WO2018080294A1 - 혈관 조영술용 자기공명영상장치 - Google Patents

혈관 조영술용 자기공명영상장치 Download PDF

Info

Publication number
WO2018080294A1
WO2018080294A1 PCT/KR2017/012203 KR2017012203W WO2018080294A1 WO 2018080294 A1 WO2018080294 A1 WO 2018080294A1 KR 2017012203 W KR2017012203 W KR 2017012203W WO 2018080294 A1 WO2018080294 A1 WO 2018080294A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic field
gradient magnetic
pulse
coil
Prior art date
Application number
PCT/KR2017/012203
Other languages
English (en)
French (fr)
Inventor
김동찬
한예지
정준영
Original Assignee
가천대학교 산학협력단
(의료)길의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단, (의료)길의료재단 filed Critical 가천대학교 산학협력단
Publication of WO2018080294A1 publication Critical patent/WO2018080294A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5613Generating steady state signals, e.g. low flip angle sequences [FLASH]
    • G01R33/5614Generating steady state signals, e.g. low flip angle sequences [FLASH] using a fully balanced steady-state free precession [bSSFP] pulse sequence, e.g. trueFISP
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/5635Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]

Definitions

  • the present invention relates to a magnetic resonance imaging apparatus for angiography, and more particularly, to angiography magnetic resonance imaging for obtaining a blood vessel image from the data of the magnetic resonance imaging apparatus by controlling the RF pulse and the gradient magnetic field transmitted from the magnetic resonance imaging apparatus Relates to a device.
  • MAGNETIC RESONANCE ANGIOGRAPHY (MAGNETIC RESONANCE ANGIOGRAPHY) is for obtaining a blood vessel image in a magnetic resonance imaging apparatus, by using a time-of-flight (TOF) method.
  • TOF time-of-flight
  • the TOF acquires a blood vessel image by utilizing a flow characteristic of the blood flow and a background in which the number of times the RF signal is hit is limited to the number of times the blood vessel hits the RF signal, that is, the characteristic that the blood vessel is not.
  • the blood vessel image acquisition technology using the TOF has a disadvantage in that the blood flow rate is increased by the number of times the blood flow hits the RF signal when the blood flow rate is slow or the direction of the RF pulse and the blood vessel is not perpendicular to each other. have.
  • a repetition time (TR) for acquiring a blood vessel image in a magnetic resonance imaging apparatus is about 25 ms long, it requires a long time of 8 minutes or more as an image acquisition time.
  • the technical problem to be achieved by the present invention is to accurately obtain a blood vessel image by receiving a high intensity blood vessel image signal even if the blood flow is slow.
  • Another object of the present invention is to shorten the time for acquiring a blood vessel image from a magnetic resonance imaging apparatus.
  • the magnetic resonance imaging apparatus for angiography includes an RF coil, applies an RF pulse to the object through the RF coil, and generates vascular data by receiving an MR signal from the object through the RF coil.
  • An MR imaging apparatus for angiography comprising: an RF transceiver comprising a signal transmitter for applying an RF pulse to the RF coil and a signal receiver for receiving the MR signal including a TOF signal and a bSSFP signal characteristic from the RF coil; And a gradient magnetic field amplifier for controlling a spatial encoding gradient.
  • an RF control unit for generating an RF pulse for acquiring a TOF signal and a bSSFP signal and transmitting the RF pulse to the signal transmission unit of the RF transceiver.
  • a gradient magnetic field control unit generating a gradient magnetic field control signal and transmitting the gradient magnetic field control signal to the gradient magnetic field amplifier.
  • a repetition time (TR) of a signal for acquiring the TOF signal in the RF pulse generated by the controller is about twice longer than a TR of the signal for acquiring the bSSFP signal.
  • the gradient magnetic field controller controls to insert a spoiler gradient magnetic field for the TOF signal.
  • the RF pulse includes a TOF and a bSSFP signal. Since the bSSFP has a shorter TR than the TOF, the image acquisition time is reduced, and accordingly, the time for acquiring a blood vessel image from the magnetic resonance imaging apparatus is shortened.
  • FIG. 1 is a block diagram schematically showing the main configuration of the magnetic resonance imaging apparatus for angiography according to an embodiment of the present invention.
  • Figure 2 is a graph comparing the output RF pulses of the angiography magnetic resonance imaging apparatus according to an embodiment of the present invention with the conventional RF pulses.
  • FIG 3 is a graph showing an image acquisition signal of the magnetic resonance imaging apparatus for angiography according to an embodiment of the present invention.
  • the structure of an angiography magnetic resonance imaging apparatus includes a signal transceiving unit 100 and a control unit 200. do.
  • the signal transceiver 100 includes an RF transceiver 110 and a gradient magnetic field amplifier 120, the RF transceiver 110 is applied to the RF coil provided in the magnetic resonance imaging apparatus, or RF The MR signal received from the object is received through the coil.
  • the MR signal received by the signal transceiver 100 from the object through the RF coil includes a TOF signal and a bSSFP signal characteristic.
  • the RF transceiver 110 may include a signal transmitter and a signal receiver separately to apply an RF pulse to the RF coil and to receive an MR signal from the RF coil.
  • the RF transceiver 110 may include a signal transceiver to simultaneously apply an RF pulse to the RF coil and receive an MR signal generated by the object from the RF coil, but is not limited thereto. Do not.
  • the gradient magnetic field amplifier 120 receives a gradient magnetic field control signal applied from the outside to control a spatial encoding gradient.
  • the gradient magnetic field amplifier 120 may receive the gradient magnetic field control signal from the controller 200 to control the spatially encoded gradient magnetic field.
  • the spatially coded gradient field is a magnetic field formed in the bore of the magnetic resonance imaging apparatus.
  • the gradient magnetic field amplifier 120 controls a pulse generated for the generation of the gradient magnetic field in the gradient coil formed in the magnetic resonance imaging apparatus, and is transmitted from the controller 200.
  • the gradient magnetic field generating pulse is controlled according to the received gradient magnetic field control signal.
  • the angiography magnetic resonance imaging apparatus of the present invention is a structure different from the conventional angiography magnetic resonance imaging apparatus and RF pulses and gradient magnetic field generating pulses, and will be described only the structure and operation of the generation and control of the pulses, The rest of the existing structures should be understood as background knowledge.
  • the control unit 200 includes an RF control unit 210 and a gradient magnetic field control unit 220.
  • the RF control unit 210 generates an RF pulse for acquiring a TOF signal and a bSSFP signal. It generates and delivers the signal to the signal transmitter of the RF transceiver 110.
  • the RF pulse generated by the RF controller 210 will be described in detail with reference to the graph shown in FIG. 2B, and the RF pulse generated by the RF controller 210 has a TOF signal having a first repetition time. And a balanced steady state free procession (bSSFP) signal having a second repetition time.
  • bSSFP balanced steady state free procession
  • the first repetition time is about 25 ms and the second repetition time is about 10 ms.
  • a signal is detected at each axis (Gx, Gy, Gz) of the gradient magnetic field according to the RF pulse in FIG. 2 (b), and the conventional RF pulse and the gradient magnetic field corresponding thereto are shown in FIG.
  • the signal is detected in each gradient magnetic field each time the bSSFP is repeated according to the RF pulse, unlike the signal is detected in the gradient magnetic field according to the conventional RF pulse.
  • the detection interval of the signal in the gradient magnetic field is longer as the repetition time (first repetition time) is longer, but in one embodiment of the present invention, As the RF pulse is formed including the TOF and the bSSFP, as the bSSFP has a second repetition time period, a signal is detected in the gradient magnetic field of each axis to obtain a high number of blood vessel images.
  • the second repetition time of the bSSFP may be set to 4 ms or less.
  • the gradient magnetic field controller 220 controls to insert a spoiler gradient magnetic field as the gradient magnetic field for the TOF signal among the RF pulses generated by the RF controller 210.
  • the RF signal generated by the RF control unit 210 is applied only to the x-axis or y-axis plane.
  • the measurement signal when the RF pulse including only the TOF signal is used will be described with reference to FIG.
  • Mz (t) is a change in magnitude of the magnetic vector (magnetization vector) that gives a signal in the z-direction during the image acquisition process of the MRI
  • M 0 is the z-axis direction at equilibrium.
  • the magnitude of the magnetic vector, Mxy (t), is the magnitude change of the magnetic vector over time on the xy plane
  • T1 is 1900 ms
  • T2 is 300 ms.
  • the TR of the TOF signal is 25ms, the TE of 5ms and the FA of 40 °.
  • the image acquisition time is effectively reduced by the TR reduced by the bSSFP signal.
  • signal transceiver 110 RF transceiver
  • RF control unit 220 gradient magnetic field control

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Signal Processing (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Vascular Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

본 발명은 혈관 조영술용 자기공명영상장치에 관한 것으로서, RF코일을 구비하고, RF코일을 통해 대상체로 RF펄스를 인가하며, RF코일을 통해 대상체로부터 MR신호를 수신하여 혈관 데이터를 생성하는 혈관 조영술용 자기공명영상장치에 있어서, 상기 RF코일에 RF펄스를 인가하는 신호 송신부와 상기 RF코일로부터 TOF 신호와 bSSFP 신호 특성을 포함하는 상기 MR 신호를 수신하는 신호 수신부를 포함하는 RF 송수신부; 및 공간 부호화 경사자장(spatial encoding gradient)을 제어하는 경사자장 증폭기;를 포함하는 신호 송수신부; 그리고 TOF 신호와 bSSFP 신호 획득을 위한 RF펄스를 생성하여 상기 RF 송수신부의 상기 신호 송신부로 전달하는 RF 제어부; 및 경사자장 제어신호를 생성하여 상기 경사자장 증폭기로 전달하는 경사자장 제어부;를 포함하는 제어부;를 포함하는 것을 특징으로 한다. 이로 인해, 혈관 및 혈류에 TOF와 bSSFP를 동시에 포함하는 RF펄스를 인가함으로써, 혈류가 느리더라도 높은 강도의 혈관 영상 신호를 수신하여 혈관 영상을 정확하게 얻을 수 있고, 자기공명영상장치로부터 혈관 영상을 얻는 시간이 단축된다.

Description

혈관 조영술용 자기공명영상장치
본 발명은 혈관 조영술용 자기공명영상장치에 관한 것으로서, 좀더 자세하게는 자기공명영상장치에서 송신하는 RF펄스 및 경사자계를 제어하여 자기공명영상장치의 데이터로부터 혈관 이미지를 얻기 위한 혈관 조영술용 자기공명영상장치에 관한 것이다.
자기공명 혈관 조영술(MAGNETIC RESONANCE ANGIOGRAPHY)는 자기공명영상장치에서 혈관영상을 얻기 위한 것으로서, TOF(time-of-flight) 방법을 이용하여 혈관영상을 얻는다.
TOF는 RF신호를 맞는 횟수가 혈관이 RF신호를 맞는 횟수보다 제한되는 혈류의 흐르는 특성과 배경, 즉 혈관은 그렇지 않다는 특징을 활용하여 혈관영상을 획득한다.
그러나, 이러한 TOF를 활용한 혈관영상 획득 기술은 혈류 속도가 느리거나 RF펄스와 혈관의 방향이 수직하지 않을 경우 혈류가 RF신호를 맞는 횟수가 증가하여, 혈관 신호가 줄어들어 혈관 데이터 획득이 어려운 단점이 있다.
그리고, 자기공명영상장치에서 혈관 영상을 얻기 위한 반복시간(TR; repetition time)이 25ms 정도로 길기 때문에 영상 획득 시간으로서 8분 이상의 오랜 시간을 필요로 하는 단점이 있다.
[선행기술문헌]
[특허문헌]
대한민국 등록특허공보 제1664433호
본 발명이 이루고자 하는 기술적 과제는 혈류가 느리더라도 높은 강도의 혈관 영상 신호를 수신하여 혈관 영상을 정확하게 얻기 위한 것이다.
그리고, 본 발명이 이루고자 하는 다른 기술적 과제는 자기공명영상장치로부터 혈관 영상을 얻는 시간을 단축하기 위한 것이다.
본 발명의 한 실시예에 따른 혈관 조영술용 자기공명영상장치는 RF코일을 구비하고, RF코일을 통해 대상체로 RF펄스를 인가하며, RF코일을 통해 대상체로부터 MR신호를 수신하여 혈관 데이터를 생성하는 혈관 조영술용 자기공명영상장치에 있어서, 상기 RF코일에 RF펄스를 인가하는 신호 송신부와 상기 RF코일로부터 TOF 신호와 bSSFP 신호 특성을 포함하는 상기 MR 신호를 수신하는 신호 수신부를 포함하는 RF 송수신부; 및 공간 부호화 경사자장(spatial encoding gradient)을 제어하는 경사자장 증폭기;를 포함하는 신호 송수신부; 그리고 TOF 신호와 bSSFP 신호 획득을 위한 RF펄스를 생성하여 상기 RF 송수신부의 상기 신호 송신부로 전달하는 RF 제어부; 및 경사자장 제어신호를 생성하여 상기 경사자장 증폭기로 전달하는 경사자장 제어부;를 포함하는 제어부;를 포함하는 것을 특징으로 한다.
이때, 상기 제어부에서 생성하는 상기 RF펄스에서 상기 TOF 신호 획득을 위한 신호의 TR(repetition time)은 상기 bSSFP 신호 획득을 위한 신호의 TR보다 약 두 배 이상 긴 것을 특징으로 한다.
한 예에서, 상기 경사자장 제어부는 상기 TOF 신호에 대한 Spoiler 경사 자계를 삽입하도록 제어한다.
이러한 특징에 따르면, 혈관 및 혈류에 TOF와 bSSFP를 동시에 포함하는 RF펄스 및 경사자계를 인가함으로써, 혈류가 느리더라도 높은 강도의 혈관 영상 신호를 수신하여 혈관 영상을 정확하게 얻을 수 있다.
그리고, RF펄스는 TOF와 bSSFP 신호를 포함하는데, bSSFP는 TOF에 비해 TR이 짧기 때문에 영상 획득 시간이 감소하고, 이에 따라, 자기공명영상장치로부터 혈관 영상을 얻는 시간이 단축된다.
도 1은 본 발명의 한 실시예에 따른 혈관 조영술용 자기공명영상장치의 주요 구성을 개략적으로 나타낸 블록도이다.
도 2는 본 발명의 한 실시예에 따른 혈관 조영술용 자기공명영상장치의 출력 RF펄스를 종래의 RF펄스와 비교한 그래프이다.
도 3은 본 발명의 한 실시예에 따른 혈관 조영술용 자기공명영상장치의 영상 획득 신호를 나타낸 그래프이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
그러면 첨부한 도면을 참고로 하여 본 발명의 한 실시예에 따른 혈관 조영술용 자기공명영상장치의 구조를 자세하게 설명하도록 한다.
먼저, 도 1을 참고로 하여 본 발명의 한 실시예에 따른 혈관 조영술용 자기공명영상장치의 구조를 설명하면, 혈관 조영술용 자기공명영상장치는 신호 송수신부(100)와 제어부(200)를 포함한다.
이때, 신호 송수신부(100)는 RF 송수신부(110)와 경사자장 증폭기(120)를 구비하는데, RF 송수신부(110)는 자기공명영상장치에 구비된 RF코일에 RF펄스를 인가하거나, RF코일을 통해 대상체로부터 수신된 MR신호를 수신한다.
그리고 이때, 신호 송수신부(100)가 RF코일을 통해 대상체로부터 수신하는 MR신호는 TOF 신호와 bSSFP 신호 특성을 포함한다.
한 예에서, RF 송수신부(110)는 신호 송신부 및 신호 수신부를 별도로 구비하여 RF펄스를 RF코일에 인가하는 동작과 RF코일로부터 MR신호를 수신하는 동작을 각각 수행할 수 있다.
그러나, 다른 한 예에서, RF 송수신부(110)는 신호 송수신부를 구비하여 RF코일에 RF펄스를 인가하고 대상체에서 생성된 MR신호를 RF코일로부터 수신하는 동작을 동시에 수행할 수 있으며, 이를 한정하지는 않는다.
그리고, 경사자장 증폭기(120)는 외부로부터 인가된 경사자장 제어신호를 인가받아 공간 부호화 경사자장(spatial encoding gradient)을 제어한다.
이때, 경사자장 증폭기(120)는 제어부(200)로부터 경사자장 제어신호를 전달받아 공간 부호화 경사자장을 제어할 수 있다.
공간 부호화 경사장은 자기공명영상장치의 보어에 형성되는 자기장으로서, 경사자장 증폭기(120)는 자기공명영상장치에 형성된 경사코일에서 경사자장 발생을 위해 생성하는 펄스를 제어하고, 제어부(200)로부터 전달받은 경사자장 제어신호에 따라 경사자장 발생 펄스를 제어한다.
본 발명의 혈관 조영술용 자기공명영상장치는 기존의 혈관 조영술용 자기공명영상장치와 RF펄스 및 경사자장 발생 펄스가 상이한 구조로서, 해당 펄스들의 생성 및 제어에 대한 구조 및 동작에 대해서만 설명하도록 하고, 나머지의 기존 구조들은 배경지식으로서 이해되어야 할 것이다.
다시 도 1을 참고로 하여 계속해서 설명하면, 제어부(200)는 RF 제어부(210)와 경사자장 제어부(220)를 포함하는데, RF 제어부(210)는 TOF 신호와 bSSFP 신호 획득을 위한 RF펄스를 생성하여 상기 RF 송수신부(110)의 상기 신호 송신부로 전달한다.
이때, RF 제어부(210)에서 생성한 RF펄스를 도 2의 (b)에 도시한 그래프를 참고로 하여 자세히 설명하면, RF 제어부(210)에서 생성한 RF펄스는 제1 반복시간을 갖는 TOF 신호와 제2 반복시간을 갖는 bSSFP(balanced steady state free procession) 신호를 포함한다.
한 예에서, 제1 반복시간은 약 25ms이고, 제2 반복시간은 약 10ms이다.
그리고, 도 2의 (b)에서 RF펄스에 따라 경사자장의 각 축(Gx, Gy, Gz)에서 신호가 검출되며, 이를 도 2의 (a)에 도시한 종래의 RF펄스 및 이에 따른 경사자장의 검출신호와 비교하면, 종래의 RF펄스에 따라 경사자장에서 신호가 검출되는 것과는 달리, 본 발명에서는 RF펄스에 따라 bSSFP가 반복될 때마다 각 경사자장에서 신호가 검출되게 된다.
즉, 도 2의 (a)에 도시한 종래의 TOF만을 이용한 RF펄스에서는 다소 긴 반복시간(제1 반복시간)을 가짐에 따라 경사자장에서 신호의 검출 간격이 길었지만, 본 발명의 한 실시예에서는 RF펄스가 TOF와 bSSFP를 포함하여 형성되어 bSSFP가 제2 반복시간의 주기를 가짐에 따라 각 축의 경사자장에서 신호가 검출되어 높은 횟수의 혈관 영상을 획득할 수 있게 된다.
그리고 이때, RF 제어부(210)가 TOF 신호와 bSSFP 신호를 포함하여 RF펄스를 생성함에 있어서, bSSFP의 제2 반복시간을 4ms 이하로 설정할 수 있다.
한 예에서, 경사자장 제어부(220)는 RF 제어부(210)에서 생성한 RF펄스 중 TOF 신호에 대한 경사자장으로서 spoiler 경사 자계를 삽입하도록 제어한다.
한 예에서, RF 제어부(210)에서 생성된 RF펄스가 x축 또는 y축 평면으로만 가해지는 상황을 다음의 식 1의 block 수식을 예로 들어 해당 RF펄스를 사용하였을 때의 측정신호와 종래의 TOF 신호만을 포함하는 RF펄스를 사용하였을 때의 측정신호를 도 3을 참고로 하여 설명한다.
[식 1]
Figure PCTKR2017012203-appb-I000001
Figure PCTKR2017012203-appb-I000002
위의 식 1에서, Mz(t)는 자기공명영상장치의 영상 획득 과정에서 신호를 내는 자기 벡터(magnetization vector)의 z 방향으로의 시간에 따른 크기 변화, M0는 평형 상태에서의 z 축 방향으로의 자기 벡터의 크기, Mxy(t)는 x-y 평면 상에서 시간에 따른 자기벡터의 크기변화이고, T1는 1900ms, T2는 300ms이다.
그리고 위의 식 1을 이용하는 모의실험에서 TOF 신호의 TR은 25ms, TE(Time of Echo)는 5ms, FA는 40°이다.
도 3의 그래프에서, 본 발명의 한 실시예에 따른 TOF 신호와 bSSFP 신호를 포함하는 RF펄스에 따라 bSSFP 신호의 TR마다 영상이 획득되므로 기존의 TOF 신호대비 3~5배 높은 횟수로 영상을 획득할 수 있다.
그리고 이때, bSSFP 신호에 의해 줄어든 TR에 의해 영상 획득 시간이 효과적으로 감소되게 된다.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
100 : 신호 송수신부 110 : RF 송수신부
120 : 경사자장 증폭기 200 : 제어부
210 : RF 제어부 220 : 경사자장 제어부

Claims (3)

  1. RF코일을 구비하고, RF코일을 통해 대상체로 RF펄스를 인가하며, RF코일을 통해 대상체로부터 MR신호를 수신하여 혈관 데이터를 생성하는 혈관 조영술용 자기공명영상장치에 있어서,
    상기 RF코일에 RF펄스를 인가하는 신호 송신부와 상기 RF코일로부터 TOF 신호와 bSSFP 신호 특성을 포함하는 상기 MR 신호를 수신하는 신호 수신부를 포함하는 RF 송수신부; 및 공간 부호화 경사자장(spatial encoding gradient)을 제어하는 경사자장 증폭기;를 포함하는 신호 송수신부; 그리고
    TOF 신호와 bSSFP 신호 획득을 위한 RF펄스를 생성하여 상기 RF 송수신부의 상기 신호 송신부로 전달하는 RF 제어부; 및 경사자장 제어신호를 생성하여 상기 경사자장 증폭기로 전달하는 경사자장 제어부;를 포함하는 제어부;
    를 포함하는 것을 특징으로 하는 혈관 조영술용 자기공명영상장치.
  2. 제1항에 있어서,
    상기 제어부에서 생성하는 상기 RF펄스에서 상기 TOF 신호 획득을 위한 신호의 TR(repetition time)은 상기 bSSFP 신호 획득을 위한 신호의 TR보다 약 두 배 이상 긴 것을 특징으로 하는 혈관 조영술용 자기공명영상장치.
  3. 제2항에 있어서,
    상기 경사자장 제어부는 상기 TOF 신호에 대한 Spoiler 경사 자계를 삽입하도록 제어하는 혈관 조영술용 자기공명영상장치.
PCT/KR2017/012203 2016-10-31 2017-10-31 혈관 조영술용 자기공명영상장치 WO2018080294A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0143749 2016-10-31
KR1020160143749A KR101820774B1 (ko) 2016-10-31 2016-10-31 혈관 조영술용 자기공명영상장치

Publications (1)

Publication Number Publication Date
WO2018080294A1 true WO2018080294A1 (ko) 2018-05-03

Family

ID=61070992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/012203 WO2018080294A1 (ko) 2016-10-31 2017-10-31 혈관 조영술용 자기공명영상장치

Country Status (2)

Country Link
KR (1) KR101820774B1 (ko)
WO (1) WO2018080294A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015196096A (ja) * 2014-03-31 2015-11-09 株式会社東芝 磁気共鳴イメージング装置、方法及びプログラム
KR20160029586A (ko) * 2014-09-05 2016-03-15 삼성전자주식회사 자기 공명 영상 장치 및 그 동작방법
JP5901905B2 (ja) * 2010-08-23 2016-04-13 株式会社東芝 磁気共鳴イメージング装置
KR20160071230A (ko) * 2014-12-11 2016-06-21 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 처리 방법
KR20160114447A (ko) * 2015-03-24 2016-10-05 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 생성 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5901905B2 (ja) * 2010-08-23 2016-04-13 株式会社東芝 磁気共鳴イメージング装置
JP2015196096A (ja) * 2014-03-31 2015-11-09 株式会社東芝 磁気共鳴イメージング装置、方法及びプログラム
KR20160029586A (ko) * 2014-09-05 2016-03-15 삼성전자주식회사 자기 공명 영상 장치 및 그 동작방법
KR20160071230A (ko) * 2014-12-11 2016-06-21 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 처리 방법
KR20160114447A (ko) * 2015-03-24 2016-10-05 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 생성 방법

Also Published As

Publication number Publication date
KR101820774B1 (ko) 2018-01-23

Similar Documents

Publication Publication Date Title
US7977945B2 (en) Magnetic resonance system and operating method therefor
US10794972B2 (en) Device and method for an asymmetrical bus interface for a local coil
US9689945B2 (en) Virtual coil emulation in parallel transmission MRI
CN109613461B (zh) 梯度回波序列设置方法、磁共振成像系统扫描方法、设备及介质
EP0561628A1 (en) Gradient moment nulling in a fast spin echo NMR pulse sequence
US20170003367A1 (en) Magnetic resonance imaging system and method
WO2018080294A1 (ko) 혈관 조영술용 자기공명영상장치
WO2013180360A1 (ko) 임피던스 매칭 장치 및 방법
JP5815384B2 (ja) 磁気共鳴装置
CN103364744B (zh) 用于控制磁共振系统的方法和控制装置
Tang et al. A home‐built digital optical MRI console using high‐speed serial links
US11543529B1 (en) Adaptive weighting of multiple sources in a magnetic or hybrid tracking system
WO2017007284A1 (ko) 투영기법 기반의 동적혈관영상 획득방법 및 획득장치
CN107807738B (zh) 一种用于vr显示眼镜的头部动作捕捉系统及方法
US5353794A (en) Magnetic resonance imaging method and system capable of measuring short "T2" signal components
CN113933772B (zh) 一种磁共振成像系统中梯度磁场焦点的检测方法
US7006117B1 (en) Apparatus for testing digital display driver and method thereof
US4871968A (en) Magnetic resonance apparatus
CN108896940B (zh) 用于补偿mri的梯度脉冲的系统和方法
WO2018093050A1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 장치의 제어 방법
US11050197B1 (en) Reversible connector orientation detection in an electromagnetic tracking system
WO2014163370A1 (ko) 하이브리드 자기 공명 영상 처리 장치 및 방법
WO2017007286A1 (ko) 병렬 자기공명영상 처리장치 및 방법
US20160231407A1 (en) Method for controlling a magnetic resonance apparatus and controller for a magnetic resonance apparatus
WO2018221831A1 (en) Method of generating magnetic resonance image and magnetic resonance imaging apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865480

Country of ref document: EP

Kind code of ref document: A1