレータ(5cm×5cm、厚さ23μm、セルガード3501 PP製)を予備充電用負極上に静置し、更に電解液を100μL添加した。金属リチウム箔(3cm×3cm)をセパレータを介して予備充電用負極に対向するように静置し、電解液を100μL添加し、ラミネートセル内の他方の銅箔を被せ、先に熱融着した1辺に直交する2辺をヒートシールした。その後、真空シーラーを用いてセル内を真空にしながら開口部をヒートシールすることでラミネートセルを密封し、予備充電用電池を得た。
[Preparation of battery for pre-charging]
Two copper foils (3 cm × 3 cm, thickness 17 μm) with terminals (5 mm × 3 cm) are stacked so that each terminal comes out in the same direction, and two sheets of commercially available heat-sealing aluminum laminate films (10 cm) × 8 cm), and one side where the terminal comes out was heat-sealed to produce a precharging laminate cell. The aramid non-woven fabric was peeled off from the preliminary charging negative electrode, and left on one copper foil in the preliminary charging laminate cell, and 100 μL of an electrolytic solution was added. Next, a separator (5 cm × 5 cm, thickness 23 μm, Celgard 3501 PP) was allowed to stand on the negative electrode for preliminary charging, and 100 μL of electrolyte was further added. A metallic lithium foil (3 cm × 3 cm) was left to face the negative electrode for precharging through a separator, 100 μL of electrolyte was added, the other copper foil in the laminate cell was covered, and heat-sealed first. Two sides orthogonal to one side were heat sealed. Thereafter, the laminate cell was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain a precharge battery.
 [予備充電と本発明のリチウムイオン電池用負極の製造]
 充放電測定装置「HJ0501SM8A」[北斗電工(株)製]を用いて45℃、電流0.1C、下限電位0VでCC-CV充電し、10分間の休止後、電流0.1C、上限電位1.5VでCC放電することにより予備充電を行った。その後、予備充電用電池を分解して負極を取り出し、本発明のリチウムイオン電池用負極1を得た。得られた本発明のリチウムイオン電池用負極1が有する負極活物質層の厚みは350μmであった。
[Precharge and production of negative electrode for lithium ion battery of the present invention]
Using a charge / discharge measuring device “HJ0501SM8A” [Hokuto Denko Co., Ltd.], CC-CV charging at 45 ° C., current 0.1 C, lower limit potential 0 V, 10 minutes rest, current 0.1 C, upper limit potential 1 Pre-charging was performed by CC discharge at .5V. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 1 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer which the obtained negative electrode 1 for lithium ion batteries of this invention has was 350 micrometers.
 <実施例2>
 負極活物質スラリーの作製において、炭素被覆珪素粒子を酸化珪素であるSiO粒子[シグマ・アルドリッチジャパン社製、体積平均粒子径5μm]に変更した他は実施例1と同様に予備充電用電池を作製し、予備充電を行った。その後、予備充電用電池を分解して負極を取り出し、本発明のリチウムイオン電池用負極2を得た。得られた本発明のリチウムイオン電池用負極が有する負極活物質層2の厚みは350μmであった。
<Example 2>
A battery for precharging was prepared in the same manner as in Example 1 except that the carbon-coated silicon particles were changed to SiO particles that were silicon oxide (manufactured by Sigma-Aldrich Japan, volume average particle diameter 5 μm) in the preparation of the negative electrode active material slurry. Then, preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 2 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 2 included in the obtained negative electrode for a lithium ion battery of the present invention was 350 μm.
 <実施例3>
 負極活物質スラリーの作製において、炭素系被覆負極活物質粒子1の配合量を8.5部に変更し、炭素被覆珪素粒子を珪素粒子[シグマ・アルドリッチジャパン製、体積平均粒子径5μm]0.5部に変更した他は実施例1と同様に予備充電用電池を作製し、予備充電を行った。その後、予備充電用電池を分解して負極を取り出し、本発明のリチウムイオン電池用負極3を得た。得られた本発明のリチウムイオン電池用負極が有する負極活物質層3の厚みは380μmであった。
<Example 3>
In the preparation of the negative electrode active material slurry, the blending amount of the carbon-based coated negative electrode active material particles 1 was changed to 8.5 parts, and the carbon-coated silicon particles were changed to silicon particles [Sigma-Aldrich Japan, volume average particle diameter 5 μm]. Except for changing to 5 parts, a battery for preliminary charging was prepared in the same manner as in Example 1, and preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 3 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 3 included in the obtained negative electrode for a lithium ion battery of the present invention was 380 μm.
 <実施例4>
 [負極活物質スラリー2種類の作製]
 電解液90部に製造例4で得られた炭素系被覆負極活物質粒子2(数平均粒子径0.1μm)10部を添加した後、遊星撹拌型混合混練装置を用いて2000rpmで5分間混合して、負極活物質スラリー4-1を作製した。電解液90部に珪素粒子[シグマ・アルドリッチジャパン社製、体積平均粒子径0.01μm]10部を添加した後、遊星撹拌型混合混練装置を用いて2000rpmで5分間混合して、負極活物質スラリー4-2を作製した。
<Example 4>
[Preparation of two types of negative electrode active material slurry]
After adding 10 parts of carbon-based coated negative electrode active material particles 2 (number average particle diameter 0.1 μm) obtained in Production Example 4 to 90 parts of the electrolytic solution, the mixture was mixed at 2000 rpm for 5 minutes using a planetary stirring type kneader. Thus, a negative electrode active material slurry 4-1 was produced. After adding 10 parts of silicon particles [volume average particle diameter 0.01 μm, manufactured by Sigma-Aldrich Japan Co., Ltd.] to 90 parts of the electrolytic solution, the mixture is mixed at 2000 rpm for 5 minutes using a planetary stirring type kneading apparatus, and the negative electrode active material A slurry 4-2 was produced.
 [負極活物質層の作製]
 φ80mmのアラミド不織布にφ70mmの穴をあけたマスクを重ねたものを2組準備し、それぞれのマスクの穴の部分に負極活物質スラリー4-1又は負極活物質スラリー4-2を活物質の合計目付量が23.9mg/cmとなるようにそれぞれ滴下した。更にアラミド不織布側からそれぞれ吸引濾過(減圧)することで、2枚のアラミド不織布上にそれぞれφ70mmの円形の炭素系被覆負極活物質層又は珪素系負極活物質層を作製した。次いで、25MPaの圧力で約10秒プレスすることで予備充電用炭素系負極4-1と、予備充電用珪素系負極4-2とを作製した。作製した予備充電用炭素系負極4-1、予備充電用珪素系負極4-2を用いて、それぞれ別々に下記の方法で予備充電用電池の作成と予備充電を行い、本発明のリチウムイオン電池用負極に用いるリチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質を作製した。
[Preparation of negative electrode active material layer]
Prepare two sets of φ80mm aramid non-woven fabrics with overlapping masks with holes of φ70mm, and add negative electrode active material slurry 4-1 or negative electrode active material slurry 4-2 to each hole part of the mask. The solution was added dropwise so that the basis weight was 23.9 mg / cm 2 . Further, each of the aramid nonwoven fabrics was subjected to suction filtration (reduced pressure) to produce a circular carbon-based coated negative electrode active material layer or silicon-based negative electrode active material layer having a diameter of 70 mm on each of the two aramid nonwoven fabrics. Next, the pre-charging carbon-based negative electrode 4-1 and the pre-charging silicon-based negative electrode 4-2 were prepared by pressing for about 10 seconds at a pressure of 25 MPa. Using the precharged carbon-based negative electrode 4-1 and the precharged silicon-based negative electrode 4-2, a precharge battery was prepared and precharged separately by the following method, and the lithium ion battery of the present invention was prepared. A carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions were prepared.
 [予備充電用電池の作製]
 端子(5mm×3cm)付き銅箔(9cm×9cm、厚さ17μm)2枚を、同じ方向にそれぞれの端子が出るように重ね、それを2枚の市販の熱融着型アルミラミネートフィルム(14cm×13cm)に挟み、端子の出ている1辺を熱融着し、予備充電用ラミネートセルを作製した。当該予備充電用ラミネートセルを2つ準備した。予備充電用炭素系負極4-1、及び予備充電用珪素系負極4-2からアラミド不織布を剥がし、それぞれ予備充電用ラミネートセル内の一方の銅箔上に静置し、電解液を150μL添加した。次いで、セパレータ(12cm×11cm、厚さ23μm、セルガード3501 PP製)を各予備充電用負極上に静置し、更に電解液を100μL添加した。金属リチウム箔(7.5cm×7.5cm)をセパレータを介して各予備充電用負極に対向するように静置し、電解液を100μL添加し、ラミネートセル内の他方の銅箔を被せ、先に熱融着した1辺に直交する2辺をヒートシールした。その後、真空シーラーを用いてセル内を真空にしながら開口部をヒートシールすることでラミネートセルを密封し、2種類の予備充電用電池を得た。
[Preparation of battery for pre-charging]
Two copper foils (9 cm × 9 cm, thickness 17 μm) with terminals (5 mm × 3 cm) are stacked so that each terminal comes out in the same direction, and two sheets of commercially available heat-sealing aluminum laminate films (14 cm) × 13 cm), and one side where the terminal comes out was heat-sealed to prepare a pre-charging laminate cell. Two pre-charging laminate cells were prepared. The aramid non-woven fabric was peeled off from the pre-charging carbon-based negative electrode 4-1 and the pre-charging silicon-based negative electrode 4-2, and each was left standing on one copper foil in the pre-charging laminate cell, and 150 μL of electrolyte was added. . Next, a separator (12 cm × 11 cm, thickness 23 μm, Celgard 3501 PP) was allowed to stand on each negative electrode for precharging, and 100 μL of electrolyte was further added. A metallic lithium foil (7.5 cm × 7.5 cm) is left to face each negative electrode for precharging through a separator, 100 μL of electrolyte is added, and the other copper foil in the laminate cell is covered, The two sides orthogonal to the one side heat-sealed to were heat sealed. Then, the laminate cell was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain two types of precharge batteries.
 [予備充電と本発明のリチウムイオン電池用負極の製造]
 実施例1と同様の方法で2種類それぞれの予備充電用電池の予備充電を行った。その後、予備充電用電池を分解して負極を取り出し、負極から活物質を剥がしてかき集め、本発明のリチウムイオン電池用負極に用いるリチウムイオンがドープされた炭素系負極活物質4-1と、リチウムイオンがドープされた珪素系負極活物質4-2を得た。
[Precharge and production of negative electrode for lithium ion battery of the present invention]
Two types of preliminary charging batteries were precharged in the same manner as in Example 1. Thereafter, the battery for precharging is disassembled, the negative electrode is taken out, the active material is peeled off from the negative electrode and collected, and the carbon-based negative electrode active material 4-1 doped with lithium ions used for the negative electrode for the lithium ion battery of the present invention, lithium lithium A silicon-based negative electrode active material 4-2 doped with ions was obtained.
 [負極の作製]
 リチウムイオンがドープされた炭素系負極活物質4-1を3.8部、リチウムイオンがドープされた珪素系負極活物質4-2を3.2部、製造例7で得られた炭素繊維3部、電解液90部を添加して混合し、遊星撹拌型混合混練装置を用いて2000rpmで5分間混合して、負極活物質スラリー4-3を作製した。φ23mmのアラミド不織布にφ15mmの穴をあけたマスクを重ね、マスクの穴の部分に負極活物質スラリー4-3を活物質の目付量が23.9mg/cmとなるように滴下した。更にアラミド不織布側から吸引濾過(減圧)することでφ15mmの円形の負極活物質層を作製した。次いで、5MPaの圧力で約10秒プレスすることで本発明のリチウムイオン電池用負極4を得た。得られた本発明のリチウムイオン電池用負極が有する負極活物質層4の厚みは360μmであった。
[Production of negative electrode]
3.8 parts of carbon-based negative electrode active material 4-1 doped with lithium ions, 3.2 parts of silicon-based negative electrode active material 4-2 doped with lithium ions, carbon fiber 3 obtained in Production Example 7 And 90 parts of electrolyte solution were added and mixed, and mixed for 5 minutes at 2000 rpm using a planetary stirring type mixing and kneading apparatus to prepare a negative electrode active material slurry 4-3. A mask having a hole of φ15 mm was placed on a φ23 mm aramid nonwoven fabric, and negative electrode active material slurry 4-3 was dropped into the hole of the mask so that the basis weight of the active material was 23.9 mg / cm 2 . Further, a negative negative electrode active material layer having a diameter of 15 mm was produced by suction filtration (reduced pressure) from the aramid nonwoven fabric side. Subsequently, the negative electrode 4 for lithium ion batteries of this invention was obtained by pressing at a pressure of 5 MPa for about 10 seconds. The thickness of the negative electrode active material layer 4 included in the obtained negative electrode for a lithium ion battery of the present invention was 360 μm.
 <実施例5>
 実施例4の負極の作製において、リチウムイオンがドープされた炭素系負極活物質4-1を3.5部に、リチウムイオンがドープされた珪素系負極活物質4-2を3.5部に変更し、ドープした後に電極を作製する際の負極活物質の目付量を47.8mg/cmに変更した他は実施例4と同様にして本発明のリチウムイオン電池用負極5を得た。得られた本発明のリチウムイオン電池用負極が有する負極活物質層5の厚みは610μmであった。
<Example 5>
In the production of the negative electrode of Example 4, the carbon-based negative electrode active material 4-1 doped with lithium ions was added to 3.5 parts, and the silicon-based negative electrode active material 4-2 doped with lithium ions was added to 3.5 parts. The negative electrode 5 for a lithium ion battery of the present invention was obtained in the same manner as in Example 4 except that the basis weight of the negative electrode active material when the electrode was produced after the change and doping was changed to 47.8 mg / cm 2 . The thickness of the negative electrode active material layer 5 which the obtained negative electrode for lithium ion batteries of this invention has was 610 micrometers.
 <実施例6>
 実施例1の負極活物質スラリーの作製において、炭素系被覆負極活物質粒子1の配合量を8.5部に変更し、珪素系負極活物質を製造例6で作製した珪素系負極活物質粒子(炭素被覆酸化珪素粒子)0.5部に変更した他は、実施例1と同様に予備充電用電池を作製し、予備充電を行った。その後、予備充電用電池を分解して負極を取り出し、本発明のリチウムイオン電池用負極6を得た。得られた本発明のリチウムイオン電池用負極が有する負極活物質層6の厚みは370μmであった。
<Example 6>
In preparation of the negative electrode active material slurry of Example 1, the compounding quantity of the carbon-type covering negative electrode active material particle 1 was changed into 8.5 parts, and the silicon type negative electrode active material particle which produced the silicon type negative electrode active material in manufacture example 6 (Carbon-coated silicon oxide particles) Except for changing to 0.5 part, a battery for preliminary charging was prepared in the same manner as in Example 1, and preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 6 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 6 included in the obtained negative electrode for a lithium ion battery of the present invention was 370 μm.
 <実施例7>
 実施例1の負極活物質スラリーの作製において、炭素系被覆負極活物質粒子1の配合量を8.5部に変更し、炭素被覆珪素粒子を製造例7で作製した珪素複合粒子0.5部に変更した他は実施例1と同様に予備充電用電池を作製し、予備充電を行った。その後、予備充電用電池を分解して負極を取り出し、本発明のリチウムイオン電池用負極7を得た。得られた本発明のリチウムイオン電池用負極が有する負極活物質層7の厚みは380μmであった。
<Example 7>
In the production of the negative electrode active material slurry of Example 1, the compounding amount of the carbon-based coated negative electrode active material particles 1 was changed to 8.5 parts, and the carbon-coated silicon particles produced in Production Example 7 were 0.5 parts. A battery for preliminary charging was produced in the same manner as in Example 1 except that it was changed to, and preliminary charging was performed. Thereafter, the battery for precharging was disassembled and the negative electrode was taken out to obtain the negative electrode 7 for lithium ion battery of the present invention. The thickness of the negative electrode active material layer 7 included in the obtained negative electrode for a lithium ion battery of the present invention was 380 μm.
 <比較例1>
 負極活物質スラリーの作製において、炭素系被覆負極活物質粒子1を未被覆の難黒鉛化性炭素粉末[(株)クレハ・バッテリー・マテリアルズ・ジャパン製カーボトロン(登録商標)PS(F)、数平均粒子径18μm]6部に変更し、負極活物質スラリーに水分を除去したポリフッ化ビニリデン(シグマアルドリッチ社製)5部を含むN-メチルピロリドン溶液50部を添加した以外は、実施例1と同様にして比較例1で用いる負極活物質スラリーを作製した。φ23mmのアラミド不織布にφ15mmの穴を開けたマスクを重ね、マスクの穴の部分に負極活物質スラリーを目付量が23.9mg/cmとなるように滴下した。更にアラミド不織布側から吸引濾過(減圧)することでφ15mmの円形の負極活物質層を作製した。次いで5MPaで10秒間プレスした後にアラミド不織布を剥がした後、100℃で15分間乾燥させて予備充電用負極を作製した。予備充電用負極の負極活物質層における固形分濃度は99質量%以上であった。次いで、実施例1と同様に予備充電を行い、比較用のリチウムイオン電池用負極(厚さ300μm)を得た。
<Comparative Example 1>
In preparation of the negative electrode active material slurry, the carbon-based coated negative electrode active material particles 1 are uncoated non-graphitizable carbon powder [Carbotron (registered trademark) PS (F), manufactured by Kureha Battery Materials Japan, Inc., number The average particle diameter was changed to 6 parts], and Example 1 except that 50 parts of an N-methylpyrrolidone solution containing 5 parts of polyvinylidene fluoride (manufactured by Sigma-Aldrich) from which water was removed was added to the negative electrode active material slurry. Similarly, a negative electrode active material slurry used in Comparative Example 1 was produced. A mask having a hole of φ15 mm was overlapped on a φ23 mm aramid nonwoven fabric, and a negative electrode active material slurry was dropped into the hole portion of the mask so as to have a basis weight of 23.9 mg / cm 2 . Further, a negative negative electrode active material layer having a diameter of 15 mm was produced by suction filtration (reduced pressure) from the aramid nonwoven fabric side. Next, after pressing at 5 MPa for 10 seconds, the aramid nonwoven fabric was peeled off, and then dried at 100 ° C. for 15 minutes to prepare a negative electrode for precharging. The solid content concentration in the negative electrode active material layer of the negative electrode for precharging was 99% by mass or more. Next, preliminary charging was performed in the same manner as in Example 1 to obtain a comparative lithium ion battery negative electrode (thickness: 300 μm).
 <リチウムイオン電池用負極の評価>
 以下の方法で評価用電池を作製し、リチウムイオン電池用負極の評価を行った。
<Evaluation of negative electrode for lithium ion battery>
A battery for evaluation was produced by the following method, and a negative electrode for a lithium ion battery was evaluated.
 [リチウムイオン電池の作製]
 端子(5mm×3cm)付き銅箔(3cm×3cm、厚さ17μm)を、同じ方向にそれぞれの端子が出るように重ね、それを2枚の市販の熱融着型アルミラミネートフィルム(10cm×8cm)に挟み、端子の出ている1辺を熱融着し、評価用ラミネートセルを作製した。評価用ラミネートセルの一方の銅箔上に各実施例又は比較例で得られたリチウムイオン電池用負極を配置した。負極に電解液を30μL添加した後、セパレータを負極上に配置し、更に電解液を100μL添加した。本庄金属製Li金属(Φ15、厚さ0.5mm)をセパレータを介して負極に対向するように配置し、電解液を100μL添加した。その上に評価用ラミネートセル内の他方の銅箔を被せ、先に熱融着した1辺に直交する2辺をヒートシールした。その後、真空シーラーを用いてセル内を真空にしながら開口部をヒートシールすることでラミネートセルを密封し、評価用のリチウムイオン電池を得た。
[Production of lithium-ion batteries]
A copper foil (3 cm × 3 cm, thickness 17 μm) with a terminal (5 mm × 3 cm) is stacked so that each terminal comes out in the same direction, and two commercially available heat-sealing aluminum laminate films (10 cm × 8 cm) ) And heat-bonded one side of the terminal to produce a laminate cell for evaluation. The negative electrode for a lithium ion battery obtained in each example or comparative example was placed on one copper foil of the laminate cell for evaluation. After adding 30 μL of the electrolytic solution to the negative electrode, the separator was placed on the negative electrode, and 100 μL of the electrolytic solution was further added. A Li metal (Φ15, thickness 0.5 mm) made by Honjo Metal was placed so as to face the negative electrode with a separator interposed therebetween, and 100 μL of an electrolytic solution was added. The other copper foil in the laminate cell for evaluation was placed thereon, and two sides orthogonal to one side heat-sealed previously were heat sealed. Thereafter, the laminate cell was sealed by heat-sealing the opening while evacuating the inside of the cell using a vacuum sealer to obtain a lithium ion battery for evaluation.
 [リチウムイオン電池の充放電サイクル特性の評価]
 充放電測定装置「HJ0501SM8A」[北斗電工(株)製]を用いて45℃、電流0.1C、上限電位0VでCC-CV充電し、10分間の休止後、電流0.1C、下限電位1.5VでCC放電する操作を10サイクル行い、1サイクル目の放電容量と、10サイクル目の放電容量を用いて下記の計算式によりサイクル特性である容量維持率を算出した。なお、容量維持率の値が大きいほど容量の低下が少なく優れたサイクル特性を有することを意味する。
[容量維持率(%)]=[10サイクル目の放電容量]÷[1サイクル目の放電容量]×100]。
[Evaluation of charge / discharge cycle characteristics of lithium-ion batteries]
Using a charge / discharge measuring device “HJ0501SM8A” (Hokuto Denko Co., Ltd.), CC-CV charging at 45 ° C., current 0.1 C, upper limit potential 0 V, and after 10 minutes of rest, current 0.1 C, lower limit potential 1 The operation of performing CC discharge at .5V was performed 10 cycles, and the capacity retention rate as the cycle characteristics was calculated by the following formula using the discharge capacity of the first cycle and the discharge capacity of the 10th cycle. In addition, it means that it has the cycling characteristics which there are few falls of a capacity | capacitance, so that the value of a capacity | capacitance maintenance factor is large.
[Capacity maintenance ratio (%)] = [Discharge capacity at 10th cycle] ÷ [Discharge capacity at 1st cycle] × 100].
 [初回充電後の電極の厚さの変化量の測定]
 初回充電後の負極活物質の厚さの変化量は、初回充電後の負極活物質の厚さから初回充電前の負極活物質の厚さを減じたものである。また、負極活物質層の厚さは、接触式膜厚計[(株)ミツトヨ製 ABSデジマチックインジケータ ID-CX]を用いて測定した。
[Measurement of change in electrode thickness after initial charge]
The amount of change in the thickness of the negative electrode active material after the first charge is obtained by subtracting the thickness of the negative electrode active material before the first charge from the thickness of the negative electrode active material after the first charge. The thickness of the negative electrode active material layer was measured using a contact-type film thickness meter [ABS Digimatic Indicator ID-CX manufactured by Mitutoyo Corporation].
 表1に、各実施例及び比較例の予備充電方法、負極活物質層の構成及び評価結果をまとめて示した。表1において、予備充電方法1は、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを同時に行う方法を、予備充電方法2は、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを別々に行う方法を意味する。 Table 1 summarizes the preliminary charging methods of each example and comparative example, the configuration of the negative electrode active material layer, and the evaluation results. In Table 1, the preliminary charging method 1 is a method of simultaneously performing a step of doping lithium ions into a silicon-based negative electrode active material and a step of doping lithium ions into a carbon-based negative electrode active material. It means a method in which the step of doping lithium ion into the negative electrode active material and the step of doping lithium ion into the carbon negative electrode active material are performed separately.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~7で作製したリチウムイオン電池用負極を使用すると、容量維持率を高くすることができた。また、実施例1~7では体積変化(初回充電後の厚さの変化量)も小さくなっていた。 As shown in Table 1, when the negative electrodes for lithium ion batteries produced in Examples 1 to 7 were used, the capacity retention rate could be increased. In Examples 1 to 7, the volume change (the amount of change in thickness after the first charge) was also small.
 本出願は、2016年12月20日に出願された日本国特許出願第2016-246998号及び2017年12月13日に出願された日本国特許出願第2017-238949号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2016-246998 filed on December 20, 2016 and Japanese Patent Application No. 2017-238949 filed on December 13, 2017, the disclosure of which is incorporated herein by reference. The contents are cited as a whole by reference.
 本発明のリチウムイオン電池用負極は、特に、携帯電話、パーソナルコンピューター、ハイブリッド自動車及び電気自動車用に用いられる双極型二次電池用及びリチウムイオン電池用等の負極として有用である。 The negative electrode for lithium ion batteries of the present invention is particularly useful as a negative electrode for bipolar secondary batteries and lithium ion batteries used for mobile phones, personal computers, hybrid vehicles, and electric vehicles.

Claims (12)

  1.  珪素系負極活物質及び炭素系負極活物質を含む負極活物質組成物と、分散媒とを含むスラリーを用いて集電体又はセパレータ上に塗膜を形成する工程を有するリチウムイオン電池用負極の製造方法であって、
     前記塗膜を形成する工程の前又は後であってリチウムイオン電池の組立前に、珪素系負極活物質にリチウムイオンをドープする工程と、炭素系負極活物質にリチウムイオンをドープする工程とを含み、
     前記塗膜を乾燥させる工程を実質的に含まない、リチウムイオン電池用負極の製造方法。
    A negative electrode for a lithium ion battery having a step of forming a coating film on a current collector or a separator using a slurry containing a negative electrode active material composition containing a silicon-based negative electrode active material and a carbon-based negative electrode active material, and a dispersion medium A manufacturing method comprising:
    Before or after the step of forming the coating film and before assembling the lithium ion battery, a step of doping lithium ions into the silicon-based negative electrode active material, and a step of doping lithium ions into the carbon-based negative electrode active material Including
    The manufacturing method of the negative electrode for lithium ion batteries which does not include the process of drying the said coating film substantially.
  2.  前記スラリーは、結着剤を実質的に含まない、請求項1に記載のリチウムイオン電池用負極の製造方法。 2. The method for producing a negative electrode for a lithium ion battery according to claim 1, wherein the slurry does not substantially contain a binder.
  3.  前記珪素系負極活物質にリチウムイオンをドープする工程と、
     前記炭素系負極活物質にリチウムイオンをドープする工程とを同時に行う、請求項1又は2に記載のリチウムイオン電池用負極の製造方法。
    Doping the lithium-based negative electrode active material with lithium ions;
    The method for producing a negative electrode for a lithium ion battery according to claim 1, wherein the step of doping the carbon-based negative electrode active material with lithium ions is performed simultaneously.
  4.  前記珪素系負極活物質にリチウムイオンをドープする工程と、
     前記炭素系負極活物質にリチウムイオンをドープする工程とを別々に行い、
     リチウムイオンがドープされた珪素系負極活物質と、リチウムイオンがドープされた炭素系負極活物質を混合する工程をさらに含む、請求項1又は2に記載のリチウムイオン電池用負極の製造方法。
    Doping the lithium-based negative electrode active material with lithium ions;
    The carbon-based negative electrode active material is separately doped with lithium ions,
    The method for producing a negative electrode for a lithium ion battery according to claim 1 or 2, further comprising a step of mixing a silicon-based negative electrode active material doped with lithium ions and a carbon-based negative electrode active material doped with lithium ions.
  5.  前記炭素系負極活物質にリチウムイオンをドープする工程が、炭素系負極活物質とリチウムイオンがドープされた珪素系負極活物質との混合物に含まれる炭素系負極活物質にリチウムイオンをドープする工程である、請求項1、2及び4のいずれか1項に記載のリチウムイオン電池用負極の製造方法。 The step of doping lithium ions into the carbon-based negative electrode active material is a step of doping lithium ions into the carbon-based negative electrode active material contained in a mixture of the carbon-based negative electrode active material and a silicon-based negative electrode active material doped with lithium ions. The manufacturing method of the negative electrode for lithium ion batteries of any one of Claims 1, 2, and 4 which is these.
  6.  前記珪素系負極活物質にリチウムイオンをドープする工程が、珪素系負極活物質とリチウムイオンがドープされた炭素系負極活物質との混合物に含まれる珪素系負極活物質にリチウムイオンをドープする工程である、請求項1、2及び4のいずれか1項に記載のリチウムイオン電池用負極の製造方法。 The step of doping lithium ions into the silicon-based negative electrode active material is a step of doping lithium ions into the silicon-based negative electrode active material contained in the mixture of the silicon-based negative electrode active material and the carbon-based negative electrode active material doped with lithium ions. The manufacturing method of the negative electrode for lithium ion batteries of any one of Claims 1, 2, and 4 which is these.
  7.  前記スラリーに含まれる珪素系負極活物質及び炭素系負極活物質は、リチウムイオンをドープする前の珪素系負極活物質及び炭素系負極活物質である、請求項1~6のいずれか1項に記載のリチウムイオン電池用負極の製造方法。 The silicon-based negative electrode active material and the carbon-based negative electrode active material contained in the slurry are a silicon-based negative electrode active material and a carbon-based negative electrode active material before being doped with lithium ions, according to any one of claims 1 to 6. The manufacturing method of the negative electrode for lithium ion batteries of description.
  8.  前記スラリーに含まれる珪素系負極活物質及び炭素系負極活物質は、リチウムイオンをドープした後の珪素系負極活物質及び炭素系負極活物質である、請求項1~6のいずれか1項に記載のリチウムイオン電池用負極の製造方法。 The silicon-based negative electrode active material and the carbon-based negative electrode active material contained in the slurry are a silicon-based negative electrode active material and a carbon-based negative electrode active material after being doped with lithium ions, according to any one of claims 1 to 6. The manufacturing method of the negative electrode for lithium ion batteries of description.
  9.  請求項1~8のいずれか1項に記載の製造方法により得られ、リチウムイオンがドープされた炭素系負極活物質と、リチウムイオンがドープされた珪素系負極活物質とを含む負極活物質組成物の非結着体からなる負極活物質層を有する、リチウムイオン電池用負極。 A negative electrode active material composition obtained by the production method according to any one of claims 1 to 8 and comprising a carbon-based negative electrode active material doped with lithium ions and a silicon-based negative electrode active material doped with lithium ions A negative electrode for a lithium ion battery, comprising a negative electrode active material layer made of a non-binding product of the product.
  10.  前記炭素系負極活物質の表面の一部又は全部が被覆用樹脂である高分子化合物を含んでなる負極被覆層により被覆されている、請求項9に記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to claim 9, wherein a part or all of the surface of the carbon-based negative electrode active material is coated with a negative electrode coating layer comprising a polymer compound that is a coating resin.
  11.  前記珪素系負極活物質は、珪素及び/又は珪素化合物である、請求項9又は10に記載のリチウムイオン電池用負極。 The negative electrode for a lithium ion battery according to claim 9 or 10, wherein the silicon-based negative electrode active material is silicon and / or a silicon compound.
  12.  前記珪素化合物は、酸化珪素(SiOx)、Si-C複合体、Si-Al合金、Si-Li合金、Si-Ni合金、Si-Fe合金、Si-Ti合金、Si-Mn合金、Si-Cu合金及びSi-Sn合金からなる群から選択される少なくとも1種である、請求項11に記載のリチウムイオン電池用負極。 The silicon compound includes silicon oxide (SiOx), Si—C composite, Si—Al alloy, Si—Li alloy, Si—Ni alloy, Si—Fe alloy, Si—Ti alloy, Si—Mn alloy, Si—Cu. The negative electrode for a lithium ion battery according to claim 11, wherein the negative electrode is at least one selected from the group consisting of an alloy and a Si-Sn alloy.
PCT/JP2017/045484 2016-12-20 2017-12-19 Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries WO2018117086A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/470,610 US10673057B2 (en) 2016-12-20 2017-12-19 Negative electrode for lithium ion battery and method for producing negative electrode for lithium ion battery
EP17884512.9A EP3561912B1 (en) 2016-12-20 2017-12-19 Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries
MYPI2019003383A MY174406A (en) 2016-12-20 2017-12-19 Negative electrode for lithium ion battery and method for producing negative electrode for lithium ion battery
CN201780079031.2A CN110088948A (en) 2016-12-20 2017-12-19 The manufacturing method of negative electrode for lithium ion battery and negative electrode for lithium ion battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016246998 2016-12-20
JP2016-246998 2016-12-20
JP2017-238949 2017-12-13
JP2017238949A JP6998194B2 (en) 2016-12-20 2017-12-13 Method for manufacturing negative electrode for lithium ion battery and negative electrode for lithium ion battery

Publications (1)

Publication Number Publication Date
WO2018117086A1 true WO2018117086A1 (en) 2018-06-28

Family

ID=62626315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045484 WO2018117086A1 (en) 2016-12-20 2017-12-19 Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries

Country Status (2)

Country Link
MY (1) MY174406A (en)
WO (1) WO2018117086A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331826A (en) * 2002-05-08 2003-11-21 Sony Corp Nonaqueous electrolyte battery
WO2015137041A1 (en) * 2014-03-12 2015-09-17 三洋化成工業株式会社 Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
JP2015173071A (en) * 2014-03-12 2015-10-01 三洋化成工業株式会社 Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003331826A (en) * 2002-05-08 2003-11-21 Sony Corp Nonaqueous electrolyte battery
WO2015137041A1 (en) * 2014-03-12 2015-09-17 三洋化成工業株式会社 Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
JP2015173071A (en) * 2014-03-12 2015-10-01 三洋化成工業株式会社 Slurry for lithium ion battery, negative electrode for lithium ion battery, method for manufacturing negative electrode for lithium ion battery, lithium ion battery, and method for producing negative electrode active material for lithium ion battery

Also Published As

Publication number Publication date
MY174406A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP6998194B2 (en) Method for manufacturing negative electrode for lithium ion battery and negative electrode for lithium ion battery
US10693122B2 (en) Method for preparing electrode slurry
JP2018101623A (en) Negative electrode for lithium-ion battery and lithium-ion battery
JP7046732B2 (en) Coating active material for lithium-ion batteries and negative electrode for lithium-ion batteries
JP7143069B2 (en) Negative electrode for lithium ion battery and lithium ion battery
CN110249456B (en) Positive electrode for lithium ion battery and lithium ion battery
WO2019004011A1 (en) Electrolyte composition, electrolyte membrane, electrode, battery and method for evaluating electrolyte composition
CN109923699B (en) Negative electrode for lithium ion battery and lithium ion battery
CN111357141A (en) Conductive material paste for electrochemical device, slurry composition for positive electrode of electrochemical device, method for producing same, positive electrode for electrochemical device, and electrochemical device
KR20220093112A (en) Secondary battery paste, secondary battery positive electrode slurry, secondary battery positive electrode, secondary battery, and manufacturing method of secondary battery paste
CN112262487A (en) Method for manufacturing lithium ion battery
JP7058525B2 (en) Electrodes for lithium-ion batteries
JP7297529B2 (en) Coated negative electrode active material for lithium ion battery, negative electrode slurry for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
KR20220093111A (en) Secondary battery paste, secondary battery positive electrode slurry, secondary battery positive electrode, secondary battery, and manufacturing method of secondary battery paste
JP2019160512A (en) Method for manufacturing lithium ion battery
JP2018101624A (en) Electrode for lithium-ion battery and lithium-ion battery
WO2021230360A1 (en) Lithium-ion battery
WO2018117087A1 (en) Negative electrode for lithium-ion battery, and lithium-ion battery
WO2018084320A1 (en) Positive electrode for lithium-ion battery, and lithium-ion battery
JP2019186004A (en) Battery manufacturing method
JP7387416B2 (en) Solid electrolytes, solid electrolyte membranes, electrodes and alkali metal batteries
WO2018117086A1 (en) Negative electrode for lithium ion batteries and method for producing negative electrode for lithium ion batteries
WO2018117089A1 (en) Electrode for lithium-ion battery and lithium-ion battery
WO2022260183A1 (en) Coated positive electrode active material particles for lithium ion batteries, positive electrode for lithium ion batteries, method for producing coated positive electrode active material particles for lithium ion batteries, and lithium ion battery
JP7297528B2 (en) Electrodes for lithium ion batteries and lithium ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17884512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017884512

Country of ref document: EP

Effective date: 20190722