WO2018084189A1 - Method for producing iridium complex, iridium complex, and light-emitting material comprising said compound - Google Patents

Method for producing iridium complex, iridium complex, and light-emitting material comprising said compound Download PDF

Info

Publication number
WO2018084189A1
WO2018084189A1 PCT/JP2017/039582 JP2017039582W WO2018084189A1 WO 2018084189 A1 WO2018084189 A1 WO 2018084189A1 JP 2017039582 W JP2017039582 W JP 2017039582W WO 2018084189 A1 WO2018084189 A1 WO 2018084189A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
iridium complex
iridium
atom
Prior art date
Application number
PCT/JP2017/039582
Other languages
French (fr)
Japanese (ja)
Inventor
今野 英雄
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2018549044A priority Critical patent/JP6765107B2/en
Publication of WO2018084189A1 publication Critical patent/WO2018084189A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a method for producing an iridium complex suitably used as a light-emitting material such as an organic electroluminescent element and a light-emitting sensor, a novel iridium complex obtained by the production method, and a light-emitting material comprising the compound.
  • Luminescent materials used for organic electroluminescent elements can be broadly classified into fluorescent materials that utilize light emission from an excited singlet state and phosphorescent materials that utilize light emission from an excited triplet state.
  • the generation ratio of singlet excitons to triplet excitons is 1: 3, and the generation probability of luminescent excitons is 25%.
  • the limit of the external extraction quantum efficiency is set to 5%.
  • the excited triplet state can also be used, the upper limit of the internal quantum efficiency is 100%, so that in principle the light emission efficiency is four times that in the case of using only the excited singlet state. Therefore, phosphorescent materials have been actively studied as light emitting materials for organic electroluminescent elements.
  • cyclometalated iridium complexes are known as phosphorescent materials.
  • the triscyclometalated iridium complex having three cyclometalated aromatic heterocyclic ligands has high thermal stability and excellent durability because it has three strong iridium-carbon bonds. Phosphorescent material.
  • Patent Document 1 discloses an iridium complex in which all three cyclometalated aromatic heterocyclic ligands have the same structure (Chemical Formula 1).
  • Patent Document 2 discloses an iridium complex having a different structure of a cyclometalated aromatic heterocyclic ligand by one (Chemical Formula 2).
  • Non-Patent Document 1 discloses an iridium complex in which the structures of three cyclometalated aromatic heterocyclic ligands are all different (Chemical Formula 3).
  • Non-Patent Document 1 it is possible to produce a triscyclometalated iridium complex (Chemical Formula 3) having different aromatic heterocyclic ligand structures by a method comprising the following steps (A) to (E). It is disclosed.
  • Non-Patent Document 1 In the production method described in Non-Patent Document 1 described above, of the three types of iridium complexes (B-1) to (B-3) obtained in step (B), an aromatic heterocyclic ligand is used. It is necessary to isolate iridium complexes (B-1) having different structures. However, when the polarities of the three types of iridium complexes obtained in the step (B) are similar, it is extremely difficult to separate and purify the desired iridium complex. That is, the manufacturing method of the iridium complex described in Non-Patent Document 1 has an essential problem that can be applied only when the polarities of the three types of iridium complexes generated in the step (B) are greatly different. Furthermore, in the step (E), since the reaction is performed at a high temperature of 200 ° C., scrambling of the ligand is likely to occur, and it may be difficult to isolate a desired iridium complex.
  • An object of the present invention is to provide a method for efficiently producing a triscyclometalated iridium complex having different aromatic heterocyclic ligand structures, which is preferably used in an organic electroluminescent device, a luminescent sensor, and the like. It is an object of the present invention to provide a novel iridium complex obtained by the production method and a luminescent material using the compound.
  • a manufacturing method of A triscyclometalated iridium complex having two different aromatic heterocyclic ligands forming an iridium-nitrogen bond and an iridium-carbon bond is reacted with a halogenating agent to form a halogen to the triscyclometalated iridium complex.
  • ⁇ 3> The iridium complex according to 1 or 2 above, wherein the introduction of the halogen atom in the step (1) is performed by any one of two aromatic heterocyclic ligands having the same structure. Production method.
  • ⁇ 4> In the triscyclometalated iridium complex used in the step (1), one or two para positions counted from the carbon atom of the benzene ring bonded to iridium are an alkyl group, an aryl group, or a heterocyclic group. 4. The method for producing an iridium complex according to any one of 1 to 3, wherein the iridium complex is substituted with any one of the above.
  • the aromatic heterocyclic ligand is 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2,4-triazole, 3-phenyl- 1,2,4-triazole, 1-phenylpyrazole, 2-phenylpyrazine, 2-phenylpyrimidine, 4-phenylpyrimidine, 3-phenylpyridazine, benzo [h] quinoline, dibenzo [f, h] quinoxaline, 2,3 -Diphenylquinoxaline, imidazo [1,2-f] phenanthridine, and the ligand is at least one selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom 5.
  • the iridium complex according to any one of 1 to 4 above, which may be substituted with one group Body manufacturing method.
  • Ir represents an iridium atom
  • N represents a nitrogen atom.
  • Ring A, ring B, and ring C each independently represent a 5-membered or 6-membered nitrogen-containing heterocycle.
  • R a to R c each represent a group or an atom bonded to an atom contained in the ring structure of ring A to ring C
  • R d to R f represent three carbons contained in the ring structure of each benzene ring.
  • Each of R a to R f and R 1 to R 3 bonded to an atom included in each ring structure independently represents a hydrogen atom, an alkyl group, or an aryl; Represents a group, a heterocyclic group, an alkylsilyl group, or a halogen atom, provided that at least one of R 1 to R 3 is a substituent represented by any one of formulas (2) to (7).
  • R 1 ⁇ R 2 ⁇ R 3 there, and a R 1 ⁇ R 2 ⁇ R 3 .
  • our R a ⁇ R f Fine R 1 groups each other adjacent the ⁇ R 3 may be bonded to form a condensed ring.)
  • N represents a nitrogen atom.
  • R 4 to R 27 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. And an adjacent group of R 4 to R 27 may be bonded to each other to form a condensed ring.) ⁇ 7> The iridium complex as described in 6 above, which is represented by any one of the general formulas (8) to (15).
  • each of R a to R f bonded to an atom contained in each ring structure and R 2 to R 37 are each independently a hydrogen atom, an alkyl group, Represents an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, R a to R f and R 2 , adjacent groups of R 3 , and adjacent groups of R 4 to R 37 May be bonded to each other to form a condensed ring, provided that the phenyl group having R 4 to R 8 , R 2 , and R 3 are not the same group, and have R 4 to R 8 (The phenyl group, the phenyl group having R 28 to R 32 , and the phenyl group having R 33 to R 37 are not the same group.)
  • the ring A, ring B, and ring C are each independently a pyridine ring, a quinoline ring, an isoquinoline ring,
  • a luminescent material comprising the iridium complex according to any one of 6 to 12 above.
  • An organic light emitting device comprising the light emitting material as described in 13 above.
  • a new method for producing a triscyclometalated iridium complex which can be suitably used as a phosphorescent material such as an organic electroluminescent device and which has three different aromatic heterocyclic ligand structures.
  • the A novel iridium complex having excellent light emission characteristics can be provided using the production method.
  • novel iridium complex produced by the production method of the present invention is highly soluble in a solvent, excellent in processability, and exhibits strong light emission in the visible light region at room temperature. Can be suitably used.
  • a light-emitting element using the compound exhibits high-luminance light emission in the visible light region, and thus is suitable for use in fields such as a display element, a display, a backlight, or an illumination light source.
  • a hydrogen atom includes an isotope (such as a deuterium atom), and an atom constituting a substituent further includes the isotope.
  • Ir represents an iridium atom
  • N represents a nitrogen atom
  • Ring A, Ring B, and Ring C each independently represent a 5-membered or 6-membered nitrogen-containing heterocyclic ring, and preferably a 6-membered nitrogen-containing heterocyclic ring.
  • Ring A, ring B, and ring C may be the same or different, and are preferably the same.
  • the same means a nitrogen-containing heterocycle having the same skeleton, and does not consider substituents attached to the nitrogen-containing heterocycle.
  • Ring A, ring B and ring C are specifically pyridine ring, quinoline ring, isoquinoline ring, pyrimidine ring, pyrazine ring, pyridazine ring, quinoxaline ring, benzoquinoline ring, benzoquinoxaline ring, dibenzoquinoline ring, dibenzoquinoxaline Ring, phenanthridine ring, tetrazole ring, imidazole ring, or triazole ring are preferable, and pyridine ring, quinoline ring, isoquinoline ring, pyrimidine ring, pyrazine ring, pyridazine ring, quinoxaline ring, imidazole ring, or triazole ring are more preferable.
  • a pyridine ring, a quinoline ring, an isoquinoline ring, an imidazole ring or a triazole ring is particularly preferable, a pyridine ring or an isoquinoline ring is further particularly preferable, and a pyridine ring is most preferable.
  • Ring A, Ring B, and Ring C may be substituted with at least one group selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, and these substituents May be further substituted with the above substituents.
  • an alkyl group, an aryl group, or a heterocyclic group is preferable, an alkyl group or an aryl group is more preferable, and an alkyl group is especially preferable.
  • each of the ring A ⁇ ring C of R a ⁇ each represent a bond to group or atom to atom contained in the ring structure R c, each independently, a hydrogen atom, an alkyl group, an aryl Represents a group, a heterocyclic group, an alkylsilyl group, or a halogen atom.
  • R a to R c are preferably a hydrogen atom, an alkyl group, or an aryl group, and more preferably a hydrogen atom or an alkyl group.
  • substituents may be further substituted with at least one group selected from the group consisting of alkyl groups, aryl groups, heterocyclic groups, alkylsilyl groups, or halogen atoms.
  • each of R d to R f representing a group or atom bonded to three carbon atoms contained in the ring structure of each benzene ring is independently a hydrogen atom, an alkyl group Represents an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom.
  • R d to R f are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably all hydrogen atoms.
  • These substituents may be further substituted with at least one group selected from the group consisting of alkyl groups, aryl groups, heterocyclic groups, alkylsilyl groups, or halogen atoms.
  • R 1 to R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. However, at least one of R 1 to R 3 is a substituent represented by any one of the general formulas (2) to (7). At least one of R 1 to R 3 is preferably the general formulas (2) to (4) or (7), more preferably the general formulas (2) to (4), The formula (2) is particularly preferable.
  • R 1 to R 3 are R 1 ⁇ R 2 ⁇ R 3 .
  • R 1 ⁇ R 2 ⁇ R 3 means that R 1 to R 3 are not the same group.
  • R 1 to R 3 are groups represented by the general formula (2), they are not the same group as long as any of R 4 to R 8 of the substituents is different.
  • R 1 to R 3 is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom.
  • R 3 is preferably a hydrogen atom.
  • adjacent groups of R a to R f and R 1 to R 3 may be bonded to each other to form a condensed ring.
  • R 4 to R 37 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, preferably a hydrogen atom, an alkyl group, or an aryl group. These substituents may be further substituted with at least one group selected from the group consisting of alkyl groups, aryl groups, heterocyclic groups, alkylsilyl groups, or halogen atoms. Further, adjacent groups of R 4 to R 37 may be bonded to each other to form a condensed ring.
  • the alkyl group in the present specification does not include the carbon number of the substituent, and preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, 1 to 6 is more particularly preferable.
  • alkyl group in the present specification a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl are preferable.
  • the aryl group in the present specification does not include the carbon number of the substituent, and preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 15 carbon atoms, 6 to 12 is more particularly preferable.
  • a phenyl group a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, or a p-terphenyl is preferable.
  • the heterocyclic group in the present specification does not include the carbon number of the substituent, preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, Numbers 1 to 6 are more particularly preferable.
  • heterocyclic group in the present specification preferably an imidazolyl group, a pyridyl group, a pyrimidyl group, a triazyl group, a pyrazyl group, a pyridazyl group, a quinolyl group, a furyl group, a thienyl group, a dibenzothienyl group, a piperidyl group, a morpholino group, A benzoxazolyl group, a benzimidazolyl group, a benzthiazolyl group, a carbazolyl group, or an azepinyl group, more preferably a pyridyl group, a pyrimidyl group, a triazyl group, a pyrazyl group, a pyridazyl group, or a dibenzothienyl group, Particularly preferred is a pyridyl group, pyrimidyl group, triazyl group
  • the alkylsilyl group in the present specification does not include the carbon number of the substituent, and preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, Numbers 1 to 6 are more particularly preferable.
  • the alkylsilyl group in the present specification is preferably a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylphenyl group, a t-butyldimethylsilyl group, or a t-butyldiphenylsilyl group, and more preferably a trimethylsilyl group.
  • the halogen atom in the present specification is preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a bromine atom or an iodine atom, and particularly preferably a bromine atom.
  • the method for producing an iridium complex according to the present invention is characterized by sequentially including steps (1) to (3) described in detail below.
  • a triscyclometalated iridium complex having two different aromatic heterocyclic ligands that form an iridium-nitrogen bond and an iridium-carbon bond is reacted with a halogenating agent to form a triscyclometal. It is characterized by introducing a halogen atom into an iridium iodide complex.
  • the triscyclometalated iridium complex having two different aromatic heterocyclic ligands in the step (1) is preferably represented by the general formula (16) or (17).
  • General formula (16) is a facial body
  • general formula (17) is a meridional body.
  • Y represents an aromatic heterocyclic ligand that forms an iridium-nitrogen bond and an iridium-carbon bond
  • Z forms an iridium-nitrogen bond and an iridium-carbon bond.
  • examples of the aromatic heterocyclic ligand include 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2,4-triazole, 3 -Phenyl-1,2,4-triazole, 1-phenylpyrazole, 2-phenylpyrazine, 2-phenylpyrimidine, 4-phenylpyrimidine, 3-phenylpyridazine, benzo [h] quinoline, dibenzo [f, h] quinoxaline, 2,3-diphenylquinoxaline or imidazo [1,2-f] phenanthridine is preferred, and 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2 , 4-triazole, 3-phenyl-1,2,4-triazole Or, imidazo [1,2-f] phenanthridine more preferably, 2-phenylpyridine,
  • aromatic heterocyclic ligands may be substituted with at least one group selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom.
  • the group may be further substituted with the above substituents.
  • Introducing a halogen atom into the triscyclometalated iridium complex in the step (1) can be performed with reference to the methods described in WO2015 / 141603, WO2009 / 073245, JP2014-205643, and the like.
  • a reaction example is shown below.
  • the introduction of the halogen atom in the step (1) is performed at the benzene ring part of the aromatic heterocyclic ligand forming the iridium-carbon bond, and the position is para-positioned from the carbon atom bonded to iridium. It is preferable that
  • the introduction of the halogen atom in the step (1) is preferably performed with two aromatic heterocyclic ligands having the same structure (Y in the general formula (16) or (17)). More preferably, the reaction is carried out in any one of two aromatic heterocyclic ligands (Y in the general formula (16) or (17)).
  • the para-position (one or two, preferably one) counted from the carbon atom on the benzene ring bonded to iridium is an alkyl group, an aryl group, Alternatively, it is preferably substituted with a heterocyclic group, and more preferably substituted with an aryl group.
  • the aromatic heterocyclic ligand substituted with the above substituent is an aromatic heterocyclic ligand (of the general formula (16) or (17), which is different from one of the triscyclometalated iridium complexes). More preferably, Z).
  • the para position (one or two, preferably one) counted from the carbon atom on the benzene ring bonded to iridium is an alkyl group, aryl
  • the group is not substituted with a group or a heterocyclic group, as shown below, there are a plurality of types of aromatic heterocyclic ligands to be halogenated, so that various iridium complexes can be obtained.
  • the para-position one or two, preferably one counted from the carbon atom on the benzene ring bonded to iridium is an alkyl group, aryl Compared with the case where it is substituted with a group or a heterocyclic group, it takes more time to separate and purify the desired iridium complex in the step (2) or (3) described later.
  • an iodinating agent, a brominating agent or a chlorinating agent is preferable, an iodinating agent or a brominating agent is more preferable, and a brominating agent is particularly preferable.
  • N-iodosuccinimide N-iodosuccinimide
  • DIH 1,3-diiodo-5,5-dimethylhydantoin
  • N-bromosuccinimide N-bromosuccinimide
  • DBI dibromoisocyanuric acid
  • 1,3-dibromo-5,5-dimethylhydantoin 1,3-dibromo-5,5-dimethylhydantoin and the like are preferably used.
  • N-chlorosuccinimide N-chlorosuccinimide
  • sodium dichloroisocyanurate sodium dichloroisocyanurate
  • the step (1) is characterized by using a triscyclometalated iridium complex having two different aromatic heterocyclic ligands that form an iridium-nitrogen bond and an iridium-carbon bond.
  • a new geometric isomer is generated by the step (1), for example, as shown below.
  • a new geometric isomerism can be obtained by reacting a triscyclometalated iridium complex having two different aromatic heterocyclic ligands with a halogenating agent.
  • the body can be manufactured.
  • Step (2) is characterized in that the halogen atom of the triscyclometalated iridium complex produced in the step (1) is converted into a boronic ester.
  • step (2) when a triscyclometalated iridium complex into which a plurality of halogen atoms are introduced is used, an iridium complex into which a plurality of boronic acid esters are introduced may be generated. It is possible to separate and purify a triscyclometalated iridium complex into which one boronic acid ester has been introduced using silica gel column chromatography.
  • Step (3) is characterized in that the triscyclometalated iridium complex produced in Step (2) and an organic halogen compound are subjected to a cross-coupling reaction to form a carbon-carbon bond.
  • the method in which the triscyclometalated iridium complex and the halogen compound in the step (3) are cross-coupled is called a so-called Suzuki coupling reaction.
  • Suzuki coupling reaction WO2015 / 141603, WO2009 / 073246, JP2014 -139193 can be used.
  • the organic halogen compound includes a halogenated aryl compound, a halogenated alkyl compound, a halogenated heterocyclic compound, etc., and the halogen is preferably iodine, bromine, or chlorine, iodine, or Bromine is more preferred.
  • the iridium complex according to the present invention can be subjected to the post-treatment of a normal synthesis reaction, and then refined or used without further purification if necessary.
  • the post-treatment can be performed, for example, by a method such as extraction, cooling, crystallization by adding water or an organic solvent, or an operation of distilling off the solvent from the reaction mixture.
  • Purification can be performed by a single method or a combination of methods such as recrystallization, distillation, sublimation or column chromatography.
  • the iridium complex obtained by the production method of the present invention is preferably represented by the general formula (1).
  • the iridium complex represented by any one of the general formulas (8) to (15) is preferable, and the iridium complex represented by any one of the general formulas (8) to (10) and (13) to (15) Is more preferable, and an iridium complex represented by any one of the general formulas (9), (10), and (13) to (15) is particularly preferable.
  • those having an emission quantum yield in a solution at room temperature of 0.1 or more are preferable, and those having an emission quantum yield of 0.5 or more are more preferable. Preferably, it is 0.85 or more.
  • the measurement of the luminescence quantum yield in the solution is performed after passing argon gas or nitrogen gas through the solution in which the iridium complex is dissolved, or after freezing and degassing the solution in which the luminescent material is dissolved. Good to do.
  • a method for measuring the luminescence quantum yield either an absolute method or a relative method may be used.
  • the emission quantum yield can be measured by comparing the emission spectrum with a standard substance (such as quinine sulfate).
  • the absolute method the emission quantum yield in the solution can be measured by using a commercially available apparatus (for example, an absolute PL quantum yield measuring apparatus (C9920-02) manufactured by Hamamatsu Photonics Co., Ltd.).
  • the half width of the emission spectrum in a solution at room temperature is preferably 75.0 nm or less, and more preferably 72.5 nm or less. Those having a diameter of 70.0 nm or less are particularly preferable, and those having a diameter of 68.0 nm or less are particularly preferable. A narrow half-value width of the emission spectrum is particularly useful as a phosphorescent material for display applications.
  • the iridium complex represented by the general formula (1) according to the present invention is an octahedral 6-coordination complex, and there are a facial isomer and a meridional isomer as geometric isomers.
  • the iridium complex represented by the general formula (1) according to the present invention is preferably a facial body.
  • the iridium complex according to the present invention preferably contains 50% or more of the facial compound, more preferably contains 80% or more, particularly preferably contains 90% or more, and contains 99% or more. It is more particularly preferable.
  • the facial body or meridional body can be separated and purified using a technique such as column chromatography or recrystallization, and can be identified by NMR, mass spectrometry or X-ray crystal structure analysis. The content can be quantified by NMR or HPLC.
  • the iridium complex represented by the general formula (1) according to the present invention has three different aromatic heterocyclic ligands, it has further geometric isomers in addition to the facial and meridional isomers.
  • two types of geometric isomers are generated in step (1), and in step (2) and step (3), the two types of geometric isomers are probably isomerized to each other.
  • two geometric isomers are obtained.
  • the facial isomers of the present compound (K-40) shown below include geometric isomer 1 and geometric isomer 2. It was revealed that when the iridium complex represented by the general formula (1) according to the present invention was actually synthesized, it was obtained as a mixture of these geometric isomers (see Examples).
  • the iridium complex of the present invention has practically excellent characteristics such as good solubility in a solvent and suppression of crystallization due to such structural characteristics.
  • homoleptic tris-cyclometalated iridium complexes with three identical cyclometalated ligands are highly symmetric and have good crystallinity in the solid state. There was a problem of lowering.
  • the iridium complex of the present invention represented by the general formula (1) since the iridium complex of the present invention represented by the general formula (1) has low symmetry, the crystallinity in the solid state is low, the energy for linking the complexes decreases, and the sublimation property tends to be improved.
  • the method for producing an iridium complex according to the present invention enables simple and efficient production of triscyclometalated iridium complexes having different structures of all three aromatic heterocyclic ligands. It is. Further, the iridium complex produced by the method of the present invention is excellent in the visible light region by being contained in a light emitting layer of a light emitting element or a plurality of organic compound layers including a light emitting layer by a vacuum deposition method, a spin coating method, or the like. A light-emitting element that emits light is obtained.
  • the iridium complex of the present invention for a light-emitting element, a change in film quality (for example, crystallization of a material) is suppressed, and a light-emitting element having a stable and long life can be obtained.
  • Step 4 Synthesis of Compound E> 1.05 g of the compound (C) obtained in Step 3, 635 mg of bis (pinacolato) diboron, 1.1 g of potassium acetate, 50 ml of 1,4-dioxane, [1,1′-bis (diphenylphosphino) ferrocene] palladium ( II) 153 mg of dichloride dichloromethane adduct (Pd (dppf) 2 Cl 2 .CH 2 Cl 2 ) and 104 mg of 1,1′-bis (diphenylphosphino) ferrocene (dppf) were heated to reflux in an argon atmosphere for 17 hours.
  • reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. The filtrate was concentrated under reduced pressure to obtain a solid. This was further separated and purified by silica gel chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 510 mg of the desired compound (E) consisting of a mixture of geometric isomers. The yield was 84%.
  • 1 H-NMR data and ESI-MS data of the compound (E) are shown below.
  • Step 5 Synthesis of Compound (K-40)> Compound (E) 250 mg obtained in Step 4, SPhos (2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl) 24 mg, potassium phosphate 183 mg, 1-bromo-3,5-dimethylbenzene 160 mg, toluene 40 ml After argon gas was bubbled through the mixture of 4 ml of water for 30 minutes, 5.2 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters.
  • Example 2 (Synthesis of Compound (K-39) of the Present Invention) Compound (E) 150 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 14 mg, potassium phosphate 110 mg, 1-bromo-4- (trifluoromethyl) benzene 116 mg, toluene 40 ml, water 4 ml After argon gas was bubbled through the mixture for 30 minutes, 3.1 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere.
  • Example 3 (Synthesis of Compound (K-41) of the Present Invention) Compound (E) 300 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 28 mg, potassium phosphate 220 mg, 5′-bromo-4,4 ′′ -diisopropyl-1,1-3 ′, 1 After argon gas was bubbled through a mixture of 406.2 mg of -terphenyl, 50 ml of toluene and 5 ml of water for 30 minutes, 6.2 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was added under argon atmosphere for 17 hours. Heated to reflux.
  • reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters.
  • Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure.
  • the obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 180 mg of the present compound (K-41) comprising a mixture of geometric isomers.
  • the yield was 48.6%.
  • the 1 H-NMR data and ESI-MS data of the compound of the present invention (K-41) are shown below.
  • reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters.
  • Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure.
  • the obtained solid was purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 180 mg of the present compound (K-16) comprising a mixture of geometric isomers.
  • the yield was 50.0%.
  • the 1 H-NMR data and ESI-MS data of the compound of the present invention (K-16) are shown below.
  • Example 5 (Synthesis of Compound (K-34) of the Present Invention) Compound (E) 200 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 19 mg, potassium phosphate 146 mg, 4-bromodibenzothiophene 182 mg, toluene 40 ml, water 4 ml to a mixture of 30 argon gas After venting for minutes, 4.1 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters.
  • Example 6 (Synthesis of Compound (K-10) of the Present Invention) Compound (E) 150 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 14.1 mg, potassium phosphate 101 mg, 2-bromo-4,6-diphenylpyrimidine 161 mg, toluene 40 ml, water 4 ml After argon gas was bubbled through the mixture for 30 minutes, 3.1 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere.
  • Step 1 Synthesis of Compound (K-42)> A mixture of 50 mg of compound (K-41) and 15 ml of dichloromethane was cooled to 0 ° C. To the reaction solution, 13.5 mg of N-bromosuccinimide was added under light shielding, and the mixture was stirred at 25 ° C. for 17 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure to obtain a solid. This solid was separated and purified by silica gel column chromatography (eluent: dichloromethane) to give the compound of the present invention (K-42) consisting of a mixture of geometric isomers.
  • reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters.
  • Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure.
  • the obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 16 mg of the present compound (K-46) comprising a mixture of geometric isomers.
  • the yield was 24.4%.
  • the 1 H-NMR data and ESI-MS data of the compound (K-46) are shown below.
  • Example 8 (Synthesis of Compound (K-11) of the present invention)
  • Compound (E) 200 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 19 mg, potassium phosphate 146 mg, 2-bromo-4,6-di-tert-butylpyrimidine 156 mg, toluene 50 ml, water Argon gas was bubbled through 5 ml of the mixture for 30 minutes, then 4.2 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere.
  • Step 2 The total amount of the compound (G) obtained in Step 1 was 165 mg of bis (pinacolato) diboron, 286 mg of potassium acetate, 60 ml of 1,4-dioxane, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) Dichlorochloride adduct (Pd (dppf) 2 Cl 2 .CH 2 Cl 2 ) (49 mg) and 1,1′-bis (diphenylphosphino) ferrocene (dppf) (27 mg) were heated to reflux for 17 hours under an argon atmosphere.
  • Step 2 Synthesis of Compound K>
  • the total amount of the compound (J) obtained in Step 1 was 565 mg of bis (pinacolato) diboron, 983 mg of potassium acetate, 150 ml of 1,4-dioxane, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II)
  • Dichlorochloride adduct (Pd (dppf) 2 Cl 2 .CH 2 Cl 2 ) 136 mg and 1,1′-bis (diphenylphosphino) ferrocene (dppf) 93 mg were heated to reflux for 17 hours under an argon atmosphere.
  • triscyclometalated iridium complexes having different structures of the three aromatic heterocyclic ligands which were extremely difficult to synthesize by the conventional method, can be easily and widely produced by the production method of the present invention. It became possible to synthesize.
  • the production method of the present invention it is possible to greatly increase the variations of the triscyclometalated iridium complex that can be applied to organic electroluminescent elements and the like, and contribute to the development and practical application of phosphorescent materials.
  • Example 11 Luminescence of the compound (K-40) of the present invention in THF
  • the compound (K-40) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 520.0 nm) was observed.
  • the emission quantum yield was 0.89.
  • the half width of the emission spectrum was 71.9 nm.
  • Example 12 emission of Compound (K-41) of the present invention in THF
  • the compound (K-41) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 519.3 nm) was observed.
  • the emission quantum yield was 0.88.
  • the half width of the emission spectrum was 67.8 nm.
  • Example 13 Luminescence of the compound (K-16) of the present invention in THF
  • the compound (K-16) of the present invention was dissolved in THF and argon gas was passed through, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 518.5 nm) was exhibited.
  • the emission quantum yield was 0.89.
  • the half width of the emission spectrum was 69.3 nm.
  • Example 14 emission of compound of the present invention (K-34) in THF
  • the compound (K-34) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 519.3 nm) was observed.
  • the emission quantum yield was 0.88.
  • the half width of the emission spectrum was 68.0 nm.
  • Example 15 (Emission of Compound (K-10) of the present invention in THF)
  • the compound (K-10) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 515.6 nm) was exhibited.
  • the emission quantum yield was 0.87.
  • the half width of the emission spectrum was 66.8 nm.
  • Example 16 (luminescence of the present compound (K-46) in THF)
  • the compound (K-46) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 520.8 nm) was observed.
  • the emission quantum yield was 0.88.
  • the half width of the emission spectrum was 70.7 nm.
  • Example 17 Solubility of the compound of the present invention
  • chloroform In order to confirm the solubility in toluene, 0.1 wt% solutions were prepared and visually confirmed, and it was found that they were completely dissolved.
  • Comparative Example 4 Solubility of Comparative Compound
  • a solvent chloroform, toluene
  • Comparative Example 5 Solubility of Comparative Compound
  • a 0.1 wt% solution was prepared and visually confirmed. occured.
  • the iridium complex represented by the general formula (1) of the present invention showed a higher emission quantum yield than Ir (ppy) 3 . Furthermore, it was revealed that the half width of the emission spectrum of the iridium complex represented by the general formula (1) of the present invention is narrower than Ir (ppy) 3 .
  • the iridium complex represented by the general formula (1) of the present invention is a novel compound synthesized for the first time by the production method of the present invention, and has a light emission spectrum having a sharper shape with higher luminous efficiency than Ir (ppy) 3. As shown, it is particularly useful as a phosphorescent material for display applications.
  • the iridium complex of the present invention in which the structures of the three aromatic heterocyclic ligands are all different, is an iridium complex in which all of the aromatic heterocyclic ligands have the same structure ( It can be seen that the solubility in the solvent is superior to Ir (ppy) 3 ) and the iridium complex (compound (B)) in which only one aromatic heterocyclic ligand structure is different.
  • the iridium complex of the present invention described in Example 17 was synthesized by introducing a substituent into the compound (B), and the structures of the three aromatic heterocyclic ligands were all different from each other. It was revealed that it showed high solubility in the solvent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Provided are: a novel method for producing a triscyclometalated iridium complex having three different aromatic heterocyclic ligands which is a complex that has been difficult to be synthesized so far; and a novel iridium complex which is produced by employing the production method, has high solubility in solvents and excellent processability, and can emit light at room temperature with high brightness and with high efficiency. A method for producing a triscyclometalated iridium complex having three aromatic heterocyclic ligands capable of forming an iridium-nitrogen bond and an iridium-carbon bond, wherein the structures of the aromatic heterocyclic ligands are different from one another, said method being characterized by comprising, in the following order, the steps of: (1) reacting a triscyclometalated iridium complex, which has two different aromatic heterocyclic ligands respectively capable of forming an iridium-nitrogen bond and an iridium-carbon bond, with a halogenating agent to introduce a halogen atom into the triscyclometalated iridium complex; (2) converting the halogen atom in the triscyclometalated iridium complex produced in step (1) to a boronic acid ester; and (3) subjecting the triscyclometalated iridium complex produced in step (2) and an organic halogen compound to a cross-coupling reaction to form a carbon-carbon bond.

Description

イリジウム錯体の製造方法、イリジウム錯体ならびに該化合物からなる発光材料Method for producing iridium complex, iridium complex and light-emitting material comprising the compound
 本発明は有機電界発光素子や発光センサー等の発光材料として好適に用いられるイリジウム錯体の製造方法と、当該製造方法で得られる新規イリジウム錯体ならびに該化合物からなる発光材料に関する。 The present invention relates to a method for producing an iridium complex suitably used as a light-emitting material such as an organic electroluminescent element and a light-emitting sensor, a novel iridium complex obtained by the production method, and a light-emitting material comprising the compound.
 近年、有機電界発光素子はテレビや携帯電話のディスプレイとして注目されており、今後の実用化に向けて発光効率の向上が強く求められている。有機電界発光素子に用いられる発光材料は、励起一重項状態からの発光を利用する蛍光材料と、励起三重項状態からの発光を利用する燐光材料に大きく分類できる。励起一重項状態からの発光を用いる場合、一重項励起子と三重項励起子との生成比が1:3であるため発光性励起子の生成確率が25%であるとされている。また、光の取り出し効率が約20%であるため、外部取り出し量子効率の限界は5%とされている。一方で、さらに励起三重項状態も利用できると、内部量子効率の上限が100%となるため、励起一重項状態のみを用いる場合に比べて原理的に発光効率が4倍となる。したがって、有機電界発光素子の発光材料として、燐光材料が活発に研究されている。 In recent years, organic electroluminescent elements have been attracting attention as displays for televisions and mobile phones, and there is a strong demand for improved luminous efficiency for future practical use. Luminescent materials used for organic electroluminescent elements can be broadly classified into fluorescent materials that utilize light emission from an excited singlet state and phosphorescent materials that utilize light emission from an excited triplet state. In the case of using light emission from an excited singlet state, the generation ratio of singlet excitons to triplet excitons is 1: 3, and the generation probability of luminescent excitons is 25%. Further, since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency is set to 5%. On the other hand, if the excited triplet state can also be used, the upper limit of the internal quantum efficiency is 100%, so that in principle the light emission efficiency is four times that in the case of using only the excited singlet state. Therefore, phosphorescent materials have been actively studied as light emitting materials for organic electroluminescent elements.
 これまで燐光材料としてシクロメタル化イリジウム錯体が知られている。その中でも特に、シクロメタル化された芳香族複素環配位子を3つ有するトリスシクロメタル化イリジウム錯体は、強固なイリジウム-炭素結合を3つ有することから熱安定性が高く、耐久性に優れた燐光材料である。 So far, cyclometalated iridium complexes are known as phosphorescent materials. In particular, the triscyclometalated iridium complex having three cyclometalated aromatic heterocyclic ligands has high thermal stability and excellent durability because it has three strong iridium-carbon bonds. Phosphorescent material.
 このようなトリスシクロメタル化イリジウム錯体の例として、特許文献1には、3つのシクロメタル化された芳香族複素環配位子が全て同じ構造のイリジウム錯体が開示されている(化1)。特許文献2には、シクロメタル化された芳香族複素環配位子の構造が1つだけ異なったイリジウム錯体が開示されている(化2)。非特許文献1には、3つのシクロメタル化された芳香族複素環配位子の構造が全て異なったイリジウム錯体が開示されている(化3)。 As an example of such a triscyclometalated iridium complex, Patent Document 1 discloses an iridium complex in which all three cyclometalated aromatic heterocyclic ligands have the same structure (Chemical Formula 1). Patent Document 2 discloses an iridium complex having a different structure of a cyclometalated aromatic heterocyclic ligand by one (Chemical Formula 2). Non-Patent Document 1 discloses an iridium complex in which the structures of three cyclometalated aromatic heterocyclic ligands are all different (Chemical Formula 3).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
国際公開第2000/070655号パンフレットInternational Publication No. 2000/070655 Pamphlet 国際公開第2010/028151号パンフレットInternational Publication No. 2010/028151 Pamphlet
 これまで、芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体を、従来公知の製造方法を用いて、収率良く合成することは困難であった。例えば、本発明者の知見によれば、トリス(2,4-ペンタンジオナト)イリジウム(III)と3つの異なった芳香族複素環配位子とを同時に反応させると、多様な生成物が生成するため、所望とするイリジウム錯体を単離することが極めて困難である。 Up to now, it has been difficult to synthesize triscyclometalated iridium complexes having different aromatic heterocyclic ligand structures in a high yield using a conventionally known production method. For example, according to the knowledge of the present inventor, when tris (2,4-pentanedionato) iridium (III) and three different aromatic heterocyclic ligands are reacted simultaneously, various products are produced. For this reason, it is extremely difficult to isolate the desired iridium complex.
 一方、非特許文献1では、芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体(化3)を下記工程(A)~(E)からなる方法で製造可能なことが開示されている。 On the other hand, in Non-Patent Document 1, it is possible to produce a triscyclometalated iridium complex (Chemical Formula 3) having different aromatic heterocyclic ligand structures by a method comprising the following steps (A) to (E). It is disclosed.
 工程(A):3塩化イリジウムと2種類の異なった芳香族複素環配位子を反応させ、塩素架橋イリジウムダイマー混合物を得る。
Figure JPOXMLDOC01-appb-C000010
Step (A): Reaction of iridium trichloride with two different aromatic heterocyclic ligands to obtain a chlorine-bridged iridium dimer mixture.
Figure JPOXMLDOC01-appb-C000010
 工程(B):工程(A)で得られた塩素架橋イリジウムダイマー混合物とアセチルアセトンを反応させ、3種類のイリジウム錯体混合物(B-1)~(B-3)を得る。
Figure JPOXMLDOC01-appb-C000011
Step (B): The chlorine-bridged iridium dimer mixture obtained in step (A) is reacted with acetylacetone to obtain three types of iridium complex mixtures (B-1) to (B-3).
Figure JPOXMLDOC01-appb-C000011
 工程(C):工程(B)で得られた3種類のイリジウム錯体混合物をカラムクロマトグラフィーにより分離精製し、イリジウム錯体(B-1)を単離する。 Step (C): The three types of iridium complex mixture obtained in step (B) are separated and purified by column chromatography to isolate the iridium complex (B-1).
 工程(D):工程(C)で得られたイリジウム錯体(B-1)と塩酸を反応させ、塩素架橋イリジウムダイマーを得る。
Figure JPOXMLDOC01-appb-C000012
Step (D): The iridium complex (B-1) obtained in step (C) is reacted with hydrochloric acid to obtain a chlorine-bridged iridium dimer.
Figure JPOXMLDOC01-appb-C000012
 工程(E):工程(D)で得られた塩素架橋イリジウムダイマーと2-フェニルピリジンを反応させ、シクロメタル化された芳香族複素環配位子の構造が全て異なった所望のトリスシクロメタル化イリジウム錯体を得る。
Figure JPOXMLDOC01-appb-C000013
Step (E): Reaction of the chlorine-bridged iridium dimer obtained in Step (D) with 2-phenylpyridine to form a desired tris-cyclometalated structure in which the structures of the cyclometalated aromatic heterocyclic ligands are all different. An iridium complex is obtained.
Figure JPOXMLDOC01-appb-C000013
 以上、説明してきた非特許文献1に記載の製造方法では、工程(B)で得られた3種類のイリジウム錯体(B-1)~(B-3)のうち、芳香族複素環配位子の構造が異なったイリジウム錯体(B-1)を単離する必要がある。しかし、工程(B)で得られる3種類のイリジウム錯体の極性が類似している場合、所望とするイリジウム錯体を分離精製することが極めて難しい。つまり非特許文献1に記載のイリジウム錯体の製造方法は、工程(B)で生成する3種類のイリジウム錯体の極性に大きな違いがある場合にしか適用できない本質的な問題が存在する。さらに、工程(E)では、200℃もの高温で反応させるため、配位子のスクランブリングが生じやすく、所望とするイリジウム錯体を単離することが困難になる可能性がある。 In the production method described in Non-Patent Document 1 described above, of the three types of iridium complexes (B-1) to (B-3) obtained in step (B), an aromatic heterocyclic ligand is used. It is necessary to isolate iridium complexes (B-1) having different structures. However, when the polarities of the three types of iridium complexes obtained in the step (B) are similar, it is extremely difficult to separate and purify the desired iridium complex. That is, the manufacturing method of the iridium complex described in Non-Patent Document 1 has an essential problem that can be applied only when the polarities of the three types of iridium complexes generated in the step (B) are greatly different. Furthermore, in the step (E), since the reaction is performed at a high temperature of 200 ° C., scrambling of the ligand is likely to occur, and it may be difficult to isolate a desired iridium complex.
 現在、有機電界発光素子の分野において、発光特性に優れた燐光材料の開発が渇望されているが、これまで、トリスシクロメタル化イリジウム錯体の分子設計指針としては、前述したようにシクロメタル化された芳香族複素環配位子の構造が全て同じイリジウム錯体、または、シクロメタル化された芳香族複素環配位子の構造が1つだけ異なったイリジウム錯体にほぼ限定されていた。もし、芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体を効率よく製造することができれば、燐光材料の分子設計の範囲は格段に広がるが、その実現は極めて困難であった。 Currently, in the field of organic electroluminescence devices, there is a strong demand for the development of phosphorescent materials with excellent luminescent properties. Until now, the molecular design guidelines for triscyclometalated iridium complexes have been cyclometalated as described above. The iridium complexes having the same aromatic heterocyclic ligand structure or the iridium complexes having only one different structure of the cyclometalated aromatic heterocyclic ligand were almost limited. If triscyclometalated iridium complexes with different aromatic heterocyclic ligand structures can be produced efficiently, the range of molecular design of phosphorescent materials will be greatly expanded, but this is extremely difficult to achieve. It was.
 本発明の目的は、有機電界発光素子や発光センサー等に好適に用いられる、芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体を効率よく製造する方法と、本発明の製造方法で得られる新規イリジウム錯体ならびに該化合物を用いた発光材料を提供することにある。 An object of the present invention is to provide a method for efficiently producing a triscyclometalated iridium complex having different aromatic heterocyclic ligand structures, which is preferably used in an organic electroluminescent device, a luminescent sensor, and the like. It is an object of the present invention to provide a novel iridium complex obtained by the production method and a luminescent material using the compound.
 本発明者らは上記実状に鑑み、鋭意研究を積み重ねた結果、従来は合成が困難であった芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体について、従来法より効率良く合成可能な、汎用性の高い製造方法を開発するに至った。そして実際に、本発明の製造方法を用いて、優れた発光特性を示す新規骨格のイリジウム錯体を種々製造できることを実証し、本発明を完成するに至った。 As a result of intensive studies in view of the above circumstances, the present inventors have found that triscyclometalated iridium complexes having different structures of aromatic heterocyclic ligands, which have been difficult to synthesize, are more efficient than conventional methods. We have developed a highly versatile manufacturing method that can be synthesized well. In fact, it has been demonstrated that various iridium complexes having a novel skeleton exhibiting excellent light emission characteristics can be produced using the production method of the present invention, and the present invention has been completed.
 すなわち、この出願によれば、以下の発明が提供される。 That is, according to this application, the following invention is provided.
<1> イリジウム-窒素結合およびイリジウム-炭素結合を形成する芳香族複素環配位子を3つ有し、かつ、該芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体の製造方法であって、
 イリジウム-窒素結合およびイリジウム-炭素結合を形成する2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体とハロゲン化剤とを反応させ、該トリスシクロメタル化イリジウム錯体へハロゲン原子を導入する工程(1)と、
 前記工程(1)で製造したトリスシクロメタル化イリジウム錯体のハロゲン原子をボロン酸エステルに変換する工程(2)と、
 前記工程(2)で製造したトリスシクロメタル化イリジウム錯体と有機ハロゲン化合物とをクロスカップリング反応させ、炭素-炭素結合を形成する工程(3)とを、
順次含むことを特徴とするトリスシクロメタル化イリジウム錯体の製造方法。
<2> 前記工程(1)におけるハロゲン原子の導入が、イリジウムと結合するベンゼン環の炭素原子から数えてパラ位で行われることを特徴とする前記1に記載のイリジウム錯体の製造方法。
<3> 前記工程(1)におけるハロゲン原子の導入が、構造が同一の2つの芳香族複素環配位子の何れか一方で行われることを特徴とする前記1または2に記載のイリジウム錯体の製造方法。
<4> 前記工程(1)で用いるトリスシクロメタル化イリジウム錯体において、イリジウムと結合するベンゼン環の炭素原子から数えてパラ位の1つまたは2つが、アルキル基、アリール基、または、複素環基の何れかで置換されていることを特徴とする前記1から3の何れかに記載のイリジウム錯体の製造方法。
<5> 前記、芳香族複素環配位子が、2-フェニルピリジン、1-フェニルイソキノリン、2-フェニルキノリン、2-フェニルイミダゾール、5-フェニル-1,2,4-トリアゾール、3-フェニル-1,2,4-トリアゾール、1-フェニルピラゾール、2-フェニルピラジン、2-フェニルピリミジン、4-フェニルピリミジン、3-フェニルピリダジン、ベンゾ[h]キノリン、ジベンゾ[f,h]キノキサリン、2,3-ジフェニルキノキサリン、イミダゾ[1,2-f]フェナントリジンから選ばれ、当該配位子はアルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基で置換されていても良いことを特徴とする前記1から4の何れかに記載のイリジウム錯体の製造方法。
<6> 下記一般式(1)で表されることを特徴とするイリジウム錯体。
Figure JPOXMLDOC01-appb-C000014
(一般式(1)中、Irはイリジウム原子を表し、Nは窒素原子を表す。環A、環B、環Cは、各々独立に、5員環または6員環の含窒素複素環を表す。R~Rは環A~環Cの環構造に含まれる原子にそれぞれ結合する基又は原子を表し、また、R~Rはそれぞれのベンゼン環の環構造に含まれる3つの炭素原子にそれぞれ結合する基又は原子を表す。それぞれの環構造に含まれる原子に結合するR~Rのそれぞれ、および、R~Rは、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。但し、R~Rのうち少なくとも1つは、一般式(2)~(7)の何れかで表される置換基であり、かつ、R≠R≠Rである。また、R~RおよびR~Rの隣り合った基同士は各々結合して縮合環を形成しても良い。)
Figure JPOXMLDOC01-appb-C000015
(一般式(2)~(7)中、Nは窒素原子を表す。R~R27は、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。また、R~R27の隣り合った基同士は各々結合して縮合環を形成しても良い。)
<7> 一般式(8)~(15)の何れかで表されることを特徴とする前記6に記載のイリジウム錯体。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(一般式(8)~(15)中、それぞれの環構造に含まれる原子に結合するR~Rのそれぞれ、および、R~R37は、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。また、R~RおよびR、Rの隣り合った基同士、及び、R~R37の隣り合った基同士は各々結合して縮合環を形成しても良い。但し、R~Rを有するフェニル基、R、および、Rは同一の基ではなく、また、R~Rを有するフェニル基、R28~R32を有するフェニル基、および、R33~R37を有するフェニル基は同一の基ではない。)
<8> 環A、環B、環Cが、各々独立に、ピリジン環、キノリン環、イソキノリン環、ピリミジン環、ピラジン環、ピリダジン環、キノキサリン環、イミダゾール環、または、トリアゾール環であることを特徴とする前記6または7に記載のイリジウム錯体。
<9> 環A、環B、環Cが、各々独立に、ピリジン環、キノリン環、または、イソキノリン環であることを特徴とする前記6から8の何れかに記載のイリジウム錯体。
<10> R~Rが、水素原子、アルキル基、または、アリール基であることを特徴とする前記6から9の何れかに記載のイリジウム錯体。
<11> R~Rのうち、何れか1つが水素原子であることを特徴とする前記6から10の何れかに記載のイリジウム錯体。
<12> R~Rが、すべて水素原子であることを特徴とする前記6から11の何れかに記載のイリジウム錯体。
<13> 前記6から12の何れかに記載のイリジウム錯体を含むことを特徴とする発光材料。
<14> 前記13に記載の発光材料を含むことを特徴とする有機発光素子。
<1> A triscyclometalated iridium complex having three aromatic heterocyclic ligands that form an iridium-nitrogen bond and an iridium-carbon bond, all of which have different structures. A manufacturing method of
A triscyclometalated iridium complex having two different aromatic heterocyclic ligands forming an iridium-nitrogen bond and an iridium-carbon bond is reacted with a halogenating agent to form a halogen to the triscyclometalated iridium complex. Introducing an atom (1);
Converting the halogen atom of the triscyclometalated iridium complex produced in the step (1) to a boronate ester;
A step (3) of forming a carbon-carbon bond by performing a cross-coupling reaction between the triscyclometalated iridium complex produced in the step (2) and an organic halogen compound,
A method for producing a triscyclometalated iridium complex characterized by comprising sequentially.
<2> The method for producing an iridium complex according to 1 above, wherein the introduction of the halogen atom in the step (1) is performed in the para position counting from the carbon atom of the benzene ring bonded to iridium.
<3> The iridium complex according to 1 or 2 above, wherein the introduction of the halogen atom in the step (1) is performed by any one of two aromatic heterocyclic ligands having the same structure. Production method.
<4> In the triscyclometalated iridium complex used in the step (1), one or two para positions counted from the carbon atom of the benzene ring bonded to iridium are an alkyl group, an aryl group, or a heterocyclic group. 4. The method for producing an iridium complex according to any one of 1 to 3, wherein the iridium complex is substituted with any one of the above.
<5> The aromatic heterocyclic ligand is 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2,4-triazole, 3-phenyl- 1,2,4-triazole, 1-phenylpyrazole, 2-phenylpyrazine, 2-phenylpyrimidine, 4-phenylpyrimidine, 3-phenylpyridazine, benzo [h] quinoline, dibenzo [f, h] quinoxaline, 2,3 -Diphenylquinoxaline, imidazo [1,2-f] phenanthridine, and the ligand is at least one selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom 5. The iridium complex according to any one of 1 to 4 above, which may be substituted with one group Body manufacturing method.
<6> An iridium complex represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000014
(In general formula (1), Ir represents an iridium atom, N represents a nitrogen atom. Ring A, ring B, and ring C each independently represent a 5-membered or 6-membered nitrogen-containing heterocycle. R a to R c each represent a group or an atom bonded to an atom contained in the ring structure of ring A to ring C, and R d to R f represent three carbons contained in the ring structure of each benzene ring. Each of R a to R f and R 1 to R 3 bonded to an atom included in each ring structure independently represents a hydrogen atom, an alkyl group, or an aryl; Represents a group, a heterocyclic group, an alkylsilyl group, or a halogen atom, provided that at least one of R 1 to R 3 is a substituent represented by any one of formulas (2) to (7). There, and a R 1 ≠ R 2 ≠ R 3 . Moreover, our R a ~ R f Fine R 1 groups each other adjacent the ~ R 3 may be bonded to form a condensed ring.)
Figure JPOXMLDOC01-appb-C000015
(In the general formulas (2) to (7), N represents a nitrogen atom. R 4 to R 27 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. And an adjacent group of R 4 to R 27 may be bonded to each other to form a condensed ring.)
<7> The iridium complex as described in 6 above, which is represented by any one of the general formulas (8) to (15).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
(In the general formulas (8) to (15), each of R a to R f bonded to an atom contained in each ring structure and R 2 to R 37 are each independently a hydrogen atom, an alkyl group, Represents an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, R a to R f and R 2 , adjacent groups of R 3 , and adjacent groups of R 4 to R 37 May be bonded to each other to form a condensed ring, provided that the phenyl group having R 4 to R 8 , R 2 , and R 3 are not the same group, and have R 4 to R 8 (The phenyl group, the phenyl group having R 28 to R 32 , and the phenyl group having R 33 to R 37 are not the same group.)
<8> The ring A, ring B, and ring C are each independently a pyridine ring, a quinoline ring, an isoquinoline ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, a quinoxaline ring, an imidazole ring, or a triazole ring. The iridium complex according to 6 or 7 above.
<9> The iridium complex according to any one of 6 to 8, wherein the ring A, the ring B, and the ring C are each independently a pyridine ring, a quinoline ring, or an isoquinoline ring.
<10> The iridium complex according to any one of 6 to 9, wherein R a to R f are a hydrogen atom, an alkyl group, or an aryl group.
<11> The iridium complex according to any one of 6 to 10, wherein any one of R 1 to R 3 is a hydrogen atom.
<12> The iridium complex according to any one of 6 to 11, wherein R d to R f are all hydrogen atoms.
<13> A luminescent material comprising the iridium complex according to any one of 6 to 12 above.
<14> An organic light emitting device comprising the light emitting material as described in 13 above.
 本発明により、有機電界発光素子などの燐光材料として好適に用いることが可能な、3つの芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体の新たな製造方法が提供される。当該製造方法を用いて発光特性に優れた新規イリジウム錯体を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a new method for producing a triscyclometalated iridium complex which can be suitably used as a phosphorescent material such as an organic electroluminescent device and which has three different aromatic heterocyclic ligand structures. The A novel iridium complex having excellent light emission characteristics can be provided using the production method.
 また、本発明の製造方法で製造された新規なイリジウム錯体は、溶媒に対する溶解性が高く加工性に優れ、かつ、室温下で可視光領域に強い発光を示すことから、各種用途の発光素子材料として好適に用いることができる。また該化合物を用いた発光素子は、可視光領域に高輝度発光を示すことから、表示素子、ディスプレイ、バックライトまたは照明光源などの分野に用いるのに好適である。 In addition, the novel iridium complex produced by the production method of the present invention is highly soluble in a solvent, excellent in processability, and exhibits strong light emission in the visible light region at room temperature. Can be suitably used. In addition, a light-emitting element using the compound exhibits high-luminance light emission in the visible light region, and thus is suitable for use in fields such as a display element, a display, a backlight, or an illumination light source.
本発明化合物(K-34)のTHF中、アルゴン雰囲気下での発光スペクトルである。2 is an emission spectrum of the compound (K-34) of the present invention in THF under an argon atmosphere.
 次に本発明について実施形態を示して詳細に説明するが本発明はこれらの
記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々
の変形をしてもよい。
Next, although an embodiment is shown and explained in detail about the present invention, the present invention is limited to these descriptions and is not interpreted. As long as the effect of the present invention is exhibited, the embodiment may be variously modified.
 本発明の一般式の説明における水素原子は同位体(重水素原子等)も含み、またさらに置換基を構成する原子は、その同位体も含んでいることを表す。 In the description of the general formula of the present invention, a hydrogen atom includes an isotope (such as a deuterium atom), and an atom constituting a substituent further includes the isotope.
 まず、一般式(1)~(15)中に記載した記号(Ir、N、環A、環B、環C、R~R、R~R37)について以下に説明する。 First, symbols (Ir, N, ring A, ring B, ring C, R a to R f , R 1 to R 37 ) described in the general formulas (1) to (15) will be described below.
 一般式(1)~(15)中に記載した同じ記号については、同義であり、好ましい範囲も同じである。 The same symbols described in the general formulas (1) to (15) are synonymous and the preferred ranges are also the same.
 Irはイリジウム原子を表し、Nは窒素原子を表す。 Ir represents an iridium atom, and N represents a nitrogen atom.
 環A、環B、環Cは、各々独立に、5員環または6員環の含窒素複素環を表し、6員環の含窒素複素環であることが好ましい。環A、環B、環Cは同一でも異なっても良く、同一であることが好ましい。ここで同一とは、同じ骨格の含窒素複素環であることを意味しており、含窒素複素環についた置換基は考慮しない。 Ring A, Ring B, and Ring C each independently represent a 5-membered or 6-membered nitrogen-containing heterocyclic ring, and preferably a 6-membered nitrogen-containing heterocyclic ring. Ring A, ring B, and ring C may be the same or different, and are preferably the same. Here, the same means a nitrogen-containing heterocycle having the same skeleton, and does not consider substituents attached to the nitrogen-containing heterocycle.
 環A、環B、環Cは、具体的には、ピリジン環、キノリン環、イソキノリン環、ピリミジン環、ピラジン環、ピリダジン環、キノキサリン環、ベンゾキノリン環、ベンゾキノキサリン環、ジベンゾキノリン環、ジベンゾキノキサリン環、フェナントリジン環、テトラゾール環、イミダゾール環、または、トリアゾール環が好ましく、ピリジン環、キノリン環、イソキノリン環、ピリミジン環、ピラジン環、ピリダジン環、キノキサリン環、イミダゾール環、または、トリアゾール環がより好ましく、ピリジン環、キノリン環、イソキノリン環、イミダゾール環、または、トリアゾール環が特に好ましく、ピリジン環、または、イソキノリン環がさらに特に好ましく、ピリジン環が最も好ましい。 Ring A, ring B and ring C are specifically pyridine ring, quinoline ring, isoquinoline ring, pyrimidine ring, pyrazine ring, pyridazine ring, quinoxaline ring, benzoquinoline ring, benzoquinoxaline ring, dibenzoquinoline ring, dibenzoquinoxaline Ring, phenanthridine ring, tetrazole ring, imidazole ring, or triazole ring are preferable, and pyridine ring, quinoline ring, isoquinoline ring, pyrimidine ring, pyrazine ring, pyridazine ring, quinoxaline ring, imidazole ring, or triazole ring are more preferable. A pyridine ring, a quinoline ring, an isoquinoline ring, an imidazole ring or a triazole ring is particularly preferable, a pyridine ring or an isoquinoline ring is further particularly preferable, and a pyridine ring is most preferable.
 環A、環B、環Cは、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基で置換されていても良く、これらの置換基は上記置換基でさらに置換されても良い。上記置換基としては、アルキル基、アリール基、または、複素環基が好ましく、アルキル基、または、アリール基がより好ましく、アルキル基が特に好ましい。
すなわち、一般式(1)において、環A~環Cの環構造に含まれる原子にそれぞれ結合する基又は原子を表すR~Rのそれぞれは、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。この中でも、R~Rは、水素原子、アルキル基、または、アリール基であることが好ましく、水素原子、または、アルキル基であることがより好ましい。これらの置換基は、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基でさらに置換されていても良い。
Ring A, Ring B, and Ring C may be substituted with at least one group selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, and these substituents May be further substituted with the above substituents. As said substituent, an alkyl group, an aryl group, or a heterocyclic group is preferable, an alkyl group or an aryl group is more preferable, and an alkyl group is especially preferable.
That is, in the general formula (1), each of the ring A ~ ring C of R a ~ each represent a bond to group or atom to atom contained in the ring structure R c, each independently, a hydrogen atom, an alkyl group, an aryl Represents a group, a heterocyclic group, an alkylsilyl group, or a halogen atom. Among these, R a to R c are preferably a hydrogen atom, an alkyl group, or an aryl group, and more preferably a hydrogen atom or an alkyl group. These substituents may be further substituted with at least one group selected from the group consisting of alkyl groups, aryl groups, heterocyclic groups, alkylsilyl groups, or halogen atoms.
 また、一般式(1)において、それぞれのベンゼン環の環構造に含まれる3つの炭素原子にそれぞれ結合する基又は原子を表すRd~Rのそれぞれは、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。この中でも、R~Rは、水素原子、アルキル基、または、アリール基であることが好ましく、水素原子、または、アルキル基であることがより好ましく、すべて水素原子であることが特に好ましい。これらの置換基は、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基でさらに置換されていても良い。 In the general formula (1), each of R d to R f representing a group or atom bonded to three carbon atoms contained in the ring structure of each benzene ring is independently a hydrogen atom, an alkyl group Represents an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. Among these, R d to R f are preferably a hydrogen atom, an alkyl group, or an aryl group, more preferably a hydrogen atom or an alkyl group, and particularly preferably all hydrogen atoms. These substituents may be further substituted with at least one group selected from the group consisting of alkyl groups, aryl groups, heterocyclic groups, alkylsilyl groups, or halogen atoms.
 R~Rは、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。但し、R~Rのうち少なくとも1つは、前記一般式(2)~(7)の何れかで表される置換基である。R~Rのうち少なくとも1つは、一般式(2)~(4)、または、(7)であることが好ましく、一般式(2)~(4)であることがより好ましく、一般式(2)であることが特に好ましい。 R 1 to R 3 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. However, at least one of R 1 to R 3 is a substituent represented by any one of the general formulas (2) to (7). At least one of R 1 to R 3 is preferably the general formulas (2) to (4) or (7), more preferably the general formulas (2) to (4), The formula (2) is particularly preferable.
 但し、R~Rは、R≠R≠Rである。R≠R≠Rは、R~Rが各々同一の基ではないことを意味する。例えば、R~Rが一般式(2)で表される基である場合、その置換基のR~Rの何れかが異なれば同一の基ではない。 However, R 1 to R 3 are R 1 ≠ R 2 ≠ R 3 . R 1 ≠ R 2 ≠ R 3 means that R 1 to R 3 are not the same group. For example, when R 1 to R 3 are groups represented by the general formula (2), they are not the same group as long as any of R 4 to R 8 of the substituents is different.
 R~Rの何れか1つが、水素原子、またはハロゲン原子であることが好ましく、水素原子であることがより好ましい。特に、Rが、水素原子であることが好ましい。 Any one of R 1 to R 3 is preferably a hydrogen atom or a halogen atom, and more preferably a hydrogen atom. In particular, R 3 is preferably a hydrogen atom.
 また、R~RおよびR~Rの隣り合った基同士は各々結合して縮合環を形成しても良い。 Further, adjacent groups of R a to R f and R 1 to R 3 may be bonded to each other to form a condensed ring.
 R~R37は、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表し、水素原子、アルキル基、または、アリール基が好ましい。これらの置換基は、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基でさらに置換されていても良い。また、R~R37の隣り合った基同士は各々結合して縮合環を形成しても良い。 R 4 to R 37 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, preferably a hydrogen atom, an alkyl group, or an aryl group. These substituents may be further substituted with at least one group selected from the group consisting of alkyl groups, aryl groups, heterocyclic groups, alkylsilyl groups, or halogen atoms. Further, adjacent groups of R 4 to R 37 may be bonded to each other to form a condensed ring.
 本明細書中のアルキル基は、置換基の炭素数は含めないで、炭素数1~30であることが好ましく、炭素数1~20がより好ましく、炭素数1~10が特に好ましく、炭素数1~6がより特に好ましい。 The alkyl group in the present specification does not include the carbon number of the substituent, and preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, 1 to 6 is more particularly preferable.
 本明細書中のアルキル基として、好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、シクロヘキシル基、シクロオクチル基、または、3,5-テトラメチルシクロヘキシル基であり、より好ましくは、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、ネオペンチル基、または、1-メチルペンチル基であり、特に好ましくはメチル基である。 As the alkyl group in the present specification, a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl are preferable. Group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group Group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1-heptyloctyl group, cyclohexyl group, cyclooctyl group, or 3, 5-tetramethylcyclohexyl group, more preferably methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s -Butyl group, isobutyl group, t-butyl group, n-pentyl group, neopentyl group or 1-methylpentyl group, particularly preferably a methyl group.
 本明細書中のアリール基は、置換基の炭素数は含めないで、炭素数6~30であることが好ましく、炭素数6~20がより好ましく、炭素数6~15が特に好ましく、炭素数6~12がより特に好ましい。 The aryl group in the present specification does not include the carbon number of the substituent, and preferably has 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms, particularly preferably 6 to 15 carbon atoms, 6 to 12 is more particularly preferable.
 本明細書中のアリール基として、好ましくは、フェニル基、ビフェニル-2-イル基、ビフェニル-3-イル基、ビフェニル-4-イル基、p-ターフェニル-4-イル基、p-ターフェニル-3-イル基、p-ターフェニル-2-イル基、m-ターフェニル-4-イル基、m-ターフェニル-3-イル基、m-ターフェニル-2-イル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(2-フェニルプロピル)フェニル基、4’-メチルビフェニルイル基、4”-t-ブチル-p-ターフェニル-4-イル基、o-クメニル基、m-クメニル基、p-クメニル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、メシチル基、m-クウォーターフェニル基、1-ナフチル基、または、2-ナフチル基であり、より好ましくは、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、または、メシチル基であり、特に好ましくはフェニル基またはp-トリル基である。 As the aryl group in the present specification, a phenyl group, a biphenyl-2-yl group, a biphenyl-3-yl group, a biphenyl-4-yl group, a p-terphenyl-4-yl group, or a p-terphenyl is preferable. -3-yl group, p-terphenyl-2-yl group, m-terphenyl-4-yl group, m-terphenyl-3-yl group, m-terphenyl-2-yl group, o-tolyl group , M-tolyl group, p-tolyl group, pt-butylphenyl group, p- (2-phenylpropyl) phenyl group, 4′-methylbiphenylyl group, 4 ″ -t-butyl-p-terphenyl- 4-yl, o-cumenyl, m-cumenyl, p-cumenyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, 2,6-xylyl, 3, 4-xylyl group, 3,5-xylyl group, mesityl group m-quarterphenyl group, 1-naphthyl group or 2-naphthyl group, more preferably phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2 , 4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group or mesityl group, particularly preferably phenyl group or p-tolyl It is a group.
 本明細書中の複素環基は、置換基の炭素数は含めないで、炭素数1~30であることが好ましく、炭素数1~20がより好ましく、炭素数1~10が特に好ましく、炭素数1~6がより特に好ましい。 The heterocyclic group in the present specification does not include the carbon number of the substituent, preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, Numbers 1 to 6 are more particularly preferable.
 本明細書中の複素環基として、好ましくは、イミダゾリル基、ピリジル基、ピリミジル基、トリアジル基、ピラジル基、ピリダジル基、キノリル基、フリル基、チエニル基、ジベンゾチエニル基、ピペリジル基、モルホリノ基、ベンズオキサゾリル基、ベンズイミダゾリル基、ベンズチアゾリル基、カルバゾリル基、または、アゼピニル基であり、より好ましくは、ピリジル基、ピリミジル基、トリアジル基、ピラジル基、ピリダジル基、または、ジベンゾチエニル基であり、特に好ましくは、ピリジル基、ピリミジル基、トリアジル基、または、ジベンゾチエニル基であり、さらに特に好ましくは、ピリミジル基、または、ジベンゾチエニル基である。 As the heterocyclic group in the present specification, preferably an imidazolyl group, a pyridyl group, a pyrimidyl group, a triazyl group, a pyrazyl group, a pyridazyl group, a quinolyl group, a furyl group, a thienyl group, a dibenzothienyl group, a piperidyl group, a morpholino group, A benzoxazolyl group, a benzimidazolyl group, a benzthiazolyl group, a carbazolyl group, or an azepinyl group, more preferably a pyridyl group, a pyrimidyl group, a triazyl group, a pyrazyl group, a pyridazyl group, or a dibenzothienyl group, Particularly preferred is a pyridyl group, pyrimidyl group, triazyl group or dibenzothienyl group, and particularly preferred is a pyrimidyl group or dibenzothienyl group.
 本明細書中のアルキルシリル基は、置換基の炭素数は含めないで、炭素数1~30であることが好ましく、炭素数1~20がより好ましく、炭素数1~10が特に好ましく、炭素数1~6がより特に好ましい。 The alkylsilyl group in the present specification does not include the carbon number of the substituent, and preferably has 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, particularly preferably 1 to 10 carbon atoms, Numbers 1 to 6 are more particularly preferable.
 本明細書中のアルキルシリル基として、好ましくは、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、ジメチルフェニル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基であり、より好ましくは、トリイソプロピルシリル基、t-ブチルジメチルシリル基、t-ブチルジフェニルシリル基である。 The alkylsilyl group in the present specification is preferably a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a dimethylphenyl group, a t-butyldimethylsilyl group, or a t-butyldiphenylsilyl group, and more preferably a trimethylsilyl group. An isopropylsilyl group, a t-butyldimethylsilyl group, and a t-butyldiphenylsilyl group.
 本明細書中のハロゲン原子は、好ましくは塩素原子、臭素原子またはヨウ素原子であり、より好ましくは臭素原子またはヨウ素原子であり、特に好ましくは臭素原子である。 The halogen atom in the present specification is preferably a chlorine atom, a bromine atom or an iodine atom, more preferably a bromine atom or an iodine atom, and particularly preferably a bromine atom.
 以下、本発明が係るイリジウム錯体の製造方法について、さらに詳細に説明する。 Hereinafter, the method for producing the iridium complex according to the present invention will be described in more detail.
 本発明に係るイリジウム錯体の製造方法は、以下に詳述する工程(1)~工程(3)を順次含むことを特徴とする。 The method for producing an iridium complex according to the present invention is characterized by sequentially including steps (1) to (3) described in detail below.
 工程(1)は、イリジウム-窒素結合およびイリジウム-炭素結合を形成する2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体とハロゲン化剤とを反応させ、トリスシクロメタル化イリジウム錯体へハロゲン原子を導入することを特徴とする。 In step (1), a triscyclometalated iridium complex having two different aromatic heterocyclic ligands that form an iridium-nitrogen bond and an iridium-carbon bond is reacted with a halogenating agent to form a triscyclometal. It is characterized by introducing a halogen atom into an iridium iodide complex.
 前記工程(1)における、2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体の製造方法については、WO2012/166608、特開2011-68634、WO2013/098177、特開2016-145216、特開2016-121160、特開2015-134823、特開2013-147497、特開2013-028604、WO2013/137162、特開2014-234360などに記載があり、適宜必要な方法を採用すれば良い。 Regarding the production method of the triscyclometalated iridium complex having two different aromatic heterocyclic ligands in the step (1), WO2012 / 166608, JP2011-68634, WO2013 / 098177, JP2016 -145216, JP 2016-121160, JP 2015-134823, JP 2013-147497, JP 2013-028604, WO 2013/137162, JP 2014-234360, etc. good.
 前記工程(1)における、2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体は一般式(16)または(17)で表されることが好ましい。一般式(16)はフェイシャル体であり、一般式(17)はメリジオナル体である。前記工程(1)ではフェイシャル体を用いることが特に好ましい。
Figure JPOXMLDOC01-appb-C000020
(一般式(16)、(17)中、Yはイリジウム-窒素結合およびイリジウム-炭素結合を形成する芳香族複素環配位子を表し、Zはイリジウム-窒素結合およびイリジウム-炭素結合を形成する芳香族複素環配位子を表す。但し、Y≠Zである。)
The triscyclometalated iridium complex having two different aromatic heterocyclic ligands in the step (1) is preferably represented by the general formula (16) or (17). General formula (16) is a facial body, and general formula (17) is a meridional body. In the step (1), it is particularly preferable to use a facial body.
Figure JPOXMLDOC01-appb-C000020
(In the general formulas (16) and (17), Y represents an aromatic heterocyclic ligand that forms an iridium-nitrogen bond and an iridium-carbon bond, and Z forms an iridium-nitrogen bond and an iridium-carbon bond. Represents an aromatic heterocyclic ligand, provided that Y ≠ Z.
 前記工程(1)における、芳香族複素環配位子としては、2-フェニルピリジン、1-フェニルイソキノリン、2-フェニルキノリン、2-フェニルイミダゾール、5-フェニル-1,2,4-トリアゾール、3-フェニル-1,2,4-トリアゾール、1-フェニルピラゾール、2-フェニルピラジン、2-フェニルピリミジン、4-フェニルピリミジン、3-フェニルピリダジン、ベンゾ[h]キノリン、ジベンゾ[f,h]キノキサリン、2,3-ジフェニルキノキサリン、または、イミダゾ[1,2-f]フェナントリジンが好ましく、2-フェニルピリジン、1-フェニルイソキノリン、2-フェニルキノリン、2-フェニルイミダゾール、5-フェニル-1,2,4-トリアゾール、3-フェニル-1,2,4-トリアゾール、または、イミダゾ[1,2-f]フェナントリジンがより好ましく、2-フェニルピリジン、1-フェニルイソキノリン、または、2-フェニルキノリンが特に好ましく、2-フェニルピリジンが最も好ましい。これらの芳香族複素環配位子は、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基で置換されていても良く、これらの置換基は上記置換基でさらに置換されても良い。 In the step (1), examples of the aromatic heterocyclic ligand include 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2,4-triazole, 3 -Phenyl-1,2,4-triazole, 1-phenylpyrazole, 2-phenylpyrazine, 2-phenylpyrimidine, 4-phenylpyrimidine, 3-phenylpyridazine, benzo [h] quinoline, dibenzo [f, h] quinoxaline, 2,3-diphenylquinoxaline or imidazo [1,2-f] phenanthridine is preferred, and 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2 , 4-triazole, 3-phenyl-1,2,4-triazole Or, imidazo [1,2-f] phenanthridine more preferably, 2-phenylpyridine, 1-phenyl isoquinoline, or particularly preferably 2-phenyl quinoline, 2-phenylpyridine are most preferred. These aromatic heterocyclic ligands may be substituted with at least one group selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. The group may be further substituted with the above substituents.
 前記工程(1)における、トリスシクロメタル化イリジウム錯体へのハロゲン原子の導入は、WO2015/141603、WO2009/073245、特開2014-205643などに記載の方法を参考にして行うことができる。以下に反応例を示す。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Introducing a halogen atom into the triscyclometalated iridium complex in the step (1) can be performed with reference to the methods described in WO2015 / 141603, WO2009 / 073245, JP2014-205643, and the like. A reaction example is shown below.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 前記工程(1)におけるハロゲン原子の導入は、イリジウム-炭素結合を形成している芳香族複素環配位子のベンゼン環部位で行われ、その位置がイリジウムと結合する炭素原子から数えてパラ位であることが好ましい。 The introduction of the halogen atom in the step (1) is performed at the benzene ring part of the aromatic heterocyclic ligand forming the iridium-carbon bond, and the position is para-positioned from the carbon atom bonded to iridium. It is preferable that
 前記工程(1)におけるハロゲン原子の導入は、構造が同一の2つの芳香族複素環配位子(一般式(16)または(17)のY)で行われることが好ましく、構造が同一の2つの芳香族複素環配位子(一般式(16)または(17)のY)の何れか一方で行われることがより好ましい。 The introduction of the halogen atom in the step (1) is preferably performed with two aromatic heterocyclic ligands having the same structure (Y in the general formula (16) or (17)). More preferably, the reaction is carried out in any one of two aromatic heterocyclic ligands (Y in the general formula (16) or (17)).
 前記工程(1)で用いるトリスシクロメタル化イリジウム錯体において、イリジウムと結合するベンゼン環上の炭素原子から数えてパラ位(1つまたは2つ、好ましくは1つ)が、アルキル基、アリール基、または、複素環基で置換されていることが好ましく、アリール基で置換されていることがより好ましい。さらに、上記置換基で置換されている芳香族複素環配位子は、トリスシクロメタル化イリジウム錯体の1つだけ異なっている芳香族複素環配位子(一般式(16)または(17)のZ)であることがより好ましい。このように、芳香族複素環配位子Zの上記パラ位が上記置換基で置換されていることにより、イリジウム錯体におけるハロゲン原子の導入部位が、一般式(16)または(17)のYの上記パラ位に制約され、これにより、生成したイリジウム錯体の精製が容易になることが明らかになった。 In the triscyclometalated iridium complex used in the step (1), the para-position (one or two, preferably one) counted from the carbon atom on the benzene ring bonded to iridium is an alkyl group, an aryl group, Alternatively, it is preferably substituted with a heterocyclic group, and more preferably substituted with an aryl group. Furthermore, the aromatic heterocyclic ligand substituted with the above substituent is an aromatic heterocyclic ligand (of the general formula (16) or (17), which is different from one of the triscyclometalated iridium complexes). More preferably, Z). As described above, when the para-position of the aromatic heterocyclic ligand Z is substituted with the substituent, the introduction site of the halogen atom in the iridium complex is represented by Y in the general formula (16) or (17). It was constrained by the para position, and it became clear that this facilitated purification of the produced iridium complex.
 一方、前記工程(1)で用いるトリスシクロメタル化イリジウム錯体において、イリジウムと結合するベンゼン環上の炭素原子から数えてパラ位(1つまたは2つ、好ましくは1つ)が、アルキル基、アリール基、または、複素環基で置換されていないケースでは、下記に示すように、ハロゲン化される芳香族複素環配位子の種類が複数存在するため、多様なイリジウム錯体が得られる。したがって、前記工程(1)で用いるトリスシクロメタル化イリジウム錯体において、イリジウムと結合するベンゼン環上の炭素原子から数えてパラ位(1つまたは2つ、好ましくは1つ)が、アルキル基、アリール基、または、複素環基で置換されているケースと比較して、後述する工程(2)または(3)において、所望とするイリジウム錯体の分離精製にはより多くの時間がかかる。
Figure JPOXMLDOC01-appb-C000023
On the other hand, in the triscyclometalated iridium complex used in the step (1), the para position (one or two, preferably one) counted from the carbon atom on the benzene ring bonded to iridium is an alkyl group, aryl In the case where the group is not substituted with a group or a heterocyclic group, as shown below, there are a plurality of types of aromatic heterocyclic ligands to be halogenated, so that various iridium complexes can be obtained. Therefore, in the triscyclometalated iridium complex used in the step (1), the para-position (one or two, preferably one) counted from the carbon atom on the benzene ring bonded to iridium is an alkyl group, aryl Compared with the case where it is substituted with a group or a heterocyclic group, it takes more time to separate and purify the desired iridium complex in the step (2) or (3) described later.
Figure JPOXMLDOC01-appb-C000023
 前記工程(1)に用いるハロゲン化剤としては、ヨウ素化剤、臭素化剤、または、塩素化剤が好ましく、ヨウ素化剤、または、臭素化剤がより好ましく、臭素化剤が特に好ましい。 As the halogenating agent used in the step (1), an iodinating agent, a brominating agent or a chlorinating agent is preferable, an iodinating agent or a brominating agent is more preferable, and a brominating agent is particularly preferable.
 前記工程(1)で用いるヨウ素化剤としては、例えば、N-ヨードスクシンイミド(NIS)、1,3-ジヨード-5,5-ジメチルヒダントイン(DIH)などが好ましく用いられる。 As the iodinating agent used in the step (1), for example, N-iodosuccinimide (NIS), 1,3-diiodo-5,5-dimethylhydantoin (DIH) and the like are preferably used.
 前記工程(1)で用いる臭素化剤としては、例えば、N-ブロモスクシンイミド(NBS)、ジブロモイソシアヌル酸(DBI)、1,3-ジブロモ-5,5-ジメチルヒダントインなどが好ましく用いられる。 As the brominating agent used in the step (1), for example, N-bromosuccinimide (NBS), dibromoisocyanuric acid (DBI), 1,3-dibromo-5,5-dimethylhydantoin and the like are preferably used.
 前記工程(1)で用いる塩素化剤としては、例えば、N-クロロスクシンイミド(NCS)、ジクロロイソシアヌル酸ナトリウムなどが好ましく用いられる。 As the chlorinating agent used in the step (1), for example, N-chlorosuccinimide (NCS), sodium dichloroisocyanurate and the like are preferably used.
 前記工程(1)においては、イリジウム-窒素結合およびイリジウム-炭素結合を形成する2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体を用いることが特徴であり、トリスシクロメタル化イリジウム錯体がフェイシャル体である場合、工程(1)により、例えば、下記に示すように新たな幾何異性体が生成する。このように、本発明の製造工程(1)によれば、2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体とハロゲン化剤を反応させることにより、新たな幾何異性体を製造することができる。
Figure JPOXMLDOC01-appb-C000024
The step (1) is characterized by using a triscyclometalated iridium complex having two different aromatic heterocyclic ligands that form an iridium-nitrogen bond and an iridium-carbon bond. When the metalated iridium complex is a facial body, a new geometric isomer is generated by the step (1), for example, as shown below. Thus, according to the production process (1) of the present invention, a new geometric isomerism can be obtained by reacting a triscyclometalated iridium complex having two different aromatic heterocyclic ligands with a halogenating agent. The body can be manufactured.
Figure JPOXMLDOC01-appb-C000024
 工程(2)は、前記工程(1)で製造したトリスシクロメタル化イリジウム錯体のハロゲン原子をボロン酸エステルに変換することを特徴とする。 Step (2) is characterized in that the halogen atom of the triscyclometalated iridium complex produced in the step (1) is converted into a boronic ester.
 前記工程(2)における、トリスシクロメタル化イリジウム錯体上のハロゲン原子からボロン酸エステルへ変換については、WO2015/141603、WO2009/073246、特開2014-139193などに記載の方法を参考にして行うことができる。以下に代表的な反応例を示す。
Figure JPOXMLDOC01-appb-C000025
The conversion from the halogen atom on the triscyclometalated iridium complex to the boronic acid ester in the step (2) is carried out with reference to the methods described in WO2015 / 141603, WO2009 / 073246, JP-A-2014-139193, etc. Can do. A typical reaction example is shown below.
Figure JPOXMLDOC01-appb-C000025
 前記工程(2)において、ハロゲン原子が複数導入されたトリスシクロメタル化イリジウム錯体を用いると、ボロン酸エステルが複数導入されたイリジウム錯体が生成する可能性がある。シリカゲルカラムクロマトグラフィーを用いてボロン酸エステルが1つ導入されたトリスシクロメタル化イリジウム錯体を分離精製することが可能である。 In the step (2), when a triscyclometalated iridium complex into which a plurality of halogen atoms are introduced is used, an iridium complex into which a plurality of boronic acid esters are introduced may be generated. It is possible to separate and purify a triscyclometalated iridium complex into which one boronic acid ester has been introduced using silica gel column chromatography.
 工程(3)は、前記工程(2)で製造したトリスシクロメタル化イリジウム錯体と有機ハロゲン化合物とをクロスカップリング反応させ、炭素-炭素結合を形成することを特徴とする。 Step (3) is characterized in that the triscyclometalated iridium complex produced in Step (2) and an organic halogen compound are subjected to a cross-coupling reaction to form a carbon-carbon bond.
 前記工程(3)における、トリスシクロメタル化イリジウム錯体とハロゲン化合物とをクロスカップリング反応させる方法は、いわゆる鈴木カップリング反応と言われており、例えば、WO2015/141603、WO2009/073246、特開2014-139193などに記載の方法を用いることができる。 The method in which the triscyclometalated iridium complex and the halogen compound in the step (3) are cross-coupled is called a so-called Suzuki coupling reaction. For example, WO2015 / 141603, WO2009 / 073246, JP2014 -139193 can be used.
 前記工程(3)における、有機ハロゲン化合物としては、ハロゲン化アリール化合物、ハロゲン化アルキル化合物、ハロゲン化複素環化合物などがあり、当該ハロゲンとしてはヨウ素、臭素、または、塩素が好ましく、ヨウ素、または、臭素がより好ましい。 In the step (3), the organic halogen compound includes a halogenated aryl compound, a halogenated alkyl compound, a halogenated heterocyclic compound, etc., and the halogen is preferably iodine, bromine, or chlorine, iodine, or Bromine is more preferred.
 以下に工程(3)の代表的な反応例を示す。 The typical reaction example of the step (3) is shown below.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 本発明に係るイリジウム錯体は、通常の合成反応の後処理に従って処理した後、必要があれば精製してあるいは精製せずにその後の利用に供することができる。後処理は、例えば、抽出、冷却、水若しくは有機溶媒を添加することによる晶析、または反応混合物からの溶媒を留去する操作などの方法を単独あるいは組み合わせて行うことができる。精製は、再結晶、蒸留、昇華またはカラムクロマトグラフィーなどの方法を単独あるいは組み合わせて行うことができる。 The iridium complex according to the present invention can be subjected to the post-treatment of a normal synthesis reaction, and then refined or used without further purification if necessary. The post-treatment can be performed, for example, by a method such as extraction, cooling, crystallization by adding water or an organic solvent, or an operation of distilling off the solvent from the reaction mixture. Purification can be performed by a single method or a combination of methods such as recrystallization, distillation, sublimation or column chromatography.
 以下、本発明の製造方法で得られる新規イリジウム錯体について、詳細に説明する。 Hereinafter, the novel iridium complex obtained by the production method of the present invention will be described in detail.
 本発明の製造方法で得られるイリジウム錯体は、一般式(1)で表されることが好ましい。その中でも、一般式(8)~(15)の何れかで表されるイリジウム錯体が好ましく、一般式(8)~(10)、(13)~(15)の何れかで表されるイリジウム錯体がより好ましく、一般式(9)、(10)、(13)~(15)の何れかで表されるイリジウム錯体が特に好ましい。 The iridium complex obtained by the production method of the present invention is preferably represented by the general formula (1). Among them, the iridium complex represented by any one of the general formulas (8) to (15) is preferable, and the iridium complex represented by any one of the general formulas (8) to (10) and (13) to (15) Is more preferable, and an iridium complex represented by any one of the general formulas (9), (10), and (13) to (15) is particularly preferable.
 本発明に係る一般式(1)で表されるイリジウム錯体の中でも、室温下、溶液中での発光量子収率が、0.1以上であるものが好ましく、0.5以上であるものがより好ましく、0.85以上であるものが特に好ましい。 Among the iridium complexes represented by the general formula (1) according to the present invention, those having an emission quantum yield in a solution at room temperature of 0.1 or more are preferable, and those having an emission quantum yield of 0.5 or more are more preferable. Preferably, it is 0.85 or more.
 溶液中の発光量子収率の測定は、溶存酸素を取り除くため、イリジウム錯体が溶解した溶液にアルゴンガスもしくは窒素ガスを通気した後に行うか、または、発光材料が溶解した溶液を凍結脱気した後に行うのが良い。発光量子収率の測定法としては、絶対法または相対法のどちらを用いてもよい。相対法においては、標準物質(キニン硫酸塩など)との発光スペクトルの比較によって、発光量子収率を測定することができる。絶対法においては、市販の装置(例えば、浜松ホトニクス株式会社製、絶対PL量子収率測定装置(C9920-02))を用いることで、溶液中での発光量子収率の測定が可能である。溶液中での発光量子収率は種々の溶媒を用いて測定できるが、本発明に係わるイリジウム錯体は、任意の溶媒のいずれかにおいて上記発光量子収率が達成されればよい。 In order to remove dissolved oxygen, the measurement of the luminescence quantum yield in the solution is performed after passing argon gas or nitrogen gas through the solution in which the iridium complex is dissolved, or after freezing and degassing the solution in which the luminescent material is dissolved. Good to do. As a method for measuring the luminescence quantum yield, either an absolute method or a relative method may be used. In the relative method, the emission quantum yield can be measured by comparing the emission spectrum with a standard substance (such as quinine sulfate). In the absolute method, the emission quantum yield in the solution can be measured by using a commercially available apparatus (for example, an absolute PL quantum yield measuring apparatus (C9920-02) manufactured by Hamamatsu Photonics Co., Ltd.). Although the luminescence quantum yield in a solution can be measured using various solvents, the iridium complex according to the present invention only needs to achieve the luminescence quantum yield in any solvent.
 本発明に係る一般式(1)で表されるイリジウム錯体の中でも、室温下、溶液中における発光スペクトルの半値幅が、75.0nm以下であるものが好ましく、72.5nm以下であるものがより好ましく、70.0nm以下であるものが特に好ましく、68.0nm以下であるものがさらに特に好ましい。発光スペクトルの半値幅が狭いと、特にディスプレイ用途の燐光材料として有用である。 Among the iridium complexes represented by the general formula (1) according to the present invention, the half width of the emission spectrum in a solution at room temperature is preferably 75.0 nm or less, and more preferably 72.5 nm or less. Those having a diameter of 70.0 nm or less are particularly preferable, and those having a diameter of 68.0 nm or less are particularly preferable. A narrow half-value width of the emission spectrum is particularly useful as a phosphorescent material for display applications.
 本発明に係る一般式(1)で表されるイリジウム錯体は8面体6配位錯体であり、幾何異性体としてフェイシャル体とメリジオナル体とが存在する。 The iridium complex represented by the general formula (1) according to the present invention is an octahedral 6-coordination complex, and there are a facial isomer and a meridional isomer as geometric isomers.
 本発明に係る一般式(1)で表されるイリジウム錯体はフェイシャル体であることが好ましい。本発明に係るイリジウム錯体にはフェイシャル体が50%以上含まれていることが好ましく、80%以上含まれていることがより好ましく、90%以上含まれていることが特に好ましく、99%以上含まれていることがより特に好ましい。なおフェイシャル体またはメリジオナル体については、例えば、カラムクロマトグラフィーや再結晶などの手法を用いて分離精製することが可能であり、NMR、質量分析またはX線結晶構造解析などで同定することができる。またその含有率についてはNMRまたはHPLCで定量することができる。 The iridium complex represented by the general formula (1) according to the present invention is preferably a facial body. The iridium complex according to the present invention preferably contains 50% or more of the facial compound, more preferably contains 80% or more, particularly preferably contains 90% or more, and contains 99% or more. It is more particularly preferable. The facial body or meridional body can be separated and purified using a technique such as column chromatography or recrystallization, and can be identified by NMR, mass spectrometry or X-ray crystal structure analysis. The content can be quantified by NMR or HPLC.
 本発明に係る一般式(1)で表されるイリジウム錯体のメリジオナル体、もしくはメリジオナル体を含む溶液に光照射し、フェイシャル体へ異性化させることも好ましい。 It is also preferable to irradiate the meridional isomer of the iridium complex represented by the general formula (1) according to the present invention or a solution containing the meridional isomer to isomerize to a facial isomer.
 本発明に係る一般式(1)で表されるイリジウム錯体は、3つの異なる芳香族複素環配位子を有することから、フェイシャル体とメリジオナル体の他に、さらなる幾何異性体を有する。本発明の製造方法では、前述したように工程(1)において2種類の幾何異性体が生成し、工程(2)および工程(3)では、おそらく2種類の幾何異性体は互いに異性化することなく、最終的に2種類の幾何異性体が得られる。例えば、以下に示す本発明化合物(K-40)のフェイシャル体には、幾何異性体1と幾何異性体2がある。本発明に係る一般式(1)で表されるイリジウム錯体を実際に合成すると、これら幾何異性体の混合物として得られることが明らかになった(実施例参照)。本発明のイリジウム錯体は、このような構造的特徴により、溶媒に対する溶解性が良好であり、また結晶化が抑制されるという実用的に優れた特徴を有する。
Figure JPOXMLDOC01-appb-C000027
Since the iridium complex represented by the general formula (1) according to the present invention has three different aromatic heterocyclic ligands, it has further geometric isomers in addition to the facial and meridional isomers. In the production method of the present invention, as described above, two types of geometric isomers are generated in step (1), and in step (2) and step (3), the two types of geometric isomers are probably isomerized to each other. In the end, two geometric isomers are obtained. For example, the facial isomers of the present compound (K-40) shown below include geometric isomer 1 and geometric isomer 2. It was revealed that when the iridium complex represented by the general formula (1) according to the present invention was actually synthesized, it was obtained as a mixture of these geometric isomers (see Examples). The iridium complex of the present invention has practically excellent characteristics such as good solubility in a solvent and suppression of crystallization due to such structural characteristics.
Figure JPOXMLDOC01-appb-C000027
 さらに、同じシクロメタル化配位子を3つ有するホモレプティックなトリスシクロメタル化イリジウム錯体は対称性が高いため固体状態での結晶性が良く、そのため錯体同士を結び付けるエネルギーが大きく、昇華性が低くなる問題があった。一方、一般式(1)で表される本発明のイリジウム錯体は、対称性が低いため固体状態での結晶性が低く、錯体同士を結び付けるエネルギーが小さくなり、昇華性も向上する傾向にある。 In addition, homoleptic tris-cyclometalated iridium complexes with three identical cyclometalated ligands are highly symmetric and have good crystallinity in the solid state. There was a problem of lowering. On the other hand, since the iridium complex of the present invention represented by the general formula (1) has low symmetry, the crystallinity in the solid state is low, the energy for linking the complexes decreases, and the sublimation property tends to be improved.
 以上、述べてきたように、本発明に係るイリジウム錯体の製造方法によって、3つの芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体を簡便に効率よく製造することが可能である。また、本発明の方法によって製造されたイリジウム錯体は真空蒸着法やスピンコート法等によって、発光素子の発光層もしくは発光層を含む複数の有機化合物層に含有させることで、可視光領域に優れた発光を示す発光素子が得られる。さらに、本発明のイリジウム錯体を発光素子に用いることで、膜質の変化(例えば、材料の結晶化)が抑制され、安定で長寿命な発光素子が得られる。 As described above, the method for producing an iridium complex according to the present invention enables simple and efficient production of triscyclometalated iridium complexes having different structures of all three aromatic heterocyclic ligands. It is. Further, the iridium complex produced by the method of the present invention is excellent in the visible light region by being contained in a light emitting layer of a light emitting element or a plurality of organic compound layers including a light emitting layer by a vacuum deposition method, a spin coating method, or the like. A light-emitting element that emits light is obtained. Furthermore, by using the iridium complex of the present invention for a light-emitting element, a change in film quality (for example, crystallization of a material) is suppressed, and a light-emitting element having a stable and long life can be obtained.
 一般式(8)で表わされるイリジウム錯体の代表例を化22に示す。
Figure JPOXMLDOC01-appb-C000028
A typical example of the iridium complex represented by the general formula (8) is shown in Chemical Formula 22.
Figure JPOXMLDOC01-appb-C000028
 一般式(9)で表わされるイリジウム錯体の代表例を化23に示す。
Figure JPOXMLDOC01-appb-C000029
A typical example of the iridium complex represented by the general formula (9) is shown in Chemical Formula 23.
Figure JPOXMLDOC01-appb-C000029
 一般式(10)で表わされるイリジウム錯体の代表例を化24に示す。
Figure JPOXMLDOC01-appb-C000030
A typical example of the iridium complex represented by the general formula (10) is shown in Chemical Formula 24.
Figure JPOXMLDOC01-appb-C000030
 一般式(11)で表わされるイリジウム錯体の代表例を化25に示す。
Figure JPOXMLDOC01-appb-C000031
A typical example of the iridium complex represented by the general formula (11) is shown in Chemical Formula 25.
Figure JPOXMLDOC01-appb-C000031
 一般式(12)で表わされるイリジウム錯体の代表例を化26に示す。
Figure JPOXMLDOC01-appb-C000032
A typical example of the iridium complex represented by the general formula (12) is shown in Chemical Formula 26.
Figure JPOXMLDOC01-appb-C000032
 一般式(13)で表わされるイリジウム錯体の代表例を化27に示す。
Figure JPOXMLDOC01-appb-C000033
A typical example of the iridium complex represented by the general formula (13) is shown in Chemical Formula 27.
Figure JPOXMLDOC01-appb-C000033
 一般式(14)で表わされるイリジウム錯体の代表例を化28に示す。
Figure JPOXMLDOC01-appb-C000034
A typical example of the iridium complex represented by the general formula (14) is shown in Chemical formula 28.
Figure JPOXMLDOC01-appb-C000034
 一般式(15)で表わされるイリジウム錯体の代表例を化29に示す。
Figure JPOXMLDOC01-appb-C000035
A typical example of the iridium complex represented by the general formula (15) is shown in Chemical formula 29.
Figure JPOXMLDOC01-appb-C000035
 次に本発明を実施例により詳細に説明するが、本発明はこれに限定されない。 Next, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.
実施例1(本発明化合物(K-40)の合成) Example 1 (Synthesis of Compound (K-40) of the Present Invention)
<ステップ1  化合物Aの合成>
Figure JPOXMLDOC01-appb-C000036
 化合物(1)2.0g、トリフルオロメタンスルホン酸銀1.06g、ジクロロメタン110ml、メタノール2.5mlをアルゴン雰囲気下、25℃で17時間撹拌させた。反応終了後に、反応溶液をセライト層に通して不溶物を除去した。ろ液を濃縮乾固することで、化合物(A)を収率99%で得た。
<Step 1 Synthesis of Compound A>
Figure JPOXMLDOC01-appb-C000036
Compound (1) (2.0 g), silver trifluoromethanesulfonate (1.06 g), dichloromethane (110 ml) and methanol (2.5 ml) were stirred at 25 ° C. for 17 hours under an argon atmosphere. After completion of the reaction, the reaction solution was passed through a celite layer to remove insoluble matters. The filtrate was concentrated to dryness to obtain Compound (A) in a yield of 99%.
<ステップ2  化合物Bの合成>
Figure JPOXMLDOC01-appb-C000037
 化合物(A)2.64g、配位子(L-1)2.27g、メタノール60ml、エタノール60mlを、アルゴン雰囲気下、75℃で72時間加熱反応させた。反応終了後、反応溶液を室温まで冷却し、析出した固体をろ取し、メタノールで洗浄した。さらに、この固体をシリカゲルクロマトグラフィー(溶離液:酢酸エチルとヘキサンの混合溶媒)で分離精製し、化合物(B)を収率40.9%で得た。化合物(B)のH-NMRデータを以下に示す。化合物(B)はフェイシャル体であった。
H-NMR(400MHz/アセトン-d):δ(ppm) 8.28(d,1H),8.09(m,3H),7.79(m,5H),7.69(m,3H),7.56(d,2H),7.20(d,2H),7.09(m,4H),6.92(m,5H),6.84(m,2H),2.32(s,3H).
<Step 2 Synthesis of Compound B>
Figure JPOXMLDOC01-appb-C000037
2.64 g of compound (A), 2.27 g of ligand (L-1), 60 ml of methanol, and 60 ml of ethanol were reacted by heating at 75 ° C. for 72 hours in an argon atmosphere. After completion of the reaction, the reaction solution was cooled to room temperature, and the precipitated solid was collected by filtration and washed with methanol. Further, the solid was separated and purified by silica gel chromatography (eluent: mixed solvent of ethyl acetate and hexane) to obtain Compound (B) in a yield of 40.9%. The 1 H-NMR data of compound (B) are shown below. Compound (B) was a facial body.
1 H-NMR (400 MHz / acetone-d 6 ): δ (ppm) 8.28 (d, 1H), 8.09 (m, 3H), 7.79 (m, 5H), 7.69 (m, 3H), 7.56 (d, 2H), 7.20 (d, 2H), 7.09 (m, 4H), 6.92 (m, 5H), 6.84 (m, 2H), 2. 32 (s, 3H).
<ステップ3  化合物Cの合成>
Figure JPOXMLDOC01-appb-C000038
 化合物(B)670mgとジクロロメタン100mlの混合物を、遮光下で0℃に冷却した。この溶液にN-ブロモスクシンイミド160mgを加え、室温下で17時間撹拌させた。反応終了後、ジクロロメタンを減圧留去し固体を得た。この固体をHPLCで分析したところ、所望とする化合物(C)のほか、化合物(B)と化合物(D)が含まれていることが明らかになった。その割合は、化合物(B)12%、化合物(C)78%、化合物(D)10%であった。これ以上の精製は行わずに、次のステップ4ではこの混合物のまま用いた。
<Step 3 Synthesis of Compound C>
Figure JPOXMLDOC01-appb-C000038
A mixture of 670 mg of compound (B) and 100 ml of dichloromethane was cooled to 0 ° C. in the dark. To this solution, 160 mg of N-bromosuccinimide was added and stirred at room temperature for 17 hours. After completion of the reaction, dichloromethane was distilled off under reduced pressure to obtain a solid. When this solid was analyzed by HPLC, it was revealed that the compound (B) and the compound (D) were contained in addition to the desired compound (C). The proportions were 12% for compound (B), 78% for compound (C), and 10% for compound (D). The mixture was used as it was in the next step 4 without further purification.
<ステップ4  化合物Eの合成>
Figure JPOXMLDOC01-appb-C000039
 ステップ3で得られた化合物(C)1.05g、ビス(ピナコラト)ジボロン635mg、酢酸カリウム1.1g、1,4-ジオキサン50ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(Pd(dppf)Cl・CHCl)153mg、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)104mgをアルゴン雰囲気下で17時間加熱還流した。反応終了後、室温まで冷却し、反応溶液をセライト層に通してろ過し不溶物を除去した。ろ液を減圧濃縮し固体を得た。これをさらに、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)で分離精製し、幾何異性体の混合物からなる目的化合物(E)を510mg得た。収率は84%であった。化合物(E)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(400MHz/アセトン-d):δ(ppm) 8.26(dd,1H),8.08-8.13(m,3H),8.03(s,1H),7.74-7.80(m,4H),7.62-7.68(m,3H),7.52-7.55(m,2H),7.17(d,2H),7.03-7.10(m,5H),6.80-6.98(m,4H),6.73(dd,1H),2.31(s,3H),1.29(s,12H).
ESI-MS:m/z=871.8([M+H]
<Step 4 Synthesis of Compound E>
Figure JPOXMLDOC01-appb-C000039
1.05 g of the compound (C) obtained in Step 3, 635 mg of bis (pinacolato) diboron, 1.1 g of potassium acetate, 50 ml of 1,4-dioxane, [1,1′-bis (diphenylphosphino) ferrocene] palladium ( II) 153 mg of dichloride dichloromethane adduct (Pd (dppf) 2 Cl 2 .CH 2 Cl 2 ) and 104 mg of 1,1′-bis (diphenylphosphino) ferrocene (dppf) were heated to reflux in an argon atmosphere for 17 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. The filtrate was concentrated under reduced pressure to obtain a solid. This was further separated and purified by silica gel chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 510 mg of the desired compound (E) consisting of a mixture of geometric isomers. The yield was 84%. 1 H-NMR data and ESI-MS data of the compound (E) are shown below.
1 H-NMR (400 MHz / acetone-d 6 ): δ (ppm) 8.26 (dd, 1H), 8.08-8.13 (m, 3H), 8.03 (s, 1H), 7. 74-7.80 (m, 4H), 7.62-7.68 (m, 3H), 7.52-7.55 (m, 2H), 7.17 (d, 2H), 7.03- 7.10 (m, 5H), 6.80-6.98 (m, 4H), 6.73 (dd, 1H), 2.31 (s, 3H), 1.29 (s, 12H).
ESI-MS: m / z = 871.8 ([M + H] + )
<ステップ5  化合物(K-40)の合成>
Figure JPOXMLDOC01-appb-C000040
 ステップ4で得られた化合物(E)250mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)24mg、リン酸カリウム183mg、1-ブロモ-3,5-ジメチルベンゼン160mg、トルエン40ml、水4mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)5.2mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により分離精製し、幾何異性体の混合物からなる本発明化合物(K-40)を90mg得た。収率は37%であった。本発明化合物(K-40)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ8.25-8.29(m,2H),8.10(d,1H),8.03-8.05(m,2H),7.62-7.81(m,7H),7.53-7.56(m,2H),7.26(s,2H),7.18(dd,2H),7.02-7.08(m,5H),6.91-6.97(m,4H),6.83(t,1H),6.73(t,1H),2.30(d,9H).
ESI-MS:m/z=850.8([M+H]
<Step 5 Synthesis of Compound (K-40)>
Figure JPOXMLDOC01-appb-C000040
Compound (E) 250 mg obtained in Step 4, SPhos (2-dicyclohexylphosphino-2 ', 6'-dimethoxybiphenyl) 24 mg, potassium phosphate 183 mg, 1-bromo-3,5-dimethylbenzene 160 mg, toluene 40 ml After argon gas was bubbled through the mixture of 4 ml of water for 30 minutes, 5.2 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 90 mg of the present compound (K-40) comprising a mixture of geometric isomers. The yield was 37%. 1 H-NMR data and ESI-MS data of the compound of the present invention (K-40) are shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 8.25-8.29 (m, 2H), 8.10 (d, 1H), 8.03-8.05 (m, 2H), 7. 62-7.81 (m, 7H), 7.53-7.56 (m, 2H), 7.26 (s, 2H), 7.18 (dd, 2H), 7.02-7.08 ( m, 5H), 6.91-6.97 (m, 4H), 6.83 (t, 1H), 6.73 (t, 1H), 2.30 (d, 9H).
ESI-MS: m / z = 850.8 ([M + H] + )
実施例2(本発明化合物(K-39)の合成)
Figure JPOXMLDOC01-appb-C000041
 化合物(E)150mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)14mg、リン酸カリウム110mg、1-ブロモ-4-(トリフルオロメチル)ベンゼン116mg、トルエン40ml、水4mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)3.1mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により分離精製し、幾何異性体の混合物からなる本発明化合物(K-39)を30mg得た。収率は20%であった。本発明化合物(K-39)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ8.34(d,1H),8.29(dd,1H),8.17(t,1H),8.13(d,1H),8.05(dd,1H),7.89(dd,2H),7.68-7.85(m,10H),7.53-7.56(m,2H),7.01-7.20(m,7H),6.84-6.94(m,3H),6.72-6.76(m,1H),2.31(d,3H).
ESI-MS:m/z=889.8([M+H]
Example 2 (Synthesis of Compound (K-39) of the Present Invention)
Figure JPOXMLDOC01-appb-C000041
Compound (E) 150 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 14 mg, potassium phosphate 110 mg, 1-bromo-4- (trifluoromethyl) benzene 116 mg, toluene 40 ml, water 4 ml After argon gas was bubbled through the mixture for 30 minutes, 3.1 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 30 mg of the present compound (K-39) comprising a mixture of geometric isomers. The yield was 20%. 1 H-NMR data and ESI-MS data of the compound of the present invention (K-39) are shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 8.34 (d, 1H), 8.29 (dd, 1H), 8.17 (t, 1H), 8.13 (d, 1H), 8 .05 (dd, 1H), 7.89 (dd, 2H), 7.68-7.85 (m, 10H), 7.53-7.56 (m, 2H), 7.01-7.20 (M, 7H), 6.84-6.94 (m, 3H), 6.72-6.76 (m, 1H), 2.31 (d, 3H).
ESI-MS: m / z = 889.8 ([M + H] + )
実施例3(本発明化合物(K-41)の合成)
Figure JPOXMLDOC01-appb-C000042
 化合物(E)300mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)28mg、リン酸カリウム220mg、5’-ブロモ-4,4”-ジイソプロピル-1,1-3’,1”-ターフェニル406.2mg、トルエン50ml、水5mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)6.2mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により分離精製し、幾何異性体の混合物からなる本発明化合物(K-41)を180mg得た。収率は48.6%であった。本発明化合物(K-41)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ8.37-8.40(m,1H),8.25-8.31(m,2H),8.10-8.13(m,1H),8.05-8.07(m,1H),7.87-7.88(m,2H),7.69-7.83(m,12H),7.54-7.56(m,2H),7.34-7.37(m,4H),7.17-7.24(m,3H),6.92-7.12(m,7H),6.83-6.86(m,1H),6.73-6.77(m,1H),2.93-3.00(m,2H),2.31(s,3H),1.28(dd,12H).
ESI-MS:m/z=1057.9([M+H]
Example 3 (Synthesis of Compound (K-41) of the Present Invention)
Figure JPOXMLDOC01-appb-C000042
Compound (E) 300 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 28 mg, potassium phosphate 220 mg, 5′-bromo-4,4 ″ -diisopropyl-1,1-3 ′, 1 After argon gas was bubbled through a mixture of 406.2 mg of -terphenyl, 50 ml of toluene and 5 ml of water for 30 minutes, 6.2 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was added under argon atmosphere for 17 hours. Heated to reflux. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 180 mg of the present compound (K-41) comprising a mixture of geometric isomers. The yield was 48.6%. The 1 H-NMR data and ESI-MS data of the compound of the present invention (K-41) are shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 8.37-8.40 (m, 1H), 8.25-8.31 (m, 2H), 8.10-8.13 (m, 1H ), 8.05-8.07 (m, 1H), 7.87-7.88 (m, 2H), 7.69-7.83 (m, 12H), 7.54-7.56 (m) , 2H), 7.34-7.37 (m, 4H), 7.17-7.24 (m, 3H), 6.92-7.12 (m, 7H), 6.83-6.86 (M, 1H), 6.73-6.77 (m, 1H), 2.93-3.00 (m, 2H), 2.31 (s, 3H), 1.28 (dd, 12H).
ESI-MS: m / z = 1057.9 ([M + H] + )
実施例4(本発明化合物(K-16)の合成)
Figure JPOXMLDOC01-appb-C000043
 化合物(E)360mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)34mg、リン酸カリウム263mg、5-ブロモ-2-tert-ブチルピリミジン267mg、トルエン50ml、水5mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)7.5mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により精製し、幾何異性体の混合物からなる本発明化合物(K-16)を180mg得た。収率は50.0%であった。本発明化合物(K-16)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ8.98(d,2H),8.39(d,1H),8.29(dd,1H),8.16-8.17(m,1H),8.10-8.13(m,1H),8.06-8.07(m,1H),7.69-7.88(m,7H),7.54-7.56(m,2H),7.02-7.20(m,8H),6.85-6.94(m,3H),6.72-6.77(m,1H),2.31(d,3H),1.39(d,9H).
ESI-MS:m/z=880.3([M+H]
Example 4 (Synthesis of Compound (K-16) of the Present Invention)
Figure JPOXMLDOC01-appb-C000043
To a mixture of Compound (E) 360 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 34 mg, potassium phosphate 263 mg, 5-bromo-2-tert-butylpyrimidine 267 mg, toluene 50 ml and water 5 ml After argon gas was bubbled for 30 minutes, 7.5 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 180 mg of the present compound (K-16) comprising a mixture of geometric isomers. The yield was 50.0%. The 1 H-NMR data and ESI-MS data of the compound of the present invention (K-16) are shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 8.98 (d, 2H), 8.39 (d, 1H), 8.29 (dd, 1H), 8.16-8.17 (m, 1H), 8.10-8.13 (m, 1H), 8.06-8.07 (m, 1H), 7.69-7.88 (m, 7H), 7.54-7.56 ( m, 2H), 7.02-7.20 (m, 8H), 6.85-6.94 (m, 3H), 6.72-6.77 (m, 1H), 2.31 (d, 3H), 1.39 (d, 9H).
ESI-MS: m / z = 880.3 ([M + H] + )
実施例5(本発明化合物(K-34)の合成)
Figure JPOXMLDOC01-appb-C000044
 化合物(E)200mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)19mg、リン酸カリウム146mg、4-ブロモジベンゾチオフェン182mg、トルエン40ml、水4mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)4.1mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により精製し、幾何異性体の混合物からなる本発明化合物(K-34)を70mg得た。収率は32.9%であった。本発明化合物(K-34)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ8.19-8.33(m,5H),8.10-8.15(m,1H),8.06(dd,1H),7.91-7.95(m,1H),7.74-7.85(m,6H),7.70(dd,1H),7.55-7.57(m,4H),7.47-7.50(m,2H),6.95-7.20(m,10H),6.84-6.87(m,1H),6.75-6.80(m,1H),2.31(s,3H).
ESI-MS:m/z=928.2([M+H]
Example 5 (Synthesis of Compound (K-34) of the Present Invention)
Figure JPOXMLDOC01-appb-C000044
Compound (E) 200 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 19 mg, potassium phosphate 146 mg, 4-bromodibenzothiophene 182 mg, toluene 40 ml, water 4 ml to a mixture of 30 argon gas After venting for minutes, 4.1 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 70 mg of the present compound (K-34) comprising a mixture of geometric isomers. The yield was 32.9%. The 1 H-NMR data and ESI-MS data of the compound of the present invention (K-34) are shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 8.19-8.33 (m, 5H), 8.10-8.15 (m, 1H), 8.06 (dd, 1H), 7. 91-7.95 (m, 1H), 7.74-7.85 (m, 6H), 7.70 (dd, 1H), 7.55-7.57 (m, 4H), 7.47- 7.50 (m, 2H), 6.95-7.20 (m, 10H), 6.84-6.87 (m, 1H), 6.75-6.80 (m, 1H), 2. 31 (s, 3H).
ESI-MS: m / z = 928.2 ([M + H] + )
実施例6(本発明化合物(K-10)の合成)
Figure JPOXMLDOC01-appb-C000045
 化合物(E)150mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)14.1mg、リン酸カリウム101mg、2-ブロモ-4,6-ジフェニルピリミジン161mg、トルエン40ml、水4mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)3.1mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により精製し、幾何異性体の混合物からなる本発明化合物(K-10)を11mg得た。収率は5.9%であった。本発明化合物(K-10)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ9.11(dd,1H),8.46-8.49(m,4H),8.28-8.32(m,3H),8.05-8.13(m,3H),7.71-7.88(m,7H),7.53-7.59(m,8H),7.05-7.21(m,7H),6.92-7.00(m,2H),6.82-6.89(m,1H),6.72-6.79(m,1H),2.31(d,3H).
ESI-MS:m/z=975.9([M+H]
Example 6 (Synthesis of Compound (K-10) of the Present Invention)
Figure JPOXMLDOC01-appb-C000045
Compound (E) 150 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 14.1 mg, potassium phosphate 101 mg, 2-bromo-4,6-diphenylpyrimidine 161 mg, toluene 40 ml, water 4 ml After argon gas was bubbled through the mixture for 30 minutes, 3.1 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 11 mg of the present compound (K-10) comprising a mixture of geometric isomers. The yield was 5.9%. Present compound The 1 H-NMR data and ESI-MS data (K-10) shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 9.11 (dd, 1H), 8.46-8.49 (m, 4H), 8.28-8.32 (m, 3H), 8. 05-8.13 (m, 3H), 7.71-7.88 (m, 7H), 7.53-7.59 (m, 8H), 7.05-7.21 (m, 7H), 6.92-7.00 (m, 2H), 6.82-6.89 (m, 1H), 6.72-6.79 (m, 1H), 2.31 (d, 3H).
ESI-MS: m / z = 975.9 ([M + H] + )
実施例7(本発明化合物(K-46)の合成) Example 7 (Synthesis of Compound (K-46) of the present invention)
<ステップ1  化合物(K-42)の合成>
Figure JPOXMLDOC01-appb-C000046
 化合物(K-41)50mgとジクロロメタン15mlの混合物を、0℃まで冷却した。この反応溶液に遮光下でN-ブロモスクシンイミド13.5mgを加え、25℃で17時間撹拌した。反応終了後、反応溶液を減圧留去し固体を得た。この固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタン)にて分離精製し、幾何異性体の混合物からなる本発明化合物(K-42)を得た。
<Step 1 Synthesis of Compound (K-42)>
Figure JPOXMLDOC01-appb-C000046
A mixture of 50 mg of compound (K-41) and 15 ml of dichloromethane was cooled to 0 ° C. To the reaction solution, 13.5 mg of N-bromosuccinimide was added under light shielding, and the mixture was stirred at 25 ° C. for 17 hours. After completion of the reaction, the reaction solution was distilled off under reduced pressure to obtain a solid. This solid was separated and purified by silica gel column chromatography (eluent: dichloromethane) to give the compound of the present invention (K-42) consisting of a mixture of geometric isomers.
<ステップ2  化合物(K-46)の合成>
Figure JPOXMLDOC01-appb-C000047
 化合物(K-42)54mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)156mg、テトラエチルアンモニウムヒドロキシド(20%水溶液)245mg、ボロン酸エステル化合物(BE-1)156mg、THF3mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)6mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により分離精製し、幾何異性体の混合物からなる本発明化合物(K-46)を16mg得た。収率は24.4%であった。化合物(K-46)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(アセトン-d,400MHz):δ8.38-8.46(m,2H),8.30-8.35(m,3H),8.10(s,1H),7.90-7.92(m,4H),7.79-7.82(m,2H),7.74-7.77(m,14H),7.57(d,2H),7.52(d,4H),7.36(d,4H),7.26-7.30(m,2H),7.06-7.20(m,9H),2.93-2.99(m,2H),2.31(s,3H),1.36(s,18H),1.28(d,12H).
ESI-MS:m/z=1398.6([M+H]
<Step 2 Synthesis of Compound (K-46)>
Figure JPOXMLDOC01-appb-C000047
Compound (K-42) 54 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 156 mg, tetraethylammonium hydroxide (20% aqueous solution) 245 mg, boronate ester compound (BE-1) 156 mg, THF 3 ml After argon gas was bubbled through the mixture for 30 minutes, 6 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 16 mg of the present compound (K-46) comprising a mixture of geometric isomers. The yield was 24.4%. The 1 H-NMR data and ESI-MS data of the compound (K-46) are shown below.
1 H-NMR (acetone-d 6 , 400 MHz): δ 8.38-8.46 (m, 2H), 8.30-8.35 (m, 3H), 8.10 (s, 1H), 7. 90-7.92 (m, 4H), 7.79-7.82 (m, 2H), 7.74-7.77 (m, 14H), 7.57 (d, 2H), 7.52 ( d, 4H), 7.36 (d, 4H), 7.26-7.30 (m, 2H), 7.06-7.20 (m, 9H), 2.93-2.99 (m, 2H), 2.31 (s, 3H), 1.36 (s, 18H), 1.28 (d, 12H).
ESI-MS: m / z = 1398.6 ([M + H] + )
実施例8(本発明化合物(K-11)の合成)
Figure JPOXMLDOC01-appb-C000048
 化合物(E)200mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)19mg、リン酸カリウム146mg、2-ブロモ-4,6-ジ-ターシャルブチルピリミジン156mg、トルエン50ml、水5mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)4.2mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:THFとヘキサンの混合溶媒)により精製し、幾何異性体の混合物からなる本発明化合物(K-11)を1mg得た。本発明化合物(K-11)のESI-MSデータを以下に示す。
ESI-MS:m/z=936.3([M+H]
Example 8 (Synthesis of Compound (K-11) of the present invention)
Figure JPOXMLDOC01-appb-C000048
Compound (E) 200 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 19 mg, potassium phosphate 146 mg, 2-bromo-4,6-di-tert-butylpyrimidine 156 mg, toluene 50 ml, water Argon gas was bubbled through 5 ml of the mixture for 30 minutes, then 4.2 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was purified by silica gel column chromatography (eluent: THF / hexane mixed solvent) to obtain 1 mg of the present compound (K-11) comprising a mixture of geometric isomers. The ESI-MS data of the compound of the present invention (K-11) are shown below.
ESI-MS: m / z = 936.3 ([M + H] + )
実施例9(本発明化合物(K-44)の合成) Example 9 (Synthesis of Compound (K-44) of the present invention)
<ステップ1  化合物Gの合成>
Figure JPOXMLDOC01-appb-C000049
 化合物(F)300mgとジクロロメタン150mlの混合物を、遮光下で0℃に冷却した。この溶液にN-ブロモスクシンイミド57.5mgを加え、室温下で17時間撹拌させた。反応終了後、ジクロロメタンを減圧留去し固体を得た。この固体をHPLCで分析したところ、所望とする化合物(G)のほか、化合物(F)が含まれていることが明らかになった。その割合は、化合物(F)50%、化合物(G)50%であった。これ以上の精製は行わずに、次のステップ2ではこの混合物のまま用いた。
<Step 1 Synthesis of Compound G>
Figure JPOXMLDOC01-appb-C000049
A mixture of 300 mg of compound (F) and 150 ml of dichloromethane was cooled to 0 ° C. in the dark. To this solution, 57.5 mg of N-bromosuccinimide was added and allowed to stir at room temperature for 17 hours. After completion of the reaction, dichloromethane was distilled off under reduced pressure to obtain a solid. Analysis of this solid by HPLC revealed that the compound (F) was contained in addition to the desired compound (G). The proportion was 50% for compound (F) and 50% for compound (G). The mixture was used as it was in the next step 2 without further purification.
<ステップ2  化合物Hの合成>
Figure JPOXMLDOC01-appb-C000050
 ステップ1で得られた化合物(G)を全量と、ビス(ピナコラト)ジボロン165mg、酢酸カリウム286mg、1,4-ジオキサン60ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(Pd(dppf)Cl・CHCl)49mg、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)27mgをアルゴン雰囲気下で17時間加熱還流した。反応終了後、室温まで冷却し、反応溶液をセライト層に通してろ過し不溶物を除去した。ろ液を減圧濃縮し固体を得た。これをさらに、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)で分離精製し、幾何異性体の混合物からなる目的化合物(H)を60mg得た。収率は35%であった。化合物(H)のESI-MSデータを以下に示す。
ESI-MS:m/z=1052.5([M+H]
<Step 2 Synthesis of Compound H>
Figure JPOXMLDOC01-appb-C000050
The total amount of the compound (G) obtained in Step 1 was 165 mg of bis (pinacolato) diboron, 286 mg of potassium acetate, 60 ml of 1,4-dioxane, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) Dichlorochloride adduct (Pd (dppf) 2 Cl 2 .CH 2 Cl 2 ) (49 mg) and 1,1′-bis (diphenylphosphino) ferrocene (dppf) (27 mg) were heated to reflux for 17 hours under an argon atmosphere. After completion of the reaction, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. The filtrate was concentrated under reduced pressure to obtain a solid. This was further separated and purified by silica gel chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 60 mg of the desired compound (H) comprising a mixture of geometric isomers. The yield was 35%. The ESI-MS data of compound (H) is shown below.
ESI-MS: m / z = 1052.5 ([M + H] + )
<ステップ3  化合物(K-44)の合成>
Figure JPOXMLDOC01-appb-C000051
 化合物(H)80mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)6.2mg、リン酸カリウム42mg、5’-ブロモ-4,4”-ジイソプロピル-1,1-3’,1”-ターフェニル90mg、トルエン20ml、水2mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)1.4mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により分離精製し、幾何異性体の混合物からなる本発明化合物(K-44)を60mg得た。収率は64%であった。本発明化合物(K-44)のESI-MSデータを以下に示す。
ESI-MS:m/z=1238.6([M+H]
<Step 3 Synthesis of Compound (K-44)>
Figure JPOXMLDOC01-appb-C000051
Compound (H) 80 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 6.2 mg, potassium phosphate 42 mg, 5′-bromo-4,4 ″ -diisopropyl-1,1-3 ′ , 1 ″ -terphenyl 90 mg, toluene 20 ml, water 2 ml, argon gas was bubbled through for 30 minutes, then 1.4 mg of tris (dibenzylideneacetone) dipalladium (0) was added, and the mixture was added under argon atmosphere for 17 hours. Heated to reflux. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 60 mg of the present compound (K-44) comprising a mixture of geometric isomers. The yield was 64%. The ESI-MS data of the compound of the present invention (K-44) are shown below.
ESI-MS: m / z = 1238.6 ([M + H] + )
実施例10(本発明化合物(K-43)の合成) Example 10 (Synthesis of the present compound (K-43))
<ステップ1  化合物Jの合成>
Figure JPOXMLDOC01-appb-C000052
 化合物(I)940mgとジクロロメタン940mlの混合物を、遮光下で0℃に冷却した。この溶液にN-ブロモスクシンイミド198mgを加え、室温下で17時間撹拌させた。反応終了後、ジクロロメタンを減圧留去し固体を得た。この固体をHPLCで分析したところ、所望とする化合物(J)のほか、化合物(I)が含まれていることが明らかになった。その割合は、化合物(I)13%、化合物(J)87%であった。これ以上の精製は行わずに、次のステップ2ではこの混合物のまま用いた。
<Step 1 Synthesis of Compound J>
Figure JPOXMLDOC01-appb-C000052
A mixture of 940 mg of compound (I) and 940 ml of dichloromethane was cooled to 0 ° C. in the dark. To this solution, 198 mg of N-bromosuccinimide was added and allowed to stir at room temperature for 17 hours. After completion of the reaction, dichloromethane was distilled off under reduced pressure to obtain a solid. When this solid was analyzed by HPLC, it was found that the compound (I) was contained in addition to the desired compound (J). The ratio was 13% of compound (I) and 87% of compound (J). The mixture was used as it was in the next step 2 without further purification.
<ステップ2  化合物Kの合成>
Figure JPOXMLDOC01-appb-C000053
 ステップ1で得られた化合物(J)を全量と、ビス(ピナコラト)ジボロン565mg、酢酸カリウム983mg、1,4-ジオキサン150ml、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(Pd(dppf)Cl・CHCl)136mg、1,1’-ビス(ジフェニルホスフィノ)フェロセン(dppf)93mgをアルゴン雰囲気下で17時間加熱還流した。反応終了後、室温まで冷却し、反応溶液をセライト層に通してろ過し不溶物を除去した。ろ液を減圧濃縮し固体を得た。これをさらに、シリカゲルクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)で分離精製し、幾何異性体の混合物からなる目的化合物(K)を370mg得た。収率は35%であった。化合物(K)のESI-MSデータを以下に示す。
ESI-MS:m/z=972.1([M+H]
<Step 2 Synthesis of Compound K>
Figure JPOXMLDOC01-appb-C000053
The total amount of the compound (J) obtained in Step 1 was 565 mg of bis (pinacolato) diboron, 983 mg of potassium acetate, 150 ml of 1,4-dioxane, [1,1′-bis (diphenylphosphino) ferrocene] palladium (II) Dichlorochloride adduct (Pd (dppf) 2 Cl 2 .CH 2 Cl 2 ) 136 mg and 1,1′-bis (diphenylphosphino) ferrocene (dppf) 93 mg were heated to reflux for 17 hours under an argon atmosphere. After completion of the reaction, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. The filtrate was concentrated under reduced pressure to obtain a solid. This was further separated and purified by silica gel chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 370 mg of the desired compound (K) consisting of a mixture of geometric isomers. The yield was 35%. The ESI-MS data of compound (K) is shown below.
ESI-MS: m / z = 972.1 ([M + H] + )
<ステップ3  化合物(K-43)の合成>
Figure JPOXMLDOC01-appb-C000054
 化合物(K)370mg、SPhos(2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル)31.2mg、リン酸カリウム66mg、5’-ブロモ-4,4”-ジイソプロピル-1,1-3’,1”-ターフェニル450mg、トルエン100ml、水10mlの混合物へ、アルゴンガスを30分間通気した後、トリス(ジベンジリデンアセトン)ジパラジウム(0)7mgを加え、アルゴン雰囲気下で17時間、加熱還流した。その後、反応溶液を室温まで冷却し、反応溶液をセライト層に通してろ過し、不溶物を除去した。ろ液にジクロロメタンを加えて抽出し、有機層を減圧濃縮した。得られた固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により分離精製し、幾何異性体の混合物からなる本発明化合物(K-43)を70mg得た。収率は16%であった。本発明化合物(K-43)のH-NMRデータとESI-MSデータを以下に示す。
H-NMR(400MHz/アセトン-d):δ(ppm) 9.13-9.17(m,1H),8.99-9.03(m,1H),8.63(d,1H),8.22-8.32(m,2H),8.07(d,1H),7.85-7.94(m,4H),7.72-7.81(m,10H),7.58-7.65(m,2H),7.51-7.55(m,3H),7.43-7.47(m,1H),7.33-7.39(m,5H),7.10-7.29(m,5H),6.89-7.07(m,4H),6.75-6.83(m,1H),2.92-3.00(m,2H),2.29-2.30(m,3H),1.26-1.28(m,12H).
ESI-MS:m/z=1158.2([M+H]
<Step 3 Synthesis of Compound (K-43)>
Figure JPOXMLDOC01-appb-C000054
Compound (K) 370 mg, SPhos (2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl) 31.2 mg, potassium phosphate 66 mg, 5′-bromo-4,4 ″ -diisopropyl-1,1-3 ′ , 1 ″ -terphenyl 450 mg, toluene 100 ml, water 10 ml, argon gas was passed through for 30 minutes, tris (dibenzylideneacetone) dipalladium (0) 7 mg was added, and the mixture was heated to reflux for 17 hours under an argon atmosphere. did. Thereafter, the reaction solution was cooled to room temperature, and the reaction solution was filtered through a celite layer to remove insoluble matters. Dichloromethane was added to the filtrate for extraction, and the organic layer was concentrated under reduced pressure. The obtained solid was separated and purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane) to obtain 70 mg of the present compound (K-43) comprising a mixture of geometric isomers. The yield was 16%. 1 H-NMR data and ESI-MS data of the compound of the present invention (K-43) are shown below.
1 H-NMR (400 MHz / acetone-d 6 ): δ (ppm) 9.13-9.17 (m, 1H), 8.99-9.03 (m, 1H), 8.63 (d, 1H ), 8.22-8.32 (m, 2H), 8.07 (d, 1H), 7.85-7.94 (m, 4H), 7.72-7.81 (m, 10H), 7.58-7.65 (m, 2H), 7.51-7.55 (m, 3H), 7.43-7.47 (m, 1H), 7.33-7.39 (m, 5H) ), 7.10-7.29 (m, 5H), 6.89-7.07 (m, 4H), 6.75-6.83 (m, 1H), 2.92-3.00 (m , 2H), 2.29-2.30 (m, 3H), 1.26-1.28 (m, 12H).
ESI-MS: m / z = 1158.2 ([M + H] + )
<比較例1> トリス(アセチルアセトナート)イリジウム(III)を用いた化合物(K-40)の合成
 トリス(アセチルアセトナート)イリジウム(III)200mg、配位子(L-1)175mg、配位子(L-2)185mg、2-フェニルピリジン111mg、エチレングリコール5mlをアルゴン雰囲気下、210℃で17時間、加熱反応させた。反応溶液を室温まで冷却後、メタノールを加え析出した固体をろ取した。この固体をシリカゲルカラムクロマトグラフィー(溶離液:ジクロロメタンとヘキサンの混合溶媒)により精製したが、多様な生成物の中から本発明化合物(K-40)を単離することはできなかった。
Figure JPOXMLDOC01-appb-C000055
Comparative Example 1 Synthesis of Compound (K-40) Using Tris (acetylacetonato) iridium (III) 200 mg of Tris (acetylacetonato) iridium (III), 175 mg of ligand (L-1), coordination A child (L-2) (185 mg), 2-phenylpyridine (111 mg), and ethylene glycol (5 ml) were heated and reacted at 210 ° C. for 17 hours in an argon atmosphere. The reaction solution was cooled to room temperature, methanol was added, and the precipitated solid was collected by filtration. This solid was purified by silica gel column chromatography (eluent: mixed solvent of dichloromethane and hexane), but the compound (K-40) of the present invention could not be isolated from various products.
Figure JPOXMLDOC01-appb-C000055
<比較例2> 非特許文献1に記載の方法による化合物(K-40)の合成
 塩化イリジウム・3水和物300mg、配位子(L-1)314mg、配位子(L-2)331mg、2-エトキシエタノール6.3ml、水2.1mlをアルゴン雰囲気下、15時間、加熱還流した。反応溶液を室温まで冷却後に析出した固体をろ取し、水とメタノールで洗浄した。さらに、この固体をジクロロメタンとメタノールで再結晶し、塩素架橋イリジウムダイマーの混合物401mgを得た。引き続いて、塩素架橋イリジウムダイマー混合物200mg、ナトリウムアセチルアセトナート167mg、2-エトキシエタノール40ml、アルゴン雰囲気下、17時間加熱還流させた。室温まで冷却後に反応溶液を減圧留去し、ここへ水を加え析出した固体をろ取し、水とメタノールで洗浄した。さらにこの固体をジクロロメタンとメタノールで再結晶し、黄色固体を得た。ここで得られた生成物には、化合物(A-1)、化合物(A-2)、化合物(A-3)などが含まれていた。この混合物をカラムクロマトグラフィーで分離精製したが、本発明化合物(K-40)の前駆体である化合物(A-3)を単離することができなかった。したがって、本発明化合物(K-40)を得ることはできなかった。
Figure JPOXMLDOC01-appb-C000056
Comparative Example 2 Synthesis of Compound (K-40) by the Method described in Non-Patent Document 1 300 mg of iridium chloride trihydrate, 314 mg of ligand (L-1), 331 mg of ligand (L-2) Then, 6.3 ml of 2-ethoxyethanol and 2.1 ml of water were heated to reflux for 15 hours under an argon atmosphere. After cooling the reaction solution to room temperature, the precipitated solid was collected by filtration and washed with water and methanol. Further, this solid was recrystallized from dichloromethane and methanol to obtain 401 mg of a mixture of chlorine-bridged iridium dimers. Subsequently, 200 mg of the chlorine-bridged iridium dimer mixture, 167 mg of sodium acetylacetonate, 40 ml of 2-ethoxyethanol, and refluxed with heating in an argon atmosphere for 17 hours. After cooling to room temperature, the reaction solution was evaporated under reduced pressure, water was added thereto, and the precipitated solid was collected by filtration and washed with water and methanol. Furthermore, this solid was recrystallized with dichloromethane and methanol to obtain a yellow solid. The product obtained here contained compound (A-1), compound (A-2), compound (A-3) and the like. This mixture was separated and purified by column chromatography, but the compound (A-3) which is a precursor of the compound (K-40) of the present invention could not be isolated. Therefore, the compound (K-40) of the present invention could not be obtained.
Figure JPOXMLDOC01-appb-C000056
 以上述べてきたように、従来法では合成が極めて困難であった、3つの芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体を、本発明の製造方法で簡便に幅広く合成することが可能になった。本発明の製造方法により、有機電界発光素子等に適用できるトリスシクロメタル化イリジウム錯体のバリエーションを大幅に増やし、燐光材料の開発とその実用化に貢献することが可能である。 As described above, triscyclometalated iridium complexes having different structures of the three aromatic heterocyclic ligands, which were extremely difficult to synthesize by the conventional method, can be easily and widely produced by the production method of the present invention. It became possible to synthesize. By the production method of the present invention, it is possible to greatly increase the variations of the triscyclometalated iridium complex that can be applied to organic electroluminescent elements and the like, and contribute to the development and practical application of phosphorescent materials.
 次に本発明の製造方法で合成した新規骨格のトリスシクロメタル化イリジウム錯体の発光特性について説明する。 Next, the light emission characteristics of the novel skeleton triscyclometalated iridium complex synthesized by the production method of the present invention will be described.
実施例11(本発明化合物(K-40)のTHF中での発光)
  本発明化合物(K-40)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:520.0nm)を示した。発光量子収率は0.89であった。発光スペクトルの半値幅は71.9nmであった。
Example 11 (Luminescence of the compound (K-40) of the present invention in THF)
The compound (K-40) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 520.0 nm) was observed. The emission quantum yield was 0.89. The half width of the emission spectrum was 71.9 nm.
実施例12(本発明化合物(K-41)のTHF中での発光)
  本発明化合物(K-41)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:519.3nm)を示した。発光量子収率は0.88であった。発光スペクトルの半値幅は67.8nmであった。
Example 12 (Emission of Compound (K-41) of the present invention in THF)
The compound (K-41) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 519.3 nm) was observed. The emission quantum yield was 0.88. The half width of the emission spectrum was 67.8 nm.
実施例13(本発明化合物(K-16)のTHF中での発光)
  本発明化合物(K-16)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:518.5nm)を示した。発光量子収率は0.89であった。発光スペクトルの半値幅は69.3nmであった。
Example 13 (Luminescence of the compound (K-16) of the present invention in THF)
The compound (K-16) of the present invention was dissolved in THF and argon gas was passed through, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 518.5 nm) was exhibited. The emission quantum yield was 0.89. The half width of the emission spectrum was 69.3 nm.
実施例14(本発明化合物(K-34)のTHF中での発光)
  本発明化合物(K-34)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:519.3nm)を示した。発光量子収率は0.88であった。発光スペクトルの半値幅は68.0nmであった。
Example 14 (Emission of compound of the present invention (K-34) in THF)
The compound (K-34) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 519.3 nm) was observed. The emission quantum yield was 0.88. The half width of the emission spectrum was 68.0 nm.
実施例15(本発明化合物(K-10)のTHF中での発光)
  本発明化合物(K-10)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:515.6nm)を示した。発光量子収率は0.87であった。発光スペクトルの半値幅は66.8nmであった。
Example 15 (Emission of Compound (K-10) of the present invention in THF)
The compound (K-10) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 515.6 nm) was exhibited. The emission quantum yield was 0.87. The half width of the emission spectrum was 66.8 nm.
実施例16(本発明化合物(K-46)のTHF中での発光)
  本発明化合物(K-46)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:520.8nm)を示した。発光量子収率は0.88であった。発光スペクトルの半値幅は70.7nmであった。
Example 16 (luminescence of the present compound (K-46) in THF)
The compound (K-46) of the present invention was dissolved in THF and aerated with argon gas, and then the emission spectrum (excitation wavelength) at room temperature was measured using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. : 350 nm), green light emission (emission maximum wavelength: 520.8 nm) was observed. The emission quantum yield was 0.88. The half width of the emission spectrum was 70.7 nm.
比較例3(Ir(ppy)のTHF中での発光)
  Ir(ppy)([化1]のイリジウム錯体)をTHFに溶解させ、アルゴンガスを通気した後、浜松ホトニクス株式会社製の絶対PL量子収率測定装置(C9920)を用いて、室温下での発光スペクトル(励起波長:350nm)を測定したところ、緑色発光(発光極大波長:514.8nm)を示した。発光量子収率は0.84であった。発光スペクトルの半値幅は72.7nmであった。
Comparative Example 3 (Luminescence of Ir (ppy) 3 in THF)
Ir (ppy) 3 (the iridium complex of [Chemical Formula 1]) was dissolved in THF and aerated with argon gas, and then at room temperature using an absolute PL quantum yield measuring device (C9920) manufactured by Hamamatsu Photonics Co., Ltd. When the emission spectrum (excitation wavelength: 350 nm) of was measured, it showed green emission (emission maximum wavelength: 514.8 nm). The emission quantum yield was 0.84. The half width of the emission spectrum was 72.7 nm.
 次に本発明の製造方法で合成した新規骨格のトリスシクロメタル化イリジウム錯体の溶媒に対する溶解性について説明する。 Next, the solubility of the novel skeleton triscyclometalated iridium complex synthesized by the production method of the present invention in a solvent will be described.
実施例17(本発明化合物の溶解性)
 実施例1~実施例6で合成した(K-40)、(K-39)、(K-41)、(K-16)、(K-34)、(K-10)の溶媒(クロロホルム、トルエン)に対する溶解性を確認するために、0.1wt%の溶液をそれぞれ作製し、目視により確認したところ、完全に溶解することがわかった。
Example 17 (Solubility of the compound of the present invention)
Solvents of (K-40), (K-39), (K-41), (K-16), (K-34), and (K-10) synthesized in Examples 1 to 6 (chloroform, In order to confirm the solubility in toluene, 0.1 wt% solutions were prepared and visually confirmed, and it was found that they were completely dissolved.
比較例4(比較化合物の溶解性)
 Ir(ppy)の溶媒(クロロホルム、トルエン)に対する溶解性を確認するために、0.1wt%の溶液を作製し、目視により確認したところ、かなりの溶け残りが生じた。
Comparative Example 4 (Solubility of Comparative Compound)
In order to confirm the solubility of Ir (ppy) 3 in a solvent (chloroform, toluene), a 0.1 wt% solution was prepared and visually confirmed.
比較例5(比較化合物の溶解性)
 実施例1のステップ2で合成した化合物(B)の溶媒(クロロホルム、トルエン)に対する溶解性を確認するために、0.1wt%の溶液を作製し、目視により確認したところ、かなりの溶け残りが生じた。
Comparative Example 5 (Solubility of Comparative Compound)
In order to confirm the solubility of the compound (B) synthesized in Step 2 of Example 1 in the solvent (chloroform, toluene), a 0.1 wt% solution was prepared and visually confirmed. occured.
 実施例11~16と比較例3より、本発明の一般式(1)で表されるイリジウム錯体はIr(ppy)よりも高い発光量子収率を示した。さらに、本発明の一般式(1)で表されるイリジウム錯体の発光スペクトルの半値幅は、Ir(ppy)よりも狭いことが明らかになった。本発明の一般式(1)で表されるイリジウム錯体は、本発明の製造方法により初めて合成された新規化合物であり、、Ir(ppy)よりも高発光効率でシャープな形状の発光スペクトルを示すことから、特にディスプレイ用途の燐光材料として有用である。 From Examples 11 to 16 and Comparative Example 3, the iridium complex represented by the general formula (1) of the present invention showed a higher emission quantum yield than Ir (ppy) 3 . Furthermore, it was revealed that the half width of the emission spectrum of the iridium complex represented by the general formula (1) of the present invention is narrower than Ir (ppy) 3 . The iridium complex represented by the general formula (1) of the present invention is a novel compound synthesized for the first time by the production method of the present invention, and has a light emission spectrum having a sharper shape with higher luminous efficiency than Ir (ppy) 3. As shown, it is particularly useful as a phosphorescent material for display applications.
 さらに、実施例17と比較例4、5より、3つの芳香族複素環配位子の構造が全て異なった本発明のイリジウム錯体は、芳香族複素環配位子が全て同じ構造のイリジウム錯体(Ir(ppy))、ならびに、芳香族複素環配位子の構造が1つだけ異なったイリジウム錯体(化合物(B))より、溶媒に対する溶解性が優れていることがわかる。実施例17に記載の本発明のイリジウム錯体は、化合物(B)に置換基を導入することで合成されたものであり、3つの芳香族複素環配位子の構造が全て異なる構造的特徴により、溶媒に対し高い溶解性を示すことが明らかになった。 Furthermore, from Example 17 and Comparative Examples 4 and 5, the iridium complex of the present invention, in which the structures of the three aromatic heterocyclic ligands are all different, is an iridium complex in which all of the aromatic heterocyclic ligands have the same structure ( It can be seen that the solubility in the solvent is superior to Ir (ppy) 3 ) and the iridium complex (compound (B)) in which only one aromatic heterocyclic ligand structure is different. The iridium complex of the present invention described in Example 17 was synthesized by introducing a substituent into the compound (B), and the structures of the three aromatic heterocyclic ligands were all different from each other. It was revealed that it showed high solubility in the solvent.

Claims (14)

  1.  イリジウム-窒素結合およびイリジウム-炭素結合を形成する芳香族複素環配位子を3つ有し、かつ、該芳香族複素環配位子の構造が全て異なったトリスシクロメタル化イリジウム錯体の製造方法であって、
     イリジウム-窒素結合およびイリジウム-炭素結合を形成する2種類の異なった芳香族複素環配位子を有するトリスシクロメタル化イリジウム錯体とハロゲン化剤とを反応させ、該トリスシクロメタル化イリジウム錯体へハロゲン原子を導入する工程(1)と、
     前記工程(1)で製造したトリスシクロメタル化イリジウム錯体のハロゲン原子をボロン酸エステルに変換する工程(2)と、
     前記工程(2)で製造したトリスシクロメタル化イリジウム錯体と有機ハロゲン化合物とをクロスカップリング反応させ、炭素-炭素結合を形成する工程(3)とを、
    順次含むことを特徴とするトリスシクロメタル化イリジウム錯体の製造方法。
    Method for producing triscyclometalated iridium complex having three aromatic heterocyclic ligands forming iridium-nitrogen bond and iridium-carbon bond, and different structures of the aromatic heterocyclic ligands Because
    A triscyclometalated iridium complex having two different aromatic heterocyclic ligands forming an iridium-nitrogen bond and an iridium-carbon bond is reacted with a halogenating agent to form a halogen to the triscyclometalated iridium complex. Introducing an atom (1);
    Converting the halogen atom of the triscyclometalated iridium complex produced in the step (1) to a boronate ester;
    A step (3) of forming a carbon-carbon bond by performing a cross-coupling reaction between the triscyclometalated iridium complex produced in the step (2) and an organic halogen compound,
    A method for producing a triscyclometalated iridium complex characterized by comprising sequentially.
  2.  前記工程(1)におけるハロゲン原子の導入が、イリジウムと結合するベンゼン環の炭素原子から数えてパラ位で行われることを特徴とする請求項1に記載のイリジウム錯体の製造方法。 The method for producing an iridium complex according to claim 1, wherein the introduction of the halogen atom in the step (1) is performed at the para position counting from the carbon atom of the benzene ring bonded to iridium.
  3.  前記工程(1)におけるハロゲン原子の導入が、構造が同一の2つの芳香族複素環配位子の何れか一方で行われることを特徴とする請求項1または2に記載のイリジウム錯体の製造方法。 The method for producing an iridium complex according to claim 1 or 2, wherein the introduction of the halogen atom in the step (1) is performed by any one of two aromatic heterocyclic ligands having the same structure. .
  4.  前記工程(1)で用いるトリスシクロメタル化イリジウム錯体において、イリジウムと結合するベンゼン環の炭素原子から数えてパラ位の1つまたは2つが、アルキル基、アリール基、または、複素環基の何れかで置換されていることを特徴とする請求項1から3の何れかに記載のイリジウム錯体の製造方法。 In the triscyclometalated iridium complex used in the step (1), one or two of the para positions counted from the carbon atom of the benzene ring bonded to iridium is an alkyl group, an aryl group, or a heterocyclic group. The method for producing an iridium complex according to any one of claims 1 to 3, wherein the iridium complex is substituted with.
  5.  前記芳香族複素環配位子が、2-フェニルピリジン、1-フェニルイソキノリン、2-フェニルキノリン、2-フェニルイミダゾール、5-フェニル-1,2,4-トリアゾール、3-フェニル-1,2,4-トリアゾール、1-フェニルピラゾール、2-フェニルピラジン、2-フェニルピリミジン、4-フェニルピリミジン、3-フェニルピリダジン、ベンゾ[h]キノリン、ジベンゾ[f,h]キノキサリン、2,3-ジフェニルキノキサリン、イミダゾ[1,2-f]フェナントリジンから選ばれ、当該配位子はアルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子からなる群より選ばれる少なくとも1つの基で置換されていても良いことを特徴とする請求項1から4の何れかに記載のイリジウム錯体の製造方法。 The aromatic heterocyclic ligand is 2-phenylpyridine, 1-phenylisoquinoline, 2-phenylquinoline, 2-phenylimidazole, 5-phenyl-1,2,4-triazole, 3-phenyl-1,2, 4-triazole, 1-phenylpyrazole, 2-phenylpyrazine, 2-phenylpyrimidine, 4-phenylpyrimidine, 3-phenylpyridazine, benzo [h] quinoline, dibenzo [f, h] quinoxaline, 2,3-diphenylquinoxaline, The ligand is selected from imidazo [1,2-f] phenanthridine, and the ligand is substituted with at least one group selected from the group consisting of an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom The iridium complex according to any one of claims 1 to 4, which may be Production method.
  6.  下記一般式(1)で表されることを特徴とするイリジウム錯体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Irはイリジウム原子を表し、Nは窒素原子を表す。環A、環B、環Cは、各々独立に、5員環または6員環の含窒素複素環を表す。R~Rは環A~環Cの環構造に含まれる原子にそれぞれ結合する基又は原子を表し、R~Rはそれぞれのベンゼン環の環構造に含まれる3つの炭素原子にそれぞれ結合する基又は原子を表す。それぞれの環構造に含まれる原子に結合するR~Rのそれぞれ、および、R~Rは、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。但し、R~Rのうち少なくとも1つは、一般式(2)~(7)の何れかで表される置換基であり、かつ、R≠R≠Rである。また、隣り合ったR~R、および、R~Rは各々結合して縮合環を形成しても良い。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)~(7)中、Nは窒素原子を表す。R~R27は、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。また、隣り合ったR~R27は各々結合して縮合環を形成しても良い。)
    An iridium complex represented by the following general formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), Ir represents an iridium atom, N represents a nitrogen atom. Ring A, ring B, and ring C each independently represent a 5-membered or 6-membered nitrogen-containing heterocycle. R a to R c each represent a group or an atom bonded to an atom included in the ring structure of ring A to ring C, and R d to R f represent three carbon atoms included in the ring structure of each benzene ring. Each of R a to R f and R 1 to R 3 bonded to an atom included in each ring structure independently represents a hydrogen atom, an alkyl group, an aryl group, Represents a heterocyclic group, an alkylsilyl group, or a halogen atom, provided that at least one of R 1 to R 3 is a substituent represented by any one of the general formulas (2) to (7); and a R 1 ≠ R 2 ≠ R 3 . also, adjacent R a ~ R And, R 1 ~ R 3 may form a condensed ring each coupled to.)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formulas (2) to (7), N represents a nitrogen atom. R 4 to R 27 each independently represents a hydrogen atom, an alkyl group, an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom. (In addition, adjacent R 4 to R 27 may be bonded to each other to form a condensed ring.)
  7.  一般式(8)~(15)の何れかで表されることを特徴とする請求項6に記載のイリジウム錯体。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (一般式(8)~(15)中、それぞれの環構造に含まれる原子に結合するR~Rのそれぞれ、および、R~R37は、各々独立に、水素原子、アルキル基、アリール基、複素環基、アルキルシリル基、または、ハロゲン原子を表す。また、隣り合ったR~R、および、R~R37は各々結合して縮合環を形成しても良い。但し、R~Rを有するフェニル基、R、および、Rは同一の基ではなく、また、R~Rを有するフェニル基、R28~R32を有するフェニル基、および、R33~R37を有するフェニル基は同一の基ではない。)
    The iridium complex according to claim 6, which is represented by any one of the general formulas (8) to (15).
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (In the general formulas (8) to (15), each of R a to R f bonded to an atom contained in each ring structure and R 2 to R 37 are each independently a hydrogen atom, an alkyl group, R represents an aryl group, a heterocyclic group, an alkylsilyl group, or a halogen atom, and adjacent R a to R f and R 2 to R 37 may be bonded to each other to form a condensed ring. However, the phenyl group having R 4 to R 8 , R 2 , and R 3 are not the same group, the phenyl group having R 4 to R 8 , the phenyl group having R 28 to R 32 , and (The phenyl groups having R 33 to R 37 are not the same group.)
  8.  環A、環B、環Cが、各々独立に、ピリジン環、キノリン環、イソキノリン環、ピリミジン環、ピラジン環、ピリダジン環、キノキサリン環、イミダゾール環、または、トリアゾール環であることを特徴とする請求項6または7に記載のイリジウム錯体。 Ring A, ring B, and ring C are each independently a pyridine ring, quinoline ring, isoquinoline ring, pyrimidine ring, pyrazine ring, pyridazine ring, quinoxaline ring, imidazole ring, or triazole ring. Item 8. The iridium complex according to Item 6 or 7.
  9.  環A、環B、環Cが、各々独立に、ピリジン環、キノリン環、または、イソキノリン環であることを特徴とする請求項6から8の何れかに記載のイリジウム錯体。 The iridium complex according to any one of claims 6 to 8, wherein each of the ring A, the ring B, and the ring C is independently a pyridine ring, a quinoline ring, or an isoquinoline ring.
  10.  R~Rが、水素原子、アルキル基、または、アリール基であることを特徴とする請求項6から9の何れかに記載のイリジウム錯体。 10. The iridium complex according to claim 6, wherein R a to R f are a hydrogen atom, an alkyl group, or an aryl group.
  11.  R~Rのうち、何れか1つが水素原子であることを特徴とする請求項6から10の何れかに記載のイリジウム錯体。 The iridium complex according to any one of claims 6 to 10, wherein any one of R 1 to R 3 is a hydrogen atom.
  12.  R~Rが、すべて水素原子であることを特徴とする請求項6から11の何れかに記載のイリジウム錯体。 12. The iridium complex according to claim 6, wherein R d to R f are all hydrogen atoms.
  13.  請求項6から12の何れかに記載のイリジウム錯体を含むことを特徴とする発光材料。 A luminescent material comprising the iridium complex according to any one of claims 6 to 12.
  14.  請求項13に記載の発光材料を含むことを特徴とする有機発光素子。 An organic light emitting device comprising the light emitting material according to claim 13.
PCT/JP2017/039582 2016-11-02 2017-11-01 Method for producing iridium complex, iridium complex, and light-emitting material comprising said compound WO2018084189A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018549044A JP6765107B2 (en) 2016-11-02 2017-11-01 Method for producing iridium complex, iridium complex and luminescent material composed of the compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016215037 2016-11-02
JP2016-215037 2016-11-02

Publications (1)

Publication Number Publication Date
WO2018084189A1 true WO2018084189A1 (en) 2018-05-11

Family

ID=62075959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039582 WO2018084189A1 (en) 2016-11-02 2017-11-01 Method for producing iridium complex, iridium complex, and light-emitting material comprising said compound

Country Status (2)

Country Link
JP (1) JP6765107B2 (en)
WO (1) WO2018084189A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018008936A (en) * 2016-06-20 2018-01-18 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
JP2018012686A (en) * 2016-06-20 2018-01-25 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
JP2020186235A (en) * 2019-05-09 2020-11-19 北京夏禾科技有限公司 Metal complex containing three different ligands
CN111961084A (en) * 2019-05-20 2020-11-20 玉林师范学院 Lung cancer cell inhibitor and preparation method thereof
CN115010766A (en) * 2022-07-21 2022-09-06 西安交通大学 Overlapped red light iridium (III) complex based on rigid coordination
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11498937B2 (en) 2019-05-09 2022-11-15 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent material including 3-deuterium-substituted isoquinoline ligand
US11581498B2 (en) 2019-05-09 2023-02-14 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent material containing 6-silyl-substituted isoquinoline ligand
US11993617B2 (en) 2019-10-18 2024-05-28 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent material having an ancillary ligand with a partially fluorine-substituted substituent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073246A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073246A1 (en) * 2007-12-06 2009-06-11 Universal Display Corporation Method for the synthesis of iridium (iii) complexes with sterically demanding ligands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOHENLEUTNER, A ET AL.: "Rapid Combinatorial Synthesis and Chromatography Based Screening of Phosphorescent Iridium Complexes for Solution Processing", ADVANCED FUNCTIONAL MATERIALS, vol. 22, 2012, pages 3406 - 3413, XP001581932 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018012686A (en) * 2016-06-20 2018-01-25 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
JP7319758B2 (en) 2016-06-20 2023-08-02 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
JP2018008936A (en) * 2016-06-20 2018-01-18 ユニバーサル ディスプレイ コーポレイション Organic electroluminescent materials and devices
US11482683B2 (en) 2016-06-20 2022-10-25 Universal Display Corporation Organic electroluminescent materials and devices
US11469383B2 (en) 2018-10-08 2022-10-11 Universal Display Corporation Organic electroluminescent materials and devices
US11581498B2 (en) 2019-05-09 2023-02-14 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent material containing 6-silyl-substituted isoquinoline ligand
US11498937B2 (en) 2019-05-09 2022-11-15 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent material including 3-deuterium-substituted isoquinoline ligand
US11653559B2 (en) 2019-05-09 2023-05-16 Beijing Summer Sprout Technology Co., Ltd. Metal complex containing a first ligand, a second ligand, and a third ligand
JP7274756B2 (en) 2019-05-09 2023-05-17 北京夏禾科技有限公司 Metal complexes containing three different ligands
JP2020186235A (en) * 2019-05-09 2020-11-19 北京夏禾科技有限公司 Metal complex containing three different ligands
CN111961084B (en) * 2019-05-20 2022-05-31 玉林师范学院 Lung cancer cell inhibitor and preparation method thereof
CN111961084A (en) * 2019-05-20 2020-11-20 玉林师范学院 Lung cancer cell inhibitor and preparation method thereof
US11993617B2 (en) 2019-10-18 2024-05-28 Beijing Summer Sprout Technology Co., Ltd. Organic luminescent material having an ancillary ligand with a partially fluorine-substituted substituent
CN115010766A (en) * 2022-07-21 2022-09-06 西安交通大学 Overlapped red light iridium (III) complex based on rigid coordination
CN115010766B (en) * 2022-07-21 2024-01-09 西安交通大学 Rigid coordination-based overlapping red light iridium (III) complex

Also Published As

Publication number Publication date
JPWO2018084189A1 (en) 2019-07-18
JP6765107B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
JP6765107B2 (en) Method for producing iridium complex, iridium complex and luminescent material composed of the compound
JP6964698B2 (en) Light emitting elements, light emitting devices, electronic devices and lighting devices
KR101749611B1 (en) Platinum(ⅱ) complexes for oled applications
TWI501951B (en) Organic electroluminescence device
WO2018203666A1 (en) Novel compound and organic light emitting device using same
JP6196554B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
EP1647554A2 (en) Metal complex compound and organic electroluminescent device using same
TWI813427B (en) Metal iridium complex and application thereof
JP2021176839A (en) Light-emitting material having polycyclic ligand
JP6732190B2 (en) Heteroleptic iridium complex, and light emitting material and organic light emitting device using the compound
WO2014057685A1 (en) Organic electroluminescent element
CN114605474A (en) Iridium complex and application thereof
WO2017104839A1 (en) Red-emitting iridium complex, and light-emitting material and organic light-emitting element each utilizing said compound
WO2014203540A1 (en) Metal complex composition and method for producing metal complex
JP6842096B2 (en) An iridium complex having a phenyltriazole ligand and a luminescent material using the compound
CN114591371A (en) Metal complex and application thereof
CN111349119A (en) Pterene pyridazine octadentate double platinum complex phosphorescent material and preparation method and application thereof
JP6709487B2 (en) Iridium complex, and light emitting material and organic light emitting device using the compound
TWI815358B (en) An organometallic compound and application thereof
JP6835326B2 (en) Heteroreptic iridium complex, and light emitting materials and organic light emitting devices using the compound.
JP5924691B2 (en) Metal complex, light emitting element, display device
CN115947764A (en) Metal iridium complex and application thereof
JP6656636B2 (en) Fluorine-substituted iridium complex, light emitting material and organic light emitting device using the compound
WO2022262662A1 (en) Organometallic compound, and application thereof
KR20240070620A (en) Metal iridium complex and its applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866782

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018549044

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866782

Country of ref document: EP

Kind code of ref document: A1