WO2018199229A1 - Heater and glow plug provided therewith - Google Patents

Heater and glow plug provided therewith Download PDF

Info

Publication number
WO2018199229A1
WO2018199229A1 PCT/JP2018/016973 JP2018016973W WO2018199229A1 WO 2018199229 A1 WO2018199229 A1 WO 2018199229A1 JP 2018016973 W JP2018016973 W JP 2018016973W WO 2018199229 A1 WO2018199229 A1 WO 2018199229A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
heater
arc
section
ceramic body
Prior art date
Application number
PCT/JP2018/016973
Other languages
French (fr)
Japanese (ja)
Inventor
孝太郎 田井村
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2019514617A priority Critical patent/JP6970188B2/en
Publication of WO2018199229A1 publication Critical patent/WO2018199229A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23QIGNITION; EXTINGUISHING-DEVICES
    • F23Q7/00Incandescent ignition; Igniters using electrically-produced heat, e.g. lighters for cigarettes; Electrically-heated glowing plugs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/48Heating elements having the shape of rods or tubes non-flexible heating conductor embedded in insulating material

Definitions

  • the present disclosure is, for example, a heater for ignition or flame detection in a combustion-type in-vehicle heating device, a heater for ignition of various combustion devices such as a petroleum fan heater, a heater for a glow plug of a diesel engine, and various sensors such as an oxygen sensor.
  • the present invention relates to a heater used for a heater or a heater for heating a measuring instrument, and a glow plug including the heater.
  • Patent Document 1 As a ceramic heater, for example, a ceramic heater disclosed in JP 2012-99373 A (hereinafter referred to as Patent Document 1) is known.
  • the ceramic heater disclosed in Patent Document 1 includes a round bar-shaped base body having an insulating ceramic and a heating element embedded therein.
  • the heat generating element has two lead portions facing each other and a U-shaped heat generating portion that connects the two lead portions.
  • the heater of the present disclosure includes a rod-shaped ceramic body and a heating resistor provided inside the ceramic body, and the heating resistor is opposed to the first straight portion and the first straight portion.
  • the first cross section perpendicular to the axial direction of the arc-shaped portion passing through the top portion and the arc-shaped portion connecting the first straight portion and the second straight portion has the second straight portion and the top straight portion.
  • the arcuate portion has a major axis and a minor axis, and the major axis and the minor axis are inclined with respect to a plane including the respective axes of the first linear portion and the second linear portion.
  • the heater of the present disclosure can improve the durability of the heater.
  • FIG. 1 is the expanded sectional view which expanded the vicinity of the heating resistor of the heater shown in FIG. 1
  • (b) is sectional drawing in the XX line shown in (a).
  • (A) And (b) is sectional drawing of the top part of the arc-shaped part in the heater of another example, respectively.
  • (A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example,
  • (b) is a sectional view in the YY line shown in (a).
  • A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example,
  • (b) is a sectional view in the XX line shown in (a)
  • (c) is (a) FIG.
  • FIG. 6 is a sectional view taken along line YY shown in FIG. (A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example, (b) is a sectional view in the XX line shown in (a), (c) is (a) FIG. 6 is a sectional view taken along line YY shown in FIG. (A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example, (b) is a sectional view in the XX line shown in (a), (c) is (a) FIG. 6 is a sectional view taken along line YY shown in FIG. It is sectional drawing which shows an example of the glow plug provided with the heater of this indication.
  • FIG. 1 is a cross-sectional view showing a heater 10 as an example of the disclosure.
  • the heater 10 includes a rod-shaped ceramic body 1 and a heating resistor 2.
  • the ceramic body 1 is a member for protecting the heating resistor 2.
  • the ceramic body 1 has, for example, a rod shape such as a column shape or a prism shape. Further, the ceramic body 1 may have a rounded shape on the tip side.
  • the tip side means one when the ceramic body 1 is divided in half in the longitudinal direction, and the end on the tip side of the ceramic body 1 is the tip.
  • the ceramic body 1 includes electrically insulating ceramics such as oxide ceramics, nitride ceramics, or carbide ceramics. Thereby, the heater 10 with high reliability at the time of rapid temperature rise can be provided.
  • the ceramic body 1 is preferably formed from silicon nitride ceramics. This is because silicon nitride ceramics is excellent in terms of high strength, high toughness, high insulating properties, and heat resistance.
  • the ceramic body 1 having a silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component.
  • Element oxide, 0.5 to 3% by mass of Al 2 O 3 , and SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and formed into a predetermined shape Then, it can be obtained by hot press firing at 1650 to 1780 ° C.
  • the dimensions of the ceramic body 1 can be, for example, 20 to 50 mm in length. When the ceramic body 1 is cylindrical, the diameter can be 3 to 5 mm, for example.
  • the heating resistor 2 is a member that generates heat when an electric current flows.
  • the heating resistor 2 is provided inside the ceramic body 1. Further, the heating resistor 2 is provided, for example, on the tip side of the ceramic body 1.
  • the heating resistor 2 includes a first straight portion 211 and a second straight portion 212 that face each other, and an arcuate portion 22 that connects one end of each of the first straight portion 211 and the second straight portion 212.
  • the first straight part 211 and the second straight part 212 are the first straight part 211 and the second straight part 212.
  • the arcuate portion 22 has a top.
  • the top portion means a portion of the arc-shaped portion 22 that is closest to the tip of the ceramic body 1.
  • the straight portion 21 and the arc-shaped portion 22 for example, a material mainly composed of a ceramic having a carbide, nitride, or silicide such as W, Mo, or Ti can be used.
  • a ceramic having a carbide, nitride, or silicide such as W, Mo, or Ti
  • tungsten carbide (WC) is a conductive ceramic material among the above materials in that the difference in coefficient of thermal expansion from the ceramic body 1 is small and the heat resistance is high.
  • the straight portion 21 and the arc-shaped portion 22 may be integrally formed from the same material, or may be separately formed from different materials.
  • the length of the linear portion 21 can be set to 0.1 to 50 mm. Further, the inner length of the arc-shaped portion 22 can be 0.1 to 10 mm, and the outer length can be 0.2 to 12 mm.
  • the dimensions of the heating resistor 2 can be, for example, the cross-sectional area of the straight portion 21 can be 0.01 to 5 mm 2 and the cross-sectional area of the arc-shaped portion 22 can be 0.01 to 5 mm 2 . Further, the linear portion 21 may have a larger cross-sectional area than the arc-shaped portion 22. Thereby, the resistance value per unit length of the linear portion 21 can be made lower than that of the arc-shaped portion 22. For this reason, the amount of heat generated in the straight portion 21 can be suppressed.
  • first straight portion 211 and the second straight portion 212 may be connected to the lead 3 at the other end.
  • One end of the lead 3 is connected to the other end of the linear portion 21, and the other end is drawn out to the side surface on the rear end side of the ceramic body 1 or the rear end of the ceramic body 1.
  • the rear end side means the other when the ceramic body 1 is divided in half in the longitudinal direction, and the end of the ceramic body 1 on the rear end side is defined as the rear end.
  • the lead 3 is formed using the same material as the heating resistor 2.
  • the lead 3 has a larger cross-sectional area than the heating resistor 2, and the content of the forming material of the ceramic body 1 is less than that of the heating resistor 2. By doing so, the resistance value per unit length may be low.
  • the lead 3 As the material of the lead 3, WC can be used in that the difference in coefficient of thermal expansion from the ceramic body 1 is small, the heat resistance is high, and the specific resistance is small. Furthermore, the lead 3 is preferably composed mainly of WC that is an inorganic conductor, and silicon nitride is added to the lead 3 so that the content is 15 mass% or more. Thereby, the thermal expansion coefficient of the lead 3 can be brought close to the thermal expansion coefficient of the silicon nitride constituting the ceramic body 1. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the lead 3 is reduced and stabilized. Therefore, the silicon nitride content is preferably 15% by mass to 40% by mass. More preferably, the silicon nitride content is 20 mass% to 35 mass%.
  • the cross-sectional shape of the arc-shaped portion 22 is a shape having a major axis and a minor axis.
  • the short axis is inclined with respect to the plane including the respective axes of the first straight portion 211 and the second straight portion 212.
  • the arc-shaped portion 22 when the first cross section passing through the top and perpendicular to the axial direction of the arc-shaped portion 22 is viewed, the arc-shaped portion 22 has a major axis and a minor axis, and the major axis and the minor axis are It inclines with respect to the plane containing each axis
  • FIG. 2 For example, in the heater 10 shown in FIG. 2, the long axis when the top of the arc-shaped portion 22 is viewed in a cross section perpendicular to the extending direction of the arc-shaped portion 22 (cross section taken along line XX shown in FIG. 2A). Further, the minor axis is inclined with respect to a plane (AA line shown in FIG. 2B) including the respective axes of the first linear portion 211 and the second linear portion 212.
  • the portion of the ceramic body 1 that is in contact with the major axis is the portion that is farthest from the minor axis, and the short portion of the ceramic body 1 is short.
  • the part in contact with the axis is the part farthest from the long axis. Therefore, under the heat cycle, the amount of thermal expansion on the major axis and the minor axis tends to be larger than the vicinity of the major axis and the minor axis. Thereby, in the vicinity of the major axis and minor axis of the ceramic body 1, thermal stress tends to be easily generated.
  • the major axis and the minor axis are inclined with respect to the plane including the respective axes of the first linear portion 211 and the second linear portion 212.
  • the axial directions of the major axis and the minor axis of the top of the arc-shaped part 22 can be shifted with respect to the plane including the axes of the first linear part 211 and the second linear part 212. Therefore, it is possible to reduce the possibility of thermal stress concentrating on the ceramic body 1 on the plane including the respective axes of the first straight portion 211 and the second straight portion 212.
  • the major axis of the apex is inclined by, for example, about 0.1 to 30 degrees with respect to the plane including the respective axes of the linear portions 21, and the minor axis of the apex is set to each of the linear portions 21. For example, it may be inclined by about 0.1 to 30 degrees with respect to the plane including the axis.
  • the cross-sectional shape at the top of the arcuate portion 22 may be elliptical.
  • the surface of the top part of the arc-shaped part 22 can be made smooth. Therefore, in the heat cycle, the thermal stress generated in the vicinity of the major axis and the minor axis of the top portion of the ceramic body 1 can be dispersed. Thereby, the possibility that thermal stress concentrates on the ceramic body 1 in the vicinity of the major axis and minor axis of the top can be reduced. Therefore, it is possible to reduce the possibility of cracks occurring in the ceramic body 1 in the vicinity of the major axis and the minor axis at the top. As a result, the long-term reliability of the heater 10 can be improved.
  • the shape having the major axis and the minor axis is not limited to the elliptical shape as shown in FIG.
  • two ellipses having the same length of either the long axis or the short axis are divided in half by the same length, and the axes are overlapped.
  • the shape may be different.
  • the axis of the semicircle and the axis perpendicular to the axis of the semicircle can be a major axis or a minor axis, respectively.
  • the cross-sectional shape may be a shape having a recess in a part of the ellipse.
  • the major axis and the minor axis of the ellipse having the smallest area among the ellipses circumscribing a shape having a depression in a part of the ellipse can be set as the major axis and the minor axis, respectively.
  • the long-term reliability of the heater 10 can be improved.
  • the cross-sectional shape of the top is a shape with a dent in a part of the ellipse, for example, when compared with an elliptical shape without a dent, it is recessed by about 0.05 to 0.5 mm toward the center of the ellipse. It only has to be.
  • the cross-sectional shape of the arc-shaped portion 22 is a shape having a major axis and a minor axis.
  • the long axis and the short axis may be inclined with respect to a plane including the respective axes of the first straight line portion 211 and the second straight line portion 212.
  • the heater 10 has a major axis and a minor axis when the second cross section passing through a portion other than the top of the arc-shaped portion 22 and perpendicular to the axial direction of the arc-shaped portion 22 has a major axis and a minor axis.
  • the minor axis may be inclined with respect to a plane including the respective axes of the first straight line portion 211 and the second straight line portion 212.
  • a portion other than the top of the arc-shaped portion 22 is viewed in a cross section perpendicular to the extending direction of the arc-shaped portion 22 (cross section taken along line YY shown in FIG. 4A).
  • the major axis and the minor axis are inclined with respect to a plane (AA line shown in FIG. 4B) including the respective axes of the first linear portion 211 and the second linear portion 212.
  • the axial directions of the long axis and the short axis in the portion other than the top of the arc-shaped portion 22 can be shifted with respect to the plane including the respective axes of the first straight portion 211 and the second straight portion 212. Therefore, under the heat cycle, the vicinity of the major axis and the minor axis, which are parts where the thermal stress is likely to occur, in the ceramic body 1 with respect to the plane including the respective axes of the first linear portion 211 and the second linear portion 212. Can be shifted. Therefore, it is possible to reduce the risk of thermal stress concentrating on the plane including the respective axes of the first straight portion 211 and the second straight portion 212 in the ceramic body 1. As a result, the durability of the heater 10 can be further improved.
  • the major axis of the part other than the top part is inclined by, for example, about 0.1 to 30 degrees with respect to the plane including the respective axes of the linear part 21, and the minor axis of the part other than the top part is What is necessary is just to incline about 0.1 to 30 degree
  • the ceramic body 1 is abbreviate
  • the inclination of the short axis at the top of the arcuate part 22 may be larger than the inclination of the short axis at a part other than the top of the arcuate part 22.
  • the major axis and minor axis of the top part of the arcuate part 22 and the major axis and minor axis of parts other than the apex part of the arcuate part 22 do not intersect when viewed in three dimensions on the respective extension lines. Can do. Therefore, it is possible to disperse portions of the ceramic body 1 where thermal stress is likely to occur. As a result, the durability of the heater 10 can be further improved.
  • the short axis of the top portion is inclined by, for example, about 2 to 30 degrees with respect to the plane including the respective axes of the straight portion 21, and the short axis of the portion other than the top portion is set to each of the straight portion 21.
  • it may be inclined by about 0.1 to 5 degrees with respect to the plane including the axis.
  • the cross-sectional area may be constant in the arc-shaped portion 22.
  • the respective cross sections when the arc-shaped portion 22 is divided into four equal parts perpendicular to the extending direction of the arc-shaped portion 22 using CT or the like the difference between the respective cross-sectional areas and the cross-sectional area of the top portion are obtained.
  • it is in the range of 5% of the cross-sectional area of the top part it can be considered that the cross-sectional area of the arc-shaped part 22 is constant. Since the cross-sectional area of the arc-shaped part 22 is constant, the possibility that the resistance value per unit length varies in the entire arc-shaped part 22 due to the cross-sectional area can be reduced. Therefore, the calorific value in the whole arcuate part 22 can be made constant. As a result, the heat uniformity of the heater 10 can be improved.
  • the arc-shaped portion 22 may have a smaller cross-sectional area at the top than at portions other than the top.
  • the arcuate portion 22 may have a smaller cross-sectional area in the first cross section than in the second cross section.
  • the cross-sectional area of the top of the arcuate portion 22 can be 0.01 to 2 mm 2
  • the cross-sectional area of the portion other than the top can be 0.03 to 5 mm 2
  • the arc-shaped part 22 may have the smallest cross-sectional area at the top, or may continuously have a small cross-sectional area near the top.
  • the arc-shaped portion 22 may have a larger cross-sectional area at the top than at a portion other than the top.
  • the arcuate portion 22 may have a larger cross-sectional area in the first cross section than in the second cross section.
  • the cross-sectional area of the top of the arcuate portion 22 can be 0.03 to 5 mm 2
  • the cross-sectional area of the portion other than the top can be 0.01 to 2 mm 2
  • the arc-shaped part 22 may have the largest cross-sectional area in the top part, and the cross-sectional area may become large continuously in the vicinity of the top part.
  • the glow plug 100 is the heater 10 described above, and includes the heater 10 and the metal cylinder 4 that covers the ceramic body 1. According to the glow plug 100, since the above-described heater 10 is used, the durability of the heater 10 can be improved, so that the durability can be improved.
  • the metal cylinder 4 is a metal cylinder that holds the heater 10.
  • the metal cylinder 4 is joined to one lead 3 drawn out to the side surface of the ceramic body 1 with a brazing material or the like and electrically connected thereto.
  • the glow plug 100 is used by connecting external electrodes to the metal cylinder 4 and the other lead 3.
  • Ceramic body 2 Heating resistor 21: Linear portion 211: First linear portion 212: Second linear portion 22: Arc-shaped portion 3: Lead 4: Metal cylinder 10: Heater 100: Glow plug

Abstract

This heater 10 comprises: a rod-shaped ceramic body 1; and a heating resistor 2 provided inside the ceramic body 1. The heating resistor 2 includes a first linear section 211, a second linear section 212 opposing the first linear section 211, and an arc-shaped section 22 having an apex and connecting the first linear section 211 and the second linear section 212. When a first cross section passing through the apex and perpendicular to the axial direction of the arc-shaped section 22 is viewed, the arc-shaped section 22 has a long axis and a short axis, and the long axis and short axis are inclined with respect to a plane containing the axes of the first linear section 211 and the second linear section 212.

Description

ヒータおよびこれを備えたグロープラグHeater and glow plug equipped with the same
 本開示は、例えば燃焼式車載暖房装置における点火用もしくは炎検知用のヒータ、石油ファンヒータ等の各種燃焼機器の点火用のヒータ、ディーゼルエンジンのグロープラグ用のヒータ、酸素センサ等の各種センサ用のヒータまたは測定機器の加熱用のヒータ等に利用されるヒータおよびこれを備えたグロープラグに関するものである。 The present disclosure is, for example, a heater for ignition or flame detection in a combustion-type in-vehicle heating device, a heater for ignition of various combustion devices such as a petroleum fan heater, a heater for a glow plug of a diesel engine, and various sensors such as an oxygen sensor. In particular, the present invention relates to a heater used for a heater or a heater for heating a measuring instrument, and a glow plug including the heater.
 セラミックヒータとして、例えば、特開2012-99373号公報(以下、特許文献1という)に開示のセラミックヒータが知られている。特許文献1に開示されたセラミックヒータは、絶縁性セラミックを有する丸棒状の基体と、その内部に埋設された発熱素子とを備えている。また、発熱素子は、対向する2つのリード部と、2つのリード部を繋ぐU字状の発熱部とを有している。 As a ceramic heater, for example, a ceramic heater disclosed in JP 2012-99373 A (hereinafter referred to as Patent Document 1) is known. The ceramic heater disclosed in Patent Document 1 includes a round bar-shaped base body having an insulating ceramic and a heating element embedded therein. Moreover, the heat generating element has two lead portions facing each other and a U-shaped heat generating portion that connects the two lead portions.
 本開示のヒータは、棒状のセラミック体と、該セラミック体の内部に設けられた発熱抵抗体とを備えており、該発熱抵抗体は、第1直線部と、該第1直線部に対向する第2直線部と、頂部を有し前記第1直線部および前記第2直線部を繋ぐ弧状部とを有するとともに、前記頂部を通り前記弧状部の軸方向に垂直な第1断面を見たときに、前記弧状部は、長軸および短軸を有するとともに、長軸および短軸が前記第1直線部および前記第2直線部のそれぞれの軸を含む平面に対して傾斜している。 The heater of the present disclosure includes a rod-shaped ceramic body and a heating resistor provided inside the ceramic body, and the heating resistor is opposed to the first straight portion and the first straight portion. When the first cross section perpendicular to the axial direction of the arc-shaped portion passing through the top portion and the arc-shaped portion connecting the first straight portion and the second straight portion has the second straight portion and the top straight portion. In addition, the arcuate portion has a major axis and a minor axis, and the major axis and the minor axis are inclined with respect to a plane including the respective axes of the first linear portion and the second linear portion.
 本開示のヒータによれば、ヒータの耐久性を向上させることができる。 The heater of the present disclosure can improve the durability of the heater.
本開示のヒータの一例を示す断面図である。It is sectional drawing which shows an example of the heater of this indication. (a)は図1に示すヒータの発熱抵抗体の近傍を拡大した拡大断面図であり、(b)は(a)に示すX-X線における断面図である。(A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater shown in FIG. 1, (b) is sectional drawing in the XX line shown in (a). (a)および(b)は、それぞれ別の例のヒータにおける弧状部の頂部の断面図である。(A) And (b) is sectional drawing of the top part of the arc-shaped part in the heater of another example, respectively. (a)は別の例のヒータの発熱抵抗体の近傍を拡大した拡大断面図であり、(b)は(a)に示すY-Y線における断面図である。(A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example, (b) is a sectional view in the YY line shown in (a). (a)は別の例のヒータの発熱抵抗体の近傍を拡大した拡大断面図であり、(b)は(a)に示すX-X線における断面図であり、(c)は(a)に示すY-Y線における断面図である。(A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example, (b) is a sectional view in the XX line shown in (a), (c) is (a) FIG. 6 is a sectional view taken along line YY shown in FIG. (a)は別の例のヒータの発熱抵抗体の近傍を拡大した拡大断面図であり、(b)は(a)に示すX-X線における断面図であり、(c)は(a)に示すY-Y線における断面図である。(A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example, (b) is a sectional view in the XX line shown in (a), (c) is (a) FIG. 6 is a sectional view taken along line YY shown in FIG. (a)は別の例のヒータの発熱抵抗体の近傍を拡大した拡大断面図であり、(b)は(a)に示すX-X線における断面図であり、(c)は(a)に示すY-Y線における断面図である。(A) is the expanded sectional view which expanded the vicinity of the heating resistor of the heater of another example, (b) is a sectional view in the XX line shown in (a), (c) is (a) FIG. 6 is a sectional view taken along line YY shown in FIG. 本開示のヒータを備えたグロープラグの一例を示す断面図である。It is sectional drawing which shows an example of the glow plug provided with the heater of this indication.
 本開示のヒータ10の一例について、図面を用いて詳細に説明する。 An example of the heater 10 of the present disclosure will be described in detail with reference to the drawings.
 図1は、開示の一例であるヒータ10を示す断面図である。図1に示すように、ヒータ10は、棒状のセラミック体1と、発熱抵抗体2とを備えている。 FIG. 1 is a cross-sectional view showing a heater 10 as an example of the disclosure. As shown in FIG. 1, the heater 10 includes a rod-shaped ceramic body 1 and a heating resistor 2.
 セラミック体1は、発熱抵抗体2を保護するための部材である。セラミック体1は、例えば円柱状または角柱状などの棒状である。また、セラミック体1は、先端側が丸みを帯びた形状であってもよい。なお、ここでいう先端側とは、セラミック体1を長手方向で半分に分けたときの一方を意味しており、セラミック体1のうち先端側の端部を先端とする。セラミック体1は、例えば酸化物セラミックス、窒化物セラミックスまたは炭化物セラミックス等の電気的な絶縁性のセラミックスを有する。これにより、急速昇温時の信頼性が高いヒータ10を提供することができる。 The ceramic body 1 is a member for protecting the heating resistor 2. The ceramic body 1 has, for example, a rod shape such as a column shape or a prism shape. Further, the ceramic body 1 may have a rounded shape on the tip side. Here, the tip side means one when the ceramic body 1 is divided in half in the longitudinal direction, and the end on the tip side of the ceramic body 1 is the tip. The ceramic body 1 includes electrically insulating ceramics such as oxide ceramics, nitride ceramics, or carbide ceramics. Thereby, the heater 10 with high reliability at the time of rapid temperature rise can be provided.
 特に、セラミック体1は、窒化珪素質セラミックスから形成されているとよい。窒化珪素質セラミックスは、主成分である窒化珪素が高強度、高靱性、高絶縁性および耐熱性の観点で優れているからである。窒化珪素質セラミックスを有するセラミック体1は、例えば、主成分の窒化珪素に対して、焼結助剤として3~12質量%のY,Yb,Er等の希土類元素酸化物、0.5~3質量%のAl、さらに焼結体に含まれるSiO量として1.5~5質量%となるようにSiOを混合し、所定の形状に成形し、その後、1650~1780℃でホットプレス焼成することにより得ることができる。セラミック体1の寸法は、例えば長さを20~50mmにすることができる。また、セラミック体1が円柱状のときは、例えば直径を3~5mmにすることができる。 In particular, the ceramic body 1 is preferably formed from silicon nitride ceramics. This is because silicon nitride ceramics is excellent in terms of high strength, high toughness, high insulating properties, and heat resistance. The ceramic body 1 having a silicon nitride ceramic is, for example, 3 to 12% by mass of a rare earth such as Y 2 O 3 , Yb 2 O 3 , Er 2 O 3 as a sintering aid with respect to silicon nitride as a main component. Element oxide, 0.5 to 3% by mass of Al 2 O 3 , and SiO 2 are mixed so that the amount of SiO 2 contained in the sintered body is 1.5 to 5% by mass, and formed into a predetermined shape Then, it can be obtained by hot press firing at 1650 to 1780 ° C. The dimensions of the ceramic body 1 can be, for example, 20 to 50 mm in length. When the ceramic body 1 is cylindrical, the diameter can be 3 to 5 mm, for example.
 発熱抵抗体2は、電流を流すことによって発熱する部材である。発熱抵抗体2は、セラミック体1の内部に設けられている。また、発熱抵抗体2は、例えばセラミック体1の先端側に設けられている。図1に示すように、発熱抵抗体2は、対向する第1直線部211および第2直線部212と、第1直線部211および第2直線部212のそれぞれの一端を結ぶ弧状部22とを有している。第1直線部211および第2直線部212は、第1直線部211および第2直線部212である。弧状部22は頂部を有している。ここで、頂部とは、弧状部22のうちセラミック体1の先端に最も近い部位を意味している。 The heating resistor 2 is a member that generates heat when an electric current flows. The heating resistor 2 is provided inside the ceramic body 1. Further, the heating resistor 2 is provided, for example, on the tip side of the ceramic body 1. As shown in FIG. 1, the heating resistor 2 includes a first straight portion 211 and a second straight portion 212 that face each other, and an arcuate portion 22 that connects one end of each of the first straight portion 211 and the second straight portion 212. Have. The first straight part 211 and the second straight part 212 are the first straight part 211 and the second straight part 212. The arcuate portion 22 has a top. Here, the top portion means a portion of the arc-shaped portion 22 that is closest to the tip of the ceramic body 1.
 直線部21および弧状部22は、例えばW、MoまたはTiなどの炭化物、窒化物または珪化物を有するセラミックスを主成分とするものを使用することができる。セラミック体1が窒化珪素質セラミックスを有する場合は、セラミック体1との熱膨張率の差が小さい点および高い耐熱性を有する点で、上記の材料の中でも炭化タングステン(WC)が導電性セラミックス材料として優れている。直線部21および弧状部22は、同じ材料から一体に形成されていてもよいし、異なる材料から別々に形成されていてもよい。 As the straight portion 21 and the arc-shaped portion 22, for example, a material mainly composed of a ceramic having a carbide, nitride, or silicide such as W, Mo, or Ti can be used. In the case where the ceramic body 1 has a silicon nitride ceramic, tungsten carbide (WC) is a conductive ceramic material among the above materials in that the difference in coefficient of thermal expansion from the ceramic body 1 is small and the heat resistance is high. As excellent. The straight portion 21 and the arc-shaped portion 22 may be integrally formed from the same material, or may be separately formed from different materials.
 発熱抵抗体2の寸法としては、例えば直線部21の長さを0.1~50mmにすることができる。また、弧状部22の内側の長さを0.1~10mmに、外側の長さを0.2~12mmにすることができる。また、発熱抵抗体2の寸法としては、例えば直線部21の断面積を0.01~5mmに、弧状部22の断面積を0.01~5mmにすることができる。また、直線部21は、弧状部22よりも断面積が大きくなっていてもよい。これにより、直線部21の単位長さ当たりの抵抗値を弧状部22よりも低くすることができる。そのため、直線部21における発熱量を抑制することができる。 As a dimension of the heating resistor 2, for example, the length of the linear portion 21 can be set to 0.1 to 50 mm. Further, the inner length of the arc-shaped portion 22 can be 0.1 to 10 mm, and the outer length can be 0.2 to 12 mm. The dimensions of the heating resistor 2 can be, for example, the cross-sectional area of the straight portion 21 can be 0.01 to 5 mm 2 and the cross-sectional area of the arc-shaped portion 22 can be 0.01 to 5 mm 2 . Further, the linear portion 21 may have a larger cross-sectional area than the arc-shaped portion 22. Thereby, the resistance value per unit length of the linear portion 21 can be made lower than that of the arc-shaped portion 22. For this reason, the amount of heat generated in the straight portion 21 can be suppressed.
 また、第1直線部211および第2直線部212は、それぞれの他端において、リード3に接続されていてもよい。リード3は一端が直線部21の他端に接続されており、他端がセラミック体1の後端側の側面またはセラミック体1の後端に引き出されている。なお、ここでいう後端側とは、セラミック体1を長手方向で半分に分けたときの他方を意味しており、セラミック体1のうち後端側の端部を後端とする。リード3は、発熱抵抗体2と同様の材料を用いて形成され、例えば、発熱抵抗体2よりも断面積を大きくしたり、セラミック体1の形成材料の含有量を発熱抵抗体2よりも少なくしたりすることによって、単位長さ当たりの抵抗値が低くなっていてもよい。 Further, the first straight portion 211 and the second straight portion 212 may be connected to the lead 3 at the other end. One end of the lead 3 is connected to the other end of the linear portion 21, and the other end is drawn out to the side surface on the rear end side of the ceramic body 1 or the rear end of the ceramic body 1. Here, the rear end side means the other when the ceramic body 1 is divided in half in the longitudinal direction, and the end of the ceramic body 1 on the rear end side is defined as the rear end. The lead 3 is formed using the same material as the heating resistor 2. For example, the lead 3 has a larger cross-sectional area than the heating resistor 2, and the content of the forming material of the ceramic body 1 is less than that of the heating resistor 2. By doing so, the resistance value per unit length may be low.
 リード3の材料としては、セラミック体1との熱膨張率の差が小さい点、高い耐熱性を有する点および比抵抗が小さい点で、WCを用いることができる。さらに、リード3は無機導電体であるWCを主成分とし、これに窒化珪素を含有量が15質量%以上となるように添加されているとよい。これにより、リード3の熱膨張率を、セラミック体1を構成する窒化珪素の熱膨張率に近づけることができる。また、窒化珪素の含有量が40質量%以下であるときには、リード3の抵抗値が小さくなるとともに安定する。従って、窒化珪素の含有量は15質量%~40質量%であるとよい。より好ましくは、窒化珪素の含有量は20質量%~35質量%とするのがよい。 As the material of the lead 3, WC can be used in that the difference in coefficient of thermal expansion from the ceramic body 1 is small, the heat resistance is high, and the specific resistance is small. Furthermore, the lead 3 is preferably composed mainly of WC that is an inorganic conductor, and silicon nitride is added to the lead 3 so that the content is 15 mass% or more. Thereby, the thermal expansion coefficient of the lead 3 can be brought close to the thermal expansion coefficient of the silicon nitride constituting the ceramic body 1. Further, when the content of silicon nitride is 40% by mass or less, the resistance value of the lead 3 is reduced and stabilized. Therefore, the silicon nitride content is preferably 15% by mass to 40% by mass. More preferably, the silicon nitride content is 20 mass% to 35 mass%.
 本開示のヒータ10は、弧状部22の頂部において折返し部22の伸びる方向に垂直な断面を見たときに、弧状部22の断面形状が長軸および短軸を有する形状であるとともに、長軸および短軸が第1直線部211および第2直線部212のそれぞれの軸を含む平面に対して傾斜している。言い換えると、本開示のヒータ10は、頂部を通り弧状部22の軸方向に垂直な第1断面を見たときに、弧状部22が長軸および短軸を有するとともに、長軸および短軸が第1直線部211および第2直線部212のそれぞれの軸を含む平面に対して傾斜している。例えば、図2に示すヒータ10においては、弧状部22の頂部を、弧状部22の伸びる方向に垂直な断面(図2(a)に示すX-X線における断面)で見たときの長軸および短軸が、第1直線部211および第2直線部212のそれぞれの軸を含む平面(図2(b)に示すA-A線)に対して傾斜している。 In the heater 10 of the present disclosure, when the cross section perpendicular to the extending direction of the folded portion 22 is viewed at the top of the arc-shaped portion 22, the cross-sectional shape of the arc-shaped portion 22 is a shape having a major axis and a minor axis. The short axis is inclined with respect to the plane including the respective axes of the first straight portion 211 and the second straight portion 212. In other words, in the heater 10 of the present disclosure, when the first cross section passing through the top and perpendicular to the axial direction of the arc-shaped portion 22 is viewed, the arc-shaped portion 22 has a major axis and a minor axis, and the major axis and the minor axis are It inclines with respect to the plane containing each axis | shaft of the 1st linear part 211 and the 2nd linear part 212. FIG. For example, in the heater 10 shown in FIG. 2, the long axis when the top of the arc-shaped portion 22 is viewed in a cross section perpendicular to the extending direction of the arc-shaped portion 22 (cross section taken along line XX shown in FIG. 2A). Further, the minor axis is inclined with respect to a plane (AA line shown in FIG. 2B) including the respective axes of the first linear portion 211 and the second linear portion 212.
 弧状部22の頂部の断面形状が長軸および短軸を有する形状であるときは、セラミック体1のうち長軸と接する部分は、短軸から最も離れた部分であり、セラミック体1のうち短軸と接する部分は、長軸から最も離れた部分である。そのため、ヒートサイクル下においては、長軸および短軸の近傍部分と比較して、長軸上および短軸上における熱膨張量が大きくなりやすい傾向にある。これにより、セラミック体1のうち長軸および短軸の近傍において、熱応力が生じやすい傾向にある。 When the cross-sectional shape of the top portion of the arc-shaped portion 22 is a shape having a major axis and a minor axis, the portion of the ceramic body 1 that is in contact with the major axis is the portion that is farthest from the minor axis, and the short portion of the ceramic body 1 is short. The part in contact with the axis is the part farthest from the long axis. Therefore, under the heat cycle, the amount of thermal expansion on the major axis and the minor axis tends to be larger than the vicinity of the major axis and the minor axis. Thereby, in the vicinity of the major axis and minor axis of the ceramic body 1, thermal stress tends to be easily generated.
 本開示のヒータ10によれば、第1断面を見たときに、長軸および短軸が第1直線部211および第2直線部212のそれぞれの軸を含む平面に対して傾斜していることにより、弧状部22の頂部の長軸および短軸の軸方向を、第1直線部211および第2直線部212のそれぞれの軸を含む平面に対してずらすことができる。そのため、第1直線部211および第2直線部212のそれぞれの軸を含む平面上において、セラミック体1に熱応力が集中するおそれを低減することができる。これにより、第1直線部211および第2直線部212のそれぞれの軸を含む平面上において、セラミック体1にクラックが生じるおそれを低減することができる。その結果、ヒータ10の耐久性を向上させることができる。具体的には、頂部の長軸が、直線部21のそれぞれの軸を含む平面に対して、例えば0.1~30度程度傾斜しており、頂部の短軸が、直線部21のそれぞれの軸を含む平面に対して、例えば0.1~30度程度傾斜していればよい。 According to the heater 10 of the present disclosure, when the first cross section is viewed, the major axis and the minor axis are inclined with respect to the plane including the respective axes of the first linear portion 211 and the second linear portion 212. Thereby, the axial directions of the major axis and the minor axis of the top of the arc-shaped part 22 can be shifted with respect to the plane including the axes of the first linear part 211 and the second linear part 212. Therefore, it is possible to reduce the possibility of thermal stress concentrating on the ceramic body 1 on the plane including the respective axes of the first straight portion 211 and the second straight portion 212. Thereby, it is possible to reduce the possibility of cracks occurring in the ceramic body 1 on the plane including the respective axes of the first straight portion 211 and the second straight portion 212. As a result, the durability of the heater 10 can be improved. Specifically, the major axis of the apex is inclined by, for example, about 0.1 to 30 degrees with respect to the plane including the respective axes of the linear portions 21, and the minor axis of the apex is set to each of the linear portions 21. For example, it may be inclined by about 0.1 to 30 degrees with respect to the plane including the axis.
 また、図2(b)に示すように、弧状部22の頂部における断面形状が楕円状であってもよい。これにより、弧状部22の頂部の表面を滑らかにすることができる。そのため、ヒートサイクル化において、セラミック体1のうち頂部の長軸および短軸の近傍に生じる熱応力を分散させることができる。これにより、頂部の長軸および短軸の近傍において、セラミック体1に熱応力が集中するおそれを低減することができる。そのため、頂部の長軸および短軸の近傍において、セラミック体1にクラックが生じるおそれを低減できる。その結果、ヒータ10の長期信頼性を向上させることができる。 Further, as shown in FIG. 2B, the cross-sectional shape at the top of the arcuate portion 22 may be elliptical. Thereby, the surface of the top part of the arc-shaped part 22 can be made smooth. Therefore, in the heat cycle, the thermal stress generated in the vicinity of the major axis and the minor axis of the top portion of the ceramic body 1 can be dispersed. Thereby, the possibility that thermal stress concentrates on the ceramic body 1 in the vicinity of the major axis and minor axis of the top can be reduced. Therefore, it is possible to reduce the possibility of cracks occurring in the ceramic body 1 in the vicinity of the major axis and the minor axis at the top. As a result, the long-term reliability of the heater 10 can be improved.
 また、長軸と短軸を有する形状とは、図2(b)に示すような楕円形状に限定されるものではない。例えば、図3(a)に示すように、長軸および短軸のうちどちらかの長さがそれぞれ等しい2つの楕円を、その長さが等しい軸で半分に分割し、それぞれの軸同士を重ねた形状であってもよい。このときは、その半円の軸およびその半円の軸に垂直な軸を、それぞれ長軸または短軸とすることができる。 Further, the shape having the major axis and the minor axis is not limited to the elliptical shape as shown in FIG. For example, as shown in FIG. 3 (a), two ellipses having the same length of either the long axis or the short axis are divided in half by the same length, and the axes are overlapped. The shape may be different. In this case, the axis of the semicircle and the axis perpendicular to the axis of the semicircle can be a major axis or a minor axis, respectively.
 また、断面形状が、図3(b)に示すように、楕円の一部に凹みがある形状でもよい。このときは、楕円の一部に凹みがある形状に外接する楕円のうち最も面積の小さい楕円の長軸および短軸を、それぞれ長軸および短軸とすることができる。このように、弧状部22の頂部の外周面に凹みがあるときには、セラミック体1のうち、凹みの近傍に生じる熱応力を、凹みを形成する両側部分に分散させることができる。そのため、セラミック体1のうち一部分に熱応力が集中するおそれを低減することができる。その結果、ヒータ10の長期信頼性を向上させることができる。なお、断面形状においては、凹みが複数あってもよい。頂部の断面形状が、楕円の一部に凹みがある形状である場合においては、例えば、凹みが無い楕円形状と比較したときに、楕円の中心に向かって0.05~0.5mm程度凹んでいればよい。 Further, as shown in FIG. 3B, the cross-sectional shape may be a shape having a recess in a part of the ellipse. In this case, the major axis and the minor axis of the ellipse having the smallest area among the ellipses circumscribing a shape having a depression in a part of the ellipse can be set as the major axis and the minor axis, respectively. Thus, when there is a dent on the outer peripheral surface of the top of the arcuate portion 22, the thermal stress generated in the vicinity of the dent in the ceramic body 1 can be distributed to both side portions forming the dent. Therefore, the possibility that thermal stress concentrates on a part of the ceramic body 1 can be reduced. As a result, the long-term reliability of the heater 10 can be improved. In the cross-sectional shape, there may be a plurality of dents. When the cross-sectional shape of the top is a shape with a dent in a part of the ellipse, for example, when compared with an elliptical shape without a dent, it is recessed by about 0.05 to 0.5 mm toward the center of the ellipse. It only has to be.
 また、図4に示すように、弧状部22の頂部以外の部位において弧状部22の伸びる方向に垂直な断面を見たときに、弧状部22の断面形状が長軸および短軸を有する形状であるとともに長軸および短軸が第1直線部211および第2直線部212のそれぞれの軸を含む平面に対して傾斜していてもよい。言い換えると、ヒータ10は、弧状部22のうち頂部以外の部位を通り弧状部22の軸方向に垂直な第2断面を見たときに、弧状部が長軸および短軸を有するとともに、長軸および短軸が第1直線部211および第2直線部212のそれぞれの軸を含む平面に対して傾斜していてもよい。例えば、図4に示すヒータ10においては、弧状部22の頂部以外の部位を、弧状部22の伸びる方向に垂直な断面(図4(a)に示すY-Y線における断面)で見たときの長軸および短軸が、第1直線部211および第2直線部212のそれぞれの軸を含む平面(図4(b)に示すA-A線)に対して傾斜している。 Further, as shown in FIG. 4, when a cross section perpendicular to the extending direction of the arc-shaped portion 22 is viewed at a portion other than the top of the arc-shaped portion 22, the cross-sectional shape of the arc-shaped portion 22 is a shape having a major axis and a minor axis. In addition, the long axis and the short axis may be inclined with respect to a plane including the respective axes of the first straight line portion 211 and the second straight line portion 212. In other words, the heater 10 has a major axis and a minor axis when the second cross section passing through a portion other than the top of the arc-shaped portion 22 and perpendicular to the axial direction of the arc-shaped portion 22 has a major axis and a minor axis. The minor axis may be inclined with respect to a plane including the respective axes of the first straight line portion 211 and the second straight line portion 212. For example, in the heater 10 shown in FIG. 4, when a portion other than the top of the arc-shaped portion 22 is viewed in a cross section perpendicular to the extending direction of the arc-shaped portion 22 (cross section taken along line YY shown in FIG. 4A). The major axis and the minor axis are inclined with respect to a plane (AA line shown in FIG. 4B) including the respective axes of the first linear portion 211 and the second linear portion 212.
 これにより、弧状部22の頂部以外の部位における長軸および短軸の軸方向を、第1直線部211および第2直線部212のそれぞれの軸を含む平面に対してずらすことができる。そのため、ヒートサイクル下において、セラミック体1のうち熱応力が生じやすい部位である長軸および短軸の近傍を、第1直線部211および第2直線部212のそれぞれの軸を含む平面に対してずらすことができる。したがって、セラミック体1のうち第1直線部211および第2直線部212のそれぞれの軸を含む平面上に熱応力が集中するおそれを低減することができる。その結果、ヒータ10の耐久性をより向上させることができる。具体的には、頂部以外の部位の長軸が、直線部21のそれぞれの軸を含む平面に対して、例えば0.1~30度程度傾斜しており、頂部以外の部位の短軸が、直線部21のそれぞれの軸を含む平面に対して、例えば0.1~30度程度傾斜していればよい。 Thereby, the axial directions of the long axis and the short axis in the portion other than the top of the arc-shaped portion 22 can be shifted with respect to the plane including the respective axes of the first straight portion 211 and the second straight portion 212. Therefore, under the heat cycle, the vicinity of the major axis and the minor axis, which are parts where the thermal stress is likely to occur, in the ceramic body 1 with respect to the plane including the respective axes of the first linear portion 211 and the second linear portion 212. Can be shifted. Therefore, it is possible to reduce the risk of thermal stress concentrating on the plane including the respective axes of the first straight portion 211 and the second straight portion 212 in the ceramic body 1. As a result, the durability of the heater 10 can be further improved. Specifically, the major axis of the part other than the top part is inclined by, for example, about 0.1 to 30 degrees with respect to the plane including the respective axes of the linear part 21, and the minor axis of the part other than the top part is What is necessary is just to incline about 0.1 to 30 degree | times with respect to the plane containing each axis | shaft of the linear part 21, for example.
 なお、図4(b)においては、理解を助けることを目的として、セラミック体1を省略して、弧状部22の断面図のみを示している。また、後述する図5、図6および図7においても、同様にセラミック体1を省略して、弧状部22の断面図のみを示している。 In addition, in FIG.4 (b), in order to help an understanding, the ceramic body 1 is abbreviate | omitted and only sectional drawing of the arc-shaped part 22 is shown. 5, 6, and 7, which will be described later, similarly, the ceramic body 1 is omitted and only a cross-sectional view of the arc-shaped portion 22 is shown.
 また、図5に示すように、弧状部22の頂部における短軸の傾斜が、弧状部22の頂部以外の部位における短軸の傾斜よりも大きくてもよい。これにより、弧状部22の頂部の長軸および短軸と、弧状部22の頂部以外の部位の長軸および短軸とが、それぞれの延長線上において、三次元で見たときに交わらなくすることができる。そのため、セラミック体1のうち熱応力が生じやすい部分を分散させることができる。その結果、ヒータ10の耐久性をより向上させることができる。具体的には、頂部の短軸は、直線部21のそれぞれの軸を含む平面に対して、例えば2~30度程度傾斜しており、頂部以外の部位の短軸は、直線部21のそれぞれの軸を含む平面に対して、例えば0.1~5度程度傾斜していればよい。 Further, as shown in FIG. 5, the inclination of the short axis at the top of the arcuate part 22 may be larger than the inclination of the short axis at a part other than the top of the arcuate part 22. Thereby, the major axis and minor axis of the top part of the arcuate part 22 and the major axis and minor axis of parts other than the apex part of the arcuate part 22 do not intersect when viewed in three dimensions on the respective extension lines. Can do. Therefore, it is possible to disperse portions of the ceramic body 1 where thermal stress is likely to occur. As a result, the durability of the heater 10 can be further improved. Specifically, the short axis of the top portion is inclined by, for example, about 2 to 30 degrees with respect to the plane including the respective axes of the straight portion 21, and the short axis of the portion other than the top portion is set to each of the straight portion 21. For example, it may be inclined by about 0.1 to 5 degrees with respect to the plane including the axis.
 また、弧状部22において断面積が一定であってもよい。具体的には、CT等を用いて弧状部22を弧状部22の伸びる方向に垂直に四等分したときのそれぞれの断面を見た場合において、それぞれの断面積と頂部の断面積との差が、頂部の断面積の5%の範囲内であれば、弧状部22の断面積が一定であるとみなすことができる。弧状部22の断面積が一定であることにより、弧状部22の全体において、断面積によって単位長さ当たりの抵抗値が変化するおそれを低減することができる。そのため、弧状部22の全体における発熱量を一定にすることができる。その結果、ヒータ10の均熱性を高めることができる。 Further, the cross-sectional area may be constant in the arc-shaped portion 22. Specifically, when the respective cross sections when the arc-shaped portion 22 is divided into four equal parts perpendicular to the extending direction of the arc-shaped portion 22 using CT or the like, the difference between the respective cross-sectional areas and the cross-sectional area of the top portion are obtained. However, if it is in the range of 5% of the cross-sectional area of the top part, it can be considered that the cross-sectional area of the arc-shaped part 22 is constant. Since the cross-sectional area of the arc-shaped part 22 is constant, the possibility that the resistance value per unit length varies in the entire arc-shaped part 22 due to the cross-sectional area can be reduced. Therefore, the calorific value in the whole arcuate part 22 can be made constant. As a result, the heat uniformity of the heater 10 can be improved.
 また、図6に示すように、弧状部22は、頂部以外の部位よりも頂部において断面積が小さくてもよい。言い換えると、弧状部22は、第2断面よりも第1断面において断面積が小さくてもよい。これにより、弧状部22の全体の断面積が一定である場合と比較して、頂部以外の部位の耐久性を高めつつ、ヒートサイクル下における弧状部22の頂部の熱膨張量を低減することができる。そのため、弧状部22の頂部の近傍において、セラミック体1に生じる熱応力を低減することができる。これにより、弧状部22の頂部の近傍において、セラミック体1にクラックが生じるおそれを低減できる。その結果、ヒータ10の耐久性を向上させることができる。この場合においては、弧状部22の頂部の断面積を0.01~2mmに、頂部以外の部位の断面積を0.03~5mmにすることができる。なお、弧状部22は、頂部において最も断面積が小さくなっていてもよいし、頂部付近において連続的に断面積が小さくなっていてもよい。 In addition, as shown in FIG. 6, the arc-shaped portion 22 may have a smaller cross-sectional area at the top than at portions other than the top. In other words, the arcuate portion 22 may have a smaller cross-sectional area in the first cross section than in the second cross section. Thereby, compared with the case where the whole cross-sectional area of the arc-shaped part 22 is constant, the amount of thermal expansion of the top part of the arc-shaped part 22 under a heat cycle can be reduced while improving the durability of parts other than the top part. it can. Therefore, thermal stress generated in the ceramic body 1 in the vicinity of the top of the arc-shaped portion 22 can be reduced. Thereby, in the vicinity of the top portion of the arc-shaped portion 22, it is possible to reduce the possibility of cracks occurring in the ceramic body 1. As a result, the durability of the heater 10 can be improved. In this case, the cross-sectional area of the top of the arcuate portion 22 can be 0.01 to 2 mm 2 , and the cross-sectional area of the portion other than the top can be 0.03 to 5 mm 2 . In addition, the arc-shaped part 22 may have the smallest cross-sectional area at the top, or may continuously have a small cross-sectional area near the top.
 また、図7に示すように、弧状部22は、頂部以外の部位よりも頂部において断面積が大きくてもよい。言い換えると、弧状部22は、第2断面よりも第1断面において断面積が大きくてもよい。これにより、弧状部22の全体の断面積が一定である場合と比較して、弧状部22全体の発熱量を高めつつ、弧状部22の頂部の耐久性を高めることができる。そのため、ヒートサイクル下において、弧状部22の頂部にクラックが生じるおそれを低減することができる。その結果、ヒータ10の耐久性を向上させることができる。この場合においては、弧状部22の頂部の断面積を0.03~5mmに、頂部以外の部位の断面積を0.01~2mmにすることができる。なお、弧状部22は、頂部において最も断面積が大きくなっていてもよいし、頂部付近において連続的に断面積が大きくなっていてもよい。 In addition, as shown in FIG. 7, the arc-shaped portion 22 may have a larger cross-sectional area at the top than at a portion other than the top. In other words, the arcuate portion 22 may have a larger cross-sectional area in the first cross section than in the second cross section. Thereby, compared with the case where the whole cross-sectional area of the arc-shaped part 22 is constant, durability of the top part of the arc-shaped part 22 can be improved, raising the emitted-heat amount of the arc-shaped part 22 whole. Therefore, it is possible to reduce the possibility of cracks occurring at the top of the arc-shaped portion 22 under a heat cycle. As a result, the durability of the heater 10 can be improved. In this case, the cross-sectional area of the top of the arcuate portion 22 can be 0.03 to 5 mm 2 , and the cross-sectional area of the portion other than the top can be 0.01 to 2 mm 2 . In addition, the arc-shaped part 22 may have the largest cross-sectional area in the top part, and the cross-sectional area may become large continuously in the vicinity of the top part.
 図8に示すように、グロープラグ100は、上述のヒータ10であって、ヒータ10と、セラミック体1を覆う金属筒4とを備えている。グロープラグ100によれば、上述のヒータ10を使用していることから、ヒータ10の耐久性を向上させることができるため、耐久性を向上させることができる。 As shown in FIG. 8, the glow plug 100 is the heater 10 described above, and includes the heater 10 and the metal cylinder 4 that covers the ceramic body 1. According to the glow plug 100, since the above-described heater 10 is used, the durability of the heater 10 can be improved, so that the durability can be improved.
 なお、金属筒4は、ヒータ10を保持する金属製の筒状体である。金属筒4は、例えばセラミック体1の側面に引き出された一方のリード3にロウ材等で接合されて、電気的に接続される。グロープラグ100は、金属筒4および他方のリード3に外部の電極を接続することによって用いられる。 The metal cylinder 4 is a metal cylinder that holds the heater 10. For example, the metal cylinder 4 is joined to one lead 3 drawn out to the side surface of the ceramic body 1 with a brazing material or the like and electrically connected thereto. The glow plug 100 is used by connecting external electrodes to the metal cylinder 4 and the other lead 3.
1:セラミック体
2:発熱抵抗体
21:直線部
211:第1直線部
212:第2直線部
22:弧状部
3:リード
4:金属筒
10:ヒータ
100:グロープラグ
1: Ceramic body 2: Heating resistor 21: Linear portion 211: First linear portion 212: Second linear portion 22: Arc-shaped portion 3: Lead 4: Metal cylinder 10: Heater 100: Glow plug

Claims (9)

  1.  棒状のセラミック体と、該セラミック体の内部に設けられた発熱抵抗体とを備えており、
    該発熱抵抗体は、第1直線部と、該第1直線部に対向する第2直線部と、頂部を有し前記第1直線部および前記第2直線部を繋ぐ弧状部とを有するとともに、
    前記頂部を通り前記弧状部の軸方向に垂直な第1断面を見たときに、
    前記弧状部は、長軸および短軸を有するとともに、長軸および短軸が前記第1直線部および前記第2直線部のそれぞれの軸を含む平面に対して傾斜しているヒータ。
    A rod-shaped ceramic body, and a heating resistor provided inside the ceramic body,
    The heating resistor includes a first straight portion, a second straight portion facing the first straight portion, an arc-shaped portion having a top and connecting the first straight portion and the second straight portion,
    When looking at the first cross section passing through the top and perpendicular to the axial direction of the arcuate portion,
    The arcuate portion has a major axis and a minor axis, and the major axis and the minor axis are inclined with respect to a plane including the respective axes of the first linear portion and the second linear portion.
  2.  前記弧状部のうち前記頂部以外の部位を通り前記弧状部の軸方向に垂直な第2断面を見たときに、
    前記弧状部は、長軸および短軸を有するとともに、長軸および短軸が前記第1直線部および前記第2直線部のそれぞれの軸を含む平面に対して傾斜している請求項1に記載のヒータ。
    When looking at a second cross section perpendicular to the axial direction of the arcuate part through the part other than the top part of the arcuate part,
    The arcuate portion has a major axis and a minor axis, and the major axis and the minor axis are inclined with respect to a plane including the respective axes of the first linear portion and the second linear portion. Heater.
  3.  前記第1断面における短軸の傾斜が、前記第2断面における短軸の傾斜よりも大きい請求項2に記載のヒータ。 The heater according to claim 2, wherein the inclination of the short axis in the first cross section is larger than the inclination of the short axis in the second cross section.
  4.  前記弧状部において断面積が一定である請求項1乃至請求項3のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 3, wherein the arc-shaped portion has a constant cross-sectional area.
  5.  前記弧状部は、前記第2断面よりも前記第1断面において断面積が小さい請求項1乃至請求項3のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 3, wherein the arcuate portion has a smaller cross-sectional area in the first cross section than in the second cross section.
  6.  前記弧状部は、前記第2断面よりも前記第1断面において断面積が大きい請求項1乃至請求項3のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 3, wherein the arc-shaped portion has a larger cross-sectional area in the first cross section than in the second cross section.
  7.  前記第1断面が楕円状である請求項1乃至請求項6のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 6, wherein the first cross section is elliptical.
  8.  前記頂部の表面に凹みがある請求項1乃至請求項6のいずれかに記載のヒータ。 The heater according to any one of claims 1 to 6, wherein the top surface has a recess.
  9.  請求項1乃至請求項8のいずれかに記載のヒータと、
    該ヒータを覆う金属筒とを備えたグロープラグ。
    A heater according to any one of claims 1 to 8,
    A glow plug comprising a metal tube covering the heater.
PCT/JP2018/016973 2017-04-27 2018-04-26 Heater and glow plug provided therewith WO2018199229A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514617A JP6970188B2 (en) 2017-04-27 2018-04-26 Heater and glow plug with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087856 2017-04-27
JP2017087856 2017-04-27

Publications (1)

Publication Number Publication Date
WO2018199229A1 true WO2018199229A1 (en) 2018-11-01

Family

ID=63919309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016973 WO2018199229A1 (en) 2017-04-27 2018-04-26 Heater and glow plug provided therewith

Country Status (2)

Country Link
JP (1) JP6970188B2 (en)
WO (1) WO2018199229A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199448B2 (en) 2018-11-29 2023-01-05 京セラ株式会社 Heater and glow plug with same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196252A (en) * 1992-12-24 1994-07-15 Kyocera Corp Ceramic heating element
WO2010071049A1 (en) * 2008-12-15 2010-06-24 京セラ株式会社 Ceramic heater
JP2010182443A (en) * 2009-02-03 2010-08-19 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
WO2011052624A1 (en) * 2009-10-27 2011-05-05 京セラ株式会社 Ceramic heater
JP2015018625A (en) * 2013-07-09 2015-01-29 日本特殊陶業株式会社 Ceramic heater, glow plug, ceramic heater manufacturing method, and glow plug manufacturing method
WO2016103908A1 (en) * 2014-12-25 2016-06-30 京セラ株式会社 Heater and glow plug equipped with same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196252A (en) * 1992-12-24 1994-07-15 Kyocera Corp Ceramic heating element
WO2010071049A1 (en) * 2008-12-15 2010-06-24 京セラ株式会社 Ceramic heater
JP2010182443A (en) * 2009-02-03 2010-08-19 Ngk Spark Plug Co Ltd Ceramic heater and glow plug
WO2011052624A1 (en) * 2009-10-27 2011-05-05 京セラ株式会社 Ceramic heater
JP2015018625A (en) * 2013-07-09 2015-01-29 日本特殊陶業株式会社 Ceramic heater, glow plug, ceramic heater manufacturing method, and glow plug manufacturing method
WO2016103908A1 (en) * 2014-12-25 2016-06-30 京セラ株式会社 Heater and glow plug equipped with same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7199448B2 (en) 2018-11-29 2023-01-05 京セラ株式会社 Heater and glow plug with same

Also Published As

Publication number Publication date
JP6970188B2 (en) 2021-11-24
JPWO2018199229A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
WO2012014872A1 (en) Heater and glow plug provided with same
JP6139629B2 (en) Heater and glow plug equipped with the same
WO2018199229A1 (en) Heater and glow plug provided therewith
JP6592103B2 (en) Heater and glow plug equipped with the same
JP5969621B2 (en) Heater and glow plug equipped with the same
JP5436687B2 (en) Heater and glow plug equipped with the same
JP2018120794A (en) heater
JP6603321B2 (en) Heater and glow plug equipped with the same
WO2014003093A1 (en) Heater and glow plug equipped with same
JP6538467B2 (en) Heater and glow plug
JP5726311B2 (en) Heater and glow plug equipped with the same
JP6725653B2 (en) Heater and glow plug equipped with the same
JP7369633B2 (en) Heater and glow plug with it
WO2019004286A1 (en) Heater
WO2017135362A1 (en) Heater and glow-plug provided therewith
WO2018084083A1 (en) Heater and glow plug with same
JP7000241B2 (en) heater
JP6272519B2 (en) Heater and glow plug equipped with the same
JP6952395B2 (en) heater
JP6085050B2 (en) Heater and glow plug equipped with the same
JP5909573B2 (en) Heater and glow plug equipped with the same
JP2019149272A (en) heater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790537

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790537

Country of ref document: EP

Kind code of ref document: A1