WO2018082703A1 - 一种多播业务的传输方法及装置、计算机存储介质 - Google Patents

一种多播业务的传输方法及装置、计算机存储介质 Download PDF

Info

Publication number
WO2018082703A1
WO2018082703A1 PCT/CN2017/109596 CN2017109596W WO2018082703A1 WO 2018082703 A1 WO2018082703 A1 WO 2018082703A1 CN 2017109596 W CN2017109596 W CN 2017109596W WO 2018082703 A1 WO2018082703 A1 WO 2018082703A1
Authority
WO
WIPO (PCT)
Prior art keywords
mtp
transmission
data blocks
scheduling
signaling
Prior art date
Application number
PCT/CN2017/109596
Other languages
English (en)
French (fr)
Inventor
艾建勋
戴博
陈宪明
方惠英
陆婷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2018082703A1 publication Critical patent/WO2018082703A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a transmission method and device for a multicast service, and a computer storage medium.
  • SC-PTM single cell point-to-multipoint
  • MBMS multicast multimedia broadcast multicast service
  • SC-PTM introduces two logical channels, namely Single Cell-Multicast Control Channel (SC-MCCH) and Single Cell Multicast Transmission Channel (SC-MTCH, SC-MCCH, Single Cell-Multicast Traffic) Channel).
  • SC-MCCH Single Cell-Multicast Control Channel
  • SC-MTCH Single Cell Multicast Transmission Channel
  • SC-MCCH Single Cell Multicast Traffic
  • both the SC-MCCH and the SC-MTCH are carried by a Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • the same PDCCH signaling and The PDSCH channel data needs to be transmitted repeatedly multiple times.
  • the PDCCH signaling for scheduling a PDSCH in addition to indicating a time domain frequency domain resource used by a PDSCH channel and a modulation and coding format MCS, Indicates the number of repeated transmissions of the PDSCH, and the starting time of the scheduled transmission of the PDSCH, that is, the scheduling delay.
  • the scheduling timing refers to the first wireless subframe after the last PDCCH subframe. Start scheduling the corresponding PDSCH.
  • the main purpose of NB-IoT and eMTC to introduce SC-PTM is to provide an efficient point-to-multipoint transmission technology, which is mainly used by a large number of UEs to update their software or firmware, so as to avoid a large number of UEs acquiring through dedicated channels.
  • the business data. This kind of service obviously needs 100% correct and reliable receiving of business data, otherwise some of the received business data has no practical meaning.
  • the current mode of service transmission does not guarantee complete and accurate data reception.
  • the user equipment UEs that receive multiple services in the broadcast service have different coverage signal qualities of different UEs. Therefore, the number of repetitions of the PDSCH to be received is also different. How to enable the UE with good coverage signal to receive the network as soon as possible.
  • the service data, thereby reducing the battery consumption, and satisfying the problem that the UE with poor coverage signal can receive enough PDSCH repeated transmissions to successfully decode the data is also a problem to be solved.
  • an embodiment of the present invention provides a method and device for transmitting a multicast service, and a computer storage medium.
  • a method for transmitting a multicast service comprising:
  • the access network element performs joint scheduling transmission on the N data blocks, where a repeated transmission of one data block is performed once to form a level one repeated transmission, and the N data blocks are repeatedly repeatedly transmitted with M1 times level one repetition.
  • the transmission forms a repeating transmission of level two; the repeated transmission of the second level of M2 times forms a joint scheduling transmission of N data blocks;
  • N, M1, and M2 are positive integers.
  • a method for transmitting a multicast service comprising:
  • the MTP is configured for the service or the signaling radio bearer, and the N data blocks are jointly scheduled and transmitted one or more times in the MTP.
  • one repeated transmission of one data block forms a level one repeated transmission
  • the N data blocks are repeatedly repeatedly transmitted M1 times of level one repeated transmission to form a level two repeated transmission
  • M2 times level two Repeatingly transmitting a joint scheduling transmission forming N data blocks
  • N, M1, and M2 are positive integers.
  • a method for transmitting a multicast service comprising:
  • the length information L of the MTP is determined by the semi-static signaling or the dynamic scheduling signaling DCI carrying the length information of the MTP;
  • the length information L of the MTP is determined by the length of the scheduling period of the transport channel or the logical channel carrying the service or signaling radio bearer SRB.
  • a method for transmitting a multicast service comprising:
  • the receiving end receives the N data blocks in one or more MTPs of the M MTPs, where the N data blocks are transmitted by joint scheduling.
  • a transmission device for a multicast service comprising:
  • the scheduling unit is configured to perform joint scheduling transmission on the N data blocks, wherein one repeated transmission of one data block forms a level one repeated transmission, and the N data blocks are repeatedly repeatedly sent with M1 times level one repetition.
  • the transmission forms a repeating transmission of level two; the repeated transmission of the second level of M2 times forms a joint scheduling transmission of N data blocks;
  • N, M1, and M2 are positive integers.
  • a transmission device for multicast services comprising: a scheduling unit and a configuration unit, in:
  • a scheduling unit configured to schedule a transmission service or a signaling radio bearer
  • a configuration unit configured to configure a multiple transmission period MTP for the service or the signaling radio bearer, and jointly schedule and transmit N data blocks one or more times in the MTP, where one repetition of one data block
  • the transmission forms a repeating transmission of level one, and repeatedly transmits the repeated transmission of M1 times of level 1 to form repeated transmission of level two for each of the N data blocks; and the repeated transmission of level 2 of M2 times forms a joint of N data blocks.
  • N, M1, and M2 are positive integers.
  • a transmission device for a multicast service comprising:
  • the indicating unit is configured to indicate the length information L of the multiple transmission period MTP by semi-static signaling or dynamic scheduling signaling DCI;
  • a determining unit configured to determine the length information L of the MTP by semi-static signaling or dynamic scheduling signaling DCI carrying length information of the MTP when the indication unit indicates the length information of the MTP of the multiple transmission period;
  • the length information L of the MTP is determined by the length of the scheduling period of the transport channel or the logical channel carrying the service or signaling radio bearer SRB.
  • a computer storage medium having stored therein computer executable instructions configured to perform any of the above described methods of transmitting multicast services.
  • the access network element performs joint scheduling transmission on the N data blocks, where the repeated transmission of one data block forms a level one repeated transmission, and the N data blocks are consecutively continuous. Repeated transmission of M1 times of level 1 repeated transmission forms a repeating transmission of level 2; repeated transmission of level 2 of M2 times forms a joint scheduling transmission of N data blocks.
  • the service in the point-to-multipoint transmission can be accurately received by the receiving end, and the data receiving can be completed.
  • the embodiment of the invention implements the service data receiving by the UE as soon as possible, thereby reducing the battery consumption of the UE and satisfying the UE receiving the poor coverage signal. Sufficient PDSCH is sent repeatedly to successfully decode the data.
  • 1 is a schematic diagram of repeated transmission of PDCCH signaling and PDSCH channel data in NB-IoT and eMTC;
  • FIG. 2 is a schematic diagram of data block joint scheduling transmission according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a configuration of a length L of an MTP and an offset O of a start bit according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of scheduling of an MTP scheduling only one data block according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of scheduling of scheduling and transmitting 2 data blocks in an MTP according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a structure of a transmission apparatus for a multicast service according to Embodiment 1 of the present invention.
  • FIG. 7 is a schematic structural diagram of a structure of a transmission apparatus for a multicast service according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic structural diagram of a transmission apparatus of a multicast service according to Embodiment 3 of the present invention.
  • a method for interleaving transmission of a plurality of data blocks is provided.
  • the access network element performs joint scheduling transmission on N data blocks, wherein one repeated transmission of one data block forms a level one repeated transmission, and the N data blocks are repeatedly transmitted repeatedly.
  • the repeated transmission of the M1 sub-level 1 forms a repeat transmission of the level 2; the repeated transmission of the M2 sub-level 2 forms a joint scheduling transmission of the N data blocks; N, M1, and M2 are positive integers.
  • one repeated transmission of one data block is referred to as repeated transmission of one level one
  • repeated transmission of M1 times level one is continuously repeated for N data blocks, and a repeated transmission of level two is formed.
  • the repeated transmission of M2 level two constitutes a complete joint scheduling transmission.
  • one repeated transmission of one data block is: a PDSCH transmission that occupies one wireless subframe, and the N data blocks continuously repeat the repeated transmission of M1 wireless subframes to form a Repeated transmission of level 2, repeated transmission of M2 consecutive levels 2 constitutes a complete scheduled transmission of the N data blocks.
  • the access network element When the access network element schedules the joint scheduling transmission of the N data blocks by using the dynamic scheduling mode, the access network element indicates the scheduling information by using one of the following methods:
  • the access network element indicates the number N of the jointly scheduled data blocks through the dynamic scheduling signaling DCI, and indicates the number of repeated transmissions M2 of the second level by DCI or semi-static signaling, or a total of one scheduling transmission.
  • the number of wireless subframes is the number of the jointly scheduled data blocks through the dynamic scheduling signaling DCI, and indicates the number of repeated transmissions M2 of the second level by DCI or semi-static signaling, or a total of one scheduling transmission. The number of wireless subframes.
  • the network element of the access network indicates the number N of the jointly scheduled data blocks through semi-persistent scheduling signaling, and indicates the number of repeated transmissions M2 of the second level by DCI or semi-static signaling, or a total of one scheduling transmission.
  • the number of wireless subframes is the number of the jointly scheduled data blocks through semi-persistent scheduling signaling, and indicates the number of repeated transmissions M2 of the second level by DCI or semi-static signaling, or a total of one scheduling transmission. The number of wireless subframes.
  • the access network element When the access network element schedules the joint scheduling transmission of the N data blocks by the semi-persistent scheduling mode, the access network element indicates the number N of the jointly scheduled data blocks in the semi-static signaling, and the level 2 above.
  • the number of repetitions M2 or one scheduling transmission transmits the total number of wireless subframes.
  • the access network element further indicates the repetition number M1 of the level one by dynamic scheduling signaling DCI or semi-static signaling.
  • the value of M1 is 1, that is, the repetition of level one is sent to the N data blocks to form a repeating transmission of level two.
  • the number of repeated transmissions of level two M2 is indicated, one time is completed.
  • the semi-static signaling includes the SC-MCCH message, and the access network element indicates the information in the scheduling information of a specific service in the SC-MCCH message.
  • the dynamic scheduling signaling DCI indicates the foregoing N, and has complete dynamic scheduling performance.
  • the access network element can determine the number of N according to the number of waiting data and the number of data blocks when scheduling data, but obtains flexibility. At the same time, the overhead of DCI is increased.
  • the network element of the access network indicates the number of subframes occupied by the M2 or the primary scheduling by using the dynamic scheduling signaling DCI, which also has the greatest flexibility, but also increases the DCI overhead.
  • the SC-MCCH message in the SC-PTM is divided into N RLC PDUs, that is, N data blocks, after the RLC layer is fragmented, and the SC-MCCH message size does not change within a certain period of time.
  • the static signaling SIB20 indicates the above-mentioned information such as N and M2 used when scheduling the data block of the SC-MCCH message.
  • the access network element of the access network When the network element of the access network is scheduled, if the number of data blocks to be scheduled to be sent is less than the signaling N indicated by the signaling, the access network element generates the dummy data block that does not contain data and the data to be sent.
  • the blocks together form N data blocks.
  • these dummy data blocks that do not contain data blocks are arranged after the data blocks that need to be transmitted.
  • These dummy data blocks contain only padding for the data part.
  • RLC PDU or MAC PDU When the network element of the access network is scheduled, if the number of data blocks to be scheduled to be sent is less than the signaling N indicated by the signaling, the access network element generates the dummy data block that does not contain data and the data to be sent.
  • the blocks together form N data blocks.
  • these dummy data blocks that do not contain data blocks are arranged after the data blocks that need to be transmitted.
  • These dummy data blocks contain only padding for the data part.
  • the data block described in this embodiment includes a RLC PDU, a MAC PDU, or a MAC layer transport block (TB).
  • the access network element implements interleaving transmission when scheduling multiple data blocks. And through the indication of signaling, the number of data blocks that are jointly scheduled for dynamic adjustment is realized.
  • the UE with good signal coverage can receive N data blocks as soon as possible, and the UE with bad signal also has enough receivers to combine multiple repetitions of the above N data blocks. Achieve successful decoding.
  • This embodiment provides a method for performing multiple repeated scheduling transmissions on N data blocks.
  • the access network element When the access network element schedules a transmission service or a signaling radio bearer (SRB), it configures a multiple transmission period (MTP), and jointly schedules and transmits the N in the MTP.
  • MTP multiple transmission period
  • N, M1, and M2 are positive integers.
  • the access network element is configured with the MTP of the multiple transmission period, and at least includes: the length information L of the MTP.
  • the offset information Offset of the starting position of the MTP is further included.
  • the starting position of the one MTP is calculated by the following formula:
  • H-SFN is the system superframe number
  • SFN is the system frame number
  • mod is the modulo operation symbol
  • L is the length of the MTP
  • offset is the offset of the MTP start position.
  • the starting position of the MTP is H-SFN and SFN satisfying the above formula; the default value of the offset is 0.
  • an access network element is sent in the MTP for scheduling the service. Or dynamic scheduling signaling of data blocks of the SRB. If the service or SRB has a scheduling period or a repetition period, or further, the service or SRB is configured for a scheduled time window, the access network element performs a scheduling period or repetition of the foregoing service or SRB in the MTP.
  • the dynamic scheduling signaling of the service or SRB is sent within a period, and a scheduled time window of its configuration.
  • the access network element schedules the plurality of data blocks in an MTP repetition mode, where the MTP repetition mode is used to repeatedly schedule transmission of N data blocks in multiple MTPs, where the information of the MTP repetition mode includes at least: Scheduling the number M of MTPs for transmitting the N data blocks, and the interval length P between two adjacent MTPs of the plurality of MTPs for scheduling the transmission of the N data blocks, where the value range of M is A positive integer greater than or equal to 1, the value of P is a positive integer greater than or equal to 1, and the interval between adjacent MTPs is the length of the interval between the starting positions of two adjacent MTPs, or two adjacent MTPs. The length of the interval between the end position of the previous MTP and the start position of the next MTP.
  • the unit of the interval length P of the adjacent two MTPs is the number of MTPs, and the interval between two adjacent MTPs of the plurality of MTPs is the length of P MTPs.
  • the N data blocks are repeatedly scheduled to be transmitted in the plurality of MTPs, that is, in each MTP, the N data blocks are scheduled to be transmitted one or more times.
  • the access network element schedules the N data blocks one or more times, and the specific scheduling manner includes but is not limited to:
  • Each data block is separately scheduled, that is, the PDSCH channel carrying one data block is repeatedly scheduled by the independent PDCCH signaling DCI.
  • One PDCCH signaling DCI schedules PDSCH channels of N data blocks.
  • each data block in one MTP, can be scheduled to be transmitted N2 times, and N2 is greater than or equal to 1.
  • the scheduling sequence includes:
  • Each data block is scheduled to be transmitted N2 times to schedule the next data block; that is, according to (data block 1, data block 1...), (data block 2, data block 2)... (data block N, data block N) 7)
  • the N data blocks are scheduled once as a repetition, that is, the access network schedules transmission N2 times according to (data block 1, data block 2...data block n), (data 1, data 2...data n). ;
  • the current scheduling MTP is the sequence number in the M MTPs for scheduling the N data blocks, or in the current MTP Thereafter (with or without the current MTP) is used to schedule the number of MTPs for transmitting the N data blocks.
  • the sequence number of the MTP is equivalent to the sequence number in which the data block is scheduled, the number of the MTPs, etc. are used for the data block to be The number of times the transmission was scheduled.
  • the access network element further determines the identifier Data-ID of the data block in the DCI of the scheduling data block, The same data block has the same identifier Data-ID when transmitted in different MTPs.
  • the identifier Data-ID of the data block is a sequence number of one data block in the N data blocks, that is, the identifier of the first data block in the N data blocks is 0.
  • the identifier of the second data block is 1, and so on.
  • the access network element indicates the scheduling information of the UE by using signaling, including:
  • the length information L of the MTP is determined by the semi-static signaling or the dynamic scheduling signaling DCI carrying the length information of the MTP;
  • the length information L of the MTP is determined by the length of the scheduling period of the transport channel or logical channel of the radio bearer SRB.
  • the semi-static signaling or the dynamic scheduling signaling DIC that carries the offset information of the MTP start position is used to determine the Offset information of the MTP start position;
  • the offset information of the MTP start position is determined by using a default value of the offset information of the MTP start position, where the default value is Zero.
  • the repetition is determined by semi-static signaling or dynamic scheduling signaling DIC carrying the MTP quantity information M in the repeated mode.
  • MTP quantity information M in the mode when the access network element indicates the MTP quantity information M in the repeat mode, the repetition is determined by semi-static signaling or dynamic scheduling signaling DIC carrying the MTP quantity information M in the repeated mode.
  • the MTP quantity information M in the repeated mode is determined by using a default value of the MTP quantity information in the repeated mode, where the default A value of 1 or a protocol-specified value.
  • the semi-static signaling or dynamic scheduling signaling DIC carrying the interval information P determines the Interval information P;
  • the interval information P is determined by using a default value of the interval information, and the default value is 1.
  • the semi-static signaling or dynamic scheduling signaling DIC carrying the number N of the data blocks is performed. Determining the number N of the data blocks;
  • the number N of the data blocks is determined by a default value of the number of the data blocks, and the missing The provincial value is 1.
  • the access network element when the access network element indicates the number N2 of one data block scheduled to be transmitted in an MTP, the one is determined by carrying the semi-static signaling or the dynamic scheduling signaling DIC of the number of times N2. The number of times the data block is scheduled to be transmitted N2;
  • the default value of the number of times N2 is used to determine the number N2 of scheduled transmissions of the data block, the default.
  • the value is 1.
  • Receiving, by the receiving end UE, the N data blocks includes:
  • the receiving end receives N data blocks in one or more MTPs of the foregoing M MTPs, where the N data blocks are transmitted by joint scheduling.
  • the receiving end When the receiving end detects the DCI of the received service or the SRB in an MTP, the receiving end has the same sequence number in the M MTPs as the current MTP indicated in the DCI and the value of the M, or the remaining scheduling after the current MTP is indicated.
  • the number of MTPs of the data block can determine which MTPs are scheduled to transmit the data blocks of the current MTP transmission after this MTP (ie, the current MTP).
  • the UE combines and receives the PDSCH channels of the plurality of scheduled transmissions of one of the plurality of MTPs scheduled to be transmitted.
  • the UE determines, according to the boundary of the MTP, that the data blocks scheduled in different MTPs are different data blocks.
  • the number of times the UE attempts to receive a data block in one MTP does not exceed N ⁇ N2 times.
  • the data block is a transport block (TB), or a payload data unit (PDU) of a Radio Link Control Protocol (RLC), or a load data unit of a Medium Access Control Protocol (MAC). (PDU).
  • TB transport block
  • PDU payload data unit
  • RLC Radio Link Control Protocol
  • MAC Medium Access Control Protocol
  • the transport channel includes at least: an SC-MTCH channel, a DTCH channel, a DCCH channel, a CTCH channel, an MTCH channel, and an MCCH channel.
  • the semi-static signaling includes at least: a system information block for indicating SC-MCCH message scheduling information, and an SC-MCCH message for indicating SC-MTCH scheduling information;
  • the dynamic scheduling signaling includes at least: a DCI carried by a PDCCH channel.
  • the access network element includes at least an enhanced base station eNB defined by the 3GPP protocol.
  • the access network element configures the length L of the MTP and the offset O of the start bit. And indicating that the repetition mode of the MTP is: the number M of repetitions of the MTP is 3, and the number of different data blocks scheduled in each MTP is 2, that is, data blocks 1 and 2, and indicates the neighboring of the scheduling data 1 and 2.
  • the interval between two MTPs is 2 MTPs, or the MTP repetition period of scheduling data 1 and 2 is 2 MTPs.
  • the access network element is in any MTP.
  • the MTP identified as MTP n starts scheduling the transmission of data blocks 1 and 2, and repeats the scheduling of data blocks 1 in subsequent MTP n+2, and MTP N+4. And 2.
  • the UE decides to receive the scheduled transmission of the data blocks 1 and 2 in the above MTP according to the needs of decoding.
  • the access network element in the MTP n indicates that the current MTP sequence number is the first MTP of the scheduling data blocks 1 and 2 by the DCI, represented by 0 or 1, and so on, then MTP n+1 and MTP n In +2, the sequence number of the current MTP is indicated by the DCI as the second and third MTPs.
  • the UE that starts receiving the service at any time knows the current MTP sequence number according to the sequence number of the MTP indicated above, and knows which MTP schedules are available after the MTP according to the number M of MTPs of the scheduling data blocks 1 and 2. Transmitting data blocks 1 and 2, for example, the UE starts receiving data at MTP n+2, and the UE schedules the current MTP sequence number 2 indicated by the DCI of the data block 1 or 2 according to the MTP n+2, and the scheduling data blocks 1 and 2
  • the number M of MTPs is 3, and the interval of MTPs of scheduling data blocks 1 and 2 is 2 MTPs, and it can be known that data blocks 1 and 2 are scheduled in subsequent MTP n+4.
  • the UE does not keep alignment with the transmission of the access network because the MTP of the first scheduling data block 1 and 2 is not received, and the access network element can also start scheduling data blocks 1 and 2 at any MTP. No additional mechanism is required for the UE to know the starting MTP location of the scheduling data blocks 1 and 2.
  • the UE can ignore Data transmitted in MTP n+4, if the UE does not decode data block 1 or 2 in MTP n+2, the UE may continue to read the scheduled transmission of data blocks 1 and 2 in MTP n+4, and by scheduling data The identifier of the data block indicated in the DCI of the block to identify which data block is scheduled to be transmitted, so that the PDSCH channel signal of the data block 1 or the data block 2 received in the MTP n+4, and the MTP n+2 The corresponding data block 1 or the PDSCH channel signal of the data block 2 received in the merge decoding.
  • the scheduling transmission of data blocks 1 and 2 is taken as an example.
  • the access network element may also schedule other data blocks of the same service or SRB.
  • one MTP only schedules one data block, which is marked as 1 in the figure.
  • data block 1 is scheduled to be transmitted twice.
  • the access network element indicates the current MTP as the sequence number in the MTP for scheduling the data block 1 by scheduling the DCI of the data block 1.
  • the DCI sent in MTP n for scheduling the service or SRB indicates that the current MTP sequence number is the first MTP, or that there are 2 MTPs after the current MTP for transmitting the same data block as the current MTP.
  • the DCI indicates that the current MTP is the second and third MTP, respectively.
  • FIG. 5 is a third preferred embodiment of the present embodiment.
  • two data blocks are scheduled to be transmitted in one MTP, and each data block is scheduled to be transmitted twice.
  • MTPn and MTP n+2 are used to schedule transmission of data block 1 and data block 2.
  • the access network element indicates that its data block identifiers are 0 and 1 in the DCI of the scheduling data block 1 and the data block 2, respectively, for distinguishing between the two.
  • FIG. 6 is a schematic structural diagram of a transmission apparatus of a multicast service according to Embodiment 1 of the present invention. As shown in FIG. 6, the transmission apparatus of the multicast service according to the embodiment of the present invention includes:
  • the scheduling unit 60 is configured to perform joint scheduling transmission on the N data blocks, where one One-time repeated transmission of the data block forms a repeating transmission of level one, and the repeated transmission of the M1 secondary level one is continuously repeated for the N data blocks to form one level two repeated transmission; the M2 secondary level two repeated transmission forms N One joint scheduling transmission of data blocks; N, M1, and M2 are positive integers.
  • the scheduling unit 60 is further configured to: when the joint scheduling transmission of the N data blocks is scheduled by using a dynamic scheduling manner, the scheduling information is indicated by one of the following methods:
  • the number of data blocks for joint scheduling is indicated by the dynamic scheduling signaling DCI, and the number of repeated transmissions M2 of the level 2 is indicated by DCI or semi-static signaling, or the number of wireless subframes occupied by one joint scheduling transmission. ;
  • the number N of the data blocks that are jointly scheduled is indicated by the semi-persistent scheduling signaling, and the number M2 of repeated transmissions of the second level is indicated by DCI or semi-static signaling, or the number of wireless subframes occupied by one joint scheduling transmission. .
  • the scheduling unit 60 is further configured to indicate the number of repeated transmissions M1 of the level one by dynamic scheduling signaling DCI or semi-static signaling.
  • the scheduling unit shown in FIG. 6 can be implemented by a microprocessor, an FPGA, a digital signal processor, or the like.
  • FIG. 7 is a schematic structural diagram of a transmission apparatus of a multicast service according to Embodiment 2 of the present invention.
  • the transmission apparatus of the multicast service according to the embodiment of the present invention includes a scheduling unit 70 and a configuration unit 71, where:
  • the scheduling unit 70 is configured to schedule a transmission service or a signaling radio bearer
  • the configuration unit 71 is configured to configure a multiple transmission period MTP for the service or the signaling radio bearer, and jointly schedule and transmit N data blocks one or more times in the MTP, where one time for one data block Repeated transmission forms a repeating transmission of level one, and repeatedly transmits M1 times of level one repeated transmission to the N data blocks to form a repeating transmission of level two.
  • Sending; M2 times level 2 repeated transmission forms a joint scheduling transmission of N data blocks; N, M1, M2 are positive integers.
  • the configuration unit 71 is further configured to:
  • the length information L of the MTP and the offset information Offset of the start position of the MTP are configured.
  • the transmission device of the multicast service according to the embodiment of the present invention further includes:
  • a determining unit (not shown in Figure 7) configured to determine the starting position of the MTP is as follows:
  • the H-SFN is the system superframe number
  • the SFN is the system frame number
  • the mod is the modulo operation symbol
  • L is the length of the MTP
  • the offset is the offset of the MTP start position; the starting position of the MTP is satisfied.
  • the H-SFN of the formula and the SFN; the default value of the Offset is 0.
  • the scheduling unit, the configuration unit, and the determining unit shown in FIG. 7 can all be implemented by a microprocessor, an FPGA, a digital signal processor, or the like.
  • FIG. 8 is a schematic structural diagram of a transmission apparatus of a multicast service according to Embodiment 3 of the present invention. As shown in FIG. 8, the transmission apparatus of the multicast service according to the embodiment of the present invention includes:
  • the indicating unit 80 is configured to indicate the length information L of the multiple transmission period MTP by semi-static signaling or dynamic scheduling signaling DCI;
  • the determining unit 81 is configured to determine the length information L of the MTP by semi-static signaling or dynamic scheduling signaling DCI carrying the length information of the MTP when the indicating unit indicates the length information of the MTP of the multiple transmission period; When the indication unit does not indicate the length information of the MTP, the scheduling period of the transport channel or the logical channel that carries the service or signaling radio bearer SRB The length is used to determine the length information L of the MTP.
  • the indicating unit 80 is further configured to indicate an offset information Offset of the MTP start position by semi-static signaling or dynamic scheduling signaling DIC;
  • the determining unit 81 is further configured to determine, by the semi-static signaling or dynamic scheduling signaling DIC that carries the offset information of the MTP start position, when the indication unit 80 indicates the offset information of the MTP start position. Determining the offset information of the MTP start position; when the indication unit 80 does not indicate the offset information of the MTP start position, determining the MTP start position by using a default value of the offset information of the MTP start position Offset information, the default value is zero.
  • the indicating unit 80 is further configured to indicate the MTP quantity information M in the repeating mode by semi-static signaling or dynamic scheduling signaling DIC; the determining unit 81 is further configured to indicate in the repeating mode in the indicating unit 80
  • the MTP quantity information M in the repeated mode is determined by carrying the semi-static signaling or the dynamic scheduling signaling DIC of the MTP quantity information M in the repetition mode; the repeating mode is not indicated in the indication unit 80.
  • the MTP quantity information M in the repeated mode is determined by the default value of the MTP quantity information in the repetition mode, wherein the default value is 1 or a protocol specified value.
  • the indicating unit 80 is further configured to indicate interval information P of two adjacent MTPs in the repeated mode by semi-static signaling or dynamic scheduling signaling DIC; the determining unit 81 is further configured to be in the indicating unit When 80 indicates the interval information P of two adjacent MTPs in the repeat mode, the interval information P is determined by semi-static signaling or dynamic scheduling signaling DIC carrying the interval information P; the indication unit 80 does not indicate The interval information P is determined by a default value of the interval information when the interval information P of two adjacent MTPs in the repeat mode is the default value is 1.
  • the determining unit shown in FIG. 8 can be implemented by a microprocessor, an FPGA, a digital signal processor, or the like.
  • the indication unit can be implemented by an antenna system or the like.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units, that is, may be located in one place or distributed to multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be integrated into one unit;
  • the unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM read only memory
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • Make a computer device can be a personal computing The machine, server, or network device, etc.) performs all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • an embodiment of the present invention further provides a computer storage medium, wherein a computer program is configured, and the computer program is configured to perform a transmission method of a multicast service according to an embodiment of the present invention.
  • the access network element performs joint scheduling transmission on the N data blocks, where the repeated transmission of one data block forms a level one repeated transmission, and the N data blocks are consecutively continuous. Repeated transmission of M1 times of level 1 repeated transmission forms a repeating transmission of level 2; repeated transmission of level 2 of M2 times forms a joint scheduling transmission of N data blocks.
  • the service in the point-to-multipoint transmission can be accurately received by the receiving end, and the data receiving can be completed.
  • the embodiment of the present invention implements the service data reception of the UE as soon as possible, thereby reducing the battery consumption of the UE, and satisfying that the UE with poor coverage signal receives enough PDSCH repeated transmissions to successfully decode the data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种多播业务的传输方法及装置、计算机存储介质,所述方法包括:接入网网元将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;N、M1、M2为正整数。

Description

一种多播业务的传输方法及装置、计算机存储介质
相关申请的交叉引用
本申请基于申请号为201610962289.4、申请日为2016年11月04日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及一种多播业务的传输方法及装置、计算机存储介质。
背景技术
在第三代合作伙伴计划的长期演进(3GPP LTE,3rd Generation Partnership Project Long Term Evolution)系统中,引入了单小区点到多点(SC-PTM,Single Cell Point-To-Multipoint)传输技术,SC-PTM技术用于实现在单小区(Single Cell)中传输点到多点的下行多媒体广播多播(MBMS,Multimedia Broadcast Multicast Service)业务。SC-PTM引入了两种逻辑信道,即单小区多播控制信道(SC-MCCH,Single Cell-Multicast Control Channel)和单小区多播传输信道(SC-MTCH,SC-MCCH,Single Cell-Multicast Traffic Channel)。在LTE中,SC-MCCH与SC-MTCH都通过物理下行共享信道(PDSCH,Physical Downlink Shared Channel)承载。
如图1所示,窄带物联网(NB-IoT,Narrow Band Internet of Thing)和LTE增强的机器类型通讯(eMTC,enhanced Machine Type Communication)中为了增强覆盖的UE的接收,同一个PDCCH信令和PDSCH信道数据都需要重复发送多次。如图1所示,在调度PDSCH的PDCCH信令中,除了指示PDSCH信道所使用的时域频域资源以及调制编码格式MCS之外,还 指示了PDSCH的重复发送次数(Repetition number),以及调度发送PDSCH的时间起点,即调度定时scheduling delay,在现有技术中,这个调度定时是指最后一个PDCCH子帧之后的第几个无线子帧开始调度相应的PDSCH。
在NB-IoT或eMTC中,如何支持SC-PTM,存在以下的问题。
NB-IoT和eMTC引入SC-PTM的主要目的在于提供一种高效的点对多点的传输技术,主要用于海量的UE更新其软件或固件,避免海量的UE通过专用信道(dedicated channel)获取所述业务数据。这种业务显然需要100%正确可靠的接收业务数据,否则所接收到的部分业务数据没有实际的意义。而目前的业务传输方式并不能保证数据完全准确的接收。
另一方面,广播业务面对的多个接收业务的用户终端UE,不同的UE的覆盖信号质量不同,因此需要接收PDSCH的重复个数也不同,如何让覆盖信号质量好的UE尽快的接收到业务数据,从而减少电池消耗,又能满足覆盖信号不好的UE能接收到足够多的PDSCH重复发送以成功解码数据,也是需要解决的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种多播业务的传输方法及装置、计算机存储介质。
本发明实施例的技术方案如下:
一种多播业务的传输方法,所述方法包括:
接入网网元将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
N、M1、M2为正整数。
一种多播业务的传输方法,所述方法包括:
接入网网元调度传输业务或信令无线承载时,为所述业务或所述信令无线承载配置多次传输周期MTP,并在所述MTP中联合调度传输N个数据块一次或多次,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
N、M1、M2为正整数。
一种多播业务的传输方法,所述方法包括:
所述接入网网元指示多次传输周期MTP的长度信息时,通过携带MTP的长度信息的半静态信令或动态调度信令DCI来确定所述MTP的长度信息L;
所述接入网网元未指示MTP的长度信息时,通过承载所述业务或信令无线承载SRB的传输信道或逻辑信道的调度周期的长度来确定所述MTP的长度信息L。
一种多播业务的传输方法,所述方法包括:
接收端在M个MTP中的一个或多个MTP中接收所述的N个数据块,其中,所述N个数据块采用联合调度传输。
一种多播业务的传输装置,所述装置包括:
调度单元,配置为将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
N、M1、M2为正整数。
一种多播业务的传输装置,所述装置包括:调度单元和配置单元,其 中:
调度单元,配置为调度传输业务或信令无线承载;
配置单元,配置为为所述业务或所述信令无线承载配置多次传输周期MTP,并在所述MTP中联合调度传输N个数据块一次或多次,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
N、M1、M2为正整数。
一种多播业务的传输装置,所述装置包括:
指示单元,配置为通过半静态信令或动态调度信令DCI指示多次传输周期MTP的长度信息L;
确定单元,配置为在所述指示单元指示多次传输周期MTP的长度信息时,通过携带MTP的长度信息的半静态信令或动态调度信令DCI来确定所述MTP的长度信息L;在所述指示单元未指示MTP的长度信息时,通过承载所述业务或信令无线承载SRB的传输信道或逻辑信道的调度周期的长度来确定所述MTP的长度信息L。
一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行上述任意所述的多播业务的传输方法。
本发明实施例的技术方案,接入网网元将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输。通过本发明实施例的技术方案,使点对多点的传输中业务能被接收端准确地接收,且能使数据接收完整。本发明实施例实现了UE尽快的业务数据接收,从而减少了UE的电池消耗,又满足了覆盖信号不佳的UE接收到 足够多的PDSCH重复发送以成功解码数据。
附图说明
图1为NB-IoT及eMTC中PDCCH信令和PDSCH信道数据重复发送示意图;
图2为本发明实施例的数据块联合调度传输示意图;
图3为本发明实施例的MTP的长度L以及起始位的偏移O配置示意图;
图4为本发明实施例的一个MTP只调度一个数据块的调度示意图;
图5为本发明实施例的一个MTP中调度传输2个数据块的调度示意图;
图6为本发明实施例一的多播业务的传输装置的组成结构示意图;
图7为本发明实施例二的多播业务的传输装置的组成结构示意图;
图8为本发明实施例三的多播业务的传输装置的组成结构示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例1
在本实施例中,提供了一种多个数据块进行交织传输的方法。
如图2所示,接入网网元将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输; N、M1、M2为正整数。
这里,将对一个数据块的一次重复发送称为一次级别一的重复发送,将对N个数据块分别连续重复发送M1次级别一的重复发送,并组成一次级别二的重复发送。M2个级别二的重复发送组成一次完整的联合调度传输。
具体的,一个数据块的一次重复发送(也即一次级别一的重复发送)为:占用一个无线子帧的PDSCH发送,则N个数据块分别连续重复M1个无线子帧的重复发送组成了一个级别二的重复发送,M2个连续的级别二的重复发送组成了这N个数据块的一次完整调度传输。
接入网网元通过动态调度方式调度此N个数据块的联合调度传输时,接入网网元通过下列方式之一指示调度信息:
1、接入网网元通过动态调度信令DCI指示进行联合调度的数据块的个数N,并通过DCI或者半静态信令指示上述级别二的重复发送的次数M2,或一次调度传输一共占用的无线子帧的数量信息。
2、接入网网元通过半静态调度信令指示进行联合调度的数据块的个数N,并通过DCI或半静态信令指示上述级别二的重复发送的次数M2,或一次调度传输一共占用的无线子帧的数量信息。
接入网网元通过半静态调度方式调度此N个数据块的联合调度传输时,接入网网元在半静态信令中指示进行联合调度的数据块的个数N,以及上述的级别二重复次数M2或一次调度传输一共占用的无线子帧的数量信息。
在一实施方式中,接入网网元还通过动态调度信令DCI或半静态信令指示上述级别一的重复次数M1。缺省的,M1的值为1,即对所述N个数据块分别发送一次级别一的重复形成一次级别二的重复发送。
在上述的方法中,如果指示了级别二的重复发送的次数M2,则一次完 整的调度传输中PDSCH所占用的无线子帧的个数=M2×N×M1,如果指示了一次调度传输一共占用的无线子帧的个数T,则所述的M2=T/(N×M1)。这里假设级别一的一次重复发送占用一个无线子帧,如果级别一的一次重复发送占用多个无线子帧,则相应的将此因素加入到上述的公式中即可。
上述的半静态信令包括SC-MCCH消息,此时接入网网元在SC-MCCH消息中某个特定业务的调度信息中指示上述信息。
在不同的需求中,可以选择不同的信令指示方式,并达到不同的有益效果。
例如通过动态调度信令DCI指示上述的N,具有完全的动态调度性能,接入网网元可以根据调度数据时等待调度的和数据块的个数决定N的个数,但获得了灵活性的同时带来DCI的开销的增加。
接入网网元通过动态调度信令DCI指示上述的M2或一次调度所占的子帧的个数,同样具有最大的灵活性,但同样也带来DCI开销的增加。
对一次需要调度发送的数据块的个数已经确定且在一段时间不发生变化的场景,使用半静态信令指示上述信息更合适。例如,SC-PTM中的SC-MCCH消息在RLC层分片后,分为N个RLC PDU,即N个数据块,且SC-MCCH消息大小在一定时间内不会发生变化,则可以使用半静态的信令SIB20指示调度SC-MCCH消息的数据块时所使用的上述N和M2等信息。
而通过半静态信令指示上述的N时,如果需要调度的数据块的个数少于N,则需要下列的方法进行解决:
接入网网元在调度时,如果需要调度发送的数据块的个数少于通过信令指示的信令N,则接入网网元通过制造不包含数据的伪数据块与需要发送的数据块共同组成N个数据块。且这些不包含数据块的伪数据块排列在需要发送的数据块之后发送。这些伪数据块为数据部分只包含pading的 RLC PDU或MAC PDU。
在本实施例中所述的数据块,其形式包括RLC PDU,MAC PDU,或MAC层传输块(TB)。
通过本实施例的方法,接入网网元实现了对多个数据块进行调度时的交织传输。并通过信令的指示,实现动态的调整进行联合调度的数据块的个数。在这种传输方式下,信号覆盖好的UE可以尽快的接收到N个数据块,而信号不好的UE也有足够多的接收机会将上述N个数据块的多次重复进行合并(combining)来实现成功的解码。
实施例2
本实施例提供了一种对N个数据块进行多次重复调度传输的方法。
接入网网元调度传输业务或信令无线承载(SRB,Signaling Radio Bearer)时,为其配置多次传输周期(MTP,Multiple Transmission Period),并在所述的MTP中联合调度传输所述N个数据块一次或多次,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
N、M1、M2为正整数。
所述接入网网元配置多次传输周期MTP,至少包括:所述MTP的长度信息L。在一实施方式中,还包括所述MTP的起始位置的偏移信息Offset。
所述一个MTP的起始位置通过下述公式计算:
(H-SFN×1024+SFN)mod L=offset;
其中:H-SFN为系统超帧号,SFN为系统帧号,mod为取模运算符号,L为MTP的长度,offset为MTP起始位置的偏移。所述MTP的起始位置为满足上述公式的H-SFN以及SFN;所述offset的缺省值为0。
在一实施方式中,接入网网元在所述的MTP中发送用于调度所述业务 或SRB的数据块的动态调度信令。如果所述业务或SRB有调度周期或重复周期,或更进一步,所述业务或SRB配置用于调度的时间窗口,则接入网网元在所述MTP中上述业务或SRB的调度周期或重复周期,以及其配置的调度时间窗口内发送所述业务或SRB的动态调度信令。
接入网网元以MTP重复模式调度所述多个数据块,所述MTP重复模式用于将N个数据块在多个MTP中重复调度传输,所述MTP重复模式的信息至少包括:用于调度传输所述N个数据块的MTP的个数M、以及用于调度传输所述N个数据块的多个MTP中相邻两个MTP之间的间隔长度P,其中M的取值范围为大于等于1的正整数,P的取值为大于等于1的正整数,所述的相邻MTP的间隔为相邻两个MTP的起始位置之间的间隔长度,或相邻两个MTP中前一个MTP的结束位置与后一个MTP起始位置的间隔长度。
在一实施方式中,所述的相邻两个MTP的间隔长度P的单位为MTP的个数,此时所述多个MTP中相邻两个MTP间的间隔为P个MTP的长度。
所述的N个数据块在上述的多个MTP中被重复的调度传输,即,在每个MTP中,所述的N个数据块被调度传输一次或多次。在一个MTP内,接入网网元调度所述的N个数据块一次或多次,具体的调度方式包括但不限于:
1、分别独立的调度每个数据块,即承载一个数据块的PDSCH信道一次或多次重复通过独立的PDCCH信令DCI进行调度。
2、一个PDCCH信令DCI调度N个数据块的PDSCH信道。
3、使用本发明中实施例1提供的N个数据块的联合调度方法进行调度传输。
在一实施方式中,在一个MTP中,每个数据块可以被调度传输N2次,N2大于等于1。
接入网一个MTP中调度N个数据块的N2次传输时,其调度的顺序包括:
1、每个数据块被调度传输N2次后调度下一个数据块;即按照(数据块1,数据块1…),(数据块2,数据块2…)…(数据块N,数据块N…)
2、N个数据块被依次调度一次作为一个重复,即接入网按照(数据块1,数据块2…数据块n),(数据1,数据2…数据n)…的方式调度传输N2次;
在一实施方式中,在动态调度所述N个数据块的动态调度信令DCI中,指示当前的调度所在MTP为调度所述N个数据块的M个MTP中的顺序号,或在当前MTP之后(包括或不包括当前的MTP)用于调度传输所述的N个数据块的MTP的个数。
当在每个MTP中一个数据块只被调度传输一次时,所述的MTP的顺序号等同于所述数据块被调度的顺序号,所述的MTP的个数等用于所述数据块被调度传输的次数。
在一实施方式中,如果所述的在一个MTP中调度传输的数据块的个数N大于1,则接入网网元还在调度数据块的DCI中的指示数据块的标识Data-ID,同一个数据块在不同MTP中传输时有相同的标识Data-ID。
在一实施方式中,所述的数据块的标识Data-ID为一个数据块在所述N个数据块中的顺序号,即所述N个数据块中的第一个数据块的标识为0,第二个数据块的标识为1,以此类推。
接入网网元通过信令指示UE调度信息,包括:
所述接入网网元指示多次传输周期MTP的长度信息时,通过携带MTP的长度信息的半静态信令或动态调度信令DCI来确定所述MTP的长度信息L;
所述接入网网元未指示MTP的长度信息时,通过承载所述业务或信 令无线承载SRB的传输信道或逻辑信道的调度周期的长度来确定所述MTP的长度信息L。
在一实施方式中,所述接入网网元指示MTP起始位置的偏移信息Offset时,通过携带MTP起始位置的偏移信息的半静态信令或动态调度信令DIC来确定所述MTP起始位置的偏移信息;
所述接入网网元未指示MTP起始位置的偏移信息时,通过MTP起始位置的偏移信息的缺省值来确定所述MTP起始位置的偏移信息,所述缺省值为零。
在一实施方式中,所述接入网网元指示重复模式中的MTP数量信息M时,通过携带重复模式中的MTP数量信息M的半静态信令或动态调度信令DIC来确定所述重复模式中的MTP数量信息M;
所述接入网网元未指示重复模式中的MTP数量信息M时,通过重复模式中的MTP数量信息的缺省值来确定所述重复模式中的MTP数量信息M,其中,所述缺省值为1或协议指定值。
在一实施方式中,所述接入网网元指示所述重复模式中相邻两个MTP的间隔信息P时,通过携带间隔信息P的半静态信令或动态调度信令DIC来确定所述间隔信息P;
所述接入网网元未指示所述重复模式中相邻两个MTP的间隔信息P时,通过所述间隔信息的缺省值来确定所述间隔信息P,所述缺省值为1。
在一实施方式中,所述接入网网元指示一个MTP中进行调度传输的数据块的个数N时,通过携带所述数据块的个数N的半静态信令或动态调度信令DIC来确定所述数据块的个数N;
所述接入网网元未指示一个MTP中进行调度传输的数据块的个数N时,通过所述数据块的个数的缺省值来确定所述数据块的个数N,所述缺省值为1。
在一实施方式中,所述接入网网元指示一个MTP中一个数据块被调度传输的次数N2时,通过携带所述次数N2的半静态信令或动态调度信令DIC来确定所述一个数据块被调度传输的次数N2;
所述接入网网元未指示一个MTP中一个数据块被调度传输的次数N2时,通过所述次数N2的缺省值来确定所述一个数据块被调度传输的次数N2,所述缺省值为1。
接收端UE接收所述N个数据块包括:
接收端在上述M个MTP中一个或多个MTP中接收N个数据块,其中,所述N个数据块采用联合调度传输。
接收端在一个MTP中检测到调度所接收的业务或SRB的DCI时,根据DCI中指示的当前MTP的在M个MTP中的顺序号以及M的值,或指示的当前MTP之后剩余的调度相同数据块的MTP个数,可以确定在此MTP(也即当前MTP)之后哪些MTP调度传输当前MTP传输的数据块。
UE将多个MTP中调度传输的某一个数据块的多次调度传输的PDSCH信道进行合并接收。
UE根据MTP的边界判断不同的MTP中调度的数据块为不同的数据块。
UE在一个MTP中尝试接收数据块的次数不超过N×N2次。
所述的数据块为传输数据块(transmission block,TB),或无线链路控制协议(RLC)的负荷数据单元(payload data unit,PDU),或媒体接入控制协议(MAC)的负荷数据单元(PDU)。
所述的传输信道至少包括:SC-MTCH信道、DTCH信道、DCCH信道、CTCH信道、MTCH信道、MCCH信道。
所述的半静态信令至少包括:用于指示SC-MCCH消息调度信息的系统信息块,用于指示SC-MTCH调度信息的SC-MCCH消息;
所述的动态调度信令至少包括:PDCCH信道承载的DCI。
所述接入网网元至少包括3GPP协议定义的增强基站eNB。
如图3所示,在图3中,接入网网元配置MTP的长度L以及起始位的偏移O。并指示MTP的重复模式为:MTP的重复个数M为3,每个MTP中调度的不同的数据块的个数为2,即数据块1和2,并指示调度数据1和2的相邻两个MTP间的间隔为2个MTP,或者说调度数据1和2的MTP重复周期为2个MTP。
接入网网元在任意一个MTP,在图3中,标识为MTP n的MTP开始调度传输数据块1和2,并在随后的MTP n+2,以及MTP N+4中重复调度数据块1和2。
UE根据解码的需要决定接收数据块1和2在上述MTP的调度传输。
接入网网元在MTP n中,通过DCI指示当前MTP的顺序号为调度数据块1和2的第一个MTP,用0或者1表示,并以此类推,则MTP n+1和MTP n+2中,通过DCI指示当前MTP的顺序号为第二和第三个MTP。
在任意时刻开始接收该业务的UE根据上述指示的MTP的顺序号知道当前的MTP的顺序号,以及根据调度数据块1和2的MTP的个数M,知道在此MTP之后还有哪些MTP调度传输数据块1和2,例如UE在MTP n+2开始接收数据,UE根据MTP n+2中所述调度数据块1或2的DCI指示的当前MTP顺序号2,以及调度数据块1和2的MTP的个数M为3,以及调度数据块1和2的MTP的间隔为2个MTP,可以知道后续的MTP n+4中调度的是数据块1和2。从而UE并不会因为没有接收到第一个调度数据块1和2的MTP而不能和接入网的发送保持对齐,接入网网元也得以在任何MTP开始调度数据块1和2,而不需要额外的机制让UE知道调度数据块1和2的开始MTP位置。
如果UE在MTP n+2中已经成功解码数据块1和2,则UE可以忽略在 MTP n+4中传输的数据,如果UE在MTP n+2中没有解码数据块1或2,则UE可以继续在MTP n+4中读取数据块1和2的调度传输,并通过调度数据块的DCI中指示的数据块的标识来识别调度传输的是哪一个数据块,从而可以将MTP n+4中接收到的数据块1或数据块2的PDSCH信道信号,和在MTP n+2中接收到的相应的数据块1或数据块2的PDSCH信道信号进行合并解码。
本实施例以数据块1和2的调度发送为例,在其它的MTP中,接入网网元还可以调度同一个业务或SRB的其它数据块。
图4为本实施例另一个优选的具体实施方式,在这个例子中,一个MTP只调度一个数据块,在图中标记为1,在一个MTP中,数据块1被调度传输2次。在每个MTP中,接入网网元通过调度数据块1的DCI指示当前MTP为用于调度数据块1的MTP中的顺序号。在图中MTP n中发送的用于调度该业务或SRB的DCI指示当前MTP的顺序号为第一个MTP,或指示当前MTP之后还有2个MTP用于传输和当前MTP相同的数据块。以此类推,在MTP n+2和MTP n+4中,所述的DCI分别指示当前MTP为第二个和第三个MTP。
图5为本实施例的第三个优选的具体实施方式,在这个例子中,一个MTP中调度传输2个数据块,每个数据块被调度传输2次。在图5中,MTPn和MTP n+2用于调度传输数据块1和数据块2。在一个MTP中,数据块1和数据块2分别被连续调度2次。即N=2,N2=2。接入网网元在调度数据块1和数据块2的DCI中分别指示其数据块标识为0和1,用于区别二者。
图6为本发明实施例一的多播业务的传输装置的组成结构示意图,如图6所示,本发明实施例的多播业务的传输装置包括:
调度单元60,配置为将N个数据块进行联合调度传输,其中,对一个 数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;N、M1、M2为正整数。
所述调度单元60,还配置为通过动态调度方式调度所述N个数据块的联合调度传输时,通过下列方式之一指示调度信息:
通过动态调度信令DCI指示进行联合调度的数据块的个数N,并通过DCI或者半静态信令指示级别二的重复发送的次数M2,或一次联合调度传输所占用的无线子帧的数量信息;
通过半静态调度信令指示进行联合调度的数据块的个数N,并通过DCI或半静态信令指示级别二的重复发送的次数M2,或一次联合调度传输所占用的无线子帧的数量信息。
所述调度单元60,还配置为通过动态调度信令DCI或半静态信令指示级别一的重复发送次数M1。
本领域技术人员应当理解,图6所示的多播业务的传输装置中的各单元的实现功能可参照前述多播业务的传输方法的相关描述而理解。图6所示的调度单元可以通过微处理器、FPGA、数字信号处理器等实现。
图7为本发明实施例二的多播业务的传输装置的组成结构示意图,如图7所示,本发明实施例的多播业务的传输装置包括调度单元70和配置单元71,其中:
调度单元70,配置为调度传输业务或信令无线承载;
配置单元71,配置为为所述业务或所述信令无线承载配置多次传输周期MTP,并在所述MTP中联合调度传输N个数据块一次或多次,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发 送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;N、M1、M2为正整数。
所述配置单元71,还配置为:
配置所述MTP的长度信息L;或者
配置所述MTP的长度信息L、所述MTP的起始位置的偏移信息Offset。
在图7所示的多播业务的传输装置的基础上,本发明实施例的多播业务的传输装置还包括:
确定单元(图7中未示出),配置为确定MTP的起始位置,为下述方式:
(H-SFN×1024+SFN)mod L=offset;
其中,H-SFN为系统超帧号,SFN为系统帧号,mod为取模运算符号,L为MTP的长度,offset为MTP起始位置的偏移;所述MTP的起始位置为满足上述公式的H-SFN以及SFN;所述Offset的缺省值为0。
本领域技术人员应当理解,图7所示的多播业务的传输装置中的各单元的实现功能可参照前述多播业务的传输方法的相关描述而理解。图7所示的调度单元、配置单元和确定单元均可以通过微处理器、FPGA、数字信号处理器等实现。
图8为本发明实施例三的多播业务的传输装置的组成结构示意图,如图8所示,本发明实施例的多播业务的传输装置包括:
指示单元80,配置为通过半静态信令或动态调度信令DCI指示多次传输周期MTP的长度信息L;
确定单元81,配置为在所述指示单元指示多次传输周期MTP的长度信息时,通过携带MTP的长度信息的半静态信令或动态调度信令DCI来确定所述MTP的长度信息L;在所述指示单元未指示MTP的长度信息时,通过承载所述业务或信令无线承载SRB的传输信道或逻辑信道的调度周期的 长度来确定所述MTP的长度信息L。
所述指示单元80,还配置为通过半静态信令或动态调度信令DIC指示MTP起始位置的偏移信息Offset;
所述确定单元81,还配置为在所述指示单元80指示MTP起始位置的偏移信息时,通过携带MTP起始位置的偏移信息的半静态信令或动态调度信令DIC来确定所述MTP起始位置的偏移信息;在所述指示单元80未指示MTP起始位置的偏移信息时,通过MTP起始位置的偏移信息的缺省值来确定所述MTP起始位置的偏移信息,所述缺省值为零。
所述指示单元80,还配置为通过半静态信令或动态调度信令DIC指示重复模式中的MTP数量信息M;所述确定单元81,还配置为在所述指示单元80指示重复模式中的MTP数量信息M时,通过携带重复模式中的MTP数量信息M的半静态信令或动态调度信令DIC来确定所述重复模式中的MTP数量信息M;在所述指示单元80未指示重复模式中的MTP数量信息M时,通过重复模式中的MTP数量信息的缺省值来确定所述重复模式中的MTP数量信息M,其中,所述缺省值为1或协议指定值。
所述指示单元80,还配置为通过半静态信令或动态调度信令DIC指示所述重复模式中相邻两个MTP的间隔信息P;所述确定单元81,还配置为在所述指示单元80指示所述重复模式中相邻两个MTP的间隔信息P时,通过携带间隔信息P的半静态信令或动态调度信令DIC来确定所述间隔信息P;在所述指示单元80未指示所述重复模式中相邻两个MTP的间隔信息P时,通过所述间隔信息的缺省值来确定所述间隔信息P,所述缺省值为1。
本领域技术人员应当理解,图8所示的多播业务的传输装置中的各单元的实现功能可参照前述多播业务的传输方法的相关描述而理解。图8所示的确定单元均可以通过微处理器、FPGA、数字信号处理器等实现。指示单元可以通过天线系统等实现。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其他的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其他形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元,即可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算 机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
相应地,本发明实施例还提供一种计算机存储介质,其中存储有计算机程序,该计算机程序配置为执行本发明实施例的多播业务的传输方法。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
本发明实施例的技术方案,接入网网元将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输。通过本发明实施例的技术方案,使点对多点的传输中业务能被接收端准确地接收,且能使数据接收完整。本发明实施例实现了UE尽快的业务数据接收,从而减少了UE的电池消耗,又满足了覆盖信号不佳的UE接收到足够多的PDSCH重复发送以成功解码数据。

Claims (37)

  1. 一种多播业务的传输方法,所述方法包括:
    接入网网元将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
    N、M1、M2为正整数。
  2. 根据权利要求1所述的方法,其中,所述一个数据块的一次重复发送而形成的一次级别一的重复发送为:占用一个无线子帧的物理下行共享信道PDSCH发送。
  3. 根据权利要求1所述的方法,其中,所述接入网网元通过动态调度方式调度所述N个数据块的联合调度传输时,通过下列方式之一指示调度信息:
    所述接入网网元通过动态调度信令DCI指示进行联合调度的数据块的个数N,并通过DCI或者半静态信令指示级别二的重复发送的次数M2,或一次联合调度传输所占用的无线子帧的数量信息;
    所述接入网网元通过半静态调度信令指示进行联合调度的数据块的个数N,并通过DCI或半静态信令指示级别二的重复发送的次数M2,或一次联合调度传输所占用的无线子帧的数量信息。
  4. 根据权利要求3所述的方法,其中,所述接入网网元还通过动态调度信令DCI或半静态信令指示级别一的重复发送次数M1。
  5. 根据权利要求4所述的方法,其中,所述M1的值为1,相应地,所述对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送,包括:
    对所述N个数据块分别发送一次级别一的重复形成一次级别二的重 复发送。
  6. 根据权利要求3所述的方法,其中,所述接入网网元指示了级别二的重复发送的次数M2时,一次联合调度传输中PDSCH所占用的无线子帧的个数为M2×N×M1;
    所述接入网网元指示了一次联合调度传输中PDSCH所占用的无线子帧的个数T时,M2=T/(N×M1)。
  7. 根据权利要求3所述的方法,其中,所述方法还包括:
    所述接入网网元确定需要调度发送的数据块的数量少于通过信令指示的能传输数据块数量N时,通过构造不包含数据的伪数据块与需要发送的数据块共同组成N个数据块。
  8. 一种多播业务的传输方法,所述方法包括:
    接入网网元调度传输业务或信令无线承载时,为所述业务或所述信令无线承载配置多次传输周期MTP,并在所述MTP中联合调度传输N个数据块一次或多次,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
    N、M1、M2为正整数。
  9. 根据权利要求8所述的方法,其中,所述为所述业务或所述信令无线承载配置多次传输周期MTP,包括:
    配置所述MTP的长度信息L;或者
    配置所述MTP的长度信息L、所述MTP的起始位置的偏移信息Offset。
  10. 根据权利要求9所述的方法,其中,所述MTP的起始位置通过下述方式确定:
    (H-SFN×1024+SFN)mod L=offset;
    其中,H-SFN为系统超帧号,SFN为系统帧号,mod为取模运算符号;所述MTP的起始位置为满足上述公式的H-SFN以及SFN;其中,所述的offset缺省值为0。
  11. 根据权利要求9所述的方法,其中,所述在所述MTP中调度传输所述N个数据块一次或多次,包括:
    所述接入网网元在所述MTP中发送用于调度所述业务或所述信令无线承载的数据块的动态调度信令。
  12. 根据权利要求9所述的方法,其中,所述接入网网元以MTP重复模式调度所述N个数据块,所述MTP重复模式用于将N个数据块在多个MTP中重复调度传输,所述MTP重复模式的信息至少包括:用于调度传输所述N个数据块的MTP的个数M、以及用于调度传输所述N个数据块的多个MTP中相邻两个MTP之间的间隔长度P,其中,M为大于等于1的正整数,P为大于等于1的正整数,所述的相邻MTP的间隔为相邻两个MTP的起始位置之间的间隔长度,或相邻两个MTP中前一个MTP的结束位置与后一个MTP起始位置的间隔长度。
  13. 根据权利要求12所述的方法,其中,所述的相邻两个MTP的间隔长度P的单位为MTP的数量,对应地,多个MTP中相邻两个MTP间的间隔为P个MTP的长度。
  14. 根据权利要求8所述的方法,其中,所述的N个数据块在多个MTP中被重复的调度传输时,在每个MTP中,所述的N个数据块被调度传输一次或多次。
  15. 根据权利要求14所述的方法,其中,在一个MTP内,所述接入网网元调度所述的N个数据块一次或多次,包括:
    分别独立地调度每个数据块,使承载一个数据块的PDSCH信道资源 通过独立的PDCCH信令DCI进行调度;或者
    一个PDCCH信令DCI调度N个数据块的PDSCH信道。
  16. 根据权利要求14所述的方法,其中,在一个MTP中,每个数据块被调度传输N2次,N2大于等于1;在一个MTP中调度N个数据块的N2次传输的顺序包括:
    每个数据块被调度传输N2次后调度下一个数据块;或者,
    N个数据块被依次调度一次作为一个重复,并重复N2次。
  17. 根据权利要求12所述的方法,其中,在动态调度所述N个数据块的动态调度信令DCI中,指示当前的调度所在MTP为调度所述N个数据块的M个MTP中的顺序号,或指示当前MTP之后用于调度传输所述的N个数据块的MTP的个数。
  18. 根据权利要求17所述的方法,其中,
    当在每个MTP中一个数据块只被调度传输一次时,所述的当前的调度所在的MTP在所述M个MTP中的顺序号为所述数据块被调度的顺序号,所述的MTP的个数M为所述数据块被调度传输的次数。
  19. 根据权利要求8所述的方法,其中,在一个MTP中调度传输的数据块的个数N大于1时,所述接入网网元还在调度数据块的DCI中的指示数据块的标识Data-ID,同一个数据块在不同MTP中传输时有相同的标识Data-ID;
    所述的数据块的标识Data-ID为一个数据块在所述N个数据块中的顺序号。
  20. 一种多播业务的传输方法,所述方法包括:
    所述接入网网元指示多次传输周期MTP的长度信息时,通过携带MTP的长度信息的半静态信令或动态调度信令DCI来确定所述MTP的长度信息L;
    所述接入网网元未指示MTP的长度信息时,通过承载所述业务或信令无线承载SRB的传输信道或逻辑信道的调度周期的长度来确定所述MTP的长度信息L。
  21. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述接入网网元指示MTP起始位置的偏移信息Offset时,通过携带MTP起始位置的偏移信息的半静态信令或动态调度信令DIC来确定所述MTP起始位置的偏移信息;
    所述接入网网元未指示MTP起始位置的偏移信息时,通过MTP起始位置的偏移信息的缺省值来确定所述MTP起始位置的偏移信息,所述缺省值为零。
  22. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述接入网网元指示重复模式中的MTP数量信息M时,通过携带重复模式中的MTP数量信息M的半静态信令或动态调度信令DIC来确定所述重复模式中的MTP数量信息M;
    所述接入网网元未指示重复模式中的MTP数量信息M时,通过重复模式中的MTP数量信息的缺省值来确定所述重复模式中的MTP数量信息M,其中,所述缺省值为1或协议指定值。
  23. 根据权利要求20所述的方法,其中,
    所述接入网网元指示所述重复模式中相邻两个MTP的间隔信息P时,通过携带间隔信息P的半静态信令或动态调度信令DIC来确定所述间隔信息P;
    所述接入网网元未指示所述重复模式中相邻两个MTP的间隔信息P时,通过所述间隔信息的缺省值来确定所述间隔信息P,所述缺省值为1。
  24. 根据权利要求20所述的方法,其中,
    所述接入网网元指示一个MTP中进行调度传输的数据块的个数N 时,通过携带所述数据块的个数N的半静态信令或动态调度信令DIC来确定所述数据块的个数N;
    所述接入网网元未指示一个MTP中进行调度传输的数据块的个数N时,通过所述数据块的个数的缺省值来确定所述数据块的个数N,所述缺省值为1。
  25. 根据权利要求20所述的方法,其中,
    所述接入网网元指示一个MTP中一个数据块被调度传输的次数N2时,通过携带所述次数N2的半静态信令或动态调度信令DIC来确定所述一个数据块被调度传输的次数N2;
    所述接入网网元未指示一个MTP中一个数据块被调度传输的次数N2时,通过所述次数N2的缺省值来确定所述一个数据块被调度传输的次数N2,所述缺省值为1。
  26. 一种多播业务的传输方法,所述方法包括:
    接收端在M个MTP中的一个或多个MTP中接收N个数据块,其中,所述N个数据块采用联合调度传输。
  27. 根据权利要求26所述的方法,其中,所述接收端在一个MTP中检测到调度所接收的业务或信令无线承载SRB的下行控制信息DCI时,根据DCI中指示的当前MTP的在M个MTP中的顺序号以及M的值,或指示的当前MTP之后剩余的调度相同数据块的MTP数量,确定在当前MTP之后的MTP调度传输当前MTP传输的数据块。
  28. 根据权利要求26所述的方法,其中,所述方法还包括:
    所述接收端将多个MTP中调度传输的数据块的多次调度传输的PDSCH信道进行合并接收。
  29. 根据权利要求26所述的方法,其中,所述方法还包括:
    所述接收端根据MTP的边界判断不同的MTP中调度的数据块为不 同的数据块。
  30. 根据权利要求26所述的方法,其中,所述方法还包括:
    所述接收端在一个MTP中尝试接收数据块的次数不超过N×N2次。
  31. 一种多播业务的传输装置,所述装置包括:
    调度单元,配置为将N个数据块进行联合调度传输,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
    N、M1、M2为正整数。
  32. 根据权利要求31所述的装置,其中,所述调度单元,还配置为通过动态调度方式调度所述N个数据块的联合调度传输时,通过下列方式之一指示调度信息:
    通过动态调度信令DCI指示进行联合调度的数据块的个数N,并通过DCI或者半静态信令指示级别二的重复发送的次数M2,或一次联合调度传输所占用的无线子帧的数量信息;
    通过半静态调度信令指示进行联合调度的数据块的个数N,并通过DCI或半静态信令指示级别二的重复发送的次数M2,或一次联合调度传输所占用的无线子帧的数量信息。
  33. 一种多播业务的传输装置,所述装置包括:调度单元和配置单元,其中:
    调度单元,配置为调度传输业务或信令无线承载;
    配置单元,配置为为所述业务或所述信令无线承载配置多次传输周期MTP,并在所述MTP中联合调度传输N个数据块一次或多次,其中,对一个数据块的一次重复发送形成一次级别一的重复发送,对所述N个数据块分别连续重复发送M1次级别一的重复发送形成一次级别二的重 复发送;M2次级别二的重复发送形成N个数据块的一次联合调度传输;
    N、M1、M2为正整数。
  34. 根据权利要求33所述的装置,其中,所述配置单元,还配置为:
    配置所述MTP的长度信息L;或者
    配置所述MTP的长度信息L、所述MTP的起始位置的偏移信息Offset。
  35. 一种多播业务的传输装置,所述装置包括:
    指示单元,配置为通过半静态信令或动态调度信令DCI指示多次传输周期MTP的长度信息L;
    确定单元,配置为在所述指示单元指示多次传输周期MTP的长度信息时,通过携带MTP的长度信息的半静态信令或动态调度信令DCI来确定所述MTP的长度信息L;在所述指示单元未指示MTP的长度信息时,通过承载所述业务或信令无线承载SRB的传输信道或逻辑信道的调度周期的长度来确定所述MTP的长度信息L。
  36. 根据权利要求35所述的装置,其中,所述指示单元,还配置为通过半静态信令或动态调度信令DIC指示MTP起始位置的偏移信息Offset;
    所述确定单元,还配置为在所述指示单元指示MTP起始位置的偏移信息时,通过携带MTP起始位置的偏移信息的半静态信令或动态调度信令DIC来确定所述MTP起始位置的偏移信息;在所述指示单元未指示MTP起始位置的偏移信息时,通过MTP起始位置的偏移信息的缺省值来确定所述MTP起始位置的偏移信息,所述缺省值为零。
  37. 一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-7任一项所述的多播业务的传输方法,或者权利要求8-19任一项所述的多播业务的传输方 法,或者权利要求20-25任一项所述的多播业务的传输方法,或者权利要求26-30任一项所述的多播业务的传输方法。
PCT/CN2017/109596 2016-11-04 2017-11-06 一种多播业务的传输方法及装置、计算机存储介质 WO2018082703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610962289.4 2016-11-04
CN201610962289.4A CN108024215A (zh) 2016-11-04 2016-11-04 一种多播业务的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2018082703A1 true WO2018082703A1 (zh) 2018-05-11

Family

ID=62076686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109596 WO2018082703A1 (zh) 2016-11-04 2017-11-06 一种多播业务的传输方法及装置、计算机存储介质

Country Status (2)

Country Link
CN (1) CN108024215A (zh)
WO (1) WO2018082703A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2764072C1 (ru) * 2018-10-30 2022-01-13 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ, устройство и система для передачи данных, а также машиночитаемый носитель информации
CN114916077A (zh) * 2019-01-24 2022-08-16 华为技术有限公司 一种配置资源的确定方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192878A (zh) * 2006-11-28 2008-06-04 华为技术有限公司 一种高速下行分组接入传输的控制方法、系统及装置
CN101997809A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 信道测量导频发送方法和系统
CN104967497A (zh) * 2015-06-09 2015-10-07 武汉数字派特科技有限公司 一种基于网络通信协议的数据可靠传输方法及升级方法
US20160211949A1 (en) * 2013-10-24 2016-07-21 Lg Electronics Inc. Method for transmitting and receiving uplink/downlink data with mtc device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102387472B (zh) * 2010-09-02 2016-03-30 中兴通讯股份有限公司 用户设备及其接收多媒体广播和组播业务的方法
WO2016119212A1 (en) * 2015-01-30 2016-08-04 Qualcomm Incorporated Bearer selection for group service communication and service continuity
EP3716658B1 (en) * 2015-04-10 2021-10-06 Kyocera Corporation Base station and user terminal in mobile communication system
CN107734606B (zh) * 2016-08-12 2023-09-01 中兴通讯股份有限公司 一种多播业务的传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101192878A (zh) * 2006-11-28 2008-06-04 华为技术有限公司 一种高速下行分组接入传输的控制方法、系统及装置
CN101997809A (zh) * 2009-08-18 2011-03-30 中兴通讯股份有限公司 信道测量导频发送方法和系统
US20160211949A1 (en) * 2013-10-24 2016-07-21 Lg Electronics Inc. Method for transmitting and receiving uplink/downlink data with mtc device
CN104967497A (zh) * 2015-06-09 2015-10-07 武汉数字派特科技有限公司 一种基于网络通信协议的数据可靠传输方法及升级方法

Also Published As

Publication number Publication date
CN108024215A (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
US11012999B2 (en) Method and apparatus for indicating time domain resource allocation of data transmission in a wireless communication system
KR102597334B1 (ko) 무선 통신 시스템에서 장치 대 장치 사이드링크 harq-ack 생성을 위한 방법 및 장치
KR101977464B1 (ko) 무선 통신 시스템에서의 단축된 전송 시간 간격에서 업링크 승인을 개선시키기 위한 방법 및 장치
KR101852825B1 (ko) 무선 통신 시스템에서 경쟁 기반 자원을 이용한 스케줄링 요청 전송 방법 및 이를 위한 장치
KR20190017656A (ko) 무선 통신 시스템에서 sfi (slot format information) 충돌을 처리하기 위한 방법 및 장치
CN110890939B (zh) 用于无线通信系统中的侧链路传送的源指示的方法和设备
EP2421178A2 (en) Method for transmitting a sounding reference signal in an uplink comp communication system, and apparatus for same
TW201826771A (zh) 無線通訊系統中用於控制通道與數據通道之間的時序關係的方法和設備
JP2014515901A (ja) Mbmsサポートユーザ装置のデータ受信方法及び装置
US10917818B2 (en) Method and apparatus for group communication in wireless communication system
CN101785218A (zh) 在无线通信系统中分配无线资源的方法
KR20230144507A (ko) Nr v2x 시스템을 위한 harq 동작을 수행하는 방법 및 장치
US20190320306A1 (en) Mobile communication method and user terminal
WO2011009367A1 (zh) Mcch信息的发送、传输和接收方法及传输系统
US20120039288A1 (en) Resource allocation method for broadband wireless connection system, and apparatus for performing same
KR20140144189A (ko) 무선 통신 시스템에서 단말 간 직접 통신을 위한 harq 수행 방법 및 이를 위한 장치
KR20220165657A (ko) 무선 통신 시스템에서 빔 표시를 위한 시그널링 방법 및 장치
WO2018082703A1 (zh) 一种多播业务的传输方法及装置、计算机存储介质
WO2015030494A1 (ko) 무선 통신 시스템에서 단말 간 직접 통신에 기반한 단말 간 거리 측정 방법 및 이를 위한 장치
US20150215882A1 (en) User equipment and methods for device-to-device communication over an lte air interface
US20230180244A1 (en) System and method for signal transmission
EP4068665A1 (en) Method and apparatus for retransmitting synchronous and asynchronous data in wireless communication system
WO2012113314A1 (zh) 一种上行授权信息的发送方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17867113

Country of ref document: EP

Kind code of ref document: A1