WO2018082481A1 - 一种3d摄像模组及3d拍摄设备 - Google Patents

一种3d摄像模组及3d拍摄设备 Download PDF

Info

Publication number
WO2018082481A1
WO2018082481A1 PCT/CN2017/107520 CN2017107520W WO2018082481A1 WO 2018082481 A1 WO2018082481 A1 WO 2018082481A1 CN 2017107520 W CN2017107520 W CN 2017107520W WO 2018082481 A1 WO2018082481 A1 WO 2018082481A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
camera module
image
camera
optical axis
Prior art date
Application number
PCT/CN2017/107520
Other languages
English (en)
French (fr)
Inventor
高炜
谭杰夫
Original Assignee
深圳全息信息科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳全息信息科技发展有限公司 filed Critical 深圳全息信息科技发展有限公司
Publication of WO2018082481A1 publication Critical patent/WO2018082481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/261Image signal generators with monoscopic-to-stereoscopic image conversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details

Definitions

  • the invention belongs to the technical field of 3D shooting devices, and in particular relates to a 3D camera module and a 3D camera device.
  • VR has formed an industry as one of the most popular technologies.
  • Professional 3D shooting equipment brings high-quality 3D enjoyment to people, such as Avatar's shooting. Vision and close-up shooting are two separate sets of large 3D shooting equipment worth millions.
  • this professional 3D shooting equipment has a limited range of uses.
  • home shooting equipment can also provide people with 3D image effects everywhere, and the use of scenes is more extensive, but the home shooting equipment program is far from the effect produced by large 3D shooting equipment, especially 3D cameras.
  • 3D focusing and line-of-sight convergence cannot be achieved, which is far from the real experience of the human eye.
  • the 3D shooting depth of field cannot be smoothly switched, or there is no switching at all, only a fixed 3D depth of field is used.
  • the focusing mechanism is rigid, usually it is clear when it is blurred, and it is impossible to achieve real-time focusing in synchronization. It is impossible to realize real-time line-of-sight convergence in the mobile, and the line of sight follows, resulting in a poor viewing experience.
  • the embodiment of the invention provides a 3D camera module and a 3D camera device, which aims to solve the problem that the focus structure of the prior art is rigid, and the synchronous real-time focus cannot be achieved, and the real-time line-of-sight convergence and line-of-sight following in the movement cannot be realized, and the viewing experience is not good. problem.
  • a 3D camera module includes: a control module, a first camera module, a second camera module, and a fixing device; the control module and the first camera module and the second camera The module is electrically connected; the first camera module and the second camera module are assembled in parallel in the fixing
  • the first camera module includes a first lens, a first image sensor, and a first optical axis direction control module, wherein the first image sensor is configured to convert the first lens obtained optical image into a first image;
  • the second camera module includes a second lens, a second image sensor, and a second optical axis direction control module, and the second image sensor is configured to convert the second lens obtained optical image into a second image.
  • the first optical axis direction control module is composed of N telescopic motors disposed around the first camera module, and the N telescopic motors are differently stretched and contracted. Changing to adjust the optical axis of the first camera module;
  • the second optical axis direction control module is composed of N telescopic motors disposed around the second camera module, and the N telescopic motors perform different expansion and contraction changes to adjust an optical axis of the second camera module, where N is greater than An integer equal to 2.
  • control module is configured to synchronously control the first optical axis direction control module and the second optical axis direction control module to adjust the light of the first camera module according to the 3D imaging device instruction.
  • the optical axes of the axis and the second camera module are concentrated at the 3D convergence point specified by the command, and the first camera module and the second camera module are controlled to simultaneously focus at the focal length specified by the command.
  • control module is further configured to control the first image sensor and the second image sensor to form a first image and a second image of the synchronous output, and control parameter settings.
  • control module is further configured to combine the first image and the second image into a stereoscopic image.
  • control module is a combination of one or more of a Field-Programmable Gate Array (FPGA), a DSP chip, and a CPU chip.
  • FPGA Field-Programmable Gate Array
  • a 3D imaging device comprising: the above-described 3D camera module.
  • the 3D imaging device further includes a CPU processing module, a spatial depth sensing module corresponding to the number of the 3D camera modules, and the 3D camera module.
  • the group and the spatial depth sensing module are electrically connected to the CPU processing module; the CPU processing module is configured to adjust the spatial depth sensing module in real time according to the spatial depth parameter of the object acquired by the spatial depth sensing module.
  • the optical axes of the first camera module and the second camera module of the corresponding 3D camera module are concentrated at the object and simultaneously focused on the object.
  • the 3D imaging device further includes an image processing module, configured to perform adjustment, compression encoding, and/or decompression decoding on the stereo image output by the 3D camera module.
  • the image processing module is separately deployed or deployed in the CPU processing module.
  • the 3D imaging device further includes an ISP processing module, where the number of the ISP processing modules is one or more;
  • the number is the same as the number of camera modules of the 3D camera module, and is deployed inside the camera module;
  • the ISP processing module When the ISP processing module is one, it can be deployed separately or deployed in a CPU processing module or an image processing module.
  • the number of the spatial depth sensing modules is greater than or equal to the number of the 3D camera modules, wherein the spatial depth sensing module is deployed in the 3D camera module. Medium, or deployed in a 3D shooting device.
  • the spatial depth perception module includes a depth calculation unit, and a color image sensor, a black and white image sensor, a structured light sensor, a binocular or multi-eye sensor, a light wave band passer, A combination of one or more of an infrared light emitter, an infrared light receiving sensor, a laser emitter, a laser receiving sensor, a radio reflective radar, or an ultrasonic reflective radar.
  • the 3D photographing apparatus further includes a wireless network module, configured to send the stereoscopic image processed by the CPU processing module to another mobile terminal or an Internet device.
  • the 3D photographing apparatus further includes a power module for providing power to all modules of the 3D photographing device.
  • the 3D imaging device further includes a wired pair External interface for sending or receiving commands and data.
  • the embodiment of the present application can adjust the optical axis convergence of the two camera modules in multiple directions, flexibly, and accurately by setting a plurality of telescopic motors around the camera module. Meanwhile, the space depth sensing module is added to obtain the scene depth of field.
  • the optical axes of the two camera modules are adjusted by the respective telescopic devices of the two camera modules to concentrate on the object, and at the same time focus on the object, which can adapt to the smooth switching of the depth of field in various scenes during the moving camera, effectively improving 3D viewing comfort.
  • FIG. 1 is a structural block diagram of a 3D camera module according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the change of the optical axis caused by the movement of the telescopic motor according to the first embodiment of the present invention
  • FIG. 3 is a structural block diagram of a 3D photographing apparatus according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic diagram of a spatial depth sensing module and an optical axis of a shooting module according to Embodiment 2 of the present invention.
  • FIG. 1 is a block diagram showing a specific structure of a 3D camera module according to Embodiment 1 of the present invention.
  • the 3D camera module includes: a control module 1, a first camera module 2, a second camera module 3, and a fixing device 5;
  • the module 1 is electrically connected to the first camera module 1 and the second camera module 2; the first camera module 1 and the second camera module 2 are mounted in parallel on the fixing device 5;
  • the first camera module 2 includes a first lens 21, a first image sensor 22 for converting the optical image obtained by the first lens 21 into a first image, and a first optical axis direction control module;
  • the second camera module 3 includes a second lens 31, a second image sensor 32 and a second optical axis direction control module for converting the optical image obtained by the second lens 31 into a second image, the control module 1 for synthesizing the first image and the second image into a stereo image.
  • the first lens 21 is a wide-angle lens, and the first image sensor 22 is configured to convert the optical image obtained by the first lens 21 into a first image; the first optical axis direction control module is disposed on the first lens 21 The surrounding four telescopic motors 23 are configured to adjust the optical axis of the first lens 21 by controlling the four telescopic motors 23 of the first optical axis direction control module to perform different expansion and contraction changes;
  • the second lens 31 is a wide-angle lens, and the second image sensor 32 is configured to convert the optical image obtained by the second lens 31 into a second image; the second optical axis direction control module is disposed around the second lens 31
  • the four telescopic motors 23 are configured to adjust the optical axis of the second lens 31 by controlling the four telescopic motors 23 of the second optical axis direction control module to perform different expansion and contraction changes.
  • 2 shows a schematic diagram of the movement of the telescopic motor causing the optical axis of the second lens to change. It is not difficult to see that since the first optical axis direction control module and the second optical axis direction control module are composed of four telescopic motors, four telescopic motors can be used.
  • any one or more of the telescopic motor changes will adjust the lens, making the focus of the optical axis of the lens more flexible, real-time focusing, even if the real-time line of sight convergence in the movement is not affected, to achieve line of sight.
  • the number of the telescopic motors is 2, 6, 8, 10 or 12.
  • control module 1 synchronously controls the first optical axis direction control module, the second optical axis direction control module adjusts the optical axis of the first imaging module 2, and the optical axis of the second imaging module 3 converges at the 3D convergence point, and
  • the first camera module 2 and the second camera module 3 are controlled to perform focusing.
  • the control module 1 is further configured to control the first image and the second image of the first image sensor 22 and the second image sensor 32 to be synchronized in the field, and control parameter settings.
  • control module 1 is further configured to merge the first image and the second image into a stereo image.
  • control module 1 is a combination of one or more of a Field-Programmable Gate Array (FPGA), a DSP chip, and a CPU chip.
  • FPGA Field-Programmable Gate Array
  • control module simultaneously adjusts the convergence and respective focus of the optical axes of the two camera modules in multiple directions, flexibly and accurately.
  • FIG. 3 is a block diagram showing a specific structure of a 3D photographing apparatus according to Embodiment 2 of the present invention. For the convenience of description, only parts related to the embodiment of the present invention are shown.
  • the 3D imaging device includes: at least one 3D camera module 301.
  • the 3D imaging device further includes: a CPU processing module 302 and a spatial depth sensing module 303 corresponding to the 3D camera module; the 3D camera module 301 and the spatial depth sensing module 303 are both electrically coupled to the CPU processing module 302.
  • the CPU processing module 302 is configured to adjust, according to the spatial depth parameter of the object acquired by the spatial depth sensing module 303, the first one of the 3D camera modules corresponding to the spatial depth sensing module 303.
  • the optical axes of the camera module and the second camera module converge at the subject while focusing on the subject. 4 shows the optical axis of the camera module and the optical axis of the spatial depth sensing module.
  • the optical axes of the respective camera modules of the optical axis direction control module are concentrated at the object, and can be adapted to smoothly switch the depth of field in various scenes during moving imaging, thereby effectively improving the viewing comfort of shooting 3D video.
  • the 3D imaging device further includes an image processing module 304, configured to perform adjustment, compression encoding, and/or decompression decoding on the stereo image output by the 3D camera module 301, and the image processing module 304 is separately deployed or deployed.
  • image processing module 304 configured to perform adjustment, compression encoding, and/or decompression decoding on the stereo image output by the 3D camera module 301, and the image processing module 304 is separately deployed or deployed.
  • the 3D imaging device further includes an ISP processing module 305, and the number of the ISP processing module 305 is one or more;
  • the ISP processing module 305 When the ISP processing module 305 is multiple, the number thereof is the same as the number of camera modules of the 3D camera module 301;
  • the ISP processing module 305 When the ISP processing module 305 is one, it can be deployed separately or deployed in the CPU processing module 302 or the image processing module 304.
  • the number of the spatial depth sensing modules 303 is greater than or equal to the number of the 3D camera modules 301, wherein the spatial depth sensing module 303 is deployed in the 3D camera module 301 or deployed in the CPU processing module. 302.
  • the spatial depth perception module 303 includes a color image sensor, a black and white image sensor, a structured light sensor, a binocular or multi-view parallax calculator, a light wave band passer, an infrared light emitter, an infrared light receiving sensor, and a laser emitter.
  • the 3D imaging device further includes a wireless network module 306, configured to send the stereoscopic image processed by the CPU processing module 302 to another mobile terminal or an Internet device.
  • the stereoscopic image can also save the 3D imaging device.
  • the 3D photographing apparatus further includes a power module for supplying power to all modules of the 3D photographing apparatus.
  • the 3D photographing device further includes a wired external interface for transmitting or receiving instructions and data.
  • the spatial depth sensing module is added to obtain the scene depth, and the optical axes of the two camera modules are adjusted by the respective telescopic devices of the two camera modules to concentrate on the object, and at the same time, focus on the object, and can adapt to the moving camera.
  • the smooth transition of depth of field in various scenes effectively improves 3D viewing comfort.
  • the data caching method in the multi-node system provided by the embodiment of the present invention may be completed in whole or in part by hardware related to program instructions. For example, it can be done by running a program on a computer.
  • the program can be stored in a readable storage medium such as a random access memory, a magnetic disk, an optical disk, or the like.

Abstract

本发明适用于3D拍摄设备技术领域,提供了一种3D摄像模组及3D拍摄设备。该3D摄像模组包括:控制模块、第一摄像模块和第二摄像模块、固定装置;所述控制模块与第一摄像模块、第二摄像模块电性连接;所述控制模块与3D拍摄设备电连接;第一摄像模块和第二摄像模块平行装配在固定装置上;第一摄像模块包括第一镜头、第一图像传感器和第一光轴方向控制模块;第二摄像模块包括第二镜头、第二图像传感器和第二光轴方向控制模块。本发明,根据移动过程中被拍摄物体的空间深度,通过光轴方向控制模块,调整摄像模块的光轴持续汇聚于前述物体,同时聚焦于前述物体,达到模拟人眼眼珠转动,及持续视线汇聚与晶状体聚焦的效果,有利于提升3D观看体验。

Description

一种3D摄像模组及3D拍摄设备 技术领域
本发明属于3D拍摄设备技术领域,尤其涉及一种3D摄像模组及3D拍摄设备。
背景技术
随着立体显示技术的发展,VR作为最热门的技术之一,已经形成一个产业。专业3D拍摄设备给人们带来高品质的3D享受,如阿凡达的拍摄,远景与近景拍摄是分开的两套价值百万的大型3D拍摄设备完成,然而这种专业3D拍摄设备使用范围有限。另一方面,家用拍摄设备也已经可以为人们呈现随处可及的3D影像效果,使用场景更广泛,但是家用拍摄设备方案却远远达不到大型3D拍摄设备制作出来的效果,尤其是3D相机拍摄近距离物体时,无法实现3D聚焦与视线汇聚,与人眼的真实体验相差很远;当近景切换到远景时,3D拍摄景深不能平滑切换,或者根本没有切换,只采用固定的3D景深。因为当前家用VR3D相机采用两颗独立摄像头固定设置,聚焦机构僵化,通常模糊一下才清晰,无法做到同步实时聚焦,不能实现移动中实时视线汇聚,视线跟随,导致了不佳的观看体验。
发明内容
本发明实施例提供了一种3D摄像模组及3D拍摄设备,旨在解决现有技术聚焦结构僵化,无法做到同步实时聚焦,不能实现移动中实时视线汇聚和视线跟随,观看体验不佳的问题。
第一方面,提供了一种3D摄像模组,所述3D摄像模组包括:控制模块、第一摄像模块、第二摄像模块和固定装置;所述控制模块与第一摄像模块、第二摄像模块电性连接;所述第一摄像模块和第二摄像模块平行装配在所述固定 装置上;所述第一摄像模块包括第一镜头、第一图像传感器和第一光轴方向控制模块,所述第一图像传感器用于将所述第一镜头获得光学图像转换成第一图像;所述第二摄像模块包括第二镜头、第二图像传感器和第二光轴方向控制模块,所述第二图像传感器用于将所述第二镜头获得光学图像转换成第二图像。
在第一方面的第一种可能的实现方式中,所述第一光轴方向控制模块由设置在所述第一摄像模块周围的N个伸缩马达组成,所述N个伸缩马达做不同的伸缩变化来调整第一摄像模块的光轴;
所述第二光轴方向控制模块由设置在所述第二摄像模块周围的N个伸缩马达组成,所述N个伸缩马达做不同的伸缩变化来调整第二摄像模块的光轴,N为大于等于2的整数。
在第一方面的第二种可能的实现方式中,所述控制模块用于根据3D拍摄设备指令,同步控制第一光轴方向控制模块、第二光轴方向控制模块调整第一摄像模块的光轴、第二摄像模块的光轴汇聚于指令所指定3D汇聚点,并控制第一摄像模块、第二摄像模块同时按指令所指定焦距聚焦。
在第一方面的第三种可能的实现方式中,所述控制模块还用于控制第一图像传感器、第二图像传感器形成同步输出的第一图像、第二图像,并控制参数设置。
在第一方面的第四种可能的实现方式中,所述控制模块还用于将第一图像、第二图像合并为立体图像。
在第一方面的第五种可能的实现方式中,所述控制模块为现场可编程门阵列(Field-Programmable Gate Array、FPGA)、DSP芯片、CPU芯片之一种或多种之组合。
第二方面,提供了一种3D拍摄设备,所述3D拍摄设备包括:上述的3D摄像模组。
在第二方面的第一种可能的实现方式中,所述3D拍摄设备还包括CPU处理模块、与所述3D摄像模组数量一一对应空间深度感知模块;所述3D摄像模 组和空间深度感知模块均与所述CPU处理模块电性连接;所述CPU处理模块用于根据所述空间深度感知模块获取的被拍摄物所处空间深度参数,实时调整所述空间深度感知模块对应的所述3D摄像模组中第一摄像模块、第二摄像模块的光轴汇聚于被拍摄物处,并同时聚焦于被拍摄物处。
在第二方面的第二种可能的实现方式中,所述3D拍摄设备还包括图像处理模块,用于对所述3D摄像模组输出的立体图像进行调整、压缩编码和/或解压解码,所述图像处理模块单独部署或者部署于所述CPU处理模块中。
在第二方面的第三种可能的实现方式中,所述3D拍摄设备还包括ISP处理模块,所述ISP处理模块的数量为一个或多个;
所述ISP处理模块为多个时,其数量与所述3D摄像模组的摄像模块数量相同,其部署于摄像模块内部;
所述ISP处理模块为一个时,其可单独部署,或部署于CPU处理模块或图像处理模块中。
在第二方面的第四种可能的实现方式中,所述空间深度感知模块的数量大于或等于所述3D摄像模组的数量,其中,所述空间深度感知模块部署于所述3D摄像模组中,或部署于3D拍摄设备中。
在第二方面的第五种可能的实现方式中,所述空间深度感知模块包括深度计算单元,及彩色图像传感器、黑白图像传感器、结构光传感器、双目或多目传感器、光波带通器、红外光发射器、红外光接收传感器、激光发射器、激光接收传感器、无线电反射式雷达或超声波反射式雷达的一种或多种之组合。
在第二方面的第六种可能的实现方式中,所述3D拍摄设备还包括无线网络模块,用于将所述CPU处理模块处理完毕后的立体图像发送至其他移动终端或互联网设备。
在第二方面的第七种可能的实现方式中,所述3D拍摄设备还包括电源模块,用于为所述3D拍摄设备的所有模块提供电能。
在第二方面的第八种可能的实现方式中,所述3D拍摄设备还包括有线对 外接口,用于发送或接收指令及数据。
从上述方案中可以看出,本申请实施例通过在摄像模块周围设置多个伸缩马达,可以多方位、灵活、准确调整两个摄像模块的光轴汇聚;同时,增加空间深度感知模块获取场景景深,通过两个摄像模块各自对应的伸缩装置调整两个摄像模块的光轴汇聚被拍摄物处,并同时聚焦于被拍摄物处,能适应移动摄像时各种场景下的景深平滑切换,有效提升了3D观看舒适度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例一提供的3D摄像模组的结构框图;
图2是本发明实施例一提供的伸缩马达运动导致光轴改变的示意图;
图3是本发明实施例二提供的3D拍摄设备的结构框图;
图4是本发明实施例二提供的空间深度感知模块与拍摄模块光轴的示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
为了说明本发明所述的技术方案,下面通过具体实施例来进行说明。
图1示出了本发明实施例一提供的3D摄像模组的具体结构框图,为了便于说明,仅示出了与本发明实施例相关的部分。在本实施例中,该3D摄像模组包括:控制模块1、第一摄像模块2、第二摄像模块3和固定装置5;所述控 制模块1与第一摄像模块1、第二摄像模块2电性连接;所述第一摄像模块1和第二摄像模块2平行装配在所述固定装置5上;所述第一摄像模块2包括第一镜头21、用于将所述第一镜头21获得光学图像转换成第一图像的第一图像传感器22和第一光轴方向控制模块;所述第二摄像模块3包括第二镜头31、用于将所述第二镜头31获得光学图像转换成第二图像的第二图像传感器32和第二光轴方向控制模块,所述控制模块1用于将第一图像和第二图像合成为立体图像。
其中,第一镜头21为广角镜头,第一图像传感器22用于将所述第一镜头21获得光学图像转换成第一图像;所述第一光轴方向控制模块由设置在所述第一镜头21周围的4个伸缩马达23组成,通过控制第一光轴方向控制模块的4个伸缩马达23做不同的伸缩变化来调整第一镜头21的光轴;
第二镜头31为广角镜头,第二图像传感器32用于将所述第二镜头31获得光学图像转换成第二图像;所述第二光轴方向控制模块由设置在所述第二镜头31周围的4个伸缩马达23组成,通过控制第二光轴方向控制模块的4个伸缩马达23做不同的伸缩变化来调整第二镜头31的光轴。图2示出了伸缩马达运动导致第二镜头光轴改变的示意图,不难看出,由于第一光轴方向控制模块、第二光轴方向控制模块由4个伸缩马达组成,四个伸缩马达可以灵活变动,任一个或者多个伸缩马达变动都会调整镜头,使得镜头的光轴的聚焦更加灵活,可实现实时聚焦,即使移动中实时视线汇聚也不受影响,实现视线跟随。
优选的,所述伸缩马达的数量为2、6、8、10或12。
进一步地,所述控制模块1同步控制第一光轴方向控制模块、第二光轴方向控制模块调整第一摄像模块2的光轴、第二摄像模块3的光轴汇聚于3D汇聚点,并控制第一摄像模块2、第二摄像模块3进行聚焦。
其中,所述控制模块1还用于控制第一图像传感器22、第二图像传感器32行场同步的输出第一图像、第二图像,并控制参数设置。
进一步地,所述控制模块1还用于将第一图像、第二图像合并为立体图像。
进一步地,所述控制模块1为现场可编程门阵列(Field-Programmable Gate Array、FPGA)、DSP芯片、CPU芯片之一种或多种之组合。
本实施例,分别通过在摄像模块周围设置多个伸缩马达,通过控制模块同时多方位、灵活、准确调整两个摄像模块的光轴的汇聚和各自聚焦。
实施例二
图3示出了本发明实施例二提供的3D拍摄设备的具体结构框图,为了便于说明,仅示出了与本发明实施例相关的部分。在本实施例中,该3D拍摄设备包括:至少一个3D摄像模组301。优选的,3D拍摄设备还包括:CPU处理模块302和与所述3D摄像模组对应空间深度感知模块303;所述3D摄像模组301和空间深度感知模块303均与所述CPU处理模块302电性连接,所述CPU处理模块302用于根据所述空间深度感知模块303获取的被拍摄物所处空间深度参数,实时调整所述空间深度感知模块303对应的所述3D摄像模组中第一摄像模块、第二摄像模块的光轴汇聚于被拍摄物处,并同时聚焦于被拍摄物处。其中,图4示出了摄像模块的光轴和空间深度感知模块的光轴。通过光轴方向控制模块各自摄像模块的光轴汇聚于被拍摄物处,能适应移动摄像时各种场景下的景深平滑切换,有效提升拍摄3D视频的观看舒适度。
进一步地,所述3D拍摄设备还包括图像处理模块304,用于对所述3D摄像模组301输出的立体图像进行调整、压缩编码和/或解压解码,所述图像处理模块304单独部署或者部署于所述CPU处理模块302中。
进一步地,所述3D拍摄设备还包括ISP处理模块305,所述ISP处理模块305的数量为一个或多个;
所述ISP处理模块305为多个时,其数量与所述3D摄像模组301的摄像模块数量相同;
所述ISP处理模块305为一个时,其可单独部署,或部署于CPU处理模块302或图像处理模块304中。
进一步地,所述空间深度感知模块303的数量大于或等于所述3D摄像模组301的数量,其中,所述空间深度感知模块303部署于所述3D摄像模组301,或部署于CPU处理模块302。
其中,所述空间深度感知模块303包括彩色图像传感器、黑白图像传感器、结构光传感器、双目或多目视差计算器、光波带通器、红外光发射器、红外光接收传感器、激光发射器、激光接收传感器、无线电反射式雷达或超声波反射式雷达的一种或多种之组合。
进一步地,所述3D拍摄设备还包括无线网络模块306,用于将所述CPU处理模块302处理完毕后的立体图像发送至其他移动终端或互联网设备。优选的,立体图像也可以保存3D拍摄设备。
进一步地,所述3D拍摄设备还包括电源模块,用于为所述3D拍摄设备的所有模块提供电能。
进一步地,所述3D拍摄设备还包括有线对外接口,用于发送或接收指令及数据。
本实施例,增加空间深度感知模块获取场景景深,通过两个摄像模块各自对应的伸缩装置调整两个摄像模块的光轴汇聚被拍摄物处,并同时聚焦于被拍摄物处,能适应移动摄像时各种场景下的景深平滑切换,有效提升了3D观看舒适度。
本发明实施例涉及的3D摄像模组详情参见上述实施例一的描述,在此不再赘述。
本发明实施例提供的多节点系统中数据缓存方法,其全部或部分步骤是可以通过程序指令相关的硬件来完成。比如可以通过计算机运行程序来完成。该程序可以存储在可读取存储介质,例如,随机存储器、磁盘、光盘等。
以上所述实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特 征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (15)

  1. 一种3D摄像模组,其特征在于,所述3D摄像模组包括:控制模块、第一摄像模块、第二摄像模块和固定装置;所述控制模块与第一摄像模块、第二摄像模块电性连接;所述第一摄像模块和第二摄像模块平行装配在所述固定装置上;所述第一摄像模块包括第一镜头、第一图像传感器和第一光轴方向控制模块,所述第一图像传感器用于将所述第一镜头获得光学图像转换成第一图像;所述第二摄像模块包括第二镜头、第二图像传感器和第二光轴方向控制模块,所述第二图像传感器用于将所述第二镜头获得光学图像转换成第二图像。
  2. 根据权利要求1所述的3D摄像模组,其特征在于,所述第一光轴方向控制模块由设置在所述第一摄像模块周围的N个伸缩马达组成,所述N个伸缩马达做不同的伸缩变化来调整第一摄像模块的光轴;
    所述第二光轴方向控制模块由设置在所述第二摄像模块周围的N个伸缩马达组成,所述N个伸缩马达做不同的伸缩变化来调整第二摄像模块的光轴,N为大于等于2的整数。
  3. 根据权利要求1所述的3D摄像模组,其特征在于,所述控制模块用于根据3D拍摄设备指令,同步控制第一光轴方向控制模块、第二光轴方向控制模块调整第一摄像模块的光轴、第二摄像模块的光轴汇聚于指令所指定3D汇聚点,并控制第一摄像模块、第二摄像模块同时按指令所指定焦距聚焦。
  4. 根据权利要求1所述的3D摄像模组,其特征在于,所述控制模块还用于控制第一图像传感器、第二图像传感器形成同步输出的第一图像、第二图像,并控制参数设置。
  5. 根据权利要求1所述的3D摄像模组,其特征在于,所述控制模块还用于将第一图像、第二图像合并为立体图像。
  6. 根据权利要求1所述的3D摄像模组,其特征在于,所述控制模块为现场可编程门阵列(Field-Programmable Gate Array、FPGA)、DSP芯片、CPU 芯片之一种或多种之组合。
  7. 一种3D拍摄设备,其特征在于,所述3D拍摄设备包括:如权利要求1所述的3D摄像模组。
  8. 根据权利要求7所述的3D拍摄设备,其特征在于,所述3D拍摄设备还包括CPU处理模块、与所述3D摄像模组数量一一对应空间深度感知模块;所述3D摄像模组和空间深度感知模块均与所述CPU处理模块电性连接;所述CPU处理模块用于根据所述空间深度感知模块获取的被拍摄物所处空间深度参数,实时调整所述空间深度感知模块对应的所述3D摄像模组中第一摄像模块、第二摄像模块的光轴汇聚于被拍摄物处,并同时聚焦于被拍摄物处。
  9. 根据权利要求8所述的3D拍摄设备,其特征在于,所述3D拍摄设备还包括图像处理模块,用于对所述3D摄像模组输出的立体图像进行调整、压缩编码和/或解压解码,所述图像处理模块单独部署或者部署于所述CPU处理模块中。
  10. 根据权利要求9或所述的3D拍摄设备,其特征在于,所述3D拍摄设备还包括ISP处理模块,所述ISP处理模块的数量为一个或多个;
    所述ISP处理模块为多个时,其数量与所述3D摄像模组的摄像模块数量相同,其部署于摄像模块内部;
    所述ISP处理模块为一个时,其可单独部署,或部署于CPU处理模块或图像处理模块中。
  11. 根据权利要求8所述的3D拍摄设备,其特征在于,所述空间深度感知模块的数量大于或等于所述3D摄像模组的数量,其中,所述空间深度感知模块部署于所述3D摄像模组中,或部署于3D拍摄设备中。
  12. 根据权利要求11所述的3D拍摄设备,其特征在于,所述空间深度感知模块包括深度计算单元,及彩色图像传感器、黑白图像传感器、结构光传感器、双目或多目传感器、光波带通器、红外光发射器、红外光接收传感器、激光发射器、激光接收传感器、无线电反射式雷达或超声波反射式雷达的一种或 多种之组合。
  13. 根据权利要求8所述的3D拍摄设备,其特征在于,所述3D拍摄设备还包括无线网络模块,用于将所述CPU处理模块处理完毕后的立体图像发送至其他移动终端或互联网设备。
  14. 根据权利要求8所述的3D拍摄设备,其特征在于,所述3D拍摄设备还包括电源模块,用于为所述3D拍摄设备的所有模块提供电能。
  15. 根据权利要求8所述的3D拍摄设备,其特征在于,所述3D拍摄设备还包括有线对外接口,用于发送或接收指令及数据。
PCT/CN2017/107520 2016-11-02 2017-10-24 一种3d摄像模组及3d拍摄设备 WO2018082481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610943660.2 2016-11-02
CN201610943660.2A CN106412403A (zh) 2016-11-02 2016-11-02 一种3d摄像模组及3d拍摄设备

Publications (1)

Publication Number Publication Date
WO2018082481A1 true WO2018082481A1 (zh) 2018-05-11

Family

ID=58013637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107520 WO2018082481A1 (zh) 2016-11-02 2017-10-24 一种3d摄像模组及3d拍摄设备

Country Status (2)

Country Link
CN (1) CN106412403A (zh)
WO (1) WO2018082481A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112261398A (zh) * 2020-11-17 2021-01-22 广东未来科技有限公司 一种基于移动设备的双目摄像头的对焦方法
CN112822415A (zh) * 2019-11-18 2021-05-18 Oppo广东移动通信有限公司 摄像头模组及终端设备
CN115499640A (zh) * 2021-06-17 2022-12-20 深圳市光鉴科技有限公司 具有3d摄像模组的显示装置和电子设备

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106412403A (zh) * 2016-11-02 2017-02-15 深圳市魔眼科技有限公司 一种3d摄像模组及3d拍摄设备
CN106412557A (zh) * 2016-11-02 2017-02-15 深圳市魔眼科技有限公司 一种3d摄像控制方法及3d摄像控制装置
CN106851251A (zh) * 2017-02-28 2017-06-13 宇龙计算机通信科技(深圳)有限公司 三维成像方法及三维成像终端
CN108696737A (zh) * 2017-02-28 2018-10-23 深圳市掌网科技股份有限公司 一种获取三维图像的方法和装置
CN108520540A (zh) * 2018-03-07 2018-09-11 北京华凯汇信息科技有限公司 一种双目仿生眼免标定三维立体定位方法
CN109191516B (zh) * 2018-08-07 2021-07-13 信利光电股份有限公司 结构光模组的旋转纠正方法、装置及可读存储介质
CN109729337A (zh) * 2018-11-15 2019-05-07 华南师范大学 一种应用于双摄像头的视觉合成装置及其控制方法
CN111225200B (zh) * 2018-11-27 2021-11-02 三赢科技(深圳)有限公司 3d感测装置及电子装置
CN114554108B (zh) * 2022-02-24 2023-10-27 北京有竹居网络技术有限公司 图像处理方法、装置和电子设备
CN115314698A (zh) * 2022-07-01 2022-11-08 深圳市安博斯技术有限公司 一种立体拍摄及显示装置、方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201300930A (zh) * 2011-06-24 2013-01-01 Mstar Semiconductor Inc 自動對焦方法與裝置
CN102984530A (zh) * 2011-09-02 2013-03-20 宏达国际电子股份有限公司 图像处理系统及自动对焦方法
CN104113677A (zh) * 2014-07-08 2014-10-22 深圳市天逸迅光电科技有限公司 一种镜头组可同时自动伸缩的3d摄像头
CN104634276A (zh) * 2015-02-12 2015-05-20 北京唯创视界科技有限公司 三维测量系统、拍摄设备和方法、深度计算方法和设备
CN105376554A (zh) * 2015-12-04 2016-03-02 深圳市第六星设计技术有限公司 3d摄像头机构、具有该机构的移动设备及控制方法
CN106412557A (zh) * 2016-11-02 2017-02-15 深圳市魔眼科技有限公司 一种3d摄像控制方法及3d摄像控制装置
CN106412403A (zh) * 2016-11-02 2017-02-15 深圳市魔眼科技有限公司 一种3d摄像模组及3d拍摄设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1771741A (zh) * 2003-02-14 2006-05-10 李宗琦 3d照相机系统及其方法
CN102866572A (zh) * 2011-07-07 2013-01-09 登尼克股份有限公司 三维成像装置
CN103256917B (zh) * 2012-02-15 2017-12-12 赛恩倍吉科技顾问(深圳)有限公司 可应用于测距的立体视觉系统
KR101888956B1 (ko) * 2012-05-31 2018-08-17 엘지이노텍 주식회사 카메라 모듈 및 그의 오토 포커싱 방법
WO2014154839A1 (en) * 2013-03-27 2014-10-02 Mindmaze S.A. High-definition 3d camera device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201300930A (zh) * 2011-06-24 2013-01-01 Mstar Semiconductor Inc 自動對焦方法與裝置
CN102984530A (zh) * 2011-09-02 2013-03-20 宏达国际电子股份有限公司 图像处理系统及自动对焦方法
CN104113677A (zh) * 2014-07-08 2014-10-22 深圳市天逸迅光电科技有限公司 一种镜头组可同时自动伸缩的3d摄像头
CN104634276A (zh) * 2015-02-12 2015-05-20 北京唯创视界科技有限公司 三维测量系统、拍摄设备和方法、深度计算方法和设备
CN105376554A (zh) * 2015-12-04 2016-03-02 深圳市第六星设计技术有限公司 3d摄像头机构、具有该机构的移动设备及控制方法
CN106412557A (zh) * 2016-11-02 2017-02-15 深圳市魔眼科技有限公司 一种3d摄像控制方法及3d摄像控制装置
CN106412403A (zh) * 2016-11-02 2017-02-15 深圳市魔眼科技有限公司 一种3d摄像模组及3d拍摄设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112822415A (zh) * 2019-11-18 2021-05-18 Oppo广东移动通信有限公司 摄像头模组及终端设备
CN112261398A (zh) * 2020-11-17 2021-01-22 广东未来科技有限公司 一种基于移动设备的双目摄像头的对焦方法
CN115499640A (zh) * 2021-06-17 2022-12-20 深圳市光鉴科技有限公司 具有3d摄像模组的显示装置和电子设备

Also Published As

Publication number Publication date
CN106412403A (zh) 2017-02-15

Similar Documents

Publication Publication Date Title
WO2018082481A1 (zh) 一种3d摄像模组及3d拍摄设备
WO2018082480A1 (zh) 一种3d摄像控制方法及3d摄像控制装置
JP5683025B2 (ja) 立体画像撮影装置および立体画像撮影方法
EP3206398A1 (en) Stereoscopic camera device
CN102012626B (zh) 双目立体摄像机及3d成像系统
KR20180053367A (ko) 서라운드 뷰를 생성하기 위한 시스템들 및 방법들
CN101840146A (zh) 自动矫正视差的立体图像拍摄方法及装置
US9253470B2 (en) 3D camera
CN102665087A (zh) 3d立体摄像设备的拍摄参数自动调整系统
JP2013514004A (ja) 近位および遠位に焦点が合わされた画像を用いた3次元記録表示システム
JP2014501086A (ja) 立体画像取得システム及び方法
WO2022262839A1 (zh) 现场演出的立体显示方法、装置、介质及系统
CN105516639A (zh) 头戴设备、三维视频通话系统和三维视频通话实现方法
CN204681518U (zh) 一种全景图像信息采集设备
US9258546B2 (en) Three-dimensional imaging system and image reproducing method thereof
US9402068B2 (en) Lens system for 3D video taking
CN110199519A (zh) 用于多相机设备的方法
CN104796669B (zh) 头戴式手术摄像系统
CN103209287A (zh) 一种调控摄像机镜头的摄像方法和专用摄像机及专用眼镜框
CN108737808B (zh) 3d模型生成装置及方法
US20100321777A1 (en) Method and apparatus for optimizing stereoscopic effect in a camera
WO2017092369A1 (zh) 一种头戴设备、三维视频通话系统和三维视频通话实现方法
CN105227813A (zh) 一种能跟随人眼瞳孔变化调整的微型摄像方法和专用摄像机及专用眼镜框
KR100703713B1 (ko) 3차원 영상 획득 및 디스플레이가 가능한 3차원 모바일 장치
JP5297899B2 (ja) 立体映像調整装置、立体映像調整システム、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866542

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17866542

Country of ref document: EP

Kind code of ref document: A1