WO2018082129A1 - 一种瞬时喷灌强度的计算方法 - Google Patents

一种瞬时喷灌强度的计算方法 Download PDF

Info

Publication number
WO2018082129A1
WO2018082129A1 PCT/CN2016/106706 CN2016106706W WO2018082129A1 WO 2018082129 A1 WO2018082129 A1 WO 2018082129A1 CN 2016106706 W CN2016106706 W CN 2016106706W WO 2018082129 A1 WO2018082129 A1 WO 2018082129A1
Authority
WO
WIPO (PCT)
Prior art keywords
sprinkler
translational
instantaneous
translational sprinkler
calculating
Prior art date
Application number
PCT/CN2016/106706
Other languages
English (en)
French (fr)
Inventor
朱兴业
袁寿其
刘俊萍
田坤
万景红
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US16/344,690 priority Critical patent/US11504730B2/en
Publication of WO2018082129A1 publication Critical patent/WO2018082129A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/004Arrangements for controlling delivery; Arrangements for controlling the spray area comprising sensors for monitoring the delivery, e.g. by displaying the sensed value or generating an alarm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/09Watering arrangements making use of movable installations on wheels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/084Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to condition of liquid or other fluent material already sprayed on the target, e.g. coating thickness, weight or pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the invention relates to a calculation method of performance parameters of a translational sprinkler in the field of agricultural irrigation technology, in particular to a calculation method of instantaneous sprinkling intensity.
  • the translational sprinkler is a typical sprinkler irrigation equipment, which is widely used in agricultural water-saving irrigation in China.
  • the running speed of the translational sprinkler directly affects the amount of water sprayed per unit area. The slower the running speed, the more spray water per unit area. On the contrary, the faster the running speed, the less the spray water per unit area. Therefore, the speed control strategy of the translational sprinkler is the key to ensure its effective operation.
  • the relationship between the instantaneous sprinkler irrigation intensity of the translational sprinkler and the infiltration capacity of the farmland soil is the key factor determining whether or not the runoff is generated.
  • the technical problem to be solved by the present invention is to provide a calculation method of instantaneous sprinkling intensity to overcome the problem of infiltration of soil in farmland and translational sprinkler irrigation unit when researching the problem of control strategy of translating sprinkler operation speed.
  • the understanding and mastery of the relationship between instantaneous sprinkler intensity can not solve such problems in a targeted manner.
  • the present invention provides a method for calculating the instantaneous sprinkling intensity, comprising the following steps:
  • the water distribution of the hypothetical translational sprinkler is elliptical, triangular, and parabolic.
  • the rain gauge (3) and the translational sprinkler are at a distance greater than the range R of the spray head on the translating sprinkler.
  • the number b of the rain gauge cylinders is greater than or equal to one.
  • the number n of repeated tests is greater than or equal to one.
  • the calculation method of the instantaneous sprinkling intensity according to the invention is simple and fast, and can obtain more accurate calculation results at a lower experimental cost, thereby providing a direction and basis for the subsequent research on the optimization of the running speed of the translational sprinkler.
  • FIG. 1 is a schematic view of a device for receiving a sprayed water amount by a rain gauge of a translating sprinkler according to the present invention.
  • the translating sprinkler 1 is selected as the test prototype.
  • the range R of the sprinkler 2 on the translating sprinkler 1 is 3.5 m, and the diameter of the spout is arranged at a distance of 4 m from the translating sprinkler a.
  • the working pressure of the nozzle 2 on the translating sprinkler 1 is set to 70 kPa, so that the nozzle 2 is kept in a stable working state. After the nozzle 2 was stably operated for 20 minutes, the translational sprinkler 1 was started and the measurement test data was measured.
  • n in the function relation is 1.4min
  • the instantaneous sprinkling intensity h t of the translational sprinkler 1 is 5.23 mm/h, 5.45 mm/h and 4.93 mm/h, respectively.

Abstract

一种瞬时喷灌强度的计算方法,包括:保证平移式喷灌机(1)保持在稳定工作的状态,在距离平移式喷灌机(1)a米处布置有雨量筒(3)b个,运行平移式喷灌机(1)得到测量数据;计算出运行时间、雨量筒(3)接收到的平均喷洒水深;假定平移式喷灌机(1)的水量分布的形状,建立出瞬时喷灌强度h t与运行时间t之间的函数关系式,计算出函数关系式中的变量值;将平移式喷灌机(1)瞬时运行时刻t的具体数值代入建立的函数关系式中,得到的h t即为平移式喷灌机(1)瞬时喷灌强度的数值。计算方法操作简单、快捷,能够以较低的实验成本获得较精确的计算结果。

Description

一种瞬时喷灌强度的计算方法 技术领域
本发明涉及农业灌溉技术领域中的平移式喷灌机性能参数的计算方法,尤其是一种瞬时喷灌强度的计算方法。
背景技术
平移式喷灌机是一种典型的喷灌装备,广泛应用于我国的农业节水灌溉中。平移式喷灌机的运行速度直接影响到它在单位面积内的喷洒水量,运行速度越慢则单位面积内的喷洒水量越多,反之运行速度越快则单位面积内的喷洒水量就会越少,因此,平移式喷灌机速度控制策略是保证其有效运行的关键。
在平移式喷灌机应用于农田灌溉时,平移式喷灌机的瞬时喷灌强度与农田土壤的入渗能力之间的关系是决定是否产生径流的关键因素。目前现有研究中尚没有一种有效计算瞬时喷灌强度的方法,若在某些特殊情况平移式喷灌机应用于农田灌溉下造成地表径流时,就不能直接分析其是否是由于农田土壤的入渗能力与平移式喷灌机组瞬时喷灌强度不匹配的原因所引起,从而无法对此类研究问题进行有针对性的解决。因此,研究出一种瞬时喷灌强度的计算方法,具有十分重要的理论和实践意义。
发明内容
本发明要解决的技术问题是提供一种瞬时喷灌强度的计算方法,以克服在对平移式喷灌机运行速度控制策略等问题进行研究时,缺乏对农田中土壤的入渗能力与平移式喷灌机组瞬时喷灌强度之间关系的了解和掌握而无法对此类问题进行有针对性的解决。
基于上述目的,本发明提供了一种瞬时喷灌强度的计算方法,包括下列步骤:
(a)在距离平移式喷灌机a米处布置接水口直径为D的雨量筒b个,用于测量平移式喷灌机的喷洒水量;
(b)设定平移式喷灌机的工作压力,使平移式喷灌机保持在稳定工作的状态,设定平移式喷灌机的运行速度s,开始运行平移式喷灌机,直至雨量筒接不到平移式喷灌机的喷洒水量,停止运行平移式喷灌机;测量出每个雨量筒所接收到的喷洒水量ci(i=1….b),在相同的运行速度下重复试验次数n,计算出每个雨量筒所接收到的平均喷洒水量di=ci/n(i=1….b);
(c)计算出雨量筒接到平移式喷灌机喷洒水量的运行时间:t=2R/s;计算出雨量筒接收到的平均喷洒水量:
Figure PCTCN2016106706-appb-000001
计算出雨量筒接收到的平均喷洒水深:H=4V/πD2
(d)假定平移式喷灌机的水量分布形状,根据该假定形状的数学特征,建立出平移式喷 灌机瞬时喷灌强度ht与运行时间t之间的函数关系式:ht=k f(t),其中k为解析式f(t)中所有变量的总称,f(t)为自变量t的解析式;根据该假定形状的数学特征,由步骤(c)中所计算得到的运行时间t的数值和平均喷洒水深H的数值,计算出函数关系式ht=k f(t)中的变量k;
(e)将平移式喷灌机瞬时运行时刻t的具体数值代入到步骤(d)中建立的函数关系式ht=kf(t)中,得到的ht即为平移式喷灌机瞬时喷灌强度的数值。
进一步地,所述假定平移式喷灌机的水量分布形状为椭圆形、三角形、抛物线形。
进一步地,在设定平移式喷灌机稳定工作10分钟之后再开始测量每个雨量筒所接收到的喷洒水量ci(i=1….b)。
进一步地,所述雨量筒(3)与平移式喷灌机距离a米大于平移式喷灌机上喷头的射程R。
进一步地,所述雨量筒的个数b为大于或等于1个。
进一步地,所述重复试验次数n为大于或等于1次。
本发明所述的瞬时喷灌强度的计算方法,操作简单、快捷,能够以较低的实验成本获得较精确的计算结果,从而为后续研究平移式喷灌机运行速度的优化提供了方向和依据。
附图说明
图1为本发明中平移式喷灌机的雨量筒接收喷洒水量的装置示意图。
图中:
1.平移式喷灌机,2.喷头,3.雨量筒。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,首先,选取了平移式喷灌机1作为试验样机,平移式喷灌机1上喷头2的射程R为3.5米,在距离平移式喷灌机a为4米处布置有接水口直径D为0.2米的雨量筒b为9个,用于测量平移式喷灌机的喷洒水量。设定平移式喷灌机1上喷头2的工作压力为70kPa,使喷头2保持在稳定工作的状态。在喷头2稳定工作了20分钟之后开始运行平移式喷灌机1并测量采集试验数据。
设定平移式喷灌机1的运行速度s为2.5m/min,开始运行平移式喷灌机1,直至雨量筒3接不到平移式喷灌机1的喷洒水量ci(i=1….6),停止运行平移式喷灌机1。测量出每个雨量筒3所接收到的喷洒水量,在相同的运行速度下重复试验次数n为3次,计算出每个雨量筒3所接收到的平均喷洒水量di=ci/n(i=1….6),如表1所示。
表1 每个雨量筒所接收到的平均喷洒水量
Figure PCTCN2016106706-appb-000002
计算出雨量筒3接到平移式喷灌机1喷洒水量的运行时间为:
t=2R/s=2×3.5/2.5=2.8min。
计算出雨量筒接收到的平均喷洒水量:
Figure PCTCN2016106706-appb-000003
计算出雨量筒接收到的平均喷洒水深:
H=4V/πD2=4×63.0/(3.14×(0.2×100)2)=0.20mm。
假定平移式喷灌机1的水量分布为椭圆形,根据该假定形状的数学特征,建立出瞬时喷灌强度ht与运行时间t之间的函数关系式,
Figure PCTCN2016106706-appb-000004
其中m的数学意义为该假定椭圆的纵半轴,物理意义为最大的瞬时喷灌强度,n的数学意义为该假定椭圆的横半轴,物理意义为总运行时间的一半。
根据计算出的t=2.8min可知函数关系式中的n为1.4min,根据计算得到的平均喷洒水深值H=0.2mm即为函数关系式中上半个椭圆的面积值,
Figure PCTCN2016106706-appb-000005
即:
Figure PCTCN2016106706-appb-000006
可以计算出:m=0.091mm/min=5.46mm/h。则该椭圆形的函数关系式为,
Figure PCTCN2016106706-appb-000007
接着,将平移式喷灌机瞬时运行时刻t的具体数值,例如:t=1min,1.5min和2min代入到所建立的函数关系式
Figure PCTCN2016106706-appb-000008
中,得到平移式喷灌机1瞬时喷灌强度ht的数值分别为:5.23mm/h,5.45mm/h和4.93mm/h。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (6)

  1. 一种瞬时喷灌强度的计算方法,包括下列步骤:
    (a)在距离平移式喷灌机(1)a米处布置接水口直径为D的雨量筒(3)b个,用于测量平移式喷灌机(1)的喷洒水量;
    (b)设定平移式喷灌机(1)的工作压力,使平移式喷灌机(1)保持在稳定工作的状态,设定平移式喷灌机(1)的运行速度s,开始运行平移式喷灌机(1),直至雨量筒(3)接不到平移式喷灌机(1)的喷洒水量,停止运行平移式喷灌机(1);测量出每个雨量筒(3)所接收到的喷洒水量ci(i=1….b),在相同的运行速度下重复试验次数n,计算出每个雨量筒所接收到的平均喷洒水量di=ci/n(i=1….b);
    (c)计算出雨量筒(3)接到平移式喷灌机(1)喷洒水量的运行时间:t=2R/s;计算出雨量筒(3)接收到的平均喷洒水量:
    Figure PCTCN2016106706-appb-100001
    计算出雨量筒(3)接收到的平均喷洒水深:H=4V/πD2
    (d)假定平移式喷灌机(1)的水量分布形状,根据该假定形状的数学特征,建立出平移式喷灌机(1)瞬时喷灌强度ht与运行时间t之间的函数关系式:ht=k f(t),其中k为解析式f(t)中所有变量的总称,f(t)为自变量t的解析式;根据该假定形状的数学特征,由步骤(c)中所计算得到的运行时间t的数值和平均喷洒水深H的数值,计算出函数关系式ht=k f(t)中的变量k;
    (e)将平移式喷灌机(1)瞬时运行时刻t的具体数值代入到步骤(d)中建立的函数关系式ht=kf(t)中,得到的ht即为平移式喷灌机(1)瞬时喷灌强度的数值。
  2. 根据权利要求1所述的瞬时喷灌强度的计算方法,其特征在于:所述假定平移式喷灌机(1)的水量分布形状为椭圆形、三角形、抛物线形。
  3. 根据权利要求1或2所述的瞬时喷灌强度的计算方法,其特征在于:在设定平移式喷灌机(1)稳定工作10分钟之后再开始测量每个雨量筒(3)所接收到的喷洒水量ci(i=1….b)。
  4. 根据权利要求1所述的瞬时喷灌强度的计算方法,其特征在于:所述雨量筒(3)与平移式喷灌机距离a米大于平移式喷灌机上喷头的射程R。
  5. 根据权利要求1所述瞬时喷灌强度的计算方法,其特征在于:所述雨量筒的个数b为大于或等于1个。
  6. 根据权利要求1所述的瞬时喷灌强度的计算方法,其特征在于:所述重复试验次数n为大于或等于1次。
PCT/CN2016/106706 2016-11-01 2016-11-22 一种瞬时喷灌强度的计算方法 WO2018082129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/344,690 US11504730B2 (en) 2016-11-01 2016-11-22 Method for calculating instantaneous sprinkler strength

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610940904.1 2016-11-01
CN201610940904.1A CN106527130B (zh) 2016-11-01 2016-11-01 一种瞬时喷灌强度的计算方法

Publications (1)

Publication Number Publication Date
WO2018082129A1 true WO2018082129A1 (zh) 2018-05-11

Family

ID=58292585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/106706 WO2018082129A1 (zh) 2016-11-01 2016-11-22 一种瞬时喷灌强度的计算方法

Country Status (3)

Country Link
US (1) US11504730B2 (zh)
CN (1) CN106527130B (zh)
WO (1) WO2018082129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113190070A (zh) * 2021-06-18 2021-07-30 中科美其(天津)科技有限公司 一种基于环境模拟试验箱的温湿度控制系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1644818A1 (ru) * 1988-11-23 1991-04-30 Молдавский Комплексный Отдел Украинского Научно-Исследовательского Института Гидротехники И Мелиорации Способ полива на склонах широкозахватными дождевальными машинами кругового действи
CN101226107A (zh) * 2007-01-19 2008-07-23 中国农业机械化科学研究院 一种喷灌机喷洒雨量分布信息动态测试方法及系统
CN105160096A (zh) * 2015-08-31 2015-12-16 江苏大学 一种变转速喷头三维动态水量分布模型建立方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8311786B2 (en) * 2008-10-02 2012-11-13 Geza Kisch Accurate methods for modeling the spatial distribution for irrigation systems for landscapes
US8285421B2 (en) * 2009-09-29 2012-10-09 Nelson Irrigation Corporation Method and apparatus for optimization of sprinkler head positions and nozzle sizes in an irrigation system
US10058879B2 (en) * 2015-10-29 2018-08-28 Capstan Ag Systems, Inc. System and methods for estimating fluid flow based on valve closure time
US10440905B2 (en) * 2017-10-05 2019-10-15 Valmont Industries, Inc. System and method for irrigation management using VRI ray casting algorithms within irrigation machine workflows

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1644818A1 (ru) * 1988-11-23 1991-04-30 Молдавский Комплексный Отдел Украинского Научно-Исследовательского Института Гидротехники И Мелиорации Способ полива на склонах широкозахватными дождевальными машинами кругового действи
CN101226107A (zh) * 2007-01-19 2008-07-23 中国农业机械化科学研究院 一种喷灌机喷洒雨量分布信息动态测试方法及系统
CN105160096A (zh) * 2015-08-31 2015-12-16 江苏大学 一种变转速喷头三维动态水量分布模型建立方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HARTMANN, H.: "The Measurement of Instantaneous Irrigation Intensity of Rotating Sprinkler", IRRIGATION AND DRAINAGE, vol. 12, no. 1, 31 December 1993 (1993-12-31), pages 49 - 51 *
LI, JINCHANG: "Method for Calculating Irrigation Intensity of Clockwise Irrigation Machine", WATER SAVING IRRIGATION, no. 2, 31 December 1984 (1984-12-31) *
WAN, JINGHONG ET AL.,: "Translocating Speed Ration Effect on Water Distribution Uniformity of Lightweight Lateral Move Irrigation System", WATER SAVING IRRIGATION, no. 9, 30 September 2016 (2016-09-30), pages 87-89, 93 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113190070A (zh) * 2021-06-18 2021-07-30 中科美其(天津)科技有限公司 一种基于环境模拟试验箱的温湿度控制系统

Also Published As

Publication number Publication date
US20200047205A1 (en) 2020-02-13
CN106527130B (zh) 2019-04-02
US11504730B2 (en) 2022-11-22
CN106527130A (zh) 2017-03-22

Similar Documents

Publication Publication Date Title
CN105353620B (zh) 一种基于地表水深信息的地面灌溉控制方法
CN102735226B (zh) 一种喀斯特森林群落监测样地的测量标定方法
Ge et al. Analysis of kinetic energy distribution of big gun sprinkler applied to continuous moving hose-drawn traveler
CN104324861A (zh) 一种多参数时变机器人喷涂方法
CN105160096B (zh) 一种变转速喷头三维动态水量分布模型建立方法
WO2018082129A1 (zh) 一种瞬时喷灌强度的计算方法
US11346662B2 (en) Method and device for predicting volume median diameter in overlapped spray area of twin nozzles
CN106481865B (zh) 气缸的控制方法、装置、系统以及机械设备
Stambouli et al. Performance of new agricultural impact sprinkler fitted with plastic nozzles
Fordjour et al. Effect of riser height on rotation uniformity and application rate of the dynamic fluidic sprinkler
Dwomoh et al. Sprinkler rotation and water application rate for the new type complete fluidic sprinkler and impact sprinkler
Heermann Center pivot design and evaluation
CN105956376B (zh) 一种深埋隧洞施工开挖数值模拟分析的模型范围取值方法
CN103640082B (zh) 混凝土底板结构养护方法及系统
CN203929475U (zh) 一种用于室内cbr静压成型制样装置
CN105911225A (zh) 一种林分密度平均胸径及蓄积量的测算方法
CN103350041B (zh) 低通量滴淋式自给降雨装置
CN105201809A (zh) 混凝土泵车及检测其泵送效率的检测装置、系统、方法
CN100458398C (zh) 一种方形喷洒域变量喷头方形系数的测定方法
Zhang et al. Effect of Catch‐Can Spacing on Calculation of Sprinkler Irrigation Application Uniformity
CN209195429U (zh) 一种用于混凝土湿喷方量控制的装置
CN207964815U (zh) 一种泄洪雾化雨边坡稳定模拟实验装置
CN204202506U (zh) 一种可定位的卷尺
CN206235280U (zh) 一种涂膜厚度测定装置
CN106053489B (zh) 一种l波段森林透过率的测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920925

Country of ref document: EP

Kind code of ref document: A1