KR20160029586A - 자기 공명 영상 장치 및 그 동작방법 - Google Patents

자기 공명 영상 장치 및 그 동작방법 Download PDF

Info

Publication number
KR20160029586A
KR20160029586A KR1020140119360A KR20140119360A KR20160029586A KR 20160029586 A KR20160029586 A KR 20160029586A KR 1020140119360 A KR1020140119360 A KR 1020140119360A KR 20140119360 A KR20140119360 A KR 20140119360A KR 20160029586 A KR20160029586 A KR 20160029586A
Authority
KR
South Korea
Prior art keywords
magnetic resonance
magnetic field
slices
signal
dimensional
Prior art date
Application number
KR1020140119360A
Other languages
English (en)
Inventor
이대호
조상영
최양림
조재문
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020140119360A priority Critical patent/KR20160029586A/ko
Priority to PCT/KR2015/007771 priority patent/WO2016036006A1/en
Priority to EP15838111.1A priority patent/EP3188661A4/en
Priority to US14/845,619 priority patent/US10203391B2/en
Publication of KR20160029586A publication Critical patent/KR20160029586A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5611Parallel magnetic resonance imaging, e.g. sensitivity encoding [SENSE], simultaneous acquisition of spatial harmonics [SMASH], unaliasing by Fourier encoding of the overlaps using the temporal dimension [UNFOLD], k-t-broad-use linear acquisition speed-up technique [k-t-BLAST], k-t-SENSE
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/483NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy
    • G01R33/4833NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices
    • G01R33/4835NMR imaging systems with selection of signals or spectra from particular regions of the volume, e.g. in vivo spectroscopy using spatially selective excitation of the volume of interest, e.g. selecting non-orthogonal or inclined slices of multiple slices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/4818MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space
    • G01R33/482MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a Cartesian trajectory
    • G01R33/4822MR characterised by data acquisition along a specific k-space trajectory or by the temporal order of k-space coverage, e.g. centric or segmented coverage of k-space using a Cartesian trajectory in three dimensions

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

본 발명의 일 실시예는 대상체의 복수의 슬라이스(slice)가 여기(excitation)되도록, 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 RF 송신부, 3차원 공간 부호화 경사자장(spatial encoding gradient)를 인가하는 경사자장 증폭기, 복수의 슬라이스 각각의 자기 공명 신호(magnetic resonance signal)를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 RF 수신부, 및 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 3차원 k-공간 데이터에 기초하여 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 영상 처리부를 포함하는 자기 공명 영상 장치를 개시한다.

Description

자기 공명 영상 장치 및 그 동작방법{Magnetic Resonance Imaging apparatus and method for operating the same}
본 개시는 자기 공명 영상 장치 및 그 동작방법에 관한 것이며, 더욱 상세하게는 복수의 슬라이스의 자기 공명 신호를 동시에 획득하여 3차원 공간(spatial) 부호화를 통하여 자기 공명 영상을 획득할 수 있는 자기 공명 영상 장치에 관한 것이다.
자기 공명 영상(Magnetic Resonance Imaging, MRI)은 원자핵을 자장에 노출시킨 후 공명을 통해 얻어지는 정보로 영상을 나타낸 것이다. 원자핵의 공명이란 외부 자장에 의해 자화된 상태의 원자핵에 특정한 고주파를 입사시키면 낮은 에너지 상태의 원자핵이 고주파 에너지를 흡수하여 높은 에너지 상태로 여기되는 현상을 말한다. 원자핵은 종류에 따라 각기 다른 공명주파수를 가지며 공명은 외부 자장의 강도에 영향을 받는다. 인체 내부에는 무수히 많은 원자핵이 있으며 일반적으로 수소 원자핵을 자기 공명 영상 촬영에 이용한다.
자기 공명 영상을 획득함에 있어서, 빠른 시간 내에 자기 공명 영상을 영상화하는 기술들에 대한 수요가 있다.
본 개시는 대상체의 복수의 슬라이스를 동시에 여기하고 3차원 부호화(3D encoding)를 통하여 자기 공명 영상을 획득하는 자기 공명 영상 장치 및 그 동작방법에 관한 것이다.
본 발명의 일 실시예에 따른 자기 공명 영상(MRI; Magnetic Resonance Imaging) 장치는 대상체의 복수의 슬라이스(slice)가 여기(excitation)되도록, 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 RF 송신부; 3차원 공간 부호화 경사자장(spatial encoding gradient)를 인가하는 경사자장 증폭기; 상기 복수의 슬라이스 각각의 자기 공명 신호(magnetic resonance signal)를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 RF 수신부; 및 상기 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 상기 3차원 k-공간 데이터에 기초하여 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 영상 처리부를 포함한다.
상기 3차원 공간 부호화 경사자장은 슬라이스 방향의 경사자장; 주파수(frequency) 방향의 경사자장; 및 위상(phase) 방향의 경사자장을 포함할 수 있다.
상기 경사자장 증폭기는 상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 위상 방향의 경사자장을 인가하지 않을 수 있다.
상기 경사자장 증폭기는 상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 슬라이스 방향의 경사자장을 인가하지 않을 수 있다.
상기 경사자장 증폭기는 상기 자기 공명 신호를 획득하는 신호획득구간에서 상기 슬라이스 방향의 경사자장 및 위상 방향의 경사자장 중 적어도 하나를 인가할 수 있다.
상기 경사자장 증폭기는 상기 자기 공명 신호의 열화를 최소화하도록 상기 슬라이스 방향의 경사자장 및 상기 위상 방향의 경사자장을 인가하는 순서를 결정할 수 있다.
슬라이스 방향의 경사자장의 부호화 횟수는 상기 복수의 슬라이스의 갯수 이상일 수 있다.
상기 RF 수신부는 복수의 코일(multi-coiled)을 통하여 상기 대상체로부터 추가적인 캘리브레이션 데이터(calibration data)를 획득하고, 상기 영상 처리부는 상기 추가적인 캘리브레이션 데이터 및 상기 3차원 k-공간 데이터에 기초하여 상기 자기 공명 영상을 획득할 수 있다.
상기 추가적인 캘리브레이션 데이터는 상기 동일한 TR 구간에서 중첩된 상태로 수신된 자기 공명 신호에 기초하여 획득될 수 있다.
상기 추가적인 캘리브레이션 데이터는 캘리브레이션 데이터의 획득을 위해 추가적으로 여기된 상기 복수의 슬라이스 각각의 자기 공명 신호에 기초하여 획득될 수 있다.
상기 RF 수신부는 상기 복수의 코일을 통하여 상기 자기 공명 신호를 언더샘플링하여 획득할 수 있다.
상기 영상 처리부는 상기 추가적인 캘리브레이션 데이터를 이용하여 상기 복수의 코일 각각에 대하여 획득된 복수의 k-공간 데이터를 보간하고, 상기 보간된 복수의 k-공간 데이터로부터 상기 복수의 코일 각각에 대한 자기 공명 영상을 획득할 수 있다.
상기 영상 처리부는 상기 추가적인 캘리브레이션 데이터를 이용하여 상기 복수의 코일 각각에 대한 민감도(sensitivity) 정보를 획득하고 상기 민감도 정보를 이용하여 상기 자기 공명 영상을 획득할 수 있다.
상기 경사자장 증폭기는 상기 자기 공명 신호가 상기 슬라이스 방향으로 선형 위상(linear phase)를 가지도록 상기 3차원 공간 부호화 경사자장을 인가할 수 있다.
상기 영상 처리부는 병렬 영상처리(parallel imaging) 및 압축적 센싱(compressed sensing) 중 적어도 하나를 이용하여, 상기 중첩된 상태의 자기 공명 신호로부터 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득할 수 있다.
본 발명의 다른 실시예에 따른 자기 공명 영상(MRI; Magnetic Resonance Imaging) 장치는 대상체의 복수의 슬라이스(slice)를 여기(excitation)하도록, 상기 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 RF 송신부; 주파수(frequency) 방향의 경사자장 및 위상(phase) 방향의 경사자장을 포함하는 공간 부호화를 위한 경사자장을 인가하는 경사자장 증폭기; 상기 복수의 슬라이스 각각의 자기 공명 신호(magnetic resonance signal)를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 RF 수신부; 및 상기 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 상기 3차원 k-공간 데이터에 기초하여 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 영상 처리부를 포함하며, 상기 RF 신호는 슬라이스 방향의 공간 부호화를 위한 위상의 변위를 포함할 수 있다.
본 발명의 일 실시예에 따른 자기 공명 영상(MRI; Magnetic Resonance Imaging) 방법은 대상체의 복수의 슬라이스(slice)가 여기(excitation)되도록, 상기 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 단계; 3차원 공간 부호화 경사자장(spatial encoding gradient)를 인가하는 단계; 상기 복수의 슬라이스 각각의 자기 공명 신호를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 단계; 및 상기 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 상기 3차원 k-공간 데이터에 기초하여 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 단계를 포함한다.
도 1은 본 발명의 일 실시예에 따른 자기 공명 영상 장치를 나타내는 블록도이다.
도 2는 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)를 나타내는 블록도이다.
도 3은 대상체의 복수의 슬라이스의 여기(excitation)를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 자기 공명 영상 방법을 나타내는 흐름도이다.
도 5a는 자기 공명 신호의 풀샘플링(full-sampling)에 대한 실시예를 설명하기 위한 도면이다.
도 5b는 언더샘플링(under-sampling)의 한 종류인 교차샘플링에 대한 실시예를 설명하기 위한 도면이다.
도 5c는 언더샘플링(under-sampling)의 한 종류인 임의샘플링에 대한 실시예를 설명하기 위한 도면이다.
도 6a은 3차원 그래디언트 에코(GRE; Gradient Echo) 방식의 펄스 시퀀스 모식도를 나타낸다.
도 6b은 3차원 스핀 에코(SE) 방식의 펄스 시퀀스 모식도를 도시한다.
도 7은 본 발명의 일 실시예에 따른 자기 공명 영상 방법을 나타내는 흐름도이다.
도 8은 본 발명의 일 실시예에 따른 추가적인 캘리브레이션 데이터의 획득을 설명하기 위한 도면이다.
도 9은 본 발명의 다른 실시예에 따른 추가적인 캘리브레이션 데이터의 획득을 설명하기 위한 도면이다.
이하에서는 도면을 참조하여 본 발명의 실시예들을 보다 상세하게 설명한다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용되는 용어에 대해 간략히 설명하고, 본 발명에 대해 구체적으로 설명하기로 한다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다. 또한, 명세서에서 사용되는 "부"라는 용어는 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미하며, "부"는 어떤 역할들을 수행한다. 그렇지만 "부"는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. "부"는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 "부"는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함한다. 구성요소들과 "부"들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 "부"들로 결합되거나 추가적인 구성요소들과 "부"들로 더 분리될 수 있다.
아래에서는 첨부한 도면을 참고하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략한다.
본 명세서에서 "이미지" 또는 "영상"은 이산적인 영상 요소들(예를 들어, 2차원 영상에 있어서의 픽셀들 및 3차원 영상에 있어서의 복셀들)로 구성된 다차원(multi-dimensional) 데이터를 의미할 수 있다. 예를 들어, 영상은 X-ray, CT, MRI, 초음파 및 다른 의료 영상 시스템에 의해 획득된 대상체의 의료 영상 등을 포함할 수 있다.
또한, 본 명세서에서 "대상체(object)"는 사람 또는 동물, 또는 사람 또는 동물의 일부를 포함할 수 있다. 예를 들어, 대상체는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관을 포함할 수 있다. 또한, "대상체"는 팬텀(phantom)을 포함할 수도 있다. 팬텀은 생물의 밀도와 실효 원자 번호에 아주 근사한 부피를 갖는 물질을 의미하는 것으로, 신체와 유사한 성질을 갖는 구형(sphere)의 팬텀을 포함할 수 있다.
또한, 본 명세서에서 "사용자"는 의료 전문가로서 의사, 간호사, 임상 병리사, 의료 영상 전문가 등이 될 수 있으며, 의료 장치를 수리하는 기술자가 될 수 있으나, 이에 한정되지 않는다.
또한, 본 명세서에서 "자기 공명 영상 (MRI: Magnetic Resonance Imaging)"이란 핵자기 공명 원리를 이용하여 획득된 대상체에 대한 영상을 의미한다.
또한, 본 명세서에서 "펄스 시퀀스"란, MRI 장치에서 반복적으로 인가되는 신호의 연속을 의미한다. 펄스 시퀀스는 RF 펄스의 시간 파라미터, 예를 들어, 반복 시간(Repetition Time, TR) 및 에코 시간(Time to Echo, TE) 등을 포함할 수 있다.
또한, 본 명세서에서 "TR"이란 RF 펄스의 반복시간(repetition time)을 의미할 수 있다. 예를 들어, 첫번째 RF 펄스가 송신되는 시점으로부터 두번째 RF 펄스가 송신되는 시점 사이의 시간을 의미할 수 있다.
또한, 본 명세서에서 "펄스 시퀀스 모식도"란, MRI 장치 내에서 신호가 인가되는 순서를 설명한다. 예컨대, 펄스 시퀀스 모식도란 RF 펄스, 경사 자장, 자기 공명 신호 등을 시간에 따라 보여주는 모식도일 수 있다.
또한, 본 명세서에서 "공간 부호화"란 RF 신호에 의한 양성자 스핀들의 탈위상에 더하여, 양성자 스핀들의 추가적인 탈위상을 일으키는 선형 경사자장을 인가함으로써 경사자장의 축(방향)을 따라서 공간적 정보(spatial information)을 획득하는 것을 의미할 수 있다.
MRI 장치는 특정 세기의 자기장에서 발생하는 RF(Radio Frequency) 신호에 대한 MR(Magnetic Resonance) 신호의 세기를 명암 대비로 표현하여 대상체의 단층 부위에 대한 이미지를 획득하는 장치이다. 예를 들어, 대상체를 강력한 자기장 속에 눕힌 후 특정의 원자핵(예컨대, 수소 원자핵 등)만을 공명시키는 RF 신호를 대상체에 순간적으로 조사했다가 중단하면 특정의 원자핵에서 자기 공명 신호가 방출되는데, MRI 장치는 이 자기 공명 신호를 수신하여 MR 이미지를 획득할 수 있다. 자기 공명 신호는 대상체로부터 방사되는 RF 신호를 의미한다. 자기 공명 신호의 크기는 대상체에 포함된 소정의 원자(예컨대, 수소 등)의 농도, 이완시간 T1, 이완시간 T2 및 혈류 등의 흐름에 의해 결정될 수 있다.
MRI 장치는 다른 이미징 장치들과는 다른 특징들을 포함한다. 이미지의 획득이 감지 하드웨어(detecting hardware)의 방향에 의존하는 CT와 같은 이미징 장치들과 달리, MRI 장치는 임의의 지점으로 지향된 2차원 이미지 또는 3차원 볼륨 이미지를 획득할 수 있다. 또한, MRI 장치는, CT, X-ray, PET 및 SPECT와 달리, 대상체 및 검사자에게 방사선을 노출시키지 않으며, 높은 연부 조직(soft tissue) 대조도를 갖는 이미지의 획득이 가능하여, 비정상적인 조직의 명확한 묘사가 중요한 신경(neurological) 이미지, 혈관 내부(intravascular) 이미지, 근 골격(musculoskeletal) 이미지 및 종양(oncologic) 이미지 등을 획득할 수 있다.
대상체의 3차원 볼륨은 사람 또는 동물, 또는 사람 또는 동물의 일부의 3차원 형상을 포함할 수 있다. 예를 들어, 대상체의 볼륨은 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관 등의 3차원 형상을 포함할 수 있다.
MRI 장치에서 대상체의 3차원 볼륨(3D volume)의 정보를 빠른 시간에 얻으려고 할 때, 3차원 볼륨을 구성하는 슬라이스들의 방향으로 여러 장의 슬라이스 영상을 획득할 수 있다. 복수의 슬라이스에 대한 영상을 촬영하는 경우, 슬라이스 영상을 슬라이스의 수만큼 순차적으로 촬영하는 것이 일반적인데, 순차적으로 슬라이스 영상을 촬영하는 경우 촬영시간이 많이 소요될 수 있다.
멀티 슬라이스(multi-slice) 방식에서는 각각의 슬라이스 영상이 복수의 TR(Repetition Time: 반복시간) 구간에서 획득되는 경우, 각각의 TR 구간에서 각 슬라이스에 대한 데이터를 교차적으로 획득하여 촬영시간을 단축시켰다. 예를 들어, TR 구간이 단면선택, 위상 부호화, 주파수 부호화에 필요한 활성화 시간(active time)보다 훨씬 더 긴 경우, 불용시간(dead time)이 존재하는데, 멀티 슬라이스 방식에서는 각각의 TR 구간에서 하나의 단면에 관한 정보를 얻은 후 다른 단면에 관한 정보를 얻기 위해 불용시간을 이용한다.
동시적 멀티 슬라이스(SMS; Simultaneously Multi-Slice) 방식에서는 스캔시간을 줄이기 위하여 복수의 슬라이스를 동시에 여기하여 복수의 슬라이스로부터의 자기 공명 신호를 복수의 코일을 통하여 동시에 획득하고 슬라이스 간 존재하는 코일 민감도(coil sensitivity) 정보의 차이를 이용하여 각각의 슬라이스에 대한 자기 공명 신호를 분리한다. 코일 민감도 정보는 복수의 코일 중 각 코일의 위치에 따라 상이한 자기 공명 신호를 수신하는 감도를 의미할 수 있다.
동시적 멀티 슬라이스 방식은 병렬 영상처리에 대응될 수 있으며, 병렬 영상처리(parallel imaging)는 센스(SENSE) 또는 그라파(GRAPPA) 방식을 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자기 공명 영상 장치를 나타내는 블록도이다.
도 1을 참조하면, 자기 공명 영상 장치는 갠트리(gantry)(20), 신호 송수신부(30), 모니터링부(40), 장치 제어부(50) 및 오퍼레이팅부(60)를 포함할 수 있다.
갠트리(20)는 주 자석(22), 경사 코일(24), RF 코일(26) 등에 의하여 생성된 전자파가 외부로 방사되는 것을 차단한다. 갠트리(20) 내 보어(bore)에는 전자기장 및 경사자장이 형성되며, 대상체(10)를 향하여 RF 신호가 조사된다.
주 자석(22), 경사 코일(24) 및 RF 코일(26)은 갠트리(20)의 소정의 방향을 따라 배치될 수 있다. 소정의 방향은 동축 원통 방향 등을 포함할 수 있다. 원통의 수평축을 따라 원통 내부로 삽입 가능한 테이블(table)(28)상에 대상체(10)가 위치될 수 있다.
주 자석(22)은 대상체(10)에 포함된 원자핵들의 자기 쌍극자 모멘트(magnetic dipole moment)의 방향을 일정한 방향으로 정렬하기 위한 정자기장 또는 정자장(static magnetic field)을 생성한다. 주 자석에 의하여 생성된 자장이 강하고 균일할수록 대상체(10)에 대한 비교적 정밀하고 정확한 MR 영상을 획득할 수 있다.
경사 코일(Gradient coil)(24)은 서로 직교하는 X축, Y축 및 Z축 방향의 경사자장을 발생시키는 X, Y, Z 코일을 포함한다. 경사 코일(24)은 대상체(10)의 부위 별로 공명 주파수를 서로 다르게 유도하여 대상체(10)의 각 부위의 위치 정보를 제공할 수 있다.
RF 코일(26)은 환자에게 RF 신호를 조사하고, 환자로부터 방출되는 자기 공명 신호를 수신할 수 있다. 예를 들어, RF 코일(26)은, 세차 운동을 하는 원자핵을 향하여 세차운동의 주파수와 동일한 주파수의 RF 신호를 환자에게 전송한 후 RF 신호의 전송을 중단하고, 환자로부터 방출되는 자기 공명 신호를 수신할 수 있다.
예를 들어, RF 코일(26)은 어떤 원자핵을 낮은 에너지 상태로부터 높은 에너지 상태로 천이시키기 위하여 이 원자핵의 종류에 대응하는 무선 주파수(Radio Frequency)를 갖는 전자파 신호, 예컨대 RF 신호를 생성하여 대상체(10)에 인가할 수 있다. RF 코일(26)에 의해 생성된 전자파 신호가 어떤 원자핵에 가해지면, 이 원자핵은 낮은 에너지 상태로부터 높은 에너지 상태로 천이될 수 있다. 이후에, RF 코일(26)에 의해 생성된 전자파가 사라지면, 전자파가 가해졌던 원자핵은 높은 에너지 상태로부터 낮은 에너지 상태로 천이하면서 라모어 주파수를 갖는 전자파를 방사할 수 있다. 다시 말해서, 원자핵에 대하여 전자파 신호의 인가가 중단되면, 전자파가 가해졌던 원자핵에서는 높은 에너지에서 낮은 에너지로의 에너지 준위의 변화가 발생하면서 라모어 주파수를 갖는 전자파가 방사될 수 있다. 여기에서, 라모어 주파수는 원자핵에서 자기공명이 유도되는 주파수를 의미할 수 있다. RF 코일(26)은 대상체(10) 내부의 원자핵들로부터 방사된 전자파 신호를 수신할 수 있다.
RF 코일(26)은 원자핵의 종류에 대응하는 무선 주파수를 갖는 전자파를 생성하는 기능과 원자핵으로부터 방사된 전자파를 수신하는 기능을 함께 갖는 하나의 RF 송수신 코일로서 구현될 수도 있다. 또한, 원자핵의 종류에 대응하는 무선 주파수를 갖는 전자파를 생성하는 기능을 갖는 송신 RF 코일과 원자핵으로부터 방사된 전자파를 수신하는 기능을 갖는 수신 RF 코일로서 각각 구현될 수도 있다.
또한, 이러한 RF 코일(26)은 갠트리(20)에 고정된 형태일 수 있고, 착탈이 가능한 형태일 수 있다. 착탈이 가능한 RF 코일(26)은 머리 RF 코일, 흉부 RF 코일, 다리 RF 코일, 목 RF 코일, 어깨 RF 코일, 손목 RF 코일 및 발목 RF 코일 등을 포함한 대상체의 일부분에 대한 RF 코일을 포함할 수 있다.
또한, RF 코일(26)은 유선 및/또는 무선으로 외부 장치와 통신할 수 있으며, 통신 주파수 대역에 따른 듀얼 튠(dual tune) 통신도 수행할 수 있다.
또한, RF 코일(26)은 코일의 구조에 따라 새장형 코일(birdcage coil), 표면 부착형 코일(surface coil) 및 횡전자기파 코일(TEM 코일)을 포함할 수 있다.
또한, RF 코일(26)은 RF 신호 송수신 방법에 따라, 송신 전용 코일, 수신 전용 코일 및 송/수신 겸용 코일을 포함할 수 있다.
또한, RF 코일(26)은 16 채널, 32 채널, 72채널 및 144 채널 등 다양한 채널의 RF 코일을 포함할 수 있다.
갠트리(20)는 갠트리(20)의 외측에 위치하는 디스플레이(29)와 갠트리(20)의 내측에 위치하는 디스플레이(미도시)를 더 포함할 수 있다. 갠트리(20)의 내측 및 외측에 위치하는 디스플레이를 통해 사용자 또는 대상체에게 소정의 정보를 제공할 수 있다.
신호 송수신부(30)는 소정의 MR 시퀀스에 따라 갠트리(20) 내부, 즉 보어에 형성되는 경사자장을 제어하고, RF 신호와 자기 공명 신호의 송수신을 제어할 수 있다.
신호 송수신부(30)는 경사자장 증폭기(32), 송수신 스위치(34), RF 송신부(36) 및 RF 수신부(38)를 포함할 수 있다.
경사자장 증폭기(Gradient Amplifier)(32)는 갠트리(20)에 포함된 경사 코일(24)을 구동시키며, 경사자장 제어부(54)의 제어 하에 경사자장을 발생시키기 위한 펄스 신호를 경사 코일(24)에 공급할 수 있다. 경사자장 증폭기(32)로부터 경사 코일(24)에 공급되는 펄스 신호를 제어함으로써, X축, Y축, Z축 방향의 경사 자장이 합성될 수 있다.
RF 송신부(36) 및 RF 수신부(38)는 RF 코일(26)을 구동시킬 수 있다. RF 송신부(36)는 라모어 주파수의 RF 펄스를 RF 코일(26)에 공급하고, RF 수신부(38)는 RF 코일(26)이 수신한 자기 공명 신호를 수신할 수 있다.
송수신 스위치(34)는 RF 신호와 자기 공명 신호의 송수신 방향을 조절할 수 있다. 예를 들어, 송신 모드 동안에 RF 코일(26)을 통하여 대상체(10)로 RF 신호가 조사되게 하고, 수신 모드 동안에는 RF 코일(26)을 통하여 대상체(10)로부터의 자기 공명 신호가 수신되게 할 수 있다. 이러한 송수신 스위치(34)는 RF 제어부(56)로부터의 제어 신호에 의하여 제어될 수 있다.
모니터링부(40)는 갠트리(20) 또는 갠트리(20)에 장착된 기기들을 모니터링 또는 제어할 수 있다. 모니터링부(40)는 시스템 모니터링부(42), 대상체 모니터링부(44), 테이블 제어부(46) 및 디스플레이 제어부(48)를 포함할 수 있다.
시스템 모니터링부(42)는 정자기장의 상태, 경사자장의 상태, RF 신호의 상태, RF 코일의 상태, 테이블의 상태, 대상체의 신체 정보를 측정하는 기기의 상태, 전원 공급 상태, 열 교환기의 상태, 컴프레셔의 상태 등을 모니터링하고 제어할 수 있다.
대상체 모니터링부(44)는 대상체(10)의 상태를 모니터링한다. 예를 들어, 대상체 모니터링부(44)는 대상체(10)의 움직임 또는 위치를 관찰하기 위한 카메라, 대상체(10)의 호흡을 측정하기 위한 호흡 측정기, 대상체(10)의 심전도를 측정하기 위한 ECG 측정기, 또는 대상체(10)의 체온을 측정하기 위한 체온 측정기를 포함할 수 있다.
테이블 제어부(46)는 대상체(10)가 위치하는 테이블(28)의 이동을 제어한다. 테이블 제어부(46)는 시퀀스 제어부(50)의 시퀀스 제어에 따라 테이블(28)의 이동을 제어할 수도 있다. 예를 들어, 대상체의 이동 영상 촬영(moving imaging)에 있어서, 테이블 제어부(46)는 시퀀스 제어부(50)에 의한 시퀀스 제어에 따라 지속적으로 또는 단속적으로 테이블(28)을 이동시킬 수 있으며, 이에 의해, 갠트리의 FOV(field of view)보다 큰 FOV로 대상체를 촬영할 수 있다.
디스플레이 제어부(48)는 갠트리(20)의 외측 및 내측에 위치하는 디스플레이를 제어한다. 예를 들어, 디스플레이 제어부(48)는 갠트리(20)의 외측 및 내측에 위치하는 디스플레이의 온/오프 또는 디스플레이에 출력될 화면 등을 제어할 수 있다. 또한, 갠트리(20) 내측 또는 외측에 스피커가 위치하는 경우, 디스플레이 제어부(48)는 스피커의 온/오프 또는 스피커를 통해 출력될 사운드 등을 제어할 수도 있다.
시스템 제어부(50)는 갠트리(20) 내부에서 형성되는 신호들의 시퀀스를 제어하는 시퀀스 제어부(52), 및 갠트리(20)와 갠트리(20)에 장착된 기기들을 제어하는 갠트리 제어부(58)를 포함할 수 있다.
시퀀스 제어부(52)는 경사자장 증폭기(32)를 제어하는 경사자장 제어부(54), 및 RF 송신부(36), RF 수신부(38) 및 송수신 스위치(34)를 제어하는 RF 제어부(56)를 포함할 수 있다. 시퀀스 제어부(52)는 오퍼레이팅부(60)로부터 수신된 펄스 시퀀스에 따라 경사자장 증폭기(32), RF 송신부(36), RF 수신부(38) 및 송수신 스위치(34)를 제어할 수 있다. 여기에서, 펄스 시퀀스(pulse sequence)란, 경사자장 증폭기(32), RF 송신부(36), RF 수신부(38) 및 송수신 스위치(34)를 제어하기 위해 필요한 모든 정보를 포함하며, 예를 들면 경사 코일(24)에 인가하는 펄스(pulse) 신호의 강도, 인가 시간, 인가 타이밍(timing) 등에 관한 정보 등을 포함할 수 있다.
오퍼레이팅부(60)는 시스템 제어부(50)에 펄스 시퀀스 정보를 지령하는 것과 동시에, MRI 장치 전체의 동작을 제어할 수 있다.
오퍼레이팅부(60)는 RF 수신부(38)로부터 수신되는 자기 공명 신호를 처리하는 영상 처리부(62), 출력부(64) 및 입력부(66)를 포함할 수 있다.
영상 처리부(62)는 RF 수신부(38)로부터 수신되는 자기 공명 신호를 처리하여, 대상체(10)에 대한 자기 공명 화상 데이터를 생성할 수 있다.
영상 처리부(62)는 RF 수신부(38)가 수신한 자기 공명 신호에 증폭, 주파수 변환, 위상 검파, 저주파 증폭, 필터링(filtering) 등과 같은 각종의 신호 처리를 가한다.
영상 처리부(62)는, 예를 들어, 메모리의 k-공간 데이터 (예컨대, 푸리에(Fourier) 공간 또는 주파수 공간이라고도 지칭됨)에 디지털 데이터를 배치하고, 이러한 데이터를 2차원 또는 3차원 푸리에 변환을 하여 화상 데이터로 재구성할 수 있다.
또한, 영상 처리부(62)는 필요에 따라, 화상 데이터(data)의 합성 처리나 차분 연산 처리 등도 수행할 수 있다. 합성 처리는, 픽셀에 대한 가산 처리, 최대치 투영(MIP)처리 등을 포함할 수 있다. 또한, 영상 처리부(62)는 재구성되는 화상 데이터뿐만 아니라 합성 처리나 차분 연산 처리가 행해진 화상 데이터를 메모리(미도시) 또는 외부의 서버에 저장할 수 있다.
또한, 영상 처리부(62)가 자기 공명 신호에 대해 적용하는 각종 신호 처리는 병렬적으로 수행될 수 있다. 예를 들어, 다채널 RF 코일에 의해 수신되는 복수의 자기 공명 신호에 신호 처리를 병렬적으로 가하여 복수의 자기 공명 신호를 화상 데이터로 재구성할 수도 있다.
출력부(64)는 영상 처리부(62)에 의해 생성된 화상 데이터 또는 재구성 화상 데이터를 사용자에게 출력할 수 있다. 또한, 출력부(64)는 UI(user interface), 사용자 정보 또는 대상체 정보 등 사용자가 MRI 장치를 조작하기 위해 필요한 정보를 출력할 수 있다. 출력부(64)는 스피커, 프린터, CRT 디스플레이, LCD 디스플레이, PDP 디스플레이, OLED 디스플레이, FED 디스플레이, LED 디스플레이, VFD 디스플레이, DLP 디스플레이, PFD 디스플레이, 3차원 디스플레이, 투명 디스플레이 등을 포함할 수 있고, 기타 당업자에게 자명한 범위 내에서 다양한 출력 장치들을 포함할 수 있다.
사용자는 입력부(66)를 이용하여 대상체 정보, 파라미터 정보, 스캔 조건, 펄스 시퀀스, 화상 합성이나 차분의 연산에 관한 정보 등을 입력할 수 있다. 입력부(66)는 키보드, 마우스, 트랙볼, 음성 인식부, 제스처 인식부, 터치 스크린 등을 포함할 수 있고, 기타 당업자에게 자명한 범위 내에서 다양한 입력 장치들을 포함할 수 있다.
도 1은 신호 송수신부(30), 모니터링부(40), 시스템 제어부(50) 및 오퍼레이팅부(60)를 서로 분리된 객체로 도시하였지만, 신호 송수신부(30), 모니터링부(40), 시스템 제어부(50) 및 오퍼레이팅부(60) 각각에 의해 수행되는 기능들이 다른 객체에서 수행될 수도 있다는 것은 당업자라면 충분히 이해할 수 있을 것이다. 예를 들어, 영상 처리부(62)는, RF 수신부(38)가 수신한 자기 공명 신호를 디지털 신호로 변환한다고 전술하였지만, 이 디지털 신호로의 변환은 RF 수신부(38) 또는 RF 코일(26)이 직접 수행할 수도 있다.
갠트리(20), RF 코일(26), 신호 송수신부(30), 모니터링부(40), 시스템 제어부(50) 및 오퍼레이팅부(60)는 서로 무선 또는 유선으로 연결될 수 있고, 무선으로 연결된 경우에는 서로 간의 클럭(clock)을 동기화하기 위한 장치(미도시)를 더 포함할 수 있다. 갠트리(20), RF 코일(26), 신호 송수신부(30), 모니터링부(40), 시스템 제어부(50) 및 오퍼레이팅부(60) 사이의 통신은, LVDS(Low Voltage Differential Signaling) 등의 고속 디지털 인터페이스, UART(universal asynchronous receiver transmitter) 등의 비동기 시리얼 통신, 과오 동기 시리얼 통신 또는 CAN(Controller Area Network) 등의 저지연형의 네트워크 프로토콜, 광통신 등이 이용될 수 있으며, 당업자에게 자명한 범위 내에서 다양한 통신 방법이 이용될 수 있다.
<도 2>
도 2는 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)를 나타내는 블록도이다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 RF 송신부(210), 경사사장 증폭기(220), RF 수신부(230), 영상 처리부(240)를 포함할 수 있다.
도 2의 RF 송신부(210)는 도 1의 RF 송신부(36)에, 도 2의 경사사장 증폭기(220)는 도 1의 경사자장 증폭기(32)에, 도 2의 RF 수신부(230)는 도 1의 RF 수신부(38)에, 도 2의 영상 처리부(240)는 도 1의 영상 처리부(62)에 동일하게 대응될 수 있다.
RF 송신부(210)는 대상체의 복수의 슬라이스(slice)가 여기(excitation)되도록, 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF 신호를 송신한다. 대상체의 복수의 슬라이스는 대상체의 볼륨을 구성하는 슬라이스들 중 적어도 둘 이상의 슬라이스를 의미할 수 있다. 복수의 슬라이스의 여기(excitation)에 대하여 도 3을 참조하여 추가로 설명된다.
본 발명의 일 실시예에 따르면, 경사자장 증폭기(220)는 3차원 공간 부호화 경사자장을 대상체에 인가한다. 3차원 공간 부호화 경사자장은 슬라이스 방향의 경사자장, 주파수 방향의 경사자장, 위상 방향의 경사자장을 포함할 수 있다. 3차원 공간 부호화는 주파수 방향의 경사자장 및 위상 방향의 경사자장을 포함하는 2차원 공간 부호화 경사자장에 슬라이스 방향의 경사자장을 추가하여 구현될 수 있다.
본 발명의 다른 실시예에서는 경사자장 증폭기(220)가 주파수 방향 및 위상 방향의 경사자장만을 인가할 수도 있다. 경사자장 증폭기(220)가 주파수 방향의 경사자장 및 위상 방향의 경사자장만을 인가하는 경우, RF 송신부(210)는 슬라이스 방향의 공간 부호화를 위한 위상의 변위를 포함하는 RF 신호를 송신할 수 있다. 3차원 공간 부호화는 주파수 방향의 경사자장, 위상 방향의 경사자장 및 RF 신호의 위상에 기초하여 수행될 수 있다.
RF 수신부(230)는 복수의 슬라이스 각각의 자기 공명 신호(magnetic resonance signal)를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신한다. 대상체의 복수의 슬라이스는 RF신호에 의해 여기되어 자기 공명 신호를 방출하고, RF 수신부(230)는 복수의 슬라이스에서 방출된 자기 공명 신호를 수신할 수 있다. 예를 들어, RF 수신부(230)는 복수의 슬라이스가 방출하는 자기 공명 신호를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신할 수 있다.
또한, RF 수신부(230)는 복수의 코일을 포함할 수 있고, 복수의 코일 각각에서 자기 공명 신호를 수신할 수 있다. 복수의 코일은 멀티-채널(multi-channel) 수신 코일을 포함할 수 있다. 예를 들어, 복수의 코일은 16 채널, 32 채널, 72채널 및 144 채널 등 다양한 채널의 RF 코일을 포함할 수 있다.
또한, RF 수신부(230)는 중첩된 상태로 획득된 자기 공명 신호를 구분하기 위해, 복수의 코일을 통하여 추가적인 캘리브레이션 데이터를 획득할 수 있다. 복수의 코일을 통하여 획득된 중첩된 상태의 자기 공명 신호는, 복수의 코일의 민감도(sensitivity) 차이에 기초하여 구분될 수 있다.
또한, RF 수신부(230)는 자기 공명 신호를 언더샘플링하여 획득할 수 있다. 언더샘플링은 자기 공명 영상을 획득하기 위해 필요한 모든 TR 구간에서 자기 공명 신호를 획득하지 않고 일부 TR 구간에서만 자기 공명 신호를 획득하는 것을 의미할 수 있다.
영상 처리부(240)는 획득된 자기 공명 신호에 기초하여, 3차원 k-공간 데이터를 생성할 수 있다. 예를 들어, 영상 처리부(240)는 획득한 자기 공명 신호에 대해 3차원 공간 부호화를 수행하여 3차원 k-공간 데이터를 획득할 수 있다. 자기 공명 신호에 대한 3차원 공간 부호화를 수행하는 것은 메모리의 k-공간 데이터에 자기 공명 신호에 대한 디지털 데이터를 배치하는 것을 의미할 수 있다. RF 수신부(230)가 자기 공명 신호를 언더샘플링하여 획득한 경우, 영상 처리부(240)는 언더샘플링된 k-공간 데이터를 획득할 수 있다.
또한, 영상 처리부(240)는 생성된 3차원 k-공간 데이터에 기초하여 복수의 슬라이스 각각의 자기 공명 영상을 획득할 수 있다. 예를 들어, 영상 처리부(240)는 획득된 3차원 k-공간 데이터에 3차원 푸리에 변환을 수행하여 자기 공명 영상을 획득할 수 있다.
또한, 영상 처리부(240)는 병렬 영상처리(parallel imaging) 및 압축적 센싱(compressed sensing) 중 적어도 하나를 이용하여, 중첩된 상태의 자기 공명 신호로부터 복수의 슬라이스 각각에 대한 자기 공명 영상을 획득할 수 있다.
병렬 영상처리는 센스(SENSE) 방식을 포함할 수 있다. 예를 들어, 병렬 영상처리는 복수의 슬라이스를 동시에 여기하여 복수의 슬라이스로부터의 자기 공명 신호를 복수의 코일을 통하여 동시에 획득하고, 복수의 코일 간에 존재하는 코일 민감도(coil sensitivity) 정보의 차이를 이용하여, 복수의 슬라이스 각각에 대한 자기 공명 신호를 분리하는 것을 의미할 수 있다.
또한, 병렬 영상처리는 그라파(GRAPPA) 방식을 포함할 수 있다. 예를 들어, 병렬 영상처리는 복수의 슬라이스를 동시에 여기하여 복수의 코일 각각에 대하여 복수의 k-공간 데이터를 획득하고, 복수의 k-공간 데이터를 보간하여 복수의 코일 각각에 대한 자기 공명 영상을 획득하는 것을 의미할 수 있다. 압축적 센싱은 k-공간 데이터의 모든 그리드(grid)에 대하여 신호를 획득하지 않고 일부 그리드에 대해서만 신호를 획득한 후, 자기 공명 영상을 재구성하는 방식을 의미할 수 있다. 압축적 센싱은 언더샘플링을 통하여 구현될 수 있다.
<도 3>
도 3은 대상체의 복수의 슬라이스의 여기(excitation)를 설명하기 위한 도면이다.
도 3을 참조하면, 대상체의 3차원 볼륨(310)은 슬라이스들(S1-S7)을 포함한다. 대상체 3차원 볼륨(310) 내에서 슬라이스들(S1-S7)은 슬라이스 방향(Gz)으로 배열될 수 있다. 대상체의 3차원 볼륨(310)에 대해여 7개의 슬라이스만이 도시되었지만, 이에 제한되는 것은 아니다.
대상체의 특정 단면을 촬영하기 위해 RF 송신부(210)는 슬라이스들(S1-S7) 중 특정한 슬라이스, 예를 들어 제1 슬라이스(S1)를 여기할 수 있다. 여기(excitation)란 자화상태에 있는 원자핵에 RF를 송신하면 원자핵들이 고주파 에너지를 흡수하여 높은 에너지 상태로 변환되는 것을 의미할 수 있다. 또한, 슬라이스가 여기된다는 것은 슬라이스에 포함된 원자핵들에 전자파 신호가 가해져서 이 원자핵들이 낮은 에너지 상태로부터 높은 에너지 상태로 천이되는 것을 의미할 수 있다.
복수의 슬라이스는 대상체의 3차원 볼륨을 구성하는 슬라이스들 중 일부의 슬라이스일 수 있다. 복수의 슬라이스는 서로 인접하여 위치할 수 있으나 서로 떨어져 위치할 수도 있다. 복수의 슬라이스를 여기하는 것은 제1 슬라이스(S1) 및 제2 슬라이스(S2)를 여기하는 것을 의미할 수 있으나, 제1 슬라이스(S1) 및 제3 슬라이스(S3)를 여기하는 것을 의미할 수도 있다.
복수의 슬라이스에 대한 촬영시간을 단축하기 위해 RF 송신부(210)는 복수의 슬라이스를 동시에 여기할 수 있다. 예를 들어, RF 송신부(210)는 제1 슬라이스(S1) 및 제3 슬라이스(S3)를 동시에 여기할 수 있다.
RF 송신부(210)는 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF 신호를 송신하여, 복수의 슬라이스를 여기할 수 있다. 예를 들어, RF 신호가 제1주파수 신호와 제2주파수 신호를 포함한다면, 제1주파수 신호는 복수의 슬라이스 중 제1 슬라이스(S1)를 여기하고, 제2주파수 신호는 복수의 슬라이스 중 제2 슬라이스(S2)를 여기할 수 있다.
한편, RF 수신부(230)는 여기된 복수의 슬라이스 각각의 자기 공명 신호를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신할 수 있다. 예를 들어, 제1 내지 제10 TR 구간이 존재하는 경우, 제1 슬라이스(S1)의 자기 공명 신호가 제1, 제3, 제5, 제7, 제9 TR 구간에서 수신되었다면, 제2 슬라이스(S2)의 자기 공명 신호도 제1, 제3, 제5, 제7, 제9 TR 구간에서 함께 수신될 수 있다.
<도 4>
도 4는 본 발명의 일 실시예에 따른 자기 공명 영상 방법을 나타내는 흐름도이다. 도 4를 참조하여, 자기 공명 영상 장치(200)의 동작들을 순서대로 상술한다.
단계 410에서, 자기 공명 영상 장치(200)는 대상체의 복수의 슬라이스를 여기(excitation)하도록, 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신할 수 있다.
본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 복수의 슬라이스를 동시에 여기할 수 있으므로, 촬영 시간을 단축시킬 수 있다.
단계 420에서, 자기 공명 영상 장치(200)는 3차원 공간 부호화 경사자장(spatial encoding gradient)을 인가한다. 본 발명의 일 실시예에 따르면, 3차원 공간 부호화 경사자장은 슬라이스 방향의 경사자장, 주파수 방향의 경사자장 및 위상 방향의 경사자장을 포함할 수 있다.
또한, 자기 공명 영상 장치(200)는 자기 공명 신호가 슬라이스 방향으로 선형 위상(linear phase)을 가지도록 3차원 공간 부호화 경사자장을 인가할 수 있다. 예를 들어, 자기 공명 영상 장치(200)가 선형 위상을 갖는 3차원 공간 부호화 경사자장을 대상체의 복수의 슬라이스에 인가하는 경우, 대상체의 복수의 슬라이스에서 방출된 자기 공명 신호는 슬라이스 방향으로 선형 위상을 가질 수 있다.
본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 복수의 슬라이스를 동시에 여기하며 3차원 공간 부호화를 수행할 수 있으므로, 촬영 시간을 단축시키면서도 자기 공명 신호의 신호대잡음비(SNR: signal to noise ratio)를 증가시킬 수 있다.
단계 430에서, 자기 공명 영상 장치(200)는 복수의 슬라이스 각각의 자기 공명 신호를 동일한 TR 구간에서 중첩된 상태로 수신한다.
또한, 자기 공명 영상 장치(200)는 복수의 슬라이스 각각의 자기 공명 신호를 언더샘플링하여 수신할 수 있다.
단계 440에서, 자기 공명 영상 장치(200)는 자기 공명 신호에 기초하여 3차원 k-공간 데이터를 획득하고, 3차원 k-공간 데이터에 기초하여 복수의 슬라이스 각각의 자기 공명 영상을 획득한다.
<도 5>
도 5a는 자기 공명 신호의 풀샘플링(full-sampling)에 대한 실시예를 설명하기 위한 도면이다.
도 5a는 2개의 슬라이스의 자기 공명 신호의 풀샘플링을 통하여 획득된 3차원 k-공간 데이터를 도시한다.
도 5a를 참조하면, 2개의 슬라이스의 자기 공명 신호가 3차원 공간 부호화 경사자장에 의해 공간 부호화된 3차원 k-공간 데이터가 도시된다. 도 5a에서 3개의 축방향으로 도시된 바와 같이, 3차원 공간 부호화 경사자장은 kz 방향의 경사자장, kx 방향의 경사자장, ky 방향의 경사자장을 포함할 수 있다. 본 명세서에서, kx는 주파수 방향, ky는 위상 방향, kz는 슬라이스 방향을 의미할 수 있으나, 이에 제한되는 것은 아니다.
도 5a의 풀샘플링 k-공간 데이터는 두 개의 슬라이스(511, 512)에 대하여 ky 방향의 경사자장이 연속적으로 변경되며 자기 공명 신호가 샘플링된 결과를 나타낸다. 도 5a의 3차원 k-공간 데이터에서 표시된 점들은 각각의 TR 구간에서 자기 공명 신호가 획득되었음을 나타낸다. 또한, 도 5에서 표시된 점 각각은 kx방향으로 연속되는 라인(line)을 나타내는데, 자기 공명 신호를 획득하는 구간인 신호획득 구간에서 kx방향의 경사자장이 대상체에 인가되기 때문이다. 풀샘플링에 의할 경우, 선명한 자기공명 영상을 획득하는데 유리하지만 시간이 많이 소요될 수 있다.
한편, 자기 공명 신호가 언더샘플링 방식으로 획득된 경우, 획득 라인 및 미획득 라인을 포함하는 k-공간 데이터가 획득될 수 있다.
도 5b는 언더샘플링(under-sampling)의 한 종류인 교차샘플링에 대한 실시예를 설명하기 위한 도면이다.
도 5b를 참조하면, 2개의 슬라이스에 대한 자기 공명 신호의 교차샘플링을 통하여 획득된 교차샘플링 k-공간 데이터가 도시된다. 교차샘플링 k-공간 데이터는 자기 공명 신호의 샘플링을 2개의 슬라이스의 사이에서 순차적으로 교차하며 수행한 결과를 나타낸다. 교차샘플링 k-공간 데이터는 제1 슬라이스(521)에 대하여 획득된 라인(525)과 미획득된 라인(526)을 포함하는 것을 도시한다. 미획득된 라인(526)에 대응하는 TR 구간에서, 제1 슬라이스(521)가 아닌 제2 슬라이스(522)의 자기 공명 신호가 획득된 것을 알 수 있다.
한편, 교차샘플링 k-공간 데이터의 획득된 라인의 수는 풀샘플링 k-공간 데이터의 획득된 라인의 수의 절반인 것을 알 수 있다. 따라서, 풀샘플링 k-공간 데이터를 획득하는 것은 교차샘플링 k-공간 데이터를 획득하는 것에 비하여 2배의 시간이 소요될 수 있다.
도 5c는 언더샘플링(under-sampling)의 한 종류인 임의샘플링에 대한 실시예를 설명하기 위한 도면이다.
도 5c를 참조하면, 2개의 슬라이스의 자기 공명 신호의 임의샘플링을 통하여 획득된 임의샘플링 k-공간 데이터가 도시된다. 임의샘플링 k-공간 데이터는 자기 공명 신호의 샘플링을 2개의 슬라이스에 사이에서 임의적으로 교차하며 수행한 결과를 나타낸다. 예를 들어, 임의샘플링 k-공간 데이터는 제1 슬라이스에 대하여 획득된 라인들(531), 미획득된 라인(532), 획득된 라인(533)을 임의적인 순서로 나타낸다.
한편, 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 복수의 코일을 통하여 획득한 캘리브레이션 데이터를 이용하여 언더샘플링된 k-공간 데이터를 보간(interpolation)할 수 있다. 이와 관련하여 도 9를 참조하여 추가로 설명된다.
<도 6>
도 6a은 3차원 그래디언트 에코(GRE; Gradient Echo) 방식의 펄스 시퀀스 모식도를 나타낸다. 도 6a는 3차원 부호화가 그래디언트 에코(GRE) 방식에 적용될 수 있음을 나타낸다.
도 6a를 참조하면, 자기 공명 영상 장치(200)는 RF 신호(616)를 송신하고, RF 신호(616)가 송신되는 신호송신구간에서 슬라이스 방향(Gz)의 경사자장(612)을 TR 구간마다 단계적으로 변조(modulation)하며 인가할 수 있다. 예를 들어, 슬라이스 방향(Gz)의 경사자장(612)의 크기는 TR 구간마다 단계적으로 증가될 수 있다.
또한, 자기 공명 영상 장치(200)는 자기 공명 신호가 획득되기 전에 위상 방향(Gy)의 경사자장(613)을 TR 구간마다 단계적으로 변조하며 인가할 수 있다. 예를 들어 위상 방향의 경사자장(613)의 크기는 TR 구간마다 단계적으로 증가될 수 있다.
또한, 자기 공명 영상 장치(200)는 자기 공명 신호가 획득되는 신호획득 구간에서 주파수 방향(Gx)의 경사자장(614)을 인가할 수 있다.
디지털화된 자기 공명 신호(615)는 ADC(Analog-Digital Converter)를 통하여 신호획득구간에서 획득된 자기 공명 신호일 수 있다.
한편, 슬라이스 방향의 경사자장의 크기가 단계적으로 변조되는 횟수는 슬라이스 방향의 공간 부호화를 위한 부호화 횟수일 수 있다. 슬라이스 방향의 부호화 횟수가 복수의 슬라이스의 개수보다 많은 경우 자기 공명 영상의 앨리어싱이 감소될 수 있다. 앨리어싱이란 영상의 윤곽선이 매끄럽지 않은 계단 현상을 의미할 수 있다.
도 6b은 3차원 스핀 에코(SE) 방식의 펄스 시퀀스 모식도를 도시한다. 도 6b는 3차원 부호화가 스핀 에코 방식에 적용될 수 있음을 나타낸다.
도 6b를 참조하면, 자기 공명 영상 장치(200)는 90도 RF 신호(626)를 송신하고, 90도 RF 신호(626)가 송신되는 신호송신 구간에서 슬라이스 방향의 경사자장(622)을 TR 구간마다 단계적으로 변조(modulation)하며 대상체에 인가할 수 있다. 예를 들어, 슬라이스 방향의 경사자장(622)의 크기는 TR 구간마다 단계적으로 증가될 수 있다
또한, 자기 공명 영상 장치(200)는 자기 공명 신호가 획득되기 전에 위상 방향의 경사자장(623)을 TR 구간마다 단계적으로 변조하며 대상체에 인가할 수 있다. 예를 들어, 위상 방향의 경사자장(623)의 크기는 TR 구간마다 단계적으로 증가될 수 있다
또한, 자기 공명 영상 장치(200)는 180도 RF 신호(627)를 송신하고, 180도 RF 신호(626)가 송신되는 신호송신 구간에서 슬라이스 방향의 경사자장(622)을 TR 구간마다 단계적으로 변조(modulation)하며 대상체에 인가할 수 있다.
또한, 자기 공명 영상 장치(200)는 자기 공명 신호가 획득되는 신호획득 구간에서 주파수 방향의 경사자장(624)을 대상체에 인가할 수 있다.
디지털화된 자기 공명 신호(625)는 ADC(Analog-Digital Converter)를 통하여 신호획득구간에서 획득된 자기 공명 신호일 수 있다.
도 6a 및 도 6b에서 자기 공명 신호의 3차원 공간 부호화의 실시예로서 GRE와 SE 방식이 설명되었지만, 3차원 공간 부호화의 구현이 GRE나 SE 방식에 제한되는 것은 아니다.
한편, 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 슬라이스 방향의 경사자장(612, 622) 및 위상 방향의 경사자장(613, 623)을 대상체에 인가하는 순서를 조절하여 자기 공명 신호의 열화를 최소화할 수 있다. 예를 들어, 도 6a에서, 자기 공명 영상 장치(200)는 슬라이스 방향의 경사자장(612)을 먼저 대상체에 인가하고 위상 방향의 경사자장(613)을 후에 대상체에 인가할 수 있고, 반대의 순서로도 대상체에 인가할 수 있다.
한편, 도 6a 및 도6b에 도시된 펄스 시퀀스 모식도들은 RF 수신부가 자기 공명 신호를 검출하는 구간인 신호획득 구간에서 위상 방향의 경사자장(613, 623) 및 슬라이스 방향의 경사자장(612, 622)이 대상체에 인가되지 않는 경우를 나타낸다. 예를 들어, 도 6a 및 도6b에 도시된 펄스 시퀀스 모식도는 신호획득 구간에서 위상 방향의 경사자장(613, 623) 및 슬라이스 방향의 경사자장(612, 622)의 크기가 0인 경우를 도시한다. 예를 들어, 도 6a 및 도6b는 각 TR 구간에 대하여 신호획득 구간 이전에 위상 방향의 경사자장(613, 623) 및 슬라이스 방향의 경사자장(612, 622)이 인가되고, 신호획득 구간에서는 주파수 방향의 경사자장(614, 624)만이 대상체에 인가되는 경우를 도시한다.
도 6a 및 도6b에 도시되지는 않았지만, 본 발명의 다른 실시예에 따른 자기 공명 영상 장치(200)는 신호획득 구간에서 슬라이스 방향의 경사자장 및 위상 방향의 경사자장 중 적어도 하나의 경사자장의 크기의 변화를 인가함으로써 추가적인 가속화를 할 수도 있다. 예를 들어, 신호획득 구간에서 슬라이스 방향의 경사자장 및 위상 방향의 경사자장 중 적어도 하나의 경사자장이 진동(oscillating)하며 대상체에 인가될 수 있다.
<도 7>
도 7은 본 발명의 일 실시예에 따른 자기 공명 영상 방법을 나타내는 흐름도이다.
도 7을 참조하여, 자기 공명 영상 장치(200)의 동작들을 순서대로 상술한다.
도 7의 단계 710, 720, 730은 도 4의 단계 410 내지 단계 430와 동일하다. 이하 중복되는 설명은 제외한다
단계 710에서, 자기 공명 영상 장치(200)는 대상체의 복수의 슬라이스가 여기(excitation)되도록, 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신할 수 있다.
단계 720에서, 자기 공명 영상 장치(200)는 3차원 공간 부호화 경사자장(spatial encoding gradient)를 인가할 수 있다.
단계 730에서, 자기 공명 영상 장치(200)는 복수의 슬라이스 각각의 자기 공명 신호를 동일한 TR 구간에서 중첩된 상태로 수신할 수 있다.
단계 740에서, 자기 공명 영상 장치(200)는 자기 공명 신호에 기초하여 3차원 k-공간 데이터를 획득할 수 있다. 자기 공명 영상 장치(200)가 자기 공명 신호를 언더샘플링하여 수신한 경우, 획득 라인 및 미획득 라인을 포함하는 언더샘플링된 3차원 k-공간 데이터가 획득될 수 있다.
단계 750에서, 자기 공명 영상 장치(200)는 언더샘플링된 3차원 k-공간 데이터를 보간하기 위한 추가적인 캘리브레이션 데이터를 획득할 수 있다.
본 발명의 일 실시예에 의하면, 자기 공명 영상 장치(200)는 복수의 슬라이스 각각을 추가적으로 여기하고, 추가적인 캘리브레이션 데이터를 추가적으로 여기된 복수의 슬라이스 각각으로부터의 자기 공명 신호에 기초하여 획득할 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 제1 슬라이스를 추가적으로 여기하여 제1 슬라이스의 자기공명 신호를 획득하고, 제2 슬라이스를 추가적으로 여기하여 제2 슬라이스의 자기공명 신호를 획득하는 방식으로 추가적인 캘리브레이션 데이터를 획득할 수 있다.
또한, 본 발명의 다른 실시예에 의하면, 자기 공명 영상 장치(200)는 추가적인 캘리브레이션 데이터를 동시에 여기된 복수의 슬라이스의 자기 공명 신호에 기초하여 획득할 수 있다.
단계 760에서, 자기 공명 영상 장치(200)는 캘리브레이션 데이터를 이용하여 3차원 k-공간 데이터를 보간(interpolation)할 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 캘리브레이션 데이터를 이용하여 3차원 k-공간 데이터의 미획득 라인을 보간할 수 있다. 이와 관련하여, 도 9를 참조하여 설명된다.
단계 770에서, 자기 공명 영상 장치(200)는 보간된 3차원 k-공간 데이터에 기초하여 복수의 슬라이스 각각의 자기 공명 영상을 획득할 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 보간된 3차원 k-공간 데이터에 3차원 푸리에 변환을 수행함으로써 복수의 슬라이스 각각의 자기 공명 영상을 획득할 수 있다.
<도 8>
도 8은 본 발명의 일 실시예에 따른 추가적인 캘리브레이션 데이터의 획득을 설명하기 위한 도면이다.
도 8의 (a) 및 (b)는 복수의 슬라이스에 대한 자기 공명 신호를 중첩하여 획득한 3차원 k-공간 데이터들을 각각 나타낸다. 도 8의 (c)는 도 8의 (a) 또는 (b)의 k-공간 데이터를 보간하기 위해, 각 슬라이스에서 각각 추가적으로 신호를 획득하여 생성한 k-공간 데이터들(851, 852, 853)을 나타낸다.
도 8의 (a)는 복수의 슬라이스에 대한 자기 공명 신호를 논-카프리나(non-CAIPIRINHA) 방식에 의해 획득한 k-공간 데이터를 나타낸다. 도 8의 (a)를 참조하면, 검은색으로 표시된 점들은 자기 공명 신호가 획득된 라인(acquired line)들을 나타내며, 점으로 표시되었지만 각각 kx방향으로 연속하는 것을 알 수 있다. 논-카프리나 방식에서는 획득된 라인들이 ky축을 따라 일렬로 중첩되어 배열되어, 복수의 슬라이스에 대한 신호를 구별하는 것이 도 8의 (b)와 비교하여 용이하지 않을 수 있다.
도 8의 (b)는 복수의 슬라이스에 대한 자기 공명 신호를 카프리나(CAIPIRINHA) 방식에 의해 획득한 k-공간 데이터를 나타낸다. 카프리나 방식은 엘리어싱 패턴(aliasing pattern)을 병렬 영상처리(parallel imaging)에 유리하게 조작하는 것을 의미할 수 있다. 예를 들어, 도 8의 (b)의 k-공간 데이터의 획득된 라인들은 도 8의 (a)의 k-공간 데이터의 획득된 라인들과 비교하여 슬라이스 방향으로 넓게 분포된 차이를 나타낸다. 카프리나 방식에서는 획득된 라인들이 슬라이스 방향으로 넓게 분포되어, 복수의 슬라이스에 대한 신호를 구별하는 것이 도 8의 (a)와 비교하여 용이할 수 있다.
한편, 자기 공명 영상 장치(200)는 중첩된 자기 공명 신호에서 각각의 슬라이스에 대한 신호를 구분하기 위하여 추가적인 캘리브레이션 데이터를 필요로 할 수 있다. 도 8의 (c)는 추가적인 캘리브레이션 데이터를 획득하기 위해, 각각의 슬라이스에 대하여 풀 샘플링(full sampling)을 수행하여 획득한 3차원 k-공간 데이터들(851, 852, 853)을 나타낸다. 예를 들어, 자기 공명 영상 장치(200)는 추가적인 캘리브레이션 데이터의 획득을 위해 복수의 슬라이스 각각을 추가적으로 여기할 수 있다. 자기 공명 영상 장치(200)는 여기된 복수의 슬라이스 각각으로부터의 3차원 k-공간 데이터들(851, 852, 853)을 획득하여 추가적인 캘리브레이션 데이터로 이용할 수 있다.
한편, 추가적인 캘리브레이션 데이터의 획득을 위해 복수의 슬라이스를 동시에 여기하는 방식도 구현 가능하다. 복수의 슬라이스를 동시에 여기하여 추가적인 캘리브레이션 데이터를 획득하는 방식에 대하여 도 9를 참조하여 설명된다.
<도 9>
도 9은 본 발명의 다른 실시예에 따른 추가적인 캘리브레이션 데이터의 획득을 설명하기 위한 도면이다.
도 9는 자기 공명 영상 장치(200)가 복수의 슬라이스를 동시에 여기하여 복수의 코일을 통해 3차원 k-공간 데이터를 획득하고, 복수의 코일에서 획득된 캘리브레이션 데이터를 이용하여 3차원 k-공간 데이터를 보간하는 것을 설명하기 위한 도면이다.
도 9의 (a) 및 (b)는 복수의 슬라이스를 동시에 여기하여 획득한 자기 공명 신호를 기초로, 추가적인 캘리브레이션 데이터를 획득하여 보간한 3차원 k-공간 데이터들을 나타낸다.
도 9의 (a) 및 (b)에서, 도시된 각각의 점들은 주파수(kx) 방향으로의 라인(line)을 나타낸다. 또한, 검은색 점들로 표시된 획득된 라인(acquired line)들은 신호획득 구간에서 검출된 자기 공명 신호를 나타낼 수 있다. 또한, 흰색 점들로 표시된 미획득 라인(unacquired line)들은 검출되지 않은 자기 공명 신호를 나타낼 수 있다. 미획득 라인에 대응하는 자기 공명 신호는 풀샘플링에서는 검출되지만 언더샘플링 방식에서는 검출되지 않는 자기 공명 신호일 수 있다. 또한, 회색 점들로 표시된 캘리브레이션 라인(calibration line)들은 자기 공명 영상 장치(200)가 캘리브레이션 데이터를 이용하여 추가적으로 획득한 자기 공명 신호를 나타낼 수 있다. 캘리브레이션 라인은 미획득 라인을 보간(interpolation)할 수 있다. 언더샘플링된 k-공간 데이터는 캘리브레이션 데이터에 의해 보간되어 풀샘플링된 k-공간 데이터로 변환될 수 있다.
도 9의 (a)는 논-카프리나 방식에 의해 획득된 3차원 k-공간 데이터를 나타낸다. 도 9의 (a)를 참조하면, 3차원 k-공간 데이터의 획득된 라인 및 캘리브레이션 라인이 합쳐져서, 박스(911) 내부의 모든 라인이 샘플링이 된 결과를 나타낸다.
또한, 도 9의 (b)는 카프리나 방식에 의해 획득된 3차원 k-공간 데이터를 나타낸다. 도 9의 (b)를 참조하면, 3차원 k-공간 데이터의 획득된 라인 및 캘리브레이션 라인이 합쳐져, 박스(921) 내부의 모든 라인이 샘플링이 된 결과를 나타낸다.
도 9에 도시된 실시예에 따르면, 자기 공명 영상 장치(200)는 추가적인 캘리브레이션 데이터를 획득하기 위한 추가적인 스캔을 수행하지 않을 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 도 7의 단계 710 내지 730에 대응하는 메인 스캔에서 캘리브레이션 데이터를 획득할 수 있다. 예를 들어, 추가적인 캘리브레이션 데이터는 메인 스캔에서 복수의 코일을 통하여 획득될 수 있다.
한편, 본 발명의 다른 실시예에 따른, 자기 공명 영상 장치(200)는 메인 스캔의 일부로서 캘리브레이션 데이터의 획득을 수행할 수 있다. 메인 스캔의 일부로서 캘리브레이션 데이터를 획득하는 것은 동시적 멀티 슬라이스와 3차원 공간 부호화를 함께 적용하는 방식에 의해 가능할 수 있다.
한편, 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 그라파(GRAPPA)방식을 이용할 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 언더샘플링된 복수의 k-공간 데이터를 복수의 코일 각각에 대하여 획득하고, 추가적인 캘리브레이션 데이터를 이용하여 복수의 k-공간 데이터를 보간할 수 있다. 또한, 자기 공명 영상 장치(200)는 복수의 보간된 k-공간 데이터를 이용하여 복수의 코일 각각에 대한 자기 공명 영상을 획득할 수 있다. 또한, 자기 공명 영상 장치(200)는 코일 각각에 대한 자기 공명 영상에 기초하여 최종 영상을 합성할 수 있다.
본 발명의 다른 실시예에 따른 자기 공명 영상 장치(200)는 센스(SENSE) 방식을 이용할 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 추가적인 캘리브레이션 데이터를 이용하여 복수의 코일 각각에 대한 민감도(sensitivity) 정보를 획득하고, 복수의 코일 각각에 대한 민감도 정보를 이용하여 자기 공명 영상을 획득할 수 있다.
본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)는 메인 스캔에 의해 획득된 데이터와 캘리브레이션 데이터 사이에서 대상체의 움직임 차이를 최소화하므로 보다 안정적인 영상 획득이 가능할 수 있다. 예를 들어, 자기 공명 영상 장치(200)는 캘리브레이션 데이터 획득을 위해 추가적인 캘리브레이션 스캔을 수행할 필요가 없으므로, 메인 스캔에 의해 획득한 데이터와 캘리브레이션 데이터의 획득 시점이 동일하여 대상체의 움직임이 최소화될 수 있다.
또한, 본 발명의 일 실시예에 따른 자기 공명 영상 장치(200)은 3차원 부호화 방식을 사용하므로 자기 공명 신호의 신호대잡음비(SNR: signal to noise ratio)가 증가될 수 있다. 또한, 자기 공명 영상 장치(200)는 비-카프리나(non-CAIPIRINHA) 방식 및 카프리나(CAIPIRINHA) 방식 모두를 이용할 수 있다. 또한, 자기 공명 영상 장치(200)는 그라파(GRAPPA) 방식 및 센스(SENSE) 방식을 이용할 수 있다.
한편, 상술한 본 발명의 실시예들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성가능하고, 컴퓨터로 판독가능한 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다.
컴퓨터로 판독가능한 기록매체는 마그네틱 저장매체(예를 들면, 롬, 플로피 디스크, 하드디스크 등), 광학적 판독 매체(예를 들면, 시디롬, 디브이디 등) 및 캐리어 웨이브(예를 들면, 인터넷을 통한 전송)와 같은 저장매체를 포함할 수 있다.
본 발명의 실시예들과 관련된 기술 분야에서 통상의 지식을 가진 자는 상기 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 방법들은 한정적인 관점이 아닌 설명적 관점에서 고려되어야 한다. 본 발명의 범위는 발명의 상세한 설명이 아닌 특허청구 범위에 나타나며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (32)

  1. 자기 공명 영상(MRI; Magnetic Resonance Imaging) 장치에 있어서,
    대상체의 복수의 슬라이스(slice)가 여기(excitation)되도록, 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 RF 송신부;
    3차원 공간 부호화 경사자장(spatial encoding gradient)를 인가하는 경사자장 증폭기;
    상기 복수의 슬라이스 각각의 자기 공명 신호(magnetic resonance signal)를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 RF 수신부; 및
    상기 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 상기 3차원 k-공간 데이터에 기초하여 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 영상 처리부를 포함하는, 자기 공명 영상 장치.
  2. 제1항에 있어서, 상기 3차원 공간 부호화 경사자장은
    슬라이스 방향의 경사자장;
    주파수(frequency) 방향의 경사자장; 및
    위상(phase) 방향의 경사자장을 포함하는, 자기 공명 영상 장치.
  3. 제2항에 있어서, 상기 경사자장 증폭기는
    상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 위상 방향의 경사자장을 인가하지 않는, 자기 공명 영상 장치.
  4. 제2항에 있어서, 상기 경사자장 증폭기는
    상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 슬라이스 방향의 경사자장을 인가하지 않는, 자기 공명 영상 장치.
  5. 제2항에 있어서, 상기 경사자장 증폭기는
    상기 자기 공명 신호를 획득하는 신호획득구간에서 상기 슬라이스 방향의 경사자장 및 위상 방향의 경사자장 중 적어도 하나를 인가하는, 자기 공명 영상 장치.
  6. 제2항에 있어서, 상기 경사자장 증폭기는
    상기 자기 공명 신호의 열화를 최소화하도록 상기 슬라이스 방향의 경사자장 및 상기 위상 방향의 경사자장을 인가하는 순서를 결정하는, 자기 공명 영상 장치.
  7. 제2항에 있어서,
    상기 슬라이스 방향의 경사자장의 부호화 횟수는 상기 복수의 슬라이스의 갯수 이상인, 자기 공명 영상 장치.
  8. 제1항에 있어서,
    상기 RF 수신부는 복수의 코일(multi-coiled)을 통하여 상기 대상체로부터 추가적인 캘리브레이션 데이터(calibration data)를 획득하고,
    상기 영상 처리부는 상기 추가적인 캘리브레이션 데이터 및 상기 3차원 k-공간 데이터에 기초하여 상기 자기 공명 영상을 획득하는, 자기 공명 영상 장치.
  9. 제8항에 있어서, 상기 추가적인 캘리브레이션 데이터는
    상기 동일한 TR 구간에서 중첩된 상태로 수신된 자기 공명 신호에 기초하여 획득되는, 자기 공명 영상 장치.
  10. 제8항에 있어서, 상기 추가적인 캘리브레이션 데이터는
    캘리브레이션 데이터의 획득을 위해 추가적으로 여기된 상기 복수의 슬라이스 각각의 자기 공명 신호에 기초하여 획득되는, 자기 공명 영상 장치.
  11. 제8항에 있어서, 상기 RF 수신부는
    상기 복수의 코일을 통하여 상기 자기 공명 신호를 언더샘플링하여 획득하는, 자기 공명 영상 장치.
  12. 제8항에 있어서, 상기 영상 처리부는
    상기 추가적인 캘리브레이션 데이터를 이용하여 상기 복수의 코일 각각에 대하여 획득된 복수의 k-공간 데이터를 보간하고, 상기 보간된 복수의 k-공간 데이터로부터 상기 복수의 코일 각각에 대한 자기 공명 영상을 획득하는, 자기 공명 영상 장치.
  13. 제8항에 있어서, 상기 영상 처리부는
    상기 추가적인 캘리브레이션 데이터를 이용하여 상기 복수의 코일 각각에 대한 민감도(sensitivity) 정보를 획득하고 상기 민감도 정보를 이용하여 상기 자기 공명 영상을 획득하는, 자기 공명 영상 장치.
  14. 제1항에 있어서, 상기 경사자장 증폭기는
    상기 자기 공명 신호가 상기 슬라이스 방향으로 선형 위상(linear phase)를 가지도록 상기 3차원 공간 부호화 경사자장을 인가하는, 자기 공명 영상 장치.
  15. 제1항에 있어서, 상기 영상 처리부는
    병렬 영상처리(parallel imaging) 및 압축적 센싱(compressed sensing) 중 적어도 하나를 이용하여, 상기 중첩된 상태의 자기 공명 신호로부터 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는, 자기 공명 영상 장치.
  16. 자기 공명 영상(MRI; Magnetic Resonance Imaging) 장치에 있어서,
    대상체의 복수의 슬라이스(slice)를 여기(excitation)하도록, 상기 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 RF 송신부;
    주파수(frequency) 방향의 경사자장 및 위상(phase) 방향의 경사자장을 포함하는 공간 부호화를 위한 경사자장을 인가하는 경사자장 증폭기;
    상기 복수의 슬라이스 각각의 자기 공명 신호(magnetic resonance signal)를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 RF 수신부; 및
    상기 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 상기 3차원 k-공간 데이터에 기초하여 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 영상 처리부를 포함하고,
    상기 RF 신호는 슬라이스 방향의 공간 부호화를 위한 위상의 변위를 포함하는, 자기 공명 영상 장치.
  17. 자기 공명 영상(MRI; Magnetic Resonance Imaging) 방법에 있어서,
    대상체의 복수의 슬라이스(slice)가 여기(excitation)되도록, 상기 복수의 슬라이스에 각각 대응되는 복수의 주파수 신호를 포함하는 RF(radio frequency) 신호를 송신하는 단계;
    3차원 공간 부호화 경사자장(spatial encoding gradient)를 인가하는 단계;
    상기 복수의 슬라이스 각각의 자기 공명 신호를 동일한 TR(Repetition Time) 구간에서 중첩된 상태로 수신하는 단계; 및
    상기 자기 공명 신호에 기초하여 3차원 k-공간(k-space) 데이터를 획득하고, 상기 3차원 k-공간 데이터에 기초하여 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  18. 제17항에 있어서, 상기 3차원 공간 부호화 경사자장은
    슬라이스 방향의 경사자장;
    주파수(frequency) 방향의 경사자장; 및
    위상(phase) 방향의 경사자장을 포함하는, 자기 공명 영상 방법.
  19. 제18항에 있어서, 상기 3차원 공간 부호화 경사자장을 인가하는 단계는
    상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 위상 방향의 경사자장을 인가하지 않는 단계를 포함하는, 자기 공명 영상 방법.
  20. 제18항에 있어서, 상기 3차원 공간 부호화 경사자장을 인가하는 단계는
    상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 슬라이스 방향의 경사자장을 인가하지 않는 단계를 포함하는, 자기 공명 영상 방법.
  21. 제18항에 있어서, 상기 3차원 공간 부호화 경사자장을 인가하는 단계는 상기 자기 공명 신호를 획득하는 신호획득 구간에서 상기 슬라이스 방향 및/또는 위상 방향의 경사자장을 인가하는 단계를 포함하는, 자기 공명 영상 방법.
  22. 제18항에 있어서, 상기 3차원 공간 부호화 경사자장을 인가하는 단계는
    상기 자기 공명 신호의 열화를 최소화하도록 상기 슬라이스 방향의 경사자장 및 상기 위상 방향의 경사자장을 인가하는 순서를 결정하는 단계를 포함하는, 자기 공명 영상 방법.
  23. 제18항에 있어서,
    상기 슬라이스 방향의 경사자장의 부호화 횟수는 상기 복수의 슬라이스의 갯수 이상인, 자기 공명 영상 방법.
  24. 제17항에 있어서, 상기 자기 공명 영상을 획득하는 단계는
    복수의 코일을 통하여 상기 대상체로부터 추가적인 캘리브레이션 데이터(calibration data)를 획득하는 단계; 및
    상기 추가적인 캘리브레이션 데이터 및 상기 3차원 k-공간 데이터에 기초하여 상기 자기 공명 영상을 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  25. 제24항에 있어서, 상기 대상체로부터 추가적인 캘리브레이션 데이터(calibration data)를 획득하는 단계는
    상기 동일한 TR 구간에서 중첩된 상태로 수신된 자기 공명 신호에 기초하여 상기 추가적인 캘리브레이션 데이터를 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  26. 제24항에 있어서, 상기 대상체로부터 추가적인 캘리브레이션 데이터(calibration data)를 획득하는 단계는
    상기 추가적인 캘리브레이션 데이터의 획득을 위해 상기 복수의 슬라이스 각각을 추가적으로 여기하는 단계; 및
    상기 추가적인 캘리브레이션 데이터를 상기 여기된 복수의 슬라이스 각각으로부터의 자기 공명 신호에 기초하여 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  27. 제24항에 있어서, 상기 자기 공명 신호를 수신하는 단계는
    상기 복수의 코일을 통하여 상기 자기 공명 신호를 언더샘플링하여 수신하는 단계를 포함하는, 자기 공명 영상 방법.
  28. 제24항에 있어서, 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 단계는
    상기 추가적인 캘리브레이션 데이터를 이용하여 상기 복수의 코일 각각에 대하여 획득된 복수의 k-공간 데이터를 보간하는 단계; 및
    상기 보간된 복수의 k-공간 데이터로부터 상기 복수의 코일 각각에 대한 자기 공명 영상을 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  29. 제24항에 있어서, 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 단계는 상기 추가적인 캘리브레이션 데이터를 이용하여 상기 복수의 코일 각각에 대한 민감도(sensitivity) 정보를 획득하는 단계; 및
    상기 민감도 정보를 이용하여 상기 자기 공명 영상을 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  30. 제17항에 있어서, 상기 3차원 공간 부호화 경사자장을 인가하는 단계는
    상기 자기 공명 신호가 상기 슬라이스 방향으로 선형 위상(linear phase)를 가지도록 상기 3차원 공간 부호화 경사자장을 인가하는 단계를 포함하는, 자기 공명 영상 방법.
  31. 제17항에 있어서, 상기 자기 공명 영상을 획득하는 단계는
    병렬 영상처리(parallel imaging) 및 압축적 센싱(compressed sensing) 중 적어도 하나를 이용하여, 상기 중첩된 상태의 자기 공명 신호로부터 상기 복수의 슬라이스 각각의 자기 공명 영상을 획득하는 단계를 포함하는, 자기 공명 영상 방법.
  32. 제 17항 내지 31항 중 어느 한 항의 방법을 구현하기 위한 프로그램이 기록된 컴퓨터로 판독가능한 기록 매체.
KR1020140119360A 2014-09-05 2014-09-05 자기 공명 영상 장치 및 그 동작방법 KR20160029586A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020140119360A KR20160029586A (ko) 2014-09-05 2014-09-05 자기 공명 영상 장치 및 그 동작방법
PCT/KR2015/007771 WO2016036006A1 (en) 2014-09-05 2015-07-27 Magnetic resonance imaging apparatus and method of operating the same
EP15838111.1A EP3188661A4 (en) 2014-09-05 2015-07-27 Magnetic resonance imaging apparatus and method of operating the same
US14/845,619 US10203391B2 (en) 2014-09-05 2015-09-04 Magnetic resonance imaging apparatus and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140119360A KR20160029586A (ko) 2014-09-05 2014-09-05 자기 공명 영상 장치 및 그 동작방법

Publications (1)

Publication Number Publication Date
KR20160029586A true KR20160029586A (ko) 2016-03-15

Family

ID=55437318

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140119360A KR20160029586A (ko) 2014-09-05 2014-09-05 자기 공명 영상 장치 및 그 동작방법

Country Status (4)

Country Link
US (1) US10203391B2 (ko)
EP (1) EP3188661A4 (ko)
KR (1) KR20160029586A (ko)
WO (1) WO2016036006A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160071230A (ko) * 2014-12-11 2016-06-21 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 처리 방법
WO2018080294A1 (ko) * 2016-10-31 2018-05-03 가천대학교 산학협력단 혈관 조영술용 자기공명영상장치
CN108287325A (zh) * 2018-01-03 2018-07-17 上海东软医疗科技有限公司 一种图像重建方法、装置及设备
KR102232606B1 (ko) * 2020-08-31 2021-03-26 이화여자대학교 산학협력단 자기 공명 영상 장치 및 자기 공명 영상 생성 방법

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663549B2 (en) * 2014-11-25 2020-05-26 Siemens Healthcare Gmbh Compressed sensing reconstruction for multi-slice and multi-slab acquisitions
CN106999093A (zh) * 2015-02-06 2017-08-01 株式会社日立制作所 磁共振成像装置以及磁共振成像方法
WO2018184056A1 (en) * 2017-04-05 2018-10-11 The University Of Queensland Magnetic resonance imaging method and apparatus
EP3413072A1 (de) * 2017-06-06 2018-12-12 Siemens Healthcare GmbH Mrt-schicht-multiplexing-verfahren
EP3460501B1 (de) 2017-09-25 2021-11-24 Siemens Healthcare GmbH Schicht-multiplexing-mr-verfahren
KR102259846B1 (ko) * 2018-07-03 2021-06-03 가천대학교 산학협력단 자기공명 영상장치의 기계 학습 기반의 경사자계 오차 보정 시스템 및 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6559642B2 (en) * 2001-05-09 2003-05-06 Ge Medical Systems Global Technology Company, Llc Calibration method for use with sensitivity encoding MRI acquisition
DE10318682B4 (de) 2003-04-24 2011-12-29 Peter M. Jakob Beschleunigte Magnet-Resonanz-Bildgebung im Rahmen der parallelen Akquisition von MRT-Daten
US7511495B2 (en) * 2005-04-25 2009-03-31 University Of Utah Systems and methods for image reconstruction of sensitivity encoded MRI data
WO2008134891A1 (en) * 2007-05-03 2008-11-13 National Research Counsil Of Canada Rf based spatially selective excitation in mri
TWI366455B (en) * 2008-05-07 2012-06-21 Univ Nat Taiwan Method and apparatus for simultaneously acquiring multiple slices/slabs in magnetic resonance system
US8405395B2 (en) 2010-04-15 2013-03-26 The General Hospital Corporation Method for simultaneous multi-slice magnetic resonance imaging
WO2012085796A1 (en) * 2010-12-22 2012-06-28 Koninklijke Philips Electronics N.V. Parallel mri method using calibration scan, coil sensitivity maps and navigators for rigid motion compensation
KR102001063B1 (ko) * 2012-11-14 2019-07-17 삼성전자주식회사 자기공명영상 시스템 및 자기공명영상 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160071230A (ko) * 2014-12-11 2016-06-21 삼성전자주식회사 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 처리 방법
WO2018080294A1 (ko) * 2016-10-31 2018-05-03 가천대학교 산학협력단 혈관 조영술용 자기공명영상장치
CN108287325A (zh) * 2018-01-03 2018-07-17 上海东软医疗科技有限公司 一种图像重建方法、装置及设备
CN108287325B (zh) * 2018-01-03 2020-08-11 上海东软医疗科技有限公司 一种图像重建方法、装置及设备
KR102232606B1 (ko) * 2020-08-31 2021-03-26 이화여자대학교 산학협력단 자기 공명 영상 장치 및 자기 공명 영상 생성 방법

Also Published As

Publication number Publication date
WO2016036006A1 (en) 2016-03-10
US20160069974A1 (en) 2016-03-10
EP3188661A4 (en) 2018-05-02
EP3188661A1 (en) 2017-07-12
US10203391B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
KR101659578B1 (ko) 자기 공명 영상 처리 방법 및 장치
KR20160029586A (ko) 자기 공명 영상 장치 및 그 동작방법
KR101664433B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 생성 방법
KR101857795B1 (ko) 자기 공명 영상 장치 및 그 동작방법
KR101663229B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상의 이미징 방법
KR101811720B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상 생성 방법
KR20160071230A (ko) 자기 공명 영상 장치 및 자기 공명 영상 장치의 영상 처리 방법
KR101630762B1 (ko) 자기 공명 영상 생성 장치 및 방법
KR101819030B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상 장치를 위한 방법
KR20150016032A (ko) 영상 복원 모드 선택이 가능한 영상 복원 방법 및 그 장치
KR101611451B1 (ko) 자기 공명 영상 처리 장치 및 방법
KR101699528B1 (ko) 자기 공명 영상 장치 및 자기 공명 영상의 생성 방법
KR101806902B1 (ko) 자기 공명 영상 복원 방법 및 장치
KR101579110B1 (ko) 자기 공명 영상 생성 방법, 그에 따른 위상 대조 영상의 위상 정보 획득 방법, 그에 따른 자화율 강조 영상의 위상 정보 획득 방법 및 그에 따른 자기 공명 영상 생성 장치
KR101525014B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상의 이미징 방법
KR101649275B1 (ko) 자기 공명 영상 생성 방법 및 그에 따른 의료 영상 장치
KR101797674B1 (ko) 자기 공명 영상 촬영 장치 및 그에 따른 자기 공명 영상 촬영 방법
KR101541290B1 (ko) 자기 공명 신호 측정 방법 및 장치
KR20150054647A (ko) 자기 공명 영상 장치 및 그 동작방법
KR101819908B1 (ko) 자기공명 영상 생성방법 및 그를 위한 장치
KR102008498B1 (ko) 자기 공명 영상 장치 및 그 동작방법
KR20190053412A (ko) 자기 공명 영상 장치 및 자기 공명 영상 생성 방법
KR20160056271A (ko) 자기 공명 영상을 통해 대상체의 속성을 정량화하기 위한 방법 및 장치
KR101757463B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상의 이미징 방법
KR101786052B1 (ko) 자기 공명 영상 장치 및 그에 따른 자기 공명 영상 획득 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2016101005288; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20160908

Effective date: 20180919