WO2018082450A1 - 一种传输带宽的配置方法及发射节点 - Google Patents

一种传输带宽的配置方法及发射节点 Download PDF

Info

Publication number
WO2018082450A1
WO2018082450A1 PCT/CN2017/106918 CN2017106918W WO2018082450A1 WO 2018082450 A1 WO2018082450 A1 WO 2018082450A1 CN 2017106918 W CN2017106918 W CN 2017106918W WO 2018082450 A1 WO2018082450 A1 WO 2018082450A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbc
subcarrier
preset
subcarriers
bandwidth
Prior art date
Application number
PCT/CN2017/106918
Other languages
English (en)
French (fr)
Inventor
辛雨
周武斌
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to FIEP17866655.8T priority Critical patent/FI3547751T3/fi
Priority to EP17866655.8A priority patent/EP3547751B1/en
Priority to ES17866655T priority patent/ES2965139T3/es
Priority to EP23171305.8A priority patent/EP4236167A3/en
Priority to CA3056162A priority patent/CA3056162C/en
Publication of WO2018082450A1 publication Critical patent/WO2018082450A1/zh
Priority to US16/399,240 priority patent/US10952214B2/en
Priority to US17/169,170 priority patent/US11558871B2/en
Priority to US18/096,734 priority patent/US11864169B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to transmission technologies in the field of wireless communications, and in particular, to a method for configuring transmission bandwidth and a transmitting node.
  • LTE Long Term Evolution
  • 4G 4th Generation mobile communication technology
  • LTE adopts Orthogonal Frequency Division Multiplexing (OFDM) technology, and time-frequency resources composed of subcarriers and OFDM symbols form a wireless physical time-frequency resource of the LTE system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • time-frequency resources composed of subcarriers and OFDM symbols form a wireless physical time-frequency resource of the LTE system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • time-frequency resources composed of subcarriers and OFDM symbols form a wireless physical time-frequency resource of the LTE system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • time-frequency resources composed of subcarriers and OFDM symbols form a wireless physical time-frequency resource of the LTE system.
  • TBC Transmission Bandwidth Configur
  • the uplink TBC has a maximum ratio of 90% in the channel bandwidth (CB, Channel Bandwidth) of the carrier, and the remaining 10% is the bandwidth occupied by the GB, and the downlink needs to consider an additional DC subcarrier size, and the TBC is in the CB of the carrier.
  • the proportion is up to 90.9%, and the remaining 9.1% is the bandwidth occupied by GB.
  • Embodiments of the present invention provide a method for configuring a transmission bandwidth and a transmitting node.
  • the embodiment of the invention provides a method for configuring a transmission bandwidth, which is applied to a transmitting node, and includes:
  • the TBC When the first CB is greater than the first preset bandwidth, configuring the TBC according to the first transmission bandwidth Setting a predetermined percentage X of the first CB and the first CB, setting a subcarrier in the first TBC, thereby completing a subcarrier configuration in a transmission bandwidth configuration, where the preset percentage X is in [pre In the range of the lower limit value and the preset upper limit value, the preset lower limit value is greater than 90%, and the preset upper limit value is less than 100%.
  • An embodiment of the present invention provides a transmitting node, including:
  • a configuration unit configured to: configure a first channel bandwidth CB of the carrier in the multi-carrier transmission system; and configure, when the first CB is greater than the first preset bandwidth, the TBC to occupy the first CB according to the first transmission bandwidth Presetting the percentage X and the first CB, setting the subcarriers in the first TBC, thereby completing the subcarrier configuration in the transmission bandwidth configuration, wherein the preset percentage X is at the [predetermined lower limit, pre Within the upper limit value range, the preset lower limit value is greater than 90%, and the preset upper limit value is less than 100%.
  • An embodiment of the present invention provides a transmitting node, including: a processor and an executable instruction storage medium storing the processor, when the instruction is executed by the processor, performing the following operations:
  • the processor is configured to configure a first channel bandwidth CB of the carrier; and when the first CB is greater than the first preset bandwidth, configure a TBC to occupy a preset percentage X of the first CB according to the first transmission bandwidth.
  • the first CB sets a subcarrier in the first TBC, thereby completing a subcarrier configuration in a transmission bandwidth configuration, where the preset percentage X is at a [predetermined lower limit value, a preset upper limit value] Within the range, the preset lower limit value is greater than 90%, and the preset upper limit value is less than 100%.
  • the embodiment of the invention provides a method for configuring a transmission bandwidth, which is applied to a transmitting node, and includes:
  • Configuring a plurality of channel bandwidths CB of the carrier configuring a corresponding transmission bandwidth configuration TBC for each of the channel bandwidths CB, wherein the ratio of the transmission bandwidth configuration TBC to the corresponding channel bandwidth CB satisfies the following relationship:
  • an embodiment of the present invention further provides a computer readable storage medium, where a calculation is stored
  • the machine executable instructions that, when executed by a processor, implement any of the methods described above.
  • the embodiment of the present invention provides a method for configuring a transmission bandwidth, and a transmitting node, configured to configure a first channel bandwidth CB of the carrier; when the first CB is greater than the first preset bandwidth, configure the TBC to occupy the first CB according to the first transmission bandwidth.
  • Presetting the percentage X and the first CB setting the subcarriers in the first TBC, thereby completing the subcarrier configuration in the transmission bandwidth configuration, wherein the preset percentage X is in the [preset lower limit, preset upper limit] range
  • the preset lower limit is greater than 90% and the preset upper limit is less than 100%.
  • a transmitting node reduces a bandwidth of a guard band by increasing a bandwidth configured by a transmission bandwidth, so that an out-of-band leakage requirement is met. Under the premise, it can transmit more data in a limited channel bandwidth and increase the peak transmission rate of the system; on the other hand, it can improve the spectrum utilization.
  • FIG. 1 is a flowchart 1 of a method for configuring a transmission bandwidth according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a frequency spectrum of a first CB according to an exemplary method for configuring a transmission bandwidth according to an embodiment of the present disclosure
  • FIG. 3 is a second flowchart of a method for configuring a transmission bandwidth according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart 3 of a method for configuring a transmission bandwidth according to an embodiment of the present invention
  • FIG. 5 is a flowchart 4 of a method for configuring a transmission bandwidth according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram 1 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present disclosure
  • FIG. 7 is a schematic diagram 2 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present disclosure
  • FIG. 8 is a schematic diagram 3 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present disclosure
  • FIG. 9 is a schematic diagram 4 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present disclosure
  • FIG. 10 is a schematic diagram 5 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present invention
  • FIG. 11 is a flowchart 5 of a method for configuring a transmission bandwidth according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram 6 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present disclosure
  • FIG. 13 is a schematic diagram 7 of a first TBC of a method for configuring a transmission bandwidth according to an exemplary embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram 1 of a transmitting node according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram 2 of a transmitting node according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram 3 of a transmitting node according to an embodiment of the present invention.
  • a carrier channel bandwidth greater than 20 MHz was introduced.
  • the carrier channel bandwidth greater than 20 MHz if the proportion of the set TBC in the CB of the carrier remains the same as that in the LTE system, the TCB will increase as the CB of the carrier increases, but at the same time protect The bandwidth occupied by the band is also large.
  • some new multi-carrier data modulation methods are usually used to suppress out-of-band leakage, and the RF devices in 5G technology will adopt more advanced manufacturing processes to meet the out-of-band leakage index. Therefore, when the out-of-band leakage of the multi-carrier system in the 5G wireless communication technology satisfies the out-of-band leakage index value, protection Bandwidth consumption can cause waste of spectrum resources.
  • a method for configuring a transmission bandwidth is provided in the embodiment of the present invention. As shown in FIG. 1 , the method may include:
  • a method for configuring a transmission bandwidth proposed by an embodiment of the present invention is applied to a transmitting node in a multi-carrier system.
  • the channel bandwidth is greater than the preset bandwidth, which is not limited in the embodiment of the present invention.
  • the transmitting node of the multi-carrier system may include: a base station, a terminal, a relay, a transmitting point, and the like, and various transmitting devices.
  • a transmitting node may support transmission of multiple carriers, where the transmitting node may configure a first CB of a carrier, and the first CB is a radio frequency of a carrier supported by the transmitting node.
  • Bandwidth the first CB is one of the channel bandwidths of the at least one carrier, and the channel bandwidth of the at least one carrier is the channel bandwidth of the carrier supported by the transmitting node.
  • a transmission bandwidth configuration process of a current carrier is described.
  • the transmitting node may set the subcarriers in the first TBC according to the preset percentage X of the first CB and the first CB, thereby completing the transmission bandwidth configuration.
  • Subcarrier configuration where the preset percentage X is at [preset lower limit value, preset upper limit value] In the range, the preset lower limit value is greater than 90%, and the preset upper limit value is less than 100%, and X may be determined according to the condition that the out-of-band leakage index is met, where the first TBC is a physical time-frequency resource in the first CB. The total bandwidth in the frequency domain.
  • the preset lower limit value may be 92%, and the preset upper limit value may be 96%.
  • the first preset bandwidth can be 5 MHz or 20 MHz.
  • the preset lower limit value is greater than 90%, and the preset upper limit value is less than 100%, which is not limited in the embodiment of the present invention.
  • the size of the preset broadband is not limited in the embodiment of the present invention, and the preferred values are: As the subcarrier spacing increases, the first predetermined bandwidth also increases.
  • the channel bandwidth (first CB) of the carrier is the radio frequency bandwidth supported by the carrier in the transmitting node in the multi-carrier system, and is usually composed of the transmission bandwidth configuration TBC and the protection band GB, and the channel bandwidth is The center frequency is located in the middle of the channel bandwidth.
  • the transmission bandwidth configuration TBC is the maximum transmission bandwidth that the transmitting node can support within the channel bandwidth of the multi-carrier system.
  • the actual transmission bandwidth TB is the frequency bandwidth at which the transmitting node instantaneously transmits data.
  • the size of the transmission bandwidth may be any value, but the maximum value cannot exceed the transmission bandwidth configuration. Therefore, the transmission bandwidth configuration TBC is greater than or equal to the transmission bandwidth TB.
  • X (f 4 - f 3 ) / (f 2 - f 1 ) * 100%, wherein X has a value range of [92%, 96%].
  • a method for configuring a transmission bandwidth provided by an embodiment of the present invention further includes the following steps after S102: S103-S105.
  • the protection band GB is located outside the transmission bandwidth configuration TBC and contains two parts: as shown in FIG. 2, the protection band on the left side of the transmission bandwidth configuration TBC is called the left protection band; on the right side of the transmission bandwidth configuration TBC The protective tape is called the right guard band.
  • the sum of the left guard band and the right guard band is referred to as a guard band GB.
  • Y [(f 3 -f 1 )+(f 2 -f 4 )]/(f 2 -f 1 )*100%, wherein Y has a value range of [4%, 8%].
  • the transmitting node After the transmitting node determines that the first GB accounts for the percentage Y of the first CB according to the preset percentage X of the first CB, the transmitting node learns that the first GB accounts for the percentage Y of the first CB, and therefore, When the transmitting node acquires the first CB, the transmitting node can calculate the bandwidth occupied by the first GB.
  • S105 Determine, according to the subcarrier configuration in the first TBC and the first GB, a left guard band and a right guard band of the first GB.
  • the transmitting node may determine the bandwidth configuration of the first CB according to the subcarrier configuration in the first TBC, according to the first GB occupying the first CB percentage Y and the first CB, after determining the first GB, Therefore, the first GB may configure the first GB on the left and right sides of the first TBC according to the configuration of the first TB in the first CB, thereby determining the left guard band and the right guard band of the first GB.
  • the left side of the first TBC is filled to the starting frequency of the first CB
  • the right side of the first TBC is filled to the end frequency of the first CB, thereby determining the left guard band and the right guard band of the first GB.
  • the left guard band and the right guard band may be symmetric or asymmetric with respect to a center frequency of the first CB. Whether the left guard band and the right guard band of the first GB are symmetric may be determined according to the time-frequency resource configuration of the first TBC, and the time-frequency resource configuration description of the first TBC in different cases will be described in detail in the following embodiments. .
  • a method for configuring a transmission bandwidth provided by an embodiment of the present invention further includes the following steps after S102: S106.
  • the transmitting node can support multiple CBs in a multi-carrier system.
  • the principle of the configuration process of the second CB is the same as that of the configuration process of the first CB.
  • the second TBC occupies a preset percentage X2 of the second CB that is greater than or equal to a preset percentage X1 of the first CB of the first CB; Or when the second CB is smaller than the first CB, the second TBC occupies a preset percentage X2 of the second CB that is less than or equal to a preset percentage X2 of the first CB. That is, when the channel bandwidth CB of the carrier supported by the transmitting node increases, the ratio X of the transmission bandwidth configuration TBC within the channel bandwidth CB is monotonically increasing.
  • the proportion of the transmission bandwidth configuration TBC1 in the channel bandwidth CB1 is X1
  • the proportion of the transmission bandwidth configuration TBC2 in the channel bandwidth CB2 is X2, which satisfies X1 ⁇ X2.
  • the ratio of the guard band GB1 to the channel bandwidth CB1 is Y1
  • the ratio of the guard band GB2 to the channel bandwidth CB2 is Y2, which satisfies Y2 ⁇ Y1.
  • the second TBC occupies a preset percentage X of the second CB that is greater than or equal to the first TBC occupies a preset percentage X of the first CB.
  • the first CB and the second CB may be in a multi-carrier system, or may be in different multi-carrier systems, and the embodiment of the present invention does not limit this.
  • a transmitting node reduces a bandwidth of a guard band by increasing a bandwidth configured by a transmission bandwidth, so that an out-of-band leakage requirement is met. Under the premise, it can transmit more data in a limited channel bandwidth and increase the peak transmission rate of the system; on the other hand, it can improve the spectrum utilization.
  • the transmission bandwidth configuration method provided by the embodiment of the present invention is compatible with the 15 kHz subcarrier spacing in the original LTE system, and is compatible with other possible subcarrier spacings, and has strong compatibility.
  • the transmitting node sets the first TBC according to the preset percentage X and the first CB of the first CB.
  • the subcarriers in are:
  • the transmitting node knows the percentage X of the first TBC to the first CB. Therefore, when the transmitting node acquires the first CB, the transmitting node can calculate the bandwidth occupied by the first TBC.
  • S203 Determine, according to the first TBC and each subcarrier interval, a maximum number of subcarriers set in the first TBC, where the first TBC is a total bandwidth of each configured subcarrier.
  • the transmitting node After the transmitting node obtains the interval of each subcarrier supported by the transmitting node, the transmitting node determines which one or more subcarriers can be selected for the configuration of the first TBC, and then the transmitting node according to the first TBC and the selected subcarriers Interval, determining the maximum subcarrier set in the first TBC
  • the first TBC is the total bandwidth of each subcarrier configured.
  • the transmitting node may set the first subcarrier according to the number of subcarriers and the number of subcarriers thereof. , complete the configuration of the first TBC.
  • the configuration of the first TBC provided by the embodiment of the present invention is as follows:
  • the maximum number of available subcarriers (the maximum number of subcarriers) configured by the first TBC is i, and consecutive subcarriers are from the left.
  • the number to the right starts from #1 to #i, and all i subcarriers transmit data.
  • time-frequency resources in the first TBC only include one sub-carrier spacing ⁇ f, where ⁇ f may be 15 kHz of the LTE system, and may also be other sub-carrier intervals that may be newly defined.
  • the configuration of the first TBC is as follows:
  • the maximum number of available subcarriers configured by the first TBC is i
  • the number of consecutive subcarriers from left to right is from #1 to #i
  • all i subcarriers transmit data.
  • the time-frequency resource in the first TBC includes multiple sub-carrier spacings ⁇ f, where ⁇ f may be 15 kHz of the LTE system, and may also be other sub-carrier intervals that may be newly defined.
  • the center frequency of the #jth subcarrier may be the center frequency of the channel bandwidth, or may not be aligned with the center frequency of the first CB.
  • All (j-1) subcarriers in the range from #1 to #(j-1) can support one or more subcarrier spacings, also numbered from #(j+1) to all within the #i range ( Ij) subcarriers may support one or more subcarrier spacings, and all i subcarriers support at least two subcarrier spacings.
  • the first TBC is a frequency range from the left edge of the #1th subcarrier to the right edge of the #ith subcarrier, that is, the first Where ⁇ f k is the kth subcarrier spacing.
  • the transmitting node sets the ratio of the first TBC in the first CB within the interval mentioned in the embodiment of the present invention by setting the number i of the largest subcarriers available.
  • the number of subcarriers of different bandwidths and their corresponding subcarriers are configured, if:
  • f 0 -f 3 f 4 -f 0
  • the left and right guard bands of the first GB other than the first TBC are asymmetrical, that is, f 3 -f 1 ⁇ f 2 -f 4 .
  • the proportion of the first TBC in the first CB is up to 90%.
  • the maximum number of subcarriers i that can be set is in the interval (6133, 6400), so that 96MHz ⁇ i * 15 kHz ⁇ 92 MHz, that is, the first TBC is in the first CB.
  • the ratio of the inside is within the interval mentioned in the embodiment of the present invention.
  • the transmission bandwidth configuration method of the multi-carrier system assumes that the number of subcarriers corresponding thereto is b 1 and b 2 .
  • the first TBC is The proportion within the first CB width is within the interval mentioned in the embodiment of the present invention.
  • the left and right side guard bands of the first GB outside the first TBC may be symmetric or asymmetric. of.
  • a transmitting node reduces a bandwidth of a guard band by increasing a bandwidth configured by a transmission bandwidth, so that an out-of-band leakage requirement is met. Under the premise, it can transmit more data in a limited channel bandwidth and increase the peak transmission rate of the system; on the other hand, it can improve the spectrum utilization.
  • the transmission bandwidth configuration method provided by the embodiment of the present invention is compatible with the 15 kHz subcarrier spacing in the original LTE system, and is compatible with other possible subcarrier spacings, and has strong compatibility.
  • the transmitting node sets the first TBC according to the preset percentage X of the first CB and the first CB.
  • the subcarriers are:
  • the transmitting node knows the percentage X of the first TBC to the first CB. Therefore, when the transmitting node acquires the first CB, the transmitting node can calculate the bandwidth occupied by the first TBC.
  • the transmitting node can be configured to determine the spacing of each subcarrier.
  • the DC subcarrier to be configured exists in the first TBC, and the DC subcarrier does not exist. Any data is transmitted, the DC subcarrier is located in the middle of the first CB, and the center frequency of the DC subcarrier is aligned with the center frequency of the first CB.
  • the transmitting node After the transmitting node configures the subcarrier spacing supported by the transmitting node, the transmitting node subtracts the DC subcarrier spacing from the first TBC to obtain the total bandwidth of each subcarrier.
  • S304 Determine, according to the total bandwidth of each subcarrier and each subcarrier interval, the maximum number of subcarriers set in the first TBC.
  • the transmitting node After the transmitting node configures the total bandwidth of each subcarrier supported by the transmitting node, the transmitting node determines which one or more subcarriers can be selected for the first TBC configuration, and then the transmitting node is based on the first TBC and each selected one.
  • the subcarrier spacing determines the maximum number of subcarriers set in the first TBC.
  • the transmitting node may set the first subcarrier according to the number of subcarriers and the number of subcarriers thereof. , complete the configuration of the first TBC.
  • the first TBC is configured with one type of subcarriers in the first TBC
  • the first TBC is configured as follows:
  • a multi-carrier system with a channel bandwidth CB of the transmitting node carrier greater than 20 MHz includes a DC subcarrier, and the DC subcarrier does not transmit any data, and the DC subcarrier is located in the middle of the channel bandwidth, and the center frequency of the DC subcarrier. Aligned with the center frequency of the first CB.
  • the maximum number of available subcarriers configured by the first TBC is i
  • the number of consecutive subcarriers from left to right is from #1.
  • #i the #jth subcarrier and the #(j+1)th subcarrier are adjacent to both sides of the DC subcarrier.
  • the time-frequency resources in the first TBC support only one subcarrier spacing ⁇ f, and the DC subcarrier spacing is ⁇ f DC .
  • ⁇ f and ⁇ f DC may be 15 kHz of the LTE system, and may also be other sub-carrier intervals that may be newly defined.
  • the total bandwidth of all j subcarriers in the range from #1 to #j is not equal to the total bandwidth of all (ij) subcarriers in the range from #(j+1) to #i.
  • f0-f3 ⁇ f4-f0 the left and right guard bands outside the first TBC are asymmetrical, that is, f3-f1 ⁇ f2-f4.
  • the total bandwidth of all j subcarriers in the range from #1 to #j is equal to all (ij) subcarriers in the range from #(j+1) to #i
  • the total bandwidth of all j subcarriers in the range from #1 to #j is not equal to the total of all (ij) subcarriers in the range from #(j+1) to #i.
  • the bandwidth is f0-f3 ⁇ f4-f0, then the left and right guard bands outside the first TBC are asymmetric, that is, f3-f1 ⁇ f2-f4.
  • the configuration of the first TBC is as follows:
  • a multi-carrier system with a first wide CB of the transmitting node carrier greater than 20 MHz includes a DC subcarrier, and the DC subcarrier does not transmit any data, and the DC subcarrier is located in the middle of the channel bandwidth, and the center of the DC subcarrier.
  • the frequency is aligned with the center frequency of the first CB bandwidth.
  • the maximum number of available subcarriers configured by the first TBC is i
  • the number of consecutive subcarriers from left to right is from #1.
  • #i the #jth subcarrier and the #(j+1)th subcarrier are adjacent to both sides of the DC subcarrier.
  • the time-frequency resources in the first TBC support multiple subcarrier spacings ⁇ f, and the DC subcarrier spacing is ⁇ f DC .
  • ⁇ f and ⁇ f DC may be 15 kHz of the LTE system, and may also be other sub-carrier intervals that may be newly defined.
  • the first TBC is a frequency range from the left edge of the #1th subcarrier to the right edge of the #ith subcarrier, and includes a DC subcarrier, that is, the first Where ⁇ f k is the kth subcarrier spacing.
  • the proportion of the first TBC in the first CB width is within the interval mentioned in the embodiment of the present invention.
  • All j subcarriers in the range from #1 to #j can support one or more subcarrier spacings, and all (ij) subcarriers in the range from #(j+1) to #i can also support one.
  • One or more subcarrier spacings, and all i subcarriers support at least two subcarrier spacings.
  • the total bandwidth of all j subcarriers in the range from #1 to #j is equal to all (ij) in the range from #(j+1) to #i
  • the total bandwidth of all j subcarriers in the range from #1 to #j is not equal to all numbers in the range from #(j+1) to #i (ij
  • the total bandwidth of the subcarriers, then the left and right guard bands outside the first TBC are asymmetric, ie f 3 -f 1 ⁇ f 2 -f 4 .
  • a transmitting node reduces a bandwidth of a guard band by increasing a bandwidth configured by a transmission bandwidth, so that an out-of-band leakage requirement is met. Under the premise, it can transmit more data in a limited channel bandwidth and increase the peak rate of the system; on the other hand, it can improve the spectrum utilization.
  • the transmission bandwidth configuration method provided by the embodiment of the present invention is compatible with the 15 kHz subcarrier spacing in the original LTE system, and is compatible with other possible subcarrier spacings, and has strong compatibility.
  • an embodiment of the present invention provides a transmitting node 1, which may include:
  • the configuration unit 10 is configured to: configure a first CB of the carrier in the multi-carrier transmission system; and set a preset percentage of the first CB according to the first TBC when the first CB is greater than the first preset bandwidth And the first CB, setting a subcarrier in the first TBC, thereby completing a subcarrier configuration in a transmission bandwidth configuration, where the preset percentage X is at a [predetermined lower limit value, a preset upper limit value In the range, the preset lower limit value is greater than 90%, and the preset upper limit value is less than 100%.
  • the transmitting node may further include: a determining unit 11.
  • the determining unit 11 is configured to determine, according to the first TBC, the preset percentage X of the first CB and the first CB, when the DC subcarrier to be configured is not present in the first TBC, Said the first TBC.
  • the configuration unit 10 is configured to configure each subcarrier spacing supported by the transmitting node, the subcarriers characterizing available subcarriers.
  • the determining unit 11 is further configured to determine, according to the first TBC and the subcarrier spacing, a maximum number of subcarriers set in the first TBC, where the first TBC is the configured subcarriers Total bandwidth.
  • the configuration unit 10 is further configured to perform configuration of the first TBC according to the maximum number of subcarriers.
  • the transmitting node may further include: a determining unit 11.
  • the determining unit 11 is configured to determine, according to the preset percentage X of the first CB and the first CB, that the first TBC accounts for the DC C carrier to be configured in the first TBC, First TBC.
  • the configuration unit 10 is configured to acquire each subcarrier spacing supported by the transmitting node and the DC subcarrier spacing, and the subcarriers represent available subcarriers.
  • the determining unit 11 is further configured to determine a total bandwidth of each subcarrier according to the first TBC and the DC subcarrier spacing; and according to the total bandwidth of each subcarrier and the interval of each subcarrier, The maximum number of subcarriers set in the first TBC is determined.
  • the configuration unit 10 is further configured to perform the configuration of the first TBC according to the maximum number of subcarriers and the DC subcarrier, where a center frequency of the DC subcarrier is consistent with a center frequency of the first CB .
  • the transmitting node may further include: a determining unit 11.
  • the determining unit 11 is configured to acquire the first CB of the carrier, determining, according to the preset percentage X of the first CB, the first GB accounts for a percentage Y of the first CB; Describe the first GB as a percentage Y of the first CB and the first CB, determining the location Said the first GB.
  • the determining unit 11 may be further configured to: after the first TBC occupies a preset percentage X of the first CB and the first CB, after setting the subcarriers in the first TBC, Determining a left guard band and a right guard band of the first GB according to the subcarrier configuration in the first TBC and the first GB.
  • the left guard band and the right guard band may be symmetric or asymmetric with respect to a center frequency of the first CB.
  • the configuration unit 10 may be further configured to set a subcarrier in the first TBC according to a preset percentage X1 of the first CB and the first CB according to a first TBC; Configuring a second CB and a corresponding transmission bandwidth configuration TBC to occupy a preset percentage X2 of the second CB, and setting a subcarrier in the second TBC, where the first CB and the second CB are different from a transmitting node Channel bandwidth configuration.
  • the preset percentage X of the second TBC to the second CB may be greater than or equal to the first TBC.
  • the first CB may be a radio frequency bandwidth of a carrier supported by the transmitting node, and the first CB may be one used in a channel bandwidth of the at least one carrier, the at least one The channel bandwidth of the carrier may be the channel bandwidth of the carrier supported by the transmitting node.
  • the first TBC is a total bandwidth of a physical time-frequency resource in a frequency domain in the first CB, or the first TBC is a frequency between two edge-most available subcarriers allocated in the first CB. range.
  • the preset lower limit value may be 92%, and the preset upper limit value may be 96%, wherein X is determined according to the condition that the out-of-band leakage index is met.
  • the processor 12 is implemented on the transmitting node, for example, by a central processing unit (CPU), a microprocessor (MPU), a digital signal processor (DSP), or a field programmable gate array (FPGA).
  • the transmitting node further includes a storage medium 13 connectable to the processor 12 via a system bus 14, wherein the storage medium 13 is for storing executable program code, the program code comprising computer operating instructions, and the storage medium 13 may comprise a high speed RAM memory, It is also possible to include a non-volatile memory, such as at least one disk storage.
  • the transmitting node of the multi-carrier system may include: a base station, a terminal, a relay, a transmitting point, and the like, and various transmitting devices.
  • the transmitting node includes: a processor and a storage medium storing the processor executable instructions, and when the instruction is executed by the processor, performing the following operations:
  • the processor is configured to configure a first channel bandwidth CB of the carrier; and when the first CB is greater than the first preset bandwidth, configure a TBC to occupy a preset percentage X of the first CB according to the first transmission bandwidth.
  • a first CB setting a subcarrier in the first TBC, thereby completing a subcarrier configuration in a transmission bandwidth configuration, wherein the preset percentage X is in a [preset lower limit, preset upper limit] range
  • the predetermined lower limit value is greater than 90%, and the preset upper limit value is less than 100%, and X is determined when the out-of-band leakage index is met.
  • the processor may be further configured to: when the DC subcarrier to be configured does not exist in the first TBC, according to the preset percentage X of the first CB according to the first TBC Determining, by the first CB, the first TBC; and configuring each subcarrier spacing supported by the transmitting node, the subcarriers characterizing available subcarriers; and then spacing according to the first TBC and the subcarriers Determining a maximum number of subcarriers set in the first TBC, the first TBC being a total bandwidth of the configured subcarriers, and configuring the first TBC according to the maximum number of subcarriers.
  • the processor may be further configured to exist in the first TBC. Determining, according to the preset percentage X of the first CB and the first CB, the first TBC; and configuring each subcarrier supported by the transmitting node, according to the DC subcarrier to be configured.
  • the subcarriers characterizing available subcarriers; and then determining a total bandwidth of the subcarriers according to the first TBC and the DC subcarrier spacing; and according to the sub Determining a maximum number of subcarriers set in the first TBC according to a total bandwidth of the carrier and the interval of the subcarriers; and performing configuration of the first TBC according to the maximum number of subcarriers and the DC subcarrier,
  • the center frequency of the DC subcarrier is consistent with the center frequency of the first CB.
  • the processor may be further configured to determine, after the first channel bandwidth CB of the carrier is configured, the first protection band GB according to the preset percentage X of the first CB to the first CB. a percentage Y of the first CB; and determining the first GB according to the first GB accounting for a percentage Y of the first CB and the first CB.
  • the processor may be further configured to: configure a TBC to occupy a preset percentage X of the first CB and the first CB according to the first transmission bandwidth, and set a subcarrier in the first TBC. Then, determining a left guard band and a right guard band of the first GB according to the subcarrier configuration in the first TBC and the first GB.
  • the left guard band and the right guard band may be symmetric or asymmetric with respect to a center frequency of the first CB.
  • the processor may be further configured to configure a TBC to occupy a preset percentage X1 of the first CB and the first CB according to a first transmission bandwidth, and set a subcarrier in the first TBC. And configuring the second CB and the corresponding transmission bandwidth configuration TBC to occupy a preset percentage X2 of the second CB, setting a subcarrier in the second TBC, where the first CB and the second CB are transmitting nodes Different channel bandwidth configurations.
  • the preset percentage X of the second TBC to the second CB may be greater than or equal to the first TBC.
  • the first CB may be a radio frequency bandwidth of a carrier supported by the transmitting node, and the first CB may be one used in a channel bandwidth of the at least one carrier, the at least one The channel bandwidth of the carrier may be the channel bandwidth of the carrier supported by the transmitting node.
  • the first TBC is a total bandwidth of a physical time-frequency resource in a frequency domain in the first CB, or the first TBC is a frequency between two edge-most available subcarriers allocated in the first CB. range.
  • the preset lower limit value may be 92%, and the preset upper limit value may be 96%, wherein X is determined according to the condition that the out-of-band leakage index is met.
  • embodiments of the present invention also provide a computer readable storage medium having stored thereon computer executable instructions that, when executed by a processor, implement any of the methods described above.
  • a transmitting node reduces a bandwidth of a guard band by increasing a bandwidth configured by a transmission bandwidth, so that an out-of-band leakage requirement is met. Under the premise, it can transmit more data in a limited channel bandwidth and increase the peak transmission rate of the system; on the other hand, it can improve the spectrum utilization.
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .
  • the embodiment of the present invention provides a method for configuring a transmission bandwidth, and a transmitting node, configured to configure a first channel bandwidth CB of the carrier; when the first CB is greater than the first preset bandwidth, configure the TBC to occupy the first CB according to the first transmission bandwidth.
  • Presetting the percentage X and the first CB setting the subcarriers in the first TBC, thereby completing the subcarrier configuration in the transmission bandwidth configuration, wherein the preset percentage X is in the [preset lower limit, preset upper limit] range
  • the preset lower limit is greater than 90% and the preset upper limit is less than 100%.
  • a transmitting node reduces a bandwidth of a guard band by increasing a bandwidth configured by a transmission bandwidth, so that an out-of-band leakage requirement is met. Under the premise, it can transmit more data in a limited channel bandwidth and increase the peak transmission rate of the system; on the other hand, it can improve the spectrum utilization. Therefore, the present invention has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种传输带宽的配置方法,该方法包括:配置载波的第一信道带宽CB;当第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占第一CB的预设百分比X和第一CB,设置第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,预设百分比X在[预设下限值,预设上限值]范围内,预设下限值大于90%,预设上限值小于100%。同时还公开了一种发射节点。

Description

一种传输带宽的配置方法及发射节点 技术领域
本公开涉及无线通信领域中的传输技术,尤其涉及一种传输带宽的配置方法及发射节点。
背景技术
长期演进技术(LTE,Long Term Evolution)是第四代移动通信技术(4G,the 4th Generation mobile communication technology)的无线蜂窝通信技术。LTE采用正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)技术,子载波和OFDM符号构成的时频资源组成LTE系统的无线物理时频资源。目前LTE支持六种载波的信道带宽,即1.4MHz,3MHz,5MHz,10MHz,15MHz和20MHz。在多载波系统中,载波的信道带宽通常由传输带宽配置(TBC,Transmission Bandwidth Configuration)和保护带(GB,Guard Band)组成。上行TBC在载波的信道带宽(CB,Channel Bandwidth)内的占比最大为90%,其余的10%为GB占用的带宽,而下行需要额外考虑一个直流子载波大小,其TBC在载波的CB中的占比最大为90.9%,其余的9.1%为GB占用的带宽。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种传输带宽的配置方法及发射节点。
本发明实施例的方案是这样实现的:
本发明实施例提供了一种传输带宽的配置方法,应用于发射节点,包括:
配置载波的第一信道带宽CB;
当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占 所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%。
本发明实施例提供了一种发射节点,包括:
配置单元,设置为在多载波传输系统中,配置载波的第一信道带宽CB;以及当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%。
本发明实施例提供了一种发射节点,包括:处理器以及存储有所述处理器可执行指令存储介质,当所述指令被处理器执行时,执行如下操作:
所述处理器,设置为配置载波的第一信道带宽CB;以及当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%。
本发明实施例提供了一种传输带宽的配置方法,应用于发射节点,包括:
配置载波的多种信道带宽CB;为所述的每种信道带宽CB配置对应的传输带宽配置TBC,所述传输带宽配置TBC占所述对应的信道带宽CB的占比X满足如下关系:
当所述信道带宽CB增加时,传输带宽配置在信道带宽内的占比X单调递增。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算 机可执行指令,所述计算机可执行指令被处理器执行时实现任一以上描述过的方法。
保护带占用较大的带宽会造成频谱资源浪费。本发明实施例提供了一种传输带宽的配置方法及发射节点,配置载波的第一信道带宽CB;当第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占第一CB的预设百分比X和第一CB,设置第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,预设百分比X在[预设下限值,预设上限值]范围内,预设下限值大于90%,预设上限值小于100%。采用上述技术实现方案,本发明实施例提供的一种传输带宽的配置方法中,发射节点通过提高传输带宽配置的带宽大小,以此来减小保护带的带宽大小,这样在满足带外泄漏要求的前提下,既能在有限的信道带宽内,发送更多的数据量,提升系统峰值传输速率;另一方面又能提高频谱的利用率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1为本发明实施例提供的一种传输带宽的配置方法的流程图一;
图2为本发明实施例提供的示例性的一种传输带宽的配置方法的第一CB的频谱示意图;
图3为本发明实施例提供的一种传输带宽的配置方法的流程图二;
图4为本发明实施例提供的一种传输带宽的配置方法的流程图三;
图5为本发明实施例提供的一种传输带宽的配置方法的流程图四;
图6为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图一;
图7为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图二;
图8为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图三;
图9为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图四;
图10为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图五;
图11为本发明实施例提供的一种传输带宽的配置方法的流程图五;
图12为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图六;
图13为本发明实施例提供的示例性的一种传输带宽的配置方法的第一TBC的频谱示意图七;
图14为本发明实施例提供的一种发射节点的结构示意图一;
图15为本发明实施例提供的一种发射节点的结构示意图二;
图16为本发明实施例提供的一种发射节点的结构示意图三。
具体实施方式
在第五代移动通信技术(5G,the Fifth Generation mobile communication technology Generation)的研究过程中,引入了大于20MHz的载波信道带宽。而对于大于20MHz的载波信道带宽,如果设置的TBC在载波的CB内的占比保持和LTE系统中的占比一致,那么虽然TCB会随着载波的CB的增大而增大,但同时保护带所占用的带宽也很大。而由于在5G无线通信技术中,通常会采用一些新型的多载波数据调制方法来抑制带外泄漏,并且5G技术中的射频器件将会采用更为先进的制造工艺来满足带外泄漏指标。因此,当5G无线通信技术中的多载波系统的带外泄漏满足带外泄漏指标值时,保护 带占用较大的带宽会造成频谱资源浪费。
下面将结合本发明实施例中的附图,对本发明实施例中的方案进行清楚、完整地描述。
示例一
本发明实施例提供的一种传输带宽的配置方法,如图1所示,该方法可以包括:
S101、配置载波的第一CB。
S102、当第一CB大于第一预设带宽时,根据第一TBC占第一CB的预设百分比X1和第一CB,设置该第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,该预设百分比X1在[预设下限值,预设上限值]范围内,该预设下限值大于90%,该预设上限值小于100%,X是在满足带外泄露指标时确定的。
本发明实施例提出的一种传输带宽的配置方法,应用于多载波系统中的发射节点。主要用于比较大的信道带宽的情况下,例如,当信道带宽大于20MHz时,信道带宽大于预设带宽即可,本发明实施例不作限制。
在本发明实施例中,多载波系统的发射节点可以包括:基站、终端、中继(relay)、发射点(transmitting point)等等各种发射设备。
在本发明实施例中,在多载波传输系统中,发射节点可以支持多种载波的传输,在这里,该发射节点可以配置载波的第一CB,该第一CB为发射节点支持的载波的射频带宽,该第一CB为至少一个载波的信道带宽中正在使用的一个,该至少一个载波的信道带宽为发射节点支持的载波的信道带宽。在本发明实施例是以一个当前载波的传输带宽配置过程进行说明的。当第一CB大于第一预设带宽时,发射节点可以根据第一TBC占第一CB的预设百分比X和第一CB,设置该第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,该预设百分比X在[预设下限值,预设上限值] 范围内,该预设下限值大于90%,该预设上限值小于100%,X可根据满足带外泄露指标条件时确定,该第一TBC为在该第一CB内物理时频资源在频域内的总带宽。
在本发明实施例中,预设下限值可以为92%,预设上限值可以为96%。第一预设带宽可以为5MHz或20MHz。该预设下限值大于90%,该预设上限值小于100%即可,本发明实施例中不作限制,同时,预设宽带的大小本发明实施例也不作限制,其优选值为:当子载波间隔增大,第一预设带宽也增大。
对于本发明实施例中的多载波系统,载波的信道带宽(第一CB)为多载波系统中的发射节点中载波支持的射频带宽,通常由传输带宽配置TBC和保护带GB组成,信道带宽的中心频率位于信道带宽的中间位置。在本发明实施例中,传输带宽配置TBC为在多载波系统的信道带宽内,发射节点能支持的最大传输带宽。实际的传输带宽TB为发射节点瞬时传输数据的频率带宽,传输带宽的大小可以为任意值,但最大值不能超过传输带宽配置。因此,传输带宽配置TBC大于或等于传输带宽TB。
示例性的,如图2所示,这些频率的关系为:f2>f4>f0>f3>f1,第一CB=f2-f1,第一CB的中心频率f0=(f2+f1)/2,设置的第一TBC=f4-f3,因此,第一TBC也定义为,在第一CB内分配的两边最边缘可用子载波之间的频率范围。
当多载波系统中的发射节点载波的信道带宽第一CB大于20MHz时,传输带宽配置第一TBC在第一CB内的占比X=TBC/CB*100%,其X在[92%,96%]范围内,即:
X=(f4-f3)/(f2-f1)*100%,其中,X的取值范围为[92%,96%]。
示例性的,如图3所示,本发明实施例提供的一种传输带宽的配置方法在S102之后还包括以下步骤:S103-S105。
S103、根据第一TBC占第一CB的预设百分比X,确定第一GB占第一CB的百分比Y。
第一CB是由第一TBC和第一GB组成的,因此,第一TBC占第一CB的预设百分比X和第一GB占第一CB的百分比Y。即X和Y的关系为:Y=1-X。
在多载波系统中,保护带GB位于传输带宽配置TBC之外,包含两部分:如图2所示,在传输带宽配置TBC左边的保护带称之为左保护带;在传输带宽配置TBC右边的保护带称之为右保护带。在本实施例中,左保护带和右保护带之和称为保护带GB。
示例性的,如图2所示,左保护带带宽=f3-f1,右保护带带宽=f2-f4。第一GB在第一CB内的占比Y=GB/CB*100%=Y=1-X,因此,Y在[4%,8%]范围内。用公式表述为:
Y=[(f3-f1)+(f2-f4)]/(f2-f1)*100%,其中,Y的取值范围为[4%,8%]。
S104、根据第一GB占第一CB的百分比Y和第一CB,确定该第一GB。
发射节点在根据第一TBC占第一CB的预设百分比X,确定第一GB占第一CB的百分比Y之后,该发射节点获知了第一GB占第一CB的百分比Y,因此,在该发射节点获取了第一CB时,该发射节点就可以计算出第一GB占用的带宽了。
S105、根据第一TBC的中的子载波配置和第一GB,确定该第一GB的左保护带和右保护带。
发射节点根据第一GB占第一CB的百分比Y和第一CB,确定该第一GB之后,该发射节点可以根据第一TBC的中的子载波配置已经确定了第一CB的带宽配置了,因此,第一GB可以根据第一TBC在第一CB的配置,在第一TBC的左右两边配置第一GB,从而确定该第一GB的左保护带和右保护带。在第一CB中,在第一TBC的左边填满至第一CB的起始频率,在 该第一TBC的右边填满至第一CB的结束频率,从而确定该第一GB的左保护带和右保护带。
在本发明实施例中,左保护带和右保护带相对于第一CB的中心频率可以对称或不对称。第一GB的左保护带和右保护带是否对称可以根据第一TBC的时频资源配置来决定,不同情况下的第一TBC的时频资源配置说明将在后续的实施例中进行详细地说明。
示例性的,如图4所示,本发明实施例提供的一种传输带宽的配置方法在S102之后还包括以下步骤:S106。
S106、配置第二CB及对应的传输带宽配置TBC占所述第二CB的预设百分比X2,所述第一CB和所述第二CB为发射节点的不同的信道带宽配置。
该发射节点在多载波系统中可以支持多种CB。第二CB的配置过程的原理与第一CB的配置过程时一样的。
发射节点可以支持多种信道带宽的时候,当第二CB大于第一CB时,该第二TBC占第二CB的预设百分比X2大于或等于第一TBC占第一CB的预设百分比X1;或者当第二CB小于第一CB时,该第二TBC占第二CB的预设百分比X2小于或等于第一TBC占第一CB的预设百分比X2。也就是说,当发射节点支持的载波的信道带宽CB增加时,传输带宽配置TBC在信道带宽CB内的占比X是单调递增。假设信道带宽CB1大于信道带宽CB2,传输带宽配置TBC1在信道带宽CB1的占比为X1,传输带宽配置TBC2在信道带宽CB2的占比为X2,满足X1≥X2。保护带GB1在信道带宽CB1的占比为Y1,保护带GB2在信道带宽CB2的占比为Y2,满足Y2≥Y1。而当第二CB小于第一CB时,该第二TBC占第二CB的预设百分比X2小于或等于第一TBC占第一CB的预设百分比X2。
在本发明实施例中,当第二CB大于第一CB时,该第二TBC占第二CB的预设百分比X大于或等于第一TBC占第一CB的预设百分比X的情 况下,第一CB和第二CB可以在一个多载波系统中,也可以在不同的多载波系统中,本发明实施例对此不作限制。
可以理解的是,本发明实施例提供的一种传输带宽的配置方法中,发射节点通过提高传输带宽配置的带宽大小,以此来减小保护带的带宽大小,这样在满足带外泄漏要求的前提下,既能在有限的信道带宽内,发送更多的数据量,提升系统峰值传输速率;另一方面又能提高频谱的利用率。
通过本发明实施例提供的传输带宽的配置方法,既能兼容原有的LTE系统中的15kHz的子载波间隔,又能兼容其他可能的子载波间隔,兼容性强。
示例二
基于示例一,当第一TBC中未存在待配置的直流子载波时,如图5所示,发射节点根据第一TBC占第一CB的预设百分比X和第一CB,设置该第一TBC中的子载波为:
S201、根据第一TBC占第一CB的预设百分比X和第一CB,确定该第一TBC。
发射节点获知了第一TBC占第一CB的百分比X,因此,在该发射节点获取了第一CB时,该发射节点就可以计算出第一TBC占用的带宽了。
S202、配置发射节点支持的各子载波间隔,该各子载波表征可用子载波。
发射节点在多载波系统中可以支持的多种子载波,因此,该发射节点可以配置确定各子载波间隔。
S203、根据第一TBC和各子载波间隔,确定在该第一TBC中设置的最大子载波数,该第一TBC为配置的各子载波的总带宽。
发射节点获取发射节点支持的各子载波间隔之后,该发射节点确定可以选用哪种或哪几种子载波进行第一TBC的配置,然后,该发射节点就根据第一TBC和选用的各子载波间隔,确定在该第一TBC中设置的最大子载波 数,该第一TBC为配置的各子载波的总带宽。
S204、根据最大子载波数进行第一TBC的配置。
发射节点根据第一TBC和各子载波间隔,确定在该第一TBC中设置的最大子载波数之后,该发射节点可以根据各种子载波以及其子载波的个数在第一TBC上进行设置,完成该第一TBC的配置。
当第一TBC中未存在待配置的直流子载波时,第一TBC配置一种子载波的情况时,本发明实施例提供的第一TBC的配置如下:
在本发明实施例中,对于由多个连续的子载波组成的多载波系统,假设第一TBC所配置的可用的最大子载波个数(最大子载波数)为i,连续的子载波从左到右的编号从#1开始到#i,并且所有i个子载波都传输数据。
假设在第一TBC内的时频资源只包含一种子载波间隔Δf,其中Δf可以为LTE系统的15kHz,也可以为其他可能新定义的子载波间隔。
在本实施例中,第一TBC为第一CB内物理时频资源在频域内的总带宽,或为在第一CB内分配的两边最边缘可用子载波之间的频率范围,即第一TBC=i×Δf,或第一
Figure PCTCN2017106918-appb-000001
在满足带外泄漏指标的前提下,通过设置可用的最大子载波的数量i,使得第一TBC在第一CB内的占比在本发明实施例中提到的区间内。
对于第一TBC之外的两边的保护带(第一GB):
如图6所示,当j=(i+1)/2(i为奇数)且第#j个子载波的中心频率和信道带宽的中心频率对齐时。编号从#1到#(j-1)范围内的所有(j-1)个子载波的总带宽等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,则有f0-f3=f4-f0,那么第一TBC之外的两边保护带对称,即f3-f1=f2-f4。对于j取其他任意整数或第#j个子载波的中心频率和第一CB的中心频率不对齐时,如图7所示,编号从#1到#(j-1)范围内的所有j-1个子载波的总带宽都不等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽, 则有f0-f3≠f4-f0,那么第一TBC之外的两边保护带不对称,即f3-f1≠f2-f4。
如图8所示,当j=i/2(i为偶数)且第#j个子载波和第#(j+1)个子载波紧邻信道带宽的中心频率的两边时。编号从#1到#j范围内的所有j个子载波的总带宽等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,则有f0-f3=f4-f0,那么第一TBC之外的两边保护带对称,即f3-f1=f2-f4。对于j取其他任意整数或第#j个子载波和第#(j+1)个子载波不紧邻信道带宽的中心频率的两边时,如图9所示,编号从#1到#j范围内的所有j个子载波的总带宽都不等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,则有f0-f3≠f4-f0,则第一TBC之外的两边保护带不对称,即f3-f1≠f2-f4
当第一TBC中未存在待配置的直流子载波时,第一TBC配置多种子载波的情况时,本发明实施例提供的第一TBC的配置如下:
本实施例中,对于由多个连续的子载波组成的多载波系统,第一TBC所配置的可用的最大子载波个数为i,连续的子载波从左到右的编号从#1开始到#i,并且所有i个子载波都传输数据。
如图10所示,假设在第一TBC内的时频资源包含多种子载波间隔Δf,其中Δf可以为LTE系统的15kHz,也可以为其他可能新定义的子载波间隔。第#j个子载波的中心频率可以和信道带宽的中心频率,也可以和第一CB的中心频率不对齐。编号从#1到#(j-1)范围内的所有(j-1)个子载波,可以支持一种或多种子载波间隔,同样编号从#(j+1)到#i范围内的所有(i-j)个子载波,可以支持一种或多种子载波间隔,且所有i个子载波至少支持两种子载波间隔。
在本实施例中,第一TBC为第#1个子载波的左边缘到第#i个子载波的右边缘的频率范围,即第一
Figure PCTCN2017106918-appb-000002
其中Δfk为第k个子载波间隔。在满足带外泄漏指标的前提下,发射节点通过设置可用的最大子载波的数量i,使得第一TBC在第一CB内的占比在本发明实施例中提到的区间内。
对于第一TBC之外的第一GB的左右保护带,通过配置不同带宽的子载波及其对应的子载波个数,如果满足:
1、f0-f3=f4-f0,那么第一TBC之外的第一GB的左右保护带对称,即f3-f1=f2-f4
2、f0-f3≠f4-f0,那么第一TBC之外的第一GB的左右保护带不对称,即f3-f1≠f2-f4
下面通过实验进行本发明实施例的详细说明。
传统LTE多载波系统,以LTE上行为例,LTE上行配置中没有直流子载波,第一TBC在第一CB里的占比最大为90%。以LTE系统支持的最大20MHz信道带宽为例,支持最大的子载波数量i=1200个,且每个子载波间隔Δf均相等,即Δf=15kHz。那么第一TBC=i*Δf=18MHz,并且第一TBC之外的第一GB的左右两边保护带是对称的,各为1MHz,满足LTE协议中的带外泄漏指标值。
在5G技术之一的毫米波通信的研究过程中,将引入了大于20MHz的载波信道带宽,并且支持其他可能新定义的子载波间隔。假设5G多载波系统的发射节点载波的信道带宽CB=100MHz,如果按照传统LTE多载波系统的传输带宽配置方法,传输带宽配置TBC=90MHz。而采用本发明实施例中的传输带宽配置方法,X的取值范围为[92%,96%],则第一TBC的取值范围为[92MHz,96MHz]。那么:
1、当多载波系统只支持一种子载波间隔,且子载波间隔Δf等于LTE的子载波间隔时,即Δf=15kHz时。
a)按照传统LTE多载波系统的传输带宽配置方法,在100MHz的信道带宽内,支持的最大子载波个数i=90MHz/Δf=6000,且传输带宽配置之外的两边保护带是对称的;
b)采用本发明实施例中的多载波系统的传输带宽配置方法,在100MHz 的信道带宽内,在满足带外泄漏指标的前提下,可以设置的最大子载波个数i在区间(6133,6400]内,使得96MHz≥i*15kHz≥92MHz,即第一TBC在第一CB内的占比在本发明实施例中提到的区间内。同时,通过设置所有i个子载波在信道带宽内的放置位置,使得第一TBC之外的第一GB的左右两边保护带可以是对称的,也可以是不对称的。
2、当系统只支持一种子载波间隔,且Δf等于其他可能新定义的子载波间隔时,比如Δf=30kHz时。
a)按照传统LTE多载波系统的传输带宽配置方法,在100MHz的信道带宽内,支持的最大子载波个数i=90MHz/Δf=3000,且第一GB的左右两边保护带是对称的;
b)采用本发明实施例的多载波系统的传输带宽配置方法,在100MHz的信道带宽内,在满足带外泄漏指标的前提下,可以设置的最大子载波个数i在区间(3066,3200]内,使得96MHz≥i*30kHz≥92MHz,即第一TBC在第一CB内的占比在本发明实施例中提到的区间内。同时,通过设置所有i个子载波在第一CB内的放置位置,使得第一TBC之外的第一GB的左右两边保护带可以是对称的,也可以是不对称的。
3、当系统支持多种子载波间隔,比如支持两种子载波间隔,Δf1=15kHz,Δf2=30kHz。
a)按照传统LTE多载波系统的传输带宽配置方法,假设与之对应的子载波个数为a1和a2。在100MHz的信道带宽内,有a1*15kHz+a2*30kHz=90MHz,且第一TBC之外的第一GB的左右两边保护带是对称的;
b)采用本发明实施例的多载波系统的传输带宽配置方法,假设与之对应的子载波个数为b1和b2。在100MHz的信道带宽内,在满足带外泄漏指标的前提下,通过设置不同子载波间隔对应的子载波个数,使得 96MHz≥b1*15kHz+b2*30kHz≥92MHz,即第一TBC在第一CB宽内的占比在本发明实施例中提到的区间内。同时,通过设置不同的b1和b2及所有子载波在第一CB宽内的放置位置,使得第一TBC之外的第一GB的左右两边保护带可以是对称的,也可以是不对称的。
可以理解的是,本发明实施例提供的一种传输带宽的配置方法中,发射节点通过提高传输带宽配置的带宽大小,以此来减小保护带的带宽大小,这样在满足带外泄漏要求的前提下,既能在有限的信道带宽内,发送更多的数据量,提升系统峰值传输速率;另一方面又能提高频谱的利用率。
通过本发明实施例提供的传输带宽的配置方法,既能兼容原有的LTE系统中的15kHz的子载波间隔,又能兼容其他可能的子载波间隔,兼容性强。
示例三
基于示例一,当第一TBC中存在待配置的直流子载波时,如图11所示,发射节点根据第一TBC占第一CB的预设百分比X和第一CB,设置该第一TBC中的子载波为:
S301、根据第一TBC占第一CB的预设百分比X和第一CB,确定该第一TBC。
发射节点获知了第一TBC占第一CB的百分比X,因此,在该发射节点获取了第一CB时,该发射节点就可以计算出第一TBC占用的带宽了。
S302、配置发射节点支持的各子载波间隔和直流子载波间隔,该各子载波表征可用子载波。
发射节点在多载波系统中可以支持的多种子载波,因此,该发射节点可以配置确定各子载波间隔,本发明实施例中,第一TBC中存在待配置的直流子载波,该直流子载波不发送任何数据,直流子载波位于第一CB的中间,直流子载波的中心频率和第一CB的中心频率对齐。
S303、根据第一TBC和直流子载波间隔,确定各子载波的总带宽。
发射节点配置发射节点支持的各子载波间隔之后,该发射节点将第一TBC减去直流子载波间隔得到各子载波的总带宽。
S304、根据各子载波的总带宽和各子载波间隔,确定在第一TBC中设置的最大子载波数。
发射节点配置发射节点支持的各子载波的总带宽之后,该发射节点确定可以选用哪种或哪几种子载波进行第一TBC的配置,然后,该发射节点就根据第一TBC和选用的各子载波间隔,确定在该第一TBC中设置的最大子载波数。
S305、根据最大子载波数和直流子载波进行第一TBC的配置,其中,该直流子载波的中心频率与第一CB的中心频率一致。
发射节点根据第一TBC和各子载波间隔,确定在该第一TBC中设置的最大子载波数之后,该发射节点可以根据各种子载波以及其子载波的个数在第一TBC上进行设置,完成该第一TBC的配置。
当第一TBC中存在待配置的直流子载波时,第一TBC配置一种子载波的情况时,本发明实施例提供的第一TBC的配置如下:
本实施例中,假设发射节点载波的信道带宽CB大于20MHz的多载波系统中包含直流子载波,并且该直流子载波不发送任何数据,直流子载波位于信道带宽的中间,直流子载波的中心频率和第一CB的中心频率对齐。
如图12所示,对于由多个连续的子载波组成的多载波系统,第一TBC所配置的可用的最大子载波个数为i,连续的子载波从左到右的编号从#1开始到#i。第#j个子载波和第#(j+1)个子载波紧邻直流子载波的两边。
假设在第一TBC内的时频资源只支持一种子载波间隔Δf,且直流子载波间隔为ΔfDC。其中Δf和ΔfDC可以为LTE系统的15kHz,也可以为其他可能新定义的子载波间隔。
在本实施例中,第一TBC为第#1个子载波的左边缘到第#i个子载波的右边缘的频率范围,包含了直流子载波,即第一TBC=i×Δf+ΔfDC,或第一
Figure PCTCN2017106918-appb-000003
在满足带外泄漏指标的前提下,通过设置可用的最大子载波的数量i,使得第一TBC在第一CB内的占比在本发明实施例中提到的区间内。
对于第一TBC之外的第一GB的左右保护带:
当i为奇数时,编号从#1到#j范围内的所有j个子载波的总带宽都不等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,则有f0-f3≠f4-f0,那么第一TBC之外的左右两边保护带不对称,即f3-f1≠f2-f4。
当i为偶数且j=i/2时,编号从#1到#j范围内的所有j个子载波的总带宽等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,则有f0-f3=f4-f0,那么第一TBC之外的两边保护带对称,即f3-f1=f2-f4。对于j取其他任意整数时,编号从#1到#j范围内的所有j个子载波的总带宽都不等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,则有f0-f3≠f4-f0,那么第一TBC之外的左右两边保护带不对称,即f3-f1≠f2-f4。
当第一TBC中存在待配置的直流子载波时,第一TBC配置多种子载波的情况时,本发明实施例提供的第一TBC的配置如下:
本实施例中,假设发射节点载波的第一宽CB大于20MHz的多载波系统中包含直流子载波,并且该直流子载波不发送任何数据,直流子载波位于信道带宽的中间,直流子载波的中心频率和第一CB带宽的中心频率对齐。
如图13所示,对于由多个连续的子载波组成的多载波系统,第一TBC所配置的可用的最大子载波个数为i,连续的子载波从左到右的编号从#1开始到#i。第#j个子载波和第#(j+1)个子载波紧邻直流子载波的两边。
假设在第一TBC内的时频资源支持多种子载波间隔Δf,且直流子载波 间隔为ΔfDC。其中Δf和ΔfDC可以为LTE系统的15kHz,也可以为其他可能新定义的子载波间隔。
在本实施例中,第一TBC为第#1个子载波的左边缘到第#i个子载波的右边缘的频率范围,包含了直流子载波,即第一
Figure PCTCN2017106918-appb-000004
其中Δfk为第k个子载波间隔。在满足带外泄漏指标的前提下,通过设置不同子载波间隔对应的子载波个数,使得第一TBC在第一CB宽内的占比在本发明实施例中提到的区间内。
编号从#1到#j范围内的所有j个子载波,可以支持一种或多种子载波间隔,同样编号从#(j+1)到#i范围内的所有(i-j)个子载波,可以支持一种或多种子载波间隔,且所有i个子载波至少支持两种子载波间隔。
假设编号从#1到#j范围内的所有j个子载波内支持N种子载波间隔,分别为ΔfN1,ΔfN2,…,ΔfNN,对应的子载波个数分别为aN1,aN2…,aNN,并满足aN1+aN2+…aNN=j;另外假设编号从#(j+1)到#i范围内的所有(i-j)个子载波内支持M种子载波间隔ΔfM1,ΔfM2,…,ΔfMM,对应的子载波个数分别为bM1,bM2,…,bMM,并满足bM1+bM2+…bMM=i-j。则有:
编号从#1到#j范围内的所有j个子载波的总带宽
Figure PCTCN2017106918-appb-000005
编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽
Figure PCTCN2017106918-appb-000006
对于第一TBC之外的第一GB的左右保护带,通过合理配置不同子载波间隔ΔfN1,ΔfN2,…,ΔfNN和ΔfM1,ΔfM2,…,ΔfMM,及与之对应的子载波个数aN1,aN2,…,aNN和bM1,bM2,…,bMM,如果满足:
1、f0-f3=f4-f0,编号从#1到#j范围内的所有j个子载波的总带宽等于编 号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,那么第一TBC之外的左右保护带对称,即f3-f1=f2-f4
2、f0-f3≠f4-f0,编号从#1到#j范围内的所有j个子载波的总带宽不等于编号从#(j+1)到#i范围内的所有(i-j)个子载波的总带宽,那么第一TBC之外的左右两边保护带不对称,即f3-f1≠f2-f4
可以理解的是,本发明实施例提供的一种传输带宽的配置方法中,发射节点通过提高传输带宽配置的带宽大小,以此来减小保护带的带宽大小,这样在满足带外泄漏要求的前提下,既能在有限的信道带宽内,发送更多的数据量,提升系统峰值速率;另一方面又能提高频谱的利用率。
通过本发明实施例提供的传输带宽的配置方法,既能兼容原有的LTE系统中的15kHz的子载波间隔,又能兼容其他可能的子载波间隔,兼容性强。
示例四
如图14所示,本发明实施例提供了一种发射节点1,该发射节点1可以包括:
配置单元10,设置为在多载波传输系统中,配置载波的第一CB;以及当所述第一CB大于第一预设带宽时,根据第一TBC占所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%。
在本发明实施例中,如图15所示,所述发射节点还可以包括:确定单元11。
所述确定单元11设置为当所述第一TBC中未存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X和所述第一CB,确定所述第一TBC。
所述配置单元10设置为配置所述发射节点支持的各子载波间隔,所述各子载波表征可用子载波。
所述确定单元11还设置为根据所述第一TBC和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数,所述第一TBC为配置的所述各子载波的总带宽。
所述配置单元10还设置为根据所述最大子载波数进行所述第一TBC的配置。
在本发明实施例中,如图15所示,所述发射节点还可以包括:确定单元11。
所述确定单元11设置为当所述第一TBC中存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X和所述第一CB,确定所述第一TBC。
所述配置单元10设置为获取所述发射节点支持的各子载波间隔和所述直流子载波间隔,所述各子载波表征可用子载波。
所述确定单元11还设置为根据所述第一TBC和所述直流子载波间隔,确定所述各子载波的总带宽;以及根据所述各子载波的总带宽和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数。
所述配置单元10还设置为根据所述最大子载波数和所述直流子载波进行所述第一TBC的配置,其中,所述直流子载波的中心频率与所述第一CB的中心频率一致。
在本发明实施例中,如图15所示,所述发射节点还可以包括:确定单元11。
所述确定单元11设置为获取载波的第一CB之后,根据所述第一TBC占所述第一CB的预设百分比X,确定第一GB占所述第一CB的百分比Y;以及根据所述第一GB占所述第一CB的百分比Y和所述第一CB,确定所 述第一GB。
在本发明实施例中,所述确定单元11还可以设置为根据第一TBC占所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波之后,根据所述第一TBC的中的子载波配置和所述第一GB,确定所述第一GB的左保护带和右保护带。
在本发明实施例中,所述左保护带和右保护带相对于所述第一CB的中心频率可以对称或不对称。
在本发明实施例中,所述配置单元10还可以设置为根据第一TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波;以及配置第二CB及对应的传输带宽配置TBC占所述第二CB的预设百分比X2,设置所述第二TBC中的子载波,所述第一CB和所述第二CB为发射节点的不同的信道带宽配置。
在本发明实施例中,当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X可以大于或等于所述第一TBC占所述第一CB的预设百分比X。
在本发明实施例中,所述第一CB可以为所述发射节点支持的载波的射频带宽,所述第一CB可以为所述至少一个载波的信道带宽中正在使用的一个,所述至少一个载波的信道带宽可以为所述发射节点支持的载波的信道带宽。
所述第一TBC为在所述第一CB内物理时频资源在频域内的总带宽,或所述第一TBC为在所述第一CB内分配的两边最边缘可用子载波之间的频率范围。
在本发明实施例中,所述预设下限值可以为92%,所述预设上限值可以为96%,其中,X根据满足带外泄露指标条件时确定。
如图16所示,在实际应用中,上述确定单元11和配置单元10可由位 于发射节点上的处理器12实现,例如由中央处理器(CPU)、微处理器(MPU)、数字信号处理器(DSP)或现场可编程门阵列(FPGA)等实现,上述发射节点还包括:存储介质13,该存储介质13可以通过系统总线14与处理器12连接,其中,存储介质13用于存储可执行程序代码,该程序代码包括计算机操作指令,存储介质13可能包含高速RAM存储器,也可能还包括非易失性存储器,例如,至少一个磁盘存储器。
在本发明实施例中,多载波系统的发射节点可以包括:基站、终端、中继(relay)、发射点(transmitting point)等等各种发射设备。
在本发明实施例提供的一种发射节点中,该发射节点包括:处理器以及存储有所述处理器可执行指令存储介质,当所述指令被处理器执行时,执行如下操作:
所述处理器设置为配置载波的第一信道带宽CB;以及当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%,X是在满足带外泄露指标时确定的。
在本发明实施例中,所述处理器还可以设置为当所述第一TBC中未存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X和所述第一CB,确定所述第一TBC;及配置所述发射节点支持的各子载波间隔,所述各子载波表征可用子载波;然后根据所述第一TBC和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数,所述第一TBC为配置的所述各子载波的总带宽;以及根据所述最大子载波数进行所述第一TBC的配置。
在本发明实施例中,所述处理器还可以设置为当所述第一TBC中存在 待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X和所述第一CB,确定所述第一TBC;及配置所述发射节点支持的各子载波间隔和所述直流子载波间隔,所述各子载波表征可用子载波;然后根据所述第一TBC和所述直流子载波间隔,确定所述各子载波的总带宽;以及根据所述各子载波的总带宽和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数;以及根据所述最大子载波数和所述直流子载波进行所述第一TBC的配置,其中,所述直流子载波的中心频率与所述第一CB的中心频率一致。
在本发明实施例中,所述处理器还可以设置为在配置载波的第一信道带宽CB之后,根据所述第一TBC占所述第一CB的预设百分比X,确定第一保护带GB占所述第一CB的百分比Y;以及根据所述第一GB占所述第一CB的百分比Y和所述第一CB,确定所述第一GB。
在本发明实施例中,所述处理器还可以设置为根据第一传输带宽配置TBC占所述第一CB的预设百分比X和所述第一CB,设置所述第一TBC中的子载波之后,根据所述第一TBC的中的子载波配置和所述第一GB,确定所述第一GB的左保护带和右保护带。
在本发明实施例中,所述左保护带和右保护带相对于所述第一CB的中心频率可以对称或不对称。
在本发明实施例中,所述处理器还可以设置为根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波;以及配置第二CB及对应的传输带宽配置TBC占所述第二CB的预设百分比X2,设置所述第二TBC中的子载波,所述第一CB和所述第二CB为发射节点的不同的信道带宽配置。
在本发明实施例中,当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X可以大于或等于所述第一TBC占所述第一 CB的预设百分比X。
在本发明实施例中,所述第一CB可以为所述发射节点支持的载波的射频带宽,所述第一CB可以为所述至少一个载波的信道带宽中正在使用的一个,所述至少一个载波的信道带宽可以为所述发射节点支持的载波的信道带宽。
所述第一TBC为在所述第一CB内物理时频资源在频域内的总带宽,或所述第一TBC为在所述第一CB内分配的两边最边缘可用子载波之间的频率范围。
在本发明实施例中,所述预设下限值可以为92%,所述预设上限值可以为96%,其中,X根据满足带外泄露指标条件时确定。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现任一以上描述过的方法。
可以理解的是,本发明实施例提供的一种传输带宽的配置方法中,发射节点通过提高传输带宽配置的带宽大小,以此来减小保护带的带宽大小,这样在满足带外泄漏要求的前提下,既能在有限的信道带宽内,发送更多的数据量,提升系统峰值传输速率;另一方面又能提高频谱的利用率。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时 性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上所述,仅为本公开的示例性实施例而已,并非用于限定本公开的保护范围。
工业实用性
本发明实施例提供了一种传输带宽的配置方法及发射节点,配置载波的第一信道带宽CB;当第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占第一CB的预设百分比X和第一CB,设置第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,预设百分比X在[预设下限值,预设上限值]范围内,预设下限值大于90%,预设上限值小于100%。采用上述技术实现方案,本发明实施例提供的一种传输带宽的配置方法中,发射节点通过提高传输带宽配置的带宽大小,以此来减小保护带的带宽大小,这样在满足带外泄漏要求的前提下,既能在有限的信道带宽内,发送更多的数据量,提升系统峰值传输速率;另一方面又能提高频谱的利用率。因此本发明具有工业实用性。

Claims (29)

  1. 一种传输带宽的配置方法,应用于发射节点,包括:
    配置载波的第一信道带宽CB(S101);
    当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%(S102)。
  2. 根据权利要求1所述的方法,其中,所述第一预设带宽CB随着子载波间隔增大而增大。
  3. 根据权利要求1所述的方法,其中,当所述第一TBC中未存在待配置的直流子载波时,所述根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波,包括:
    根据所述第一TBC占所述第一CB的预设百分比X1和所述第一CB,确定所述第一TBC(S201,S301);
    配置所述发射节点支持的各子载波间隔,所述各子载波表征可用子载波(S202,S302);
    根据所述第一TBC和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数,所述第一TBC为配置的所述各子载波的总带宽(S203);
    根据所述最大子载波数进行所述第一TBC的配置(S204)。
  4. 根据权利要求1所述的方法,其中,当所述第一TBC中存在待配置的直流子载波时,所述根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波,包括:
    根据所述第一TBC占所述第一CB的预设百分比X1和所述第一CB,确定所述第一TBC(S201,S301);
    配置所述发射节点支持的各子载波间隔和所述直流子载波,所述各子载波表征可用子载波(S202,S302);
    根据所述第一TBC和所述直流子载波间隔,确定所述各子载波的总带宽(S303);
    根据所述各子载波的总带宽和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数(S304);
    根据所述最大子载波数和所述直流子载波进行所述第一TBC的配置,其中,所述直流子载波的中心频率与所述第一CB的中心频率一致(S305)。
  5. 根据权利要求1所述的方法,其中,所述配置载波的第一信道带宽CB之后,所述方法还包括:
    根据所述第一TBC占所述第一CB的预设百分比X1,确定第一保护带GB占所述第一CB的百分比Y(S103);
    根据所述第一GB占所述第一CB的百分比Y和所述第一CB,确定所述第一GB(S104)。
  6. 根据权利要求5所述的方法,其中,所述根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波之后,所述方法还包括:
    根据所述第一TBC的中的子载波配置和所述第一GB,确定所述第一GB的左保护带和右保护带(S105)。
  7. 根据权利要求6所述的方法,其中,
    所述左保护带和右保护带相对于所述第一CB的中心频率对称或不对称。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    配置第二CB及对应的传输带宽配置TBC占所述第二CB的预设百分比X2,所述第一CB和所述第二CB为发射节点的不同的信道带宽配置。
  9. 根据权利要求8所述的方法,其中,
    当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2大于或等于所述第一TBC占所述第一CB的预设百分比X1,
    当所述第二CB小于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2小于或等于所述第一TBC占所述第一CB的预设百分比X1。
  10. 根据权利要求9所述的方法,其中,
    在子载波间隔相等的情况下:
    当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2大于或等于所述第一TBC占所述第一CB的预设百分比X1,
    当所述第二CB小于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2小于或等于所述第一TBC占所述第一CB的预设百分比X1。
  11. 根据权利要求1所述的方法,其中,
    所述第一CB为所述发射节点支持的载波的信道带宽配置中的其中一个;
    所述第一TBC为在所述第一CB内物理时频资源在频域内的总带宽,或所述第一TBC为在所述第一CB内分配的两边最边缘可用子载波之间的频率范围。
  12. 根据权利要求1至11任一项所述的方法,其中,
    所述预设下限值为92%,所述预设上限值为96%,其中,所述预设百分比X1、X2根据满足带外泄露指标条件时确定。
  13. 一种发射节点(1),包括:
    配置单元(10),设置为在多载波传输系统中,配置载波的第一信道带宽CB;以及当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波,从而完成传输带宽配置中的子载波配置,其中,所述预设百分 比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%,所述第一预设带宽CB随着子载波间隔增大而增大。
  14. 根据权利要求13所述的发射节点(1),其中,所述发射节点(1)还包括:确定单元(11);
    所述确定单元(11)设置为当所述第一TBC中未存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X1和所述第一CB,确定所述第一TBC;
    所述配置单元(10)设置为配置所述发射节点(1)支持的各子载波间隔,所述各子载波表征可用子载波;
    所述确定单元(11)还设置为根据所述第一TBC和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数,所述第一TBC为配置的所述各子载波的总带宽;
    所述配置单元(10)还设置为根据所述最大子载波数进行所述第一TBC的配置。
  15. 根据权利要求13所述的发射节点(1),其中,所述发射节点(1)还包括:确定单元(11);
    所述确定单元(11)设置为当所述第一TBC中存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X1和所述第一CB,确定所述第一TBC;
    所述配置单元(10)设置为配置所述发射节点(1)支持的各子载波间隔和所述直流子载波,所述各子载波表征可用子载波;
    所述确定单元(11)还设置为根据所述第一TBC和所述直流子载波间隔,确定所述各子载波的总带宽;以及根据所述各子载波的总带宽和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数;
    所述配置单元(10)还设置为根据所述最大子载波数和所述直流子载波 进行所述第一TBC的配置,其中,所述直流子载波的中心频率与所述第一CB的中心频率一致。
  16. 根据权利要求13所述的发射节点(1),其中,所述发射节点(1)还包括:确定单元(11);
    所述确定单元(11)设置为配置载波的第一信道带宽CB之后,根据所述第一TBC占所述第一CB的预设百分比X1,确定第一保护带GB占所述第一CB的百分比Y;以及根据所述第一GB占所述第一CB的百分比Y和所述第一CB,确定所述第一GB。
  17. 根据权利要求16所述的发射节点(1),其中,
    所述确定单元(11)还设置为根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波之后,根据所述第一TBC的中的子载波配置和所述第一GB,确定所述第一GB的左保护带和右保护带。
  18. 根据权利要求13所述的发射节点(1),其中,
    所述配置单元(10)还设置为根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波;以及配置第二CB及对应的传输带宽配置TBC占所述第二CB的预设百分比X2,设置所述第二TBC中的子载波,所述第一CB和所述第二CB为发射节点(1)的不同的信道带宽配置。
  19. 根据权利要求18所述的发射节点(1),其中,
    当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2大于或等于所述第一TBC占所述第一CB的预设百分比X1,
    当所述第二CB小于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2小于或等于所述第一TBC占所述第一CB的预设百分比X1,
    其中,
    在子载波间隔相等的情况下:
    当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2大于或等于所述第一TBC占所述第一CB的预设百分比X1,
    当所述第二CB小于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2小于或等于所述第一TBC占所述第一CB的预设百分比X1。
  20. 根据权利要求13至19任一项所述的发射节点(1),其中,
    所述预设下限值为92%,所述预设上限值为96%,其中,所述预设百分比X1、X2根据满足带外泄露指标条件时确定。
  21. 一种发射节点,包括:处理器(12)以及存储有所述处理器(12)可执行指令的存储介质(13),当所述指令被处理器(12)执行时,执行如下操作:
    所述处理器(12)设置为配置载波的第一信道带宽CB;以及当所述第一CB大于第一预设带宽时,根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波,以完成传输带宽配置中的子载波配置,其中,所述预设百分比X在[预设下限值,预设上限值]范围内,所述预设下限值大于90%,所述预设上限值小于100%,其中,所述第一预设带宽CB随着子载波间隔增大而增大。
  22. 根据权利要求21所述的发射节点,其中,
    所述处理器(12)还设置为当所述第一TBC中未存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X1和所述第一CB,确定所述第一TBC;及配置所述发射节点支持的各子载波间隔,所述各子载波表征可用子载波;然后根据所述第一TBC和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数,所述第一TBC为配置的所述各子载波的总带宽;以及根据所述最大子载波数进行所述第一TBC的配置。
  23. 根据权利要求21所述的发射节点,其中,
    所述处理器(12)还设置为当所述第一TBC中存在待配置的直流子载波时,根据所述第一TBC占所述第一CB的预设百分比X1和所述第一CB,确定所述第一TBC;及配置所述发射节点支持的各子载波间隔和所述直流子载波,所述各子载波表征可用子载波;然后根据所述第一TBC和所述直流子载波间隔,确定所述各子载波的总带宽;以及根据所述各子载波的总带宽和所述各子载波间隔,确定在所述第一TBC中设置的最大子载波数;以及根据所述最大子载波数和所述直流子载波进行所述第一TBC的配置,其中,所述直流子载波的中心频率与所述第一CB的中心频率一致。
  24. 根据权利要求21所述的发射节点,其中,
    所述处理器(12)还设置为所述配置载波的第一信道带宽CB之后,根据所述第一TBC占所述第一CB的预设百分比X1,确定第一保护带GB占所述第一CB的百分比Y;以及根据所述第一GB占所述第一CB的百分比Y和所述第一CB,确定所述第一GB。
  25. 根据权利要求24所述的发射节点,其中,
    所述处理器(12)还设置为根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波之后,根据所述第一TBC的中的子载波配置和所述第一GB,确定所述第一GB的左保护带和右保护带。
  26. 根据权利要求21所述的发射节点,其中,
    所述处理器(12)还设置为根据第一传输带宽配置TBC占所述第一CB的预设百分比X1和所述第一CB,设置所述第一TBC中的子载波;以及配置第二CB及对应的传输带宽配置TBC占所述第二CB的预设百分比X2,设置所述第二TBC中的子载波,所述第一CB和所述第二CB为发射节点的不同的信道带宽配置。
  27. 根据权利要求26所述的发射节点,其中,
    当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2大于或等于所述第一TBC占所述第一CB的预设百分比X1,
    当所述第二CB小于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2小于或等于所述第一TBC占所述第一CB的预设百分比X1,
    其中,
    在子载波间隔相等的情况下:
    当所述第二CB大于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2大于或等于所述第一TBC占所述第一CB的预设百分比X1,
    当所述第二CB小于所述第一CB时,所述第二TBC占所述第二CB的预设百分比X2小于或等于所述第一TBC占所述第一CB的预设百分比X1。
  28. 根据权利要求21至27任一项所述的发射节点,其中,
    所述预设下限值为92%,所述预设上限值为96%,其中,所述预设百分比X1、X2根据满足带外泄露指标条件时确定。
  29. 一种传输带宽的配置方法,应用于发射节点,包括:
    配置载波的多种信道带宽CB;为所述的每种信道带宽CB配置对应的传输带宽配置TBC,所述传输带宽配置TBC占所述对应的信道带宽CB的占比X满足如下关系:当所述信道带宽CB增加时,传输带宽配置在信道带宽内的占比X单调递增。
PCT/CN2017/106918 2016-11-04 2017-10-19 一种传输带宽的配置方法及发射节点 WO2018082450A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
FIEP17866655.8T FI3547751T3 (fi) 2016-11-04 2017-10-19 Lähetyskaistanleveyden konfigurointimenetelmä ja lähetyssolmu
EP17866655.8A EP3547751B1 (en) 2016-11-04 2017-10-19 Transmission bandwidth configuration method and transmission node
ES17866655T ES2965139T3 (es) 2016-11-04 2017-10-19 Método de configuración de ancho de banda de transmisión y nodo de transmisión
EP23171305.8A EP4236167A3 (en) 2016-11-04 2017-10-19 Transmission bandwidth configuration method and transmission node
CA3056162A CA3056162C (en) 2016-11-04 2017-10-19 Transmission bandwidth configuration method and transmission node
US16/399,240 US10952214B2 (en) 2016-11-04 2019-04-30 Apparatus of configuration according to a relationship between channel bandwidth and transmission bandwidth configuration
US17/169,170 US11558871B2 (en) 2016-11-04 2021-02-05 Methods and apparatus of configuration according to a relationship between channel bandwidth and transmission bandwidth configuration
US18/096,734 US11864169B2 (en) 2016-11-04 2023-01-13 Method and apparatus for configuring or aquiring transmission bandwidth configuration corresponding to channel bandwidth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610963740.4A CN108024293B (zh) 2016-11-04 2016-11-04 一种传输带宽的配置方法及发射节点
CN201610963740.4 2016-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/399,240 Continuation US10952214B2 (en) 2016-11-04 2019-04-30 Apparatus of configuration according to a relationship between channel bandwidth and transmission bandwidth configuration

Publications (1)

Publication Number Publication Date
WO2018082450A1 true WO2018082450A1 (zh) 2018-05-11

Family

ID=62075690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106918 WO2018082450A1 (zh) 2016-11-04 2017-10-19 一种传输带宽的配置方法及发射节点

Country Status (7)

Country Link
US (3) US10952214B2 (zh)
EP (2) EP4236167A3 (zh)
CN (3) CN113472503B (zh)
CA (1) CA3056162C (zh)
ES (1) ES2965139T3 (zh)
FI (1) FI3547751T3 (zh)
WO (1) WO2018082450A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10987313B2 (en) 2013-10-07 2021-04-27 Impax Laboratories, Llc Muco-adhesive, controlled release formulations of levodopa and/or esters of levodopa and uses thereof
US11986449B2 (en) 2020-12-22 2024-05-21 Amneal Pharmaceuticals Llc Levodopa dosing regimen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036401A (zh) * 2009-09-30 2011-04-27 华为技术有限公司 多载波信道配置方法、装置以及通信系统
CN102196451A (zh) * 2011-05-27 2011-09-21 华中科技大学 适合多系统共存的动态无线频谱共享方法
CN102480411A (zh) * 2010-11-23 2012-05-30 中兴通讯股份有限公司 一种保护带宽资源的预留方法及系统
WO2015139320A1 (zh) * 2014-03-21 2015-09-24 华为技术有限公司 一种配置频率资源位置的方法和装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6834039B1 (en) * 2000-03-10 2004-12-21 Hughes Electronics Corporation Apparatus and method for efficient TDMA bandwidth allocation for TCP/IP satellite-based networks
GB2369268B (en) * 2000-11-21 2003-01-22 Ericsson Telefon Ab L M Controlling channel switching in a UMTS network
WO2004045087A2 (en) * 2002-11-08 2004-05-27 Lyndale Trading Company Limited Adaptive broadband platforms and methods of operation
US7366202B2 (en) * 2003-12-08 2008-04-29 Colubris Networks, Inc. System and method for interference mitigation for wireless communication
EP4358462A2 (en) 2004-05-01 2024-04-24 Callahan Cellular LLC Methods and apparatus for multi-carrier communications with variable channel bandwidth
JP2007124578A (ja) 2005-10-31 2007-05-17 Ntt Docomo Inc 複数の信号帯域幅を定義する無線通信システムにおける送受信帯域幅設定方法、移動端末および基地局
US20090147735A1 (en) * 2007-12-05 2009-06-11 Motorola, Inc. System and method for non-standard wireless bandwidth communications
CN101521937A (zh) 2008-02-26 2009-09-02 华为技术有限公司 一种下行控制信道资源的分配方法及系统
PL2131519T3 (pl) 2008-06-04 2014-01-31 Sony Corp Nowa struktura ramki dla systemów z wieloma nośnymi
JP5168015B2 (ja) 2008-07-31 2013-03-21 富士通モバイルコミュニケーションズ株式会社 無線基地局装置および移動無線端末装置
KR101496896B1 (ko) * 2009-02-16 2015-02-27 삼성전자주식회사 대역 확장성을 지원하는 셀룰러 무선통신시스템에서 보호대역이 구성된 하향링크 신호의 송수신 방법 및 장치
US8218420B2 (en) * 2009-03-26 2012-07-10 Ntt Docomo, Inc. Non-cyclic evolving-type user resource structure for OFDMA based system with null guard tones
US8780688B2 (en) 2009-04-27 2014-07-15 Telefonaktiebolaget Lm Ericsson (Publ) Methods and apparatus in a wireless communication system
KR101591829B1 (ko) 2009-07-17 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서 채널 대역폭 정보 전송 및 수신 방법
CN102656941B (zh) * 2009-11-13 2015-03-25 马维尔国际贸易有限公司 多信道无线通信
US20120263117A1 (en) * 2011-04-13 2012-10-18 Motorola Mobility, Inc. Method and Apparatus to Adjust the Control Region of a Subframe for Reducing Interference Between Channels in Wireless Communication Systems
US9565655B2 (en) 2011-04-13 2017-02-07 Google Technology Holdings LLC Method and apparatus to detect the transmission bandwidth configuration of a channel in connection with reducing interference between channels in wireless communication systems
US8934500B2 (en) 2011-04-13 2015-01-13 Motorola Mobility Llc Method and apparatus using two radio access technologies for scheduling resources in wireless communication systems
EP2515585A1 (en) * 2011-04-19 2012-10-24 Research In Motion Limited Method and system for frequency scan using a differential power metric
US8630643B2 (en) * 2011-07-11 2014-01-14 Blackberry Limited Method and system for frequency scan using an adaptive measurement interval
US20130114571A1 (en) * 2011-11-07 2013-05-09 Qualcomm Incorporated Coordinated forward link blanking and power boosting for flexible bandwidth systems
US9491738B2 (en) 2012-02-03 2016-11-08 Qualcomm Incorporated Managing downlink and uplink resources for low cost user equipments
WO2013185274A1 (en) 2012-06-11 2013-12-19 Nokia Siemens Networks Oy Bandwidth in wireless communications
CN103581991B (zh) * 2012-08-09 2019-04-30 中兴通讯股份有限公司 测量参数的指示方法及装置
US9143291B2 (en) 2012-12-27 2015-09-22 Google Technology Holdings LLC Method and apparatus for device-to-device communication
EP2946499B1 (en) * 2013-01-17 2018-09-05 Telefonaktiebolaget LM Ericsson (publ) Determining signal transmission bandwidth
WO2014123335A1 (en) 2013-02-05 2014-08-14 Lg Electronics Inc. Method and apparatus for performing resource allocation in wireless communication system
CN104185188B (zh) * 2013-05-27 2017-11-24 华为技术有限公司 干扰处理方法及设备
EP3014938A1 (en) 2013-06-28 2016-05-04 Telefonaktiebolaget LM Ericsson (publ) Method and network node for providing radio resources for radio communication in a cellular network
EP3026975B1 (en) 2013-08-22 2018-12-05 Huawei Technologies Co., Ltd. Method and device for channel bandwidth selection
US9326251B2 (en) 2013-09-30 2016-04-26 Qualcomm, Incorporated Supplemental maximum power reduction for operation in restricted configurations
CN105340342A (zh) 2014-05-07 2016-02-17 华为技术有限公司 一种分配带宽的方法、装置及系统
WO2016101137A1 (zh) * 2014-12-23 2016-06-30 华为技术有限公司 无线通信装置、无线通信节点和信道检测方法
EP3242530B1 (en) * 2014-12-31 2019-02-20 Huawei Technologies Co., Ltd. Data transmission method, apparatus and device
US20190104551A1 (en) * 2016-03-30 2019-04-04 Idac Holdings, Inc. Method for initial access using signatures
BR112019002748A2 (pt) * 2016-08-10 2019-05-14 Idac Holdings, Inc. método para uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, estação-base
US10687252B2 (en) * 2016-09-28 2020-06-16 Qualcomm Incorporated Bandwidth group (BWG) for enhanced channel and interference mitigation in 5G new radio
EP3535917A1 (en) * 2016-11-02 2019-09-11 IDAC Holdings, Inc. Receiver bandwidth adaptation
US11523285B2 (en) * 2018-01-12 2022-12-06 Nokia Solutions And Networks Oy Channel selection in wireless network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036401A (zh) * 2009-09-30 2011-04-27 华为技术有限公司 多载波信道配置方法、装置以及通信系统
CN102480411A (zh) * 2010-11-23 2012-05-30 中兴通讯股份有限公司 一种保护带宽资源的预留方法及系统
CN102196451A (zh) * 2011-05-27 2011-09-21 华中科技大学 适合多系统共存的动态无线频谱共享方法
WO2015139320A1 (zh) * 2014-03-21 2015-09-24 华为技术有限公司 一种配置频率资源位置的方法和装置

Also Published As

Publication number Publication date
FI3547751T3 (fi) 2023-11-07
CN113472503A (zh) 2021-10-01
EP3547751A4 (en) 2020-08-26
US20210168802A1 (en) 2021-06-03
CA3056162A1 (en) 2018-05-11
US20230232386A1 (en) 2023-07-20
EP4236167A2 (en) 2023-08-30
EP3547751B1 (en) 2023-10-25
EP3547751A1 (en) 2019-10-02
CN108024293A (zh) 2018-05-11
CN108024293B (zh) 2021-07-09
CA3056162C (en) 2022-02-15
EP4236167A3 (en) 2023-09-13
CN113472503B (zh) 2022-11-18
ES2965139T3 (es) 2024-04-11
US11558871B2 (en) 2023-01-17
US10952214B2 (en) 2021-03-16
CN113472504A (zh) 2021-10-01
US11864169B2 (en) 2024-01-02
US20190387523A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US10887883B2 (en) Method and apparatus for aggregating carriers in wireless communication systems
US10750487B2 (en) Wireless communications method and apparatus
CA3064617C (en) Random access method, terminal, and network device
CN109587799B (zh) 一种信息传输方法及装置
KR102134574B1 (ko) 데이터 송신 방법, 데이터 수신 방법, 사용자 장비 및 기지국
JP7004467B2 (ja) 狭帯域直交周波数分割多重化信号を伝送するための方法およびデバイス
CN102119573A (zh) 无线通信基站装置、无线通信终端装置以及控制信息生成方法
US10291452B2 (en) Method for processing in-band multiplexing using FCP-OFDM scheme, and device therefor
US11864169B2 (en) Method and apparatus for configuring or aquiring transmission bandwidth configuration corresponding to channel bandwidth
JP7092195B2 (ja) 制御リソース領域のリソース割り当てのための方法及びデバイス
WO2018082469A1 (zh) 一种指示直流子载波的方法及装置、电子设备
CN112332965B (zh) 一种无线通信中的方法和装置
WO2018059356A1 (zh) 一种信息传输方法及装置
JP7287540B2 (ja) 方法、端末デバイス、及びネットワークデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866655

Country of ref document: EP

Effective date: 20190604