WO2018082114A1 - 一种信道接入方法及系统 - Google Patents

一种信道接入方法及系统 Download PDF

Info

Publication number
WO2018082114A1
WO2018082114A1 PCT/CN2016/105691 CN2016105691W WO2018082114A1 WO 2018082114 A1 WO2018082114 A1 WO 2018082114A1 CN 2016105691 W CN2016105691 W CN 2016105691W WO 2018082114 A1 WO2018082114 A1 WO 2018082114A1
Authority
WO
WIPO (PCT)
Prior art keywords
lte system
probability
length
access
wlan
Prior art date
Application number
PCT/CN2016/105691
Other languages
English (en)
French (fr)
Inventor
张奇勋
杨拓
尉志青
冯志勇
侯佳
Original Assignee
北京邮电大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京邮电大学 filed Critical 北京邮电大学
Publication of WO2018082114A1 publication Critical patent/WO2018082114A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • H04W74/085Random access procedures, e.g. with 4-step access with collision treatment collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a channel access method and system.
  • LAA Local Area Network
  • LTE Long Term Evolution
  • the technology is to configure the licensed frequency band as the primary cell based on carrier aggregation.
  • the unlicensed band is configured as a secondary cell.
  • the unlicensed frequency band is only used for data transmission, does not carry any signaling information, and is uniformly scheduled by the downlink control channel of the licensed frequency band.
  • An LTE system deployed in an unlicensed band cannot work independently of a system that grants a band, that is, the secondary cell cannot work independently from the primary cell.
  • the existing LTE system unlicensed band access process mainly adopts a simple Listen-before-talk (LBT) mechanism.
  • LBT Listen-before-talk
  • the LTE system performs carrier sensing before accessing the unlicensed frequency band. Data transfer is performed after the length.
  • CSMA/CA carrier sense multiple access with collision avoidance
  • the current LAA access mechanism based on simple listening and listening does not consider well the coexistence of other deployed networks in the unlicensed band, especially the WLAN system, which will cause large network throughput of other systems.
  • the magnitude is decreasing.
  • the lack of reasonable LAA access parameter setting strategy can not optimize network performance.
  • the present application provides a channel access method and system to implement fair access between an LTE system and a WLAN system in an unlicensed frequency band.
  • the specific technical solutions are as follows:
  • an embodiment of the present application discloses a channel access method, including
  • the first LTE system is calculated under the condition that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the target optimal access probability ⁇ l * , and the second target optimal access probability ⁇ w * , ⁇ l * ⁇ w * of the WLAN system;
  • the access related parameters of the LTE system include:
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the LTE system data packet length E l [P], the time length of the LTE system successfully transmitting data T sl , the time of the LTE system data collision Length T cl , length ⁇ l of one slot of the LTE system;
  • the access related parameters of the WLAN system include:
  • Probability of the transmission of at least one WLAN system node P trw probability of successful transmission of the WLAN system data packet P sw , length of the WLAN system packet E w [P], length of time for the WLAN system to successfully transmit data T sw , time of data collision of the WLAN system Length T cw , length ⁇ w of one time slot of the WLAN system;
  • the step A comprises:
  • the relationship between the collision probability p l of the LTE system and the access probability ⁇ l of the LTE system and the access probability ⁇ w of the WLAN system, and the collision probability p w of the WLAN system and the LTE system The formula for the relationship between the access probability ⁇ l and the access probability ⁇ w of the WLAN system:
  • N w represents the number of WLAN system nodes
  • N l represents the number of LTE system nodes
  • S represents the network throughput
  • S W represents the throughput of the WLAN system
  • S L represents the throughput of the LTE system
  • P trl represents the probability of transmission of at least one LTE system node
  • P sl represents the probability of successful transmission of the LTE system data packet
  • E l [P] indicates the packet length of the LTE system
  • T sl indicates that LTE indicates the length of time for the system to successfully transmit data
  • T cl indicates the length of time for data collision in the LTE system
  • ⁇ l indicates the length of one slot of the LTE system
  • P trw indicates Probability of transmission by at least one WLAN system node
  • P sw represents the probability of successful transmission of the WLAN system data packet
  • E w [P] represents the packet length of the WLAN system
  • T sw represents the length of time that the WLAN system successfully transmits data
  • T cw represents the WLAN system
  • ⁇ w represents the length of one time slot of the WLAN
  • the network throughput of a single system is expressed as:
  • Finding the maximum network throughput for a single system is equivalent to finding the maximum of the following functions:
  • the optimal access probability ⁇ l0 and ⁇ w0 respectively corresponding to the single network throughput S l of the LTE system and the single network throughput S w of the WLAN system are:
  • the range of the first target optimal access probability ⁇ l * of the system is: ⁇ l * ⁇ (0, min( ⁇ l0 , ⁇ w0 )).
  • the step B uses a random backoff method to determine the maximum value of the contention window of the LTE system, and is determined by the following formula: Where ⁇ l * represents the optimal access probability of the LTE system, q l represents the probability that the data packet needs to be transmitted in the LTE system buffer, and p l represents the channel collision probability of the LTE system.
  • the formula determining process comprises:
  • denotes a steady-state distribution
  • q l denotes a probability that a data packet needs to be transmitted in the buffer
  • p l denotes a channel collision probability
  • W denotes an LTE system contention window
  • the LTE system performs channel access according to the initial backoff window counter, and adopts a random backoff method, including: when the LTE system detects that the idle length of the unlicensed band channel reaches one time slot, the initial backoff window is adopted.
  • the counter is decremented by 1.
  • the initial backoff window counter is decremented to 0, the LTE system accesses the unlicensed channel.
  • the step B uses a binary backoff method to determine the maximum value of the contention window of the LTE system, and is determined by the following formula:
  • ⁇ l * represents the optimal access probability of the LTE system
  • q l represents the probability that the data packet needs to be transmitted in the LTE system buffer
  • p l represents the channel collision probability of the LTE system
  • m represents the backoff order.
  • the backoff order is 4.
  • the formula determining process comprises:
  • denotes a steady-state distribution
  • q l denotes a probability that a data packet needs to be transmitted in the buffer
  • p l denotes a channel collision probability
  • W denotes an LTE system contention window
  • the LTE system performs channel access according to the initial backoff window counter, and adopts a binary backoff method, including: when the LTE system detects that the idle length of the unlicensed band channel reaches one time slot, the backoff counter is reduced. 1. When the backoff counter is reduced to 0, if it is detected that the unlicensed band channel is still idle, the LTE system accesses the unlicensed band channel. If the channel of the unlicensed band is detected to be busy, the current backoff order is incremented by 1, and the current backoff is performed.
  • the window counter is expanded by a factor of two.
  • a channel access system including:
  • the target optimal access probability determining unit calculates a condition that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system according to the access related parameters of the LTE system and the WLAN system.
  • the first target optimal access probability ⁇ l * of the LTE system, and the second target optimal access probability ⁇ w * , ⁇ l * ⁇ w * of the WLAN system;
  • the access related parameters of the LTE system include:
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the LTE system data packet length E l [P], the time length of the LTE system successfully transmitting data T sl , the time of the LTE system data collision Length T cl , length ⁇ l of one slot of the LTE system;
  • the access related parameters of the WLAN system include:
  • Probability of the transmission of at least one WLAN system node P trw probability of successful transmission of the WLAN system data packet P sw , length of the WLAN system packet E w [P], length of time for the WLAN system to successfully transmit data T sw , time of data collision of the WLAN system Length T cw , length ⁇ w of one time slot of the WLAN system;
  • the optimal contention window list obtaining unit of the LTE system is configured to determine, according to the first target optimal access probability ⁇ l * , a random backoff method or a binary backoff method, to determine a maximum value of the LTE system contention window, from 0 to the competition.
  • a positive integer between the maximum values of the windows constitutes an optimal contention window list for the LTE system;
  • the channel access unit is configured to determine a positive integer from the LTE system optimal contention window list as an initial backoff window counter of the LTE system, and the LTE system performs channel access according to the initial backoff window counter.
  • an embodiment of the present application discloses a control device, including: a processor, a memory, a communication interface, and a bus;
  • the processor, the memory, and the communication interface are connected by the bus and complete communication with each other;
  • the memory stores executable program code
  • the processor runs a program corresponding to the executable program code by reading executable program code stored in the memory for performing the channel access method.
  • an embodiment of the present application discloses an application program for performing the channel access method at runtime.
  • the embodiment of the present application discloses a storage medium for storing executable code, and the executable code is used to execute the channel access method.
  • the network throughput of the LTE system and the WLAN system coexisting is the largest and the access probability of the LTE system is obtained. Equal to the access probability of the WLAN system, the fairness between the LTE system and the WLAN system in the unlicensed band can be guaranteed.
  • FIG. 1 is a flowchart of a channel access method according to an embodiment of the present application
  • FIG. 2 is a Markov model diagram used in the embodiment shown in FIG. 1;
  • FIG. 3 is another flowchart of a channel access method according to an embodiment of the present application.
  • Figure 4 is a Markov model diagram used in the embodiment shown in Figure 3;
  • FIG. 5 is a schematic structural diagram of a channel access system according to an embodiment of the present disclosure.
  • FIG. 6 is another schematic structural diagram of a channel access system according to an embodiment of the present application.
  • a specific embodiment of the channel access method provided by the embodiment of the present application is applicable to a certain control device in the core network, which may be a network controller or other control device, as shown in FIG. 1 , including:
  • the first of the LTE system is calculated according to the access related parameters of the LTE system and the WLAN system, where the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the target optimal access probability ⁇ l * , and the second target optimal access probability ⁇ w * , ⁇ l * ⁇ w * of the WLAN system;
  • the access related parameters of the LTE system include:
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the LTE system data packet length E l [P], the time length of the LTE system successfully transmitting data T sl , the time of the LTE system data collision Length T cl , length ⁇ l of one slot of the LTE system;
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the length of the LTE system data packet E l [P], the length of time that the LTE system successfully transmits data before T sl, the length of time T cl LTE system, data collision, a time slot of the LTE system, ⁇ l is the length of a current time acquisition control device node, the LTE system for data transmission process, a person skilled in the prior art can be The parameters obtained.
  • the access related parameters of the WLAN system include:
  • Probability of the transmission of at least one WLAN system node P trw probability of successful transmission of the WLAN system data packet P sw , length of the WLAN system packet E w [P], length of time for the WLAN system to successfully transmit data T sw , time of data collision of the WLAN system Length T cw , length ⁇ w of one time slot of the WLAN system;
  • the probability of transmission of at least one WLAN system node P trw is the probability of transmission of at least one WLAN system node P trw , the probability of successful transmission of the WLAN system data packet P sw , the length of the WLAN system data packet E w [P], the length of time that the WLAN system successfully transmits data T sw , the time length of the data collision of the WLAN system T cw , the length of a time slot ⁇ w of the WLAN system is the data during the data transmission process of the WLAN system before the control device collects the current time node, which is available to those skilled in the art through the prior art. The parameters obtained.
  • step S101 may include:
  • the relationship between the collision probability p l of the LTE system and the access probability ⁇ l of the LTE system and the access probability ⁇ w of the WLAN system, and the collision probability p w of the WLAN system and the LTE system The formula for the relationship between the access probability ⁇ l and the access probability ⁇ w of the WLAN system:
  • N w represents the number of WLAN system nodes
  • N l represents the number of LTE system nodes
  • S represents the network throughput
  • S W represents the throughput of the WLAN system
  • S L represents the throughput of the LTE system
  • P trl represents the probability of transmission of at least one LTE system node
  • P sl represents the probability of successful transmission of the LTE system data packet
  • E l [P] indicates the packet length of the LTE system
  • T sl indicates that LTE indicates the length of time for the system to successfully transmit data
  • T cl indicates the length of time for data collision in the LTE system
  • ⁇ l indicates the length of one slot of the LTE system
  • P trw indicates Probability of transmission by at least one WLAN system node
  • P sw represents the probability of successful transmission of the WLAN system data packet
  • E w [P] represents the packet length of the WLAN system
  • T sw represents the length of time that the WLAN system successfully transmits data
  • T cw represents the WLAN system
  • ⁇ w represents the length of one time slot of the WLAN
  • the network throughput of a single system is expressed as:
  • the optimal access probability ⁇ l0 and ⁇ w0 respectively corresponding to the single network throughput S l of the LTE system and the single network throughput S w of the WLAN system are:
  • the range of the first target optimal access probability ⁇ l * of the corresponding LTE system is: ⁇ l * ⁇ (0, min( ⁇ l0 , ⁇ w0 ) ).
  • S102 Determine, according to the first target optimal access probability ⁇ l * , a random backoff method, determine a maximum value of the LTE system contention window, and take a positive integer from 0 to a maximum value of the contention window to form an LTE system optimal. List of competition windows;
  • the maximum backoff method of the LTE system is determined by using a random backoff method, and is determined by the following formula: Where ⁇ l * represents the optimal access probability of the LTE system, q l represents the probability that the data packet needs to be transmitted in the LTE system buffer, and p l represents the channel collision probability of the LTE system.
  • the above formula is obtained by establishing a random back-off Markov model.
  • the Markov model is composed of idle idle state I and backoff state i, and lists the steady-state equations according to the Markov model. :
  • denotes a steady-state distribution
  • q l denotes a probability that a data packet needs to be transmitted in the buffer
  • p l denotes a channel collision probability
  • W denotes an LTE system contention window
  • the probability q l of the data packet to be transmitted in the buffer and the channel collision probability p l are data in the data transmission process of the LTE system before the control device collects the current time node, which is in the field.
  • the access probability of the LTE system obtained from the steady-state equations is:
  • S103 Determine a positive integer from the LTE system optimal contention window list as an initial backoff window counter of the LTE system, and the LTE system performs channel access according to the initial backoff window counter.
  • the LTE system performs channel access according to the initial backoff window counter, and adopts a random backoff method. Specifically, when the LTE system detects that the idle length of the unlicensed band channel reaches one time slot, the initial backoff window counter is reduced. 1. When the initial backoff window counter is reduced to 0, the LTE system accesses the unlicensed channel.
  • control device in the core network recalculates from step S101 to perform a new primary channel access.
  • the first target of the LTE system is optimally obtained by calculating that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the probability of entry is obtained, thereby obtaining an initial backoff window counter of the LTE system, and the LTE system adopts a random backoff method for channel access according to the initial backoff window counter.
  • This scheme enables the LTE system and the WLAN system to coexist with the largest network throughput, and can ensure the unlicensed frequency band. Fairness between the LTE system and the WLAN system.
  • Another specific embodiment of the channel access method provided by the embodiment of the present application is applicable to a certain control device in the core network, which may be a network controller or other control device, as shown in FIG. 3, including:
  • the first of the LTE system is calculated according to the access related parameters of the LTE system and the WLAN system, where the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the target optimal access probability ⁇ l * , and the second target optimal access probability ⁇ w * , ⁇ l * ⁇ w * of the WLAN system;
  • This step may be identical to step S101 in the embodiment shown in FIG. 1, and the description is not repeated here.
  • S302 Determine, according to the first target optimal access probability ⁇ l * , a binary backoff method, determine a maximum value of the LTE system contention window, and take a positive integer from 0 to a maximum value of the contention window to form an LTE system optimal. List of competition windows;
  • the maximum value of the contention window of the LTE system is determined by using a binary backoff method, and is determined by the following formula:
  • ⁇ l * represents the optimal access probability of the LTE system
  • q l represents the probability that the data packet needs to be transmitted in the LTE system buffer
  • p l represents the channel collision probability of the LTE system
  • m represents the backoff order.
  • the backoff order is 4.
  • the above-mentioned formula probability data packet needs to be sent q l and the LTE system, the channel collision probability p l LTE system exists in the cache, before the control device to capture the current time of the node, the LTE system for data transmission process Is a parameter that can be obtained by those skilled in the art through the prior art. Further, the above formula is obtained by establishing a binary back-off Markov model, as shown in FIG. 4, according to the Markov model, the steady-state equations are listed:
  • denotes a steady-state distribution
  • q l denotes a probability that a data packet needs to be transmitted in the buffer
  • p l denotes a channel collision probability
  • W denotes an LTE system contention window
  • the probability q l of the data packet to be transmitted in the buffer and the channel collision probability p l are data in the data transmission process of the LTE system before the control device collects the current time node, which is in the field.
  • the access probability of the LTE system obtained from the steady-state equations is:
  • S303 Determine a positive integer from the LTE system optimal contention window list as an initial backoff window counter of the LTE system, and the LTE system performs channel access according to the initial backoff window counter.
  • the LTE system performs channel access according to the initial backoff window counter, and adopts a binary backoff method. Specifically, when the LTE system detects that the idle length of the unlicensed band channel reaches one time slot, the backoff counter is decremented by one. When the backoff counter is reduced to 0, if it is detected that the unlicensed band channel is still idle, the LTE system accesses the unlicensed band channel, and if the unlicensed band channel is detected to be busy, the current backoff order is incremented by 1, the current backoff window counter. Expanded by 2 times.
  • control device in the core network recalculates from step S301 to perform a new primary channel access.
  • the first target of the LTE system is optimally obtained by calculating that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the probability of entry is obtained, thereby obtaining an initial backoff window counter of the LTE system, and the LTE system adopts a binary backoff method for channel access according to the initial backoff window counter.
  • This scheme enables the LTE system and the WLAN system to coexist with the largest network throughput, and can ensure the unlicensed frequency band. Fairness between the LTE system and the WLAN system.
  • a specific embodiment of the channel access system provided by the embodiment of the present application corresponds to the method shown in FIG. 1 , as shown in FIG. 5 , and includes:
  • the access related parameters of the LTE system include:
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the LTE system data packet length E l [P], the time length of the LTE system successfully transmitting data T sl , the time of the LTE system data collision Length T cl , length ⁇ l of one slot of the LTE system;
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the length of the LTE system data packet E l [P], the length of time that the LTE system successfully transmits data before T sl, the length of time T cl LTE system, data collision, a time slot of the LTE system, ⁇ l is the length of a current time acquisition control device node, the LTE system for data transmission process, a person skilled in the prior art can be The parameters obtained.
  • the access related parameters of the WLAN system include:
  • Probability of the transmission of at least one WLAN system node P trw probability of successful transmission of the WLAN system data packet P sw , length of the WLAN system packet E w [P], length of time for the WLAN system to successfully transmit data T sw , time of data collision of the WLAN system Length T cw , length ⁇ w of one time slot of the WLAN system;
  • the probability of transmission of at least one WLAN system node P trw is the probability of transmission of at least one WLAN system node P trw , the probability of successful transmission of the WLAN system data packet P sw , the length of the WLAN system data packet E w [P], the length of time that the WLAN system successfully transmits data T sw , the length of the data collision of the WLAN system T cw , the length of a time slot ⁇ w of the WLAN system is the data during the data transmission process of the WLAN system before the control device collects the current time node, which is available to those skilled in the art through the prior art. The parameters obtained.
  • the random backoff LTE system optimal contention window list obtaining unit 502 is configured to determine, according to the first target optimal access probability ⁇ l * , a random backoff method to determine a maximum value of the LTE system contention window, from 0 to the contention window.
  • the positive integer between the maximum values constitutes the optimal contention window list of the LTE system;
  • the channel access unit 503 is configured to determine a positive integer from the LTE system optimal contention window list as an initial backoff window counter of the LTE system, and the LTE system performs channel access according to the initial backoff window counter.
  • the first target of the LTE system is optimally obtained by calculating that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the probability of entry is obtained, thereby obtaining an initial backoff window counter of the LTE system, and the LTE system adopts a random backoff method for channel access according to the initial backoff window counter.
  • This scheme enables the LTE system and the WLAN system to coexist with the largest network throughput, and can ensure the unlicensed frequency band. Fairness between the LTE system and the WLAN system.
  • Another specific embodiment of the channel access system provided by the embodiment of the present application, corresponding to the method shown in FIG. 3, as shown in FIG. 6, includes:
  • the access related parameters of the LTE system include:
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the LTE system data packet length E l [P], the time length of the LTE system successfully transmitting data T sl , the time of the LTE system data collision Length T cl , length ⁇ l of one slot of the LTE system;
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the length of the LTE system data packet E l [P], the length of time that the LTE system successfully transmits data before T sl, the length of time T cl LTE system, data collision, a time slot of the LTE system, ⁇ l is the length of a current time acquisition control device node, the LTE system for data transmission process, a person skilled in the prior art can be The parameters obtained.
  • the access related parameters of the WLAN system include:
  • Probability of the transmission of at least one WLAN system node P trw probability of successful transmission of the WLAN system data packet P sw , length of the WLAN system packet E w [P], length of time for the WLAN system to successfully transmit data T sw , time of data collision of the WLAN system Length T cw , length ⁇ w of one time slot of the WLAN system;
  • the probability of transmission of at least one WLAN system node P trw is the probability of transmission of at least one WLAN system node P trw , the probability of successful transmission of the WLAN system data packet P sw , the length of the WLAN system data packet E w [P], the length of time that the WLAN system successfully transmits data T sw , the time length of the data collision of the WLAN system T cw , the length of a time slot ⁇ w of the WLAN system is the data during the data transmission process of the WLAN system before the control device collects the current time node, which is available to those skilled in the art through the prior art. The parameters obtained.
  • the binary backoff LTE system optimal contention window list obtaining unit 602 is configured to determine a maximum value of the LTE system contention window according to the first target optimal access probability ⁇ l * and adopt a binary backoff method, and take a 0 from the 0 to the contention window.
  • the positive integer between the maximum values constitutes the optimal contention window list of the LTE system;
  • the channel access unit 603 determines a positive integer from the LTE system optimal contention window list as an initial backoff window counter of the LTE system, and the LTE system performs channel access according to the initial backoff window counter.
  • the first target of the LTE system is optimally selected by calculating that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the probability of entry is obtained, thereby obtaining an initial backoff window counter of the LTE system, and the LTE system adopts a binary backoff method for channel access according to the initial backoff window counter.
  • This scheme enables the LTE system and the WLAN system to coexist with the largest network throughput, and can ensure the unlicensed frequency band. Fairness between the LTE system and the WLAN system.
  • processor a memory, a communication interface, and a bus
  • the processor, the memory, and the communication interface are connected by the bus and complete communication with each other;
  • the memory stores executable program code
  • the processor runs a program corresponding to the executable program code by reading executable program code stored in the memory for execution:
  • the first of the LTE systems is calculated under the condition that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is equal to the access probability ⁇ w of the WLAN system.
  • the target optimal access probability ⁇ l * , and the second target optimal access probability ⁇ w * , ⁇ l * ⁇ w * of the WLAN system;
  • the access related parameters of the LTE system include:
  • the probability of at least one LTE system node transmission P trl the probability of successful transmission of the LTE system data packet P sl , the LTE system data packet length E l [P], the time length of the LTE system successfully transmitting data T sl , the time of the LTE system data collision Length T cl , length ⁇ l of one slot of the LTE system;
  • the access related parameters of the WLAN system include:
  • Probability of the transmission of at least one WLAN system node P trw probability of successful transmission of the WLAN system data packet P sw , length of the WLAN system packet E w [P], length of time for the WLAN system to successfully transmit data T sw , time of data collision of the WLAN system Length T cw , length ⁇ w of one time slot of the WLAN system;
  • the processor calculates the maximum throughput of the network and accesses the LTE system by reading the executable program code stored in the memory.
  • the probability ⁇ l is equal to the access probability ⁇ w of the WLAN system
  • the first target of the LTE system is optimally accessed, thereby obtaining an initial backoff window counter of the LTE system, thereby controlling the LTE system to adopt the initial backoff window counter.
  • the random backoff method or the binary backoff method performs channel access.
  • a specific embodiment of the application provided by the embodiment of the present application is used to perform the channel access method according to the method embodiment 1 or the method embodiment 2 of the present application.
  • the description of Embodiment 1 and Method Embodiment 2 is not repeated here.
  • the control device calculates, by executing the foregoing application, that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system and the access probability of the WLAN system.
  • ⁇ w the first target optimal access probability of the LTE system is obtained, thereby obtaining an initial backoff window counter of the LTE system, thereby controlling the LTE system to perform channel connection according to the initial backoff window counter by using a random backoff method or a binary backoff method.
  • the network throughput of the LTE system and the WLAN system coexisting is maximized, and the fairness between the LTE system and the WLAN system in the unlicensed band can be guaranteed.
  • a specific embodiment of the storage medium provided by the embodiment of the present application is configured to store executable code, where the executable code is used to perform the channel access method in the embodiment of the present application.
  • the description of the method embodiment 2 is not repeated here.
  • the control device calculates, by executing executable code stored in the foregoing storage medium, that the network throughput reaches a maximum value and the access probability ⁇ l of the LTE system is connected to the WLAN system. Under the condition that the probability ⁇ w is equal, the first target optimal access probability of the LTE system is obtained, thereby obtaining an initial backoff window counter of the LTE system, thereby controlling the LTE system to perform the random backoff method or the binary backoff method according to the initial backoff window counter.
  • Channel access which maximizes the network throughput of the LTE system and the WLAN system, and ensures fairness between the LTE system and the WLAN system in the unlicensed frequency band.
  • control device the application program and the storage medium embodiment, since it is basically similar to the method embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种信道接入方法及系统,根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率与WLAN系统的接入概率相等的条件下,LTE系统的第一目标最优接入概率,和WLAN系统的第二目标最优接入概率;采用随机退避方法或者二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统进行信道接入。本申请通过优化LTE系统的接入概率及初始退避窗计数器大小,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。

Description

一种信道接入方法及系统
本申请要求于2016年11月4日提交中国专利局、申请号为201610965312.5发明名称为“一种信道接入方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,特别是涉及一种信道接入方法及系统。
背景技术
LAA(License Assisted Access),指的是:授权频谱辅助接入,是LTE(Long Term Evolution)网络用于非授权频段的技术,该技术是在载波聚合的基础上,将授权频段配置为主小区,非授权频段配置为副小区。其中非授权频段只用作数据传输,不承载任何信令信息,由授权频段的下行控制信道进行统一调度。部署在非授权频段的LTE系统不能独立于授权频段的系统而工作,即辅小区不能脱离主小区单独工作。这种利用非授权频段的方式不需要对LTE的空口结构进行修改,运营资本较低,可以获得很大的容量增益。LAA技术的最大问题是与WLAN系统的共存。在不采用任何共存机制和干扰避免机制下,LTE会占据大部分非授权频段,造成WLAN性能的大幅度下降。
现有的LTE系统非授权频段接入过程,主要采用简单的先听后说(Listen-before-talk,LBT)机制,LTE系统在接入非授权频段前先进行载波监听,当载波空闲一定时间长度之后再进行数据传输。但是由于WLAN系统的MAC层协议是基于带有冲突避免的载波侦听多路访问(CSMA/CA),在与LTE争抢非授权频段资源时,如果遇到信道冲突会频繁的进行退避,造成WLAN网络吞吐量大幅度下降。由于LTE系统和WLAN系统对非授权频段争抢资源的能力不同,导致非授权频段的非公平划分。
综上所述,目前基于简单先听后说的LAA接入机制,并没有很好地考虑与非授权频段其他已部署网络,尤其是WLAN系统的共存问题,会造成其他系统网络吞吐量的大幅度下降。同时缺乏合理的LAA接入参数设置策略,不能实现网络性能最优化。
发明内容
本申请提供了一种信道接入方法及系统,以实现非授权频段下LTE系统和WLAN系统之间的公平性接入。具体技术方案如下:
为达到上述目的,本申请实施例公开了一种信道接入方法,包括,
A、根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量 达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
其中,所述LTE系统的接入相关参数包括:
至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
所述WLAN系统的接入相关参数包括:
至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
B、根据所述第一目标最优接入概率τl *,采用随机退避方法或者二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
C、从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
优选的,所述步骤A包括:
根据非授权频段共存场景下的,LTE系统的冲突概率pl与LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系、以及WLAN系统的冲突概率pw与LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系的公式:
Figure PCTCN2016105691-appb-000001
其中Nw表示WLAN系统节点数量,Nl表示LTE系统节点数量;
和网络吞吐量的公式:
Figure PCTCN2016105691-appb-000002
其中,
Figure PCTCN2016105691-appb-000003
Figure PCTCN2016105691-appb-000004
Figure PCTCN2016105691-appb-000005
Figure PCTCN2016105691-appb-000006
其中,S表示网络吞吐量,SW表示WLAN系统的吞吐量,SL表示LTE系统的吞吐量,Ptrl表示至少一个LTE系统节点传输的概率,Psl表示LTE系统数据包传输成功的概率,El[P]表示LTE系统数据包长度,Tsl表示LTE表示系统成功传输数据的时间长度,Tcl表示LTE系统数据冲突的时间长度,σl表示LTE系统一个时隙的长度,Ptrw表示至少一个WLAN系统节点传输的概率,Psw表示WLAN系统数据包传输成功的概率,Ew[P]表示WLAN系统数据包长度,Tsw表示WLAN系统成功传输数据的时间长度,Tcw表示WLAN系统数据冲突的时间长度,σw表示WLAN系统一个时隙的长度;
令τl=τw,得出:
Figure PCTCN2016105691-appb-000007
Figure PCTCN2016105691-appb-000008
单一系统的网络吞吐量表示为:
Figure PCTCN2016105691-appb-000009
求单一系统的网络吞吐量最大值等价于求下列函数的最大值:
Figure PCTCN2016105691-appb-000010
对F(τ)求导并使导数等于0得:(1-τ)n(σ-Tc)-Tc(nτ-1)=0,由泰勒公式
Figure PCTCN2016105691-appb-000011
得最佳信道接入概率为:
Figure PCTCN2016105691-appb-000012
据上述计算,在LTE系统和WLAN系统共存的场景下,LTE系统单一网络吞吐量Sl、WLAN系统单一网络吞吐量Sw最大时分别对应的最佳接入概率τl0、τw0为:
Figure PCTCN2016105691-appb-000013
Figure PCTCN2016105691-appb-000014
使Fll)最大化的τl *l0,同理使Fwl)最大化的τl *w0,最大化共存场景下的两个系统吞吐量,则LTE系统的第一目标最优接入概率τl *的范围为:τl *∈(0,min(τl0w0))。
优选的,所述的步骤B中采用随机退避方法,确定LTE系统竞争窗口的最大值,通过如下公式计算确定:
Figure PCTCN2016105691-appb-000015
其中,τl *表示LTE系统的最优接入概率,ql表示LTE系统缓存中存在数据包需要发送的 概率,pl表示LTE系统信道冲突概率。
优选的,所述的公式确定过程包括:
根据马尔科夫模型,列出稳态方程组:
Figure PCTCN2016105691-appb-000016
其中,π表示稳态分布,ql表示缓存中存在数据包需要发送的概率,pl表示信道冲突概率,W表示LTE系统竞争窗口;
由稳态方程组得到LTE系统竞争窗口的最大值的表达式:
Figure PCTCN2016105691-appb-000017
优选的,所述的步骤C中LTE系统根据初始退避窗计数器,进行信道接入,采用随机退避方法,包括:当LTE系统检测到非授权频段信道空闲长度达到一个时隙后,将初始退避窗计数器减1,当初始退避窗计数器减为0时,LTE系统接入非授权信道。
或者,优选的,所述的步骤B中采用二进制退避方法,确定LTE系统竞争窗口的最大值,通过如下公式计算确定:
Figure PCTCN2016105691-appb-000018
其中,τl *表示LTE系统的最优接入概率,ql表示LTE系统缓存中存在数据包需要发送的概率,pl表示LTE系统信道冲突概率,m表示退避阶数。
优选的,所述的退避阶数为4。
优选的,所述的公式确定过程包括:
根据马尔科夫模型,列出稳态方程组:
Figure PCTCN2016105691-appb-000019
其中,π表示稳态分布,ql表示缓存中存在数据包需要发送的概率,pl表示信道冲突概率,W表示LTE系统竞争窗口;
由稳态方程组得到LTE系统竞争窗口的最大值的表达式:
Figure PCTCN2016105691-appb-000020
优选的,所述的步骤C中LTE系统根据初始退避窗计数器,进行信道接入,采用二进制退避方法,包括:当LTE系统检测到非授权频段信道空闲长度达到一个时隙后,将退避计数器减1,当退避计数器减为0时,如果检测到非授权频段信道依然空闲,则LTE系统接入非授权频段信道,如果检测到非授权频段信道繁忙,则将当前退避阶数加1,当前退避窗计数器扩大2倍。
为达到上述目的,本申请实施例公开了一种信道接入系统,包括:
目标最优接入概率确定单元,根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
其中,所述LTE系统的接入相关参数包括:
至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
所述WLAN系统的接入相关参数包括:
至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
LTE系统最优竞争窗口列表获得单元,用于根据所述第一目标最优接入概率τl *,采用随机退避方法或者二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
信道接入单元,用于从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
为达到上述目的,本申请实施例公开了一种控制设备,包括:处理器、存储器、通信接口和总线;
所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
所述存储器存储可执行程序代码;
所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行所述的信道接入方法。
为达到上述目的,本申请实施例公开了一种应用程序,用于在运行时执行所述的信道接入方法。
为达到上述目的,本申请实施例公开了一种存储介质,用于存储可执行代码,所述可执行代码用于执行所述的信道接入方法。
由上述的技术方案可见,本申请实施例提供的方案中,通过优化LTE系统的接入概率及初始退避窗计数器大小,使得LTE系统和WLAN系统共存的网络吞吐量最大且LTE系统的接入概率与WLAN系统的接入概率相等,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的信道接入方法的一种流程图;
图2为图1所示实施例中采用的马尔科夫模型图;
图3为本申请实施例提供的信道接入方法的另一种流程图;
图4为图3所示实施例中采用的马尔科夫模型图;
图5为本申请实施例提供的信道接入系统的一种结构示意图;
图6为本申请实施例提供的信道接入系统的另一种结构示意图。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
方法实施例一
本申请实施例提供的信道接入方法的一种具体实施例,应用于核心网中的某一控制设备,可以是网络控制器,也可以是其他控制设备,如图1所示,包括:
S101:根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
其中,所述LTE系统的接入相关参数包括:
至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
应当说明的是,所述的:至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
所述WLAN系统的接入相关参数包括:
至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
应当说明的是,所述的:至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw是控制设备采集当前时间节点之前,WLAN系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
具体的,步骤S101可以包括:
根据非授权频段共存场景下的,LTE系统的冲突概率pl与LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系、以及WLAN系统的冲突概率pw与LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系的公式:
Figure PCTCN2016105691-appb-000021
其中Nw表示WLAN系统节点数量,Nl表示LTE系统节点数量;
和网络吞吐量的公式:
Figure PCTCN2016105691-appb-000022
其中,
Figure PCTCN2016105691-appb-000023
Figure PCTCN2016105691-appb-000024
Figure PCTCN2016105691-appb-000025
Figure PCTCN2016105691-appb-000026
其中,S表示网络吞吐量,SW表示WLAN系统的吞吐量,SL表示LTE系统的吞吐量,Ptrl表示至少一个LTE系统节点传输的概率,Psl表示LTE系统数据包传输成功的概率,El[P]表示LTE系统数据包长度,Tsl表示LTE表示系统成功传输数据的时间长度,Tcl表示LTE系统数据冲突的时间长度,σl表示LTE系统一个时隙的长度,Ptrw表示至少一个WLAN系统节点传输的概率,Psw表示WLAN系统数据包传输成功的概率,Ew[P]表示WLAN系统数据包长度,Tsw表示WLAN系统成功传输数据的时间长度,Tcw表示WLAN系统数据冲突的时间长度,σw表示WLAN系统一个时隙的长度;
考虑到LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系,τl=ατw,其中α为公平系数。当α=1,也即是τl=τw时,两个系统可以达到完全比例公平,得出:
Figure PCTCN2016105691-appb-000027
Figure PCTCN2016105691-appb-000028
单一系统的网络吞吐量表示为:
Figure PCTCN2016105691-appb-000029
由于
Figure PCTCN2016105691-appb-000030
Figure PCTCN2016105691-appb-000031
随着τl的增加而减少,所以求单一系统的网络吞吐量最大值等价于求下列函数的最大值:
Figure PCTCN2016105691-appb-000032
对F(τ)求导并使导数等于0得:(1-τ)n(σ-Tc)-Tc(nτ-1)=0。因为τ<<1,由泰勒公式
Figure PCTCN2016105691-appb-000033
得最佳信道接入概率为:
Figure PCTCN2016105691-appb-000034
据上述计算,在LTE系统和WLAN系统共存的场景下,LTE系统单一网络吞吐量Sl、WLAN系统单一网络吞吐量Sw最大时分别对应的最佳接入概率τl0、τw0为:
Figure PCTCN2016105691-appb-000035
Figure PCTCN2016105691-appb-000036
使Fll)最大化的τl *l0,同理使Fwl)最大化的τl *w0。因此,最大化共存场景下的两个系统吞吐量,则对应的LTE系统的第一目标最优接入概率τl *的范围为:τl *∈(0,min(τl0w0))。
S102:根据所述第一目标最优接入概率τl *,采用随机退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
具体的,采用随机退避方法,确定LTE系统竞争窗口的最大值,通过如下公式计算确定:
Figure PCTCN2016105691-appb-000037
其中,τl *表示LTE系统的最优接入概率,ql表示LTE系统缓存中存在数据包需要发送的概率,pl表示LTE系统信道冲突概率。
应当说明的是,上述公式中的:LTE系统缓存中存在数据包需要发送的概率ql及LTE系统信道冲突概率pl,是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参 数。
进一步的,上述公式是通过建立随机退避马尔可夫模型获得的,如图2所示,马尔科夫模型由idle空闲状态I和退避状态i组成,根据马尔可夫模型,列出稳态方程组:
Figure PCTCN2016105691-appb-000038
其中,π表示稳态分布,ql表示缓存中存在数据包需要发送的概率,pl表示信道冲突概率,W表示LTE系统竞争窗口;
应当说明的是,上述公式中的:缓存中存在数据包需要发送的概率ql及信道冲突概率pl,是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
由稳态方程组得到LTE系统接入概率为:
Figure PCTCN2016105691-appb-000039
进而推导出LTE系统竞争窗口的最大值的表达式为:
Figure PCTCN2016105691-appb-000040
S103:从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
具体的,LTE系统根据初始退避窗计数器,进行信道接入,采用的是随机退避的方法,具体为:当LTE系统检测到非授权频段信道空闲长度达到一个时隙后,将初始退避窗计数器减1,当初始退避窗计数器减为0时,LTE系统接入非授权信道。
应当说明的是,当LTE系统完成一次接入非授权信道后,核心网中的控制设备从步骤S101开始重新计算,进行新的一次信道接入。
本申请方法实施例一,通过计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,采用随机退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
方法实施例二
本申请实施例提供的信道接入方法的另一种具体实施例,应用于核心网中的某一控制设备,可以是网络控制器,也可以是其他控制设备,如图3所示,包括:
S301:根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
本步骤与图1所示实施例中的步骤S101可以完全相同,这里不再重复说明。
S302:根据所述第一目标最优接入概率τl *,采用二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
具体的,采用二进制退避方法,确定LTE系统竞争窗口的最大值,通过如下公式计算确定:
Figure PCTCN2016105691-appb-000041
其中,τl *表示LTE系统的最优接入概率,ql表示LTE系统缓存中存在数据包需要发送的概率,pl表示LTE系统信道冲突概率,m表示退避阶数。
优选的,所述的退避阶数为4。
应当说明的是,上述公式中的:LTE系统缓存中存在数据包需要发送的概率ql及LTE系统信道冲突概率pl,是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。进一步的,上述公式是通过建立二进制退避马尔可夫模型获得的,如图4 所示,根据马尔可夫模型,列出稳态方程组:
Figure PCTCN2016105691-appb-000042
其中,π表示稳态分布,ql表示缓存中存在数据包需要发送的概率,pl表示信道冲突概率,W表示LTE系统竞争窗口;
应当说明的是,上述公式中的:缓存中存在数据包需要发送的概率ql及信道冲突概率pl,是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
由稳态方程组得到LTE系统接入概率为:
Figure PCTCN2016105691-appb-000043
进而推导出LTE系统竞争窗口的最大值的表达式为:
Figure PCTCN2016105691-appb-000044
S303:从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
具体的,LTE系统根据初始退避窗计数器,进行信道接入,采用的是二进制退避的方法,具体为:当LTE系统检测到非授权频段信道空闲长度达到一个时隙后,将退避计数器减1,当退避计数器减为0时,如果检测到非授权频段信道依然空闲,则LTE系统接入非授权频段信道,如果检测到非授权频段信道繁忙,则将当前退避阶数加1,当前退避窗计数器扩大2倍。
应当说明的是,当LTE系统完成一次接入非授权信道后,核心网中的控制设备从步骤S301开始重新计算,进行新的一次信道接入。
本申请方法实施例二,通过计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,采用二进制退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
系统实施例一
本申请实施例提供的信道接入系统的一种具体实施例,与图1所示方法对应,如图5所示,包括:
目标最优接入概率确定单元501,用于根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
其中,所述LTE系统的接入相关参数包括:
至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
应当说明的是,所述的:至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
所述WLAN系统的接入相关参数包括:
至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
应当说明的是,所述的:至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN 系统一个时隙的长度σw是控制设备采集当前时间节点之前,WLAN系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
具体过程参见方法实施例一中S101的描述,这里不再重复说明。
随机退避LTE系统最优竞争窗口列表获得单元502,用于根据所述第一目标最优接入概率τl *,采用随机退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
具体过程参见方法实施例一中S102的描述,这里不再重复说明。
信道接入单元503,用于从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
具体过程参见方法实施例一中S103的描述,这里不再重复说明。
本申请系统实施例一,通过计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,采用随机退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
本申请实施例提供的信道接入系统的另一种具体实施例,与图3所示方法对应,如图6所示,包括:
目标最优接入概率确定单元601,用于根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
其中,所述LTE系统的接入相关参数包括:
至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
应当说明的是,所述的:至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl是控制设备采集当前时间节点之前,LTE系统进行数据传输过程中的 数据,是本领域人员通过现有技术可以获得的参数。
所述WLAN系统的接入相关参数包括:
至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
应当说明的是,所述的:至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw是控制设备采集当前时间节点之前,WLAN系统进行数据传输过程中的数据,是本领域人员通过现有技术可以获得的参数。
具体过程参见方法实施例一中S101的描述,这里不再重复说明。
二进制退避LTE系统最优竞争窗口列表获得单元602,用于根据所述第一目标最优接入概率τl *,采用二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
具体过程参见方法实施例二中S302的描述,这里不再重复说明。
信道接入单元603,从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
具体过程参见方法实施例二中S303的描述,这里不再重复说明。
本申请系统实施例二,通过计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,采用二进制退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
控制设备实施例一
本申请实施例提供的控制设备的一种具体实施例,包括:
处理器、存储器、通信接口和总线;
所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
所述存储器存储可执行程序代码;
所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行:
A、根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
其中,所述LTE系统的接入相关参数包括:
至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
所述WLAN系统的接入相关参数包括:
至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
B、根据所述第一目标最优接入概率τl *,采用随机退避方法或者二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
C、从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
具体过程参见方法实施例一和方法实施例二的描述,这里不再重复说明。
由以上可见,本申请控制设备实施例一提供的方案中,所述处理器通过读取所述存储器中存储的可执行程序代码,计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,从而控制LTE系统根据初始退避窗计数器,采用随机退避方法或者二进制退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
应用程序实施例一
本申请实施例提供的应用程序的一种具体实施例,用于在运行时执行本申请方法实施例一或方法实施例二所述的信道接入方法,具体过程参见方法 实施例一和方法实施例二的描述,这里不再重复说明。
由以上可见,本申请应用程序实施例一提供的方案中,控制设备通过执行上述应用程序,计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,从而控制LTE系统根据初始退避窗计数器,采用随机退避方法或者二进制退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
存储介质实施例一
本申请实施例提供的存储介质的一种具体实施例,用于存储可执行代码,所述可执行代码用于执行本申请实施例所述的信道接入方法,具体过程参见方法实施例一和方法实施例二的描述,这里不再重复说明。
本申请存储介质实施例一提供的方案中,控制设备通过执行上述存储介质中存储的可执行代码,计算使得所述网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率,从而得到LTE系统的初始退避窗计数器,从而控制LTE系统根据初始退避窗计数器,采用随机退避方法或者二进制退避方法进行信道接入,该方案使得LTE系统和WLAN系统共存的网络吞吐量最大,可以保证非授权频段下LTE系统和WLAN系统之间的公平性。
对于系统、控制设备、应用程序以及存储介质实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本领域普通技术人员可以理解实现上述方法实施方式中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,所述的程序可以存储于计算机可读取存储介质中,这里所称的存储介质,如:ROM/RAM、磁碟、光盘等。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (13)

  1. 一种信道接入方法,其特征在于,包括,
    A、根据LTE系统和WLAN系统的接入相关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
    其中,所述LTE系统的接入相关参数包括:
    至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
    所述WLAN系统的接入相关参数包括:
    至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
    B、根据所述第一目标最优接入概率τl *,采用随机退避方法或者二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
    C、从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
  2. 根据权利要求1所述的信道接入方法,其特征在于,
    所述步骤A包括:
    根据非授权频段共存场景下的,LTE系统的冲突概率pl与LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系、以及WLAN系统的冲突概率pw与LTE系统的接入概率τl和WLAN系统的接入概率τw之间的关系的公式:
    Figure PCTCN2016105691-appb-100001
    其中Nw表示WLAN系统节点数量,Nl表示LTE系统节点数量;
    和网络吞吐量的公式:
    Figure PCTCN2016105691-appb-100002
    其中,
    Figure PCTCN2016105691-appb-100003
    Figure PCTCN2016105691-appb-100004
    Figure PCTCN2016105691-appb-100005
    Figure PCTCN2016105691-appb-100006
    其中,S表示网络吞吐量,SW表示WLAN系统的吞吐量,SL表示LTE系统的吞吐量,Ptrl表示至少一个LTE系统节点传输的概率,Psl表示LTE系统数据包传输成功的概率,El[P]表示LTE系统数据包长度,Tsl表示LTE表示系统成功传输数据的时间长度,Tcl表示LTE系统数据冲突的时间长度,σl表示LTE系统一个时隙的长度,Ptrw表示至少一个WLAN系统节点传输的概率,Psw表示WLAN系统数据包传输成功的概率,Ew[P]表示WLAN系统数据包长度,Tsw表示WLAN系统成功传输数据的时间长度,Tcw表示WLAN系统数据冲突的时间长度,σw表示WLAN系统一个时隙的长度;
    令τl=τw,得出:
    Figure PCTCN2016105691-appb-100007
    Figure PCTCN2016105691-appb-100008
    单一系统的网络吞吐量表示为:
    Figure PCTCN2016105691-appb-100009
    求单一系统的网络吞吐量最大值等价于求下列函数的最大值:
    Figure PCTCN2016105691-appb-100010
    对F(τ)求导并使导数等于0得:(1-τ)n(σ-Tc)-Tc(nτ-1)=0,由泰勒公式
    Figure PCTCN2016105691-appb-100011
    得最佳信道接入概率为:
    Figure PCTCN2016105691-appb-100012
    据上述计算,在LTE系统和WLAN系统共存的场景下,LTE系统单一网络吞吐量Sl、WLAN系统单一网络吞吐量Sw最大时分别对应的最佳接入概率τl0、τw0为:
    Figure PCTCN2016105691-appb-100013
    Figure PCTCN2016105691-appb-100014
    使Fll)最大化的τl *l0,同理使Fwl)最大化的τl *w0,最大化共存场景下的两个系统吞吐量,则LTE系统的第一目标最优接入概率τl *的范围为:τl *∈(0,min(τl0w0))。
  3. 根据权利要求2所述的信道接入方法,其特征在于,
    所述的步骤B中采用随机退避方法,确定LTE系统竞争窗口的最大值, 通过如下公式计算确定:
    Figure PCTCN2016105691-appb-100015
    其中,τl *表示LTE系统的最优接入概率,ql表示LTE系统缓存中存在数据包需要发送的概率,pl表示LTE系统信道冲突概率。
  4. 根据权利要求3所述的信道接入方法,其特征在于,所述的公式确定过程包括:
    根据马尔科夫模型,列出稳态方程组:
    Figure PCTCN2016105691-appb-100016
    其中,π表示稳态分布,ql表示缓存中存在数据包需要发送的概率,pl表示信道冲突概率,W表示LTE系统竞争窗口;
    由稳态方程组得到LTE系统竞争窗口的最大值的表达式:
    Figure PCTCN2016105691-appb-100017
  5. 根据权利要求3或4所述的信道接入方法,其特征在于,
    所述的步骤C中LTE系统根据初始退避窗计数器,进行信道接入,采用随机退避方法,包括:当LTE系统检测到非授权频段信道空闲长度达到一个时隙后,将初始退避窗计数器减1,当初始退避窗计数器减为0时,LTE系统接入非授权信道。
  6. 根据权利要求2所述的信道接入方法,其特征在于,
    所述的步骤B中采用二进制退避方法,确定LTE系统竞争窗口的最大值,通过如下公式计算确定:
    Figure PCTCN2016105691-appb-100018
    其中,
    Figure PCTCN2016105691-appb-100019
    表示LTE系统的最优接入概率,ql表示LTE系统缓存中存在数据包需要发送的概 率,pl表示LTE系统信道冲突概率,m表示退避阶数。
  7. 根据权利要求6所述的信道接入方法,其特征在于,所述的退避阶数为4。
  8. 根据权利要求7所述的信道接入方法,其特征在于,所述的公式确定过程包括:
    根据马尔科夫模型,列出稳态方程组:
    Figure PCTCN2016105691-appb-100020
    其中,π表示稳态分布,ql表示缓存中存在数据包需要发送的概率,pl表示信道冲突概率,W表示LTE系统竞争窗口;
    由稳态方程组得到LTE系统竞争窗口的最大值的表达式:
    Figure PCTCN2016105691-appb-100021
  9. 根据权利要求6-8任意一项所述的信道接入方法,其特征在于,所述的步骤C中LTE系统根据初始退避窗计数器,进行信道接入,采用二进制退避方法,包括:当LTE系统检测到非授权频段信道空闲长度达到一个时隙后,将退避计数器减1,当退避计数器减为0时,如果检测到非授权频段信道依然空闲,则LTE系统接入非授权频段信道,如果检测到非授权频段信道繁忙,则将当前退避阶数加1,当前退避窗计数器扩大2倍。
  10. 一种信道接入系统,其特征在于,包括:
    目标最优接入概率确定单元,用于根据LTE系统和WLAN系统的接入相 关参数,计算使得网络吞吐量达到最大值且LTE系统的接入概率τl与WLAN系统的接入概率τw相等的条件下,LTE系统的第一目标最优接入概率τl *,和WLAN系统的第二目标最优接入概率τw *,τl *=τw *
    其中,所述LTE系统的接入相关参数包括:
    至少一个LTE系统节点传输的概率Ptrl、LTE系统数据包传输成功的概率Psl、LTE系统数据包长度El[P]、LTE系统成功传输数据的时间长度Tsl、LTE系统数据冲突的时间长度Tcl、LTE系统一个时隙的长度σl
    所述WLAN系统的接入相关参数包括:
    至少一个WLAN系统节点传输的概率Ptrw、WLAN系统数据包传输成功的概率Psw、WLAN系统数据包长度Ew[P]、WLAN系统成功传输数据的时间长度Tsw、WLAN系统数据冲突的时间长度Tcw、WLAN系统一个时隙的长度σw
    LTE系统最优竞争窗口列表获得单元,用于根据所述第一目标最优接入概率τl *,采用随机退避方法或者二进制退避方法,确定LTE系统竞争窗口的最大值,取从0到竞争窗口的最大值之间的正整数构成LTE系统最优竞争窗口列表;
    信道接入单元,用于从LTE系统最优竞争窗口列表中确定一个正整数作为LTE系统的初始退避窗计数器,LTE系统根据初始退避窗计数器,进行信道接入。
  11. 一种控制设备,其特征在于,包括:处理器、存储器、通信接口和总线;
    所述处理器、所述存储器和所述通信接口通过所述总线连接并完成相互间的通信;
    所述存储器存储可执行程序代码;
    所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行权利要求1-9中任一项所述的信道接入方法。
  12. 一种应用程序,其特征在于,所述应用程序用于在运行时执行权利要求1-9中任一项所述的信道接入方法。
  13. 一种存储介质,其特征在于,所述存储介质用于存储可执行代码,所述可执行代码用于执行权利要求1-9中任一项所述的信道接入方法。
PCT/CN2016/105691 2016-11-04 2016-11-14 一种信道接入方法及系统 WO2018082114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610965312.5A CN106535355B (zh) 2016-11-04 2016-11-04 一种信道接入方法及系统
CN201610965312.5 2016-11-04

Publications (1)

Publication Number Publication Date
WO2018082114A1 true WO2018082114A1 (zh) 2018-05-11

Family

ID=58326403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/105691 WO2018082114A1 (zh) 2016-11-04 2016-11-14 一种信道接入方法及系统

Country Status (2)

Country Link
CN (1) CN106535355B (zh)
WO (1) WO2018082114A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316156A (zh) * 2021-05-26 2021-08-27 重庆邮电大学 免授权频段上的一种智能共存方法
CN113630810A (zh) * 2021-07-18 2021-11-09 西北工业大学 一种高动态网络mac层通信方法
CN116437364A (zh) * 2022-11-25 2023-07-14 华中科技大学 一种非授权频段5g新空口多址接入机制切换方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107231224B (zh) * 2017-04-19 2021-01-19 南京邮电大学 一种最大传输时限下lte wlan网络动态聚合决策方法
CN108566683B (zh) * 2018-07-10 2020-01-10 北京邮电大学 接入非授权频段的方法、装置、电子设备及可读存储介质
WO2021031078A1 (zh) * 2019-08-19 2021-02-25 小米通讯技术有限公司 竞争窗口长度确定方法和装置
CN112788729A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 信号传输的方法和通信设备
CN113079490B (zh) * 2021-03-30 2022-09-06 中山大学 一种机器类通信网络短包随机接入的分布式能效优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105208593A (zh) * 2015-08-14 2015-12-30 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的辅服务小区的管理方法、系统及基站
CN105611542A (zh) * 2015-12-30 2016-05-25 宇龙计算机通信科技(深圳)有限公司 一种基于非授权频段的通信方法、相关设备及系统
CN105898873A (zh) * 2016-03-31 2016-08-24 北京邮电大学 数据帧的分配方法与装置以及数据传输方法与装置
CN106060956A (zh) * 2015-04-10 2016-10-26 中兴通讯股份有限公司 非授权载波的竞争方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421151A (zh) * 2011-11-08 2012-04-18 哈尔滨工业大学 基于wlan竞争站点数目的最小竞争窗口自适应调整方法
CN104052745B (zh) * 2014-06-18 2017-02-15 中南大学 面向802.11e VoIP应用的竞争窗口调整方法
US9961699B2 (en) * 2015-02-12 2018-05-01 Indian Institute Of Technology Hyderabad Method for accessing a channel in a wireless communication network
CN105898878B (zh) * 2016-06-02 2019-04-16 浙江大学 免许可频段下信令与数据的收发方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106060956A (zh) * 2015-04-10 2016-10-26 中兴通讯股份有限公司 非授权载波的竞争方法及装置
CN105208593A (zh) * 2015-08-14 2015-12-30 宇龙计算机通信科技(深圳)有限公司 非授权频谱上的辅服务小区的管理方法、系统及基站
CN105611542A (zh) * 2015-12-30 2016-05-25 宇龙计算机通信科技(深圳)有限公司 一种基于非授权频段的通信方法、相关设备及系统
CN105898873A (zh) * 2016-03-31 2016-08-24 北京邮电大学 数据帧的分配方法与装置以及数据传输方法与装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113316156A (zh) * 2021-05-26 2021-08-27 重庆邮电大学 免授权频段上的一种智能共存方法
CN113630810A (zh) * 2021-07-18 2021-11-09 西北工业大学 一种高动态网络mac层通信方法
CN116437364A (zh) * 2022-11-25 2023-07-14 华中科技大学 一种非授权频段5g新空口多址接入机制切换方法及系统
CN116437364B (zh) * 2022-11-25 2024-01-30 华中科技大学 一种非授权频段5g新空口多址接入机制切换方法及系统

Also Published As

Publication number Publication date
CN106535355A (zh) 2017-03-22
CN106535355B (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
WO2018082114A1 (zh) 一种信道接入方法及系统
US9832793B2 (en) Method for accessing channel under spatial multiplexing and station
US11172518B2 (en) Apparatus and method for controlling slot usage
WO2015165205A1 (zh) 一种信道接入方法、系统、站点及计算机可读存储介质
US9345042B2 (en) Downlink data collision avoidance method, access point and station
JP5677280B2 (ja) 無線通信装置および無線通信方法
US10506637B2 (en) Method and apparatus for setting network allocation vector of multi-user transmission
WO2017096918A1 (zh) 一种并行传输数据的方法及装置
US10313906B2 (en) Method and device for sending information
CN109699089B (zh) 一种信道接入方法及装置
EP3247157B1 (en) Method for managing wireless resources, and access point using same
US20160338106A1 (en) Channel Contention Method and Apparatus
WO2017041628A1 (zh) 随机退避方法及装置
CN102421151A (zh) 基于wlan竞争站点数目的最小竞争窗口自适应调整方法
CN101715241B (zh) 用于分布式无线局域网介质接入控制的方法及装置
Sun et al. Analytical study of the IEEE 802.11 p EDCA mechanism
WO2017114040A1 (zh) 一种传输机会控制方法及装置
WO2014173164A1 (zh) 一种信道接入的处理方法、装置和计算机可读存储介质
WO2017128661A1 (zh) 一种无线局域网中数据传输的方法、接入点和站点
CN102256317B (zh) 无线信道访问控制方法
US8923193B2 (en) Low power radio device and radio resource sharing method for low power radio device
US20230262773A1 (en) Service transmission method and apparatus
KR102052050B1 (ko) 채널 관측 기반 백오프 조정 방법 및 장치
CN106255187B (zh) 一种应用于wban的基于竞争导向的节点休眠方法
US9408234B2 (en) Method for transmitting data by using reverse order implied information obtained by competition by means of distributed coordination function in wireless LAN, and wireless communication device for transmitting data by using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16920483

Country of ref document: EP

Kind code of ref document: A1