WO2018082461A1 - 一种数据发送、接收方法和装置 - Google Patents

一种数据发送、接收方法和装置 Download PDF

Info

Publication number
WO2018082461A1
WO2018082461A1 PCT/CN2017/107268 CN2017107268W WO2018082461A1 WO 2018082461 A1 WO2018082461 A1 WO 2018082461A1 CN 2017107268 W CN2017107268 W CN 2017107268W WO 2018082461 A1 WO2018082461 A1 WO 2018082461A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength channel
data packet
data
downlink frame
onu
Prior art date
Application number
PCT/CN2017/107268
Other languages
English (en)
French (fr)
Inventor
耿丹
张伟良
袁立权
马壮
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/347,767 priority Critical patent/US10798472B2/en
Publication of WO2018082461A1 publication Critical patent/WO2018082461A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • Embodiments of the present invention relate to the field of optical communications, and in particular, to a data transmission and reception method and apparatus.
  • FIG. 1 is a schematic diagram of a topology of a PON system; as shown in FIG. 1 , a PON system usually consists of an optical line terminal (OLT) of an office side, an optical network unit (ONU, optical network unit), and a light of a user side.
  • the distribution network (ODN, Optical Distribution Network) usually adopts a point-to-multipoint network structure; the ODN consists of a single-mode optical fiber, a passive optical device such as an optical splitter, and an optical connector, and is a physical connection between the OLT and the ONU.
  • FIG. 2 is another topology diagram of the PON system; as shown in Figure 2, each OLT is managed by Wavelength Division Multiplexing (WDM).
  • WDM Wavelength Division Multiplexing
  • the uplink wavelengths of the uplink data sent by one group of ONUs are the same on the same uplink wavelength and downlink wavelength, and the downlink wavelengths of the downlink data are also the same.
  • the uplink wavelengths of the uplink data transmitted by the ONU group are different on different uplink wavelengths and downlink wavelengths, and the downlink wavelengths of receiving downlink data are also different.
  • the ONU can simultaneously transmit and receive data on multiple sets of wavelength channels.
  • the OLT send data to the ONU through multiple wavelength channels
  • ONU How to follow the packet after receiving it
  • the order in which the OLTs are sent is combined, which is a problem to be solved.
  • a data packet can be sent in time series on multiple channels through the OLT, and the ONU receives data on multiple channels.
  • the packets are grouped according to the time sequence of receiving data. This requires strict time synchronization of multiple channels for transmitting data by the OLT.
  • the existing OLT Data is out of order when sending data to the ONU on multiple channels.
  • the embodiment of the present invention is to provide a data sending and receiving method and device, so that the OLT can transmit data on multiple channels while avoiding data disordered data received by the ONU, thereby improving user experience.
  • an embodiment of the present invention provides a data sending method, including: determining, according to wavelength channel information of an ONU of an optical network unit, each wavelength channel of the transmitted data; according to the number of the wavelength channels, in order Dividing the transmission data to obtain each data packet; identifying each data packet according to a division order, and obtaining a sequence identifier of each data packet; and each data according to the sequence identifier of each data packet
  • the packets are respectively encapsulated in the downlink frame of each wavelength channel, and the downlink frames of each wavelength channel are respectively sent to the ONU.
  • the packet is encapsulated in a downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier of each data packet, including: determining, according to the sequence identifier of each data packet, Each of the data packets is encapsulated into a downlink frame of a wavelength channel corresponding to the wavelength channel identifier, where the downlink frame of each data packet is encapsulated
  • the superframe numbers are the same, such that the ONUs group each data packet in the downlink frame having the same superframe number and the same ONU identifier for each wavelength channel.
  • the method further includes: there is no super in the downlink frame of each wavelength channel At the frame number, a superframe number is inserted in the downlink frame of each of the wavelength channels.
  • the packet is encapsulated in a downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier of each data packet, including: sequentially identifying and writing the sequence of each data packet. And entering a frame header of a downlink frame of each wavelength channel corresponding to each data packet.
  • the method further includes: receiving wavelength channel information of the ONU; determining that the working is allowed from the wavelength channel information The wavelength channel information, and the wavelength channel information that allows the operation to be sent to the ONU, so that the ONU opens the optical module corresponding to the wavelength channel information that is allowed to work, and returns the wavelength channel information corresponding to the opened optical module. And determining, according to the wavelength channel information corresponding to the opened optical module, each wavelength channel of the transmitted data.
  • the embodiment of the present invention provides a data receiving method, including: receiving a downlink frame of each wavelength channel; determining, according to the downlink frame of each wavelength channel, a sequence identifier of each data packet; The sequence identifier identifies each data packet in the downlink frame of each wavelength channel to obtain received data.
  • determining the sequence identifier of each data packet according to the downlink frame of each wavelength channel including: determining each data in the downlink frame of each wavelength channel according to an order of identification of each wavelength channel a sequence identifier of the packet; correspondingly, grouping, according to the sequence identifier of each data packet, each data packet in the downlink frame of each wavelength channel to obtain received data, including: according to the sequence of each data packet And identifying, each packet of each of the wavelength channels having the same superframe number and the same optical network unit ONU identifier is grouped to obtain the received data.
  • the frame header of the downlink frame of each wavelength channel includes: a sequence identifier of each data packet in the downlink frame of each wavelength channel.
  • the method further includes: sending The wavelength channel information of the ONU is sent to the optical line terminal OLT, so that the OLT determines the wavelength channel information that is allowed to work; receives the allowed wavelength channel information returned by the OLT; and opens the wavelength channel information corresponding to the allowed operation.
  • the optical module determines the wavelength channel information corresponding to the opened optical module, and sends the wavelength channel information corresponding to the opened optical module to the OLT, so that the OLT is configured according to the wavelength channel corresponding to the opened optical module. Determine the wavelength channels of the transmitted data.
  • the embodiment of the present invention provides a data sending apparatus, including: a first determining module, configured to determine, according to wavelength channel information of the received optical network unit ONU, each wavelength channel of the transmitted data; In order to divide the transmission data in order according to the number of the wavelength channels, each data packet is obtained; the identification module is configured to identify each data packet according to a division order, and obtain the sequence of the data packets.
  • the sending module is configured to, according to the sequence identifier of each data packet, encapsulate each of the data packets in a downlink frame of each wavelength channel, and respectively send the downlink frame of each wavelength channel to The ONU.
  • the sending module is specifically configured to determine, according to the sequence identifier of each data packet, a wavelength channel identifier corresponding to each data packet, and encapsulate each of the data packets into the wavelength channel identifier In the downlink frame of the corresponding wavelength channel, wherein the superframe number of the downlink frame encapsulating the each data packet is the same, so that the ONU has the same superframe number and the same ONU identifier for each wavelength channel.
  • Each packet in the downstream frame is grouped.
  • the device further includes: an inserting module, configured to be in the downlink of each wavelength channel before determining the wavelength channel identifier corresponding to each data packet according to the sequence identifier of each data packet When there is no superframe number in the frame, a superframe number is inserted in the downlink frame of each wavelength channel.
  • the sending module is specifically configured to write the sequence identifier of each data packet into a frame header of a downlink frame of each wavelength channel corresponding to each data packet.
  • the first determining module is specifically configured to receive wavelength channel information of the ONU, determine, from the wavelength channel information, wavelength channel information that is allowed to work, and send the The wavelength channel information that is allowed to work is sent to the ONU, so that the ONU opens the optical module corresponding to the wavelength channel information that is allowed to work, and returns the wavelength channel information corresponding to the opened optical module; according to the opened light
  • the wavelength channel information corresponding to the module determines each wavelength channel of the transmitted data.
  • the embodiment of the present invention provides a data receiving apparatus, including: a receiving module, configured to receive a downlink frame of each wavelength channel; and a second determining module, configured to determine, according to the downlink frame of each wavelength channel, The sequence identifier of the data packet is set to be configured according to the sequence identifier of each data packet, and each data packet in the downlink frame of each wavelength channel is grouped to obtain received data.
  • the second determining module is specifically configured to determine, according to an order of each wavelength channel identification, a sequence identifier of each data packet in a downlink frame of each wavelength channel; correspondingly, the group packet module is specific And setting, according to the sequence identifier of each data packet, grouping each data packet in the downlink frame having the same superframe number and the same optical network unit ONU identifier for each wavelength channel, to obtain the received data. .
  • the frame header of the downlink frame of each wavelength channel includes: a sequence identifier of each data packet in the downlink frame of each wavelength channel.
  • the device further includes: a processing module, configured to: before receiving the downlink frame of each wavelength channel, send the wavelength channel information of the ONU to the optical line terminal OLT, so that the OLT determines the wavelength channel information that is allowed to work; The wavelength channel information that is allowed to be returned by the OLT; the optical module corresponding to the wavelength channel information that is allowed to work is opened, the wavelength channel information corresponding to the opened optical module is determined, and the corresponding optical module is sent.
  • the wavelength channel information is sent to the OLT, so that the OLT determines each wavelength channel of the transmission data according to the wavelength channel information corresponding to the opened optical module.
  • the data transmitting and receiving method and device provided by the embodiment of the present invention first determines each wavelength channel of the transmitted data according to the received wavelength channel information of the ONU, and sends data according to the determined number of each wavelength channel. Divide to obtain the same number of data packets as the number of wavelength channels, identify each data packet, obtain the sequence identification of each data packet, and finally, According to the sequence identification of each data packet, each data packet is encapsulated one by one in a downlink frame of each wavelength channel, and each downlink channel of each wavelength channel is sent to the ONU; thus, each data packet is sequentially
  • the identifiers are encapsulated in the downlink frame of each wavelength channel one by one, that is, the OLT encapsulates each data packet and carries the sequence identifier of each data packet. Then, the ONU can pass each data packet after receiving each data packet.
  • the sequence identification is used to perform grouping, so that the OLT can transmit data on multiple channels while avoiding out-of-order data received by the ONU, thereby improving user experience
  • FIG. 1 is a schematic diagram of a topology structure of a PON system
  • FIG. 2 is a schematic diagram of another topology structure of a PON system
  • FIG. 3 is a schematic flowchart of a method for transmitting and receiving data according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an optional downlink frame according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another optional downlink frame according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a data sending method according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart diagram of a data receiving method according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a data sending apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a data receiving apparatus according to an embodiment of the present invention.
  • the embodiment of the present invention provides a data transceiving method, which is applied to a PON system as shown in FIG. 2.
  • the OLT includes multiple ports, and each port corresponds to one wavelength channel, and each channel is used.
  • One downstream wavelength and one upstream wavelength, one OLT port on each channel manages a group of ONUs, and the group of ONUs uses the time division multiplexing access mode to send uplink data.
  • Different groups of ONUs on different wavelength channels use WDM to transmit data; one ONU can support multiple wavelength channels to simultaneously transmit and receive data;
  • FIG. 3 is a schematic flowchart of a method for transmitting and receiving data according to an embodiment of the present invention.
  • a method for transmitting and receiving data by an OLT and an ONU includes:
  • the ONU sends the wavelength channel information of the ONU to the OLT.
  • an ONU can support multiple wavelength channels. Then, the ONU first sends its own wavelength channel information to the OLT to inform the OLT of the wavelength channel information that the OLT can support.
  • the wavelength channel information includes the upstream wavelength that the ONU can support. And downstream wavelengths.
  • the OLT determines the wavelength channel information that is allowed to work from the wavelength channel information of the ONU, and sends the wavelength channel information that is allowed to work to the ONU.
  • the OLT After receiving the wavelength channel information of the ONU, the OLT determines the wavelength channel information that is allowed to work from the wavelength channel information of the ONU. For example, the number of wavelength channels in the wavelength channel information of the ONU received by the OLT is six, and the OLT determines. The number of wavelength channels in the wavelength channel information that is allowed to work is five, and the determined wavelength channel information that allows operation is sent to the ONU.
  • the ONU opens an optical module corresponding to the wavelength channel information that is allowed to work, and sends the wavelength channel information corresponding to the opened optical module to the OLT;
  • the ONU After the ONU receives the wavelength channel information that allows the working, the ONU maintains or turns on the optical module transceiver corresponding to the wavelength channel that allows the working, and keeps the optical module corresponding to the other wavelength channel in the off state, and sends the opened light.
  • the wavelength channel information corresponding to the module is sent to the OLT, and the ONU agrees to work in the wavelength channel corresponding to the opened optical module; for example, the number of wavelength channels in the allowed wavelength channel information determined by the OLT is 5, ONU The number of wavelength channels in the wavelength channel corresponding to the open optical module is only four, and the OLT determines that the wavelength channel for transmitting data is four.
  • the OLT determines each wavelength channel of the transmitted data according to the wavelength channel information of the received ONU.
  • the OLT divides, identifies, and encapsulates the transmitted data, and is divided, identified, and The encapsulated downlink frame transmission data is sent to the ONU;
  • S304 may include:
  • the transmission data is divided in order to obtain each data packet; each data packet is identified according to the division order, and the sequence identification of each data packet is obtained; according to the sequence identification of each data packet, each is The data packets are respectively encapsulated in the downlink frame of each wavelength channel, and the downlink frames of each wavelength channel are respectively sent to the ONU;
  • the number of each wavelength channel is 4, and the transmission data is divided into 4 data packets in order, and the 4 data packets are identified according to the division order to obtain each data.
  • the sequence identifier of the packet can be a number, a letter, a symbol, etc., for example, when the sequence is identified as a number, then each data packet is identified according to the order of division, and the data packet 1, the data packet 2, the data packet 3, and the data packet are obtained. 4;
  • each data packet is encapsulated in a downlink frame of each wavelength channel one by one according to the sequence identifier of each data packet, including: determining, according to the sequence identifier of each data packet, each data packet corresponding to each data packet The wavelength channel identifier; each data packet is separately encapsulated into a downlink frame of a wavelength channel corresponding to the wavelength channel identifier;
  • the superframe number of the downlink frame encapsulating each data packet is the same, so that the ONU groups each data packet in the downlink frame with the same superframe number and the same ONU identifier for each wavelength channel.
  • Each of the wavelength channel identifiers may be a number, a letter, and a symbol, and is used to identify the order of each wavelength channel, and both the OTL and the ONU know the wavelength channel identifier corresponding to the sequence identifier of each data packet, so that when the OLT compares the data
  • the packet is sent to the ONU, and the ONU identifies the sequence identifier of each data packet according to the sequence identifier of the corresponding data packet of each wavelength channel identifier, and performs grouping according to the sequence;
  • the data packet 1 determines that the corresponding wavelength channel identifier is channel 1, and the data packet 1 is encapsulated into the downlink frame of the channel 1, and the data packet 2 is The corresponding wavelength channel is identified as channel 2, and the data packet 2 is encapsulated into the downlink frame of the channel 2.
  • the data packet 3 determines that the corresponding wavelength channel identifier is channel 3, and the data packet 3 is encapsulated into the downlink frame of the channel 3.
  • the data packet 4 determines that the corresponding wavelength channel identifier is channel 4, and encapsulates the data packet 4 into the downlink frame of the channel 4;
  • FIG. 4 is a schematic structural diagram of an optional downlink frame according to an embodiment of the present invention.
  • the downlink frame of channel 1 includes: downlink synchronization, a superframe counter and a check domain, and an operation control structure. , frame sublayer frame header, frame sublayer static load, and frame sublayer frame tail; wherein, in the process of encapsulation, each data packet is encapsulated in a frame sublayer static load, since each channel can send data to multiple ONUs As shown in FIG.
  • the frame sublayer static load includes three sets of GEM frames, and each GEM frame includes a Gigabit encapsulation method frame header of 10G rate and a gigabit encapsulation method static load of 10G rate, in a specific implementation process, Each data packet is encapsulated in a gigabit encapsulation method static load of a 10G rate of a GEM frame of a frame sublayer static load;
  • different channels can use the same clock source or different clock sources.
  • different clock sources are used on different channels
  • the downlink frames on different channels synchronize the clock source.
  • the downlink frame structure in FIG. 4 when the data needs to be sent to the ONU1 and the ONU2, multiple downlink frames simultaneously transmitted on different channels carry the same superframe number.
  • the super frame number is carried in the superframe counter of the frame header of the downlink frame, indicating the sequence number of the downlink frame, such as the first downlink frame sent by channel 1 of the OLT, and the super frame number is 0, and each time a downlink frame is sent,
  • the superframe number in the frame number counter is incremented by 1
  • the second downlink frame sent is superframe number 1
  • the Mth superframe number sent is M-1.
  • the superframe number reaches the maximum of the superframe number counter
  • the value is N
  • the next downlink frame sent by channel 1 has its superframe number restarted counting, and the superframe number is 0.
  • the second GEM frame of channel 1 encapsulates packet 1 of ONU1, the second GEM frame of channel 2 encapsulates packet 2 of ONU1, the second GEM frame of channel 3 encapsulates packet 3 of ONU1, and the second of channel 4
  • the GEM frame encapsulates the packet 4 of the ONU1;
  • the third GEM frame of the channel 1 encapsulates the packet 1 of the ONU1, the third GEM frame of the channel 2 encapsulates the packet 2 of the ONU1, and the third GEM of the channel 3 encapsulates the ONU1 Packet 3, the third GEM frame of channel 4 encapsulates packet 4 of ONU1;
  • the ONU After receiving the downlink frame, the ONU groups each data packet with the same superframe number and the downlink frame with the ONU identifier according to the sequence identifier of each data packet, so that the ONU can be prevented from being in the process of assembling the packet.
  • the OLT allocates the size of the data packet transmitted on each of the above channels so that the end of the transmission of the data packet on the different channels is the earliest, so as to improve the relationship between the OLT and the ONU. Transmission efficiency.
  • the method determines the wavelength channel identifier corresponding to each data packet according to the sequence identification of each data packet. It also includes inserting a superframe number in the downstream frame of each wavelength channel.
  • FIG. 5 is a schematic structural diagram of another optional downlink frame according to an embodiment of the present invention.
  • the downlink frame structure is obtained by inserting a superframe number on an existing Ethernet frame, such as As shown in FIG. 5, a superframe number is added in front of the Ethernet frame first delimiter SPD.
  • the definition of the superframe number is the same as the definition of the superframe number, and is not described here; the SPD in the Ethernet frame is followed by a leading Preamble.
  • the DA is the destination address
  • the SA is the source address
  • the Len is the data length
  • the type is the data type
  • the Payload is the static load
  • the FCS is the check data.
  • the OLT When the OLT transmits the same downlink multiple frames to the ONU simultaneously on different channels, the same super The frame number, the OLT divides the data sent to an ONU into one or more data packets according to the channel identifier and distributes the data to one or more channels supported by the ONU, and the foregoing data packet on each channel is carried in the Payload in FIG. .
  • each data packet is encapsulated in a downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier of each data packet, including: The sequence identification of each data packet is written into the frame header of the downlink frame of each wavelength channel corresponding to each data packet.
  • the sequence identifier of each data packet is written into the downlink frame of each wavelength channel corresponding to each data packet.
  • the sequence identifier of each data packet is written into each corresponding to each data packet.
  • the downlink frame is finally sent to the ONU; thus, after the ONU receives each downlink frame, the ONU parses the sequence identifier of each data packet, according to each The order of the packets is identified for grouping.
  • S305 The ONU groups the received downlink frames of each wavelength channel to obtain received data.
  • S305 may include:
  • the downlink frame of each wavelength channel has a delay jitter, and the order of the downlink frames received by the ONU for each wavelength channel is uncertain. Then, for the correctness of the packet, the ONU first determines according to the downlink frame of each wavelength channel. The sequence identification of each data packet is performed, and then each data packet in the downlink frame of each wavelength channel is grouped according to the order of each data packet, thereby avoiding the error group packet caused by the out-of-order data transmission.
  • the sequential identification of each data packet is determined according to the downlink frame of each wavelength channel, including: identifying each wavelength channel according to the sequence identifier of each data packet. The order of each packet in each of the downstream frames of each wavelength channel is determined;
  • each data packet in the downlink frame of each wavelength channel is grouped to obtain received data, including: according to the sequence identification of each data packet, having the same super for each wavelength channel
  • Each data packet in the downlink frame of the same ONU identifier is grouped to obtain received data.
  • the ONU will group the data packets in the multiple downlink frames with the same superframe number and the same ONU identifier on different channels according to the channel identifier, and still use FIG. 4 as an example, and ONU1 will be on channel 1.
  • the packet 1 sent to the ONU1 is placed at the forefront, and then the packet 2 sent to the ONU1 on the channel 2 is placed after the packet 1, and the packet 3 sent to the ONU1 on the channel 3 is placed after the packet 2.
  • the packet 4 is placed behind the data packet 3, and the re-grouping of the data bound on the four channels is completed; wherein the ONU1 identifies whether the data packet is a data packet sent to the ONU1 according to the ONU1 identifier.
  • the ONU may re-sort the group packets according to the channel identifiers by sending the bundled data packets sent to the four downlink frames received at the same time;
  • the same ONU identifier can determine whether it is a bound data packet sent to itself; if the downlink frames of the four channels cannot achieve complete time synchronization, the ONU can associate four transmission binding packets by the superframe number of four frames.
  • the downlink frame, the ONU groups the data packets in the multiple downlink frames with the same superframe number and the same ONU identifier on different channels according to the channel identification order, and does not rely on time to determine the packet sequence on the channel, thereby avoiding the delay.
  • the data is out of order caused by jitter.
  • the frame header of the downlink frame of each wavelength channel includes: a sequence identifier of each data packet in a downlink frame of each wavelength channel.
  • the sequence identifier of each data packet can be determined by the sequence identifier in the frame header of the downlink frame of each wavelength channel, and then the packet is grouped according to the sequence identifier of each data packet; thus, the ONU obtains the correct reception data. Improve the user experience.
  • each wavelength channel of the transmission data is first determined according to the wavelength channel information of the received ONU, and the transmission data is divided according to the determined number of each wavelength channel.
  • Each data packet with the same number of wavelength channels is identified by each data packet, and the sequence identification of each data packet is obtained.
  • each data packet is encapsulated one by one according to the sequence identification of each data packet.
  • the downlink frame of the wavelength channel the downlink frame of each wavelength channel is respectively sent to the ONU; thus, each data packet is encapsulated in the downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier, that is, the OLT package
  • Each data packet carries the sequence identifier of each data packet.
  • the ONU can perform grouping by using the sequence identification of each data packet, so that the OLT can transmit data on multiple channels while avoiding The data received by the ONU is out of order, thereby improving user experience.
  • the data transmission method is described on the OLT side.
  • FIG. 6 is a schematic flowchart of a data sending method according to an embodiment of the present invention. As shown in FIG. 6, the method includes:
  • S601 Determine, according to the wavelength channel information of the received ONU, each wavelength channel that sends data.
  • S602 According to the number of each wavelength channel, divide the transmission data in order to obtain each data packet;
  • S603 Identify each data packet according to a division order, and obtain a sequence identifier of each data packet;
  • each data packet is encapsulated one by one in a downlink frame of each wavelength channel, and each downlink channel of each wavelength channel is sent to the ONU.
  • each data packet is encapsulated in a downlink frame of each wavelength channel one by one, and may include: determining each according to the sequence identifier of each data packet.
  • each data packet is separately encapsulated into a downlink frame of a wavelength channel corresponding to the wavelength channel identifier; wherein the superframe number of the downlink frame encapsulating each data packet is the same, so that the ONU is for each wavelength
  • Each packet in the downlink frame of the channel having the same superframe number and the same ONU identifier is grouped.
  • the foregoing method it also includes inserting a superframe number in the downstream frame of each wavelength channel.
  • the S604 in addition to using the wavelength channel identifier, the S604 encapsulates each data packet in a downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier of each data packet.
  • the method may include: sequentially identifying each data packet in a frame header of a downlink frame of each wavelength channel corresponding to each data packet.
  • the S601 may include: receiving wavelength channel information of the ONU; determining permission from the wavelength channel information.
  • the wavelength channel information is sent, and the wavelength channel information that allows the operation is sent to the ONU, so that the ONU opens the optical module corresponding to the wavelength channel information that is allowed to work, and returns the wavelength channel information corresponding to the opened optical module; according to the opened optical module
  • Corresponding wavelength channel information determines each wavelength channel of the transmitted data.
  • FIG. 7 is a schematic flowchart of a data receiving method according to an embodiment of the present invention. As shown in FIG. 7, the method includes:
  • S701 Receive a downlink frame of each wavelength channel.
  • S702 Determine, according to the downlink frame of each wavelength channel, a sequence identifier of each data packet.
  • S703 Group, according to the sequence identifier of each data packet, each data packet in a downlink frame of each wavelength channel to obtain received data.
  • S702 may include: determining each of the downlink frames of each wavelength channel according to the order of identification of each wavelength channel. The sequential identification of the data packet;
  • S703 may include: grouping each data packet in a downlink frame having the same superframe number and the same ONU identifier for each wavelength channel according to the sequence identifier of each data packet, to obtain received data.
  • the frame header of the downlink frame of each wavelength channel includes: a sequence identifier of each data packet in a downlink frame of each wavelength channel.
  • the method may further include: transmitting wavelength channel information of the ONU to the OLT, so that the OLT determines the wavelength channel information that is allowed to work; Receiving the wavelength channel information of the allowed working channel that is returned by the OLT; opening the optical module corresponding to the wavelength channel information that is allowed to work, determining the wavelength channel information corresponding to the opened optical module, and transmitting the wavelength channel information corresponding to the opened optical module to the OLT, so that The OLT determines each wavelength channel of the transmitted data according to the wavelength channel information corresponding to the opened optical module.
  • an embodiment of the present invention provides a data transmitting apparatus, which is consistent with the OLT described in one or more of the foregoing embodiments.
  • FIG. 8 is a schematic structural diagram of a data transmitting apparatus according to an embodiment of the present invention. As shown in FIG. 8, the apparatus includes: a first determining module 81, a dividing module 82, an identifying module 83, and a sending module 84;
  • the first determining module 81 is configured to determine, according to the wavelength channel information of the received optical network unit ONU, each wavelength channel of the transmitted data; the dividing module 82 is configured to send data in sequence according to the number of each wavelength channel. Dividing to obtain each data packet; the identification module 83 is configured to identify each data packet according to a division order, and obtain a sequence identifier of each data packet; and the sending module 84 is configured to identify each data packet according to the order of each data packet.
  • the data packets are encapsulated one by one in the downlink frame of each wavelength channel, and the downlink frames of each wavelength channel are respectively sent to the ONU.
  • the sending module 84 is specifically configured to determine, according to the sequence identifier of each data packet, a wavelength channel identifier corresponding to each data packet, and encapsulate each data packet into a corresponding wavelength channel identifier.
  • the superframe number of the downlink frame encapsulating each data packet is the same, so that the ONU groups each data packet in the downlink frame with the same superframe number and the same ONU identifier for each wavelength channel. package.
  • the apparatus further includes: an inserting module, configured to be in the downlink of each wavelength channel before determining the wavelength channel identifier corresponding to each data packet according to the order of each data packet.
  • an inserting module configured to be in the downlink of each wavelength channel before determining the wavelength channel identifier corresponding to each data packet according to the order of each data packet.
  • the sending module 84 is specifically configured to write the sequence identifier of each data packet into the frame header of the downlink frame of each wavelength channel corresponding to each data packet.
  • the first determining module 81 is specifically configured to receive the wavelength channel information of the ONU, determine the wavelength channel information that is allowed to work from the wavelength channel information, and send the allowed wavelength channel information to the ONU.
  • the ONU opens the optical module corresponding to the wavelength channel information that is allowed to work, and returns the wavelength channel information corresponding to the opened optical module; and determines the wavelength channel of the transmitted data according to the wavelength channel information corresponding to the opened optical module.
  • the first determining module 81, the dividing module 82, the identifying module 83, the sending module 84, and the inserting module may all be configured by a Central Processing Unit (CPU) or a Microprocessor Unit (MP) located at the OLT.
  • CPU Central Processing Unit
  • MP Microprocessor Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • an embodiment of the present invention provides a data receiving apparatus that is consistent with the ONU in one or more of the above embodiments.
  • FIG. 9 is a schematic structural diagram of a data receiving apparatus according to an embodiment of the present invention. As shown in FIG. 9, the apparatus includes: a receiving module 91, a second determining module 92, and a grouping module 93;
  • the receiving module 91 is configured to receive the downlink frame of each wavelength channel
  • the second determining module 92 is configured to determine the sequence identifier of each data packet according to the downlink frame of each wavelength channel
  • the grouping module 93 is configured to The sequence identifier of the data packet is grouped into packets in the downlink frame of each wavelength channel to obtain received data.
  • the second determining module 92 is specifically configured to determine, according to the sequence of each wavelength channel identification, a sequence identifier of each data packet in a downlink frame of each wavelength channel; correspondingly, the group The packet module 93 is specifically configured to group each data packet in the downlink frame having the same superframe number and the same ONU identifier for each wavelength channel according to the sequence identifier of each data packet, to obtain received data.
  • the frame header of the downlink frame of each wavelength channel includes: a sequence identifier of each data packet in a downlink frame of each wavelength channel.
  • the foregoing apparatus further includes: a processing module, configured to send the wavelength channel information of the ONU to the OLT before receiving the downlink frame of each wavelength channel, so that the OLT determines the wavelength channel information that is allowed to work; Receiving the wavelength channel information of the allowed working channel that is returned by the OLT; opening the optical module corresponding to the wavelength channel information that is allowed to work, determining the wavelength channel information corresponding to the opened optical module, and transmitting the wavelength channel information corresponding to the opened optical module to the OLT, so that The OLT determines each wavelength channel of the transmitted data according to the wavelength channel information corresponding to the opened optical module.
  • a processing module configured to send the wavelength channel information of the ONU to the OLT before receiving the downlink frame of each wavelength channel, so that the OLT determines the wavelength channel information that is allowed to work
  • Receiving the wavelength channel information of the allowed working channel that is returned by the OLT opening the optical module corresponding to the wavelength channel information that is allowed to work, determining the wavelength channel information corresponding to the opened optical module, and transmit
  • the receiving module 91, the second determining module 92, the grouping module 93, and the processing Modules can be implemented by CPUs, MPUs, ASICs, or FPGAs located in the ONU.
  • This embodiment describes a computer readable medium, which may be a ROM (eg, a read only memory, a FLASH memory, a transfer device, etc.), a magnetic storage medium (eg, a magnetic tape, a disk drive, etc.), an optical storage medium (eg, a CD- ROM, DVD-ROM, paper card, paper tape, etc.) and other well-known types of program memory; computer-readable medium storing computer-executable instructions that, when executed, cause at least one processor to perform operations including:
  • each wavelength channel of the transmitted data Determining, according to the wavelength channel information of the received optical network unit ONU, each wavelength channel of the transmitted data; according to the number of each wavelength channel, dividing the transmission data in order to obtain each data packet; performing, according to the division order, each data packet Identifying, obtaining the sequential identification of each data packet; according to the sequence identification of each data packet, each data packet is encapsulated one by one in a downlink frame of each wavelength channel, and each downlink channel of each wavelength channel is sent to the ONU .
  • each wavelength channel of the transmission data is first determined according to the wavelength channel information of the received ONU, and the transmission data is divided according to the determined number of each wavelength channel.
  • Each data packet with the same number of wavelength channels is identified by each data packet, and the sequence identification of each data packet is obtained.
  • each data packet is encapsulated one by one according to the sequence identification of each data packet.
  • the downlink frame of the wavelength channel the downlink frame of each wavelength channel is respectively sent to the ONU; thus, each data packet is encapsulated in the downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier, that is, the OLT package
  • Each data packet carries the sequence identifier of each data packet.
  • the ONU can perform grouping by using the sequence identification of each data packet, so that the OLT can transmit data on multiple channels while avoiding The data received by the ONU is out of order, thereby improving user experience.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner such as: multiple units or components may be combined, or Can be integrated into another system, or some features can be ignored or not executed.
  • the coupling, or direct coupling, or communication connection of the components shown or discussed may be indirect coupling or communication connection through some interfaces, devices or units, and may be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separated, and the components displayed as the unit may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may be separately used as one unit, or two or more units may be used.
  • the elements are integrated in one unit; the above integrated units can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • the foregoing program may be stored in a computer readable storage medium, and when executed, the program includes The foregoing steps of the method embodiment; and the foregoing storage medium includes: a removable storage device, a read only memory (ROM), a magnetic disk, or an optical disk, and the like, which can store program codes.
  • ROM read only memory
  • the above-described integrated unit of the present invention may be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a mobile storage device, a ROM, a magnetic disk, or an optical disk.
  • each data packet is encapsulated in a downlink frame of each wavelength channel in a one-to-one correspondence according to the sequence identifier, that is, When the OLT encapsulates each data packet, it carries the sequence identifier of each data packet. After receiving the data packet, the ONU can perform grouping by using the sequence identification of each data packet, so that the OLT can send data on multiple channels. At the same time, the data received by the ONU is prevented from being out of order, thereby improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例公开了一种数据发送、接收方法和装置,其中,该数据发送方法,包括:根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;根据所述各波长通道的数目,按顺序对所述发送数据进行划分,得到各数据包;对所述各数据包按照划分顺序进行标识,得到所述各数据包的顺序标识;根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送所述每个波长通道的下行帧至所述ONU。

Description

一种数据发送、接收方法和装置 技术领域
本发明实施例涉及光通信领域,尤其涉及一种数据发送、接收方法和装置。
背景技术
随着网络技术的发展,可以利用网络传输大量的语音、数据、视频等业务,因此对带宽的要求不断提高,无源光纤网络(PON,Passive Optical Network)系统就是在这种需求下产生的;
图1为PON系统的一种拓扑结构示意图;如图1所示,PON系统通常由局侧的光线路终端(OLT,Optical Line Terminal)、用户侧的光网络单元(ONU,Optical Network Unit)和光分配网络(ODN,Optical Distribution Network)组成,通常采用点到多点的网络结构;ODN由单模光纤和光分路器、光连接器等无源光器件组成,为OLT和ONU之间的物理连接提供光传输媒质;为了在节省光纤资源情况下提升线路速率,提出了在一根光纤中多个波长上同时传输数据,同一波长上不同ONU的数据下行采用时分复用方式,上行采用时分复用接入方式,这称为波分时分PON系统,图2为PON系统的另一种拓扑结构示意图;如图2所示,每个OLT通过波分复用(WDM,Wavelength Division Multiplexing)的方式管理多组ONU,在同一上行波长和下行波长上一组ONU发送上行数据的上行波长相同,并且接收下行数据的下行波长也相同,不同上行波长和下行波长上ONU组发送上行数据的上行波长不同,并且接收下行数据的下行波长也不同;
为了支持ONU能够传输超过单通道速率的数据,提出了ONU可以支持在多组波长通道上同时发送和接收数据,在这种架构下,OLT如何将数据通过多个波长通道上发送给ONU,ONU收到后如何将数据包按照 OLT发送的顺序组合在一起,是个需要解决的问题,在现有技术中,提出了一种可以通过OLT将数据包按照时间顺序在多个通道上发送,ONU在多个通道上接收到数据后,按照接收数据的时间顺序来组包,这要求OLT发送数据的多个通道要严格时间同步,如果发送数据存在延迟抖动等,这会造成ONU接收的数据和OLT发送的数据的时间顺序不符,造成ONU接收的数据乱序,为了避免数据乱序,可以通过增大不同通道上发送数据的时间间隔,但这会人为引入一些数据发送的延迟,降低数据发送的效率,如此,现有的OLT在多个通道上给ONU发送数据时会产生数据乱序。
发明内容
有鉴于此,本发明实施例期望提供一种数据发送、接收方法和装置,使得OLT能够在多个通道上发送数据的同时,避免ONU接收到的数据产生数据乱序,进而提高用户体验度。
为达到上述目的,本发明实施例的技术方案是这样实现的:
第一方面,本发明实施例提供一种数据发送方法,包括:根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;根据所述各波长通道的数目,按顺序对所述发送数据进行划分,得到各数据包;对所述各数据包按照划分顺序进行标识,得到所述各数据包的顺序标识;根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送所述每个波长通道的下行帧至所述ONU。
进一步地,所述根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,包括:根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识;将所述每个数据包分别封装至所述波长通道标识对应的波长通道的下行帧中;其中,封装所述每个数据包的下行帧的超帧号相同,使得所述ONU对所述每个波长通道的具有相同超帧号和相同所述ONU标识的下行帧中每个数据包进行组包。
进一步地,在根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识之前,所述方法还包括:在所述每个波长通道的下行帧中不存在超帧号时,在所述每个波长通道的下行帧中插入一个超帧号。
进一步地,所述根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,包括:将所述每个数据包的顺序标识,写入所述每个数据包对应的每个波长通道的下行帧的帧头中。
进一步地,所述根据接收到的ONU的波长通道信息,确定出发送数据的各波长通道,所述方法还包括:接收所述ONU的波长通道信息;从所述波长通道信息中确定出允许工作的波长通道信息,并发送所述允许工作的波长通道信息至所述ONU,使得所述ONU打开所述允许工作的波长通道信息对应的光模块,并返回所打开的光模块对应的波长通道信息;根据所述所打开的光模块对应的波长通道信息,确定出所述发送数据的各波长通道。
第二方面,本发明实施例提供一种数据接收方法,包括:接收各波长通道的下行帧;根据所述各波长通道的下行帧,确定出各数据包的顺序标识;根据所述各数据包的顺序标识,对所述各波长通道的下行帧中各数据包进行组包,得到接收数据。
进一步地,所述根据所述各波长通道的下行帧,确定出各数据包的顺序标识,包括:根据每个波长通道标识的顺序,确定出所述每个波长通道的下行帧中每个数据包的顺序标识;相应地,根据所述各数据包的顺序标识,对所述各波长通道的下行帧中各数据包进行组包,得到接收数据,包括:根据所述每个数据包的顺序标识,对所述每个波长通道的具有相同超帧号和相同光网络单元ONU标识的下行帧中每个数据包进行组包,得到所述接收数据。
进一步地,每个波长通道的下行帧的帧头中包括:所述每个波长通道的下行帧中每个数据包的顺序标识。
进一步地,在接收各波长通道的下行帧之前,所述方法还包括:发送 ONU的波长通道信息至光线路终端OLT,使得所述OLT确定出允许工作的波长通道信息;接收所述OLT返回的所述允许工作的波长通道信息;打开所述允许工作的波长通道信息对应的光模块,确定出所打开的光模块对应的波长通道信息,发送所述所打开的光模块对应的波长通道信息至所述OLT,使得所述OLT根据所述所打开的光模块对应的波长通道信息确定出发送数据的各波长通道。
第三方面,本发明实施例提供一种数据发送装置,包括:第一确定模块,设置为根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;划分模块,设置为根据所述各波长通道的数目,按顺序对所述发送数据进行划分,得到各数据包;标识模块,设置为对所述各数据包按照划分顺序进行标识,得到所述各数据包的顺序标识;发送模块,设置为根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送所述每个波长通道的下行帧至所述ONU。
进一步地,所述发送模块具体设置为根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识;将所述每个数据包分别封装至所述波长通道标识对应的波长通道的下行帧中;其中,封装所述每个数据包的下行帧的超帧号相同,使得所述ONU对所述每个波长通道的具有相同超帧号和相同所述ONU标识的下行帧中每个数据包进行组包。
进一步地,所述装置还包括:插入模块,设置为在根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识之前,在所述每个波长通道的下行帧中不存在超帧号时,在所述每个波长通道的下行帧中插入一个超帧号。
进一步地,所述发送模块具体设置为将所述每个数据包的顺序标识,写入所述每个数据包对应的每个波长通道的下行帧的帧头中。
进一步地,所述第一确定模块具体设置为接收所述ONU的波长通道信息;从所述波长通道信息中确定出允许工作的波长通道信息,并发送所 述允许工作的波长通道信息至所述ONU,使得所述ONU打开所述允许工作的波长通道信息对应的光模块,并返回所打开的光模块对应的波长通道信息;根据所述所打开的光模块对应的波长通道信息,确定出所述发送数据的各波长通道。
第四方面,本发明实施例提供一种数据接收装置,包括:接收模块,设置为接收各波长通道的下行帧;第二确定模块,设置为根据所述各波长通道的下行帧,确定出各数据包的顺序标识;组包模块,设置为根据所述各数据包的顺序标识,对所述各波长通道的下行帧中各数据包进行组包,得到接收数据。
进一步地,所述第二确定模块具体设置为根据每个波长通道标识的顺序,确定出所述每个波长通道的下行帧中每个数据包的顺序标识;相应地,所述组包模块具体设置为根据所述每个数据包的顺序标识,对所述每个波长通道的具有相同超帧号和相同光网络单元ONU标识的下行帧中每个数据包进行组包,得到所述接收数据。
进一步地,每个波长通道的下行帧的帧头中包括:所述每个波长通道的下行帧中每个数据包的顺序标识。
进一步地,所述装置还包括:处理模块,设置为在接收各波长通道的下行帧之前,发送ONU的波长通道信息至光线路终端OLT,使得所述OLT确定出允许工作的波长通道信息;接收所述OLT返回的所述允许工作的波长通道信息;打开所述允许工作的波长通道信息对应的光模块,确定出所打开的光模块对应的波长通道信息,发送所述所打开的光模块对应的波长通道信息至所述OLT,使得所述OLT根据所述所打开的光模块对应的波长通道信息确定出发送数据的各波长通道。
本发明实施例所提供的数据发送、接收方法和装置,根据接收到的ONU的波长通道信息先确定出发送数据的各波长通道,根据所确定出的各波长通道的数目,按照顺序对发送数据进行划分得到与各波长通道数目相同的各数据包,对各数据包做标识,得到每个数据包的顺序标识,最后, 根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU;这样,将每个数据包按照顺序标识一一对应地封装在每个波长通道的下行帧中,也就是说,OLT封装各数据包时携带了各数据包的顺序标识,那么,ONU在接收到各数据包之后可以通过各数据包的顺序标识来进行组包,使得OLT能够在多个通道上发送数据的同时,避免ONU接收到的数据产生乱序,进而提高用户体验度。
附图说明
图1为PON系统的一种拓扑结构示意图;
图2为PON系统的另一种拓扑结构示意图;
图3为本发明实施例中数据收发方法的一种流程示意图;
图4为本发明实施例中一种可选的下行帧的结构示意图;
图5为本发明实施例中另一种可选的下行帧的结构示意图;
图6为本发明实施例中数据发送方法的流程示意图;
图7为本发明实施例中数据接收方法的流程示意图;
图8为本发明实施例中数据发送装置的结构示意图;
图9为本发明实施例中数据接收装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例提供一种数据收发方法,该方法应用于如图2所示的PON系统中,在上述图2中,OLT包括多个端口,每个端口对应一个波长通道,每个通道上使用一个下行波长和一个上行波长,每个通道上一个OLT端口管理一组ONU,该组ONU采用时分复用接入方式发送上行数据, 不同波长通道上的不同组ONU采用波分复用方式发送数据;一个ONU可以支持多个波长通道同时发送和接收数据;
图3为本发明实施例中数据收发方法的一种流程示意图,如图1所示,OLT和ONU进行数据收发方法包括:
S301:ONU发送ONU的波长通道信息至OLT;
由上述可知,一个ONU可以支持多个波长通道,那么,ONU首先发送自身的波长通道信息至OLT,告知OLT自身可以支持的波长通道信息,其中,上述波长通道信息包括ONU的可以支持的上行波长和下行波长。
S302:OLT从ONU的波长通道信息中确定出允许工作的波长通道信息,并发送允许工作的波长通道信息至ONU;
其中,OLT接收到ONU的波长通道信息之后,从ONU的波长通道信息中确定出允许工作的波长通道信息,例如,OLT接收到的ONU的波长通道信息中波长通道数目共6个,OLT确定出的允许工作的波长通道信息中波长通道数目为其中的5个,并将确定出的允许工作的波长通道信息发送至ONU。
S303:ONU打开允许工作的波长通道信息对应的光模块,并发送所打开的光模块对应的波长通道信息至OLT;
具体来说,ONU收到允许工作的波长通道信息之后,ONU保持或者打开上述允许工作的波长通道对应的光模块收发器,保持其他波长通道对应的光模块为关闭状态,并发送所打开的光模块对应的波长通道信息至OLT,回复OLT该ONU同意工作在上述所打开的光模块对应的波长通道;例如,上述OLT确定出的允许工作的波长通道信息中波长通道数目为5个,ONU所打开的光模块对应的波长通道中波长通道的数目只有4个,则OLT确定出了发送数据的波长通道为4个。
至此,OLT根据接收到的ONU的波长通道信息,确定出发送数据的各波长通道。
S304:OLT对发送数据进行划分、标识、封装,将经过划分、标识、 封装后的下行帧发送数据发送至ONU;
在具体实施过程中,S304可以包括:
根据各波长通道的数目,按顺序对发送数据进行划分,得到各数据包;对各数据包按照划分顺序进行标识,得到各数据包的顺序标识;根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU;
在确定出发送数据的各波长通道之后,以各波长通道的数目为4来举例说明,按顺序对发送数据进行划分得到4个数据包,对这4个数据包按照划分顺序进行标识得到各数据包的顺序标识,该顺序标识可以为数字,字母和符号等,例如顺序标识为数字时,那么,各数据包按照划分顺序进行标识,得到数据包1、数据包2、数据包3和数据包4;
为了将每个数据包一一对应地封装至在每个波长通道的下行帧中,使得ONU在接收到下行帧之后能够按照正确地顺序对各数据包进行组包,在一种可选的实施例中,根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,包括:根据每个数据包的顺序标识,确定出每个数据包对应的波长通道标识;将每个数据包分别封装至波长通道标识对应的波长通道的下行帧中;
其中,封装每个数据包的下行帧的超帧号相同,使得ONU对每个波长通道的具有相同超帧号和相同ONU标识的下行帧中每个数据包进行组包。
上述各波长通道标识可以为数字,字母和符号,用于标识各波长通道的顺序,并且,OTL与ONU均知晓每个数据包的顺序标识所对应的波长通道标识,这样,当OLT将各数据包发送至ONU,ONU根据每个波长通道标识对应的数据包的顺序标识可得知各数据包的顺序标识,并根据按照顺序进行组包;
这里,以各波长通道标识为数字举例说明,数据包1确定出对应的波长通道标识为通道1,将数据包1封装至通道1的下行帧中,数据包2确 定出对应的波长通道标识为通道2,将数据包2封装至通道2的下行帧中,数据包3确定出对应的波长通道标识为通道3,将数据包3封装至通道3的下行帧中,数据包4确定出对应的波长通道标识为通道4,将数据包4封装至通道4的下行帧中;
举例来说,图4为本发明实施例中一种可选的下行帧的结构示意图,如图4所示,通道1的下行帧包括:下行同步、超帧计数器和校验域、操作控制结构、帧子层帧头、帧子层静荷和帧子层帧尾;其中,在封装的过程中,各数据包封装在帧子层静荷中,由于每个通道可以向多个ONU发送数据,如图4所示,帧子层静荷中包括三组GEM帧,每个GEM帧包括10G速率的吉比特封装方法帧头和10G速率的吉比特封装方法静荷,在具体实施过程中,各数据包封装在帧子层静荷的GEM帧的10G速率的吉比特封装方法静荷中;
在实际应用中,OLT确定出通道1、通道2、通道3和通道4之后,不同通道的可以采用同一个时钟源,也可以采用不同的时钟源,当不同通道上采用不同的时钟源时,在不同通道上的下行帧对时钟源进行同步,当使用图4中的下行帧结构时,需要向ONU1和ONU2发送数据时,在不同通道上同时发送的多个下行帧携带相同的超帧号,超帧号携带在下行帧的帧头的超帧计数器中,表明该下行帧的序号,比如OLT的通道1发送的第一个下行帧,超帧号为0,每发送一个下行帧,超帧号计数器中的超帧号增加1,发送的第二个下行帧,其超帧号为1,发送的第M个超帧号为M-1,当超帧号达到超帧号计数器的最大值N时,通道1发送的下一个下行帧,其超帧号重新开始计数,超帧号为0。
通道1的第二个GEM帧封装ONU1的数据包1,通道2的第二个GEM帧封装ONU1的数据包2,通道3的第二个GEM帧封装ONU1的数据包3,通道4的第二个GEM帧封装ONU1的数据包4;通道1的第三个GEM帧封装ONU1的数据包1,通道2的第三个GEM帧封装ONU1的数据包2,通道3的第三个GEM帧封装ONU1的数据包3,通道4的第三个GEM帧封装ONU1的数据包4;
ONU在接收到下行帧之后,将具有相同超帧号和具有该ONU标识的下行帧中每个数据包按照每个数据包的顺序标识进行组包,这样,可以防止ONU在组包的过程中发生顺序错误,或者对其他ONU的数据包进行组包。
这里需要说明的是,OLT在划分发送数据的过程中,分给上述每个通道上传输的数据包的大小使得不同通道上的上述数据包的传输的结束时间最早,以提高OLT与ONU之间的传输效率。
当波长通道的下行帧结构中不包括超帧号时,在一种可选的实施例中,在根据每个数据包的顺序标识,确定出每个数据包对应的波长通道标识之前,该方法还包括:在每个波长通道的下行帧中插入一个超帧号。
图5为本发明实施例中另一种可选的下行帧的结构示意图,如图5所示,该下行帧结构是在现有的以太网帧基础上插入一个超帧号而得到的,如图5所示,在以太网帧首定界符SPD前面增加超帧号,超帧号的定义前述超帧号的定义相同,这里,不再赘述;以太网帧中的SPD后面是前导Preamble,DA为目的地址,SA为源地址,Len为数据长度,type为数据类型,Payload为静荷,FCS为校验数据;当OLT在不同通道上给ONU同时发送的多个下行帧携带相同的超帧号,OLT按照通道标识将发送给一个ONU的数据分成一个或者多个数据包分发到该ONU支持的一个或者多个通道上,每个通道上的上述数据包承载在图5中的Payload中。
在一种可选的实施例中,除了上述采用波长通道标识之外,根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,包括:将每个数据包的顺序标识,写入每个数据包对应的每个波长通道的下行帧的帧头中。
具体来说,在封装每个数据包的过程中,为了使得ONU可以获知所封装的数据包的顺序,将每个数据包的顺序标识写入每个数据包对应的每个波长通道的下行帧的帧头中,以图4中的下行帧结构为例,当需要向ONU发送数据时,将每个数据包的顺序标识写入每个数据包对应的每个 波长通道的下行帧的10G速率的吉比特封装方法帧头中,最后将下行帧发送至ONU;这样,使得ONU在接收到各下行帧之后,解析得到每个数据包的顺序标识,根据每个数据包的顺序标识来进行组包。
S305:ONU对接收到的每个波长通道的下行帧进行组包得到接收数据。
在具体实施过程中,S305可以包括:
接收各波长通道的下行帧;根据各波长通道的下行帧,确定出各数据包的顺序标识;根据各数据包的顺序标识,对各波长通道的下行帧中各数据包进行组包,得到接收数据。
这里,每个波长通道的下行帧因为存在延迟抖动等,导致ONU接收到每个波长通道的下行帧的顺序不确定,那么,为了组包的正确性,ONU先根据各波长通道的下行帧确定出各数据包的顺序标识,然后根据各数据包的顺序标识对各波长通道的下行帧中各数据包进行组包,这样,避免了发送数据乱序所导致的错误组包。
为了确定出各数据包的顺序标识以进行正确组包,在一种可选的实施例中,根据各波长通道的下行帧,确定出各数据包的顺序标识,包括:根据每个波长通道标识的顺序,确定出每个波长通道的下行帧中每个数据包的顺序标识;
相应地,根据各数据包的顺序标识,对各波长通道的下行帧中各数据包进行组包,得到接收数据,包括:根据每个数据包的顺序标识,对每个波长通道的具有相同超帧号和相同ONU标识的下行帧中每个数据包进行组包,得到接收数据。
具体来说,ONU将接收到的不同通道上具有相同超帧号和相同ONU标识的多个下行帧中的数据包按照通道标识进行组包,仍然以图4为例,ONU1将通道1上的发送给ONU1的数据包1放在最前面,然后将通道2上的发送给ONU1的数据包2放在数据包1后面,将通道3上的发送给ONU1的数据包3放在数据包2后面,将通道4上的发送给ONU1的数据 包4放在数据包3后面,完成4个通道上绑定的数据的重新组包;其中,ONU1根据ONU1标识来识别出数据包是否为发送给ONU1的数据包。
在本发明实施例中,如果四个通道的下行帧完全时间同步,ONU可以将同时收到的四个下行帧中发送给自己的绑定的数据包按照通道标识重新排序组包;其中,通过相同ONU标识可以确定出是否是发送给自己的绑定的数据包;如果四个通道的下行帧不能实现完全的时间同步,ONU可以通过四个帧的超帧号关联四个发送绑定数据包的下行帧,ONU将不同通道上具有相同超帧号和相同ONU标识的多个下行帧中的数据包按照通道标识顺序进行组包,在通道上不依靠时间来确定组包顺序,避免了延时抖动导致的数据乱序。
在一种可选的实施例中,每个波长通道的下行帧的帧头中包括:每个波长通道的下行帧中每个数据包的顺序标识。
这里,通过每个波长通道的下行帧的帧头中的顺序标识可以确定出每个数据包的顺序标识,然后根据各数据包的顺序标识进行组包;至此,ONU得到了正确的接收数据,提高了用户的体验度。
本发明实施例所提供的数据收发方法,根据接收到的ONU的波长通道信息先确定出发送数据的各波长通道,根据所确定出的各波长通道的数目,按照顺序对发送数据进行划分得到与各波长通道数目相同的各数据包,对各数据包做标识,得到每个数据包的顺序标识,最后,根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU;这样,将每个数据包按照顺序标识一一对应地封装在每个波长通道的下行帧中,也就是说,OLT封装各数据包时携带了各数据包的顺序标识,那么,ONU在接收到各数据包之后可以通过各数据包的顺序标识来进行组包,使得OLT能够在多个通道上发送数据的同时,避免ONU接收到的数据产生乱序,进而提高用户体验度。
下面站在PON系统中各个设备侧对上述数据收发方法进行说明。
首先,站在OLT侧对数据发送方法进行描述。
图6为本发明实施例中数据发送方法的流程示意图,如图6所示,该方法包括:
S601:根据接收到的ONU的波长通道信息,确定出发送数据的各波长通道;
S602:根据各波长通道的数目,按顺序对发送数据进行划分,得到各数据包;
S603:对各数据包按照划分顺序进行标识,得到各数据包的顺序标识;
S604:根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU。
为了将每个数据包一一对应地封装至在每个波长通道的下行帧中,使得ONU在接收到下行帧之后能够按照正确地顺序对各数据包进行组包,在一种可选的实施例中,S604中根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,可以包括:根据每个数据包的顺序标识,确定出每个数据包对应的波长通道标识;将每个数据包分别封装至波长通道标识对应的波长通道的下行帧中;其中,封装每个数据包的下行帧的超帧号相同,使得ONU对每个波长通道的具有相同超帧号和相同ONU标识的下行帧中每个数据包进行组包。
当波长通道的下行帧结构中不包括超帧号时,在一种可选的实施例中,在根据每个数据包的顺序标识,确定出每个数据包对应的波长通道标识之前,上述方法还包括:在每个波长通道的下行帧中插入一个超帧号。
在一种可选的实施例中,除了上述采用波长通道标识之外,S604中根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,可以包括:将每个数据包的顺序标识,写入每个数据包对应的每个波长通道的下行帧的帧头中。
为了确定出发送数据的各波长通道,在一种可选的实施例中,S601可以包括:接收ONU的波长通道信息;从波长通道信息中确定出允许工 作的波长通道信息,并发送允许工作的波长通道信息至ONU,使得ONU打开允许工作的波长通道信息对应的光模块,并返回所打开的光模块对应的波长通道信息;根据所打开的光模块对应的波长通道信息,确定出发送数据的各波长通道。
其次,站在ONU侧对数据发送方法进行描述。
图7为本发明实施例中数据接收方法的流程示意图,如图7所示,该方法包括:
S701:接收各波长通道的下行帧;
S702:根据各波长通道的下行帧,确定出各数据包的顺序标识;
S703:根据各数据包的顺序标识,对各波长通道的下行帧中各数据包进行组包,得到接收数据。
为了确定出各数据包的顺序标识以进行正确组包,在一种可选的实施例中,S702可以包括:根据每个波长通道标识的顺序,确定出每个波长通道的下行帧中每个数据包的顺序标识;
相应地,S703可以包括:根据每个数据包的顺序标识,对每个波长通道的具有相同超帧号和相同ONU标识的下行帧中每个数据包进行组包,得到接收数据。
在一种可选的实施例中,每个波长通道的下行帧的帧头中包括:每个波长通道的下行帧中每个数据包的顺序标识。
为了确定出发送数据的各波长通道,在一种可选的实施例中,在S701之前,该方法还可以包括:发送ONU的波长通道信息至OLT,使得OLT确定出允许工作的波长通道信息;接收OLT返回的允许工作的波长通道信息;打开允许工作的波长通道信息对应的光模块,确定出所打开的光模块对应的波长通道信息,发送所打开的光模块对应的波长通道信息至OLT,使得OLT根据所打开的光模块对应的波长通道信息确定出发送数据的各波长通道。
基于同一发明构思,本发明实施例提供一种数据发送装置,与上述一个或者多个实施例中所述的OLT一致。
图8为本发明实施例中数据发送装置的结构示意图,如图8所示,该装置包括:第一确定模块81、划分模块82、标识模块83和发送模块84;
其中,第一确定模块81,设置为根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;划分模块82,设置为根据各波长通道的数目,按顺序对发送数据进行划分,得到各数据包;标识模块83,设置为对各数据包按照划分顺序进行标识,得到各数据包的顺序标识;发送模块84,设置为根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU。
在一种可选的实施例中,发送模块84具体设置为根据每个数据包的顺序标识,确定出每个数据包对应的波长通道标识;将每个数据包分别封装至波长通道标识对应的波长通道的下行帧中;其中,封装每个数据包的下行帧的超帧号相同,使得ONU对每个波长通道的具有相同超帧号和相同ONU标识的下行帧中每个数据包进行组包。
在一种可选的实施例中,该装置还包括:插入模块,设置为在根据每个数据包的顺序标识,确定出每个数据包对应的波长通道标识之前,在每个波长通道的下行帧中不存在超帧号时,在每个波长通道的下行帧中插入一个超帧号。
在一种可选的实施例中,上述发送模块84具体设置为将每个数据包的顺序标识,写入每个数据包对应的每个波长通道的下行帧的帧头中。
在一种可选的实施例中,上述第一确定模块81具体设置为接收ONU的波长通道信息;从波长通道信息中确定出允许工作的波长通道信息,并发送允许工作的波长通道信息至ONU,使得ONU打开允许工作的波长通道信息对应的光模块,并返回所打开的光模块对应的波长通道信息;根据所打开的光模块对应的波长通道信息,确定出发送数据的各波长通道。
在实际应用中,第一确定模块81、划分模块82、标识模块83、发送模块84和插入模块均可由位于OLT的中央处理器(CPU,Central Processing Unit)、微处理器(MPU,Microprocessor Unit)、专用集成电路(ASIC,Application Specific Integrated Circuit)或现场可编程门阵列(FPGA,Field-Programmable Gate Array)等实现。
基于同一发明构思,本发明实施例提供一种数据接收装置,与上述一个或者多个实施例中的所述ONU一致。
图9为本发明实施例中数据接收装置的结构示意图,如图9所示,该装置包括:接收模块91、第二确定模块92和组包模块93;
其中,接收模块91,设置为接收各波长通道的下行帧;第二确定模块92,设置为根据各波长通道的下行帧,确定出各数据包的顺序标识;组包模块93,设置为根据各数据包的顺序标识,对各波长通道的下行帧中各数据包进行组包,得到接收数据。
在一种可选的实施例中,上述第二确定模块92具体设置为根据每个波长通道标识的顺序,确定出每个波长通道的下行帧中每个数据包的顺序标识;相应地,组包模块93具体设置为根据每个数据包的顺序标识,对每个波长通道的具有相同超帧号和相同ONU标识的下行帧中每个数据包进行组包,得到接收数据。
在一种可选的实施例中,每个波长通道的下行帧的帧头中包括:每个波长通道的下行帧中每个数据包的顺序标识。
在一种可选的实施例中,上述装置还包括:处理模块,设置为在接收各波长通道的下行帧之前,发送ONU的波长通道信息至OLT,使得OLT确定出允许工作的波长通道信息;接收OLT返回的允许工作的波长通道信息;打开允许工作的波长通道信息对应的光模块,确定出所打开的光模块对应的波长通道信息,发送所打开的光模块对应的波长通道信息至OLT,使得OLT根据所打开的光模块对应的波长通道信息确定出发送数据的各波长通道。
在实际应用中,接收模块91、第二确定模块92、组包模块93和处理 模块均可由位于ONU的CPU、MPU、ASIC或FPGA等实现。
本实施例记载一种计算机可读介质,可以为ROM(例如,只读存储器、FLASH存储器、转移装置等)、磁存储介质(例如,磁带、磁盘驱动器等)、光学存储介质(例如,CD-ROM、DVD-ROM、纸卡、纸带等)以及其他熟知类型的程序存储器;计算机可读介质中存储有计算机可执行指令,当执行指令时,引起至少一个处理器执行包括以下的操作:
根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;根据各波长通道的数目,按顺序对发送数据进行划分,得到各数据包;对各数据包按照划分顺序进行标识,得到各数据包的顺序标识;根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU。
本发明实施例所提供的数据收发方法,根据接收到的ONU的波长通道信息先确定出发送数据的各波长通道,根据所确定出的各波长通道的数目,按照顺序对发送数据进行划分得到与各波长通道数目相同的各数据包,对各数据包做标识,得到每个数据包的顺序标识,最后,根据每个数据包的顺序标识,将每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送每个波长通道的下行帧至ONU;这样,将每个数据包按照顺序标识一一对应地封装在每个波长通道的下行帧中,也就是说,OLT封装各数据包时携带了各数据包的顺序标识,那么,ONU在接收到各数据包之后可以通过各数据包的顺序标识来进行组包,使得OLT能够在多个通道上发送数据的同时,避免ONU接收到的数据产生乱序,进而提高用户体验度。
这里需要指出的是:以上装置实施例项的描述,与上述方法描述是类似的,具有同方法实施例相同的有益效果,因此不做赘述。对于本发明装置实施例中未披露的技术细节,本领域的技术人员请参照本发明方法实施例的描述而理解,为节约篇幅,这里不再赘述。
这里需要指出的是:
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单 元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
工业实用性
如上所述,本实施例提供的一种数据发送、接收方法和装置,具有以下有益效果:将每个数据包按照顺序标识一一对应地封装在每个波长通道的下行帧中,也就是说,OLT封装各数据包时携带了各数据包的顺序标识,那么,ONU在接收到各数据包之后可以通过各数据包的顺序标识来进行组包,使得OLT能够在多个通道上发送数据的同时,避免ONU接收到的数据产生乱序,进而提高用户体验度。

Claims (18)

  1. 一种数据发送方法,包括:
    根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;
    根据所述各波长通道的数目,按顺序对所述发送数据进行划分,得到各数据包;
    对所述各数据包按照划分顺序进行标识,得到所述各数据包的顺序标识;
    根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送所述每个波长通道的下行帧至所述ONU。
  2. 根据权利要求1所述的方法,其中,所述根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,包括:
    根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识;
    将所述每个数据包分别封装至所述波长通道标识对应的波长通道的下行帧中;
    其中,封装所述每个数据包的下行帧的超帧号相同,使得所述ONU对所述每个波长通道的具有相同超帧号和相同所述ONU标识的下行帧中每个数据包进行组包。
  3. 根据权利要求2所述的方法,其中,在根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识之前,所述方法还包括:
    在所述每个波长通道的下行帧中不存在超帧号时,在所述每个波长通道的下行帧中插入一个超帧号。
  4. 根据权利要求1所述的方法,其中,所述根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,包 括:
    将所述每个数据包的顺序标识,写入所述每个数据包对应的每个波长通道的下行帧的帧头中。
  5. 根据权利要求1所述的方法,其中,所述根据接收到的ONU的波长通道信息,确定出发送数据的各波长通道,所述方法还包括:
    接收所述ONU的波长通道信息;
    从所述波长通道信息中确定出允许工作的波长通道信息,并发送所述允许工作的波长通道信息至所述ONU,使得所述ONU打开所述允许工作的波长通道信息对应的光模块,并返回所打开的光模块对应的波长通道信息;
    根据所述所打开的光模块对应的波长通道信息,确定出所述发送数据的各波长通道。
  6. 一种数据接收方法,包括:
    接收各波长通道的下行帧;
    根据所述各波长通道的下行帧,确定出各数据包的顺序标识;
    根据所述各数据包的顺序标识,对所述各波长通道的下行帧中各数据包进行组包,得到接收数据。
  7. 根据权利要求6所述的方法,其中,所述根据所述各波长通道的下行帧,确定出各数据包的顺序标识,包括:
    根据每个波长通道标识的顺序,确定出所述每个波长通道的下行帧中每个数据包的顺序标识;
    相应地,根据所述各数据包的顺序标识,对所述各波长通道的下行帧中各数据包进行组包,得到接收数据,包括:
    根据所述每个数据包的顺序标识,对所述每个波长通道的具有相同超帧号和相同光网络单元ONU标识的下行帧中每个数据包进行组包,得到所述接收数据。
  8. 根据权利要求6所述的方法,其中,每个波长通道的下行帧的帧头中包括:所述每个波长通道的下行帧中每个数据包的顺序标识。
  9. 根据权利要求6所述的方法,其中,在接收各波长通道的下行帧之前,所述方法还包括:
    发送ONU的波长通道信息至光线路终端OLT,使得所述OLT确定出允许工作的波长通道信息;
    接收所述OLT返回的所述允许工作的波长通道信息;
    打开所述允许工作的波长通道信息对应的光模块,确定出所打开的光模块对应的波长通道信息,发送所述所打开的光模块对应的波长通道信息至所述OLT,使得所述OLT根据所述所打开的光模块对应的波长通道信息确定出发送数据的各波长通道。
  10. 一种数据发送装置,包括:
    第一确定模块,设置为根据接收到的光网络单元ONU的波长通道信息,确定出发送数据的各波长通道;
    划分模块,设置为根据所述各波长通道的数目,按顺序对所述发送数据进行划分,得到各数据包;
    标识模块,设置为对所述各数据包按照划分顺序进行标识,得到所述各数据包的顺序标识;
    发送模块,设置为根据每个数据包的顺序标识,将所述每个数据包一一对应地封装在每个波长通道的下行帧中,分别发送所述每个波长通道的下行帧至所述ONU。
  11. 根据权利要求10所述的装置,其中,所述发送模块具体设置为根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识;将所述每个数据包分别封装至所述波长通道标识对应的波长通道的下行帧中;其中,封装所述每个数据包的下行帧的超帧号相同,使得所述ONU对所述每个波长通道的具有相同超帧号和相同所述ONU标识的下行 帧中每个数据包进行组包。
  12. 根据权利要求11所述的装置,其中,所述装置还包括:
    插入模块,设置为在根据所述每个数据包的顺序标识,确定出所述每个数据包对应的波长通道标识之前,在所述每个波长通道的下行帧中不存在超帧号时,在所述每个波长通道的下行帧中插入一个超帧号。
  13. 根据权利要求10所述的装置,其中,所述发送模块具体设置为将所述每个数据包的顺序标识,写入所述每个数据包对应的每个波长通道的下行帧的帧头中。
  14. 根据权利要求10所述的装置,其中,所述第一确定模块具体设置为接收所述ONU的波长通道信息;从所述波长通道信息中确定出允许工作的波长通道信息,并发送所述允许工作的波长通道信息至所述ONU,使得所述ONU打开所述允许工作的波长通道信息对应的光模块,并返回所打开的光模块对应的波长通道信息;根据所述所打开的光模块对应的波长通道信息,确定出所述发送数据的各波长通道。
  15. 一种数据接收装置,包括:
    接收模块,设置为接收各波长通道的下行帧;
    第二确定模块,设置为根据所述各波长通道的下行帧,确定出各数据包的顺序标识;
    组包模块,设置为根据所述各数据包的顺序标识,对所述各波长通道的下行帧中各数据包进行组包,得到接收数据。
  16. 根据权利要求15所述的装置,其中,所述第二确定模块具体设置为根据每个波长通道标识的顺序,确定出所述每个波长通道的下行帧中每个数据包的顺序标识;
    相应地,所述组包模块具体设置为根据所述每个数据包的顺序标识,对所述每个波长通道的具有相同超帧号和相同光网络单元ONU标识的下行帧中每个数据包进行组包,得到所述接收数据。
  17. 根据权利要求15所述的装置,其中,每个波长通道的下行帧的帧头中包括:所述每个波长通道的下行帧中每个数据包的顺序标识。
  18. 根据权利要求15所述的装置,其中,所述装置还包括:
    处理模块,设置为在接收各波长通道的下行帧之前,发送ONU的波长通道信息至光线路终端OLT,使得所述OLT确定出允许工作的波长通道信息;接收所述OLT返回的所述允许工作的波长通道信息;打开所述允许工作的波长通道信息对应的光模块,确定出所打开的光模块对应的波长通道信息,发送所述所打开的光模块对应的波长通道信息至所述OLT,使得所述OLT根据所述所打开的光模块对应的波长通道信息确定出发送数据的各波长通道。
PCT/CN2017/107268 2016-11-07 2017-10-23 一种数据发送、接收方法和装置 WO2018082461A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/347,767 US10798472B2 (en) 2016-11-07 2017-10-23 Data transmission method, data receiving method, optical line terminal and optical network unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610975449.9A CN108063985B (zh) 2016-11-07 2016-11-07 一种数据收发方法和装置
CN201610975449.9 2016-11-07

Publications (1)

Publication Number Publication Date
WO2018082461A1 true WO2018082461A1 (zh) 2018-05-11

Family

ID=62075655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107268 WO2018082461A1 (zh) 2016-11-07 2017-10-23 一种数据发送、接收方法和装置

Country Status (3)

Country Link
US (1) US10798472B2 (zh)
CN (1) CN108063985B (zh)
WO (1) WO2018082461A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112118048A (zh) * 2019-06-20 2020-12-22 中国移动通信有限公司研究院 一种前传网络的控制方法、网络设备及系统
CN114727170A (zh) * 2021-01-04 2022-07-08 上海诺基亚贝尔股份有限公司 在光网络中实施的方法、设备和计算机可读存储介质
WO2022206174A1 (zh) * 2021-04-02 2022-10-06 华为技术有限公司 一种数据传输方法、光线路终端、光网络单元及通信系统
EP4117300B1 (en) * 2021-07-07 2023-06-21 Nokia Solutions and Networks Oy Method and apparatus for onu grouping
CN116074197A (zh) * 2021-11-04 2023-05-05 华为终端有限公司 一种传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484898A (zh) * 2000-11-17 2004-03-24 使用可变长度数据包的单点对多点无源光网络
CN102056031A (zh) * 2009-11-10 2011-05-11 华为技术有限公司 传输多路业务的方法和装置
CN103430572A (zh) * 2011-04-08 2013-12-04 华为技术有限公司 多波长无源光网络中的波长指示
WO2014008659A1 (zh) * 2012-07-13 2014-01-16 华为技术有限公司 多波长无源光网络的波长协商方法、系统和装置
CN106059704A (zh) * 2012-06-13 2016-10-26 华为技术有限公司 波长配置方法、系统和装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9325697D0 (en) * 1993-12-15 1994-02-16 British Telecomm Communications system
US6970648B2 (en) * 1998-07-22 2005-11-29 Synchrodyne Networks, Inc. Time driven tunable laser based switching with common time reference
IT1316316B1 (it) * 2000-02-01 2003-04-10 Cit Alcatel Metodo di protezione del traffico in reti di trasporto in fibra otticain tecnologia wdm
CN100473053C (zh) * 2005-12-23 2009-03-25 真宽通信技术(苏州)有限公司 以太网无源光网络上行链路数据分组传输的方法
ATE504985T1 (de) * 2006-10-22 2011-04-15 Viasat Inc Zyklisches hindernis-kommunikationssystem
WO2008157645A2 (en) * 2007-06-18 2008-12-24 Infinera Corporation Maintaining correlated virtual data streams through a network
KR100921796B1 (ko) * 2007-12-18 2009-10-15 한국전자통신연구원 수동형 광 가입자 네트워크의 대역폭 할당 방법
JP2009194524A (ja) * 2008-02-13 2009-08-27 Oki Electric Ind Co Ltd 受動光ネットワーク通信システム
US8630546B2 (en) * 2010-11-01 2014-01-14 Calix, Inc. Network interface device synchronization
US8412040B2 (en) * 2011-04-04 2013-04-02 Infinera Corporation Method and apparatus for mapping traffic using virtual concatenation
KR20150008911A (ko) * 2012-05-23 2015-01-23 후아웨이 테크놀러지 컴퍼니 리미티드 다파장 수동 광네트워크에서의 파장 스위칭 방법, 시스템, 및 장치
US9319139B2 (en) * 2013-03-11 2016-04-19 Futurewei Technologies, Inc. Long distance multi-mode communication
CN103313153A (zh) * 2013-06-19 2013-09-18 苏州彩云飞电子有限公司 多波长无源光网络系统
US20150055956A1 (en) * 2013-08-26 2015-02-26 Electronics And Telecommunications Research Institute Passive optical network system using time division multiplexing
CN105228078B (zh) * 2014-05-29 2018-12-14 华为技术有限公司 一种数据传输方法,及基站和用户设备
CN104168100B (zh) * 2014-07-24 2017-07-28 重庆邮电大学 一种时分波分混合复用无源光网络的动态资源调度方法
CN107302412B (zh) * 2016-04-14 2019-12-13 中兴通讯股份有限公司 无源光网络架构及其实现数据传输的方法和光网络设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484898A (zh) * 2000-11-17 2004-03-24 使用可变长度数据包的单点对多点无源光网络
CN102056031A (zh) * 2009-11-10 2011-05-11 华为技术有限公司 传输多路业务的方法和装置
CN103430572A (zh) * 2011-04-08 2013-12-04 华为技术有限公司 多波长无源光网络中的波长指示
CN106059704A (zh) * 2012-06-13 2016-10-26 华为技术有限公司 波长配置方法、系统和装置
WO2014008659A1 (zh) * 2012-07-13 2014-01-16 华为技术有限公司 多波长无源光网络的波长协商方法、系统和装置

Also Published As

Publication number Publication date
CN108063985A (zh) 2018-05-22
US10798472B2 (en) 2020-10-06
CN108063985B (zh) 2020-11-17
US20190313169A1 (en) 2019-10-10

Similar Documents

Publication Publication Date Title
WO2018082461A1 (zh) 一种数据发送、接收方法和装置
US10484098B2 (en) Channel bonding in passive optical networks
US11374674B2 (en) Passive optical network system, optical line terminal, and optical network unit
US8600234B2 (en) Method and apparatus for link sharing among multiple epons
EP2605427B1 (en) Method, system and optical network unit for synchronizing data
US10063335B2 (en) Method, apparatus and system for remotely configuring PTP service of optical network unit
WO2019042475A1 (zh) 数据传输方法及装置
JP4819440B2 (ja) 光スイッチ装置、光アクセスネットワーク、光スイッチ方法およびプログラム
US10461874B2 (en) Optical line terminal efficiently utilizing multilane and passive optical network comprising the optical line terminal
US8041215B2 (en) ONT discovery in a DWDM hybrid PON LT configuration
WO2023246416A1 (zh) 一种数据传输方法及装置
CN107370688B (zh) 数据传输方法及装置
CN112640482B (zh) 无源光网络(pon)中的多速率交织下行帧
CN102056030B (zh) 吉比特无源光网络系统及其数据发送和接收方法
US9258059B2 (en) Non-semaphore linked list management
CN108574530A (zh) 数据发送、接收方法及装置以及多通道epon系统
CN1946242B (zh) 光接入网络中支持tdm业务的方法及装置
US10298725B2 (en) Synchronous digital signal encapsulation
WO2018099053A1 (zh) 光通道传输单元帧的传输方法、装置和计算机存储介质
WO2023201912A1 (zh) 设备的注册方法及装置
WO2017197856A1 (zh) 数据通信方法、装置以及系统
WO2023123654A1 (zh) 数据传输方法、装置、存储介质及电子装置
CN108667542B (zh) 一种实现上行时分复用的方法及装置
Menoutis et al. A configurable transmitter architecture & organization for XG-PON OLT/ONU/ONT network elements
WO2018049613A1 (zh) 数据通信方法、装置以及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17866399

Country of ref document: EP

Kind code of ref document: A1