WO2018082419A1 - 下行信息传输方法、装置和设备 - Google Patents

下行信息传输方法、装置和设备 Download PDF

Info

Publication number
WO2018082419A1
WO2018082419A1 PCT/CN2017/103991 CN2017103991W WO2018082419A1 WO 2018082419 A1 WO2018082419 A1 WO 2018082419A1 CN 2017103991 W CN2017103991 W CN 2017103991W WO 2018082419 A1 WO2018082419 A1 WO 2018082419A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport block
time
frequency resource
location
transport
Prior art date
Application number
PCT/CN2017/103991
Other languages
English (en)
French (fr)
Inventor
马蕊香
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17867789.4A priority Critical patent/EP3525538B1/en
Publication of WO2018082419A1 publication Critical patent/WO2018082419A1/zh
Priority to US16/404,364 priority patent/US11038620B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0042Encoding specially adapted to other signal generation operation, e.g. in order to reduce transmit distortions, jitter, or to improve signal shape
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0041Arrangements at the transmitter end
    • H04L1/0043Realisations of complexity reduction techniques, e.g. use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0052Realisations of complexity reduction techniques, e.g. pipelining or use of look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a downlink information transmission method, apparatus, and device.
  • the 5G communication system is dedicated to supporting higher system performance, which will support multiple service types, different deployment scenarios and a wider spectrum range.
  • the above various service types include enhanced mobile broadband (English: enhanced mobile broadband) (abbreviation: eMBB), massive machine type communication (English: Massive Machine Type Communication, referred to as: mMTC), ultra-reliable low-latency communication (English: Ultra -reliable and low latency communications (URLLC), Multimedia Broadcast Multicast Service (MBMS) and location services.
  • eMBB enhanced mobile broadband
  • massive machine type communication English: Massive Machine Type Communication, referred to as: mMTC
  • ultra-reliable low-latency communication English: Ultra -reliable and low latency communications (URLLC)
  • MBMS Multimedia Broadcast Multicast Service
  • Different deployment scenarios include indoor hotspots, dense urban areas, suburbs, urban macros and high-speed rail scenes.
  • a major feature of the 5G communication system compared to the 4G communication system is the addition of support for the URLLC service.
  • URLLC services There are many types of URLLC services. Typical use cases include industrial control, industrial production process automation, human-computer interaction and telemedicine.
  • 3GPP RAN and RAN1 working groups define performance indicators such as delay, reliability and system capacity of URLLC services, among which are reliable.
  • Sex refers to the overall reliability of the URLLC service. To meet this requirement, the impact of all the channels involved in the transmission needs to be considered, that is, both the control channel and the data channel need to be considered.
  • a typical method for improving the reliability of a downlink data channel is to transmit downlink data diversity, for example, time domain diversity, frequency diversity, space diversity, and the like.
  • downlink data diversity for example, time domain diversity, frequency diversity, space diversity, and the like.
  • the use of diversity transmission may increase the delay or increase the overhead of downlink resource indication signaling. How to improve the reliability of downlink data transmission without increasing the delay and downlink control signaling bits becomes a problem to be solved.
  • the embodiment of the present invention provides a method, an apparatus, and a device for transmitting downlink information, which are used to implement downlink resource indication without increasing delay and signaling overhead, and can improve reliability of downlink data transmission.
  • the first aspect of the present application provides a downlink information transmission method, including:
  • downlink resource indication information to the user equipment, where the downlink resource indication information is used to indicate a time-frequency resource location of the Mth transport block in the N transport blocks, where N ⁇ M ⁇ 1;
  • the solution is mainly used for indicating the downlink resource in the URLLC service process, and improves the reliability of the downlink information transmission without increasing the signaling overhead and the delay.
  • the base station compiles the information to be sent into a transport block.
  • the number of the transport blocks in the solution is at least two.
  • the downlink resource indication sent by the base station to the user equipment only specifically indicates the Mth transport block sent by the base station (may be a specific first time-frequency resource location of any one of the transport blocks, and a time-frequency resource location of the other transport block is indicated by a relationship with a time-frequency resource location of the M-th transport block or by a protocol or a high-level letter
  • the user equipment is notified, that is, the user equipment can obtain the location parameter of the other transport block in advance, and after receiving the downlink resource indication, the user equipment determines the first time-frequency resource location of the first transport block sent by the base station, and is in the
  • the first time transmission block receives the first transmission block for demodulation decoding, and if the demodulation decoding fails, the time-frequency resource bit of the Mth transmission block may be used.
  • each of the N transport blocks carries the information to be transmitted, and each of the transport blocks can be independently decoded;
  • the first one of the N transport blocks carries the information to be transmitted, and the first transport block can be independently decoded; the remaining transport blocks of the N transport blocks carry the first Redundant information or parity information of the transport block, and the remaining transport block can be jointly decoded with the first transport block.
  • the order is sequentially mapped on the available time-frequency resources.
  • the base station in determining the specific time-frequency resource of each transport block, preferably acquires available time-frequency resources and the number of transport blocks to be transmitted (the number of transport blocks is greater than 2), in order to reduce transmission time.
  • the base station maps the transport blocks according to the order of the time domain of the pre-frequency domain, that is, first maps the transport block in the frequency domain, and after the mapping of the available frequency domain resources is completed, the transport block needs to be transmitted, and then
  • the mapping of frequency domain resources in a time domain location can effectively reduce the transmission delay of information bits.
  • the sending the corresponding transport block on the determined time-frequency resource includes:
  • Each transport block is transmitted by using the determined time-frequency resource according to the sequence in the time domain until an acknowledgement message sent by the user equipment is received.
  • the base station sends the transport block according to the predetermined time-frequency resource. If the acknowledgement message returned by the user equipment is received, the remaining transport blocks are not sent, and if no acknowledgement message is received, the transmission is continued in chronological order.
  • the downlink resource indication information is used to indicate a time domain start location and/or a frequency domain start location of the time-frequency resource occupied by the first transport block.
  • the method before determining to send the time-frequency resource of each transport block, the method further includes:
  • the unit time-frequency resource information is used to indicate a size of a frequency domain resource occupied by the transport block and a size of the time domain resource.
  • the first time-frequency resource location may directly indicate the location in the time domain and the frequency domain of the first transport block.
  • the time domain start sent by the first transport block may also be indicated in the foregoing manner.
  • the location or frequency domain start position, through the unit time-frequency resource information occupied by each transport block, can determine the specific time domain location and frequency domain location, and the user equipment can receive the transport block at the corresponding location.
  • the downlink resource indication information further includes: a number of transport blocks, and/or a location parameter of a time-frequency resource of other transport blocks except the Mth transport block; a location of the transport block
  • the parameter is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the Mth transport block or a relationship between time-frequency resource locations between adjacent two transport blocks.
  • the location parameter of the transport block includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the relationship between the other transport blocks indicated by the location parameter of the transport block and the time-frequency resource location of the Mth transport block in the foregoing solution includes at least the foregoing two methods, that is, indicating the time-frequency resource location of each transport block.
  • the solution is not limited to the above two indication manners, and other indication manners may be used to determine the time-frequency resource locations of other transport blocks according to the time-frequency resource locations of the Mth transport block.
  • the second aspect of the present application provides an information transmission method, including:
  • downlink resource indication information sent by the base station, where the downlink resource indication information indicates a time-frequency resource location of the Mth transport block in the N transport blocks sent by the base station, N>1, N ⁇ M ⁇ 1;
  • the user equipment determines, according to the downlink resource indication information, a first time-frequency resource location of the first transport block sent by the base station, and receives the first transmission according to the first time-frequency resource location.
  • the block is demodulated and decoded. If the demodulation and decoding fails, the time-frequency resource position of the other transport block may be determined according to the time-frequency resource position of the Mth transport block and the obtained position parameters of other transport blocks, and then received.
  • the transport block continues to demodulate and decode.
  • the area performs diversity transmission, which effectively improves the transmission reliability.
  • the downlink resource indication information further includes: a number of transport blocks, and/or a location parameter of a time-frequency resource of other transport blocks except the Mth transport block; a location of the transport block
  • the parameter is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the Mth transport block or a relationship between time-frequency resource locations between adjacent two transport blocks.
  • the downlink resource indication information is used to indicate the first time-frequency resource location occupied by the first transport block, and the receiving, by the downlink resource indication information, the base station sends the Transmitting a block and obtaining information according to the transport block, including:
  • Demodulating and decoding the first transport block fails, determining, according to the first time-frequency resource location and a location parameter corresponding to another transport block acquired in advance, a time corresponding to the next transport block sent by the base station Frequency resource location And taking a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a relationship between a time-frequency resource location of the transport block and the first time-frequency resource location or to indicate a phase The relationship of the location of the time-frequency resource between two adjacent transport blocks;
  • the user equipment receives the first transport block at the first time-frequency resource location, and demodulates and decodes the first transport block. If successful, no subsequent processing is performed, and no unreceived transmission is received. Block; if demodulation decoding fails, determining a time-frequency resource location of the next transport block according to the first time-frequency resource location and location parameters of other transport blocks, and acquiring a second transport block received at the location, The received first and second transport blocks are jointly decoded. If the information bits are obtained, no subsequent processing is performed. If the information is not received, the process is repeated until the received transport block is demodulated and decoded successfully or received. All the transport blocks are up.
  • the method before the receiving the downlink resource indication information sent by the base station, the method further includes:
  • the unit time-frequency resource information is used to indicate a size of a frequency domain resource occupied by the transport block and a size of the time domain resource.
  • the first time-frequency resource location includes a time domain start location and/or a frequency domain start location for transmitting the first transport block, and corresponding to the first time-frequency resource location and other transport blocks according to the first time-frequency resource location.
  • a location parameter, determining a time-frequency resource location corresponding to the next transport block sent by the base station including:
  • the first time-frequency resource location may directly indicate the location in the time domain and the frequency domain of the first transport block.
  • the time domain start sent by the first transport block may also be indicated in the foregoing manner.
  • the location and or the frequency domain start position, by using the unit time-frequency resource information occupied by each transport block, the specific time domain location and the frequency domain location may be determined, and the user equipment may receive the transport block at the corresponding location.
  • the first time-frequency resource location includes: a start location and an end location of a time domain of the first transport block, and/or a start location and an end location of the frequency domain;
  • the receiving, by the downlink resource indication information, the transport block sent by the base station, and acquiring information according to the transport block includes:
  • Demodulating and decoding the first transport block fails, determining, according to a time-frequency resource location of the Mth transport block and a location parameter corresponding to the other transport block, a next transport block sent by the base station Corresponding time-frequency resource location, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and a time-frequency of the M-th transport block The relationship between resource locations or the relationship between the locations of time-frequency resources between adjacent two transport blocks;
  • the location parameter determines the first time-frequency resource location of the first transport block, and then sequentially receives the transport block for joint decoding processing according to the foregoing manner.
  • the location parameter of the transport block includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the relationship between the other transport blocks indicated by the location parameter of the transport block and the time-frequency resource location of the Mth transport block in the foregoing solution includes at least the foregoing two methods, that is, indicating the time-frequency resource location of each transport block.
  • the solution is not limited to the above two indication manners, and other indication manners may be used to determine the time-frequency resource locations of other transport blocks according to the time-frequency resource locations of the Mth transport block.
  • the method further includes:
  • an acknowledgement message is sent to the base station.
  • the method further includes:
  • the user equipment needs to feed back the downlink information sent by the base station, and if the demodulation and decoding succeeds, return an acknowledgement message, otherwise return a failure message.
  • the third aspect of the present application provides a downlink information transmission apparatus, including:
  • a processing module configured to encode the information to be sent into N transport blocks, N>1;
  • the processing module is further configured to determine to send a time-frequency resource of each transport block, where at least two transport blocks occupy the same time-domain resources of the time-frequency resource and the frequency domain resources are different;
  • a sending module configured to send downlink resource indication information to the user equipment, where the downlink resource indication information is used to indicate a time-frequency resource location of the Mth transport block in the N transport blocks, where N ⁇ M ⁇ 1;
  • the sending module is further configured to send a corresponding transport block on the determined time-frequency resource.
  • the processing module is specifically configured to determine, according to the predetermined available time-frequency resource, a time-frequency resource for sending each transport block, where the first to the Nth of the N transport blocks are in a pre-frequency domain.
  • the order of the post-time domains is sequentially mapped on the available time-frequency resources.
  • each of the N transport blocks encoded by the processing module carries the information to be sent, and each of the transport blocks can be independently decoded;
  • the first one of the N transport blocks encoded by the processing module carries the information to be sent, and the first transport block can be independently decoded; the remaining of the N transport blocks
  • the transport block carries redundancy information or check information of the first transport block, and the remaining transport block can be jointly decoded with the first transport block.
  • the device further includes a receiving module, where the sending module is specifically configured to:
  • the processing module is further configured to: acquire unit time-frequency resource information occupied by each transport block before determining to send time-frequency resources of each transport block; the unit time-frequency resource information is used to indicate that the transport block is occupied.
  • the size of the frequency domain resource and the size of the time domain resource is further configured to: acquire unit time-frequency resource information occupied by each transport block before determining to send time-frequency resources of each transport block; the unit time-frequency resource information is used to indicate that the transport block is occupied. The size of the frequency domain resource and the size of the time domain resource.
  • the downlink resource indication information sent by the sending module to the user equipment further includes: a number of transport blocks, and/or a transport block other than the Mth transport block. a location parameter of the time-frequency resource; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the M-th transport block or to represent two adjacent transmissions The relationship of the location of time-frequency resources between blocks.
  • the location parameter of the transport block sent by the sending module to the user equipment includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain between two adjacent transport blocks. interval.
  • the fourth aspect of the present application provides an information transmission apparatus, including:
  • the receiving module is configured to receive downlink resource indication information sent by the base station, where the downlink resource indication information indicates a time-frequency resource location of the Mth transport block in the N transport blocks sent by the base station, where N>1, N ⁇ M ⁇ 1;
  • the receiving module is further configured to receive, according to the downlink resource indication information, a transport block sent by the base station;
  • a processing module configured to acquire information according to the transport block.
  • the downlink resource indication information received by the receiving module further includes: a number of transport blocks, and/or a time-frequency resource of other transport blocks except the Mth transport block. a location parameter; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the Mth transport block or to represent between two adjacent transport blocks The relationship of time-frequency resource locations.
  • the M 1
  • the downlink resource indication information is used to indicate the first time-frequency resource location occupied by the first transport block
  • the receiving module is specifically configured to use the first time-frequency resource.
  • the processing module is specifically configured to perform demodulation and decoding on the first transport block
  • the processing module is further configured to determine, according to a location of a time-frequency resource location of the Mth transport block and a location parameter corresponding to another transport block acquired in advance. a time-frequency resource location corresponding to the next transport block sent by the base station, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block The relationship between the time-frequency resource locations of the Mth transport block or the relationship between the time-frequency resource locations between two adjacent transport blocks
  • the processing module demodulates and decodes the transport block jointly with all previously received transport blocks, if demodulated and decoded If the failure occurs, the processing module is further configured to determine, according to the first time-frequency resource location and the location parameter corresponding to the other transport block, a resource location corresponding to the next transport block, and obtain the received at the time-frequency resource location.
  • the transport block repeats this step until the received transport block is demodulated and successfully decoded or all transport blocks transmitted by the base station are received.
  • the processing module is further configured to obtain unit time-frequency resource information occupied by each transport block, where the unit time-frequency resource information is used to indicate a size of a frequency domain resource occupied by the transport block and a size of the time domain resource.
  • the first time-frequency resource location includes a time domain start location and/or a frequency domain start location of the first transport block
  • the processing module is specifically configured to: according to the first transmission a time domain start position and/or a frequency domain start position of the block, the unit time-frequency resource information, and a location parameter corresponding to the other transport block, determining a time domain occupied by the next transport block sent by the base station Start position and / or frequency domain start position.
  • the first time-frequency resource location includes: a start location and an end location of a time domain of the first transport block, and/or a start location and an end location of the frequency domain;
  • the processing module is specifically configured to: determine, according to a location parameter corresponding to the other transport block, a start location and an end location of a time domain of the first transport block, corresponding to a next transport block sent by the base station a start position and an end position of the time domain; and/or determining a frequency domain corresponding to the next transport block sent by the base station according to the location parameter corresponding to the other transport block, the start position and the end position of the frequency domain Start position and end position.
  • the processing module is specifically configured to determine, according to the time-frequency resource location of the Mth transport block and the location parameter of the acquired time-frequency resource of another transport block.
  • the receiving module is further configured to receive, at the first time-frequency resource location, a first transport block sent by the base station;
  • the processing module is further configured to perform demodulation and decoding on the first transport block
  • the processing module is further configured to determine, according to a time-frequency resource location of the Mth transport block and a location parameter corresponding to the other transport block, a time-frequency resource location corresponding to a next transport block sent by the base station, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the first a relationship between time-frequency resource locations of M transport blocks or a relationship indicating a time-frequency resource location between two adjacent transport blocks;
  • the processing module is further configured to perform demodulation decoding on the transport block jointly with all previously received transport blocks, and if the demodulation and decoding fails, according to the time-frequency resource location of the Mth transport block and other transport blocks.
  • Corresponding location parameters determining a resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location, repeating this step until demodulation and decoding of the received transport block succeeds or receiving the base station All transport blocks sent.
  • the location parameter of the transport block acquired by the processing module includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the device further includes:
  • a sending module configured to send an acknowledgement message to the base station if the processing module demodulates and decodes the transport block successfully.
  • the device further includes:
  • a sending module configured to send a failure message to the base station if the processing module fails to jointly demodulate and decode all the transport blocks sent by the base station.
  • a fifth aspect of the present application provides a base station, including:
  • a memory for storing information and corresponding execution programs
  • a processor configured to encode information bits to be transmitted into N transport blocks, N>1;
  • the processor is further configured to determine to send a time-frequency resource of each transport block, where at least two transport blocks occupy the same time domain resource of the time-frequency resource and the frequency domain resources are different;
  • a transmitter configured to send downlink resource indication information to the user equipment, where the downlink resource indication information is used to indicate a time-frequency resource location of the Mth transport block in the N transport blocks, where N ⁇ M ⁇ 1;
  • the transmitter is further configured to send a corresponding transport block on the determined time-frequency resource.
  • the processor is specifically configured to determine, according to the predetermined available time-frequency resource, a time-frequency resource for sending each transport block, where the first to the Nth of the N transport blocks are in a pre-frequency domain.
  • the order of the post-time domains is sequentially mapped on the available time-frequency resources.
  • each of the N transport blocks obtained by the processor carries the information to be sent, and each of the transport blocks can be independently decoded;
  • the first one of the N transport blocks obtained by the processor carries the information to be transmitted, and the first transport block can be independently decoded; the remaining of the N transport blocks
  • the transport block carries redundancy information or check information of the first transport block, and the remaining transport block can be jointly decoded with the first transport block.
  • the base station further includes a receiver, where the transmitter is specifically configured to:
  • Each transport block is transmitted by using the determined time-frequency resource according to the sequence in the time domain until the receiver receives the acknowledgement message sent by the user equipment.
  • Time domain start position and / or frequency domain start position are used to indicate that the first transport block that is occupied by the first transport block occupies a time-frequency resource.
  • the processor is further configured to acquire unit time-frequency resource information occupied by each transport block before determining to send time-frequency resources of each transport block, where the unit time-frequency resource information is used to indicate that the transport block is occupied.
  • the size of the frequency domain resource and the size of the time domain resource is further configured to acquire unit time-frequency resource information occupied by each transport block before determining to send time-frequency resources of each transport block, where the unit time-frequency resource information is used to indicate that the transport block is occupied.
  • the size of the frequency domain resource and the size of the time domain resource is further configured to acquire unit time-frequency resource information occupied by each transport block before determining to send time-frequency resources of each transport block, where the unit time-frequency resource information is used to indicate that the transport block is occupied.
  • the downlink resource indication information sent by the sender to the user equipment further includes: a number of transport blocks, and/or, other transport blocks except the Mth transport block. a location parameter of the time-frequency resource; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the M-th transport block or to represent two adjacent transmissions The relationship of the location of time-frequency resources between blocks.
  • the location parameter of the transport block sent by the sender to the user equipment includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain between two adjacent transport blocks. interval.
  • a sixth aspect of the present application provides a user equipment, including:
  • a memory for storing a corresponding execution program
  • a receiver configured to receive downlink resource indication information sent by the base station, where the downlink resource indication information indicates a time-frequency resource location of the Mth transport block in the N transport blocks sent by the base station, where N>1, N ⁇ M ⁇ 1;
  • the receiver is further configured to receive, according to the downlink resource indication information, a transport block sent by the base station;
  • a processor configured to acquire information according to the transport block.
  • the downlink resource indication information received by the receiver further includes: a number of transport blocks, and/or a time-frequency resource of other transport blocks except the Mth transport block. a location parameter; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the Mth transport block or Used to indicate the relationship of the location of time-frequency resources between two adjacent transport blocks.
  • the M 1
  • the downlink resource indication information is used to indicate the first time-frequency resource location occupied by the first transport block
  • the receiver is specifically configured to use the first time-frequency resource.
  • the processor is specifically configured to perform demodulation and decoding on the first transport block
  • the processor is further configured to determine, according to the first time-frequency resource location and a location parameter corresponding to another transport block acquired in advance, the base station sends the a time-frequency resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the first time Relationship between frequency resource locations or relationship between time-frequency resource locations between adjacent two transport blocks
  • the processor demodulates and decodes the transport block jointly with all previously received transport blocks, and if the demodulation and decoding fails, the processor is further configured to use the first time-frequency resource location and other transport blocks. Determining a location parameter, determining a resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location, repeating the step until the received transport block is demodulated and successfully decoded or received All transport blocks sent by the base station.
  • the processor is further configured to obtain unit time-frequency resource information occupied by each transport block, where the unit time-frequency resource information is used to indicate a size of a frequency domain resource occupied by the transport block and a size of the time domain resource.
  • the first time-frequency resource location includes a time domain start location and/or a frequency domain start location of the first transport block
  • the processor is specifically configured to: according to the first transmission a time domain start position and/or a frequency domain start position of the block, the unit time-frequency resource information, and a location parameter corresponding to the other transport block, determining a time domain occupied by the next transport block sent by the base station Start position and / or frequency domain start position.
  • the first time-frequency resource location includes: a start location and an end location of a time domain of the first transport block, and/or a start location and an end location of the frequency domain;
  • the processor is specifically configured to: determine, according to a location parameter corresponding to the other transport block, a start position and an end position of a time domain of the first transport block, corresponding to a next transport block sent by the base station a start position and an end position of the time domain; and/or determining a frequency domain corresponding to the next transport block sent by the base station according to the location parameter corresponding to the other transport block, the start position and the end position of the frequency domain Start position and end position.
  • the processor is specifically configured to determine, according to the time-frequency resource location of the Mth transport block and the location parameter of the acquired time-frequency resource of another transport block, determine the first The first time-frequency resource location of the transport block;
  • the receiver is further configured to receive, at the first time-frequency resource location, a first transport block sent by the base station;
  • the processor is further configured to perform demodulation and decoding on the first transport block
  • the processor is further configured to determine, according to a time-frequency resource location of the Mth transport block and a location parameter corresponding to the other transport block, a time-frequency resource location corresponding to a next transport block sent by the base station, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the first a relationship between time-frequency resource locations of M transport blocks or a relationship indicating a time-frequency resource location between two adjacent transport blocks;
  • the processor is further configured to perform demodulation decoding on the transport block jointly with all previously received transport blocks, and if the demodulation and decoding fails, according to the time-frequency resource location of the Mth transport block and other transport blocks.
  • Corresponding location parameter determining a resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location, repeating this step Until the received transport block is demodulated and decoded successfully or all transport blocks sent by the base station are received.
  • the location parameter of the transport block acquired by the processor includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the user equipment further includes:
  • a transmitter configured to send an acknowledgement message to the base station if the processor demodulates and decodes the transport block successfully.
  • the user equipment further includes:
  • a transmitter configured to send a failure message to the base station if the processor fails to jointly demodulate and decode all the transport blocks sent by the base station.
  • a seventh aspect of the present application provides a storage medium, comprising: a readable storage medium and a computer program, the computer program for implementing the method for downlink information transmission provided by any one of the first aspects.
  • the eighth aspect of the present application provides a storage medium, comprising: a readable storage medium and a computer program, the computer program being used to implement the method for downlink information transmission provided by any one of the second aspects.
  • a ninth aspect of the present application provides a program product comprising a computer program (i.e., an execution instruction) stored in a readable storage medium.
  • a computer program i.e., an execution instruction
  • At least one processor of the base station can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the base station implements the method of downlink information transmission provided by various embodiments of the first aspect.
  • a tenth aspect of the present application provides a program product comprising a computer program (i.e., an execution instruction), the computer program being stored in a readable storage medium.
  • a computer program i.e., an execution instruction
  • At least one processor of the user device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the user device implements the method of downlink information transmission provided by the various embodiments of the second aspect above.
  • the downlink information transmission method, device and device provided by the present application the base station encodes information bits to be transmitted into a plurality of transport blocks, and determines to transmit time-frequency resources of each transport block, and sends downlink resource indication information to the user equipment, and downlink resources.
  • the indication information includes that the Mth transport block corresponds to the first time-frequency resource location information, and the base station sends the corresponding transport block on each time-frequency resource, and the user equipment is configured according to the first time-frequency resource location and the position parameters of other transport blocks obtained in advance.
  • the user equipment determines other transport blocks according to other transport block location parameters and time-frequency resource locations of the Mth transport block.
  • the time-frequency resource location does not need to notify the time-frequency resources of each transport block one by one, and effectively reduces the overhead of the downlink control signaling. In this manner, the downlink resource indication can be implemented without increasing the delay and signaling overhead. And can improve the reliability of downlink data transmission.
  • Embodiment 1 is a flowchart of Embodiment 1 of a downlink information transmission method of the present application
  • Embodiment 2 is a flowchart of Embodiment 2 of a downlink information transmission method of the present application
  • FIG. 3 is a schematic diagram of a specific mapping of a transport block in a downlink data area according to the present application.
  • FIG. 4 is a schematic diagram of a specific mapping of another transport block in a downlink data area provided by the present application.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a downlink information transmission apparatus according to the present application.
  • Embodiment 2 of a downlink information transmission apparatus according to the present application.
  • FIG. 7 is a schematic structural diagram of Embodiment 3 of a downlink information transmission apparatus according to the present application.
  • Embodiment 8 is a schematic structural diagram of Embodiment 1 of a base station according to the present application.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present application.
  • a major feature of the 5G communication system compared to the 4G communication system is the addition of support for the URLLC service.
  • URLLC services There are many types of URLLC services. Typical use cases include industrial control, industrial production process automation, human-computer interaction and telemedicine.
  • the 3GPP RAN and RAN1 working groups define the performance indicators of the URLLC service as follows:
  • Delay The transmission time required by the user application layer data packet from the service data unit (English: Service Data Unit, SDU) of the transmitting end wireless protocol stack layer 2/3 to the receiving end wireless protocol stack layer 2/3 SDU.
  • the user plane delay requirement of the URLLC service is 0.5 ms for both uplink and downlink.
  • the above requirements are only applicable when the base station and the terminal are not in the discontinuous reception state (English: Discontinuous Reception, DRX for short). It should be pointed out that the performance requirement of 0.5ms here refers to the average delay of the data packet and is not bound to the reliability requirements described below;
  • Reliability The probability of successful transmission of X bits from the sender to the receiver within a certain time (L seconds) under the given channel quality conditions.
  • the above time is still defined as the user application layer packet from the sender wireless protocol.
  • a typical requirement is to achieve 99.999% reliability in 1ms.
  • the above performance indicators need to be pointed out as typical values.
  • the specific URLLC service may have different requirements for reliability. For example, some extremely demanding industrial control needs to achieve 99.9999999% transmission success probability in an end-to-end delay within 0.25ms.
  • System capacity The maximum throughput of a cell that can be achieved by a system that satisfies a certain percentage of interrupted users.
  • the interruption of the user here means that the system cannot meet the reliability requirements within a time delay range.
  • the above reliability performance indicator refers to the overall reliability of the URLLC service. To meet this requirement, the impact of all the channels involved in the transmission needs to be considered, that is, both the control channel and the data channel need to be considered.
  • a typical method for improving the reliability of a downlink data channel transmits downlink data diversity, such as time domain diversity, frequency diversity, spatial diversity, and the like.
  • downlink data diversity such as time domain diversity, frequency diversity, spatial diversity, and the like.
  • the use of diversity transmission may increase the delay or increase the overhead of downlink resource indication signaling. How to improve the reliability of downlink data transmission without increasing the delay and downlink control signaling bits becomes a problem to be solved.
  • the present invention provides a downlink resource indication method for the URLLC service, which solves the problem of improving the reliability of downlink data transmission without increasing the downlink data delay and signaling overhead.
  • This method can not only improve the reliability of downlink data, but also reduce the delay as much as possible while reducing the downlink control signaling overhead.
  • the downlink information transmission method of the present application will be described below through a specific implementation manner.
  • Embodiment 1 is a flowchart of Embodiment 1 of a downlink information transmission method of the present application. As shown in FIG. 1 , the solution is applied between a base station and a user equipment.
  • the specific implementation steps of the downlink information transmission method are as follows:
  • S101 Encode information bits to be transmitted into N transport blocks, where N>1.
  • the information (or information bits) to be transmitted by the base station is encoded to obtain a plurality of transport blocks (N), and each transport block carries the information bits, that is, the content of each transport block is the same.
  • each transport block coded by the base station can be independently demodulated and decoded (for example, a Cyclic Redundancy Check (CRC) code can be added in each transport block).
  • CRC Cyclic Redundancy Check
  • the first one of the N transport blocks carries the information to be sent, and the first transmission The block may be independently coded; the remaining one of the N transport blocks carries redundancy information or check information of the first transport block, and the remaining transport block may be associated with the first transport block Decoding, the content of subsequent other transport blocks and so on.
  • the number of transport blocks in this scheme is at least two.
  • S102 Determine to send time-frequency resources of each transport block, where at least two transport blocks occupy the same time-domain resources of the time-frequency resources and different frequency domain resources.
  • the base station acquires the available time-frequency resources, and then maps the multiple transport blocks to the corresponding resources to obtain the time-frequency resources of each transport block for downlink transmission.
  • the mapping process at least two transport blocks are multiplexed by frequency domain resources. .
  • the specific determining manner may be: determining, according to the predetermined available time-frequency resource, a time-frequency resource for sending each transport block, where the first to the Nth of the N transport blocks are according to the pre-frequency domain.
  • the order of the time domains is sequentially mapped on the available time-frequency resources. The meaning is to reduce the transmission delay.
  • the transport blocks are mapped on the available time-frequency resources, they are performed in the order of the first-frequency domain and the time-domain.
  • S103 Send downlink resource indication information to the user equipment, where the downlink resource indication information is used to indicate a time-frequency resource location of the Mth transport block in the N transport blocks, where N ⁇ M ⁇ 1.
  • the base station After obtaining the time-frequency resource of each transport block, the base station carries the time domain resource location and the frequency domain resource location of the Mth transport block (which may be any transport block) in the downlink resource indication information.
  • the time-frequency resources of other transport blocks are not specifically indicated.
  • the user equipment may determine the time-frequency resources of other transport blocks according to the time-frequency resource mapping rule specified in the protocol or the location parameter of other transport blocks notified by the high-layer signaling, or the location parameters of other transport blocks carried in the downlink resource indication. position.
  • the downlink resource indication information further includes: a quantity of the transport block, and/or a location parameter of the time-frequency resource of the transport block except the transport block corresponding to the first time-frequency resource location;
  • the location parameter of the block is used to indicate a relationship between a time-frequency resource location of the transport block and the first time-frequency resource location or a relationship between time-frequency resource locations between adjacent two transport blocks.
  • a location parameter of a transport block is used to indicate a relationship between a time-frequency resource of the transport block and a first time-frequency resource location or a relationship between time-frequency resources of two adjacent transport blocks, that is, according to the The time-frequency resource location and the location parameter can determine the time-frequency resource of the transport block.
  • the base station After transmitting the downlink resource indication information to the user equipment, the base station sends the transport block on the respective time-frequency resources, so that the user equipment acquires the information bits carried by the transport block.
  • S104 Send a corresponding transport block on the determined time-frequency resource.
  • the base station performs transmission of the transport block on the determined time-frequency resource, and sends each transport block by using the determined time-frequency resource according to the sequence in the time domain until receiving the acknowledgement message sent by the user equipment.
  • frequency resources can be multiplexed in the same time domain, that is, multiple transport blocks are transmitted on different frequency resources.
  • S105 Receive a transport block sent by the base station according to the downlink resource indication information, and obtain information according to the transmission.
  • the user equipment needs to determine the time-frequency resource location of the transport block according to the downlink resource indication information, and receive the transport block at the determined time-frequency resource location and perform demodulation and decoding to obtain information bits.
  • the following row resource indication information indicates an example of a first time-frequency resource location of the first transport block sent by the base station, and the user equipment receives the first transport block at the first time-frequency resource location, and the first transmission block
  • the block is demodulated and decoded. If successful, no subsequent processing is performed, and no other transport blocks are received. If the demodulation decoding fails, the time-frequency resource location of the next transport block is determined according to the first time-frequency resource location and the location parameter of the other transport block, and the second transport block is received at the location. The received first and second transport blocks are jointly decoded. If the demodulation and decoding is successful, no subsequent processing is performed. If the failure is successful, the process is repeated until all the transport blocks are received or the demodulation and decoding are successful. until.
  • the user equipment first needs to use the location parameter of the transport block, where the location parameter is used to represent the transport block. a relationship between a time-frequency resource location and a time-frequency resource location of the Mth transport block or a relationship between time-frequency resource locations between adjacent two transport blocks) and a time-frequency of the M-th transport block
  • the resource location determines the first time-frequency resource location of the first transport block, and then obtains the transport block received at the first time-frequency resource location for decoding, and if the decoding fails, the time-frequency resource according to the M-th transport block
  • the location and other location parameters of the transport block acquire the time-frequency resource location of the next transport block, continue to receive the transport block for joint decoding, and so on to receive and decode the transport block.
  • the downlink information transmission method provided by the solution the downlink resource indication sent by the base station to the user equipment only specifically indicates the time-frequency resource location of the Mth transmission block sent by the base station, and the user equipment may receive the downlink resource indication according to the Mth
  • the time-frequency resource location of the transport block determines the first time-frequency resource location seen by the first transmission, and receives the first transport block for demodulation decoding. If the demodulation decoding fails, the M-th transport block may be used.
  • the time-frequency resource location and the location parameters of other transport blocks obtained in advance determine the time-frequency resource location of other transport blocks, and then receive the transport block to continue demodulation and decoding, without requiring more time-frequency resources for each transport block.
  • the secondary indication effectively reduces the signaling overhead, and carries the same information bits in multiple transport blocks, and performs diversity transmission in the downlink data region, thereby effectively improving transmission reliability.
  • FIG. 2 is a flowchart of Embodiment 2 of the downlink information transmission method of the present application. As shown in FIG. 2, the specific implementation steps of the downlink information transmission method include:
  • S201 Encode information to be sent into at least two transport blocks, each transport block carries the information to be sent, and each transport block can be independently decoded.
  • the information bits to be transmitted may be encoded into N transport blocks (N is greater than or equal to 2), and then a CRC is added to each transport block to implement independent decoding.
  • each transport block is sequentially mapped to available time-frequency resources according to the order of the first-frequency domain and the time-domain, to obtain time-frequency resources of each transport block.
  • the base station determines, according to the predetermined available time-frequency resource, a time-frequency resource for transmitting each transport block, where the first to the Nth of the N transport blocks are in the order of the pre-frequency domain and the time domain. Mapped on the available time-frequency resources in turn.
  • the base station in determining the specific time-frequency resources of each transport block, the base station preferably obtains available time-frequency resources and the number of transport blocks to be transmitted (the number of transport blocks is greater than 2), in order to reduce transmission time.
  • the base station maps the transport blocks according to the order of the time domain of the pre-frequency domain, that is, first maps the transport block in the frequency domain, and after the mapping of the available frequency domain resources is completed, the transport block needs to be transmitted, and then
  • the mapping of frequency domain resources in a time domain location can effectively reduce the transmission delay of information bits.
  • the base station obtains the time-frequency resource of each transport block according to the foregoing mapping manner, and then determines the relationship between the time-frequency resources corresponding to each transport block, according to which the base station can obtain the time-frequency resource parameter.
  • the base station acquires unit time-frequency resource information occupied by each transport block, where the unit time-frequency resource information is used to indicate a size of the frequency domain resource occupied by the transport block and a size of the time domain resource.
  • the base station or the user equipment may determine the frequency domain resource and/or the time domain resource occupied by each transport block according to the size of the transport block.
  • S203 Send downlink resource indication information to the user equipment, where the downlink resource indication information includes a number of transport blocks, a first time-frequency resource location, and a location parameter corresponding to the other transport block.
  • the downlink resource indication information is used to indicate the time-frequency resource occupied by the first transport block, and specifically, the first time-frequency resource location may be directly carried.
  • the first time-frequency resource location includes a time domain start location and/or a frequency domain start location of the time-frequency resource occupied by the first transport block.
  • the first time-frequency resource location can directly indicate the time range of the first transport block and/or the location range on the frequency domain.
  • the time domain start position of the first transport block may be indicated in the above manner.
  • the frequency domain start position of the first transport block may also be indicated in the above manner.
  • the specific time domain location range and the frequency domain location range may be determined by using the unit time-frequency resource information occupied by each transport block. After receiving the downlink resource indication information, the user equipment determines the time-frequency resource of the first transport block. Location, and the transmission block can be received at the corresponding location.
  • the first time-frequency resource location includes: a start location and an end location of a time domain occupied by the first transport block sent by the base station, and/or a start location and an end location of the frequency domain. That is, the downlink resource indication information is used to indicate the start position and end position of the time domain occupied by the first transport block, and/or the start position and the end position of the frequency domain.
  • the first time-frequency resource location directly indicates the time domain and the frequency domain start location and the end location of the first transport block.
  • the time domain start and end positions of the first transport block may also be indicated in the above manner.
  • the frequency of the first transport block may also be indicated in the above manner.
  • the start position and the end position of the domain, that is, the start position and the end position of the first transport block are clearly indicated, and the time-frequency resource position of the transport block can be obtained without acquiring the unit time-frequency resource information occupied by each transport block. .
  • the location parameter of the transport block in the solution may be carried in the downlink resource indication to notify the user equipment, or may be configured through high layer signaling, or may be specified by a protocol.
  • the location parameter of the transport block includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the relationship between the other transport blocks indicated by the time-frequency resource parameter of the transport block and the time-frequency resource location of the M-th transport block in the foregoing solution includes at least the foregoing two modes, that is, indicating the time-frequency of each transport block.
  • the solution is not limited to the above two indication manners, and other indication manners may be used to determine the time-frequency resource locations of other transport blocks according to the time-frequency resource locations of the M-th transport block.
  • S204 Send a corresponding transport block on each time-frequency resource.
  • the base station After transmitting the downlink resource indication information to the user equipment, the base station sends at least two transport blocks mapped on the corresponding time-frequency resource. After transmitting the corresponding transport block on the at least one time-frequency resource, the base station continues to receive feedback information from the user equipment during the process of transmitting the remaining transport block, and the base station determines whether to send the remaining transport block according to the feedback information.
  • the base station sends the first transport block at the first time-frequency resource location. If the first time frequency If there is only one transport block in the time domain location in the source location, only one transport block is sent. If there are multiple transport blocks on multiple frequency domain resources corresponding to the time domain location in the first time-frequency resource location, then according to A plurality of transport blocks on the frequency resources are all transmitted at the time domain location.
  • the user equipment If the user equipment receives the transport block and successfully obtains the information bit, the user equipment returns an acknowledgement message, that is, the base station receives the acknowledgement message that the user equipment sends the success, and the base station does not continue to send other transport blocks. If the eNB does not receive the acknowledgment message returned by the user equipment, it needs to continue to send the transport block, that is, send the corresponding transport block in the time domain order to the remaining time-frequency resource locations until the acknowledgment message returned by the user equipment is received.
  • S205 Receive a first transport block sent by the base station at the first time-frequency resource location.
  • S206 Perform demodulation and decoding on the first transport block.
  • S208 Demodulate and decode the transport block jointly with all the transport blocks received before, and if the demodulation and decoding fails, determine the resource corresponding to the next transport block according to the first time-frequency resource location and the location parameter corresponding to the other transport block. Positioning and acquiring a transport block received at the time-frequency resource location, repeating this step until demodulation of the received transport block is successful or all transport blocks transmitted by the base station are received.
  • the user equipment first receives the first transport block sent by the base station to the user equipment at the first time-frequency resource location, and then demodulates and decodes the received first transport block, if demodulated If the decoding succeeds, the acknowledgment message is returned to the base station, and the user equipment does not need to acquire the resources of the subsequent unreceived transport block, and does not need to receive the unreceived transport block.
  • the user equipment determines the time-frequency resource location of the next transport block (ie, the second transport block) according to the first time-frequency resource location and the location parameters of other transport blocks. And then receiving the second transport block sent by the base station at the time-frequency resource location, and then jointly decoding the first transport block and the second transport block, and if the demodulation and decoding succeeds, returning an acknowledgement message to the base station. End the process.
  • the time-frequency resource position of the next transmission is determined according to the location parameter, the next transport block is received again, and all the received transport blocks are jointly demodulated and decoded, that is, the process is repeated until the demodulation and decoding succeeds, or The process is terminated until the reception of all the transport blocks is completed and the demodulation decoding fails.
  • the first time-frequency resource location includes a time domain start position and/or a frequency domain start position of the first transmission block, and the user equipment needs to acquire each transport block in advance.
  • Unit time-frequency resource information is used to indicate the size of the frequency domain resource occupied by the transport block and the size of the time domain resource.
  • the method for determining the time-frequency resource location of the next transport block in S207 is: according to the time domain start position and the frequency domain start position of the first transport block, the unit time-frequency resource information, and the other transport block Corresponding location parameters determine a time domain start position and/or a frequency domain start position occupied by the next transport block sent by the base station.
  • the first time-frequency resource location includes: a start location and an end location of a time domain of the first transport block, and/or a start location and an end location of the frequency domain, where Determining, by the base station, a time-frequency resource location corresponding to the next transport block sent by the base station, according to a location parameter corresponding to the other transport block, a start position and an end position of a time domain of the first transport block, Determining a start position and an end position of a time domain corresponding to a next transport block sent by the base station; and/or determining, according to a location parameter corresponding to the other transport block, a start position and an end position of the frequency domain, The start position and end position of the frequency domain corresponding to the next transport block sent by the base station.
  • the frequency domain start location and the end location may identify a specific location by using a number, for example, a virtual number may be used by using a time-frequency resource, and the numbering method is to start from the available first time domain resource.
  • the frequency domain is numbered from low to high.
  • the frequency domain resources of the next time domain resource are numbered from low to high. Large positive integer.
  • the first time-frequency resource location may be directly represented by a start number start number and an end number.
  • the start number of the frequency domain resource of the first transport block is the smallest.
  • the relationship between the other transport blocks and the time-frequency resources of the first transport block may also be represented by a number difference, which is not specifically limited in this application.
  • the steps S209 and S210 are the steps of the step S209 and S210, which are not included at the same time. If the user equipment demodulates and decodes successfully, the acknowledgment message is returned to the base station to notify the base station that the information has been successfully received; otherwise, the failure message is fed back to the base station, so that the base station can Can be resent or processed accordingly.
  • the user equipment determines the first one according to the time-frequency resource location of the Mth transport block and the location parameter of the acquired time-frequency resource of the other transport block. Transmitting the first time-frequency resource location of the block, and then receiving the first transport block for decoding. If the decoding fails, determining the second according to the time-frequency resource location of the M-th transport block and the location parameters of other transport blocks. The time-frequency resource location of the transport block, and so on.
  • the time-frequency resource refers to a resource consisting of one subframe in the time domain and the entire available downlink bandwidth in the frequency domain;
  • the time-frequency resource can be divided into N t ⁇ N f grid forms, that is, the time axis has a uniform length of one subframe and is divided into N t slots, and the frequency axes are equally divided into N f grids, and each grid represents one RB.
  • the RB continues in a slot in the time domain and occupies multiple subcarriers in the frequency domain. For example, in LTE, one RB occupies one slot in the time domain for 0.5 ms, 12 subcarriers in the frequency domain (when the subcarrier spacing is 15 kHz) or 24 subcarriers (when the subcarrier spacing is 7.5 kHz).
  • a specific implementation manner of the downlink information transmission scheme is:
  • the base station sends downlink resource indication information to the user equipment.
  • the base station sends the number N of downlink data channel transport blocks, the time-frequency resource location of the first transport block, and the time-frequency resource location parameter of the remaining N-1 downlink transport blocks to the user equipment.
  • the base station implicitly stores the identifier of the user equipment that needs to be scheduled (that is, the terminal identifier) in the Cyclic Redundancy Check (CRC) calculation, and attaches it to the resource indication information, and performs coding, rate matching, and After being scrambled, modulated, and interleaved, it is mapped to the downlink control area and sent to the user equipment.
  • CRC Cyclic Redundancy Check
  • the base station sends downlink data information to the user equipment in the downlink data area according to the downlink resource indication information; that is, the multiple transport blocks are sent on the respective time-frequency resources.
  • the base station first encodes the original information bits into N transport blocks that can be independently decoded, and the size of the transport block is S; the base station maps one of the transport blocks to the position of the first transport block in the resource indication. (i 1 , j 1 );
  • the base station maps the N-1 transport block to the corresponding time-frequency resource location according to the time-frequency resource location parameter of the remaining N-1 downlink transport blocks.
  • the specific mapping process is:
  • the positional parameter of the time-frequency resource of the remaining N-1 downlink transport blocks is the frequency domain interval G between two adjacent transport blocks (G represents the end position of the previous transport block and the start position of the next transport block). RB number).
  • the remaining N-1 transport blocks are based on the start position (i 1 , j 1 ) of the first transport block and the frequency domain interval G between the adjacent two transport blocks, according to the pre-frequency domain and the time domain.
  • the order is mapped on time-frequency resources.
  • the position of the kth (k ⁇ 2) transport block is (i k ,j k ) according to the following formula:
  • FIG. 3 is a schematic diagram of a specific mapping of a transport block in the downlink data provided by the present application. As shown in FIG. 3, it is assumed that the base station uniformly schedules four user equipments UE1 to UE4 in one subframe, according to step 1
  • the resource indication information of each user equipment is as follows:
  • the mapping result of the downlink data transmission block sent by the base station to the user equipment in the downlink data area is as shown in FIG. 3.
  • Example 2 The location parameter of the time-frequency resource of the remaining N-1 downlink transport blocks is the number X of transport blocks in each slot, and the frequency interval G between adjacent transport blocks in each scheduling period is configured by the upper layer.
  • the transport block transmits L N transport blocks in the T N +1 scheduling period.
  • the remaining N-1 downlink transport blocks are based on the starting position (i 1 , j 1 ) of the first transport block and the number X of transport blocks transmitted in each scheduling period, in the order of the pre-frequency domain and the time domain.
  • the position of the kth (k ⁇ 2) transport block is (i k ,j k ) according to the following formula:
  • FIG. 4 is a schematic diagram of a specific mapping of another transport block in the downlink data provided by the present application. As shown in FIG. 4, it is assumed that the base station uniformly schedules four user equipments UE1 to UE4 within 1 ms, and each user is given according to step 1.
  • the resource indication information of the device is as follows:
  • the mapping result of the downlink data transmission block sent by the base station to the user equipment in the downlink data area is as shown in FIG. 4 .
  • the location parameter of the time-frequency resource of the remaining N-1 downlink transport blocks may be the frequency domain interval G between two adjacent transport blocks in the example 1 or the transport block in each scheduling period in the example 2.
  • the number X can also be other parameters. Which one of the parameters is specified by the standard. If the standard specifies that multiple parameters can be used at the same time, the indication information is added to the downlink resource indication information to indicate the remaining N-1 downlink transmission blocks.
  • the time-frequency resource location parameter is specifically which parameter. Further, the base station sends the mapped data information to the user equipment.
  • the user equipment receives downlink resource indication information.
  • the user equipment performs blind detection of downlink control information in its own search space.
  • the user equipment If the user equipment detects the downlink resource allocation information, the user equipment obtains the downlink resource indication information, including: the number N of data channel transmission blocks, and the time-frequency resource of the first transmission block (i 1 , j 1 Position information and time-frequency resource location parameters of the remaining N-1 downlink transport blocks;
  • the user equipment receives the transport block in the downlink data area
  • the user equipment first finds the first transport block according to the downlink resource indication information received by the foregoing solution.
  • the user equipment then demodulates and decodes the first transport block, including:
  • the user equipment does not process the subsequent N-1 transport blocks, and feeds back ACK information to the base station, and the communication ends;
  • the user equipment searches for the location of the time-frequency resource (i 1 , j 1 ) of the first transport block and the time-frequency resource location parameter of the remaining N-1 downlink transport blocks.
  • the second transport block If the decoding of the first transport block fails, the user equipment searches for the location of the time-frequency resource (i 1 , j 1 ) of the first transport block and the time-frequency resource location parameter of the remaining N-1 downlink transport blocks. The second transport block.
  • the standard specification or the downlink indication information indicates that the number of transmission blocks X transmitted in each scheduling time interval is used as the time-frequency resource location parameter of the remaining N-1 downlink transmission blocks, the following formula is combined:
  • the location and remaining N of the time-frequency resource (i 1 , j 1 ) of the first transport block are used.
  • the user equipment jointly decodes the first transport block and the second transport block, including:
  • the user equipment does not process the subsequent N-2 transport blocks, and feeds back ACK information to the base station, and the communication ends.
  • the user equipment searches for the next transport block according to the location of the previous transport block and the time-frequency resource location parameter of the neighboring N-1 downlink transport blocks.
  • the kth (k>2) transport block (i k ,j k ) can be based on the following formula:
  • N X ⁇ T N + L N , where 0 ⁇ L N ⁇ X, then the position of the kth (k>2) transport block is (i k ,j k ) according to the following formula:
  • the position of the kth (k>2) transport block is (i k , j k )
  • the mapping rule of the pre-defined pre-frequency domain post-time-frequency is unique. determine.
  • the user equipment jointly decodes the k transport blocks, including:
  • the user equipment does not process the subsequent N-k transport blocks, and feeds back the ACK information to the base station, and the communication ends. If the decoding fails, continue looking for the next transport block. So reciprocate until the Nth transport block is found.
  • the user equipment jointly decodes the N transport blocks, including:
  • the ACK information is fed back to the base station, and the communication ends.
  • the NACK information is fed back to the base station to request retransmission, and the communication ends.
  • the downlink information transmission method provided by the present application includes: a number N of downlink data channel transmission blocks, a time-frequency resource location information of the first downlink transmission block, and a resource indication method based on the downlink diversity transmission Time-frequency resource location parameters of the remaining N-1 downlink transport blocks.
  • the time-frequency resource location information of the block and the time-frequency resource location parameter of the remaining N-1 downlink transport blocks, the location of all transport blocks may be based on the time-frequency resource location information of the first downlink transport block and the remaining N-1 downlink transmissions.
  • the time-frequency resource location parameter of the block is uniquely determined based on the mapping mode of the pre-defined frequency domain and the time domain, and the time-frequency resource location of each transport block does not need to be notified one by one, thereby reducing the downlink control signaling as much as possible. Overhead.
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of a downlink information transmission apparatus according to the present application. As shown in FIG. 5, the downlink information transmission apparatus 10 includes:
  • the processing module 11 is configured to encode the information to be sent into N transport blocks, N>1;
  • the processing module 11 is further configured to determine to send a time-frequency resource of each transport block, where at least two transport blocks occupy the same time-domain resources of the time-frequency resource and the frequency domain resources are different;
  • the sending module 12 is configured to send downlink resource indication information to the user equipment, where the downlink resource indication information is used to indicate a time-frequency resource location of the Mth transport block in the N transport blocks, where N ⁇ M ⁇ 1;
  • the sending module 12 is further configured to send a corresponding transport block on the determined time-frequency resource.
  • the downlink information transmission apparatus provided in this embodiment is used to perform the technical solution of the base station side in the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the processing module 11 is specifically configured to determine, according to the predetermined available time-frequency resources, a time-frequency resource for transmitting each transport block, where The first to the Nth of the N transport blocks are sequentially mapped on the available time-frequency resources in the order of the pre-frequency domain post-time domain.
  • each of the N transport blocks encoded by the processing module 11 carries the information to be sent, and each of the transport blocks can be independently decoded;
  • the first one of the N transport blocks encoded by the processing module 11 carries the information to be sent, and the first transport block can be independently decoded; in the N transport blocks
  • the remaining transport block carries redundancy information or check information of the first transport block, and the remaining transport block can be jointly decoded with the first transport block.
  • the device 10 further includes a receiving module 13;
  • the sending module 12 is specifically configured to:
  • the processing module 11 is further configured to: before sending the time-frequency resource of each transport block, obtain unit time-frequency resource information occupied by each transport block; the unit time-frequency resource information is used to indicate that the transport block is occupied.
  • the size of the frequency domain resource and the size of the time domain resource is further configured to: before sending the time-frequency resource of each transport block, obtain unit time-frequency resource information occupied by each transport block; the unit time-frequency resource information is used to indicate that the transport block is occupied.
  • the size of the frequency domain resource and the size of the time domain resource is further configured to: before sending the time-frequency resource of each transport block, obtain unit time-frequency resource information occupied by each transport block; the unit time-frequency resource information is used to indicate that the transport block is occupied. The size of the frequency domain resource and the size of the time domain resource.
  • the downlink resource indication information sent by the sending module 12 to the user equipment further includes: a number of transport blocks, and/or other transport blocks except the Mth transport block. a location parameter of the time-frequency resource; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the M-th transport block or to represent two adjacent The relationship of the location of the time-frequency resource between the transport blocks.
  • the location parameter of the transport block sent by the sending module 12 to the user equipment includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency between two adjacent transport blocks. Domain interval.
  • the downlink information transmission apparatus provided in this embodiment is used to perform the technical solution of the base station side in the foregoing method embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of the downlink information transmission apparatus of the present application. As shown in FIG. 6, the downlink information transmission apparatus 20 includes:
  • the receiving module 21 is configured to receive downlink resource indication information sent by the base station, where the downlink resource indication information indicates a time-frequency resource location of the Mth transport block in the N transport blocks sent by the base station, where N>1, N ⁇ M ⁇ 1;
  • the receiving module 21 is further configured to receive, according to the downlink resource indication information, a transport block sent by the base station;
  • the processing module 22 is configured to acquire information according to the transport block.
  • the downlink information transmission device provided in this embodiment is used to perform the technical solution on the user equipment side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the downlink resource indication information received by the receiving module 21 further includes: a number of transport blocks, and/or, in addition to the Mth transport block a location parameter of a time-frequency resource of the other transport block; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the M-th transport block or for Indicates the relationship of the location of the time-frequency resource between two adjacent transport blocks.
  • the M 1
  • the downlink resource indication information is used to indicate the first time-frequency resource location occupied by the first transport block
  • the receiving module 21 is specifically configured to use the first time-frequency resource.
  • the processing module 22 is specifically configured to perform demodulation and decoding on the first transport block.
  • the processing module 22 is further configured to determine, according to the first time-frequency resource location and a location parameter corresponding to another transport block acquired in advance, that the base station sends a time-frequency resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the first The relationship between the locations of time-frequency resources or the relationship between the locations of time-frequency resources between adjacent two transport blocks
  • the processing module 22 demodulates and decodes the transport block jointly with all previously received transport blocks, if demodulated If the decoding fails, the processing module is further configured to determine, according to the first time-frequency resource location and the location parameter corresponding to the other transport block, a resource location corresponding to the next transport block, and obtain the received at the time-frequency resource location. The transport block repeats this step until the demodulation of the received transport block is successfully decoded or all transport blocks transmitted by the base station are received.
  • the processing module 22 is further configured to obtain unit time-frequency resource information occupied by each transport block, where the unit time-frequency resource information is used to indicate a size of a frequency domain resource occupied by the transport block and a size of the time domain resource. .
  • the first time-frequency resource location includes a time domain start location and/or a frequency domain start location for transmitting the first transport block
  • the processing module 22 is specifically configured to: according to the first transmission a time domain start position and/or a frequency domain start position of the block, the unit time-frequency resource information, and a location parameter corresponding to the other transport block, determining a time domain occupied by the next transport block sent by the base station Start position and / or frequency domain start position.
  • the first time-frequency resource location includes: a start location and an end location of a time domain of the first transport block, and/or a start location and an end location of the frequency domain;
  • the processing module 22 is specifically configured to: determine, according to a location parameter corresponding to the other transport block, a start position and an end position of a time domain of the first transport block, corresponding to a next transport block sent by the base station Determining a frequency domain corresponding to a next transport block sent by the base station according to a location parameter corresponding to the other transport block, a start position and an end position of the frequency domain, and/or The starting position and ending position.
  • the processing module 22 is specifically configured to determine, according to the time-frequency resource location of the Mth transport block and the location parameter of the acquired time-frequency resource of another transport block.
  • the receiving module 21 is further configured to receive, at the first time-frequency resource location, a first transport block sent by the base station;
  • the processing module 22 is further configured to perform demodulation and decoding on the first transport block.
  • the processing module 22 is further configured to determine, according to the time-frequency resource location of the Mth transport block and the location parameter corresponding to the other transport block. Determining a time-frequency resource location corresponding to a next transport block sent by the base station, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the a relationship between time-frequency resource locations of the Mth transport block or a relationship between time-frequency resource locations between adjacent two transport blocks;
  • the processing module 22 is further configured to perform demodulation decoding on the transport block jointly with all previously received transport blocks, and if the demodulation and decoding fails, according to the time-frequency resource location and other transmissions of the Mth transport block. Determining a location parameter corresponding to the block, determining a resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location, repeating the step until the received transport block is demodulated and successfully decoded or received All transport blocks sent by the base station.
  • the location parameter of the transport block acquired by the processing module 22 includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the downlink information transmission device 20 provided by the foregoing implementation manner is used to perform the technical solution on the user equipment side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG 7 is a schematic structural diagram of a third embodiment of the downlink information transmission apparatus of the present application, as shown in Figure 7, on the basis of the second embodiment, the downlink information transmission apparatus 20 further includes: a sending module 23;
  • the sending module 23 is configured to send an acknowledgement message to the base station if the processing module 22 demodulates the transport block successfully.
  • the sending module 23 is configured to send a failure message to the base station if the processing module 22 fails to jointly demodulate and decode all the transport blocks sent by the base station.
  • the downlink information transmission device 20 provided in this embodiment is used to perform the technical solution on the user equipment side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 8 is a schematic structural diagram of Embodiment 1 of a base station according to the present application. As shown in FIG. 8, the base station 30 includes:
  • a memory 31 for storing information and corresponding execution programs
  • the processor 32 is configured to encode information bits to be transmitted into N transport blocks, N>1;
  • the processor 32 is further configured to determine to send a time-frequency resource of each transport block, where at least two transport blocks occupy the same time domain resource of the time-frequency resource and the frequency domain resources are different;
  • the transmitter 33 is configured to send downlink resource indication information to the user equipment, where the downlink resource indication information is used to indicate a time-frequency resource location of the Mth transport block in the N transport blocks, where N ⁇ M ⁇ 1;
  • the transmitter is further configured to send a corresponding transport block on the determined time-frequency resource.
  • the processor 32 is specifically configured to determine, according to a predetermined available time-frequency resource, a time-frequency resource for transmitting each transport block, where the first to the Nth of the N transport blocks are according to a pre-frequency The order of the time domain after the domain is sequentially mapped on the available time-frequency resources.
  • each of the N transport blocks encoded by the processor 32 carries the information to be sent, and each of the transport blocks can be independently decoded;
  • the first one of the N transport blocks encoded by the processor 32 carries the information to be sent, and the first transport block can be independently decoded; in the N transport blocks
  • the remaining transport block carries redundancy information or check information of the first transport block, and the remaining transport block can be jointly decoded with the first transport block.
  • the base station further includes a receiver 34.
  • the transmitter 33 is specifically configured to:
  • Each transport block is transmitted by using the determined time-frequency resource according to the sequence in the time domain until the receiver receives the acknowledgement message sent by the user equipment.
  • the processor 32 is further configured to: acquire unit time-frequency resource information occupied by each transport block before determining to send time-frequency resources of each transport block; the unit time-frequency resource information is used to indicate a transport block.
  • the downlink resource indication information sent by the sender 33 to the user equipment further includes: a number of transport blocks, and/or other transport blocks except the Mth transport block. a location parameter of the time-frequency resource; a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the M-th transport block or to represent two adjacent The relationship of the location of the time-frequency resource between the transport blocks.
  • the location parameter of the transport block sent by the sender 33 to the user equipment includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency between two adjacent transport blocks. Domain interval.
  • the base station provided by this embodiment is used to implement the technical solution of the base station side in any of the foregoing method embodiments, and the implementation principle thereof is implemented. Similar to the technical effect, it will not be described here.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present application. As shown in FIG. 9, the user equipment 40 includes:
  • a memory 41 configured to store a corresponding execution program
  • the receiver 42 is configured to receive downlink resource indication information sent by the base station, where the downlink resource indication information indicates a time-frequency resource location of the Mth transport block in the N transport blocks sent by the base station, where N>1, N ⁇ M ⁇ 1;
  • the receiver 42 is further configured to receive, according to the downlink resource indication information, a transport block sent by the base station;
  • the processor 43 is configured to acquire information according to the transport block.
  • the downlink resource indication information received by the receiver 42 further includes: a number of transport blocks, and/or a time-frequency resource of other transport blocks except the Mth transport block.
  • Location parameter a location parameter of the transport block is used to indicate a relationship between a time-frequency resource location of the transport block and a time-frequency resource location of the Mth transport block or to represent between two adjacent transport blocks The relationship of the location of the time-frequency resource.
  • the downlink resource indication information is used to indicate a first time-frequency resource location occupied by the first transport block, and the receiver 42 is specifically configured to use the first time-frequency.
  • the processor 43 is specifically configured to perform demodulation and decoding on the first transport block.
  • the processor 43 is further configured to determine, according to the first time-frequency resource location and a location parameter corresponding to another transport block acquired in advance, that the base station sends a time-frequency resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the first The relationship between the locations of time-frequency resources or the relationship between the locations of time-frequency resources between adjacent two transport blocks
  • the processor 43 demodulates and decodes the transport block jointly with all previously received transport blocks, and if the demodulation and decoding fails, the processor is further configured to use the first time-frequency resource location and other transmissions. Determining a location parameter corresponding to the block, determining a resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location, repeating the step until the received transport block is demodulated and successfully decoded or received All transport blocks sent by the base station.
  • the processor 43 is further configured to acquire unit time-frequency resource information occupied by each transport block, where the unit time-frequency resource information is used to indicate a size of a frequency domain resource and a size of a time domain resource occupied by the transport block. .
  • the first time-frequency resource location includes a time domain start location and/or a frequency domain start location of the first transport block
  • the processor 43 is specifically configured to: according to the first Determining a time domain start position and/or a frequency domain start position of the transport block, the unit time-frequency resource information, and a location parameter corresponding to the other transport block, determining a time domain occupied by the next transport block sent by the base station Start position and / or frequency domain start position.
  • the first time-frequency resource location includes: a start location and an end location of a time domain of the first transport block, and/or a start location and an end location of the frequency domain;
  • the processor 43 is specifically configured to: determine, according to the location parameter corresponding to the other transport block, the start position and the end position of the time domain of the first transport block, the next transport block corresponding to the base station Determining a frequency domain corresponding to a next transport block sent by the base station according to a location parameter corresponding to the other transport block, a start position and an end position of the frequency domain, and/or The starting position and ending position.
  • the processor 43 is specifically configured to determine, according to the time-frequency resource location of the Mth transport block and the location parameter of the acquired time-frequency resource of another transport block.
  • the receiver 42 is further configured to receive, at the first time-frequency resource location, a first transport block sent by the base station;
  • the processor 43 is further configured to perform demodulation and decoding on the first transport block.
  • the processor 43 is further configured to determine, according to the time-frequency resource location of the Mth transport block and the location parameter corresponding to the other transport block. Determining a time-frequency resource location corresponding to a next transport block sent by the base station, and acquiring a transport block received at the time-frequency resource location; wherein the location parameter is used to indicate a time-frequency resource location of the transport block and the a relationship between time-frequency resource locations of the Mth transport block or a relationship between time-frequency resource locations between adjacent two transport blocks;
  • the processor 43 is further configured to perform demodulation decoding on the transport block jointly with all previously received transport blocks, and if the demodulation and decoding fails, according to the time-frequency resource location and other transmissions of the Mth transport block. Determining a location parameter corresponding to the block, determining a resource location corresponding to the next transport block, and acquiring a transport block received at the time-frequency resource location, repeating the step until the received transport block is demodulated and successfully decoded or received All transport blocks sent by the base station.
  • the location parameter of the transport block acquired by the processor 43 includes: a frequency domain interval of the transport block from the Mth transport block, or a frequency domain interval between two adjacent transport blocks.
  • the user equipment further includes:
  • the transmitter 44 is configured to send an acknowledgement message to the base station if the processor 43 demodulates and decodes the transport block successfully.
  • the user equipment further includes:
  • the transmitter 44 is configured to send a failure message to the base station if the processor 43 fails to jointly demodulate and decode all the transport blocks sent by the base station.
  • the user equipment provided in this embodiment is used to perform the technical solution on the user equipment side in any of the foregoing method embodiments, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the present application also provides a storage medium comprising: a readable storage medium and a computer program for implementing a method for downlink information transmission provided by any one of the base stations.
  • the present application also provides a storage medium comprising: a readable storage medium and a computer program for implementing a method of downlink information transmission provided by any one of the user equipments.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the base station can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the base station implements the method of downlink information transmission provided by the various embodiments described above.
  • the application also provides a program product comprising a computer program (ie, an execution instruction) stored in a readable storage medium.
  • a computer program ie, an execution instruction
  • At least one processor of the user device can read the computer program from a readable storage medium, and the at least one processor executes the computer program such that the user device implements the method of downlink information transmission provided by the various embodiments described above.
  • the processor may be a central processing unit (English: Central Processing Unit, CPU for short), or may be other general-purpose processors, digital signal processors (English: Digital Signal) Processor, referred to as DSP, and Application Specific Integrated Circuit (ASIC).
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like. The steps of the method disclosed in the embodiments of the present application may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the aforementioned program can be stored in a computer readable memory.
  • the steps including the foregoing method embodiments are performed; and the foregoing memory (storage medium) includes: read-only memory (English: read-only memory, abbreviation: ROM), RAM, flash memory, hard disk, Solid state drive, magnetic tape (English: magnetic tape), floppy disk (English: floppy disk), optical disc (English: optical disc) and any combination thereof.

Abstract

本申请提供一种下行信息传输方法、装置和设备,该方法包括:将信息编码成多个传输块,并确定发送每个传输块的时频资源,向用户设备发送下行资源指示信息,下行资源指示信息指示第M个传输块所占的时频资源位置;并在每个时频资源上发送对应的传输块,用户设备根据下行资源指示信息接收传输块并解码获取信息,只在下行资源指示信息中指示一个传输块的资源,终端设备可以根据其他传输块的位置参数确定其他传输块的时频资源位置并进行其他传输块的接收和译码,通过多个传输块承载同样的信息比特可以有效提高传输可靠性,无需逐一通知每个传输块的时频资源,有效减小下行控制信令的开销。

Description

下行信息传输方法、装置和设备
本申请要求于2016年11月04日提交中国专利局、申请号为201610965310.6、申请名称为“下行信息传输方法、装置和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种下行信息传输方法、装置和设备。
背景技术
5G通信系统致力于支持更高系统性能,其将支持多种业务类型,不同部署场景和更宽的频谱范围。其中,上述的多种业务类型包括增强移动宽带(英文:enhanced Mobile Broadband,简称:eMBB),海量机器类型通信(英文:Massive Machine Type Communication,简称:mMTC),超可靠低延迟通信(英文:Ultra-reliable and low latency communications,简称:URLLC),多媒体广播多播业务(英文:Multimedia Broadcast Multicast Service,简称:MBMS)和定位业务等等。不同部署场景包括室内热点(Indoor hotspot),密集城区(dense urban),郊区,城区宏覆盖(Urban Macro)及高铁场景等。
5G通信系统相比与4G通信系统的一大特征就是增加了对URLLC业务的支持。URLLC的业务种类包括很多种,典型的用例包括工业控制,工业生产流程自动化,人机交互和远程医疗等。为更好的量化URLLC业务的性能指标,从而给5G系统设计提供基准输入和评估准则,3GPP RAN和RAN1工作组对URLLC业务的时延、可靠性和系统容量等性能指标进行了定义,其中可靠性是指URLLC业务的总体可靠性。为满足此要求,传输中所涉及的所有信道的影响都需要进行考虑,即控制信道和数据信道都需要进行考虑。
常用的提高下行数据信道可靠性的一种典型的方法就将下行数据分集传输,例如:时域分集、频率分集、空间分集等。但是采用分集传输很可能会增加时延或者增加下行资源指示信令的开销,如何在不增加时延及下行控制信令比特的情况下,提高下行数据传输的可靠性成为一个需要解决的问题。
发明内容
本申请实施例提供一种下行信息传输方法、装置和设备,用于在不增加时延和信令开销的情况下,实现下行资源指示,并且能够提高下行数据传输的可靠性。
本申请第一方面提供一种下行信息传输方法,包括:
将待发送的信息比特编码为N各传输块,N>1;
确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;;
在确定的时频资源上发送对应的传输块。
本方案主要是用于URLLC业务过程中对下行资源进行指示,在不增加信令开销和时延的基础上,提高下行信息传输的可靠性,基站在将待发送的信息编译形成传输块,该方案中传输块的数量至少为两个,将多个传输块映射到各自的时频资源上之后,基站向用户设备发送的下行资源指示中只具体指示基站发送的第M个传输块(可以是其中任一个传输块)的具体的第一时频资源位置,其他的传输块的时频资源位置通过与第M个传输块的时频资源位置之间的关系进行指示或者由协议规定或者高层信令通知用户设备,即用户设备可预先获取到其他传输块的位置参数,用户设备在接收到该下行资源指示后,确定基站发送的第1个传输块的第一时频资源位置,并在第一时频资源位置接收第1个传输块进行解调译码,如果解调译码失败,则可以根据第M个传输块的时频资源位置和传输块的位置参数,确定其他传输块的时频资源位置,然后接收传输块继续解调译码得到信息比特,在该方案中,不需要对每个传输块的时频资源进行多次指示,有效降低信令开销,并且多个传输块均承载所述待发送的信息比特,在下行数据区域进行分集传输,有效提高了传输可靠性。
在该方案中,所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
在上述方案的基础上,根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
本方案中,基站在确定每个传输块的具体的时频资源的过程中,首选要获取可用的时频资源及待发送传输块的个数(传输块个数大于2),为了降低传输时延,基站将传输块按照先频域后时域的顺序进行映射,即首先在频域上进行映射传输块,当可用的频域资源上映射完成后还剩下传输块需要传输,则再下一个时域位置上的频域资源进行映射,可有效降低信息比特的传输时延。
可选的,所述在所述确定的时频资源上发送对应的传输块,包括:
按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至收到所述用户设备发送的确认消息。
本方案中,基站按照预先确定的时频资源发送传输块,如果接收到用户设备返回的确认消息,则不再发送剩余的传输块,如果没有接收到确认消息则按照时间顺序继续发送。
可选的,M=1,所述下行资源指示信息用于指示所述第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
可选的,在确定发送每个传输块的时频资源之前,所述方法还包括:
获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
该方案中,第一时频资源位置可以直接指示出第1个传输块的时域和频域上的位置,可选的,还可以按照上述方式指示第1个传输块发送的时域起始位置或频域起始位置,通过每个传输块占用的单位时频资源信息,则可以确定出具体的时域位置和频域位置,用户设备可以在对应的位置进行传输块的接收。
可选的,M=1,所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
可选的,所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
上述方案中的传输块的位置参数指示的其他传输块与第M个传输块的时频资源位置之间的关系,至少包括上述的两种方式,即指示出每个传输块的时频资源位置与第M个传输块的时频资源位置之间的频域间隔,或者指示出相邻的两个传输块之间的频域间隔。本方案并不限于上述两种指示方式,也可以用其他的指示方式能够根据第M个传输块的时频资源位置确定其他传输块的时频资源位置即可。
本申请第二方面提供一种信息传输方法,包括:
接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输块获取信息。
在本方案中,用户设备在接收到该下行资源指示后,根据下行资源指示信息确定基站发送的第1个传输块的第一时频资源位置,根据第一时频资源位置接收第1个传输块进行解调译码,如果解调译码失败,则可以根据第M个传输块的时频资源位置和获取到的其他传输块的位置参数,确定其他传输块的时频资源位置,然后接收传输块继续解调译码,在该方案中,不需要对每个传输块的时频资源进行多次指示,有效降低信令开销,并且在多个传输块承载相同的信息比特,在下行数据区域进行分集传输,有效提高了传输可靠性。
可选的,所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
具体实现中,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,则所述根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输块获取信息,包括:
在所述第一时频资源位置上接收所述基站发送的第1个传输块;
对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则根据所述第一时频资源位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获 取在所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取在所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
在本方案中,用户设备在第一时频资源位置接收第1个传输块,并对该第1个传输块进行解调译码,若成功则不进行后续处理,也不用接收未接收的传输块;若解调译码失败,则根据第一时频资源位置和其他传输块的位置参数确定下一传输块的时频资源位置,并获取在该位置上接收到的第二个传输块,将接收到的第1个和第二个传输块进行联合译码,若得到信息比特,则不进行后续处理,若失败则重复上述过程直至对接收到的传输块解调译码成功或者接收完所有的传输块为止。
可选的,所述接收基站发送的下行资源指示信息之前,所述方法还包括:
获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则根据所述第一时频资源位置和其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,包括:
根据所述第1个传输块的时域起始位置和频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
该方案中,第一时频资源位置可以直接指示出第1个传输块的时域和频域上的位置,可选的,还可以按照上述方式指示第1个传输块发送的时域起始位置和或频域起始位置,通过每个传输块占用的单位时频资源信息,则可以确定出具体的时域位置和频域位置,用户设备可以在对应的位置进行传输块的接收。
可选的,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
则所述根据所述第一时频资源位置和其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,包括:
根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
可选的,M>1,则所述根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输块获取信息,包括:
根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
在所述第一时频资源位置上接收所述基站发送的第1个传输块;
对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则根据所述第M个传输块的时频资源位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
该方案中,当下行资源指示信息指示的不是基站发送的第1个传输块的资源位置时,需要根据第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置,然后再按照前述的方式,依次接收传输块进行联合译码处理。
可选的,传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者相邻两个传输块之间的频域间隔。
上述方案中的传输块的位置参数指示的其他传输块与第M个传输块的时频资源位置之间的关系,至少包括上述的两种方式,即指示出每个传输块的时频资源位置与第M个传输块的时频资源位置之间的频域间隔,或者指示出相邻的两个传输块之间的频域间隔。本方案并不限于上述两种指示方式,也可以用其他的指示方式能够根据第M个传输块的时频资源位置确定其他传输块的时频资源位置即可。
在上述任一方案的基础上,所述方法还包括:
若对任一个传输块解调译码成功,则向所述基站发送确认消息。
可选的,所述方法还包括:
若对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
该方案中,用户设备需要对基站发送的下行信息进行反馈,若解调译码成功,则返回确认消息,否则返回失败消息。
本申请第三方面提供一种下行信息传输装置,包括:
处理模块,用于将待发送的信息编码为N个传输块,N>1;
所述处理模块还用于确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
发送模块,用于向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
所述发送模块还用于在确定的时频资源上发送对应的传输块。
可选的,所述处理模块具体用于根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
可选的,所述处理模块编码得到的所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
所述处理模块编码得到的所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
可选的,所述装置还包括接收模块;则所述发送模块具体用于:
按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至所述接收模块收到所述用户设备发送的确认消息。
可选的,M=1,所述发送模块向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占发送的第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
可选的,所述处理模块还用于在确定发送每个传输块的时频资源之前,获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,M=1,所述发送模块向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
可选的,所述发送模块向所述用户设备发送的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,所述发送模块向所述用户设备发送的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
本申请第四方面提供一种信息传输装置,包括:
接收模块,用于接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
所述接收模块还用于根据所述下行资源指示信息接收所述基站发送的传输块;
处理模块,用于根据所述传输块获取信息。
可选的,所述接收模块接收到的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,则所述接收模块具体用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理模块具体用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理模块还用于根据所述第M个传输块的时频资源位置位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取在所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系
所述处理模块对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码 失败,则所述处理模块还用于根据所述第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取在所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理模块还用于获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则所述处理模块具体用于:根据所述第1个传输块的时域起始位置和/或频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
可选的,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
则所述处理模块具体用于:根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
可选的,所述M>1,则所述处理模块具体用于根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
所述接收模块还用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理模块还用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理模块还用于根据所述第M个传输块的时频资源位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
所述处理模块还用于对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理模块获取到的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
可选的,所述装置还包括:
发送模块,用于若所述处理模块对传输块解调译码成功,则向所述基站发送确认消息。
可选的,所述装置还包括:
发送模块,用于若所述处理模块对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
本申请第五方面提供一种基站,包括:
存储器,用于存储信息以及相应的执行程序;
处理器,用于将待发送的信息比特编码为N个传输块,N>1;
所述处理器还用于确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
发送器,用于向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
所述发送器还用于在确定的时频资源上发送对应的传输块。
可选的,所述处理器具体用于根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
可选的,所述处理器编码得到的所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
所述处理器编码得到的所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
可选的,所述基站还包括接收器;则所述发送器具体用于:
按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至所述接收器收到所述用户设备发送的确认消息。
可选的,M=1,所述发送器向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占发送的第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
可选的,所述处理器还用于在确定发送每个传输块的时频资源之前,获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,M=1,所述发送器向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
可选的,所述发送器向所述用户设备发送的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,所述发送器向所述用户设备发送的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
本申请第六方面提供一种用户设备,包括:
存储器,用于存储相应的执行程序;
接收器,用于接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
所述接收器还用于根据所述下行资源指示信息接收所述基站发送的传输块;
处理器,用于根据所述传输块获取信息。
可选的,所述接收器接收到的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或 者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,则所述接收器具体用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理器具体用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理器还用于根据所述第一时频资源位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取在所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系
所述处理器对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则所述处理器还用于根据所述第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取在所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理器还用于获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则所述处理器具体用于:根据所述第1个传输块的时域起始位置和/或频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
可选的,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
则所述处理器具体用于:根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
可选的,所述M>1,则所述处理器具体用于根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
所述接收器还用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理器还用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理器还用于根据所述第M个传输块的时频资源位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
所述处理器还用于对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤 直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理器获取到的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
可选的,所述用户设备还包括:
发送器,用于若所述处理器对传输块解调译码成功,则向所述基站发送确认消息。
可选的,所述用户设备还包括:
发送器,用于若所述处理器对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
本申请第七方面提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第一方面任一项提供的下行信息传输的方法。
本申请第八方面提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现第二方面任一项提供的下行信息传输的方法。
本申请第九方面提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。基站的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得基站实施第一方面的各种实施方式提供的下行信息传输的方法。
本申请第十方面提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。用户设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得用户设备实施上述第二方面的各种实施方式提供的下行信息传输的方法。
本申请提供的下行信息传输方法、装置和设备,基站将待发送的信息比特编码成多个传输块,并确定发送每个传输块的时频资源,向用户设备发送下行资源指示信息,下行资源指示信息包括第M个传输块对应第一时频资源位置信息,基站在每个时频资源上发送对应的传输块,用户设备根据第一时频资源位置以及预先得到的其他传输块的位置参数,接收传输块并解码获取信息比特,仅仅在下行资源指示信息中指示一个传输块的资源,以使用户设备根据其他输块位置参数以及第M个传输块的时频资源位置确定其他传输块的时频资源位置,无需逐一通知每个传输块的时频资源,有效减小下行控制信令的开销,通过该种方式可在不增加时延和信令开销的情况下,实现下行资源指示,并且能够提高下行数据传输的可靠性。
附图说明
图1为本申请下行信息传输方法实施例一的流程图;
图2为本申请下行信息传输方法实施例二的流程图;
图3为本申请提供的一种传输块在下行数据区的具体映射示意图;
图4为本申请提供的又一种传输块在下行数据区的具体映射示意图;
图5为本申请下行信息传输装置实施例一的结构示意图;
图6为本申请下行信息传输装置实施例二的结构示意图;
图7为本申请下行信息传输装置实施例三的结构示意图;
图8为本申请基站实施例一的结构示意图;
图9为本申请用户设备实施例一的结构示意图。
具体实施方式
5G通信系统相比与4G通信系统的一大特征就是增加了对URLLC业务的支持。URLLC的业务种类包括很多种,典型的用例包括工业控制,工业生产流程自动化,人机交互和远程医疗等。为更好的量化URLLC业务的性能指标,从而给5G系统设计提供基准输入和评估准则,3GPP RAN和RAN1工作组对URLLC业务的性能指标做了如下定义:
时延:用户应用层数据包从发送端无线协议栈层2/3的服务数据单元(英文:Service Data Unit,简称:SDU)到达接收端无线协议栈层2/3SDU所需的传输时间。URLLC业务的用户面时延要求对于上下行均为0.5ms,上述要求仅适用于基站和终端都不处于非连续接收态(英文:Discontinuous Reception,简称:DRX)时。需要指出这里0.5ms的性能要求是指数据包的平均时延,并不与下述的可靠性要求绑定;
可靠性:在给定的信道质量条件下,从发送端到接收端在一定时间内(L秒)正确传输X比特的成功概率,上述的时间仍定义为用户应用层数据包从发送端无线协议栈层2/3的SDU到达接收端无线协议栈层2/3SDU所需的时间。对于URLLC业务,一个典型需求是在1ms内达到99.999%的可靠性。需要指出的上述性能指标仅是个典型值,具体URLLC业务可能对可靠性有不同的需求,比如某些极端苛刻的工业控制需要在端到端时延在0.25ms内达到99.9999999%的传输成功概率。
系统容量:在满足一定比例中断用户前提下的系统所能达到的小区最大吞吐量,这里中断用户是指系统无法满足其在一定时延范围内的可靠性需求。
上述的可靠性性能指标是指URLLC业务的总体可靠性。为满足此要求,传输中所涉及的所有信道的影响都需要进行考虑,即控制信道和数据信道都需要进行考虑。
提高下行数据信道可靠性的一种典型的方法就将下行数据分集传输,例如:时域分集、频率分集、空间分集等。但是采用分集传输很可能会增加时延或者增加下行资源指示信令的开销,如何在不增加时延及下行控制信令比特的情况下,提高下行数据传输的可靠性成为一个需要解决的问题。
本申请针对URLLC业务,提供了一种下行资源指示方法,解决了在不增加下行数据时延和信令开销的前提下,提高下行数据传输可靠性的问题。这种方法,不仅能够提高下行数据的可靠性,而且能够尽可能的降低时延,同时减小下行控制信令开销。下面通过具体的实施方式对本申请的下行信息传输方法进行说明。
图1为本申请下行信息传输方法实施例一的流程图,如图1所示,该方案应用在基站和用户设备之间,该下行信息传输方法的具体实现步骤为:
S101:将待发送的信息比特编码为N个传输块,N>1。
在本步骤中,基站对待发送的信息(或者信息比特)进行编码,得到多个传输块(N个),每个传输块均承载该信息比特,即每个传输块的内容都是相同的,且基站编码的每个传输块都可以独立解调译码(例如:可以在每个传输块中附加循环冗余校验(Cyclic Redundancy Check,CRC)码)。
可选的,该N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输 块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码,后续其他的传输块的内容以此类推。
该方案中传输块的个数至少为两个。
S102:确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同。
基站获取可用的时频资源,然后将多个传输块映射在对应的资源上,得到下行传输每个传输块的时频资源,在映射过程至少存在两个传输块采用频域资源复用的方式。
可选的,具体的确定方式可以是根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。其含义是为了降低传输时延,该些传输块在可用的时频资源上进行映射时以先频域后时域的顺序进行。
S103:向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1。
在本步骤中,基站得到了每个传输块的时频资源之后,将第M个传输块(可以是任一个传输块)的时域资源位置和频域资源位置携带在下行资源指示信息中发送给用户设备,其他传输块的时频资源不进行具体指示。用户设备可以根据协议中规定的时频资源映射规律或者高层信令通知的其他传输块的位置参数,或者携带在该下行资源指示中的其他传输块的位置参数来确定其他传输块的时频资源位置。
可选的,下行资源指示信息中还包括:传输块的个数,和/或,除所述第一时频资源位置对应的传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
其含义是一个传输块的位置参数用于指示该传输块的时频资源与第一时频资源位置之间的关系或者指示相邻两个传输块的时频资源之间的关系,即根据第一时频资源位置以及位置参数可以确定出该传输块的时频资源即可。
基站在将下行资源指示信息发送给用户设备之后,将传输块在各自的时频资源上进行发送,以使用户设备获取传输块承载的信息比特。
S104:在确定的时频资源上发送对应的传输块。
基站在确定的时频资源上进行传输块的发送,按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至收到所述用户设备发送的确认消息。
该方案中,同一个时域上可以对频率资源进行复用,即在不同的频率资源上发送多个传输块。
S105:根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输获取信息。
在本步骤中,用户设备需要根据下行资源指示信息,确定传输块的时频资源位置,并在确定的时频资源位置上接收传输块并进行解调译码,以得到信息比特。
具体的,以下行资源指示信息指示基站发送的第1个传输块的第一时频资源位置为例,用户设备在第一时频资源位置接收第1个传输块,并对该第1个传输块进行解调译码, 若成功则不进行后续处理,也不用接收其他的传输块。若解调译码失败,则根据第一时频资源位置和其他传输块的位置参数确定下一传输块的时频资源位置,并在该位置上接收第二个传输块。将接收到的第1个和第二个传输块进行联合译码,若解调译码成功,则不进行后续处理,若失败则重复上述过程直至接收完所有的传输块或者解调译码成功为止。
若下行资源指示信息指示基站发送的第M(M>1)个传输块的时频资源位置为例,则用户设备首先需要根据传输块的位置参数(该位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系)以及第M个传输块的时频资源位置确定出第1个传输块的第一时频资源位置,然后获取第一时频资源位置上接收到的传输块进行译码,若译码失败则根据第M个传输块的时频资源位置以及其他传输块的位置参数获取下一个传输块的时频资源位置,继续接收传输块进行联合译码,以此类推进行传输块的接收和译码。
本方案提供的下行信息传输方法,基站向用户设备发送的下行资源指示中只具体指示基站发送的第M个传输块的时频资源位置,用户设备在接收到该下行资源指示后可以根据第M个传输块的时频资源位置确定第1个传输看的第一时频资源位置,并接收第1个传输块进行解调译码,如果解调译码失败,则可以根据第M个传输块的时频资源位置和预先获取到的其他传输块的位置参数,确定其他传输块的时频资源位置,然后接收传输块继续解调译码,不需要对每个传输块的时频资源进行多次指示,有效降低信令开销,并且在多个传输块承载相同的信息比特,在下行数据区域进行分集传输,有效提高了传输可靠性。
在上述图1所示的实施例的基础上,下面提供一种具体的实现方式,该实现方式中以每个传输块承载相同的信息且可独立译码,且M=1为例。
图2为本申请下行信息传输方法实施例二的流程图,如图2所示,该下行信息传输方法的具体实现步骤包括:
S201:将待发送的信息编码为至少两个传输块,每个传输块均承载所述待发送的信息,且每个传输块可独立译码。
该步骤与上述步骤S101类似,在一种具体实现中,可将待发送的信息比特编码成N个传输块(N大于等于2),然后给每个传输块附加CRC,实现独立译码。
S202:根据预先确定的可用时频资源,将每个传输块按照先频域后时域的顺序依次映射在可用的时频资源上,得到每个传输块的时频资源。
在本步骤中,基站根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
其含义是:基站在确定每个传输块的具体的时频资源的过程中,首选要获取可用的时频资源及待发送传输块的个数(传输块个数大于2),为了降低传输时延,基站将传输块按照先频域后时域的顺序进行映射,即首先在频域上进行映射传输块,当可用的频域资源上映射完成后还剩下传输块需要传输,则再下一个时域位置上的频域资源进行映射,可有效降低信息比特的传输时延。
基站根据上述映射方式得到每个传输块的时频资源则可以确定出每个传输块对应的时频资源之间的关系,据此基站可得到时频资源参数。
可选的,在本步骤之前,基站获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。基站或者用户设备可以根据传输块的大小确定每个传输块占用的频域资源和/或时域资源。
S203:向用户设备发送下行资源指示信息,下行资源指示信息包括传输块个数、第一时频资源位置以及其他传输块对应的位置参数。
该方案中M=1,下行资源指示信息用于指示第1个传输块所占时频资源,具体的可以是直接携带第一时频资源位置。
一种具体实现中,所述第一时频资源位置包括所述第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
其含义是:第一时频资源位置可以直接指示出第1个传输块的时域和/或频域上的位置范围,可选的,当第一个传输块的频域位置固定时,还可以按照上述方式指示第一个传输块的时域起始位置,同理,当第一个传输块的时域位置固定时,还可以按照上述方式指示第一个传输块的频域起始位置,通过每个传输块占用的单位时频资源信息,则可以确定出具体的时域位置范围和频域位置范围,用户设备接收下行资源指示信息后,确定出第1个传输块的时频资源位置,并可以在对应的位置进行传输块的接收。
可选的,所述第一时频资源位置包括:基站发送的第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。即下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
该方案的含义是:该第一时频资源位置直接指示了第一个传输块的时域和频域起始位置和结束位置,可选的,当第一个传输块的频域位置固定时,还可以按照上述方式指示第一个传输块的时域起始和结束位置,同理,当第一个传输块的时域位置固定时,还可以按照上述方式指示第一个传输块的频域起始位置和结束位置,即第一个传输块的起始位置和结束位置均明确指示,则不需要获取每个传输块占用的单位时频资源信息则可以得到传输块的时频资源位置。
另外,本方案中的传输块的位置参数可以携带在该下行资源指示中通知用户设备,也可以通过高层信令配置,或者可以通过协议规定。
传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。上述方案中的传输块的时频资源参数指示的其他传输块与第M个传输块的时频资源位置之间的关系,至少包括上述的两种方式,即指示出每个传输块的时频资源位置与第M个传输块的时频资源位置之间的频域间隔,或者指示出相邻的两个传输块之间的频域间隔。
本方案并不限于上述两种指示方式,也可以采用其他的指示方式能够根据第M个传输块的时频资源位置确定其他传输块的时频资源位置即可
S204:在每个时频资源上发送对应的传输块。
基站在向用户设备发送下行资源指示信息之后,将映射在对应的时频资源上的至少两个传输块进行发送。基站在至少一个时频资源上发送对应的传输块之后,在发送剩余传输块的过程中,会持续接收来自用户设备的反馈信息,基站根据所述反馈信息,决定是否发送剩余的传输块。
具体实现中,基站在所述第一时频资源位置上发送第1个传输块。如果该第一时频资 源位置中的时域位置上只有一个传输块,则只发送一个传输块,如果第一时频资源位置中的时域位置对应的多个频域资源上有多个传输块,则根据将多个频率资源上的多个传输块在该时域位置上全部发送。
若用户设备接收该传输块并译码成功得到信息比特,则用户设备返回确认消息,即基站会接收到用户设备发送的接收成功的确认消息,则基站不再继续发送其他的传输块。若基站没有接收到用户设备返回的确认消息,则需要继续发送传输块,即按照时域先后顺序在剩余的时频资源位置上发送对应的传输块直至接收到所述用户设备返回的确认消息。
S205:在第一时频资源位置上接收基站发送的第1个传输块。
S206:对第1个传输块进行解调译码。
S207:若对第1个传输块解调译码失败,则根据第一时频资源位置和其他传输块对应的位置参数,确定基站发送的下一个传输块对应的时频资源位置,并获取在时频资源位置上接收的传输块。
S208:对传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取在该时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
在上述几个步骤中,用户设备首先在第一时频资源位置接收基站向该用户设备发送的第1个传输块,然后对接收到的第1个传输块进行解调译码,若解调译码成功,则向基站返回确认消息,用户设备不需要对后续的未接收传输块的资源进行获取,也不需要再接收未接收的传输块。
如果对第1个传输块的解调译码失败,则用户设备根据第一时频资源位置以及其他传输块的位置参数确定下一个传输块(即第二个传输块)的时频资源位置,然后再该时频资源位置上接收基站发送的第二个传输块,然后将第1个传输块和第二个传输块进行联合译码处理,若解调译码成功则向基站返回确认消息并结束该过程。否则再次根据位置参数确定下一个传输的时频资源位置,再次接收下一个传输块,并将接收到的所有的传输块进行联合解调译码,即重复该过程直到解调译码成功,或者直到对所有的传输块都接收完成并且解调译码失败后结束该过程。
在实现步骤S205至S208过程中:所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则用户设备需要预先获取每个传输块占用的单位时频资源信息。所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。S207中确定下一个传输块的时频资源位置的方式为:根据所述第1个传输块的时域起始位置和频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
可选的,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置,则S207中根据确定所述基站发送的下一个传输块对应的时频资源位置的实现方式为:根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
在上述两种方式的具体实现中,频域起始位置和结束位置可以通过编号标识具体的位置,例如:可用时频资源进行虚拟编号,所述编号方法为从可用第一时域资源开始按照频域从低到高的顺序从进行编号,当一个时域资源上全部频域资源编号结束后,对下一时域资源的频域资源从低到高编号,所述编号取值依次为从小到大的正整数。则第一时频资源位置可以直接通过起始编号起始编号和结束编号来表示,一般情况下第1个传输块的频域资源的起始编号最小。其他的传输块与第1个传输块的时频资源之间的关系也可以通过编号差进行表示,对此本申请不做具体限制。
S209:若对传输块解调译码成功,则向基站发送确认消息。
S210:若对基站发送的所有传输块进行联合解调译码失败,则向基站发送失败消息。
上述步骤S209和S210为择一进行的步骤,并不是同时包括的步骤,若用户设备解调译码成功则向基站返回确认消息,通知基站信息已经成功接收;否则向基站反馈失败消息,以便基站能够重新发送或者作出相应的处理。
可选的,如果M>1,则在步骤S205之前,用户设备根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置,然后接收第一个传输块进行译码,若译码失败,则根据第M个传输块的时频资源位置以及其他传输块的位置参数,确定第二个传输块的时频资源位置,以此类推完成信息的传输。
根据上述S201-S210的描述,在该方案的具体实现中,时频资源是指时域一个子帧和频域整个可用下行带宽组成的资源;
所述时频资源可以划分为Nt×Nf个网格形式,即时间轴一个子帧长度均匀的分为Nt个slot,频率轴均分为Nf格,每一格代表一个RB。RB在时域持续一个slot,在频域占多个子载波。例如在LTE中,一个RB在时域占一个slot持续0.5ms,在频域占12个子载波(当子载波间隔为15kHz时)或者24个子载波(当子载波间隔为7.5kHz时)。在该基础上,该下行信息传输方案的一种具体的实现方式为:
首先,基站向用户设备发送下行资源指示信息。其中包括,基站向用户设备发送下行数据信道传输块的个数N,第1个传输块的时频资源位置以及剩余N-1个下行传输块的时频资源位置参数。
基站将需要调度的用户设备的标识(即终端标识)隐含在循环冗余校验(英文:Cyclic Redundancy Check,简称:CRC)计算中,附着在资源指示信息之上,经过编码、速率匹配、加扰、调制、交织之后,映射到下行控制区域发送给用户设备。
其次,基站根据上述下行资源指示信息在下行数据区域向用户设备发送下行数据信息;即将多个传输块在各自的时频资源上进行发送。
该步骤中,基站首先将原始的信息比特编码成N个可以独立译码的传输块,传输块的大小为S;所述基站将其中一个传输块映射到资源指示中第1个传输块的位置(i1,j1);
所述基站根据剩余N-1个下行传输块的时频资源位置参数将N-1传输块映射到对应的时频资源位置。具体的映射过程为:
例1:剩余N-1个下行传输块的时频资源的位置参数为相邻两个传输块间的频域间隔G(G表示上一个传输块的结束位置和下一个传输块开始位置间隔的RB个数)。此时,剩余N-1个传输块依据第1个传输块的起始位置(i1,j1)和相邻两个传输块之间的频域间隔G,按照先频域后时域的顺序在时频资源上映射。第k(k≥2)个传输块的位置为(ik,jk)可以根据下式:
Figure PCTCN2017103991-appb-000001
或者
Figure PCTCN2017103991-appb-000002
唯一确定。
例如:图3为本申请提供的一种传输块在下行数据去的具体映射示意图,如图3所示,假设基站在一个子帧内共调度了4个用户设备UE1~UE4,根据步骤1给定各个用户设备的资源指示信息如下表:
Figure PCTCN2017103991-appb-000003
则所述基站向用户设备发送的下行数据传输块在下行数据区域的映射结果如附图3所示。
例2:剩余N-1个下行传输块的时频资源的位置参数为每个slot内传输块的个数X,每个调度周期内相邻传输块之间的频率间隔G由高层配置。
总的传输块个数N可以写成N=X×TN+LN,其中0≤LN<X,表示在第1个传输块开始的TN个调度周期内,每个调度周期传X个传输块,第TN+1个调度周期传LN个传输块。
剩余N-1个下行传输块依据第1个传输块的起始位置(i1,j1)和每个调度周期内所传的传输块的个数X,按照先频域后时域的顺序在时频资源映射。第k(k≥2)个传输块的位置为(ik,jk)可以根据下式:
若Lk>0,则:
Figure PCTCN2017103991-appb-000004
若Lk=0,则:
Figure PCTCN2017103991-appb-000005
唯一确定。
图4为本申请提供的又一种传输块在下行数据去的具体映射示意图,如图4所示,假设基站在1ms内共调度了4个用户设备UE1~UE4,根据步骤1给定各个用户设备的资源指示信息如下表:
Figure PCTCN2017103991-appb-000006
则所述基站向用户设备发送的下行数据传输块在下行数据区域的映射结果如图4所示。
需要说明的是,剩余N-1个下行传输块的时频资源的位置参数可以为例1中相邻两个传输块间的频域间隔G或者例2中的每个调度周期内传输块的个数X,也可以为其他的参数,具体选择哪一种参数由标准规定,如果标准规定可以同时采用多种参数,则在下行资源指示信息中加入指示信息指示剩余N-1个下行传输块的时频资源位置参数具体为哪一种参数。进一步地,所述基站将映射好的数据信息发送给用户设备。
进一步地,用户设备接收下行资源指示信息;该步骤中,用户设备在自己的搜索空间内,进行下行控制信息盲检测。
如果所述用户设备检测到下行资源分配信息,则所述用户设备获得了下行资源指示信息,包括:数据信道传输块的个数N,第1个传输块的时频资源(i1,j1)位置信息以及剩余N-1个下行传输块的时频资源位置参数;
如果未检测到下行资源分配信息,则证明此用户没有被调度,不需要接收任何数据信息。
最后,用户设备在下行数据区接收传输块;
该步骤中,用户设备首先按照前述方案接收的下行资源指示信息,找到第1个传输块; 然后用户设备对第1个传输块进行解调译码,包括:
Figure PCTCN2017103991-appb-000007
如果第1个传输块译码成功,则所述用户设备不对后续的N-1个传输块进行处理,反馈ACK信息给基站,本次通信结束;
Figure PCTCN2017103991-appb-000008
如果第1个传输块译码失败,则所述用户设备根据第1个传输块的时频资源(i1,j1)位置及剩余N-1个下行传输块的时频资源位置参数,寻找第2个传输块。
若标准规定或者下行指示信息中指示采用相邻两个传输块间的频域间隔G作为剩余N-1个下行传输块的时频资源位置参数,则结合下式:
Figure PCTCN2017103991-appb-000009
或者:
Figure PCTCN2017103991-appb-000010
找到第2个传输块;
若标准规定或者下行指示信息中指示采用每个调度时间间隔内所传的传输块的个数X作为剩余N-1个下行传输块的时频资源位置参数,则结合下式:
若X≥2
Figure PCTCN2017103991-appb-000011
否则:
Figure PCTCN2017103991-appb-000012
找到第2个传输块。
若标准规定或者下行指示信息中指示采用其他参数作为剩余N-1个下行传输块的时频资源位置参数,则根据第1个传输块的时频资源(i1,j1)位置及剩余N-1个下行传输块的时频资源位置参数,结合预定义好的先频域后时频的映射规律,找到第2个传输块。
然后,用户设备将第1个传输块与第2个传输块进行联合译码,包括:
如果联合译码成功,则所述用户设备不对后续的N-2个传输块进行处理,反馈ACK信息给基站,本次通信结束。
如果译码失败,所述用户设备根据前一个传输块的位置及相邻剩余N-1个下行传输块的时频资源位置参数,寻找下一个传输块。
若标准规定或者下行指示信息中指示采用相邻两个传输块间的频域间隔G作为剩余N-1个下行传输块的时频资源位置参数,则第k(k>2)个传输块的位置为(ik,jk)可以根据下式:
Figure PCTCN2017103991-appb-000013
或者:
Figure PCTCN2017103991-appb-000014
唯一确定
若标准规定或者下行指示信息中指示采用每个调度时间间隔内所传的传输块的个数X作为剩余N-1个下行传输块的时频资源位置参数,已知N=X×TN+LN,其中0≤LN<X,则第k(k>2)个传输块的位置为(ik,jk)可以根据下式:
若Lk>0,则:
Figure PCTCN2017103991-appb-000015
若Lk=0,则:
Figure PCTCN2017103991-appb-000016
唯一确定。
若标准规定或者下行指示信息中指示采用其他参数作为剩余N-1个下行传输块的时频资源的位置参数,则第k(k>2)个传输块的位置为(ik,jk)可以根据第1个传输块的时频资源(i1,j1)位置及剩余N-1个下行传输块的时频资源位置参数,结合预定义好的先频域后时频的映射规律唯一确定。
进一步地,所述用户设备对k个传输块进行联合译码,包括:
如果联合译码成功,则所述用户设备不对后续的N-k个传输块进行处理,反馈ACK信息给基站,本次通信结束。如果译码失败,继续寻找下一个传输块。如此往复,直到找到第N个传输块。
进一步地,所述用户设备对N个传输块进行联合译码,包括:
如果如果联合译码成功,则反馈ACK信息给基站,本次通信结束。
如果联合译码失败,则反馈NACK信息给基站,请求重传,本次通信结束。
本申请提供的下行信息传输方法,通过基于下行分集传输的资源指示方法,在下行资源指示信息中包含:下行数据信道传输块的个数N,第1个下行传输块的时频资源位置信息及剩余N-1个下行传输块的时频资源位置参数。通过将同一信息比特编码成N个可以独立译码的传输块,在下行数据区域分集传输,从而提高了下行数据信道的可靠性;并且通过将N个传输块按照先频域后时域的方法映射在可用资源上,在提高可靠性的同时尽可能的降低了时延;最后通过在下行资源指示信息中,仅仅包含传输块个数N、第1个传输块的位置以及第1个下行传输块的时频资源位置信息及剩余N-1个下行传输块的时频资源位置参数,所有传输块的位置可以根据第1个下行传输块的时频资源位置信息和剩余N-1个下行传输块的时频资源位置参数,基于预定义的先频域后时域的映射模式唯一的确定,无需逐一通知每个传输块的时频资源位置,从而尽可能的减小了下行控制信令的开销。
图5为本申请下行信息传输装置实施例一的结构示意图,如图5所示,该下行信息传输装置10包括:
处理模块11,用于将待发送的信息编码为N个传输块,N>1;
所述处理模块11还用于确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
发送模块12,用于向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
所述发送模块12还用于在确定的时频资源上发送对应的传输块。
本实施例提供的下行信息传输装置用于执行前述任一方法实施例中基站侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在下行信息传输装置的具体实现方式中,在上述实施例一的基础上,所述处理模块11具体用于根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
可选的,所述处理模块11编码得到的所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
所述处理模块11编码得到的所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
可选的,所述装置10还包括接收模块13;
则所述发送模块12具体用于:
按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至所述接收模块收到所述用户设备发送的确认消息。
可选的,M=1,所述发送模块12向所述用户设备发送的所述下行资源指示信息用于 指示所述第1个传输块所占发送的第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
可选的,所述处理模块11还用于确定发送每个传输块的时频资源之前,获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,M=1,所述发送模块12向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
可选的,所述发送模块12向所述用户设备发送的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,所述发送模块12向所述用户设备发送的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
本实施例提供的下行信息传输装置用于执行前述任一方法实施例中基站侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图6为本申请下行信息传输装置实施例二的结构示意图,如图6所示,该下行信息传输装置20包括:
接收模块21,用于接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
所述接收模块21还用于根据所述下行资源指示信息接收所述基站发送的传输块;
处理模块22,用于根据所述传输块获取信息。
本实施例提供的下行信息传输装置用于执行前述任一方法实施例中用户设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
在该下行信息传输装置20的具体实现方式中,所述接收模块21接收到的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,所述接收模块21具体用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理模块22具体用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理模块22还用于根据所述第一时频资源位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取在所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系
所述处理模块22对所述传输块与之前接收到所有传输块联合进行解调译码,若解调 解码失败,则所述处理模块还用于根据所述第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取在所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理模块22还用于获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
进一步地,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则所述处理模块22具体用于:根据所述第1个传输块的时域起始位置和/或频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
可选的,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
则所述处理模块22具体用于:根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
可选的,所述M>1,则所述处理模块22具体用于根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
所述接收模块21还用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理模块22还用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理模块22还用于根据所述第M个传输块的时频资源位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
所述处理模块22还用于对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理模块22获取到的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者相邻两个传输块之间的频域间隔。
上述实现方式提供的下行信息传输装置20用于执行前述任一方法实施例中用户设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图7为本申请下行信息传输装置实施例三的结构示意图,如图7所示,在上述实施例二的基础上,该下行信息传输装置20还包括:发送模块23;
该发送模块23用于用于若所述处理模块22对传输块解调译码成功,则向所述基站发送确认消息。
或者,
该发送模块23用于若所述处理模块22对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
本实施例提供的下行信息传输装置20用于执行前述任一方法实施例中用户设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图8为本申请基站实施例一的结构示意图,如图8所示,该基站30包括:
存储器31,用于存储信息以及相应的执行程序;
处理器32,用于将待发送的信息比特编码为N个传输块,N>1;
所述处理器32还用于确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
发送器33,用于向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
所述发送器还用于在确定的时频资源上发送对应的传输块。
可选的,所述处理器32具体用于根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
可选的,所述处理器32编码得到的所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
所述处理器32编码得到的所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
可选的,所述基站还包括接收器34;则所述发送器33具体用于:
按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至所述接收器收到所述用户设备发送的确认消息。
可选的,M=1,所述发送器33向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占发送的第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
可选的,所述处理器32还用于在确定发送每个传输块的时频资源之前,获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,M=1,所述发送器33向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
可选的,所述发送器33向所述用户设备发送的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,所述发送器33向所述用户设备发送的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
本实施例提供的基站用于执行前述任一方法实施例中基站侧的技术方案,其实现原理 和技术效果类似,在此不再赘述。
图9为本申请用户设备实施例一的结构示意图,如图9所示,该用户设备40包括:
存储器41,用于存储相应的执行程序;
接收器42,用于接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
所述接收器42还用于根据所述下行资源指示信息接收所述基站发送的传输块;
处理器43,用于根据所述传输块获取信息。
可选的,所述接收器42接收到的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
可选的,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,则所述接收器42具体用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理器43具体用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理器43还用于根据所述第一时频资源位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取在所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系
所述处理器43对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则所述处理器还用于根据所述第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取在所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理器43还用于获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
可选的,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则所述处理器43具体用于:根据所述第1个传输块的时域起始位置和/或频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
可选的,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
则所述处理器43具体用于:根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
可选的,所述M>1,则所述处理器43具体用于根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
所述接收器42还用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
所述处理器43还用于对所述第1个传输块进行解调译码;
若对所述第1个传输块解调译码失败,则所述处理器43还用于根据所述第M个传输块的时频资源位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
所述处理器43还用于对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
可选的,所述处理器43获取到的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
可选的,所述用户设备还包括:
发送器44,用于若所述处理器43对传输块解调译码成功,则向所述基站发送确认消息。
可选的,所述用户设备还包括:
发送器44,用于若所述处理器43对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
本实施例提供的用户设备用于执行前述任一方法实施例中用户设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现基站侧任一项提供的下行信息传输的方法。
本申请还提供一种存储介质,包括:可读存储介质和计算机程序,所述计算机程序用于实现用户设备任一项提供的下行信息传输的方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。基站的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得基站实施前述各种实施方式提供的下行信息传输的方法。
本申请还提供一种程序产品,该程序产品包括计算机程序(即执行指令),该计算机程序存储在可读存储介质中。用户设备的至少一个处理器可以从可读存储介质读取该计算机程序,至少一个处理器执行该计算机程序使得用户设备实施前述的各种实施方式提供的下行信息传输的方法。
在上述基站和用户设备的实施例中,应理解,处理器可以是中央处理单元(英文:Central Processing Unit,简称:CPU),还可以是其他通用处理器、数字信号处理器(英文:Digital Signal Processor,简称:DSP)、专用集成电路(英文:Application Specific Integrated Circuit,简称:ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(英文:read-only memory,缩写:ROM)、RAM、快闪存储器、硬盘、固态硬盘、磁带(英文:magnetic tape)、软盘(英文:floppy disk)、光盘(英文:optical disc)及其任意组合。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制。

Claims (43)

  1. 一种下行信息传输方法,其特征在于,包括:
    将待发送的信息编码为N个传输块,N>1;
    确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
    向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
    在确定的时频资源上发送对应的传输块。
  2. 根据权利要求1所述的方法,其特征在于,所述确定发送每个传输块的时频资源,包括:
    根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
  3. 根据权利要求1所述的方法,其特征在于,所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
    所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述在所述确定的时频资源上发送对应的传输块,包括:
    按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至收到所述用户设备发送的确认消息。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,M=1,所述下行资源指示信息用于指示所述第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
  6. 根据权利要求5所述的方法,其特征在于,在确定发送每个传输块的时频资源之前,所述方法还包括:
    获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,M=1,所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
  9. 根据权利要求8所述的方法,其特征在于,传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
  10. 一种信息传输方法,其特征在于,包括:
    接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个 传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
    根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输块获取信息。
  11. 根据权利要求10所述的方法,其特征在于,所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
  12. 根据权利要求10或11所述的方法,其特征在于,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,则所述根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输块获取信息,包括:
    在所述第一时频资源位置上接收所述基站发送的第1个传输块;
    对所述第1个传输块进行解调译码;
    若对所述第1个传输块解调译码失败,则根据所述第一时频资源位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
    对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第一时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
  13. 根据权利要求12所述的方法,其特征在于,所述接收基站发送的下行资源指示信息之前,所述方法还包括:
    获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
  14. 根据权利要求13所述的方法,其特征在于,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则根据所述第一时频资源位置和其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,包括:
    根据所述第1个传输块的时域起始位置和/或频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
  15. 根据权利要求12所述的方法,其特征在于,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
    则所述根据所述第一时频资源位置和其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,包括:
    根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
  16. 根据权利要求10或11所述的方法,其特征在于,M>1,则所述根据所述下行资源指示信息接收所述基站发送的传输块,并根据所述传输块获取信息,包括:
    根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
    在所述第一时频资源位置上接收所述基站发送的第1个传输块;
    对所述第1个传输块进行解调译码;
    若对所述第1个传输块解调译码失败,则根据所述第M个传输块的时频资源位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
    对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
  17. 根据权利要求11至16任一项所述的方法,其特征在于,传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
  18. 根据权利要求10至17任一项所述的方法,其特征在于,所述方法还包括:
    若对传输块解调译码成功,则向所述基站发送确认消息。
  19. 根据权利要求10至17任一项所述的方法,其特征在于,所述方法还包括:
    若对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
  20. 一种下行信息传输装置,其特征在于,包括:
    处理模块,用于将待发送的信息编码为N个传输块,N>1;
    所述处理模块还用于确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
    发送模块,用于向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
    所述发送模块还用于在确定的时频资源上发送对应的传输块。
  21. 根据权利要求20所述的装置,其特征在于,所述处理模块具体用于根据预先确定的可用时频资源确定发送每个传输块的时频资源,其中,所述N传输块中的第1个至第N个按照先频域后时域的顺序依次映射在所述可用的时频资源上。
  22. 根据权利要求20所述的装置,其特征在于,所述处理模块编码得到的所述N个传输块中的每个传输块均承载所述待发送的信息,且每个所述传输块可独立译码;或,
    所述处理模块编码得到的所述N个传输块中的第1个传输块承载所述待发送的信息,且所述第1个传输块可独立译码;所述N个传输块中的剩余传输块承载所述第1个传输块的冗余信息或校验信息,且所述剩余传输块可与所述第1个传输块联合译码。
  23. 根据权利要求20至22任一项所述的装置,其特征在于,所述装置还包括接收模块;则所述发送模块具体用于:
    按照时域上的先后顺序,利用所述确定的时频资源发送每个传输块直至所述接收模块 收到所述用户设备发送的确认消息。
  24. 根据权利要求20至23任一项所述的装置,其特征在于,M=1,所述发送模块向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占时频资源的时域起始位置和/或频域起始位置。
  25. 根据权利要求24所述的装置,其特征在于,所述处理模块还用于在确定发送每个传输块的时频资源之前,获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
  26. 根据权利要求20至23任一项所述的装置,其特征在于,M=1,所述发送模块向所述用户设备发送的所述下行资源指示信息用于指示所述第1个传输块所占时域的起始位置和结束位置,和/或,频域的起始位置和结束位置。
  27. 根据权利要求20至26任一项所述的装置,其特征在于,所述发送模块向所述用户设备发送的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
  28. 根据权利要求27所述的装置,其特征在于,所述发送模块向所述用户设备发送的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
  29. 一种信息传输装置,其特征在于,包括:
    接收模块,用于接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
    所述接收模块还用于根据所述下行资源指示信息接收所述基站发送的传输块;
    处理模块,用于根据所述传输块获取信息。
  30. 根据权利要求29所述的装置,其特征在于,所述接收模块接收到的所述下行资源指示信息中还包括:传输块的个数,和/或,除所述第M个传输块之外的其他传输块的时频资源的位置参数;传输块的位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系。
  31. 根据权利要求29或30所述的装置,其特征在于,M=1,所述下行资源指示信息用于指示所述第1个传输块所占的第一时频资源位置,则所述接收模块具体用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
    所述处理模块具体用于对所述第1个传输块进行解调译码;
    若对所述第1个传输块解调译码失败,则所述处理模块还用于根据所述第一时频资源位置和预先获取的其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取在所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第一时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系
    所述处理模块对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则所述处理模块还用于根据所述第一时频资源位置和其他传输块对应的位置参数, 确定下一个传输块对应的资源位置,并获取在所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
  32. 根据权利要求31所述的装置,其特征在于,所述处理模块还用于获取每个传输块占用的单位时频资源信息;所述单位时频资源信息用于指示传输块占用的频域资源的大小和时域资源的大小。
  33. 根据权利要求32所述的装置,其特征在于,所述第一时频资源位置包括发送第1个传输块的时域起始位置和/或频域起始位置,则所述处理模块具体用于:根据所述第1个传输块的时域起始位置和/或频域起始位置、所述单位时频资源信息以及所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块所占的时域起始位置和/或频域起始位置。
  34. 根据权利要求31所述的装置,其特征在于,所述第一时频资源位置包括:所述第1个传输块的时域的起始位置和结束位置,和/或,频域的起始位置和结束位置;
    则所述处理模块具体用于:根据所述其他传输块对应的位置参数、所述第1个传输块的时域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的时域的起始位置和结束位置;和/或,根据所述其他传输块对应的位置参数、频域的起始位置和结束位置,确定所述基站发送的下一个传输块对应的频域的起始位置和结束位置。
  35. 根据权利要求29或30所述的装置,其特征在于,所述M>1,则所述处理模块具体用于根据所述第M个传输块的时频资源位置以及与获取到的其他传输块的时频资源的位置参数,确定第1个传输块的第一时频资源位置;
    所述接收模块还用于在所述第一时频资源位置上接收所述基站发送的第1个传输块;
    所述处理模块还用于对所述第1个传输块进行解调译码;
    若对所述第1个传输块解调译码失败,则所述处理模块还用于根据所述第M个传输块的时频资源位置位置和所述其他传输块对应的位置参数,确定所述基站发送的下一个传输块对应的时频资源位置,并获取所述时频资源位置上接收的传输块;其中,所述位置参数用于表示所述传输块的时频资源位置与所述第M个传输块的时频资源位置之间的关系或者用于表示相邻两个传输块之间的时频资源位置的关系;
    所述处理模块还用于对所述传输块与之前接收到所有传输块联合进行解调译码,若解调解码失败,则根据所述第M个传输块的时频资源位置和其他传输块对应的位置参数,确定下一个传输块对应的资源位置,并获取所述时频资源位置上接收的传输块,重复本步骤直至对接收到的传输块解调译码成功或者接收完所述基站发送的所有传输块。
  36. 根据权利要求30至35任一项所述的装置,其特征在于,所述处理模块获取到的传输块的位置参数包括:所述传输块距离第M个传输块的频域间隔,或者,相邻两个传输块之间的频域间隔。
  37. 根据权利要求29至36任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于若所述处理模块对传输块解调译码成功,则向所述基站发送确认消息。
  38. 根据权利要求29至36任一项所述的装置,其特征在于,所述装置还包括:
    发送模块,用于若所述处理模块对基站发送的所有传输块进行联合解调译码失败,则向所述基站发送失败消息。
  39. 一种基站,其特征在于,包括:
    存储器,用于存储信息以及相应的执行程序;
    处理器,用于将待发送的信息比特编码为N个传输块,N>1;
    所述处理器还用于确定发送每个传输块的时频资源,至少有两个传输块所占时频资源的时域资源相同且频域资源不同;
    发送器,用于向用户设备发送下行资源指示信息,所述下行资源指示信息用于指示所述N个传输块中的第M个传输块的时频资源位置,N≥M≥1;
    所述发送器还用于在确定的时频资源上发送对应的传输块。
  40. 一种用户设备,其特征在于,包括:
    存储器,用于存储相应的执行程序;
    接收器,用于接收基站发送的下行资源指示信息,所述下行资源指示信息指示所述基站发送的N个传输块中的第M个传输块的时频资源位置,N>1,N≥M≥1;
    所述接收器还用于根据所述下行资源指示信息接收所述基站发送的传输块;
    处理器,用于根据所述传输块获取信息。
  41. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于权利要求1至9任一项所述的下行信息传输的方法。
  42. 一种存储介质,其特征在于,包括:可读存储介质和计算机程序,所述计算机程序用于权利要求10至19任一项提供的下行信息传输的方法。
  43. 一种计算机程序,当其被处理器执行时,实现如权利要求1-19任一项所述的方法。
PCT/CN2017/103991 2016-11-04 2017-09-28 下行信息传输方法、装置和设备 WO2018082419A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17867789.4A EP3525538B1 (en) 2016-11-04 2017-09-28 Downlink information transmission method, apparatus and device
US16/404,364 US11038620B2 (en) 2016-11-04 2019-05-06 Downlink information transmission method and apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610965310.6A CN108024347B (zh) 2016-11-04 2016-11-04 下行信息传输方法、装置和设备
CN201610965310.6 2016-11-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/404,364 Continuation US11038620B2 (en) 2016-11-04 2019-05-06 Downlink information transmission method and apparatus, and device

Publications (1)

Publication Number Publication Date
WO2018082419A1 true WO2018082419A1 (zh) 2018-05-11

Family

ID=62075752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103991 WO2018082419A1 (zh) 2016-11-04 2017-09-28 下行信息传输方法、装置和设备

Country Status (4)

Country Link
US (1) US11038620B2 (zh)
EP (1) EP3525538B1 (zh)
CN (1) CN108024347B (zh)
WO (1) WO2018082419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192928A1 (en) * 2019-03-28 2020-10-01 Nokia Technologies Oy Preconfigured radio link switching for bandwidth parts

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110492969B (zh) * 2018-05-11 2022-04-29 中兴通讯股份有限公司 信号发送、接收方法及装置
EP3829233A4 (en) * 2018-07-27 2022-03-16 Beijing Xiaomi Mobile Software Co., Ltd. DATA TRANSMISSION METHOD, DEVICE, EQUIPMENT, SYSTEM, AND STORAGE MEDIA
WO2020062081A1 (zh) * 2018-09-28 2020-04-02 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN110971365A (zh) * 2018-09-28 2020-04-07 北京展讯高科通信技术有限公司 信令与数据的多次接收、传输方法及装置、终端
CN109982433B (zh) * 2019-03-05 2020-01-07 深圳大学 基于启发式算法的固定帧长度的urllc系统的资源优化方法
WO2021027603A1 (zh) * 2019-08-12 2021-02-18 华为技术有限公司 一种指示频域资源的方法及装置
CN112637954B (zh) * 2019-09-24 2023-03-24 大唐移动通信设备有限公司 一种资源位置指示方法、基站及终端
US11792824B2 (en) * 2020-03-30 2023-10-17 Qualcomm Incorporated Multicast feedback and retransmission for transport block grouping
EP4258754A4 (en) * 2021-01-07 2024-01-24 Huawei Tech Co Ltd METHOD AND DEVICE FOR DETERMINING TRANSMIT POWER
CN115696272A (zh) * 2021-07-29 2023-02-03 华为技术有限公司 一种信息发送方法、接收方法及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106057A1 (en) * 2008-03-25 2009-09-30 Panasonic Corporation Resource allocation size dependent transport block size signalling
CN101834692A (zh) * 2009-03-09 2010-09-15 大唐移动通信设备有限公司 载波聚合系统中的信令指示方法及基站和终端
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN104144030A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 数据发送、接收方法、数据发送及接收端

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101570350B1 (ko) * 2008-02-22 2015-11-19 엘지전자 주식회사 동적 전송시간간격 할당방법
CN104065453B (zh) * 2009-09-30 2017-11-28 华为技术有限公司 控制信息的发送和接收方法、装置和通信系统
JP5265616B2 (ja) * 2010-05-18 2013-08-14 株式会社エヌ・ティ・ティ・ドコモ 無線通信システム
KR101771550B1 (ko) * 2010-10-15 2017-08-29 주식회사 골드피크이노베이션즈 Ack/nack 신호 송수신 방법 및 장치
US8681651B2 (en) * 2010-11-05 2014-03-25 Qualcomm Incorporated Reference signal reception and channel state information determination for multiple nodes in a wireless communication network
US9247563B2 (en) * 2011-12-23 2016-01-26 Blackberry Limited Method implemented in a user equipment
US10447439B2 (en) * 2012-02-21 2019-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Retransmission protocol feedback handling with multiple feedback times
CN105453672B (zh) * 2013-08-07 2019-08-06 交互数字专利控股公司 用于设备对设备通信的分布式调度
EP3304994B1 (en) * 2015-06-05 2021-03-17 Telefonaktiebolaget LM Ericsson (PUBL) Sending a configuration message and reporting channel information on pucch in pcell and in scell
CN105162553B (zh) * 2015-08-14 2018-09-07 宇龙计算机通信科技(深圳)有限公司 一种传输块类型信令指示方法及系统
WO2017171408A2 (ko) * 2016-03-29 2017-10-05 엘지전자(주) 무선 통신 시스템에서 채널 상태 정보를 전송하는 방법 및 이를 위한 장치
AU2017244128A1 (en) * 2016-03-30 2018-11-01 Interdigital Patent Holdings, Inc. Method and procedures for downlink physical channels to reduce latency in an LTE advanced system
KR101995435B1 (ko) * 2016-04-22 2019-07-02 엘지전자 주식회사 무선통신 시스템에서 harq ack/nack 신호를 전송/수신하는 방법 및 이를 위한 장치
CN110140382B (zh) * 2016-11-04 2021-12-14 瑞典爱立信有限公司 窄带的系统信息
JP7074853B2 (ja) * 2017-11-16 2022-05-24 エルジー エレクトロニクス インコーポレイティド Pbch送信方法および送信装置、ならびにpbch受信方法および受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2106057A1 (en) * 2008-03-25 2009-09-30 Panasonic Corporation Resource allocation size dependent transport block size signalling
CN101834692A (zh) * 2009-03-09 2010-09-15 大唐移动通信设备有限公司 载波聚合系统中的信令指示方法及基站和终端
CN102083223A (zh) * 2010-03-05 2011-06-01 大唐移动通信设备有限公司 一种发送dci和上行传输的方法、系统及装置
CN104144030A (zh) * 2013-05-09 2014-11-12 中兴通讯股份有限公司 数据发送、接收方法、数据发送及接收端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3525538A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020192928A1 (en) * 2019-03-28 2020-10-01 Nokia Technologies Oy Preconfigured radio link switching for bandwidth parts
CN113647037A (zh) * 2019-03-28 2021-11-12 诺基亚技术有限公司 用于带宽部分的预配置无线电链路切换

Also Published As

Publication number Publication date
CN108024347A (zh) 2018-05-11
EP3525538B1 (en) 2022-12-07
CN108024347B (zh) 2022-02-08
US20190260502A1 (en) 2019-08-22
EP3525538A1 (en) 2019-08-14
EP3525538A4 (en) 2019-10-23
US11038620B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2018082419A1 (zh) 下行信息传输方法、装置和设备
EP3078145B1 (en) Methods for enhanced harq mechanism
CN103202058B (zh) 移动站装置、无线通信方法及集成电路
KR101151817B1 (ko) 이동 통신 시스템에서의 상향 링크 제어 정보 전송 방법
US10972228B2 (en) Base station device, user equipment, wireless communication system, and communication method
JP2019513321A (ja) リソーススケジューリング及び割り当て方法及び機器
CN108390741B (zh) 数据传输方法和设备
JP2020506594A (ja) 上りリンク・チャネル電力割り当て方法および装置
EP3304786B1 (en) Apparatus and method for handling the configuration of bundle sizes
US20200136766A1 (en) Method for repeated transmission, and terminal device
CN107852701B (zh) 下行反馈信息的传输方法、基站以及终端设备
KR20190121459A (ko) 무선 통신 시스템에서 동기 신호 송수신 방법 및 장치
CN107371270B (zh) 一种传输方法、设备和系统
US20150249525A1 (en) Channel transmission method, apparatus, base station and terminal
WO2013107364A1 (zh) 下行控制信息的发送、下行控制信道的检测方法及装置
CN108631929B (zh) 数据传输方法和设备
JP7253625B2 (ja) ダウンリンクデータ送信方法、受信方法、装置及び記憶媒体
CN111095837A (zh) 用于上行链路传输的方法和装置
WO2018228236A1 (zh) 数据传输方法和装置
CN110582123A (zh) 数据传输方法和装置
WO2018142601A1 (ja) 無線通信システム、基地局装置、端末装置及び無線通信方法
WO2020143908A1 (en) Network access node and client device for indication of multiple data channels in a single control message
WO2016145594A1 (zh) 一种控制信息的传输方法、基站和用户设备
JP6168150B2 (ja) 通信システム、基地局、無線装置、通信方法
CN111756479B (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17867789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017867789

Country of ref document: EP

Effective date: 20190510