WO2018084083A1 - Heater and glow plug with same - Google Patents
Heater and glow plug with same Download PDFInfo
- Publication number
- WO2018084083A1 WO2018084083A1 PCT/JP2017/038910 JP2017038910W WO2018084083A1 WO 2018084083 A1 WO2018084083 A1 WO 2018084083A1 JP 2017038910 W JP2017038910 W JP 2017038910W WO 2018084083 A1 WO2018084083 A1 WO 2018084083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ceramic body
- heater
- grooves
- heating resistor
- length direction
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 claims abstract description 84
- 238000010438 heat treatment Methods 0.000 claims description 34
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 239000002184 metal Substances 0.000 claims description 19
- 239000007787 solid Substances 0.000 abstract 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 20
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 20
- 239000000463 material Substances 0.000 description 13
- 238000005219 brazing Methods 0.000 description 9
- 230000008646 thermal stress Effects 0.000 description 8
- 239000012141 concentrate Substances 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000035882 stress Effects 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- -1 Y 2 O 3 Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23Q—IGNITION; EXTINGUISHING-DEVICES
- F23Q7/00—Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/18—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor the conductor being embedded in an insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/48—Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material
Definitions
- the present disclosure is, for example, for a heater for ignition or flame detection in a combustion-type in-vehicle heating device, a heater for ignition of various combustion devices such as a petroleum fan heater, a heater for a glow plug of a diesel engine, and various sensors such as an oxygen sensor.
- the present invention relates to a heater used for a heater or a heater for heating a measuring instrument, and a glow plug including the heater.
- Patent Document 1 a ceramic heater described in Japanese Patent Application Laid-Open No. 2008-288110 (hereinafter referred to as Patent Document 1) is known.
- the ceramic heater described in Patent Document 1 includes a rod-shaped base and a resistor provided inside the base.
- the base has a portion having a constant diameter and a portion that narrows toward the tip.
- cutting is used for processing the surface shape of the substrate. In the cutting process, there was a tendency for grooves to remain along the circumferential direction on the surface of the processed substrate.
- a heater includes a rod-shaped ceramic body and a heating resistor positioned inside the ceramic body, and the ceramic body includes a columnar first portion having a length direction and the first portion. It has a second portion that is adjacent to the first portion in the lengthwise direction and becomes thinner as it gets away from the first portion, and a plurality of grooves are provided on the surface of the second portion, One end of each of the plurality of grooves is located at a boundary between the first portion and the second portion, and extends in an inclined manner with respect to the radial direction of the ceramic body as viewed from the length direction.
- FIG. 1 is the enlarged view which shows the vicinity of the 1st part among the heaters shown in FIG. 1
- (b) is the side view which looked at the 1st part from the length direction.
- (A) is the enlarged view which shows the vicinity of the 1st part among the examples according to a heater
- (b) is the side view which looked at the 1st part from the length direction. It is the side view which looked at the 1st part among other examples of a heater from the length direction. It is the side view which looked at the 1st part among other examples of a heater from the length direction. It is the side view which looked at the 1st part among other examples of a heater from the length direction. It is the side view which looked at the 1st part among other examples of a heater from the length direction. It is sectional drawing which shows an example of a glow plug.
- the heater 1 includes a ceramic body 2, a heating resistor 3 located inside the ceramic body 2, and leads 4 connected to the heating resistor 3 and drawn to the surface of the ceramic body 2. It has.
- the ceramic body 2 in the heater 1 is formed in a rod shape having a longitudinal direction, for example.
- a heating resistor 3 and leads 4 are embedded in the ceramic body 2.
- the ceramic body 2 includes ceramics. Thereby, it becomes possible to provide the heater 1 with high reliability at the time of rapid temperature rise.
- the ceramic include electrically insulating ceramics such as oxide ceramics, nitride ceramics, and carbide ceramics.
- the ceramic body 2 may include silicon nitride ceramics. This is because silicon nitride ceramics is superior in terms of strength, toughness, insulating properties, and heat resistance.
- the ceramic body 2 having a silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth such as Y 2 O 3 , Yb 2 O 3 or Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component.
- Element oxide, 0.5 to 3% by mass of Al 2 O 3 and SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and formed into a predetermined shape. Thereafter, it can be obtained by hot press firing at 1650 to 1780 ° C.
- the length of the ceramic body 2 is set to 20 to 50 mm, for example, and the diameter of the ceramic body 2 is set to 3 to 5 mm, for example.
- the ceramic body 2 can be prepared by mixing the MoSiO 2 or WSi 2, etc., may be dispersed.
- the thermal expansion coefficient of the silicon nitride ceramic that is the base material can be brought close to the thermal expansion coefficient of the heating resistor 3, and the durability of the heater 1 can be improved.
- the heating resistor 3 is provided inside the ceramic body 2.
- the heating resistor 3 is embedded in the tip side (one end side) of the ceramic body 2.
- the heating resistor 3 is a member that generates heat when an electric current flows.
- the heating resistor 3 has a parallel portion extending along the longitudinal direction of the ceramic body 2 and a folded portion connecting them.
- a material for forming the heating resistor 3 a material mainly composed of carbide, nitride, silicide or the like such as W, Mo or Ti can be used.
- tungsten carbide (WC) is the heating resistor 3 among the above materials in that the difference in coefficient of thermal expansion from the ceramic body 2 is small and the heat resistance is high. It is excellent as a material.
- the heating resistor 3 is mainly composed of WC of an inorganic conductor, and the content of silicon nitride added thereto is 20% by mass or more. Good.
- the conductor component that becomes the heating resistor 3 has a larger coefficient of thermal expansion than that of silicon nitride, and therefore is usually in a state where tensile stress is applied.
- the thermal expansion coefficient is brought close to that of the ceramic body 2, and the stress due to the difference between the thermal expansion coefficients when the heater 1 is heated and lowered is alleviated. can do.
- the content of silicon nitride contained in the heating resistor 3 is 40% by mass or less, the variation in the resistance value of the heating resistor 3 can be reduced. Therefore, the content of silicon nitride contained in the heating resistor 3 may be 20 to 40% by mass. Further, as a similar additive to the heating resistor 3, 4 to 12% by mass of boron nitride can be added instead of silicon nitride.
- the heating resistor 3 can have a total length of 3 to 15 mm and a cross-sectional area of 0.15 to 0.8 mm 2 .
- the lead 4 is a member for electrically connecting the heating resistor 3 and an external power source.
- the lead 4 is connected to the heating resistor 3 and pulled out to the surface of the ceramic body 2.
- leads 4 are joined to both ends of the heating resistor 3.
- One lead 4 has one end connected to one end of the heating resistor 3 and the other end closer to the rear end of the ceramic body 2.
- the other lead 4 has one end connected to the other end of the heating resistor 3 and the other end led from the rear end of the ceramic body 2.
- the lead 4 is formed using the same material as the heating resistor 3, for example.
- the lead 4 has a lower resistance per unit length by making the cross-sectional area larger than that of the heating resistor 3 or by making the content of the forming material of the ceramic body 2 smaller than that of the heating resistor 3. ing.
- the lead 4 may be mainly composed of WC, which is an inorganic conductor, and silicon nitride may be added to the lead 4 so that the content is 15% by mass or more. As the content of silicon nitride increases, the thermal expansion coefficient of the lead 4 can be made closer to the thermal expansion coefficient of silicon nitride constituting the ceramic body 2. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the lead 4 is lowered and stabilized. Accordingly, the silicon nitride content may be 15 to 40% by mass.
- a rod-shaped ceramic body 2 and a heating resistor 3 embedded on the tip side of the ceramic body 2 are provided.
- the first portion 21 has a columnar shape having a length direction, and the second portion 22 is adjacent to the first portion 21 in the length direction and becomes thinner as the distance from the first portion 21 increases.
- the second portion 22 is provided with a plurality of grooves 23 on the surface, and one end of each of the plurality of grooves 23 is located at the boundary between the first portion 21 and the second portion 22.
- the plurality of grooves 23 extend obliquely with respect to the radial direction of the ceramic body 2 when viewed from the end face, in other words, when viewed from the length direction. More specifically, each groove 23 is linear, and is inclined from both the length direction of the ceramic body 2 and the boundary between the first portion 21 and the second portion 22.
- the groove 23 extends with an inclination with respect to the length direction in which the ceramic body 2 thermally expands greatly under a heat cycle.
- produce can be disperse
- tip of the ceramic body 2 can be reduced. As a result, the risk of cracks and the like occurring in the ceramic body 2 can be reduced.
- the rotated blade of NC processing (numerical control machining) is moved three-dimensionally.
- the rotational speed of the ceramic body 2 is set to 1/10 or less of the rotational speed of the rotary blade for NC machining, and the groove 23 is set not in the length direction but in the circumferential direction.
- the rotary shaft of the NC machining rotary blade is tilted so that the axis of rotation does not intersect the axis of rotation of the ceramic body 2. In this way, the heater 1 shown in FIGS. 2 and 3 can be manufactured.
- the ceramic body 2 is moved while gradually moving the position where the rotary blade contacts the ceramic body 2 toward the center of the ceramic body 2 in accordance with the direction of the groove 23. Rotate.
- the length of the ceramic body 2 is 26.5 mm, for example, the length of the second portion 22 can be set to 1 mm, for example.
- the depth of the groove 23 can be set to 5 ⁇ m, for example.
- the length of the groove 23 can be set to 100 ⁇ m or more, for example.
- the plurality of grooves 23 may extend in a curved shape. Thereby, it can reduce that a thermal stress concentrates on a specific site
- the second portion 22 may have a dome shape. Thereby, since the diameter of the 2nd part 22 changes gradually, a possibility that a thermal stress may concentrate locally on the 2nd part 22 can be reduced.
- the plurality of grooves 23 may be spirally distributed throughout the second portion 22. Thereby, compared with the case where there exists the area
- each of the plurality of grooves 23 may extend in an S shape.
- the groove 23 has a plurality of arc-shaped portions that are convex in different directions. Therefore, compared with the case where the groove 23 has a shape having one arc-shaped portion, the thermal stress can be dispersed in various directions.
- each of the plurality of grooves 23 passes through the center of the second portion 22 from the boundary between the first portion 21 and the second portion 22 and again, the first portion 21 and the second portion.
- the shape extending to the boundary with 22 may be S-shaped. In this case, since the plurality of grooves 23 can be arranged with high symmetry, it is possible to reduce the possibility of thermal stress being concentrated locally.
- the glow plug 10 includes the above-described heater 1 and a cylindrical metal cylinder 5 attached so as to cover a part (the rear end side) of the heater 1.
- an electrode fitting 6 that is disposed inside the metal tube 5 and is attached to the rear end of the heater 1 is provided. According to the glow plug 10, since the heater 1 described above is used, durability is improved.
- the metal cylinder 5 is a member for holding the ceramic body 2.
- the metal cylinder 5 is a cylindrical member and is attached so as to surround the rear end side of the ceramic body 2. That is, the rod-shaped ceramic body 2 is inserted inside the cylindrical metal tube 5.
- the metal cylinder 5 is provided on the side surface on the rear end side of the ceramic body 2 and is electrically connected to a portion where the lead 4 is exposed.
- the metal cylinder 5 includes, for example, stainless steel or iron (Fe) -nickel (Ni) -cobalt (Co) alloy.
- the metal cylinder 5 and the ceramic body 2 are joined by a brazing material.
- the brazing material is provided between the metal cylinder 5 and the ceramic body 2 so as to surround the rear end side of the ceramic body 2. By providing this brazing material, the metal cylinder 5 and the lead 4 are electrically connected.
- brazing material silver (Ag) -copper (Cu) brazing, Ag brazing, Cu brazing or the like containing 5 to 20% by mass of a glass component can be used. Since the glass component has good wettability with the ceramic of the ceramic body 2 and has a large coefficient of friction, the bonding strength between the brazing material and the ceramic body 2 or the bonding strength between the brazing material and the metal cylinder 5 can be improved.
- the electrode fitting 6 is located inside the metal cylinder 5 and attached to the rear end of the ceramic body 2 so as to be electrically connected to the lead 4.
- Various types of electrode fittings 6 can be used. However, in the example shown in FIG. 12, the cap part attached to cover the rear end of the ceramic body 2 including the lead 4 and the external connection electrode are electrically connected. It is the structure by which the coil-shaped part connected electrically is connected by the linear part.
- the electrode fitting 6 is held away from the inner peripheral surface of the metal cylinder 5 so as not to cause a short circuit with the metal cylinder 5.
- the electrode fitting 6 is a metal wire having a coil-shaped portion provided for stress relaxation in connection with an external power source.
- the electrode fitting 6 is electrically connected to the lead 4 and is electrically connected to an external power source.
- a current can be passed through the heating resistor 3 via the metal cylinder 5 and the electrode fitting 6.
- the electrode fitting 6 has nickel or stainless steel, for example.
- the heater 1 can be formed by, for example, an injection molding method using a die having the shape of the heating resistor 3, the lead 4, and the ceramic body 2 configured as described above.
- Heater 2 Ceramic body 21: First portion 22: Second portion 23: Groove 3: Heating resistor 4: Lead 5: Metal cylinder 6: Electrode fitting 10: Glow plug
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Resistance Heating (AREA)
Abstract
This heater is provided with a rod-shaped ceramic body and a heat generating resistor which is located inside the ceramic body. The ceramic body is provided with: a circular solid cylindrical first portion having a longitudinal direction; and a second portion adjacent to the first portion in the longitudinal direction and tapered in the direction away from the first portion. A plurality of grooves are provided in the surface of the second portion. The plurality of grooves are formed such that one end of each of the plurality of grooves is located at the boundary between the first portion and the second portion and extends and tilts relative to the radial direction of the ceramic body when viewed in the longitudinal direction.
Description
本開示は、例えば燃焼式車載暖房装置における点火用もしくは炎検知用のヒータ、石油ファンヒータ等の各種燃焼機器の点火用のヒータ、ディーゼルエンジンのグロープラグ用のヒータ、酸素センサ等の各種センサ用のヒータまたは測定機器の加熱用のヒータ等に利用されるヒータおよびこれを備えたグロープラグに関するものである。
The present disclosure is, for example, for a heater for ignition or flame detection in a combustion-type in-vehicle heating device, a heater for ignition of various combustion devices such as a petroleum fan heater, a heater for a glow plug of a diesel engine, and various sensors such as an oxygen sensor. In particular, the present invention relates to a heater used for a heater or a heater for heating a measuring instrument, and a glow plug including the heater.
ヒータとして、例えば、特開2008-288110号公報(以下、特許文献1という)に記載のセラミックヒータが知られている。特許文献1に記載のセラミックヒータは、棒状の基体と、基体の内部に設けられた抵抗体とを備えている。基体は、径が一定の部分と、先端に向かって細くなる部分とを有している。一般的に、基体の表面形状の加工には切削加工が用いられる。切削加工においては、加工後の基体の表面に周方向に沿って溝が残る傾向にあった。
As a heater, for example, a ceramic heater described in Japanese Patent Application Laid-Open No. 2008-288110 (hereinafter referred to as Patent Document 1) is known. The ceramic heater described in Patent Document 1 includes a rod-shaped base and a resistor provided inside the base. The base has a portion having a constant diameter and a portion that narrows toward the tip. Generally, cutting is used for processing the surface shape of the substrate. In the cutting process, there was a tendency for grooves to remain along the circumferential direction on the surface of the processed substrate.
本開示の一態様のヒータは、棒状のセラミック体と、該セラミック体の内部に位置する発熱抵抗体とを備えており、前記セラミック体は、長さ方向を有する円柱状の第1部分および前記長さ方向において前記第1部分に隣接しているとともに前記第1部分から離れるにつれて細くなる第2部分を有しており、前記第2部分の表面には複数の溝が設けられており、該複数の溝は、一端が前記第1部分と前記第2部分との境界に位置しているとともに、前記長さ方向から見て前記セラミック体の径方向に対して傾斜して伸びている。
A heater according to an aspect of the present disclosure includes a rod-shaped ceramic body and a heating resistor positioned inside the ceramic body, and the ceramic body includes a columnar first portion having a length direction and the first portion. It has a second portion that is adjacent to the first portion in the lengthwise direction and becomes thinner as it gets away from the first portion, and a plurality of grooves are provided on the surface of the second portion, One end of each of the plurality of grooves is located at a boundary between the first portion and the second portion, and extends in an inclined manner with respect to the radial direction of the ceramic body as viewed from the length direction.
図1に示すように、ヒータ1は、セラミック体2と、セラミック体2の内部に位置する発熱抵抗体3と、発熱抵抗体3に接続されてセラミック体2の表面に引き出されたリード4とを備えている。
As shown in FIG. 1, the heater 1 includes a ceramic body 2, a heating resistor 3 located inside the ceramic body 2, and leads 4 connected to the heating resistor 3 and drawn to the surface of the ceramic body 2. It has.
ヒータ1におけるセラミック体2は、例えば長手方向を有する棒状に形成されたものである。このセラミック体2には発熱抵抗体3およびリード4が埋設されている。ここで、セラミック体2はセラミックスを有する。これにより急速昇温時の信頼性が高いヒータ1を提供することが可能になる。セラミックスとしては、酸化物セラミックス、窒化物セラミックスまたは炭化物セラミックス等の電気的に絶縁性を有するセラミックスが挙げられる。特に、セラミック体2は、窒化珪素質セラミックスを有していてもよい。窒化珪素質セラミックスは、主成分である窒化珪素が強度、靱性、絶縁性および耐熱性の観点で優れているからである。
The ceramic body 2 in the heater 1 is formed in a rod shape having a longitudinal direction, for example. A heating resistor 3 and leads 4 are embedded in the ceramic body 2. Here, the ceramic body 2 includes ceramics. Thereby, it becomes possible to provide the heater 1 with high reliability at the time of rapid temperature rise. Examples of the ceramic include electrically insulating ceramics such as oxide ceramics, nitride ceramics, and carbide ceramics. In particular, the ceramic body 2 may include silicon nitride ceramics. This is because silicon nitride ceramics is superior in terms of strength, toughness, insulating properties, and heat resistance.
窒化珪素質セラミックスを有するセラミック体2は、例えば、主成分の窒化珪素に対して、焼結助剤として3~12質量%のY2O3、Yb2O3またはEr2O3等の希土類元素酸化物、0.5~3質量%のAl2O3および焼結体に含まれるSiO2量が1.5~5質量%となるようにSiO2を混合し、所定の形状に成形し、その後、1650~1780℃でホットプレス焼成することによって得ることができる。セラミック体2の長さは、例えば20~50mmに設定され、セラミック体2の直径は例えば3~5mmに設定される。
The ceramic body 2 having a silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth such as Y 2 O 3 , Yb 2 O 3 or Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component. Element oxide, 0.5 to 3% by mass of Al 2 O 3 and SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and formed into a predetermined shape. Thereafter, it can be obtained by hot press firing at 1650 to 1780 ° C. The length of the ceramic body 2 is set to 20 to 50 mm, for example, and the diameter of the ceramic body 2 is set to 3 to 5 mm, for example.
なお、セラミック体2として窒化珪素質セラミックスを有するものを用いる場合は、MoSiO2またはWSi2等を混合し、分散させてもよい。この場合には、母材である窒化珪素質セラミックスの熱膨張率を発熱抵抗体3の熱膨張率に近付けることができ、ヒータ1の耐久性を向上させることができる。
In the case of using those having a silicon nitride ceramic as the ceramic body 2 can be prepared by mixing the MoSiO 2 or WSi 2, etc., may be dispersed. In this case, the thermal expansion coefficient of the silicon nitride ceramic that is the base material can be brought close to the thermal expansion coefficient of the heating resistor 3, and the durability of the heater 1 can be improved.
発熱抵抗体3は、セラミック体2の内部に設けられている。発熱抵抗体3はセラミック体2の先端側(一端側)に埋設されている。発熱抵抗体3は、電流を流すことによって発熱する部材である。発熱抵抗体3は、セラミック体2の長手方向に沿って伸びる並列部と、これらを連結する折返し部とを有する。発熱抵抗体3の形成材料としては、W,MoまたはTiなどの炭化物、窒化物または珪化物などを主成分とするものを使用することができる。セラミック体2が窒化珪素質セラミックスを有する場合は、セラミック体2との熱膨張率の差が小さい点および高い耐熱性を有する点で、上記の材料の中でも炭化タングステン(WC)が発熱抵抗体3の材料として優れている。
The heating resistor 3 is provided inside the ceramic body 2. The heating resistor 3 is embedded in the tip side (one end side) of the ceramic body 2. The heating resistor 3 is a member that generates heat when an electric current flows. The heating resistor 3 has a parallel portion extending along the longitudinal direction of the ceramic body 2 and a folded portion connecting them. As a material for forming the heating resistor 3, a material mainly composed of carbide, nitride, silicide or the like such as W, Mo or Ti can be used. In the case where the ceramic body 2 includes silicon nitride ceramics, tungsten carbide (WC) is the heating resistor 3 among the above materials in that the difference in coefficient of thermal expansion from the ceramic body 2 is small and the heat resistance is high. It is excellent as a material.
さらに、セラミック体2が窒化珪素質セラミックスを有する場合は、発熱抵抗体3は、無機導電体のWCを主成分とし、これに添加される窒化珪素の含有率が20質量%以上であってもよい。例えば、窒化珪素質セラミックスを有するセラミック体2中において、発熱抵抗体3となる導体成分は窒化珪素と比較して熱膨張率が大きいため、通常は引張応力がかかった状態にある。これに対して、発熱抵抗体3中に窒化珪素を添加することにより、熱膨張率をセラミック体2のそれに近付けて、ヒータ1の昇温時および降温時の熱膨張率の差による応力を緩和することができる。
Furthermore, when the ceramic body 2 includes silicon nitride ceramics, the heating resistor 3 is mainly composed of WC of an inorganic conductor, and the content of silicon nitride added thereto is 20% by mass or more. Good. For example, in the ceramic body 2 having silicon nitride ceramics, the conductor component that becomes the heating resistor 3 has a larger coefficient of thermal expansion than that of silicon nitride, and therefore is usually in a state where tensile stress is applied. On the other hand, by adding silicon nitride to the heating resistor 3, the thermal expansion coefficient is brought close to that of the ceramic body 2, and the stress due to the difference between the thermal expansion coefficients when the heater 1 is heated and lowered is alleviated. can do.
また、発熱抵抗体3に含まれる窒化珪素の含有量が40質量%以下であるときには、発熱抵抗体3の抵抗値のばらつきを小さくさせることができる。従って、発熱抵抗体3に含まれる窒化珪素の含有量は20~40質量%であってもよい。また、発熱抵抗体3への同様の添加物として、窒化珪素の代わりに窒化硼素を4~12質量%添加することもできる。発熱抵抗体3は全長を3~15mm、断面積を0.15~0.8mm2に設定することができる。
Further, when the content of silicon nitride contained in the heating resistor 3 is 40% by mass or less, the variation in the resistance value of the heating resistor 3 can be reduced. Therefore, the content of silicon nitride contained in the heating resistor 3 may be 20 to 40% by mass. Further, as a similar additive to the heating resistor 3, 4 to 12% by mass of boron nitride can be added instead of silicon nitride. The heating resistor 3 can have a total length of 3 to 15 mm and a cross-sectional area of 0.15 to 0.8 mm 2 .
リード4は、発熱抵抗体3と外部の電源とを電気的に接続するための部材である。リード4は、発熱抵抗体3に接続されるとともにセラミック体2の表面に引き出されている。具体的には、発熱抵抗体3の両端部にそれぞれリード4が接合されていて、一方のリード4は、一端が発熱抵抗体3の一端に接続され、他端がセラミック体2の後端寄りの側面から導出され、他方のリード4は、一端が発熱抵抗体3の他端に接続され、他端がセラミック体2の後端部から導出されている。
The lead 4 is a member for electrically connecting the heating resistor 3 and an external power source. The lead 4 is connected to the heating resistor 3 and pulled out to the surface of the ceramic body 2. Specifically, leads 4 are joined to both ends of the heating resistor 3. One lead 4 has one end connected to one end of the heating resistor 3 and the other end closer to the rear end of the ceramic body 2. The other lead 4 has one end connected to the other end of the heating resistor 3 and the other end led from the rear end of the ceramic body 2.
このリード4は、例えば、発熱抵抗体3と同様の材料を用いて形成される。リード4は、発熱抵抗体3よりも断面積を大きくしたり、セラミック体2の形成材料の含有量を発熱抵抗体3よりも少なくしたりすることによって、単位長さ当たりの抵抗値が低くなっている。また、リード4は無機導電体であるWCを主成分とし、これに窒化珪素を含有量が15質量%以上となるように添加していてもよい。窒化珪素の含有量が増すにつれて、リード4の熱膨張率を、セラミック体2を構成する窒化珪素の熱膨張率に近付けることができる。また、窒化珪素の含有量が40質量%以下であるときには、リード4の抵抗値が低くなるとともに安定する。従って、窒化珪素の含有量は15~40質量%であってもよい。
The lead 4 is formed using the same material as the heating resistor 3, for example. The lead 4 has a lower resistance per unit length by making the cross-sectional area larger than that of the heating resistor 3 or by making the content of the forming material of the ceramic body 2 smaller than that of the heating resistor 3. ing. The lead 4 may be mainly composed of WC, which is an inorganic conductor, and silicon nitride may be added to the lead 4 so that the content is 15% by mass or more. As the content of silicon nitride increases, the thermal expansion coefficient of the lead 4 can be made closer to the thermal expansion coefficient of silicon nitride constituting the ceramic body 2. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the lead 4 is lowered and stabilized. Accordingly, the silicon nitride content may be 15 to 40% by mass.
ここで、本実施形態のヒータ1においては、図2に示すように、棒状のセラミック体2と、セラミック体2の先端側に埋設された発熱抵抗体3とを備えており、セラミック体2は、長さ方向を有する円柱状の第1部分21および長さ方向において第1部分21に隣接しているとともに第1部分21から離れるにつれて細くなる第2部分22を有している。第2部分22は表面に複数の溝23が設けられており、複数の溝23は、一端が第1部分21と第2部分22との境界に位置している。複数の溝23は、端面視したときに、言い換えると、長さ方向から見たときに、セラミック体2の径方向に対して傾斜して伸びている。より具体的には、それぞれの溝23は直線状であって、セラミック体2の長さ方向からも、第1部分21と第2部分22との境界からも、傾斜している。
Here, in the heater 1 of the present embodiment, as shown in FIG. 2, a rod-shaped ceramic body 2 and a heating resistor 3 embedded on the tip side of the ceramic body 2 are provided. The first portion 21 has a columnar shape having a length direction, and the second portion 22 is adjacent to the first portion 21 in the length direction and becomes thinner as the distance from the first portion 21 increases. The second portion 22 is provided with a plurality of grooves 23 on the surface, and one end of each of the plurality of grooves 23 is located at the boundary between the first portion 21 and the second portion 22. The plurality of grooves 23 extend obliquely with respect to the radial direction of the ceramic body 2 when viewed from the end face, in other words, when viewed from the length direction. More specifically, each groove 23 is linear, and is inclined from both the length direction of the ceramic body 2 and the boundary between the first portion 21 and the second portion 22.
これにより、ヒートサイクル下においてセラミック体2が大きく熱膨張する長さ方向に対して傾斜して溝23が伸びている。これにより、溝が周方向に沿っている場合と比較して、発生する熱応力を第1部分21と第2部分22との境界以外に分散させることができる。また、溝23が長さ方向に伸びている場合と比較して、セラミック体2の先端の中心に熱応力が集中してしまうおそれを低減できる。その結果、セラミック体2にクラック等が生じてしまうおそれを低減できる。
Thus, the groove 23 extends with an inclination with respect to the length direction in which the ceramic body 2 thermally expands greatly under a heat cycle. Thereby, compared with the case where a groove | channel is along the circumferential direction, the thermal stress to generate | occur | produce can be disperse | distributed other than the boundary of the 1st part 21 and the 2nd part 22. FIG. Moreover, compared with the case where the groove | channel 23 is extended in the length direction, the possibility that a thermal stress may concentrate on the center of the front-end | tip of the ceramic body 2 can be reduced. As a result, the risk of cracks and the like occurring in the ceramic body 2 can be reduced.
以下、溝23をセラミック体2の径方向に対して傾斜して伸びるように形成する方法について説明する。
Hereinafter, a method of forming the grooves 23 so as to extend with an inclination with respect to the radial direction of the ceramic body 2 will be described.
まず、セラミック体2を回転させながらNC加工(numerical control machining)の回転した刃物を3次元的に移動させる。このとき、セラミック体2の回転速度をNC加工の回転刃の回転速度の1/10以下にして、溝23が長さ方向ではなく周方向になるようにセットする。さらにこの状態でNC加工の回転刃の回転軸をセラミック体2の回転軸と軸線同士が交差しないように傾けて加工する。このようにして、図2、3に示すヒータ1を製造できる。
First, while the ceramic body 2 is rotated, the rotated blade of NC processing (numerical control machining) is moved three-dimensionally. At this time, the rotational speed of the ceramic body 2 is set to 1/10 or less of the rotational speed of the rotary blade for NC machining, and the groove 23 is set not in the length direction but in the circumferential direction. Further, in this state, the rotary shaft of the NC machining rotary blade is tilted so that the axis of rotation does not intersect the axis of rotation of the ceramic body 2. In this way, the heater 1 shown in FIGS. 2 and 3 can be manufactured.
さらに、図4に示すヒータ1を製造する場合には、溝23の方向に合わせて回転刃をセラミック体2に接触させる位置をすこしずつセラミック体2の中心に向けて移動させながらセラミック体2を回転させればよい。
Further, when the heater 1 shown in FIG. 4 is manufactured, the ceramic body 2 is moved while gradually moving the position where the rotary blade contacts the ceramic body 2 toward the center of the ceramic body 2 in accordance with the direction of the groove 23. Rotate.
また、図5,6に示すヒータ1を製造する場合には、NC加工の際にセラミック体2の中心から外周側へ刃を移動する時にセラミック体2の回転軸の軸線と回転刃の軸線との投影角度を変化させればよい。
5 and 6, when the blade is moved from the center of the ceramic body 2 to the outer peripheral side during NC machining, the axis of rotation of the ceramic body 2 and the axis of the rotary blade The projection angle may be changed.
セラミック体2の長さが、例えば、26.5mmの場合には、第2部分22の長さは、例えば、1mmに設定することができる。溝23の深さは、例えば、5μmに設定することができる。溝23の長さは、例えば、100μm以上に設定することができる。
When the length of the ceramic body 2 is 26.5 mm, for example, the length of the second portion 22 can be set to 1 mm, for example. The depth of the groove 23 can be set to 5 μm, for example. The length of the groove 23 can be set to 100 μm or more, for example.
また、図3に示すように、複数の溝23は曲線状に伸びていてもよい。これにより、特定の部位に熱応力が集中することを低減できる。その結果、セラミック体2にクラック等が生じてしまうおそれを低減できる。
Further, as shown in FIG. 3, the plurality of grooves 23 may extend in a curved shape. Thereby, it can reduce that a thermal stress concentrates on a specific site | part. As a result, the risk of cracks and the like occurring in the ceramic body 2 can be reduced.
また、第2部分22がドーム形状であってもよい。これにより、第2部分22の径が徐々に変化することになるので、第2部分22に局所的に熱応力が集中するおそれを低減できる。
Further, the second portion 22 may have a dome shape. Thereby, since the diameter of the 2nd part 22 changes gradually, a possibility that a thermal stress may concentrate locally on the 2nd part 22 can be reduced.
また、図4に示すように、複数の溝23が第2部分22の全体に渦状に分布していてもよい。これにより、溝23が存在する領域と存在しない領域とがある場合と比較して、第2部分22に局所的に熱応力が集中するおそれを低減できる。また、溝23が渦状であることによって、第2部22の周方向における熱応力の偏りを低減することができる。なお、図4に示すように、1つの溝23が第1部分21と第2部分22との境界から第2部分の中心にまで設けられていてもよいし、複数の溝23が断続的に設けられることによって、第1部分21と第2部分22との境界から第2部分の中心にまで設けられていてもよい。
Further, as shown in FIG. 4, the plurality of grooves 23 may be spirally distributed throughout the second portion 22. Thereby, compared with the case where there exists the area | region where the groove | channel 23 exists, and the area | region which does not exist, a possibility that a thermal stress may concentrate locally on the 2nd part 22 can be reduced. Moreover, since the groove 23 is spiral, the bias of thermal stress in the circumferential direction of the second portion 22 can be reduced. As shown in FIG. 4, one groove 23 may be provided from the boundary between the first portion 21 and the second portion 22 to the center of the second portion, or a plurality of grooves 23 may be intermittently formed. By being provided, it may be provided from the boundary between the first portion 21 and the second portion 22 to the center of the second portion.
また、図5に示すように、複数の溝23のそれぞれがS字状に伸びていてもよい。溝23がS字状に伸びていることによって、溝23が異なる方向に凸な弧状の部分を複数有することになる。そのため、溝23が1つの弧状の部分を有する形状である場合と比較して、熱応力を様々な方向に分散することができる。
Further, as shown in FIG. 5, each of the plurality of grooves 23 may extend in an S shape. By extending the groove 23 in an S shape, the groove 23 has a plurality of arc-shaped portions that are convex in different directions. Therefore, compared with the case where the groove 23 has a shape having one arc-shaped portion, the thermal stress can be dispersed in various directions.
また、図6に示すように、複数の溝23のそれぞれが、第1部分21と第2部分22との境界から第2部分22の中心を通って、再び、第1部分21と第2部分22との境界にまで伸びた形状がS字であってもよい。この場合には、複数の溝23を対称性高く配置することができるので、局所的に熱応力が集中してしまうおそれを低減できる。
Further, as shown in FIG. 6, each of the plurality of grooves 23 passes through the center of the second portion 22 from the boundary between the first portion 21 and the second portion 22 and again, the first portion 21 and the second portion. The shape extending to the boundary with 22 may be S-shaped. In this case, since the plurality of grooves 23 can be arranged with high symmetry, it is possible to reduce the possibility of thermal stress being concentrated locally.
図7に示すように、グロープラグ10は、上述のヒータ1と、ヒータ1の一部(後端側)を覆うように取り付けられた筒状の金属筒5とを備えている。また、金属筒5の内側に配置されてヒータ1の後端に取り付けられた電極金具6を備えている。グロープラグ10によれば、上述のヒータ1を使用していることから、耐久性が向上している。
As shown in FIG. 7, the glow plug 10 includes the above-described heater 1 and a cylindrical metal cylinder 5 attached so as to cover a part (the rear end side) of the heater 1. In addition, an electrode fitting 6 that is disposed inside the metal tube 5 and is attached to the rear end of the heater 1 is provided. According to the glow plug 10, since the heater 1 described above is used, durability is improved.
金属筒5は、セラミック体2を保持するための部材である。金属筒5は、筒状の部材であって、セラミック体2の後端側を囲むように取り付けられている。すなわち、筒状の金属筒5の内側に棒状のセラミック体2が挿入されている。金属筒5は、セラミック体2の後端側の側面に設けられてリード4が露出している部分に電気的に接続されている。金属筒5は、例えば、ステンレスまたは鉄(Fe)-ニッケル(Ni)-コバルト(Co)合金を有する。
The metal cylinder 5 is a member for holding the ceramic body 2. The metal cylinder 5 is a cylindrical member and is attached so as to surround the rear end side of the ceramic body 2. That is, the rod-shaped ceramic body 2 is inserted inside the cylindrical metal tube 5. The metal cylinder 5 is provided on the side surface on the rear end side of the ceramic body 2 and is electrically connected to a portion where the lead 4 is exposed. The metal cylinder 5 includes, for example, stainless steel or iron (Fe) -nickel (Ni) -cobalt (Co) alloy.
金属筒5とセラミック体2とは、ろう材によって接合されている。ろう材は、金属筒5とセラミック体2との間にセラミック体2の後端側を囲むように設けられている。このろう材が設けられていることによって、金属筒5とリード4とが電気的に接続されている。
The metal cylinder 5 and the ceramic body 2 are joined by a brazing material. The brazing material is provided between the metal cylinder 5 and the ceramic body 2 so as to surround the rear end side of the ceramic body 2. By providing this brazing material, the metal cylinder 5 and the lead 4 are electrically connected.
ろう材としては、ガラス成分を5~20質量%含んだ銀(Ag)-銅(Cu)ろう、AgろうまたはCuろう等を用いることができる。ガラス成分はセラミック体2のセラミックスとの濡れ性が良く、摩擦係数が大きいために、ろう材とセラミック体2との接合強度またはろう材と金属筒5との接合強度を向上させることができる。
As the brazing material, silver (Ag) -copper (Cu) brazing, Ag brazing, Cu brazing or the like containing 5 to 20% by mass of a glass component can be used. Since the glass component has good wettability with the ceramic of the ceramic body 2 and has a large coefficient of friction, the bonding strength between the brazing material and the ceramic body 2 or the bonding strength between the brazing material and the metal cylinder 5 can be improved.
電極金具6は、金属筒5の内側に位置してセラミック体2の後端にリード4に電気的に接続するように取り付けられている。電極金具6は、種々の形態のものを用いることができるが、図12に示す例では、セラミック体2の後端にリード4を含んで被さるように取り付けられるキャップ部と外部の接続電極に電気的に接続されるコイル状部とが線状部で接続された構成である。この電極金具6は、金属筒5との間で短絡が生じないように金属筒5の内周面から離れて保持されている。
The electrode fitting 6 is located inside the metal cylinder 5 and attached to the rear end of the ceramic body 2 so as to be electrically connected to the lead 4. Various types of electrode fittings 6 can be used. However, in the example shown in FIG. 12, the cap part attached to cover the rear end of the ceramic body 2 including the lead 4 and the external connection electrode are electrically connected. It is the structure by which the coil-shaped part connected electrically is connected by the linear part. The electrode fitting 6 is held away from the inner peripheral surface of the metal cylinder 5 so as not to cause a short circuit with the metal cylinder 5.
電極金具6は、外部の電源との接続における応力緩和のために設けられたコイル状部を有する金属線である。電極金具6は、リード4に電気的に接続されるとともに、外部の電源と電気的に接続される。外部の電源によって金属筒5と電極金具6との間に電圧を加えることによって、金属筒5および電極金具6を介して発熱抵抗体3に電流を流すことができる。電極金具6は、例えばニッケルまたはステンレスを有する。ヒータ1は、例えば、上記構成の発熱抵抗体3、リード4およびセラミック体2の形状の金型を用いた射出成形法等によって形成することができる。
The electrode fitting 6 is a metal wire having a coil-shaped portion provided for stress relaxation in connection with an external power source. The electrode fitting 6 is electrically connected to the lead 4 and is electrically connected to an external power source. By applying a voltage between the metal cylinder 5 and the electrode fitting 6 by an external power source, a current can be passed through the heating resistor 3 via the metal cylinder 5 and the electrode fitting 6. The electrode fitting 6 has nickel or stainless steel, for example. The heater 1 can be formed by, for example, an injection molding method using a die having the shape of the heating resistor 3, the lead 4, and the ceramic body 2 configured as described above.
1:ヒータ
2:セラミック体
21:第1部分
22:第2部分
23:溝
3:発熱抵抗体
4:リード
5:金属筒
6:電極金具
10:グロープラグ 1: Heater 2: Ceramic body 21: First portion 22: Second portion 23: Groove 3: Heating resistor 4: Lead 5: Metal cylinder 6: Electrode fitting 10: Glow plug
2:セラミック体
21:第1部分
22:第2部分
23:溝
3:発熱抵抗体
4:リード
5:金属筒
6:電極金具
10:グロープラグ 1: Heater 2: Ceramic body 21: First portion 22: Second portion 23: Groove 3: Heating resistor 4: Lead 5: Metal cylinder 6: Electrode fitting 10: Glow plug
Claims (6)
- 棒状のセラミック体と、該セラミック体の内部に位置する発熱抵抗体とを備えており、前記セラミック体は、長さ方向を有する円柱状の第1部分および前記長さ方向において前記第1部分に隣接しているとともに前記第1部分から離れるにつれて細くなる第2部分を有しており、
前記第2部分の表面には複数の溝が設けられており、
該複数の溝は、一端が前記第1部分と前記第2部分との境界に位置しているとともに、前記長さ方向から見て前記セラミック体の径方向に対して傾斜して伸びているヒータ。 A rod-shaped ceramic body; and a heating resistor positioned inside the ceramic body, the ceramic body having a columnar first portion having a length direction and the first portion in the length direction. Having a second portion that is adjacent and narrows away from the first portion;
A plurality of grooves are provided on the surface of the second portion,
The plurality of grooves, one end of which is located at the boundary between the first part and the second part, and which extends at an angle with respect to the radial direction of the ceramic body as viewed from the length direction . - 前記複数の溝は曲線状に伸びている請求項1に記載のヒータ。 The heater according to claim 1, wherein the plurality of grooves extend in a curved shape.
- 前記第2部分がドーム形状である請求項1または請求項2に記載のヒータ。 The heater according to claim 1 or 2, wherein the second portion has a dome shape.
- 前記長さ方向から見て、前記複数の溝が前記第2部分の全体に渦状に分布している請求項1乃至請求項3のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 3, wherein the plurality of grooves are spirally distributed over the entire second portion as viewed from the length direction.
- 前記複数の溝のそれぞれがS字状に伸びている請求項1乃至請求項4のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 4, wherein each of the plurality of grooves extends in an S shape.
- 請求項1乃至請求項5のいずれかに記載のヒータと、前記セラミック体の一部を覆うように取り付けられた金属筒とを備えたグロープラグ。 A glow plug comprising the heater according to any one of claims 1 to 5 and a metal cylinder attached so as to cover a part of the ceramic body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018548980A JP6817325B2 (en) | 2016-11-04 | 2017-10-27 | Heater and glow plug with it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-215815 | 2016-11-04 | ||
JP2016215815 | 2016-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018084083A1 true WO2018084083A1 (en) | 2018-05-11 |
Family
ID=62076075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/038910 WO2018084083A1 (en) | 2016-11-04 | 2017-10-27 | Heater and glow plug with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6817325B2 (en) |
WO (1) | WO2018084083A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6193588A (en) * | 1984-10-15 | 1986-05-12 | 杉森 英夫 | Heat conductor |
JPH10189221A (en) * | 1996-12-27 | 1998-07-21 | Kyocera Corp | Heat roller for fixing and manufacture thereof |
JP2010080452A (en) * | 2010-01-11 | 2010-04-08 | Ngk Spark Plug Co Ltd | Ceramic heater device |
JP2014231940A (en) * | 2013-05-29 | 2014-12-11 | 京セラ株式会社 | Heater and glow plug |
-
2017
- 2017-10-27 WO PCT/JP2017/038910 patent/WO2018084083A1/en active Application Filing
- 2017-10-27 JP JP2018548980A patent/JP6817325B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6193588A (en) * | 1984-10-15 | 1986-05-12 | 杉森 英夫 | Heat conductor |
JPH10189221A (en) * | 1996-12-27 | 1998-07-21 | Kyocera Corp | Heat roller for fixing and manufacture thereof |
JP2010080452A (en) * | 2010-01-11 | 2010-04-08 | Ngk Spark Plug Co Ltd | Ceramic heater device |
JP2014231940A (en) * | 2013-05-29 | 2014-12-11 | 京セラ株式会社 | Heater and glow plug |
Also Published As
Publication number | Publication date |
---|---|
JP6817325B2 (en) | 2021-01-20 |
JPWO2018084083A1 (en) | 2019-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5575260B2 (en) | Heater and glow plug equipped with the same | |
JP5436675B2 (en) | Heater and glow plug equipped with the same | |
CN107211492B (en) | Heater and glow plug provided with same | |
JP5969621B2 (en) | Heater and glow plug equipped with the same | |
JP6592103B2 (en) | Heater and glow plug equipped with the same | |
JP6075810B2 (en) | Heater and glow plug | |
WO2018084083A1 (en) | Heater and glow plug with same | |
JP5777812B2 (en) | Heater and glow plug equipped with the same | |
JP6603321B2 (en) | Heater and glow plug equipped with the same | |
JP6342653B2 (en) | Heater and glow plug equipped with the same | |
JP7116237B2 (en) | heater | |
WO2018199229A1 (en) | Heater and glow plug provided therewith | |
JP6711697B2 (en) | Heater and glow plug equipped with the same | |
JP6725653B2 (en) | Heater and glow plug equipped with the same | |
JP6105464B2 (en) | Heater and glow plug equipped with the same | |
JP7086205B2 (en) | Heater and glow plug with it | |
WO2017135362A1 (en) | Heater and glow-plug provided therewith | |
JP6272519B2 (en) | Heater and glow plug equipped with the same | |
JP6085050B2 (en) | Heater and glow plug equipped with the same | |
JP2019061920A (en) | heater | |
WO2015129722A1 (en) | Heater and glowplug |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17868207 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018548980 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17868207 Country of ref document: EP Kind code of ref document: A1 |