WO2018079783A1 - Acrylic rubber and crosslinked rubber - Google Patents

Acrylic rubber and crosslinked rubber Download PDF

Info

Publication number
WO2018079783A1
WO2018079783A1 PCT/JP2017/039177 JP2017039177W WO2018079783A1 WO 2018079783 A1 WO2018079783 A1 WO 2018079783A1 JP 2017039177 W JP2017039177 W JP 2017039177W WO 2018079783 A1 WO2018079783 A1 WO 2018079783A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic rubber
weight
parts
coagulant
rubber
Prior art date
Application number
PCT/JP2017/039177
Other languages
French (fr)
Japanese (ja)
Inventor
奨 佐藤
智士 山之上
増田 浩文
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018547831A priority Critical patent/JP6696583B2/en
Publication of WO2018079783A1 publication Critical patent/WO2018079783A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to an acrylic rubber and a rubber cross-linked product, and more particularly to an acrylic rubber that gives a rubber cross-linked product excellent in compression set resistance and water resistance, and a rubber cross-linked product using this acrylic rubber.
  • Acrylic rubber is a polymer mainly composed of an acrylate ester and is generally known as a rubber excellent in heat resistance, oil resistance and ozone resistance, and is widely used in fields related to automobiles.
  • Such an acrylic rubber is usually obtained by emulsion polymerization of a monomer mixture constituting the acrylic rubber, coagulating the resulting emulsion polymerization solution by adding a coagulant, and drying the hydrous crumb obtained by coagulation. (See, for example, Patent Document 1).
  • the present invention has been made in view of such a situation, and provides an acrylic rubber which gives a rubber cross-linked product excellent in compression set resistance and water resistance, and a rubber cross-linked product using the acrylic rubber. With the goal.
  • the present inventors have found that the above object can be achieved by setting the amount of the coagulant remaining in the acrylic rubber within a specific amount range, thereby completing the present invention. It came.
  • an acrylic rubber having a residual amount of coagulant of 10 ppm by weight or more and 10,000 ppm by weight or less.
  • the residual amount of the coagulant is preferably 10 ppm to 3,500 ppm, more preferably 500 ppm to 3,500 ppm.
  • the coagulant is preferably a monovalent to trivalent metal salt, and the coagulant is more preferably calcium chloride, sodium chloride, magnesium sulfate, or sodium sulfate.
  • the residual amount of the emulsifier is preferably 10 ppm by weight or more and 22,000 ppm by weight or less.
  • the residual amount of the lubricant is preferably 0.1 to 0.4% by weight.
  • the residual amount of the antioxidant is preferably 500 ppm by weight or more and 12,000 ppm by weight or less.
  • the acrylic rubber of the present invention preferably has an acrylic rubber component content of 95% by weight or more.
  • a method for producing the acrylic rubber comprising: a coagulating step of adding a coagulant to obtain a water-containing crumb; a washing step for washing the water-containing crumb; and a drying step for drying the washed water-containing crumb.
  • a manufacturing method is provided.
  • the amount of the coagulant added is preferably 3 to 33 parts by weight with respect to 100 parts by weight of the acrylic rubber component contained in the emulsion polymerization liquid.
  • the emulsion polymerization liquid before coagulation further includes an addition step of containing at least one selected from a lubricant, an antioxidant, and an ethylene oxide polymer.
  • an acrylic rubber composition containing the acrylic rubber and a crosslinking agent, and a rubber crosslinked product obtained by crosslinking such an acrylic rubber composition.
  • the acrylic rubber which gives the rubber crosslinked material excellent in the compression set resistance and water resistance and the rubber obtained using such an acrylic rubber and excellent in compression set resistance and water resistance A cross-linked product can be provided.
  • the acrylic rubber of the present invention is a (meth) acrylic acid ester monomer [acrylic acid as a main component in the molecule (in the present invention, having 50% by weight or more in the total monomer units of rubber).
  • the (meth) acrylic acid ester monomer that forms the (meth) acrylic acid ester monomer unit that is the main component of the acrylic rubber of the present invention is not particularly limited. And (meth) acrylic acid alkoxyalkyl ester monomers.
  • the (meth) acrylic acid alkyl ester monomer is not particularly limited, but is preferably an ester of an alkanol having 1 to 8 carbon atoms and (meth) acrylic acid, specifically, methyl (meth) acrylate, ( (Meth) ethyl acrylate, (meth) acrylic acid n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid n-hexyl, (meth) Examples include 2-ethylhexyl acrylate and cyclohexyl (meth) acrylate.
  • ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n-butyl acrylate are particularly preferable. These can be used alone or in combination of two or more.
  • the (meth) acrylic acid alkoxyalkyl ester monomer is not particularly limited, but an ester of an alkoxyalkyl alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable.
  • (meth) acrylic acid Methoxymethyl, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate , 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, and the like.
  • 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable. These can be used alone or in combination of two or more.
  • the content of the (meth) acrylic acid ester monomer unit in the acrylic rubber of the present invention is usually 50 to 99.9% by weight, preferably 60 to 99.5% by weight, more preferably 70 to 99.99%. 5% by weight. If the content of the (meth) acrylic acid ester monomer unit is too small, the weather resistance, heat resistance and oil resistance of the resulting rubber cross-linked product may be lowered. There is a risk that the heat resistance of the object will decrease.
  • the (meth) acrylic acid ester monomer unit includes 30 to 100% by weight of a (meth) acrylic acid alkyl ester monomer unit and a (meth) acrylic acid alkoxyalkyl ester monomer. It is preferable to use those comprising 70 to 0% by weight of body units.
  • the acrylic rubber used in the present invention may contain a crosslinkable monomer unit, if necessary, in addition to the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit.
  • the crosslinkable monomer that forms the crosslinkable monomer unit is not particularly limited.
  • an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer; a monomer having an epoxy group; a halogen atom Monomer; diene monomer; and the like is not particularly limited.
  • the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer that forms the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit is not particularly limited, but examples thereof include ⁇ , ⁇ - having 3 to 12 carbon atoms.
  • the acrylic rubber By using the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer, the acrylic rubber can be converted into a carboxyl group-containing acrylic rubber having a carboxyl group as a crosslinking point, and thus a rubber cross-linked product can be obtained. Further, the compression set resistance can be further improved.
  • ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms include acrylic acid, methacrylic acid, ⁇ -ethylacrylic acid, crotonic acid, and cinnamic acid.
  • ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms include butenedionic acid such as fumaric acid and maleic acid; itaconic acid; citraconic acid; chloromaleic acid;
  • monoesters of ⁇ , ⁇ -ethylenically unsaturated dicarboxylic acids having 4 to 12 carbon atoms and alkanols having 1 to 8 carbon atoms include monomethyl fumarate, monoethyl fumarate, mono n-butyl fumarate, malein Butenedionic acid mono-chain alkyl esters such as monomethyl acid, monoethyl maleate, and mono-n-butyl maleate; monocyclopentyl fumarate, monocyclohexyl fumarate, monocyclohexenyl fumarate, monocyclopentyl maleate, monocyclohexyl maleate, maleate And butenedionic acid monoesters having an alicyclic structure such
  • ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more.
  • dicarboxylic acids include those that exist as anhydrides.
  • Epoxy group containing (meth) acrylic acid ester such as glycidyl (meth) acrylate
  • Epoxy group containing ethers such as allyl glycidyl ether and vinyl glycidyl ether; Is mentioned.
  • unsaturated alcohol ester of a halogen-containing saturated carboxylic acid For example, unsaturated alcohol ester of a halogen-containing saturated carboxylic acid, (meth) acrylic acid haloalkyl ester, (meth) acrylic acid haloacyloxyalkyl ester, (meth) acrylic Examples include acid (haloacetylcarbamoyloxy) alkyl esters, halogen-containing unsaturated ethers, halogen-containing unsaturated ketones, halomethyl group-containing aromatic vinyl compounds, halogen-containing unsaturated amides, and haloacetyl group-containing unsaturated monomers.
  • the unsaturated alcohol ester of a halogen-containing saturated carboxylic acid include vinyl chloroacetate, vinyl 2-chloropropionate, and allyl chloroacetate.
  • Specific examples of (meth) acrylic acid haloalkyl esters include chloromethyl (meth) acrylate, 1-chloroethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 1,2-dichloroethyl (meth) acrylate. , 2-chloropropyl (meth) acrylate, 3-chloropropyl (meth) acrylate, and 2,3-dichloropropyl (meth) acrylate.
  • (meth) acrylic acid haloacyloxyalkyl esters include 2- (chloroacetoxy) ethyl (meth) acrylate, 2- (chloroacetoxy) propyl (meth) acrylate, and 3- (chloro) (meth) acrylic acid. Acetoxy) propyl and 3- (hydroxychloroacetoxy) propyl (meth) acrylate.
  • (meth) acrylic acid (haloacetylcarbamoyloxy) alkyl esters include 2- (chloroacetylcarbamoyloxy) ethyl (meth) acrylate and 3- (chloroacetylcarbamoyloxy) propyl (meth) acrylate Is mentioned.
  • halogen-containing unsaturated ether examples include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 2-chloroethyl allyl ether, and 3-chloropropyl allyl ether.
  • halogen-containing unsaturated ketone examples include 2-chloroethyl vinyl ketone, 3-chloropropyl vinyl ketone, and 2-chloroethyl allyl ketone.
  • halomethyl group-containing aromatic vinyl compound examples include p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene, and p-chloromethyl- ⁇ -methylstyrene.
  • halogen-containing unsaturated amide examples include N-chloromethyl (meth) acrylamide.
  • haloacetyl group-containing unsaturated monomer examples include 3- (hydroxychloroacetoxy) propyl allyl ether and p-vinylbenzyl chloroacetate.
  • Examples of the diene monomer include conjugated diene monomers and non-conjugated diene monomers.
  • Specific examples of the conjugated diene monomer include 1,3-butadiene, isoprene, and piperylene.
  • Specific examples of the non-conjugated diene monomer include ethylidene norbornene, dicyclopentadiene, dicyclopentadienyl (meth) acrylate, and 2-dicyclopentadienyl ethyl (meth) acrylate. .
  • the acrylic rubber when an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer is used, the acrylic rubber can be a carboxyl group-containing acrylic rubber. By making the acrylic rubber into a carboxyl group-containing acrylic rubber, it is possible to improve the compression set resistance while improving the oil resistance and heat resistance.
  • the content of the crosslinkable monomer unit in the acrylic rubber of the present invention is preferably 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 0.5 to 5% by weight. It is. By setting the content of the crosslinkable monomer unit within the above range, the compression set resistance can be more appropriately increased while the mechanical properties and heat resistance of the resulting rubber cross-linked product are improved.
  • the acrylic rubber of the present invention has other monomer units copolymerizable therewith. You may do it.
  • Such other copolymerizable monomers include aromatic vinyl monomers, ⁇ , ⁇ -ethylenically unsaturated nitrile monomers, acrylamide monomers, and other olefin monomers. Can be mentioned.
  • aromatic vinyl monomers examples include styrene, ⁇ -methylstyrene, divinylbenzene and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer include acrylonitrile and methacrylonitrile.
  • Examples of acrylamide monomers include acrylamide and methacrylamide.
  • Other olefinic monomers include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, ethyl vinyl ether, butyl vinyl ether, and the like.
  • styrene, acrylonitrile, methacrylonitrile, ethylene and vinyl acetate are preferable, and acrylonitrile, methacrylonitrile and ethylene are more preferable.
  • the residual amount of the coagulant is 10,000 ppm by weight or less, preferably 7,000 ppm by weight or less, more preferably 5,000 ppm by weight or less, and still more preferably 3,500.
  • the lower limit of the residual amount of the coagulant is 10 ppm by weight or more.
  • the acrylic rubber of the present invention is obtained by emulsion polymerization of the above monomers, and a coagulant is usually used when coagulating an emulsion polymerization solution obtained by emulsion polymerization. Become. Therefore, the acrylic rubber obtained by emulsion polymerization such as the acrylic rubber of the present invention inevitably contains a coagulant.
  • the present invention by setting the residual amount of the coagulant in the acrylic rubber within the above range, the compression set and water resistance in the case of a rubber cross-linked product are excellent. It is something that can be done.
  • the acrylic rubber of the present invention it is preferable that the residual amount of the coagulant is small. Therefore, there is a method for reducing the residual amount of the coagulant in the acrylic rubber by reducing the amount of the coagulant used at the time of coagulation.
  • the residual amount of coagulant in acrylic rubber is preferably 200 ppm by weight or more, more preferably 500 ppm by weight or more.
  • the residual amount of the coagulant can be determined, for example, by performing elemental analysis on acrylic rubber and measuring the content of the element contained in the coagulant.
  • the method for setting the residual amount of the coagulant as described above is not particularly limited, but in the method for producing acrylic rubber described later, a method for appropriately selecting a preferred embodiment as a method for reducing the residual amount of the coagulant, Examples include a method of appropriately combining such aspects.
  • the coagulant is not particularly limited, and examples thereof include monovalent to trivalent metal salts.
  • the monovalent to trivalent metal salt is a salt containing a metal that becomes a monovalent to trivalent metal ion when dissolved in water, and is not particularly limited.
  • an inorganic acid selected from hydrochloric acid, nitric acid, sulfuric acid, and the like
  • a salt of an organic acid such as acetic acid or the like with a metal selected from sodium, potassium, lithium, magnesium, calcium, zinc, titanium, manganese, iron, cobalt, nickel, aluminum, tin and the like.
  • hydroxides of these metals can also be used.
  • monovalent to trivalent metal salts include sodium chloride, potassium chloride, lithium chloride, magnesium chloride, calcium chloride, zinc chloride, titanium chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride, aluminum chloride, and chloride.
  • Metal chlorides such as tin; nitrates such as sodium nitrate, potassium nitrate, lithium nitrate, magnesium nitrate, calcium nitrate, zinc nitrate, titanium nitrate, manganese nitrate, iron nitrate, cobalt nitrate, nickel nitrate, aluminum nitrate, tin nitrate; sodium sulfate And sulfates such as potassium sulfate, lithium sulfate, magnesium sulfate, calcium sulfate, zinc sulfate, titanium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, nickel sulfate, aluminum sulfate and tin sulfate; Among these, calcium chloride, sodium chloride, aluminum sulfate, magnesium chloride, magnesium sulfate, zinc chloride, zinc sulfate, and sodium sulfate are prefer
  • monovalent or divalent metal salts are preferable, calcium chloride, sodium chloride, magnesium sulfate, and sodium sulfate are more preferable, and magnesium sulfate and sodium sulfate are more preferable. Moreover, these can be used individually by 1 type or in combination of multiple types.
  • the acrylic rubber of the present invention is such that the residual amount of the emulsifier contained in the acrylic rubber is 22,000 ppm by weight or less from the viewpoint that the water resistance in the case of a rubber cross-linked product can be further increased.
  • it is 20,000 ppm by weight or less, more preferably 18,000 ppm by weight or less, and particularly preferably 17,000 ppm by weight or less.
  • the minimum of the residual amount of an emulsifier is not specifically limited, Preferably it is 10 weight ppm or more, More preferably, it is 200 weight ppm or more, More preferably, it is 500 weight ppm or more.
  • the acrylic rubber of the present invention is obtained by emulsion polymerization of the above monomers, but an emulsifier is usually used in the emulsion polymerization. Therefore, the acrylic rubber obtained by emulsion polymerization such as the acrylic rubber of the present invention inevitably contains an emulsifier.
  • the present invention by setting the residual amount of the emulsifier in the acrylic rubber within the above range, the water resistance in the case of a rubber cross-linked product can be further increased.
  • the residual amount of an emulsifier can be calculated
  • the method of setting the residual amount of the emulsifier as described above is not particularly limited.
  • a nonionic emulsifier and an anionic emulsifier are used in combination as an emulsifier, and the addition amount is described later.
  • the method of making it the range to perform is mentioned.
  • the acrylic rubber of the present invention contains a coagulant, but the content of the acrylic rubber component in the acrylic rubber of the present invention is preferably 95% by weight or more, more preferably. Is 97% by weight or more, more preferably 98% by weight or more. That is, the acrylic rubber of the present invention can be said to be an acrylic rubber composition containing 95% by weight or more (more preferably 97% by weight or more, more preferably 98% by weight or more) of an acrylic rubber component.
  • the acrylic rubber of the present invention can be produced, for example, by the following production method. That is, An emulsion polymerization step of obtaining an emulsion polymerization liquid by emulsion polymerization of a monomer for forming an acrylic rubber; and A coagulation step of adding a coagulant to the emulsion polymerization liquid to obtain a hydrous crumb; A cleaning step of cleaning the water-containing crumb; A drying process for drying the washed hydrous crumb; A method for producing acrylic rubber comprising:
  • the emulsion polymerization step in the above production method is a step of obtaining an emulsion polymerization solution by emulsion polymerization of a monomer for forming an acrylic rubber.
  • an ordinary method may be used, and an emulsifier, a polymerization initiator, a polymerization terminator and the like can be used according to a conventional method.
  • the emulsifier is not particularly limited.
  • polyoxyethylene alkyl ethers such as polyoxyethylene dodecyl ether, polyoxyethylene alkyl phenol ethers such as polyoxyethylene nonylphenyl ether, and polyoxyethylene alkyls such as polyoxyethylene stearate.
  • Nonionic emulsifiers such as esters, polyoxyethylene sorbitan alkyl esters, polyoxyethylene polyoxypropylene copolymers; salts of fatty acids such as myristic acid, palmitic acid, oleic acid, linolenic acid, alkylbenzene sulfones such as sodium dodecylbenzene sulfonate Acid salts, higher alcohol sulfates such as sodium lauryl sulfate, higher phosphate esters such as sodium alkyl phosphate, Anionic emulsifiers such as Rusuruhokohaku salt; and the like; alkyl trimethyl ammonium chloride, dialkyl ammonium chloride, cationic emulsifiers such as ammonium chloride.
  • emulsifiers can be used alone or in combination of two or more.
  • nonionic emulsifiers polyoxyethylene polypropylene glycol, polyethylene glycol monostearate, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenol ether are preferable.
  • nonionic emulsifier those having a weight average molecular weight of less than 10,000 are preferable, those having a weight average molecular weight of 500 to 8000 are more preferable, and those having a weight average molecular weight of 600 to 5000 are more preferable.
  • anionic emulsifiers higher phosphate ester salts and higher alcohol sulfate ester salts are preferred.
  • nonionic emulsifiers and anionic emulsifiers are preferable, and a nonionic emulsifier and an anionic emulsifier are preferably used in combination.
  • a nonionic emulsifier and an anionic emulsifier it is used in a coagulation step described later while effectively suppressing the occurrence of dirt due to adhesion of a polymer to a polymerization apparatus (for example, a polymerization tank) during emulsion polymerization.
  • the amount of coagulant used can be reduced, and as a result, the amount of coagulant in the finally obtained acrylic rubber can be reduced.
  • the emulsifying action can be enhanced, so that the amount of the emulsifier itself can also be reduced, and as a result, in the acrylic rubber finally obtained
  • the residual amount of the emulsifier contained in can be reduced, whereby the water resistance of the resulting acrylic rubber can be further increased.
  • the amount of the emulsifier used is the total amount of the emulsifier used with respect to 100 parts by weight of the monomer used for the polymerization, preferably 0.1 to 5 parts by weight, more preferably 0.5 to 4 parts by weight, The amount is preferably 1 to 3 parts by weight.
  • the amount of the nonionic emulsifier used is more than 0 parts by weight, preferably 0. 1 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, still more preferably 0.7 to 1.7 parts by weight.
  • the amount of the anionic emulsifier used is 100 parts by weight of the monomer used for the polymerization.
  • the weight ratio of the nonionic emulsifier / anionic emulsifier is preferably 1/99 to 99/1, and preferably 10/90 to 80/20. More preferred is 25/75 to 75/25, still more preferred is 50/50 to 75/25, and even more preferred is 65/35 to 75/25.
  • azo compounds such as azobisisobutyronitrile; organic peroxides such as diisopropylbenzene hydroperoxide, cumene hydroperoxide, paramentane hydroperoxide, benzoyl peroxide; sodium persulfate, persulfate Inorganic peroxides such as potassium, hydrogen peroxide, and ammonium persulfate; can be used.
  • organic peroxides such as diisopropylbenzene hydroperoxide, cumene hydroperoxide, paramentane hydroperoxide, benzoyl peroxide
  • sodium persulfate persulfate
  • persulfate Inorganic peroxides such as potassium, hydrogen peroxide, and ammonium persulfate
  • the organic peroxide and the inorganic peroxide as the polymerization initiator as a redox polymerization initiator in combination with a reducing agent.
  • a reducing agent used in combination
  • the compound containing metal ions in a reduced state such as ferrous sulfate, sodium hexamethylenediamine tetraacetate, cuprous naphthenate; ascorbic acid, sodium ascorbate Ascorbic acid (salt) such as potassium ascorbate; Erythorbic acid (salt) such as erythorbic acid, sodium erythorbate, potassium erythorbate; saccharides; Sulphinates such as sodium hydroxymethanesulfinate; Sodium hydrogen hydride, sodium aldehyde sodium hydrogen sulfite, potassium hydrogen sulfite; pyrosulfites such as sodium pyrosulfite, potassium pyrosulfite, sodium hydrogen bisulfit
  • polymerization terminator examples include hydroxylamine, hydroxyamine sulfate, diethylhydroxyamine, hydroxyaminesulfonic acid and its alkali metal salt, sodium dimethyldithiocarbamate, hydroquinone and the like.
  • the amount of the polymerization terminator used is not particularly limited, but is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • the amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • polymerization auxiliary materials such as a molecular weight adjusting agent, a particle size adjusting agent, a chelating agent, and an oxygen scavenger can be used as necessary.
  • the emulsion polymerization may be carried out by any of batch, semi-batch and continuous methods, but the semi-batch method is preferred. Specifically, in the reaction system containing the polymerization initiator and the reducing agent, the polymerization reaction is performed while continuously dropping the monomer used for the polymerization to the polymerization reaction system from the start of the polymerization reaction to an arbitrary time.
  • the polymerization reaction is preferable to perform the polymerization reaction while continuously dropping into the polymerization reaction system from the start of the polymerization reaction to any time, It is more preferable to perform the polymerization reaction while continuously dropping the monomer, polymerization initiator, and reducing agent used for the polymerization from the start of the polymerization reaction to an arbitrary time while continuously dropping into the polymerization reaction system.
  • the polymerization is usually performed in a temperature range of 0 to 70 ° C., preferably 5 to 50 ° C.
  • the monomer used for polymerization is mixed with an emulsifier and water to form a monomer emulsion, It is preferable to drop continuously in the state of an emulsion.
  • the method for preparing the monomer emulsion is not particularly limited, and includes a method of stirring the total amount of monomers used for polymerization, the total amount of emulsifier, and water using a stirrer such as a homomixer or a disk turbine. Can be mentioned.
  • the amount of water used in the monomer emulsion is preferably 10 to 70 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
  • the polymerization reaction when the polymerization reaction is carried out while continuously dropping into the polymerization reaction system from the start of the polymerization reaction to an arbitrary time for all of the monomer, polymerization initiator, and reducing agent used for the polymerization, these are separate. Or at least the polymerization initiator and the reducing agent may be mixed in advance and, if necessary, dropped into the polymerization system from the same dropping device as an aqueous solution. May be. After completion of dropping, the reaction may be continued for an arbitrary time in order to further improve the polymerization reaction rate.
  • the coagulation step in the above production method is a step of obtaining a hydrous crumb by adding a coagulant to the emulsion polymerization solution obtained by the emulsion polymerization step.
  • the coagulant is not particularly limited, and for example, the above-described monovalent to trivalent metal salts can be suitably used.
  • the amount of the coagulant used is preferably 1 to 100 with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid from the viewpoint that the residual amount of the coagulant in the finally obtained acrylic rubber is within the above range. Parts by weight, more preferably 2 to 40 parts by weight, still more preferably 3 to 20 parts by weight, particularly preferably 3 to 12 parts by weight. If the amount of the coagulant is too small, the coagulation becomes insufficient and the yield of the acrylic rubber is deteriorated. On the other hand, if the amount is too large, the residual amount of the coagulant in the finally obtained acrylic rubber becomes too large. Water resistance will deteriorate.
  • the solidification temperature is not particularly limited, but is preferably 50 to 90 ° C, more preferably 60 to 80 ° C.
  • At least one of the inhibitor, the lubricant and the ethylene oxide polymer is preferably blended in advance. That is, it is preferable that at least one of the anti-aging agent, the lubricant, and the ethylene oxide polymer is already mixed in the emulsion polymerization solution, and the emulsion polymerization solution containing these is coagulated.
  • the deterioration of the acrylic rubber due to heat at the time of drying in the drying step described later can be effectively suppressed by preliminarily blending the anti-aging agent in the emulsion polymerization liquid before coagulation.
  • the decrease in Mooney viscosity due to deterioration due to heating during drying can be effectively suppressed, and further, the effect of normal tensile strength, breaking elongation, etc. when rubber cross-linked products are used. Can be enhanced.
  • the anti-aging agent can be appropriately dispersed by blending the anti-aging agent in the state of the emulsion polymerization liquid, the effect of adding the anti-aging agent is sufficient even when the amount of the anti-aging agent is reduced. It can be made to exhibit.
  • the blending amount of the antioxidant is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1.2 parts by weight with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid. Even when the amount is relatively small, the effect of the addition can be sufficiently exhibited. Even if the anti-aging agent is previously blended in the emulsion polymerization liquid before coagulation, the pre-blended anti-aging agent is not substantially removed in the subsequent coagulation, washing, drying, etc. For this reason, even when pre-blended in the emulsion polymerization liquid, the effect of addition can be sufficiently exhibited.
  • the antiaging agent is not particularly limited, but 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- ⁇ -dimethylamino-p-cresol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2′-methylene-bis (6- ⁇ -methyl- Benzyl-p-cresol), 4,4'-methylenebis (2,6-di-t-butylfunol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 3- (3 Butylation reaction of stearyl 5-di-tert-butyl-4-hydroxyphenyl) propionate, alkylated bisphenol, p-cresol and dicyclopentadiene Phenol-based antioxidants containing no sulfur atom, such as reaction
  • the tack of the finally obtained acrylic rubber can be lowered and mixed with various compounding agents using a mixing device such as a roll.
  • adhesion to a mixing device such as a roll can be suitably suppressed, thereby improving productivity.
  • a method of adding a lubricant when blending various compounding agents into an acrylic rubber using a mixing device such as a roll is also conceivable.
  • the lubricant is dispersed at the initial stage of mixing by the roll.
  • the mixing time by the roll will be long, while by pre-blending the lubricant in the emulsion polymerization liquid before coagulation, Since the sticking to the roll can be appropriately prevented from the initial stage of mixing by the roll, the mixing time by the roll can be shortened, and as a result, the productivity can be improved.
  • the lubricant can be appropriately dispersed by blending the lubricant in the state of the emulsion polymerization liquid, even when the blending amount of the lubricant is reduced, the addition effect can be sufficiently exhibited. Is.
  • the blending amount of the lubricant is relatively small, preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1 part by weight, with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid. Also as a compounding quantity, the addition effect can fully be exhibited. Even if the lubricant is pre-mixed in the emulsion polymerization liquid before coagulation, the pre-mixed lubricant is not substantially removed in the subsequent coagulation, washing, drying, etc. Even when pre-blended in the liquid, the effect of addition can be sufficiently exhibited.
  • the lubricant is not particularly limited, and examples thereof include polyglycerin fatty acid ester, phosphate ester, fatty acid ester, fatty acid amide, and higher fatty acid.
  • the coagulation property of the emulsion polymerization solution can be improved, thereby reducing the amount of coagulant in the coagulation step. Since it can do, the residual amount in the acrylic rubber finally obtained can be reduced, and when it is set as a rubber cross-linked product, compression set resistance and water resistance can be further improved.
  • the ethylene oxide polymer is not particularly limited as long as it is a polymer having a polyethylene oxide structure as the main chain structure, and examples thereof include polyethylene oxide, polypropylene oxide, and ethylene oxide / propylene oxide copolymers. Polyethylene oxide is preferred.
  • the blending amount of the ethylene oxide polymer is preferably 0.01 to 1 part by weight, more preferably 0.1 to 0.5 part by weight with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid.
  • the weight average molecular weight of the ethylene oxide polymer is 10,000 to 1,000,000, preferably 10,000 to 200,000, more preferably 20,000 to 120,000.
  • the order of addition in the case of adding an antioxidant, a lubricant and an ethylene oxide polymer to the emulsion polymerization solution before coagulation is not particularly limited, and may be appropriately selected.
  • the washing step in the above production method is a step of washing the water-containing crumb obtained in the above-described coagulation step.
  • the washing method is not particularly limited, and examples thereof include a method of washing with water by using water as a washing liquid and mixing the added water together with the hydrated crumb.
  • the temperature at the time of washing with water is not particularly limited, but is preferably 5 to 60 ° C., more preferably 10 to 50 ° C., and the mixing time is 1 to 60 minutes, more preferably 2 to 30 minutes.
  • the amount of water to be added to the hydrated crumb at the time of washing with water is not particularly limited, but from the viewpoint that the residual amount of coagulant in the finally obtained acrylic rubber can be effectively reduced,
  • the amount of water per washing is preferably 50 to 9,800 parts by weight, more preferably 300 to 1,800 parts per 100 parts by weight of the solid content (mainly acrylic rubber component) contained in the hydrous crumb. Parts by weight.
  • the number of times of washing with water is not particularly limited, and may be one, but is preferably 2 to 10 times, more preferably 3 to 8 from the viewpoint of reducing the residual amount of coagulant in the finally obtained acrylic rubber. Times.
  • the number of washings is in the above range because the influence of the decrease in productivity is increased by increasing the number of steps.
  • acid washing using an acid as a washing solution may be performed.
  • the compression set resistance in the case of a rubber cross-linked product can be further improved.
  • the acrylic rubber is a carboxyl group-containing acrylic rubber having a carboxyl group, this acid cleaning
  • the effect of improving the compression set resistance is particularly great.
  • the acid used for the acid cleaning is not particularly limited, and sulfuric acid, hydrochloric acid, phosphoric acid and the like can be used without limitation.
  • the acid washing method is not particularly limited, and examples thereof include a method of mixing an aqueous solution of the added acid together with water-containing crumb.
  • the temperature during the acid cleaning is not particularly limited, but is preferably 5 to 60 ° C., more preferably 10 to 50 ° C., and the mixing time is 1 to 60 minutes, more preferably 2 to 30 minutes.
  • the pH of the acid-washed wash water can be determined, for example, by measuring the pH of the water contained in the hydrous crumb after the acid wash.
  • the water washing conditions may be the same as those described above.
  • the drying step is a step of drying the water-containing crumb that has been washed in the washing step.
  • the water-containing crumb may be filtered using a sieve such as a rotary screen or a vibrating screen; a centrifugal dehydrator;
  • the drying temperature in the drying step is not particularly limited and varies depending on the dryer used for drying.
  • the drying temperature is preferably 80 to 200 ° C., 100 More preferably, the temperature is set to ⁇ 170 ° C.
  • the acrylic rubber of the present invention can be obtained as described above.
  • the Mooney viscosity (ML1 + 4, 100 ° C.) (polymer Mooney) of the acrylic rubber of the present invention thus produced is preferably 10 to 80, more preferably 20 to 70, and further preferably 25 to 60.
  • the residual amount of the lubricant contained in the acrylic rubber is preferably 0.1 to 0.4% by weight, more preferably 0.15 to 0.3% by weight, still more preferably 0. .2 to 0.3% by weight.
  • the residual amount of the lubricant can be obtained by dissolving the acrylic rubber in tetrahydrofuran and performing GPC measurement using tetrahydrofuran as a developing solvent.
  • the integrated value of the peak corresponding to the molecular weight of the lubricant is obtained from the chart obtained by the GPC measurement, the integrated value is compared with the integrated value of the peak of the acrylic rubber, and these integrated values correspond. By determining the weight ratio from the molecular weight to be determined, the content of the lubricant can be determined.
  • the residual amount of the antioxidant contained in the acrylic rubber is preferably 500 ppm by weight or more, more preferably 1,000 ppm by weight or more, and further preferably 2,000 ppm by weight. That's it.
  • the upper limit of the content of the antioxidant is not particularly limited, but is preferably 12,000 ppm by weight or less.
  • the acrylic rubber composition of the present invention is obtained by blending a crosslinking agent with the above-described acrylic rubber of the present invention.
  • crosslinking agent polyvalent amine compounds, such as a diamine compound, and its carbonate; Sulfur; Sulfur donor; Triazine thiol compound; Multivalent epoxy compound; Organic carboxylic acid ammonium salt;
  • crosslinking agents such as oxides, dithiocarbamic acid metal salts, polyvalent carboxylic acids, quaternary onium salts, imidazole compounds, isocyanuric acid compounds, and organic peroxides can be used.
  • crosslinking agents can be used alone or in combination of two or more.
  • the crosslinking agent is preferably selected as appropriate according to the type of the crosslinkable monomer unit.
  • the acrylic rubber of the present invention has an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid monomer unit as a crosslinkable monomer unit, a polyvalent amine compound as a crosslinking agent, and It is preferable to use the carbonate.
  • the polyvalent amine compound and carbonate thereof are not particularly limited, but polyvalent amine compounds having 4 to 30 carbon atoms and carbonates thereof are preferred. Examples of such polyvalent amine compounds and carbonates thereof include aliphatic polyvalent amine compounds, carbonates thereof, and aromatic polyvalent amine compounds.
  • the aliphatic polyvalent amine compound and the carbonate thereof are not particularly limited, and examples thereof include hexamethylene diamine, hexamethylene diamine carbamate, and N, N′-dicinnamylidene-1,6-hexane diamine. Among these, hexamethylenediamine carbamate is preferable.
  • the aromatic polyvalent amine compound is not particularly limited.
  • the content of the crosslinking agent in the acrylic rubber composition of the present invention is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and particularly preferably 0.1 parts by weight with respect to 100 parts by weight of the acrylic rubber. 2 to 4 parts by weight.
  • the acrylic rubber composition of the present invention preferably further contains a crosslinking accelerator.
  • the crosslinking accelerator is not particularly limited, but when the acrylic rubber of the present invention has a carboxyl group as a crosslinkable group and the crosslinking agent is a polyvalent amine compound or a carbonate thereof. Guanidine compounds, diazabicycloalkene compounds, imidazole compounds, quaternary onium salts, tertiary phosphine compounds, aliphatic monovalent secondary amine compounds, aliphatic monovalent tertiary amine compounds, and the like can be used.
  • guanidine compounds diazabicycloalkene compounds, and aliphatic monovalent secondary amine compounds are preferable, and guanidine compounds are particularly preferable.
  • These basic crosslinking accelerators can be used singly or in combination of two or more.
  • guanidine compound examples include 1,3-di-o-tolylguanidine, 1,3-diphenylguanidine and the like.
  • diazabicycloalkene compound examples include 1,8-diazabicyclo [5.4.0] unde-7-cene, 1,5-diazabicyclo [4.3.0] no-5-ene and the like.
  • imidazole compound examples include 2-methylimidazole and 2-phenylimidazole.
  • quaternary onium salt include tetra n-butylammonium bromide and octadecyltri n-butylammonium bromide.
  • tertiary phosphine compound include triphenylphosphine and tri-p-tolylphosphine.
  • An aliphatic monovalent secondary amine compound is a compound in which two hydrogen atoms of ammonia are substituted with an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group substituted for the hydrogen atom is preferably one having 1 to 30 carbon atoms.
  • aliphatic monovalent secondary amine compound examples include dimethylamine, diethylamine, dipropylamine, diallylamine, diisopropylamine, di-n-butylamine, di-t-butylamine, di-sec-butylamine, dihexylamine, di Examples include heptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dicetylamine, di-2-ethylhexylamine, and dioctadecylamine.
  • An aliphatic monovalent tertiary amine compound is a compound in which all three hydrogen atoms of ammonia are substituted with an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group substituted for the hydrogen atom is preferably one having 1 to 30 carbon atoms.
  • Specific examples of the aliphatic monovalent tertiary amine compound include trimethylamine, triethylamine, tripropylamine, triallylamine, triisopropylamine, tri-n-butylamine, tri-t-butylamine, tri-sec-butylamine, trihexylamine. , Triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, and tridodecylamine.
  • the content of the crosslinking accelerator in the acrylic rubber composition of the present invention is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 7.5 parts by weight with respect to 100 parts by weight of the acrylic rubber. Parts, particularly preferably 1 to 5 parts by weight.
  • the acrylic rubber composition of the present invention can contain a compounding agent usually used in the field of rubber processing, in addition to the above components.
  • compounding agents include reinforcing fillers such as silica and carbon black; non-reinforcing fillers such as calcium carbonate and clay; anti-aging agents; light stabilizers; scorch inhibitors; plasticizers; Adhesives; Adhesives; Lubricants; Lubricants; Flame retardants; Antifungal agents; Antistatic agents; Colorants;
  • the compounding amount of these compounding agents is not particularly limited as long as it does not impair the object and effect of the present invention, and an amount corresponding to the compounding purpose can be appropriately compounded.
  • rubbers, elastomers, resins and the like other than the acrylic rubber of the present invention described above may be further blended within a range not impairing the effects of the present invention.
  • rubber other than acrylic rubber such as acrylic rubber other than the acrylic rubber of the present invention, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, silicon rubber, fluorine rubber, etc .
  • Elastomers such as elastomers, styrene elastomers, vinyl chloride elastomers, polyester elastomers, polyamide elastomers, polyurethane elastomers, polysiloxane elastomers
  • the total blending amount of the rubber, elastomer, and resin other than the acrylic rubber of the present invention described above is preferably 50 parts by weight or less, more preferably 10 parts by weight or less, further preferably 100 parts by weight of acrylic rubber. 1 part by weight or less.
  • the acrylic rubber is blended with a crosslinking agent and other various compounding agents used as necessary, mixed and kneaded with a Banbury mixer or a kneader, and then using a kneading roll. Further, it is prepared by kneading.
  • the blending order of each component is not particularly limited, but after sufficiently mixing components that are difficult to react and decompose with heat, a crosslinking agent that is a component that easily reacts and decomposes with heat at a temperature at which reaction and decomposition do not occur. It is preferable to mix in a short time.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the acrylic rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention uses the acrylic rubber composition of the present invention, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, and a roll, and is heated. It can be produced by carrying out a cross-linking reaction and fixing the shape as a rubber cross-linked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 130 to 220 ° C., preferably 150 to 190 ° C.
  • the crosslinking time is usually 2 minutes to 10 hours, preferably 3 minutes to 5 hours.
  • a heating method a method used for crosslinking of rubber, such as press heating, steam heating, oven heating, and hot air heating, may be appropriately selected.
  • the rubber cross-linked product of the present invention may be further heated to perform secondary crosslinking.
  • the secondary crosslinking varies depending on the heating method, crosslinking temperature, shape, etc., but is preferably performed for 1 to 48 hours. What is necessary is just to select a heating method and heating temperature suitably.
  • the rubber cross-linked product of the present invention has excellent compression set resistance and water resistance while maintaining the basic properties of rubber such as tensile strength, elongation, and hardness. Therefore, the rubber cross-linked product of the present invention makes use of such characteristics, for example, seals such as O-rings, packings, oil seals, bearing seals and the like in a wide range of transportation machines such as automobiles, general equipment, and electrical equipment.
  • seals such as O-rings, packings, oil seals, bearing seals and the like in a wide range of transportation machines such as automobiles, general equipment, and electrical equipment.
  • Materials gaskets; cushioning materials, vibration-proof materials; electric wire covering materials; industrial belts; tubes and hoses; sheets;
  • Mooney viscosity (ML1 + 4, 100 ° C.) The Mooney viscosity (polymer Mooney) of the acrylic rubber was measured according to JIS K6300.
  • the residual amount of coagulant in the acrylic rubber was measured by performing elemental analysis on the acrylic rubber using (ICP-AES). Specifically, the content ratio of the element contained in the used coagulant was determined by elemental analysis, and the residual amount of the coagulant was calculated from the determined content ratio.
  • the integrated value of the peak corresponding to the molecular weight of the emulsifier, anti-aging agent, and lubricant used in the production was obtained, and these integrated value and the integrated peak of the acrylic rubber peak
  • the residual amounts of emulsifier, anti-aging agent, and lubricant were calculated by comparing the values and determining the weight ratio from these integrated values and the corresponding molecular weights.
  • the acrylic rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and was subjected to primary crosslinking by pressing at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa.
  • the product was further subjected to secondary crosslinking by heating at 170 ° C. for 4 hours in a gear-type oven to obtain a sheet-like rubber crosslinked product.
  • the obtained rubber cross-linked product was punched with a No. 3 type dumbbell to prepare a test piece. Next, using this test piece, tensile strength and elongation were measured according to JIS K6251.
  • Heat aging test A test piece produced in the same manner as the test piece used for the evaluation of the above-mentioned normal physical properties was placed in a gear-type oven in an environment at a temperature of 175 ° C. for 504 hours, and then measured for tensile strength and elongation. The heat aging resistance was evaluated by comparing the results with normal physical properties measured according to the above method. Tensile strength and elongation were measured according to JIS K6251. About tensile strength, the one where the measured value of the sample after a heating is large is excellent in heat resistance.
  • the heat resistance is better when the elongation change rate (percentage), which is the change rate of the measured value of the sample after heating with respect to the measured value (measured value of normal physical properties) of the sample that has not been heat-aged, is close to zero.
  • the acrylic rubber composition was subjected to primary crosslinking by pressing at a temperature of 170 ° C. for 20 minutes using a mold to obtain a cylindrical primary crosslinked product having a diameter of 29 mm and a height of 12.7 mm, and then obtained.
  • the primary crosslinked product was further subjected to secondary crosslinking by heating at 170 ° C. for 4 hours in a gear-type oven to obtain a cylindrical rubber crosslinked product.
  • the obtained rubber cross-linked product was placed in an environment at 175 ° C. for 70 hours in a state where the rubber cross-linked product was compressed by 25% according to JIS K6262, and then the compression set was measured. The smaller this value, the better the compression set resistance.
  • the acrylic rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and was subjected to primary crosslinking by pressing at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa.
  • the product was further subjected to secondary crosslinking by heating at 170 ° C. for 4 hours in a gear-type oven to obtain a sheet-like rubber crosslinked product.
  • volume change rate before and after immersion (Volume of specimen after immersion ⁇ Volume of specimen before immersion) ⁇ Volume of specimen before immersion ⁇ 100
  • reaction was continued for 1 hour while maintaining the temperature in the polymerization reaction vessel at 23 ° C., and it was confirmed that the polymerization conversion rate reached 95%, and polymerization was carried out by adding hydroquinone as a polymerization terminator. The reaction was stopped to obtain an emulsion polymerization solution.
  • stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (trade name “Irganox 1076”, BASF) as an anti-aging agent.
  • the obtained mixed liquid was transferred to a coagulation tank.
  • 60 parts of industrial water was added and the temperature was raised to 85 ° C., and then the mixed liquid was stirred at a temperature of 85 ° C.
  • 3.3 parts of sodium sulfate as a coagulant 11 parts with respect to 100 parts of the polymer contained in the mixed solution was continuously added to coagulate the polymer, whereby acrylic rubber (A1) Of hydrated crumbs.
  • a sulfuric acid aqueous solution obtained by mixing 194 parts of industrial water and 0.13 part of concentrated sulfuric acid is added to 100 parts of the solid content of the hydrated crumb which has been washed with water in the above, and in the coagulation tank. After stirring at 15 ° C. for 5 minutes, the water-containing crumb was pickled by draining water from the coagulation tank. The pH of the hydrated crumb after pickling (pH of water in the hydrated crumb) was measured, and the pH was 3. Next, 194 parts of pure water is added to 100 parts of the solid content of the pickled water-containing crumb, and after stirring for 5 minutes at 15 ° C.
  • the water content is discharged from the coagulation tank.
  • the crumb was washed with pure water, and the hydrated crumb that had been washed with pure water was dried with a hot air dryer at 110 ° C. for 1 hour to obtain a solid acrylic rubber (A1).
  • the resulting acrylic rubber (A1) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 31, the recovery rate of the acrylic rubber (A1) is 100%, and the composition of the acrylic rubber (A1) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, about acrylic rubber (A1), the residual amount of the coagulant
  • the resulting acrylic rubber (A2) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A2) has a recovery rate of 100%, and the composition of the acrylic rubber (A2) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A2) was measured according to the said method. The results are shown in Table 1.
  • the resulting acrylic rubber (A3) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 34, the acrylic rubber (A3) has a recovery rate of 100%, and the composition of the acrylic rubber (A3) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, about acrylic rubber (A3), the residual amount of the coagulant
  • the resulting acrylic rubber (A4) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 31, the recovery rate of the acrylic rubber (A4) is 100%, and the composition of the acrylic rubber (A4) is ethyl acrylate units 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A4) was measured according to the above method. The results are shown in Table 1.
  • solid acrylic rubber (A5) is obtained by performing water washing, pickling, pure water washing and drying in the same manner as in Production Example 1 except that the number of water washing is changed from 4 to 2 times. It was.
  • the resulting acrylic rubber (A5) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A5) is 100%, and the composition of the acrylic rubber (A5) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A5) was measured according to the above method. The results are shown in Table 1.
  • solid acrylic rubber (A6) is obtained by performing water washing, pickling, pure water washing and drying in the same manner as in Production Example 1 except that the number of washings is changed from 4 to 1. It was.
  • the resulting acrylic rubber (A6) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 32, the acrylic rubber (A6) has a recovery rate of 100%, and the composition of the acrylic rubber (A6) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A6) was measured according to the above method. The results are shown in Table 1.
  • a water-containing crumb of acrylic rubber (A7) was prepared in the same manner as in Production Example 3 except that 3.3 parts of magnesium sulfate was used instead of 3.3 parts of sodium sulfate as a coagulant used for the coagulation operation. Obtained. Next, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A7).
  • the resulting acrylic rubber (A7) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A7) is 100%, and the composition of the acrylic rubber (A7) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A7) was measured according to the above method. The results are shown in Table 1.
  • a water-containing crumb of acrylic rubber (A8) was prepared in the same manner as in Production Example 3 except that 3.3 parts of calcium chloride was used instead of 3.3 parts of sodium sulfate as a coagulant used for the coagulation operation. Obtained. Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A8).
  • the resulting acrylic rubber (A8) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 35, the recovery rate of the acrylic rubber (A8) is 100%, and the composition of the acrylic rubber (A8) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant
  • the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A9).
  • the resulting acrylic rubber (A9) had a Mooney viscosity (ML1 + 4, 100 ° C.) of 34, the recovery rate of the acrylic rubber (A9) was 100%, and the composition of the acrylic rubber (A9) was 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A9) was measured according to the above method. The results are shown in Table 1.
  • the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A10).
  • the resulting acrylic rubber (A10) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A10) has a recovery rate of 100%, and the composition of the acrylic rubber (A10) is ethyl acrylate units 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A10) was measured according to the said method. The results are shown in Table 1.
  • the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A11).
  • the resulting acrylic rubber (A11) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 32, the acrylic rubber (A11) has a recovery rate of 100%, and the composition of the acrylic rubber (A11) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A11) was measured according to the said method. The results are shown in Table 1.
  • the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A12).
  • the resulting acrylic rubber (A12) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 31, the recovery rate of the acrylic rubber (A12) is 100%, and the composition of the acrylic rubber (A12) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A12) was measured according to the above method. The results are shown in Table 1.
  • the obtained water-containing crumb was subjected to washing with water, pickling, pure water, and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A13).
  • the resulting acrylic rubber (A13) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A13) has a recovery rate of 100%, and the composition of the acrylic rubber (A13) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A13) was measured according to the said method. The results are shown in Table 1.
  • the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A14).
  • the resulting acrylic rubber (A14) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A14) has a recovery rate of 100%, and the composition of the acrylic rubber (A14) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • the residual amount of the coagulant, surfactant, lubricant and anti-aging agent in the acrylic rubber (A14) was measured according to the above method. The results are shown in Table 1.
  • the resulting acrylic rubber (A15) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A15) has a recovery rate of 42%, and the composition of the acrylic rubber (A15) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight.
  • the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A15) was measured according to the above method. The results are shown in Table 1.
  • the resulting acrylic rubber (A16) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A16) is 63%, and the composition of the acrylic rubber (A16) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A16) was measured according to the above method. The results are shown in Table 1.
  • the resulting acrylic rubber (A17) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A17) is 100%, and the composition of the acrylic rubber (A17) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A17) was measured according to the above method. The results are shown in Table 1.
  • Example 1 Using a Banbury mixer, 100 parts of the acrylic rubber (A1) obtained in Production Example 1, 30 parts of clay (trade name “Satinton Clay 5A”, manufactured by Takehara Chemical Industry Co., Ltd., calcined kaolin), silica (trade name “ Carplex 1120 ", Evonik 15 parts, silica (trade name” Carplex 67 “, Evonik) 35 parts, stearic acid 2 parts, ester wax (trade name” Greg G-8205 ", Dainippon Ink Chemical Co., Ltd.) 1 part, 4,4′-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, Ouchi Shinsei Chemical Co., Ltd.) 2 parts, and 3-methacryloxypropyltrimethoxy 1 part of silane (trade name “KBM-503”, manufactured by Shin-Etsu Silicone Co., Ltd., silane coupling agent) was added and mixed at 50 ° C.
  • clay trade name “Satinton Clay
  • Examples 2 to 16 In the same manner as in Example 1 except that the acrylic rubbers (A2) to (A16) obtained in Production Examples 2 to 16 were used in place of the acrylic rubber (A1) obtained in Production Example 1, respectively.
  • Table 2 shows the results of measurement and evaluation in the same manner after obtaining the rubber composition.
  • the addition amount of the compounding agent for preparing the monomer emulsion is shown by the compounding amount with respect to 100 parts of the charged monomer.
  • the addition amount of the compounding agent added to the emulsion polymerization solution before coagulation was shown as the compounding amount with respect to 100 parts of the emulsion polymerization solution.
  • the addition amount of the coagulant used in the coagulation step is shown as a blending amount with respect to 100 parts of the mixed solution obtained by adding an antioxidant, polyethylene oxide and a lubricant to the emulsion polymerization solution.

Abstract

Provided are: an acrylic rubber in which the residual amount of coagulant is 10-10,000 ppm by weight or more; and a crosslinked rubber using the acrylic rubber. According to the present invention, an acrylic rubber providing a crosslinked rubber having excellent compression set resistance and water resistance; and a crosslinked rubber using the acrylic rubber can be provided.

Description

アクリルゴムおよびゴム架橋物Acrylic rubber and rubber cross-linked product
 本発明は、アクリルゴムおよびゴム架橋物に関し、さらに詳しくは、耐圧縮永久歪み性および耐水性に優れたゴム架橋物を与えるアクリルゴム、ならびにこのアクリルゴムを用いたゴム架橋物に関する。 The present invention relates to an acrylic rubber and a rubber cross-linked product, and more particularly to an acrylic rubber that gives a rubber cross-linked product excellent in compression set resistance and water resistance, and a rubber cross-linked product using this acrylic rubber.
 アクリルゴムは、アクリル酸エステルを主成分とする重合体であり、一般に耐熱性、耐油性および耐オゾン性に優れたゴムとして知られており、自動車関連の分野などで広く用いられている。 Acrylic rubber is a polymer mainly composed of an acrylate ester and is generally known as a rubber excellent in heat resistance, oil resistance and ozone resistance, and is widely used in fields related to automobiles.
 このようなアクリルゴムは、通常、アクリルゴムを構成する単量体混合物を乳化重合し、得られた乳化重合液に、凝固剤を添加することで凝固させ、凝固により得られた含水クラムを乾燥することで製造される(たとえば、特許文献1参照)。 Such an acrylic rubber is usually obtained by emulsion polymerization of a monomer mixture constituting the acrylic rubber, coagulating the resulting emulsion polymerization solution by adding a coagulant, and drying the hydrous crumb obtained by coagulation. (See, for example, Patent Document 1).
 一方、近年、自動車用の部材、たとえば、シール材、ホース材、防振材、チューブ材、ベルト材またはブーツ材といった各部材においては、耐熱性や耐油性に加えて、耐圧縮永久歪み性や耐水性に優れていることが求められている。しかしながら、特許文献1に記載のアクリルゴムなどの従来のアクリルゴムは、耐水性が必ずしも十分でなく、そのため、近年の耐水性に対する要求に応えることができないものであった。 On the other hand, in recent years, in automobile members such as seal materials, hose materials, vibration-proof materials, tube materials, belt materials or boot materials, in addition to heat resistance and oil resistance, compression set resistance and There is a demand for excellent water resistance. However, the conventional acrylic rubber such as the acrylic rubber described in Patent Document 1 does not necessarily have sufficient water resistance, and thus cannot meet the recent demand for water resistance.
特開平7-145291号公報JP 7-145291 A
 本発明は、このような実状に鑑みてなされたものであり、耐圧縮永久歪み性および耐水性に優れたゴム架橋物を与えるアクリルゴム、ならびにこのアクリルゴムを用いたゴム架橋物を提供することを目的とする。 The present invention has been made in view of such a situation, and provides an acrylic rubber which gives a rubber cross-linked product excellent in compression set resistance and water resistance, and a rubber cross-linked product using the acrylic rubber. With the goal.
 本発明者等は、上記目的を達成するために鋭意研究した結果、アクリルゴムに残留する凝固剤の量を特定量範囲とすることにより、上記目的を達成できることを見出し、本発明を完成させるに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that the above object can be achieved by setting the amount of the coagulant remaining in the acrylic rubber within a specific amount range, thereby completing the present invention. It came.
 すなわち、本発明によれば、凝固剤の残留量が、10重量ppm以上、10,000重量ppm以下であるアクリルゴムが提供される。
 本発明のアクリルゴムは、凝固剤の残留量が、10重量ppm以上、3,500重量ppm以下であることが好ましく、500重量ppm以上、3,500重量ppm以下であることがより好ましい。
 本発明のアクリルゴムにおいて、前記凝固剤が、1~3価の金属塩であることが好ましく、前記凝固剤が、塩化カルシウム、塩化ナトリウム、硫酸マグネシウム、または硫酸ナトリウムであることがより好ましい。
 本発明のアクリルゴムは、乳化剤の残留量が、10重量ppm以上、22,000重量ppm以下であることが好ましい。
 本発明のアクリルゴムは、滑材の残留量が、0.1~0.4重量%であることが好ましい。
 本発明のアクリルゴムは、老化防止剤の残留量が、500重量ppm以上、12,000重量ppm以下であることが好ましい。
 本発明のアクリルゴムは、アクリルゴム成分の含有量が95重量%以上であることが好ましい。
That is, according to the present invention, there is provided an acrylic rubber having a residual amount of coagulant of 10 ppm by weight or more and 10,000 ppm by weight or less.
In the acrylic rubber of the present invention, the residual amount of the coagulant is preferably 10 ppm to 3,500 ppm, more preferably 500 ppm to 3,500 ppm.
In the acrylic rubber of the present invention, the coagulant is preferably a monovalent to trivalent metal salt, and the coagulant is more preferably calcium chloride, sodium chloride, magnesium sulfate, or sodium sulfate.
In the acrylic rubber of the present invention, the residual amount of the emulsifier is preferably 10 ppm by weight or more and 22,000 ppm by weight or less.
In the acrylic rubber of the present invention, the residual amount of the lubricant is preferably 0.1 to 0.4% by weight.
In the acrylic rubber of the present invention, the residual amount of the antioxidant is preferably 500 ppm by weight or more and 12,000 ppm by weight or less.
The acrylic rubber of the present invention preferably has an acrylic rubber component content of 95% by weight or more.
 また、本発明によれば、上記アクリルゴムを製造する方法であって、アクリルゴムを形成するための単量体を乳化重合することで、乳化重合液を得る乳化重合工程と、前記乳化重合液に、凝固剤を添加し、含水クラムを得る凝固工程と、前記含水クラムに対して、洗浄を行う洗浄工程と、洗浄を行った含水クラムに対し、乾燥を行う乾燥工程と、を備えるアクリルゴムの製造方法が提供される。
 本発明のアクリルゴムの製造方法において、前記凝固剤の添加量が、前記乳化重合液中に含まれるアクリルゴム成分100重量部に対して、3~33重量部であることが好ましい。
 本発明のアクリルゴムの製造方法において、凝固を行う前の前記乳化重合液に、滑剤、老化防止剤およびエチレンオキシド系重合体から選択される少なくとも1つを含有させる添加工程をさらに備えることが好ましい。
Further, according to the present invention, there is provided a method for producing the acrylic rubber, the emulsion polymerization step for obtaining an emulsion polymerization liquid by emulsion polymerization of a monomer for forming the acrylic rubber, and the emulsion polymerization liquid. An acrylic rubber comprising: a coagulating step of adding a coagulant to obtain a water-containing crumb; a washing step for washing the water-containing crumb; and a drying step for drying the washed water-containing crumb. A manufacturing method is provided.
In the method for producing acrylic rubber of the present invention, the amount of the coagulant added is preferably 3 to 33 parts by weight with respect to 100 parts by weight of the acrylic rubber component contained in the emulsion polymerization liquid.
In the method for producing acrylic rubber according to the present invention, it is preferable that the emulsion polymerization liquid before coagulation further includes an addition step of containing at least one selected from a lubricant, an antioxidant, and an ethylene oxide polymer.
 また、本発明によれば、上記アクリルゴムと、架橋剤とを含有するアクリルゴム組成物、およびこのようなアクリルゴム組成物を架橋してなるゴム架橋物が提供される。 Further, according to the present invention, there are provided an acrylic rubber composition containing the acrylic rubber and a crosslinking agent, and a rubber crosslinked product obtained by crosslinking such an acrylic rubber composition.
 本発明によれば、耐圧縮永久歪み性および耐水性に優れたゴム架橋物を与えるアクリルゴム、ならびに、このようなアクリルゴムを用いて得られ、耐圧縮永久歪み性および耐水性に優れたゴム架橋物を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the acrylic rubber which gives the rubber crosslinked material excellent in the compression set resistance and water resistance, and the rubber obtained using such an acrylic rubber and excellent in compression set resistance and water resistance A cross-linked product can be provided.
<アクリルゴム>
 本発明のアクリルゴムは、分子中に、主成分(本発明においては、ゴム全単量体単位中50重量%以上有するものを言う。)としての(メタ)アクリル酸エステル単量体〔アクリル酸エステル単量体および/またはメタクリル酸エステル単量体の意。以下、(メタ)アクリル酸メチルなど同様。〕単位を含有するゴム状の重合体であって、凝固剤の残留量が、10重量ppm以上、10,000重量ppm以下であるものである。
<Acrylic rubber>
The acrylic rubber of the present invention is a (meth) acrylic acid ester monomer [acrylic acid as a main component in the molecule (in the present invention, having 50% by weight or more in the total monomer units of rubber). An ester monomer and / or a methacrylic acid ester monomer. The same applies to methyl (meth) acrylate. ] A rubbery polymer containing units, wherein the residual amount of coagulant is not less than 10 ppm by weight and not more than 10,000 ppm by weight.
 本発明のアクリルゴムの主成分である(メタ)アクリル酸エステル単量体単位を形成する(メタ)アクリル酸エステル単量体としては、特に限定されないが、たとえば、(メタ)アクリル酸アルキルエステル単量体、および(メタ)アクリル酸アルコキシアルキルエステル単量体などを挙げることができる。 The (meth) acrylic acid ester monomer that forms the (meth) acrylic acid ester monomer unit that is the main component of the acrylic rubber of the present invention is not particularly limited. And (meth) acrylic acid alkoxyalkyl ester monomers.
 (メタ)アクリル酸アルキルエステル単量体としては、特に限定されないが、炭素数1~8のアルカノールと(メタ)アクリル酸とのエステルが好ましく、具体的には、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、および(メタ)アクリル酸シクロヘキシルなどが挙げられる。これらの中でも、(メタ)アクリル酸エチル、および(メタ)アクリル酸n-ブチルが好ましく、アクリル酸エチル、およびアクリル酸n-ブチルが特に好ましい。これらは1種単独で、または2種以上を併せて使用することができる。 The (meth) acrylic acid alkyl ester monomer is not particularly limited, but is preferably an ester of an alkanol having 1 to 8 carbon atoms and (meth) acrylic acid, specifically, methyl (meth) acrylate, ( (Meth) ethyl acrylate, (meth) acrylic acid n-propyl, (meth) acrylic acid isopropyl, (meth) acrylic acid n-butyl, (meth) acrylic acid isobutyl, (meth) acrylic acid n-hexyl, (meth) Examples include 2-ethylhexyl acrylate and cyclohexyl (meth) acrylate. Among these, ethyl (meth) acrylate and n-butyl (meth) acrylate are preferable, and ethyl acrylate and n-butyl acrylate are particularly preferable. These can be used alone or in combination of two or more.
 (メタ)アクリル酸アルコキシアルキルエステル単量体としては、特に限定されないが、炭素数2~8のアルコキシアルキルアルコールと(メタ)アクリル酸とのエステルが好ましく、具体的には、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-プロポキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸3-メトキシプロピル、および(メタ)アクリル酸4-メトキシブチルなどが挙げられる。これらの中でも、(メタ)アクリル酸2-エトキシエチル、および(メタ)アクリル酸2-メトキシエチルが好ましく、アクリル酸2-エトキシエチル、およびアクリル酸2-メトキシエチルが特に好ましい。これらは1種単独で、または2種以上を併せて使用することができる。 The (meth) acrylic acid alkoxyalkyl ester monomer is not particularly limited, but an ester of an alkoxyalkyl alcohol having 2 to 8 carbon atoms and (meth) acrylic acid is preferable. Specifically, (meth) acrylic acid Methoxymethyl, ethoxymethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-propoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate , 3-methoxypropyl (meth) acrylate, 4-methoxybutyl (meth) acrylate, and the like. Of these, 2-ethoxyethyl (meth) acrylate and 2-methoxyethyl (meth) acrylate are preferable, and 2-ethoxyethyl acrylate and 2-methoxyethyl acrylate are particularly preferable. These can be used alone or in combination of two or more.
 本発明のアクリルゴム中における、(メタ)アクリル酸エステル単量体単位の含有量は、通常、50~99.9重量%、好ましくは60~99.5重量%、より好ましくは70~99.5重量%である。(メタ)アクリル酸エステル単量体単位の含有量が少なすぎると、得られるゴム架橋物の耐候性、耐熱性、および耐油性が低下するおそれがあり、一方、多すぎると、得られるゴム架橋物の耐熱性が低下するおそれがある。 The content of the (meth) acrylic acid ester monomer unit in the acrylic rubber of the present invention is usually 50 to 99.9% by weight, preferably 60 to 99.5% by weight, more preferably 70 to 99.99%. 5% by weight. If the content of the (meth) acrylic acid ester monomer unit is too small, the weather resistance, heat resistance and oil resistance of the resulting rubber cross-linked product may be lowered. There is a risk that the heat resistance of the object will decrease.
 なお、本発明のアクリルゴムにおいては、(メタ)アクリル酸エステル単量体単位として、(メタ)アクリル酸アルキルエステル単量体単位30~100重量%、および(メタ)アクリル酸アルコキシアルキルエステル単量体単位70~0重量%からなるものを用いることが好ましい。 In the acrylic rubber of the present invention, the (meth) acrylic acid ester monomer unit includes 30 to 100% by weight of a (meth) acrylic acid alkyl ester monomer unit and a (meth) acrylic acid alkoxyalkyl ester monomer. It is preferable to use those comprising 70 to 0% by weight of body units.
 本発明で用いるアクリルゴムは、α,β-エチレン性不飽和カルボン酸単量体単位に加えて、必要に応じて、架橋性単量体単位を含有していてもよい。架橋性単量体単位を形成する架橋性単量体としては、特に限定されないが、たとえば、α,β-エチレン性不飽和カルボン酸単量体;エポキシ基を有する単量体;ハロゲン原子を有する単量体;ジエン単量体;などが挙げられる。 The acrylic rubber used in the present invention may contain a crosslinkable monomer unit, if necessary, in addition to the α, β-ethylenically unsaturated carboxylic acid monomer unit. The crosslinkable monomer that forms the crosslinkable monomer unit is not particularly limited. For example, an α, β-ethylenically unsaturated carboxylic acid monomer; a monomer having an epoxy group; a halogen atom Monomer; diene monomer; and the like.
 α,β-エチレン性不飽和カルボン酸単量体単位を形成するα,β-エチレン性不飽和カルボン酸単量体としては、特に限定されないが、たとえば、炭素数3~12のα,β-エチレン性不飽和モノカルボン酸、炭素数4~12のα,β-エチレン性不飽和ジカルボン酸、および炭素数4~12のα,β-エチレン性不飽和ジカルボン酸と炭素数1~8のアルカノールとのモノエステルなどが挙げられる。α,β-エチレン性不飽和カルボン酸単量体を用いることにより、アクリルゴムを、カルボキシル基を架橋点として持つカルボキシル基含有アクリルゴムとすることができ、これにより、ゴム架橋物とした場合における、耐圧縮永久歪み性をより高めることができる。 The α, β-ethylenically unsaturated carboxylic acid monomer that forms the α, β-ethylenically unsaturated carboxylic acid monomer unit is not particularly limited, but examples thereof include α, β- having 3 to 12 carbon atoms. Ethylenically unsaturated monocarboxylic acid, α, β-ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms, and α, β-ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms and alkanol having 1 to 8 carbon atoms And monoesters. By using the α, β-ethylenically unsaturated carboxylic acid monomer, the acrylic rubber can be converted into a carboxyl group-containing acrylic rubber having a carboxyl group as a crosslinking point, and thus a rubber cross-linked product can be obtained. Further, the compression set resistance can be further improved.
 炭素数3~12のα,β-エチレン性不飽和モノカルボン酸の具体例としては、アクリル酸、メタクリル酸、α-エチルアクリル酸、クロトン酸、およびケイ皮酸などが挙げられる。
 炭素数4~12のα,β-エチレン性不飽和ジカルボン酸の具体例としては、フマル酸、マレイン酸などのブテンジオン酸;イタコン酸;シトラコン酸;クロロマレイン酸;などが挙げられる。
 炭素数4~12のα,β-エチレン性不飽和ジカルボン酸と炭素数1~8のアルカノールとのモノエステルの具体例としては、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノn-ブチル、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノn-ブチルなどのブテンジオン酸モノ鎖状アルキルエステル;フマル酸モノシクロペンチル、フマル酸モノシクロヘキシル、フマル酸モノシクロヘキセニル、マレイン酸モノシクロペンチル、マレイン酸モノシクロヘキシル、マレイン酸モノシクロヘキセニルなどの脂環構造を有するブテンジオン酸モノエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノn-ブチル、イタコン酸モノシクロヘキシルなどのイタコン酸モノエステル;などが挙げられる。
 これらの中でも、ブテンジオン酸モノ鎖状アルキルエステル、または脂環構造を有するブテンジオン酸モノエステルが好ましく、フマル酸モノn-ブチル、マレイン酸モノn-ブチル、フマル酸モノシクロヘキシル、およびマレイン酸モノシクロヘキシルがより好ましく、フマル酸モノn-ブチルがさらに好ましい。これらのα,β-エチレン性不飽和カルボン酸単量体は、1種単独で、または2種以上を併せて使用することができる。なお、上記単量体のうち、ジカルボン酸には、無水物として存在しているものも含まれる。
Specific examples of the α, β-ethylenically unsaturated monocarboxylic acid having 3 to 12 carbon atoms include acrylic acid, methacrylic acid, α-ethylacrylic acid, crotonic acid, and cinnamic acid.
Specific examples of the α, β-ethylenically unsaturated dicarboxylic acid having 4 to 12 carbon atoms include butenedionic acid such as fumaric acid and maleic acid; itaconic acid; citraconic acid; chloromaleic acid;
Specific examples of monoesters of α, β-ethylenically unsaturated dicarboxylic acids having 4 to 12 carbon atoms and alkanols having 1 to 8 carbon atoms include monomethyl fumarate, monoethyl fumarate, mono n-butyl fumarate, malein Butenedionic acid mono-chain alkyl esters such as monomethyl acid, monoethyl maleate, and mono-n-butyl maleate; monocyclopentyl fumarate, monocyclohexyl fumarate, monocyclohexenyl fumarate, monocyclopentyl maleate, monocyclohexyl maleate, maleate And butenedionic acid monoesters having an alicyclic structure such as acid monocyclohexenyl; itaconic acid monoesters such as monomethyl itaconate, monoethyl itaconate, mono n-butyl itaconate, and monocyclohexyl itaconate;
Among these, butenedionic acid mono-chain alkyl ester or butenedionic acid monoester having an alicyclic structure is preferable, and mono n-butyl fumarate, mono n-butyl maleate, monocyclohexyl fumarate, and monocyclohexyl maleate are preferable. More preferred is mono n-butyl fumarate. These α, β-ethylenically unsaturated carboxylic acid monomers can be used alone or in combination of two or more. Among the above monomers, dicarboxylic acids include those that exist as anhydrides.
 エポキシ基を有する単量体としては、特に限定されないが、たとえば、(メタ)アクリル酸グリシジルなどのエポキシ基含有(メタ)アクリル酸エステル;アリルグリシジルエーテルおよびビニルグリシジルエーテルなどのエポキシ基含有エーテル;などが挙げられる。 Although it does not specifically limit as a monomer which has an epoxy group, For example, Epoxy group containing (meth) acrylic acid ester, such as glycidyl (meth) acrylate; Epoxy group containing ethers, such as allyl glycidyl ether and vinyl glycidyl ether; Is mentioned.
 ハロゲン原子を有する単量体としては、特に限定されないが、たとえば、ハロゲン含有飽和カルボン酸の不飽和アルコールエステル、(メタ)アクリル酸ハロアルキルエステル、(メタ)アクリル酸ハロアシロキシアルキルエステル、(メタ)アクリル酸(ハロアセチルカルバモイルオキシ)アルキルエステル、ハロゲン含有不飽和エーテル、ハロゲン含有不飽和ケトン、ハロメチル基含有芳香族ビニル化合物、ハロゲン含有不飽和アミド、およびハロアセチル基含有不飽和単量体などが挙げられる。 Although it does not specifically limit as a monomer which has a halogen atom, For example, unsaturated alcohol ester of a halogen-containing saturated carboxylic acid, (meth) acrylic acid haloalkyl ester, (meth) acrylic acid haloacyloxyalkyl ester, (meth) acrylic Examples include acid (haloacetylcarbamoyloxy) alkyl esters, halogen-containing unsaturated ethers, halogen-containing unsaturated ketones, halomethyl group-containing aromatic vinyl compounds, halogen-containing unsaturated amides, and haloacetyl group-containing unsaturated monomers.
 ハロゲン含有飽和カルボン酸の不飽和アルコールエステルの具体例としては、クロロ酢酸ビニル、2-クロロプロピオン酸ビニル、およびクロロ酢酸アリルなどが挙げられる。
 (メタ)アクリル酸ハロアルキルエステルの具体例としては、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸1-クロロエチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸1,2-ジクロロエチル、(メタ)アクリル酸2-クロロプロピル、(メタ)アクリル酸3-クロロプロピル、および(メタ)アクリル酸2,3-ジクロロプロピルなどが挙げられる。
 (メタ)アクリル酸ハロアシロキシアルキルエステルの具体例としては、(メタ)アクリル酸2-(クロロアセトキシ)エチル、(メタ)アクリル酸2-(クロロアセトキシ)プロピル、(メタ)アクリル酸3-(クロロアセトキシ)プロピル、および(メタ)アクリル酸3-(ヒドロキシクロロアセトキシ)プロピルなどが挙げられる。
 (メタ)アクリル酸(ハロアセチルカルバモイルオキシ)アルキルエステルの具体例としては、(メタ)アクリル酸2-(クロロアセチルカルバモイルオキシ)エチル、および(メタ)アクリル酸3-(クロロアセチルカルバモイルオキシ)プロピルなどが挙げられる。
Specific examples of the unsaturated alcohol ester of a halogen-containing saturated carboxylic acid include vinyl chloroacetate, vinyl 2-chloropropionate, and allyl chloroacetate.
Specific examples of (meth) acrylic acid haloalkyl esters include chloromethyl (meth) acrylate, 1-chloroethyl (meth) acrylate, 2-chloroethyl (meth) acrylate, 1,2-dichloroethyl (meth) acrylate. , 2-chloropropyl (meth) acrylate, 3-chloropropyl (meth) acrylate, and 2,3-dichloropropyl (meth) acrylate.
Specific examples of (meth) acrylic acid haloacyloxyalkyl esters include 2- (chloroacetoxy) ethyl (meth) acrylate, 2- (chloroacetoxy) propyl (meth) acrylate, and 3- (chloro) (meth) acrylic acid. Acetoxy) propyl and 3- (hydroxychloroacetoxy) propyl (meth) acrylate.
Specific examples of (meth) acrylic acid (haloacetylcarbamoyloxy) alkyl esters include 2- (chloroacetylcarbamoyloxy) ethyl (meth) acrylate and 3- (chloroacetylcarbamoyloxy) propyl (meth) acrylate Is mentioned.
 ハロゲン含有不飽和エーテルの具体例としては、クロロメチルビニルエーテル、2-クロロエチルビニルエーテル、3-クロロプロピルビニルエーテル、2-クロロエチルアリルエーテル、および3-クロロプロピルアリルエーテルなどが挙げられる。
 ハロゲン含有不飽和ケトンの具体例としては、2-クロロエチルビニルケトン、3-クロロプロピルビニルケトン、および2-クロロエチルアリルケトンなどが挙げられる。
 ハロメチル基含有芳香族ビニル化合物の具体例としては、p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレン、およびp-クロロメチル-α-メチルスチレンなどが挙げられる。
Specific examples of the halogen-containing unsaturated ether include chloromethyl vinyl ether, 2-chloroethyl vinyl ether, 3-chloropropyl vinyl ether, 2-chloroethyl allyl ether, and 3-chloropropyl allyl ether.
Specific examples of the halogen-containing unsaturated ketone include 2-chloroethyl vinyl ketone, 3-chloropropyl vinyl ketone, and 2-chloroethyl allyl ketone.
Specific examples of the halomethyl group-containing aromatic vinyl compound include p-chloromethylstyrene, m-chloromethylstyrene, o-chloromethylstyrene, and p-chloromethyl-α-methylstyrene.
 ハロゲン含有不飽和アミドの具体例としては、N-クロロメチル(メタ)アクリルアミドなどが挙げられる。
 ハロアセチル基含有不飽和単量体の具体例としては、3-(ヒドロキシクロロアセトキシ)プロピルアリルエーテル、p-ビニルベンジルクロロ酢酸エステルなどが挙げられる。
Specific examples of the halogen-containing unsaturated amide include N-chloromethyl (meth) acrylamide.
Specific examples of the haloacetyl group-containing unsaturated monomer include 3- (hydroxychloroacetoxy) propyl allyl ether and p-vinylbenzyl chloroacetate.
 ジエン単量体としては、共役ジエン単量体、非共役ジエン単量体が挙げられる。
 共役ジエン単量体の具体例としては、1,3-ブタジエン、イソプレン、およびピペリレンなどを挙げることができる。
 非共役ジエン単量体の具体例としては、エチリデンノルボルネン、ジシクロペンタジエン、(メタ)アクリル酸ジシクロペンタジエニル、および(メタ)アクリル酸2-ジシクロペンタジエニルエチルなどを挙げることができる。
Examples of the diene monomer include conjugated diene monomers and non-conjugated diene monomers.
Specific examples of the conjugated diene monomer include 1,3-butadiene, isoprene, and piperylene.
Specific examples of the non-conjugated diene monomer include ethylidene norbornene, dicyclopentadiene, dicyclopentadienyl (meth) acrylate, and 2-dicyclopentadienyl ethyl (meth) acrylate. .
 上記架橋性単量体の中でも、α,β-エチレン性不飽和カルボン酸単量体を用いた場合には、アクリルゴムをカルボキシル基含有アクリルゴムとすることができる。アクリルゴムを、カルボキシル基含有アクリルゴムとすることにより、耐油性、耐熱性を良好なものとしながら、耐圧縮永久歪み性を向上させることができる。 Among the crosslinkable monomers, when an α, β-ethylenically unsaturated carboxylic acid monomer is used, the acrylic rubber can be a carboxyl group-containing acrylic rubber. By making the acrylic rubber into a carboxyl group-containing acrylic rubber, it is possible to improve the compression set resistance while improving the oil resistance and heat resistance.
 本発明のアクリルゴム中における、架橋性単量体単位の含有量は、好ましくは0.1~10重量%、より好ましくは0.5~7重量%、さらに好ましくは0.5~5重量%である。架橋性単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物の機械的特性や耐熱性を良好なものとしながら、耐圧縮永久歪み性をより適切に高めることができる。 The content of the crosslinkable monomer unit in the acrylic rubber of the present invention is preferably 0.1 to 10% by weight, more preferably 0.5 to 7% by weight, still more preferably 0.5 to 5% by weight. It is. By setting the content of the crosslinkable monomer unit within the above range, the compression set resistance can be more appropriately increased while the mechanical properties and heat resistance of the resulting rubber cross-linked product are improved.
 本発明のアクリルゴムは、(メタ)アクリル酸エステル単量体単位、および必要に応じて用いられる架橋性単量体単位に加えて、これらと共重合可能な他の単量体の単位を有していてもよい。このような共重合可能な他の単量体としては、芳香族ビニル単量体、α,β-エチレン性不飽和ニトリル単量体、アクリルアミド系単量体、その他のオレフィン系単量体などが挙げられる。 In addition to the (meth) acrylic acid ester monomer unit and the crosslinkable monomer unit used as necessary, the acrylic rubber of the present invention has other monomer units copolymerizable therewith. You may do it. Such other copolymerizable monomers include aromatic vinyl monomers, α, β-ethylenically unsaturated nitrile monomers, acrylamide monomers, and other olefin monomers. Can be mentioned.
 芳香族ビニル単量体としては、スチレン、α-メチルスチレン、ジビニルベンゼンなどが挙げられる。 Examples of aromatic vinyl monomers include styrene, α-methylstyrene, divinylbenzene and the like.
 α,β-エチレン性不飽和ニトリル単量体としては、アクリロニトリル、メタクリロニトリルなどが挙げられる。
 アクリルアミド系単量体としては、アクリルアミド、メタクリルアミドなどが挙げられる。
 その他のオレフィン系単量体としては、エチレン、プロピレン、塩化ビニル、塩化ビニリデン、酢酸ビニル、エチルビニルエーテル、ブチルビニルエーテルなどが挙げられる。
Examples of the α, β-ethylenically unsaturated nitrile monomer include acrylonitrile and methacrylonitrile.
Examples of acrylamide monomers include acrylamide and methacrylamide.
Other olefinic monomers include ethylene, propylene, vinyl chloride, vinylidene chloride, vinyl acetate, ethyl vinyl ether, butyl vinyl ether, and the like.
 これら共重合可能な他の単量体の中でも、スチレン、アクリロニトリル、メタクリロニトリル、エチレンおよび酢酸ビニルが好ましく、アクリロニトリル、メタクリロニトリル、およびエチレンがより好ましい。 Among these other copolymerizable monomers, styrene, acrylonitrile, methacrylonitrile, ethylene and vinyl acetate are preferable, and acrylonitrile, methacrylonitrile and ethylene are more preferable.
 共重合可能な他の単量体は、1種単独で、または2種以上を併せて使用することができる。本発明のアクリルゴム中における、これら共重合可能な他の単量体の単位の含有量は、通常、49.9重量%以下、好ましくは39.5重量%以下、より好ましくは29.5重量%以下である。 Other monomers that can be copolymerized can be used singly or in combination of two or more. The content of these copolymerizable other monomer units in the acrylic rubber of the present invention is usually 49.9% by weight or less, preferably 39.5% by weight or less, more preferably 29.5% by weight. % Or less.
 また、本発明のアクリルゴムは、凝固剤の残留量が、10,000重量ppm以下であり、好ましくは7,000重量ppm以下、より好ましくは5,000重量ppm以下、さらに好ましくは3,500重量ppm以下であり、凝固剤の残留量の下限は、10重量ppm以上である。なお、本発明のアクリルゴムは、上記単量体を乳化重合することにより得られるものであるが、乳化重合により得られた乳化重合液を凝固する際に、通常、凝固剤が用いられることとなる。そのため、本発明のアクリルゴムのような乳化重合により得られるアクリルゴムには、不可避的に凝固剤が含まれることとなってしまう。これに対し、本発明によれば、アクリルゴム中における凝固剤の残留量を上記範囲とすることにより、ゴム架橋物とした場合における、耐圧縮永久歪み性および耐水性を優れたものとすることができるものである。なお、本発明のアクリルゴムにおいては、凝固剤の残留量は少ない方が好ましく、そのため、凝固時に用いる凝固剤の量を少なくすることで、アクリルゴム中の凝固剤の残留量を少なくする方法も考えられるが、凝固が不十分となり、アクリルゴムの回収率が悪化したり水洗を多くする必要があるため、安定的な生産という観点からは、アクリルゴム中の凝固剤の残留量は、好ましくは200重量ppm以上、より好ましくは500重量ppm以上である。凝固剤の残留量は、たとえば、アクリルゴムに対し、元素分析を行い、凝固剤に含まれる元素の含有量を測定することにより求めることができる。また、凝固剤の残留量を上記した量とする方法としては、特に限定されないが、後述するアクリルゴムの製造方法において、凝固剤の残留量を低減する方法として好ましい態様を適宜選択する方法や、このような態様を適宜組み合わせて用いる方法などが挙げられる。 In the acrylic rubber of the present invention, the residual amount of the coagulant is 10,000 ppm by weight or less, preferably 7,000 ppm by weight or less, more preferably 5,000 ppm by weight or less, and still more preferably 3,500. The lower limit of the residual amount of the coagulant is 10 ppm by weight or more. The acrylic rubber of the present invention is obtained by emulsion polymerization of the above monomers, and a coagulant is usually used when coagulating an emulsion polymerization solution obtained by emulsion polymerization. Become. Therefore, the acrylic rubber obtained by emulsion polymerization such as the acrylic rubber of the present invention inevitably contains a coagulant. On the other hand, according to the present invention, by setting the residual amount of the coagulant in the acrylic rubber within the above range, the compression set and water resistance in the case of a rubber cross-linked product are excellent. It is something that can be done. In the acrylic rubber of the present invention, it is preferable that the residual amount of the coagulant is small. Therefore, there is a method for reducing the residual amount of the coagulant in the acrylic rubber by reducing the amount of the coagulant used at the time of coagulation. Although it is considered, the coagulation becomes insufficient, the recovery rate of acrylic rubber deteriorates or it is necessary to increase the amount of water washing, so from the viewpoint of stable production, the residual amount of coagulant in acrylic rubber is preferably 200 ppm by weight or more, more preferably 500 ppm by weight or more. The residual amount of the coagulant can be determined, for example, by performing elemental analysis on acrylic rubber and measuring the content of the element contained in the coagulant. In addition, the method for setting the residual amount of the coagulant as described above is not particularly limited, but in the method for producing acrylic rubber described later, a method for appropriately selecting a preferred embodiment as a method for reducing the residual amount of the coagulant, Examples include a method of appropriately combining such aspects.
 凝固剤としては、特に限定されないが、たとえば、1~3価の金属塩が挙げられる。1~3価の金属塩は、水に溶解させた場合に1~3価の金属イオンとなる金属を含む塩であり、特に限定されないが、たとえば、塩酸、硝酸および硫酸等から選ばれる無機酸や酢酸等の有機酸と、ナトリウム、カリウム、リチウム、マグネシウム、カルシウム、亜鉛、チタン、マンガン、鉄、コバルト、ニッケル、アルミニウムおよびスズ等から選ばれる金属との塩が挙げられる。また、これらの金属の水酸化物なども用いることもできる。 The coagulant is not particularly limited, and examples thereof include monovalent to trivalent metal salts. The monovalent to trivalent metal salt is a salt containing a metal that becomes a monovalent to trivalent metal ion when dissolved in water, and is not particularly limited. For example, an inorganic acid selected from hydrochloric acid, nitric acid, sulfuric acid, and the like And a salt of an organic acid such as acetic acid or the like with a metal selected from sodium, potassium, lithium, magnesium, calcium, zinc, titanium, manganese, iron, cobalt, nickel, aluminum, tin and the like. Further, hydroxides of these metals can also be used.
 1~3価の金属塩の具体例としては、塩化ナトリウム、塩化カリウム、塩化リチウム、塩化マグネシウム、塩化カルシウム、塩化亜鉛、塩化チタン、塩化マンガン、塩化鉄、塩化コバルト、塩化ニッケル、塩化アルミニウム、塩化スズなどの金属塩化物;硝酸ナトリウム、硝酸カリウム、硝酸リチウム、硝酸マグネシウム、硝酸カルシウム、硝酸亜鉛、硝酸チタン、硝酸マンガン、硝酸鉄、硝酸コバルト、硝酸ニッケル、硝酸アルミニウム、硝酸スズなどの硝酸塩;硫酸ナトリウム、硫酸カリウム、硫酸リチウム、硫酸マグネシウム、硫酸カルシウム、硫酸亜鉛、硫酸チタン、硫酸マンガン、硫酸鉄、硫酸コバルト、硫酸ニッケル、硫酸アルミニウム、硫酸スズなどの硫酸塩;等が挙げられる。これらのなかでも、塩化カルシウム、塩化ナトリウム、硫酸アルミニウム、塩化マグネシウム、硫酸マグネシウム、塩化亜鉛、硫酸亜鉛、硫酸ナトリウムが好ましい。その中でも1価または2価の金属塩が好ましく、より好ましくは、塩化カルシウム、塩化ナトリウム、硫酸マグネシウム、硫酸ナトリウムであり、さらに好ましくは硫酸マグネシウムまたは硫酸ナトリウムである。また、これらは一種単独でまたは複数種併せて用いることができる。 Specific examples of monovalent to trivalent metal salts include sodium chloride, potassium chloride, lithium chloride, magnesium chloride, calcium chloride, zinc chloride, titanium chloride, manganese chloride, iron chloride, cobalt chloride, nickel chloride, aluminum chloride, and chloride. Metal chlorides such as tin; nitrates such as sodium nitrate, potassium nitrate, lithium nitrate, magnesium nitrate, calcium nitrate, zinc nitrate, titanium nitrate, manganese nitrate, iron nitrate, cobalt nitrate, nickel nitrate, aluminum nitrate, tin nitrate; sodium sulfate And sulfates such as potassium sulfate, lithium sulfate, magnesium sulfate, calcium sulfate, zinc sulfate, titanium sulfate, manganese sulfate, iron sulfate, cobalt sulfate, nickel sulfate, aluminum sulfate and tin sulfate; Among these, calcium chloride, sodium chloride, aluminum sulfate, magnesium chloride, magnesium sulfate, zinc chloride, zinc sulfate, and sodium sulfate are preferable. Of these, monovalent or divalent metal salts are preferable, calcium chloride, sodium chloride, magnesium sulfate, and sodium sulfate are more preferable, and magnesium sulfate and sodium sulfate are more preferable. Moreover, these can be used individually by 1 type or in combination of multiple types.
 また、本発明のアクリルゴムは、ゴム架橋物とした場合における耐水性をより高めることができるという観点より、アクリルゴム中に含まれる乳化剤の残留量が、22,000重量ppm以下であることが好ましく、20,000重量ppm以下であることがより好ましく、18,000重量ppm以下であることがさらに好ましく、17,000重量ppm以下であることが特に好ましい。乳化剤の残留量の下限は、特に限定されないが、好ましくは10重量ppm以上、より好ましくは200重量ppm以上、さらに好ましくは500重量ppm以上である。なお、本発明のアクリルゴムは、上記単量体を乳化重合することにより得られるものであるが、乳化重合に際しては、通常、乳化剤も用いられることとなる。そのため、本発明のアクリルゴムのような乳化重合により得られるアクリルゴムには、不可避的に乳化剤が含まれることとなってしまう。これに対し、本発明によれば、アクリルゴム中における乳化剤の残留量を上記範囲とすることにより、ゴム架橋物とした場合における、耐水性をより高めることができるものである。なお、乳化剤の残留量は、たとえば、アクリルゴムに対し、GPC測定を行い、GPC測定により得られた測定チャート中の、乳化剤に対応する分子量のピーク面積から求めることができる。また、乳化剤の残留量を上記した量とする方法としては、特に限定されないが、たとえば、後述するように、乳化剤として、ノニオン性乳化剤とアニオン性乳化剤とを組み合わせて用いるとともに、その添加量を後述する範囲とする方法などが挙げられる。 The acrylic rubber of the present invention is such that the residual amount of the emulsifier contained in the acrylic rubber is 22,000 ppm by weight or less from the viewpoint that the water resistance in the case of a rubber cross-linked product can be further increased. Preferably, it is 20,000 ppm by weight or less, more preferably 18,000 ppm by weight or less, and particularly preferably 17,000 ppm by weight or less. Although the minimum of the residual amount of an emulsifier is not specifically limited, Preferably it is 10 weight ppm or more, More preferably, it is 200 weight ppm or more, More preferably, it is 500 weight ppm or more. The acrylic rubber of the present invention is obtained by emulsion polymerization of the above monomers, but an emulsifier is usually used in the emulsion polymerization. Therefore, the acrylic rubber obtained by emulsion polymerization such as the acrylic rubber of the present invention inevitably contains an emulsifier. On the other hand, according to the present invention, by setting the residual amount of the emulsifier in the acrylic rubber within the above range, the water resistance in the case of a rubber cross-linked product can be further increased. In addition, the residual amount of an emulsifier can be calculated | required from the peak area of the molecular weight corresponding to an emulsifier in the measurement chart obtained by performing GPC measurement with respect to acrylic rubber, for example. The method of setting the residual amount of the emulsifier as described above is not particularly limited. For example, as described later, a nonionic emulsifier and an anionic emulsifier are used in combination as an emulsifier, and the addition amount is described later. The method of making it the range to perform is mentioned.
 また、本発明のアクリルゴムは、上記したように、凝固剤を含有するものであるが、本発明のアクリルゴム中におけるアクリルゴム成分の含有量は、好ましくは95重量%以上であり、より好ましくは97重量%以上であり、さらに好ましくは98重量%以上である。すなわち、本発明のアクリルゴムは、好ましくは95重量%以上(より好ましくは97重量%以上、さらに好ましくは98重量%以上)のアクリルゴム成分を含有するアクリルゴムの組成物ということもできる。 Further, as described above, the acrylic rubber of the present invention contains a coagulant, but the content of the acrylic rubber component in the acrylic rubber of the present invention is preferably 95% by weight or more, more preferably. Is 97% by weight or more, more preferably 98% by weight or more. That is, the acrylic rubber of the present invention can be said to be an acrylic rubber composition containing 95% by weight or more (more preferably 97% by weight or more, more preferably 98% by weight or more) of an acrylic rubber component.
<アクリルゴムの製造方法>
 本発明のアクリルゴムは、たとえば、次の製造方法により製造することができる。すなわち、
 アクリルゴムを形成するための単量体を乳化重合することで、乳化重合液を得る乳化重合工程と、
 前記乳化重合液に、凝固剤を添加し、含水クラムを得る凝固工程と、
 前記含水クラムに対して、洗浄を行う洗浄工程と、
 洗浄を行った含水クラムに対し、乾燥を行う乾燥工程と、
 を備えるアクリルゴムの製造方法。
<Method for producing acrylic rubber>
The acrylic rubber of the present invention can be produced, for example, by the following production method. That is,
An emulsion polymerization step of obtaining an emulsion polymerization liquid by emulsion polymerization of a monomer for forming an acrylic rubber; and
A coagulation step of adding a coagulant to the emulsion polymerization liquid to obtain a hydrous crumb;
A cleaning step of cleaning the water-containing crumb;
A drying process for drying the washed hydrous crumb;
A method for producing acrylic rubber comprising:
<乳化重合工程>
 上記製造方法における、乳化重合工程は、アクリルゴムを形成するための単量体を乳化重合することで、乳化重合液を得る工程である。
<Emulsion polymerization process>
The emulsion polymerization step in the above production method is a step of obtaining an emulsion polymerization solution by emulsion polymerization of a monomer for forming an acrylic rubber.
 乳化重合工程における乳化重合法としては、通常の方法を用いればよく、また、定法にしたがって、乳化剤、重合開始剤、重合停止剤などを用いることができる。 As the emulsion polymerization method in the emulsion polymerization step, an ordinary method may be used, and an emulsifier, a polymerization initiator, a polymerization terminator and the like can be used according to a conventional method.
 乳化剤としては、特に限定されず、たとえば、ポリオキシエチレンドデシルエーテルなどのポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテルなどのポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンステアリン酸エステルなどのポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル、ポリオキシエチレンポリオキシプロピレン共重合体等のノニオン性乳化剤;ミリスチン酸、パルミチン酸、オレイン酸、リノレン酸などの脂肪酸の塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、ラウリル硫酸ナトリウムなどの高級アルコール硫酸エステル塩、アルキルリン酸エステルナトリウムなどの高級燐酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;アルキルトリメチルアンモニウムクロライド、ジアルキルアンモニウムクロライド、ベンジルアンモニウムクロライド等のカチオン性乳化剤;などを挙げることができる。これらの乳化剤は単独でまたは2種以上を組合せて用いることができる。これらのノニオン性乳化剤の中でも、ポリオキシエチレンポリプロピレングリコール、モノステアリン酸ポリエチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテルが好ましい。なお、ノニオン性乳化剤としては、重量平均分子量が1万未満のものが好ましく、重量平均分子量が500~8000のものがより好ましく、重量平均分子量が600~5000がさらに好ましい。また、これらのアニオン性乳化剤の中でも、高級燐酸エステル塩、高級アルコール硫酸エステル塩が好ましい。 The emulsifier is not particularly limited. For example, polyoxyethylene alkyl ethers such as polyoxyethylene dodecyl ether, polyoxyethylene alkyl phenol ethers such as polyoxyethylene nonylphenyl ether, and polyoxyethylene alkyls such as polyoxyethylene stearate. Nonionic emulsifiers such as esters, polyoxyethylene sorbitan alkyl esters, polyoxyethylene polyoxypropylene copolymers; salts of fatty acids such as myristic acid, palmitic acid, oleic acid, linolenic acid, alkylbenzene sulfones such as sodium dodecylbenzene sulfonate Acid salts, higher alcohol sulfates such as sodium lauryl sulfate, higher phosphate esters such as sodium alkyl phosphate, Anionic emulsifiers such as Rusuruhokohaku salt; and the like; alkyl trimethyl ammonium chloride, dialkyl ammonium chloride, cationic emulsifiers such as ammonium chloride. These emulsifiers can be used alone or in combination of two or more. Among these nonionic emulsifiers, polyoxyethylene polypropylene glycol, polyethylene glycol monostearate, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenol ether are preferable. As the nonionic emulsifier, those having a weight average molecular weight of less than 10,000 are preferable, those having a weight average molecular weight of 500 to 8000 are more preferable, and those having a weight average molecular weight of 600 to 5000 are more preferable. Among these anionic emulsifiers, higher phosphate ester salts and higher alcohol sulfate ester salts are preferred.
 これら乳化剤の中でも、ノニオン性乳化剤およびアニオン性乳化剤が好ましく、ノニオン性乳化剤とアニオン性乳化剤とを組み合わせて用いることが好ましい。ノニオン性乳化剤とアニオン性乳化剤とを組み合わせて用いることにより、乳化重合時における重合装置(たとえば、重合槽)へのポリマーなどの付着による汚れの発生を有効に抑制しつつ、後述する凝固工程において用いる凝固剤の使用量を低減することが可能となり、結果として、最終的に得られるアクリルゴム中における凝固剤量を低減することができる。 Among these emulsifiers, nonionic emulsifiers and anionic emulsifiers are preferable, and a nonionic emulsifier and an anionic emulsifier are preferably used in combination. By using a combination of a nonionic emulsifier and an anionic emulsifier, it is used in a coagulation step described later while effectively suppressing the occurrence of dirt due to adhesion of a polymer to a polymerization apparatus (for example, a polymerization tank) during emulsion polymerization. The amount of coagulant used can be reduced, and as a result, the amount of coagulant in the finally obtained acrylic rubber can be reduced.
 また、ノニオン性乳化剤とアニオン性乳化剤とを組み合わせて用いることにより、乳化作用を高めることができるため、乳化剤自体の使用量をも低減することができ、結果として、最終的に得られるアクリルゴム中に含まれる乳化剤の残留量を低減することができ、これにより、得られるアクリルゴムの耐水性をより高めることができる。 Also, by using a combination of a nonionic emulsifier and an anionic emulsifier, the emulsifying action can be enhanced, so that the amount of the emulsifier itself can also be reduced, and as a result, in the acrylic rubber finally obtained The residual amount of the emulsifier contained in can be reduced, whereby the water resistance of the resulting acrylic rubber can be further increased.
 上記製造方法における、乳化剤の使用量は、重合に用いる単量体100重量部に対する、用いる乳化剤の総量で、好ましくは0.1~5重量部、より好ましくは0.5~4重量部、さらに好ましくは1~3重量部である。また、ノニオン性乳化剤とアニオン性乳化剤を組み合わせて用いる場合における、ノニオン性乳化剤の使用量は、重合に用いる単量体100重量部に対して、0重量部超、4重量部、好ましくは0.1~3重量部、より好ましくは0.5~2重量部、さらに好ましくは0.7~1.7重量部であり、アニオン性乳化剤の使用量は、重合に用いる単量体100重量部に対して、0重量部超、4重量部、好ましくは0.1~3重量部、より好ましくは0.5~2重量部、さらに好ましくは0.35~0.75重量部である。また、ノニオン性乳化剤とアニオン性乳化剤とを組み合わせて用いる場合における使用比率は、ノニオン性乳化剤/アニオン性乳化剤の重量比で、1/99~99/1が好ましく、10/90~80/20がより好ましく、25/75~75/25がさらに好ましく、50/50~75/25がさらにより好ましく、65/35~75/25が特に好ましい。 In the above production method, the amount of the emulsifier used is the total amount of the emulsifier used with respect to 100 parts by weight of the monomer used for the polymerization, preferably 0.1 to 5 parts by weight, more preferably 0.5 to 4 parts by weight, The amount is preferably 1 to 3 parts by weight. In the case of using a combination of a nonionic emulsifier and an anionic emulsifier, the amount of the nonionic emulsifier used is more than 0 parts by weight, preferably 0. 1 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, still more preferably 0.7 to 1.7 parts by weight. The amount of the anionic emulsifier used is 100 parts by weight of the monomer used for the polymerization. On the other hand, it is more than 0 parts by weight, 4 parts by weight, preferably 0.1 to 3 parts by weight, more preferably 0.5 to 2 parts by weight, still more preferably 0.35 to 0.75 parts by weight. In addition, when the nonionic emulsifier is used in combination with the anionic emulsifier, the weight ratio of the nonionic emulsifier / anionic emulsifier is preferably 1/99 to 99/1, and preferably 10/90 to 80/20. More preferred is 25/75 to 75/25, still more preferred is 50/50 to 75/25, and even more preferred is 65/35 to 75/25.
 重合開始剤としては、アゾビスイソブチロニトリルなどのアゾ化合物;ジイソプロピルベンゼンハイドロパーオキサイド、クメンハイドロパーオキサイド、パラメンタンハイドロパーオキサイド、ベンゾイルパーオキサイド等の有機過酸化物;過硫酸ナトリウム、過硫酸カリウム、過酸化水素、過硫酸アンモニウム等の無機過酸化物;などを用いることができる。これらの重合開始剤は、それぞれ単独で、あるいは2種類以上を組み合わせて使用することができる。重合開始剤の使用量は、重合に用いる単量体100重量部に対して、好ましくは0.001~1.0重量部である。 As polymerization initiators, azo compounds such as azobisisobutyronitrile; organic peroxides such as diisopropylbenzene hydroperoxide, cumene hydroperoxide, paramentane hydroperoxide, benzoyl peroxide; sodium persulfate, persulfate Inorganic peroxides such as potassium, hydrogen peroxide, and ammonium persulfate; can be used. These polymerization initiators can be used alone or in combination of two or more. The amount of the polymerization initiator used is preferably 0.001 to 1.0 part by weight with respect to 100 parts by weight of the monomer used for the polymerization.
 また、重合開始剤としての有機過酸化物および無機過酸化物は、還元剤と組み合わせて、レドックス系重合開始剤として使用することが好ましい。組み合わせて用いる還元剤としては、特に限定されないが、硫酸第一鉄、ヘキサメチレンジアミン四酢酸鉄ナトリウム、ナフテン酸第一銅等の還元状態にある金属イオンを含有する化合物;アスコルビン酸、アスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸(塩);エリソルビン酸、エリソルビン酸ナトリウム、エリソルビン酸カリウムなどのエリソルビン酸(塩);糖類;ヒドロキシメタンスルフィン酸ナトリウムなどのスルフィン酸塩;亜硫酸ナトリウム、亜硫酸カリウム、亜硫酸水素ナトリウム、アルデヒド亜硫酸水素ナトリウム、亜硫酸水素カリウムの亜硫酸塩;ピロ亜硫酸ナトリウム、ピロ亜硫酸カリウム、ピロ亜硫酸水素ナトリウム、ピロ亜硫酸水素カリウムなどのピロ亜硫酸塩;チオ硫酸ナトリウム、チオ硫酸カリウムなどのチオ硫酸塩;亜燐酸、亜燐酸ナトリウム、亜燐酸カリウム、亜燐酸水素ナトリウム、亜燐酸水素カリウムの亜燐酸(塩);ピロ亜燐酸、ピロ亜燐酸ナトリウム、ピロ亜燐酸カリウム、ピロ亜燐酸水素ナトリウム、ピロ亜燐酸水素カリウムなどのピロ亜燐酸(塩);ナトリウムホルムアルデヒドスルホキシレートなどが挙げられる。これらの還元剤は単独でまたは2種以上を組合せて用いることができる。還元剤の使用量は、重合に用いる単量体100重量部に対して、好ましくは0.0003~0.5重量部である。 Moreover, it is preferable to use the organic peroxide and the inorganic peroxide as the polymerization initiator as a redox polymerization initiator in combination with a reducing agent. Although it does not specifically limit as a reducing agent used in combination, The compound containing metal ions in a reduced state, such as ferrous sulfate, sodium hexamethylenediamine tetraacetate, cuprous naphthenate; ascorbic acid, sodium ascorbate Ascorbic acid (salt) such as potassium ascorbate; Erythorbic acid (salt) such as erythorbic acid, sodium erythorbate, potassium erythorbate; saccharides; Sulphinates such as sodium hydroxymethanesulfinate; Sodium hydrogen hydride, sodium aldehyde sodium hydrogen sulfite, potassium hydrogen sulfite; pyrosulfites such as sodium pyrosulfite, potassium pyrosulfite, sodium hydrogen bisulfite, potassium hydrogen bisulfite; sodium thiosulfate Thiosulfates such as potassium thiosulfate; phosphorous acid, sodium phosphite, potassium phosphite, sodium hydrogen phosphite, potassium hydrogen phosphite (salt); pyrophosphorous acid, sodium pyrophosphite, potassium pyrophosphite, Examples thereof include pyrophosphorous acid (salt) such as sodium hydrogen pyrophosphite and potassium hydrogen pyrophosphite; sodium formaldehyde sulfoxylate and the like. These reducing agents can be used alone or in combination of two or more. The amount of the reducing agent used is preferably 0.0003 to 0.5 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
 重合停止剤としては、たとえば、ヒドロキシルアミン、ヒドロキシアミン硫酸塩、ジエチルヒドロキシアミン、ヒドロキシアミンスルホン酸およびそのアルカリ金属塩、ジメチルジチオカルバミン酸ナトリウム、ハイドロキノンなどが挙げられる。重合停止剤の使用量は、特に限定されないが、重合に用いる単量体100重量部に対して、好ましくは0.1~2重量部である。 Examples of the polymerization terminator include hydroxylamine, hydroxyamine sulfate, diethylhydroxyamine, hydroxyaminesulfonic acid and its alkali metal salt, sodium dimethyldithiocarbamate, hydroquinone and the like. The amount of the polymerization terminator used is not particularly limited, but is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
 水の使用量は、重合に用いる単量体100重量部に対して、好ましくは80~500重量部、より好ましくは100~300重量部である。 The amount of water used is preferably 80 to 500 parts by weight, more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
 乳化重合に際しては、必要に応じて、分子量調整剤、粒径調整剤、キレート化剤、酸素捕捉剤等の重合副資材を使用することができる。 In the emulsion polymerization, polymerization auxiliary materials such as a molecular weight adjusting agent, a particle size adjusting agent, a chelating agent, and an oxygen scavenger can be used as necessary.
 乳化重合は、回分式、半回分式、連続式のいずれの方法で行ってもよいが、半回分式が好ましい。具体的には、重合開始剤および還元剤を含む反応系中に、重合に用いる単量体を、重合反応開始から任意の時間まで、重合反応系に連続的に滴下しながら重合反応をおこなうなど、重合に用いる単量体、重合開始剤、および還元剤のうち少なくとも1種については、重合反応開始から任意の時間まで、重合反応系に連続的に滴下しながら重合反応を行うことが好ましく、重合に用いる単量体、重合開始剤、および還元剤の全てについて、重合反応開始から任意の時間まで、重合反応系に連続的に滴下しながら重合反応を行うことがより好ましい。これらを連続的に滴下しながら重合反応を行うことにより、乳化重合を安定的に行うことができ、これにより、重合反応率を向上させることができる。なお、重合は通常0~70℃、好ましくは5~50℃の温度範囲で行なわれる。 The emulsion polymerization may be carried out by any of batch, semi-batch and continuous methods, but the semi-batch method is preferred. Specifically, in the reaction system containing the polymerization initiator and the reducing agent, the polymerization reaction is performed while continuously dropping the monomer used for the polymerization to the polymerization reaction system from the start of the polymerization reaction to an arbitrary time. In addition, for at least one of the monomers used for the polymerization, the polymerization initiator, and the reducing agent, it is preferable to perform the polymerization reaction while continuously dropping into the polymerization reaction system from the start of the polymerization reaction to any time, It is more preferable to perform the polymerization reaction while continuously dropping the monomer, polymerization initiator, and reducing agent used for the polymerization from the start of the polymerization reaction to an arbitrary time while continuously dropping into the polymerization reaction system. By carrying out the polymerization reaction while continuously dropping them, emulsion polymerization can be carried out stably, and thereby the polymerization reaction rate can be improved. The polymerization is usually performed in a temperature range of 0 to 70 ° C., preferably 5 to 50 ° C.
 また、重合に用いる単量体を連続的に滴下しながら重合反応を行う場合には、重合に用いる単量体を、乳化剤および水と混合し、単量体乳化液の状態とし、単量体乳化液の状態で連続的に滴下することが好ましい。単量体乳化液の調製方法としては特に限定されず、重合に用いる単量体の全量と、乳化剤の全量と、水とをホモミキサーやディスクタービンなどの攪拌機などを用いて攪拌する方法などが挙げられる。単量体乳化液中の水の使用量は、重合に用いる単量体100重量部に対して、好ましくは10~70重量部、より好ましくは20~50重量部である。 In addition, when the polymerization reaction is performed while continuously dropping the monomer used for polymerization, the monomer used for polymerization is mixed with an emulsifier and water to form a monomer emulsion, It is preferable to drop continuously in the state of an emulsion. The method for preparing the monomer emulsion is not particularly limited, and includes a method of stirring the total amount of monomers used for polymerization, the total amount of emulsifier, and water using a stirrer such as a homomixer or a disk turbine. Can be mentioned. The amount of water used in the monomer emulsion is preferably 10 to 70 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the monomer used for the polymerization.
 また、重合に用いる単量体、重合開始剤、および還元剤の全てについて、重合反応開始から任意の時間まで、重合反応系に連続的に滴下しながら重合反応を行う場合には、これらは別々の滴下装置を用いて重合系に滴下してもよいし、あるいは、少なくとも重合開始剤と還元剤とについては、予め混合し、必要に応じて水溶液の状態として同じ滴下装置から重合系に滴下してもよい。滴下終了後は、さらに重合反応率向上のため、任意の時間反応を継続してもよい。 In addition, when the polymerization reaction is carried out while continuously dropping into the polymerization reaction system from the start of the polymerization reaction to an arbitrary time for all of the monomer, polymerization initiator, and reducing agent used for the polymerization, these are separate. Or at least the polymerization initiator and the reducing agent may be mixed in advance and, if necessary, dropped into the polymerization system from the same dropping device as an aqueous solution. May be. After completion of dropping, the reaction may be continued for an arbitrary time in order to further improve the polymerization reaction rate.
<凝固工程>
 上記製造方法における、凝固工程は、上記乳化重合工程により得られた乳化重合液に、凝固剤を添加することで、含水クラムを得る工程である。
<Coagulation process>
The coagulation step in the above production method is a step of obtaining a hydrous crumb by adding a coagulant to the emulsion polymerization solution obtained by the emulsion polymerization step.
 凝固剤としては、特に限定されないが、たとえば、上述した1~3価の金属塩を好適に用いることができる。凝固剤の使用量は、最終的に得られるアクリルゴム中における凝固剤の残留量を上記範囲とするという観点より、乳化重合液中のアクリルゴム成分100重量部に対して、好ましくは1~100重量部、より好ましくは2~40重量部、さらに好ましくは3~20重量部、特に好ましくは3~12重量部である。凝固剤が少なすぎると、凝固が不十分となり、アクリルゴムの収率が悪化してしまい、一方、多すぎると、最終的に得られるアクリルゴム中における凝固剤の残留量が多くなりすぎてしまい、耐水性が悪化してしまう。 The coagulant is not particularly limited, and for example, the above-described monovalent to trivalent metal salts can be suitably used. The amount of the coagulant used is preferably 1 to 100 with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid from the viewpoint that the residual amount of the coagulant in the finally obtained acrylic rubber is within the above range. Parts by weight, more preferably 2 to 40 parts by weight, still more preferably 3 to 20 parts by weight, particularly preferably 3 to 12 parts by weight. If the amount of the coagulant is too small, the coagulation becomes insufficient and the yield of the acrylic rubber is deteriorated. On the other hand, if the amount is too large, the residual amount of the coagulant in the finally obtained acrylic rubber becomes too large. Water resistance will deteriorate.
 凝固温度は特に限定されないが、好ましくは50~90℃、より好ましくは60~80℃である。 The solidification temperature is not particularly limited, but is preferably 50 to 90 ° C, more preferably 60 to 80 ° C.
 また、本発明のアクリルゴムを製造する際には、凝固剤を添加して凝固させる前の乳化重合液に、アクリルゴムに配合する配合剤のうち一部の配合剤、具体的には、老化防止剤、滑剤およびエチレンオキシド系重合体のうち少なくともいずれかについては、予め配合しておくことが好ましい。すなわち、老化防止剤、滑剤およびエチレンオキシド系重合体のうち少なくともいずれかについては、乳化重合液中に既に配合された状態とし、これらを配合した乳化重合液に対し、凝固を行うことが好ましい。 In addition, when producing the acrylic rubber of the present invention, some of the compounding agents to be blended with the acrylic rubber in the emulsion polymerization liquid before solidifying by adding a coagulant, specifically, aging At least one of the inhibitor, the lubricant and the ethylene oxide polymer is preferably blended in advance. That is, it is preferable that at least one of the anti-aging agent, the lubricant, and the ethylene oxide polymer is already mixed in the emulsion polymerization solution, and the emulsion polymerization solution containing these is coagulated.
 特に、老化防止剤を凝固前の乳化重合液中に予め配合しておくことにより、後述する乾燥工程における乾燥時の熱によるアクリルゴムの劣化を有効に抑制することができるものである。具体的には、乾燥時の加熱による劣化に起因するムーニー粘度の低下を、効果的に抑制することができ、さらには、ゴム架橋物とした場合における、常態の引張強度や破断伸びなどを効果的に高めることができるものである。加えて、乳化重合液の状態において、老化防止剤を配合することにより、老化防止剤を適切に分散させることができるため、老化防止剤の配合量を低減させた場合でも、その添加効果を充分に発揮させることができるものである。具体的には、老化防止剤の配合量を、乳化重合液中のアクリルゴム成分100重量部に対して、好ましくは0.1~2重量部、より好ましくは0.2~1.2重量部と比較的少ない配合量としても、その添加効果を充分に発揮させることができるものである。なお、老化防止剤を凝固前の乳化重合液中に予め配合しておいた場合でも、後の凝固や洗浄、乾燥などにおいて、予め配合した老化防止剤は、実質的に除去されることはないため、乳化重合液中に予め配合しておいた場合でも、その添加効果を充分発揮できるものである。 In particular, the deterioration of the acrylic rubber due to heat at the time of drying in the drying step described later can be effectively suppressed by preliminarily blending the anti-aging agent in the emulsion polymerization liquid before coagulation. Specifically, the decrease in Mooney viscosity due to deterioration due to heating during drying can be effectively suppressed, and further, the effect of normal tensile strength, breaking elongation, etc. when rubber cross-linked products are used. Can be enhanced. In addition, since the anti-aging agent can be appropriately dispersed by blending the anti-aging agent in the state of the emulsion polymerization liquid, the effect of adding the anti-aging agent is sufficient even when the amount of the anti-aging agent is reduced. It can be made to exhibit. Specifically, the blending amount of the antioxidant is preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1.2 parts by weight with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid. Even when the amount is relatively small, the effect of the addition can be sufficiently exhibited. Even if the anti-aging agent is previously blended in the emulsion polymerization liquid before coagulation, the pre-blended anti-aging agent is not substantially removed in the subsequent coagulation, washing, drying, etc. For this reason, even when pre-blended in the emulsion polymerization liquid, the effect of addition can be sufficiently exhibited.
 老化防止剤としては、特に限定されないが、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチルフェノール、ブチルヒドロキシアニソール、2,6-ジ-t-ブチル-α-ジメチルアミノ-p-クレゾール、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、スチレン化フェノール、2,2’-メチレン-ビス(6-α-メチル-ベンジル-p-クレゾール)、4,4’-メチレンビス(2,6-ジ-t-ブチルフノール)、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル、アルキル化ビスフェノール、p-クレゾールとジシクロペンタジエンのブチル化反応生成物などの硫黄原子を含有しないフェノール系老化防止剤;2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール、2,2’-チオビス-(4-メチル-6-t-ブチルフェノール)、4,4’-チオビス-(6-t-ブチル-o-クレゾール)、2,6-ジ-t-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノールなどのチオビスフェノール系老化防止剤;トリス(ノニルフェニル)ホスファイト、ジフェニルイソデシルホスファイト、テトラフェニルジプロピレングリコール・ジホスファイトなどの亜燐酸エステル系老化防止剤;チオジプロピオン酸ジラウリルなどの硫黄エステル系老化防止剤;フェニル-α-ナフチルアミン、フェニル-β-ナフチルアミン、p-(p-トルエンスルホニルアミド)-ジフェニルアミン、4,4’―(α,α-ジメチルベンジル)ジフェニルアミン、N,N-ジフェニル-p-フェニレンジアミン、N-イソプロピル-N’-フェニル-p-フェニレンジアミン、ブチルアルデヒド-アニリン縮合物などのアミン系老化防止剤;2-メルカプトベンズイミダゾールなどのイミダゾール系老化防止剤;6-エトキシ-2,2,4-トリメチル-1,2-ジヒドロキノリンなどのキノリン系老化防止剤;2,5-ジ-(t-アミル)ハイドロキノンなどのハイドロキノン系老化防止剤;などが挙げられる。これらの老化防止剤は、1種を単独で用いてもよいし、または2種以上を併用してもよい。 The antiaging agent is not particularly limited, but 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butylphenol, butylhydroxyanisole, 2,6-di-t-butyl- α-dimethylamino-p-cresol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, styrenated phenol, 2,2′-methylene-bis (6-α-methyl- Benzyl-p-cresol), 4,4'-methylenebis (2,6-di-t-butylfunol), 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 3- (3 Butylation reaction of stearyl 5-di-tert-butyl-4-hydroxyphenyl) propionate, alkylated bisphenol, p-cresol and dicyclopentadiene Phenol-based antioxidants containing no sulfur atom, such as reaction products; 2,4-bis [(octylthio) methyl] -6-methylphenol, 2,2′-thiobis- (4-methyl-6-t-butylphenol) ), 4,4′-thiobis- (6-tert-butyl-o-cresol), 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1,3,5-triazine Thiobisphenol-based antioxidants such as -2-ylamino) phenol; phosphite-based antioxidants such as tris (nonylphenyl) phosphite, diphenylisodecyl phosphite, tetraphenyldipropylene glycol diphosphite; thiodipropionic acid Sulfur ester anti-aging agents such as dilauryl; phenyl-α-naphthylamine, phenyl-β-naphthylamine, p- (P-toluenesulfonylamide) -diphenylamine, 4,4 ′-(α, α-dimethylbenzyl) diphenylamine, N, N-diphenyl-p-phenylenediamine, N-isopropyl-N′-phenyl-p-phenylenediamine, Amine-based antioxidants such as butyraldehyde-aniline condensates; Imidazole-based antioxidants such as 2-mercaptobenzimidazole; Quinoline-based aging such as 6-ethoxy-2,2,4-trimethyl-1,2-dihydroquinoline Inhibitors; hydroquinone anti-aging agents such as 2,5-di- (t-amyl) hydroquinone; and the like. These anti-aging agents may be used alone or in combination of two or more.
 また、滑剤を凝固前の乳化重合液中に予め配合しておくことにより、最終的に得られるアクリルゴムのタックを低くすることができ、ロールなどの混合装置を用いて、各種配合剤と混合する際に、ロールなどの混合装置に対する粘着を好適に抑制でき、これにより生産性を向上させることができるものである。すなわち、ロールなどの混合装置を用いて、アクリルゴムに各種配合剤を配合する際に、滑剤を添加する方法も考えられるが、この方法では、ロールによる混合初期の段階においては、滑剤の分散が不十分であることから、ロールへの粘着が発生しまうこととなり、結果として、ロールによる混合時間が長くなってしまう一方で、滑剤を凝固前の乳化重合液中に予め配合しておくことにより、ロールによる混合初期の段階から、ロールへの粘着を適切に防止できるため、ロールによる混合時間を短くするこができ、結果として、生産性を向上させることができるものである。加えて、乳化重合液の状態において、滑剤を配合することにより、滑剤を適切に分散させることができるため、滑剤の配合量を低減させた場合でも、その添加効果を充分に発揮させることができるものである。具体的には、滑剤の配合量を、乳化重合液中のアクリルゴム成分100重量部に対して、好ましくは0.1~2重量部、より好ましくは0.2~1重量部と比較的少ない配合量としても、その添加効果を充分に発揮させることができるものである。なお、滑剤を凝固前の乳化重合液中に予め配合しておいた場合でも、後の凝固や洗浄、乾燥などにおいて、予め配合した滑剤は、実質的に除去されることはないため、乳化重合液中に予め配合しておいた場合でも、その添加効果を充分発揮できるものである。 In addition, by pre-blending the lubricant in the emulsion polymerization liquid before coagulation, the tack of the finally obtained acrylic rubber can be lowered and mixed with various compounding agents using a mixing device such as a roll. In doing so, adhesion to a mixing device such as a roll can be suitably suppressed, thereby improving productivity. In other words, a method of adding a lubricant when blending various compounding agents into an acrylic rubber using a mixing device such as a roll is also conceivable. However, in this method, the lubricant is dispersed at the initial stage of mixing by the roll. Because it is insufficient, sticking to the roll will occur, and as a result, the mixing time by the roll will be long, while by pre-blending the lubricant in the emulsion polymerization liquid before coagulation, Since the sticking to the roll can be appropriately prevented from the initial stage of mixing by the roll, the mixing time by the roll can be shortened, and as a result, the productivity can be improved. In addition, since the lubricant can be appropriately dispersed by blending the lubricant in the state of the emulsion polymerization liquid, even when the blending amount of the lubricant is reduced, the addition effect can be sufficiently exhibited. Is. Specifically, the blending amount of the lubricant is relatively small, preferably 0.1 to 2 parts by weight, more preferably 0.2 to 1 part by weight, with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid. Also as a compounding quantity, the addition effect can fully be exhibited. Even if the lubricant is pre-mixed in the emulsion polymerization liquid before coagulation, the pre-mixed lubricant is not substantially removed in the subsequent coagulation, washing, drying, etc. Even when pre-blended in the liquid, the effect of addition can be sufficiently exhibited.
 滑剤としては、特に限定されないが、ポリグリセリン脂肪酸エステル、燐酸エステル、脂肪酸エステル、脂肪酸アマイド、高級脂肪酸、などが挙げられる。 The lubricant is not particularly limited, and examples thereof include polyglycerin fatty acid ester, phosphate ester, fatty acid ester, fatty acid amide, and higher fatty acid.
 さらに、エチレンオキシド系重合体を凝固前の乳化重合液中に予め配合しておくことにより、乳化重合液の凝固性を向上させることができ、これにより、凝固工程における凝固剤量を低減させることができることから、最終的に得られるアクリルゴム中の残留量を低減でき、ゴム架橋物とした場合における、耐圧縮永久歪み性および耐水性をより高めることができる。エチレンオキシド系重合体しては、主鎖構造として、ポリエチレンオキシド構造を有する重合体であればよく、特に限定されないが、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド/プロピレンオキシド共重合体などが挙げられ、この中でもポリエチレンオキシドが好適である。エチレンオキシド系重合体の配合量は、乳化重合液中のアクリルゴム成分100重量部に対して、好ましくは0.01~1重量部、より好ましくは0.1~0.5重量部である。また、エチレンオキシド系重合体の重量平均分子量は1万から100万、好ましくは1万から20万、より好ましくは2万から12万である。 Furthermore, by preliminarily blending the ethylene oxide polymer in the emulsion polymerization solution before coagulation, the coagulation property of the emulsion polymerization solution can be improved, thereby reducing the amount of coagulant in the coagulation step. Since it can do, the residual amount in the acrylic rubber finally obtained can be reduced, and when it is set as a rubber cross-linked product, compression set resistance and water resistance can be further improved. The ethylene oxide polymer is not particularly limited as long as it is a polymer having a polyethylene oxide structure as the main chain structure, and examples thereof include polyethylene oxide, polypropylene oxide, and ethylene oxide / propylene oxide copolymers. Polyethylene oxide is preferred. The blending amount of the ethylene oxide polymer is preferably 0.01 to 1 part by weight, more preferably 0.1 to 0.5 part by weight with respect to 100 parts by weight of the acrylic rubber component in the emulsion polymerization liquid. The weight average molecular weight of the ethylene oxide polymer is 10,000 to 1,000,000, preferably 10,000 to 200,000, more preferably 20,000 to 120,000.
 なお、凝固前の乳化重合液に、老化防止剤、滑剤およびエチレンオキシド系重合体を添加する場合における添加順序は特に限定されず、適宜、選択すればよい。 The order of addition in the case of adding an antioxidant, a lubricant and an ethylene oxide polymer to the emulsion polymerization solution before coagulation is not particularly limited, and may be appropriately selected.
 そして、これら老化防止剤、滑剤および/またはエチレンオキシド系重合体を、予め凝固前の乳化重合液に配合した場合においても、上記と同様の条件にて、乳化重合液に対し、凝固剤を添加して凝固操作を行うことで、含水クラムを得ることができる。 And even when these anti-aging agent, lubricant and / or ethylene oxide polymer are blended in the emulsion polymerization liquid before coagulation in advance, a coagulant is added to the emulsion polymerization liquid under the same conditions as described above. By performing the solidification operation, a hydrous crumb can be obtained.
<洗浄工程>
 上記製造方法における、洗浄工程は、上記した凝固工程において得られた含水クラムに対して、洗浄を行う工程である。
<Washing process>
The washing step in the above production method is a step of washing the water-containing crumb obtained in the above-described coagulation step.
 洗浄方法としては、特に限定されないが、洗浄液として水を使用し、含水クラムとともに、添加した水を混合することにより水洗を行う方法が挙げられる。水洗時の温度としては、特に限定されないが、好ましくは5~60℃、より好ましくは10~50℃であり、混合時間は1~60分、より好ましくは2~30分である。 The washing method is not particularly limited, and examples thereof include a method of washing with water by using water as a washing liquid and mixing the added water together with the hydrated crumb. The temperature at the time of washing with water is not particularly limited, but is preferably 5 to 60 ° C., more preferably 10 to 50 ° C., and the mixing time is 1 to 60 minutes, more preferably 2 to 30 minutes.
 また、水洗時に、含水クラムに対して添加する水の量としては、特に限定されないが、最終的に得られるアクリルゴム中の凝固剤の残留量を効果的に低減することができるという観点より、含水クラム中に含まれる固形分(主として、アクリルゴム成分)100重量部に対して、水洗1回当たりの水の量が、好ましくは50~9,800重量部、より好ましくは300~1,800重量部である。 In addition, the amount of water to be added to the hydrated crumb at the time of washing with water is not particularly limited, but from the viewpoint that the residual amount of coagulant in the finally obtained acrylic rubber can be effectively reduced, The amount of water per washing is preferably 50 to 9,800 parts by weight, more preferably 300 to 1,800 parts per 100 parts by weight of the solid content (mainly acrylic rubber component) contained in the hydrous crumb. Parts by weight.
 水洗回数としては、特に限定されず、1回でもよいが、最終的に得られるアクリルゴム中の凝固剤の残留量を低減するという観点より、好ましくは2~10回、より好ましくは3~8回である。なお、最終的に得られるアクリルゴム中の凝固剤の残留量を低減するという観点からは、水洗回数が多い方が望ましいが、上記範囲を超えて洗浄を行っても、凝固剤の除去効果が小さい一方で、工程数が増加してしまうことにより生産性の低下の影響が大きくなってしまうため、水洗回数は上記範囲とすることが好ましい。 The number of times of washing with water is not particularly limited, and may be one, but is preferably 2 to 10 times, more preferably 3 to 8 from the viewpoint of reducing the residual amount of coagulant in the finally obtained acrylic rubber. Times. In addition, from the viewpoint of reducing the residual amount of coagulant in the finally obtained acrylic rubber, it is desirable that the number of times of washing with water is large. On the other hand, it is preferable that the number of washings is in the above range because the influence of the decrease in productivity is increased by increasing the number of steps.
 また、本発明においては、水洗を行った後、さらに洗浄液として酸を使用した酸洗浄を行ってもよい。酸洗浄を行うことにより、ゴム架橋物とした場合における耐圧縮永久歪み性をより高めることができるものであり、アクリルゴムがカルボキシル基を有するカルボキシル基含有アクリルゴムである場合に、この酸洗浄による耐圧縮永久歪み性の向上効果は特に大きいものとなる。酸洗浄に用いる酸としては、特に限定されず、硫酸、塩酸、燐酸などを制限なく用いることができる。また、酸洗浄において、含水クラムに酸を添加する際には、水溶液の状態で添加することが好ましく、好ましくはpH=6以下、より好ましくはpH=4以下、さらに好ましくはpH=3以下の水溶液の状態で添加すること好ましい。また、酸洗浄の方法としては、特に限定されないが、たとえば、含水クラムとともに、添加した酸の水溶液を混合する方法が挙げられる。 In the present invention, after washing with water, acid washing using an acid as a washing solution may be performed. By performing the acid cleaning, the compression set resistance in the case of a rubber cross-linked product can be further improved. When the acrylic rubber is a carboxyl group-containing acrylic rubber having a carboxyl group, this acid cleaning The effect of improving the compression set resistance is particularly great. The acid used for the acid cleaning is not particularly limited, and sulfuric acid, hydrochloric acid, phosphoric acid and the like can be used without limitation. In addition, when acid is added to water-containing crumbs in acid washing, it is preferably added in the form of an aqueous solution, preferably pH = 6 or less, more preferably pH = 4 or less, and even more preferably pH = 3 or less. It is preferable to add in the state of aqueous solution. The acid washing method is not particularly limited, and examples thereof include a method of mixing an aqueous solution of the added acid together with water-containing crumb.
 また、酸洗浄時の温度としては、特に限定されないが、好ましくは5~60℃、より好ましくは10~50℃であり、混合時間は1~60分、より好ましくは2~30分である。酸洗浄の洗浄水のpHは、特に限定されないが、好ましくはpH=6以下、より好ましくはpH=4以下、さらに好ましくはpH=3以下である。なお、酸洗浄の洗浄水のpHは、たとえば、酸洗浄後の含水クラムに含まれる水のpHを測定することにより求めることができる。 The temperature during the acid cleaning is not particularly limited, but is preferably 5 to 60 ° C., more preferably 10 to 50 ° C., and the mixing time is 1 to 60 minutes, more preferably 2 to 30 minutes. The pH of the washing water for the acid washing is not particularly limited, but is preferably pH = 6 or less, more preferably pH = 4 or less, and further preferably pH = 3 or less. The pH of the acid-washed wash water can be determined, for example, by measuring the pH of the water contained in the hydrous crumb after the acid wash.
 酸洗浄を行った後には、さらに水洗を行うことが好ましく、水洗の条件としては上述した条件と同様とすればよい。 After the acid cleaning, it is preferable to perform further water washing, and the water washing conditions may be the same as those described above.
<乾燥工程>
 上記製造方法における、乾燥工程は、上記洗浄工程において洗浄を行った含水クラムに対し、乾燥を行う工程である。
<Drying process>
In the production method, the drying step is a step of drying the water-containing crumb that has been washed in the washing step.
 乾燥工程における、乾燥方法としては、特に限定されないが、たとえば、スクリュー型押出機、ニーダー型乾燥機、エキスパンダー乾燥機、熱風乾燥機、減圧乾燥機などの乾燥機を用いて、乾燥させることができる。また、これらを組み合わせた乾燥方法を用いてもよい。さらに、乾燥工程により乾燥を行う前に、必要に応じて、含水クラムに対し、回転式スクリーン、振動スクリーンなどの篩;遠心脱水機;などを用いたろ別を行ってもよい。 Although it does not specifically limit as a drying method in a drying process, For example, it can be dried using dryers, such as a screw type extruder, a kneader type dryer, an expander dryer, a hot air dryer, and a vacuum dryer. . Moreover, you may use the drying method which combined these. Furthermore, before performing drying in the drying step, if necessary, the water-containing crumb may be filtered using a sieve such as a rotary screen or a vibrating screen; a centrifugal dehydrator;
 たとえば、乾燥工程における乾燥温度は、特に限定されず、乾燥に用いる乾燥機に応じて異なるが、たとえば、熱風乾燥機を用いる場合には、乾燥温度は80~200℃とすることが好ましく、100~170℃とすることがより好ましい。 For example, the drying temperature in the drying step is not particularly limited and varies depending on the dryer used for drying. For example, when a hot air dryer is used, the drying temperature is preferably 80 to 200 ° C., 100 More preferably, the temperature is set to ˜170 ° C.
 上記製造方法によれば、以上のようにして本発明のアクリルゴムを得ることができる。 According to the above production method, the acrylic rubber of the present invention can be obtained as described above.
 このようにして製造される、本発明のアクリルゴムのムーニー粘度(ML1+4、100℃)(ポリマームーニー)は、好ましくは10~80、より好ましくは20~70、さらに好ましくは25~60である。 The Mooney viscosity (ML1 + 4, 100 ° C.) (polymer Mooney) of the acrylic rubber of the present invention thus produced is preferably 10 to 80, more preferably 20 to 70, and further preferably 25 to 60.
 また、本発明のアクリルゴムは、アクリルゴム中に含まれる滑剤の残留量が、好ましくは0.1~0.4重量%、より好ましくは0.15~0.3重量%、さらに好ましくは0.2~0.3重量%である。滑剤の残留量を上記範囲とすることにより、ブリードの発生を抑制しながら、アクリルゴムの乾燥時の取り扱い性、およびロール加工性をより効果的に高めることができる。なお、滑剤の残留量は、アクリルゴムをテトラヒドロフランに溶解し、テトラヒドロフランを展開溶媒として、GPC測定を行うことにより、求めることができる。具体的には、GPC測定により得られたチャートから、滑剤の分子量に対応するピークの積分値を求め、この積分値と、アクリルゴムのピークの積分値とを比較し、これらの積分値と対応する分子量から重量比率を求めることで、滑剤の含有量を求めることができる。 In the acrylic rubber of the present invention, the residual amount of the lubricant contained in the acrylic rubber is preferably 0.1 to 0.4% by weight, more preferably 0.15 to 0.3% by weight, still more preferably 0. .2 to 0.3% by weight. By controlling the residual amount of the lubricant within the above range, it is possible to more effectively improve the handleability and roll processability when drying the acrylic rubber while suppressing the occurrence of bleeding. The residual amount of the lubricant can be obtained by dissolving the acrylic rubber in tetrahydrofuran and performing GPC measurement using tetrahydrofuran as a developing solvent. Specifically, the integrated value of the peak corresponding to the molecular weight of the lubricant is obtained from the chart obtained by the GPC measurement, the integrated value is compared with the integrated value of the peak of the acrylic rubber, and these integrated values correspond. By determining the weight ratio from the molecular weight to be determined, the content of the lubricant can be determined.
 さらに、本発明のアクリルゴムは、アクリルゴム中に含まれる老化防止剤の残留量が、好ましくは500重量ppm以上であり、より好ましくは1,000重量ppm以上、さらに好ましくは2,000重量ppm以上である。老化防止剤の含有量の上限は、特に限定されないが、好ましくは12,000重量ppm以下である。老化防止剤の残留量を上記範囲とすることにより、乾燥による劣化の発生をより適切に防止することができ、これにより、得られるゴム架橋物の引張強度をより高めることが可能となる。なお、老化防止剤の残留量は、たとえば、アクリルゴムに対し、GPC測定を行い、GPC測定により得られた測定チャート中の、老化防止剤に対応する分子量のピーク面積から求めることができる。 Further, in the acrylic rubber of the present invention, the residual amount of the antioxidant contained in the acrylic rubber is preferably 500 ppm by weight or more, more preferably 1,000 ppm by weight or more, and further preferably 2,000 ppm by weight. That's it. The upper limit of the content of the antioxidant is not particularly limited, but is preferably 12,000 ppm by weight or less. By setting the residual amount of the anti-aging agent in the above range, it is possible to more appropriately prevent the occurrence of deterioration due to drying, and thereby it is possible to further increase the tensile strength of the obtained rubber cross-linked product. In addition, the residual amount of an anti-aging agent can be calculated | required from the peak area of the molecular weight corresponding to an anti-aging agent in the measurement chart obtained by performing GPC measurement with respect to acrylic rubber, for example.
<アクリルゴム組成物>
 本発明のアクリルゴム組成物は、上記した本発明のアクリルゴムに架橋剤を配合してなるものである。
<Acrylic rubber composition>
The acrylic rubber composition of the present invention is obtained by blending a crosslinking agent with the above-described acrylic rubber of the present invention.
 架橋剤としては、特に限定されないが、たとえば、ジアミン化合物などの多価アミン化合物、およびその炭酸塩;硫黄;硫黄共与体;トリアジンチオール化合物;多価エポキシ化合物;有機カルボン酸アンモニウム塩;有機過酸化物;ジチオカルバミン酸金属塩;多価カルボン酸;四級オニウム塩;イミダゾール化合物;イソシアヌル酸化合物;有機過酸化物;などの従来公知の架橋剤を用いることができる。これらの架橋剤は、1種単独で、または2種以上を併せて使用することができる。架橋剤としては、架橋性単量体単位の種類に応じて適宜選択することが好ましい。 Although it does not specifically limit as a crosslinking agent, For example, polyvalent amine compounds, such as a diamine compound, and its carbonate; Sulfur; Sulfur donor; Triazine thiol compound; Multivalent epoxy compound; Organic carboxylic acid ammonium salt; Conventionally known crosslinking agents such as oxides, dithiocarbamic acid metal salts, polyvalent carboxylic acids, quaternary onium salts, imidazole compounds, isocyanuric acid compounds, and organic peroxides can be used. These crosslinking agents can be used alone or in combination of two or more. The crosslinking agent is preferably selected as appropriate according to the type of the crosslinkable monomer unit.
 これらのなかでも、本発明のアクリルゴムが、架橋性単量体単位としてのα,β-エチレン性不飽和カルボン酸単量体単位を有する場合には、架橋剤として、多価アミン化合物、およびその炭酸塩を用いることが好ましい。 Among these, when the acrylic rubber of the present invention has an α, β-ethylenically unsaturated carboxylic acid monomer unit as a crosslinkable monomer unit, a polyvalent amine compound as a crosslinking agent, and It is preferable to use the carbonate.
 多価アミン化合物、およびその炭酸塩としては、特に限定されないが、炭素数4~30の多価アミン化合物、およびその炭酸塩が好ましい。このような多価アミン化合物、およびその炭酸塩の例としては、脂肪族多価アミン化合物、およびその炭酸塩、ならびに芳香族多価アミン化合物などが挙げられる。 The polyvalent amine compound and carbonate thereof are not particularly limited, but polyvalent amine compounds having 4 to 30 carbon atoms and carbonates thereof are preferred. Examples of such polyvalent amine compounds and carbonates thereof include aliphatic polyvalent amine compounds, carbonates thereof, and aromatic polyvalent amine compounds.
 脂肪族多価アミン化合物、およびその炭酸塩としては、特に限定されないが、例えば、ヘキサメチレンジアミン、ヘキサメチレンジアミンカーバメート、およびN,N’-ジシンナミリデン-1,6-ヘキサンジアミンなどが挙げられる。これらの中でも、ヘキサメチレンジアミンカーバメートが好ましい。 The aliphatic polyvalent amine compound and the carbonate thereof are not particularly limited, and examples thereof include hexamethylene diamine, hexamethylene diamine carbamate, and N, N′-dicinnamylidene-1,6-hexane diamine. Among these, hexamethylenediamine carbamate is preferable.
 芳香族多価アミン化合物としては、特に限定されないが、例えば、4,4’-メチレンジアニリン、p-フェニレンジアミン、m-フェニレンジアミン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-(m-フェニレンジイソプロピリデン)ジアニリン、4,4’-(p-フェニレンジイソプロピリデン)ジアニリン、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-ジアミノベンズアニリド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、および1,3,5-ベンゼントリアミンなどが挙げられる。これらの中でも、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパンが好ましい。 The aromatic polyvalent amine compound is not particularly limited. For example, 4,4′-methylenedianiline, p-phenylenediamine, m-phenylenediamine, 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether 4,4 ′-(m-phenylenediisopropylidene) dianiline, 4,4 ′-(p-phenylenediisopropylidene) dianiline, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, Examples include 4,4′-diaminobenzanilide, 4,4′-bis (4-aminophenoxy) biphenyl, m-xylylenediamine, p-xylylenediamine, and 1,3,5-benzenetriamine. Among these, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane is preferable.
 本発明のアクリルゴム組成物中における架橋剤の含有量は、アクリルゴム100重量部に対し、好ましくは0.05~10重量部、より好ましくは0.1~5重量部、特に好ましくは0.2~4重量部である。架橋剤の含有量を上記範囲とすることにより、ゴム弾性を充分なものとしながら、ゴム架橋物としての機械的強度を優れたものとすることができる。 The content of the crosslinking agent in the acrylic rubber composition of the present invention is preferably 0.05 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, and particularly preferably 0.1 parts by weight with respect to 100 parts by weight of the acrylic rubber. 2 to 4 parts by weight. By setting the content of the cross-linking agent in the above range, the mechanical strength as a rubber cross-linked product can be made excellent while the rubber elasticity is sufficient.
 また、本発明のアクリルゴム組成物は、さらに架橋促進剤を含有していることが好ましい。架橋促進剤としては、特に限定されないが、本発明のアクリルゴムが、架橋性基としてのカルボキシル基を有するものであり、かつ、架橋剤が多価アミン化合物、またはその炭酸塩である場合には、グアニジン化合物、ジアザビシクロアルケン化合物、イミダゾール化合物、第四級オニウム塩、第三級ホスフィン化合物、脂肪族一価二級アミン化合物、および脂肪族一価三級アミン化合物などを用いることができる。これらのなかでも、グアニジン化合物、ジアザビシクロアルケン化合物、および脂肪族一価二級アミン化合物が好ましく、グアニジン化合物が特に好ましい。これらの塩基性架橋促進剤は、1種単独で、または2種以上を併せて使用することができる。 The acrylic rubber composition of the present invention preferably further contains a crosslinking accelerator. The crosslinking accelerator is not particularly limited, but when the acrylic rubber of the present invention has a carboxyl group as a crosslinkable group and the crosslinking agent is a polyvalent amine compound or a carbonate thereof. Guanidine compounds, diazabicycloalkene compounds, imidazole compounds, quaternary onium salts, tertiary phosphine compounds, aliphatic monovalent secondary amine compounds, aliphatic monovalent tertiary amine compounds, and the like can be used. Among these, guanidine compounds, diazabicycloalkene compounds, and aliphatic monovalent secondary amine compounds are preferable, and guanidine compounds are particularly preferable. These basic crosslinking accelerators can be used singly or in combination of two or more.
 グアニジン化合物の具体例としては、1,3-ジ-o-トリルグアニジン、1,3-ジフェニルグアニジンなどが挙げられる。ジアザビシクロアルケン化合物の具体例としては、1,8-ジアザビシクロ[5.4.0]ウンデ-7-セン、1,5-ジアザビシクロ[4.3.0]ノ-5-ネンなどが挙げられる。イミダゾール化合物の具体例としては、2-メチルイミダゾール、2-フェニルイミダゾールなどが挙げられる。第四級オニウム塩の具体例としては、テトラn-ブチルアンモニウムブロマイド、オクタデシルトリn-ブチルアンモニウムブロマイドなどが挙げられる。第三級ホスフィン化合物の具体例としては、トリフェニルホスフィン、トリ-p-トリルホスフィンなどが挙げられる。 Specific examples of the guanidine compound include 1,3-di-o-tolylguanidine, 1,3-diphenylguanidine and the like. Specific examples of the diazabicycloalkene compound include 1,8-diazabicyclo [5.4.0] unde-7-cene, 1,5-diazabicyclo [4.3.0] no-5-ene and the like. . Specific examples of the imidazole compound include 2-methylimidazole and 2-phenylimidazole. Specific examples of the quaternary onium salt include tetra n-butylammonium bromide and octadecyltri n-butylammonium bromide. Specific examples of the tertiary phosphine compound include triphenylphosphine and tri-p-tolylphosphine.
 脂肪族一価二級アミン化合物は、アンモニアの水素原子の二つを脂肪族炭化水素基で置換した化合物である。水素原子と置換する脂肪族炭化水素基は、好ましくは炭素数1~30のものである。脂肪族一価二級アミン化合物の具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジアリルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジ-t-ブチルアミン、ジ-sec-ブチルアミン、ジヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジウンデシルアミン、ジドデシルアミン、ジトリデシルアミン、ジテトラデシルアミン、ジペンタデシルアミン、ジセチルアミン、ジ-2-エチルヘキシルアミン、およびジオクタデシルアミンなどが挙げられる。 An aliphatic monovalent secondary amine compound is a compound in which two hydrogen atoms of ammonia are substituted with an aliphatic hydrocarbon group. The aliphatic hydrocarbon group substituted for the hydrogen atom is preferably one having 1 to 30 carbon atoms. Specific examples of the aliphatic monovalent secondary amine compound include dimethylamine, diethylamine, dipropylamine, diallylamine, diisopropylamine, di-n-butylamine, di-t-butylamine, di-sec-butylamine, dihexylamine, di Examples include heptylamine, dioctylamine, dinonylamine, didecylamine, diundecylamine, didodecylamine, ditridecylamine, ditetradecylamine, dipentadecylamine, dicetylamine, di-2-ethylhexylamine, and dioctadecylamine.
 脂肪族一価三級アミン化合物は、アンモニアの三つの水素原子全てを脂肪族炭化水素基で置換した化合物である。水素原子と置換する脂肪族炭化水素基は、好ましくは炭素数1~30のものである。脂肪族一価三級アミン化合物の具体例としては、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリアリルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリ-t-ブチルアミン、トリ-sec-ブチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリウンデシルアミン、およびトリドデシルアミンなどが挙げられる。 An aliphatic monovalent tertiary amine compound is a compound in which all three hydrogen atoms of ammonia are substituted with an aliphatic hydrocarbon group. The aliphatic hydrocarbon group substituted for the hydrogen atom is preferably one having 1 to 30 carbon atoms. Specific examples of the aliphatic monovalent tertiary amine compound include trimethylamine, triethylamine, tripropylamine, triallylamine, triisopropylamine, tri-n-butylamine, tri-t-butylamine, tri-sec-butylamine, trihexylamine. , Triheptylamine, trioctylamine, trinonylamine, tridecylamine, triundecylamine, and tridodecylamine.
 本発明のアクリルゴム組成物中における、架橋促進剤の含有量は、アクリルゴム100重量部に対して、好ましくは0.1~10重量部であり、より好ましくは0.5~7.5重量部、特に好ましくは1~5重量部である。架橋促進剤の含有量を上記範囲とすることにより、得られるゴム架橋物の引張強度および耐圧縮永久歪み性をより向上させることができる。 The content of the crosslinking accelerator in the acrylic rubber composition of the present invention is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 7.5 parts by weight with respect to 100 parts by weight of the acrylic rubber. Parts, particularly preferably 1 to 5 parts by weight. By making content of a crosslinking accelerator into the said range, the tensile strength and compression set resistance of the rubber crosslinked material obtained can be improved more.
 また、本発明のアクリルゴム組成物は、上記各成分以外に、ゴム加工分野において通常使用される配合剤を配合することができる。このような配合剤としては、たとえば、シリカやカーボンブラックなどの補強性充填剤;炭酸カルシウムやクレーなどの非補強性充填材;老化防止剤;光安定剤;スコーチ防止剤;可塑剤;加工助剤;粘着剤;滑剤;潤滑剤;難燃剤;防黴剤;帯電防止剤;着色剤;架橋遅延剤;などが挙げられる。これらの配合剤の配合量は、本発明の目的や効果を阻害しない範囲であれば特に限定されず、配合目的に応じた量を適宜配合することができる。 Moreover, the acrylic rubber composition of the present invention can contain a compounding agent usually used in the field of rubber processing, in addition to the above components. Examples of such compounding agents include reinforcing fillers such as silica and carbon black; non-reinforcing fillers such as calcium carbonate and clay; anti-aging agents; light stabilizers; scorch inhibitors; plasticizers; Adhesives; Adhesives; Lubricants; Lubricants; Flame retardants; Antifungal agents; Antistatic agents; Colorants; The compounding amount of these compounding agents is not particularly limited as long as it does not impair the object and effect of the present invention, and an amount corresponding to the compounding purpose can be appropriately compounded.
 さらに、本発明のアクリルゴム組成物には、本発明の効果を損なわない範囲で、上述した本発明のアクリルゴム以外のゴム、エラストマー、樹脂などをさらに配合してもよい。たとえば、上述した本発明のアクリルゴム以外のアクリルゴム、天然ゴム、ポリブタジエンゴム、ポリイソプレンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、シリコンゴム、フッ素ゴムなどの、アクリルゴム以外のゴム;オレフィン系エラストマー、スチレン系エラストマー、塩化ビニル系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマー、ポリシロキサン系エラストマーなどのエラストマー;ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリアクリル系樹脂、ポリフェニレンエーテル系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド樹脂、塩化ビニル樹脂、フッ素樹脂などの樹脂;などを配合することができる。なお、上述した本発明のアクリルゴム以外のゴム、エラストマー、および樹脂の合計配合量は、アクリルゴム100重量部に対して、好ましくは50重量部以下、より好ましくは10重量部以下、さらに好ましくは1重量部以下である。 Furthermore, in the acrylic rubber composition of the present invention, rubbers, elastomers, resins and the like other than the acrylic rubber of the present invention described above may be further blended within a range not impairing the effects of the present invention. For example, rubber other than acrylic rubber such as acrylic rubber other than the acrylic rubber of the present invention, natural rubber, polybutadiene rubber, polyisoprene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, silicon rubber, fluorine rubber, etc .; Elastomers such as elastomers, styrene elastomers, vinyl chloride elastomers, polyester elastomers, polyamide elastomers, polyurethane elastomers, polysiloxane elastomers; polyolefin resins, polystyrene resins, polyacrylic resins, polyphenylene ether resins, polyesters Resin, polycarbonate resin, polyamide resin, vinyl chloride resin, fluororesin, etc. can be blended. In addition, the total blending amount of the rubber, elastomer, and resin other than the acrylic rubber of the present invention described above is preferably 50 parts by weight or less, more preferably 10 parts by weight or less, further preferably 100 parts by weight of acrylic rubber. 1 part by weight or less.
 本発明のアクリルゴム組成物は、アクリルゴムに、架橋剤、およびその他必要に応じて用いられる各種配合剤を配合し、バンバリーミキサーやニーダーなどで混合、混練し、次いで、混練ロールを用いて、さらに混練することなどにより調製される。 In the acrylic rubber composition of the present invention, the acrylic rubber is blended with a crosslinking agent and other various compounding agents used as necessary, mixed and kneaded with a Banbury mixer or a kneader, and then using a kneading roll. Further, it is prepared by kneading.
 各成分の配合順序は、特に限定されないが、熱で反応や分解しにくい成分を充分に混合した後、熱で反応や分解しやすい成分である架橋剤などを、反応や分解が起こらない温度で短時間に混合することが好ましい。 The blending order of each component is not particularly limited, but after sufficiently mixing components that are difficult to react and decompose with heat, a crosslinking agent that is a component that easily reacts and decomposes with heat at a temperature at which reaction and decomposition do not occur. It is preferable to mix in a short time.
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のアクリルゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のアクリルゴム組成物を用い、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、およびロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、130~220℃、好ましくは150~190℃であり、架橋時間は、通常、2分~10時間、好ましくは3分~5時間である。加熱方法としては、プレス加熱、蒸気加熱、オーブン加熱、および熱風加熱などのゴムの架橋に用いられる方法を適宜選択すればよい。
<Rubber cross-linked product>
The rubber cross-linked product of the present invention is obtained by cross-linking the acrylic rubber composition of the present invention described above.
The rubber cross-linked product of the present invention uses the acrylic rubber composition of the present invention, is molded by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, and a roll, and is heated. It can be produced by carrying out a cross-linking reaction and fixing the shape as a rubber cross-linked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding. The molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C. The crosslinking temperature is usually 130 to 220 ° C., preferably 150 to 190 ° C., and the crosslinking time is usually 2 minutes to 10 hours, preferably 3 minutes to 5 hours. As a heating method, a method used for crosslinking of rubber, such as press heating, steam heating, oven heating, and hot air heating, may be appropriately selected.
 また、ゴム架橋物の形状、大きさなどによっては、本発明のゴム架橋物は、さらに加熱して二次架橋を行ってもよい。二次架橋は、加熱方法、架橋温度、形状などにより異なるが、好ましくは1~48時間行う。加熱方法、加熱温度は適宜選択すればよい。 Further, depending on the shape and size of the rubber cross-linked product, the rubber cross-linked product of the present invention may be further heated to perform secondary crosslinking. The secondary crosslinking varies depending on the heating method, crosslinking temperature, shape, etc., but is preferably performed for 1 to 48 hours. What is necessary is just to select a heating method and heating temperature suitably.
 本発明のゴム架橋物は、引張強度、伸び、硬さなどのゴムとしての基本特性を維持しながら、優れた耐圧縮永久歪み性および耐水性を有するものである。そのため本発明のゴム架橋物は、このような特性を活かして、たとえば、自動車等の輸送機械、一般機器、電気機器等の幅広い分野において、O-リング、パッキン、オイルシール、ベアリングシール等のシール材;ガスケット;緩衝材、防振材;電線被覆材;工業用ベルト類;チューブ・ホース類;シート類;等として好適に用いられる。 The rubber cross-linked product of the present invention has excellent compression set resistance and water resistance while maintaining the basic properties of rubber such as tensile strength, elongation, and hardness. Therefore, the rubber cross-linked product of the present invention makes use of such characteristics, for example, seals such as O-rings, packings, oil seals, bearing seals and the like in a wide range of transportation machines such as automobiles, general equipment, and electrical equipment. Materials: gaskets; cushioning materials, vibration-proof materials; electric wire covering materials; industrial belts; tubes and hoses; sheets;
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の「部」は、特に断りのない限り、重量基準である。
 各種の物性については、以下の方法に従って評価した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The “parts” in each example are based on weight unless otherwise specified.
Various physical properties were evaluated according to the following methods.
[ムーニー粘度(ML1+4、100℃)]
 アクリルゴムのムーニー粘度(ポリマームーニー)をJIS K6300に従って測定した。
[Mooney viscosity (ML1 + 4, 100 ° C.)]
The Mooney viscosity (polymer Mooney) of the acrylic rubber was measured according to JIS K6300.
[凝固剤の残留量]
 アクリルゴムに対して、(ICP-AES)を用いて、元素分析を行うことで、アクリルゴム中における、凝固剤の残留量を測定した。具体的には、元素分析により、使用した凝固剤に含まれる元素の含有割合を求め、求めた含有割合より、凝固剤の残留量を算出した。
[Residual amount of coagulant]
The residual amount of coagulant in the acrylic rubber was measured by performing elemental analysis on the acrylic rubber using (ICP-AES). Specifically, the content ratio of the element contained in the used coagulant was determined by elemental analysis, and the residual amount of the coagulant was calculated from the determined content ratio.
[乳化剤、老化防止剤、および滑剤の残留量]
 アクリルゴムをテトラヒドロフランに溶解し、(テトラヒドロフラン)を展開溶媒として、GPC測定を行うことにより、アクリルゴム中における、乳化剤、老化防止剤、および滑剤の残留量を測定した。具体的には、GPC測定により得られたチャートから、製造に使用した乳化剤、老化防止剤、および滑剤の分子量に対応するピークの積分値を求め、これらの積分値と、アクリルゴムのピークの積分値とを比較し、これらの積分値と対応する分子量から重量比率を求めることで、乳化剤、老化防止剤、および滑剤の残留量を算出した。
[Residual amount of emulsifier, anti-aging agent, and lubricant]
Acrylic rubber was dissolved in tetrahydrofuran, and GPC measurement was performed using (tetrahydrofuran) as a developing solvent, thereby measuring residual amounts of emulsifier, anti-aging agent, and lubricant in the acrylic rubber. Specifically, from the chart obtained by GPC measurement, the integrated value of the peak corresponding to the molecular weight of the emulsifier, anti-aging agent, and lubricant used in the production was obtained, and these integrated value and the integrated peak of the acrylic rubber peak The residual amounts of emulsifier, anti-aging agent, and lubricant were calculated by comparing the values and determining the weight ratio from these integrated values and the corresponding molecular weights.
[アクリルゴムの回収率]
 重合に用いた単量体の重量(仕込み量)とその重合転化率から算出される乳化重合液中のアクリルゴムの重量に対する、凝固乾燥後の固形状のアクリルゴムの重量の比率を求め、これをアクリルゴムの回収率とした。
[Recovery rate of acrylic rubber]
The ratio of the weight of the solid acrylic rubber after coagulation and drying to the weight of the acrylic rubber in the emulsion polymerization liquid calculated from the weight (charge amount) of the monomer used for the polymerization and the polymerization conversion rate is obtained. Was the recovery rate of acrylic rubber.
[常態物性]
 アクリルゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレスすることにより一次架橋し、次いで、得られた一次架橋物を、ギヤー式オーブンにて、さらに170℃、4時間の条件で加熱して二次架橋させることにより、シート状のゴム架橋物を得た。得られたゴム架橋物を3号形ダンベルで打ち抜いて試験片を作製した。次にこの試験片を用いて、JIS K6251に従い引張強度および伸びを測定した。
[Normal physical properties]
The acrylic rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and was subjected to primary crosslinking by pressing at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa. The product was further subjected to secondary crosslinking by heating at 170 ° C. for 4 hours in a gear-type oven to obtain a sheet-like rubber crosslinked product. The obtained rubber cross-linked product was punched with a No. 3 type dumbbell to prepare a test piece. Next, using this test piece, tensile strength and elongation were measured according to JIS K6251.
[熱老化試験]
 上記常態物性の評価に用いた試験片と同様にして作製した試験片を、ギヤー式オーブン中で、温度175℃の環境下に504時間置いた後、引張強度および伸びを測定し、得られた結果と、上記方法にしたがって測定した常態物性とを対比することにより、耐熱老化性の評価を行った。引張強度および伸びは、JIS K6251に従って測定した。
 引張強度については、加熱後の試料の測定値が大きい方が耐熱性に優れる。伸びについては、熱老化させていない試料の測定値(常態物性の測定値)に対する加熱後の試料の測定値の変化率である伸び変化率(百分率)が0に近い方が耐熱性に優れる。
[Heat aging test]
A test piece produced in the same manner as the test piece used for the evaluation of the above-mentioned normal physical properties was placed in a gear-type oven in an environment at a temperature of 175 ° C. for 504 hours, and then measured for tensile strength and elongation. The heat aging resistance was evaluated by comparing the results with normal physical properties measured according to the above method. Tensile strength and elongation were measured according to JIS K6251.
About tensile strength, the one where the measured value of the sample after a heating is large is excellent in heat resistance. Regarding the elongation, the heat resistance is better when the elongation change rate (percentage), which is the change rate of the measured value of the sample after heating with respect to the measured value (measured value of normal physical properties) of the sample that has not been heat-aged, is close to zero.
[圧縮永久歪み]
 アクリルゴム組成物を、金型を用いて、温度170℃で20分間プレスすることにより一次架橋し、直径29mm、高さ12.7mmの円柱型の一次架橋物を得て、次いで、得られた一次架橋物を、ギヤー式オーブンにて、さらに170℃、4時間の条件で加熱して二次架橋させることにより、円柱状のゴム架橋物を得た。そして、得られたゴム架橋物を用いて、JIS K6262に従い、ゴム架橋物を25%圧縮させた状態で、175℃の環境下に70時間置いた後、圧縮永久歪み率を測定した。この値が小さいほど、耐圧縮永久歪み性に優れる。
[Compression set]
The acrylic rubber composition was subjected to primary crosslinking by pressing at a temperature of 170 ° C. for 20 minutes using a mold to obtain a cylindrical primary crosslinked product having a diameter of 29 mm and a height of 12.7 mm, and then obtained. The primary crosslinked product was further subjected to secondary crosslinking by heating at 170 ° C. for 4 hours in a gear-type oven to obtain a cylindrical rubber crosslinked product. The obtained rubber cross-linked product was placed in an environment at 175 ° C. for 70 hours in a state where the rubber cross-linked product was compressed by 25% according to JIS K6262, and then the compression set was measured. The smaller this value, the better the compression set resistance.
[耐水性]
 アクリルゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレスすることにより一次架橋し、次いで、得られた一次架橋物を、ギヤー式オーブンにて、さらに170℃、4時間の条件で加熱して二次架橋させることにより、シート状のゴム架橋物を得た。そして、得られたシート状のゴム架橋物から、3cm×2cm×0.2cmの試験片に切り取り、JIS K6258に準拠して、得られた試験片を温度80℃に調整した蒸留水中に70時間浸漬させる浸漬試験を行い、浸漬前後の試験片の体積変化率を下記式にしたがって、測定した。浸漬前後の体積変化率が小さいほど、水に対する膨潤が抑制されており、耐水性に優れると判断できる。
  浸漬前後の体積変化率(%)=(浸漬後の試験片の体積-浸漬前の試験片の体積)÷浸漬前の試験片の体積×100
[water resistant]
The acrylic rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and was subjected to primary crosslinking by pressing at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa. The product was further subjected to secondary crosslinking by heating at 170 ° C. for 4 hours in a gear-type oven to obtain a sheet-like rubber crosslinked product. And it cut out into the test piece of 3 cm x 2 cm x 0.2 cm from the obtained sheet-like rubber cross-linked product, and according to JIS K6258, the obtained test piece was adjusted to a temperature of 80 ° C for 70 hours in distilled water. A dipping test was performed, and the volume change rate of the test piece before and after dipping was measured according to the following formula. It can be judged that the smaller the volume change rate before and after the immersion, the lower the swelling with respect to water, and the better the water resistance.
Volume change rate before and after immersion (%) = (Volume of specimen after immersion−Volume of specimen before immersion) ÷ Volume of specimen before immersion × 100
〔製造例1〕
 ホモミキサーを備えた混合容器に、純水46.294部、アクリル酸エチル49.3部、アクリル酸n-ブチル49.3部、フマル酸モノn-ブチル1.4部、アニオン性界面活性剤としてのラウリル硫酸ナトリウム(商品名「エマール 2FG」、花王社製)0.709部、およびノニオン性界面活性剤としてのポリオキシエチレンドデシルエーテル(商品名「エマルゲン 105」、重量平均分子量:約1500、花王社製)1.82部を仕込み、攪拌することで、単量体乳化液を得た。
[Production Example 1]
In a mixing vessel equipped with a homomixer, 46.294 parts pure water, 49.3 parts ethyl acrylate, 49.3 parts n-butyl acrylate, 1.4 parts mono-n-butyl fumarate, anionic surfactant Sodium lauryl sulfate (trade name “Emar 2FG”, manufactured by Kao Corporation) 0.709 parts, and polyoxyethylene dodecyl ether (trade name “Emulgen 105”, weight average molecular weight: about 1500, A monomer emulsion was obtained by charging 1.82 parts (made by Kao Corporation) and stirring.
 次いで、温度計、攪拌装置を備えた重合反応槽に、純水170.853部、および、上記にて得られた単量体乳化液2.98部を投入し、窒素気流下で温度12℃まで冷却した。次いで、重合反応槽中に、上記にて得られた単量体乳化液145.85部、還元剤としての硫酸第一鉄0.00033部、還元剤としてのアスコルビン酸ナトリウム0.264部、および、重合開始剤としての2.85重量%の過硫酸カリウム水溶液7.72部(過硫酸カリウムの量として0.22部)を3時間かけて連続的に滴下した。その後、重合反応槽内の温度を23℃に保った状態にて、1時間反応を継続し、重合転化率が95%に達したことを確認し、重合停止剤としてのハイドロキノンを添加して重合反応を停止し、乳化重合液を得た。 Next, 170.853 parts of pure water and 2.98 parts of the monomer emulsion obtained above were charged into a polymerization reaction tank equipped with a thermometer and a stirrer, and the temperature was 12 ° C. under a nitrogen stream. Until cooled. Next, in the polymerization reaction tank, 145.85 parts of the monomer emulsion obtained above, 0.00033 parts of ferrous sulfate as a reducing agent, 0.264 parts of sodium ascorbate as a reducing agent, and Then, 7.72 parts of a 2.85 wt% potassium persulfate aqueous solution (0.22 parts as the amount of potassium persulfate) as a polymerization initiator was continuously added dropwise over 3 hours. Thereafter, the reaction was continued for 1 hour while maintaining the temperature in the polymerization reaction vessel at 23 ° C., and it was confirmed that the polymerization conversion rate reached 95%, and polymerization was carried out by adding hydroquinone as a polymerization terminator. The reaction was stopped to obtain an emulsion polymerization solution.
 そして、重合により得られた乳化重合液100部に対し、老化防止剤としての3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル(商品名「Irganox 1076」、BASF社製)0.3部(乳化重合液を製造する際に用いた仕込みの単量体の合計(すなわち、アクリル酸エチル、アクリル酸n-ブチル、フマル酸モノn-ブチルの合計)100部に対して1部)、ポリエチレンオキシド(重量平均分子量(Mw)=10万)0.011部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して0.039部)、および滑剤としてのポリオキシエチレンステアリルエーテルリン酸(商品名「フォスファノール RL-210」、重量平均分子量:約500、東邦化学工業社製)0.075部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して0.25部)を混合することで混合液を得た。そして、得られた混合液を凝固槽に移し、この混合液100部に対して、工業用水60部を添加して、85℃に昇温した後、温度85℃にて、混合液を撹拌しながら、凝固剤としての硫酸ナトリウム3.3部(混合液に含まれる重合体100部に対して11部)を連続的に添加することにより、重合体を凝固させ、これによりアクリルゴム(A1)の含水クラムを得た。 Then, 100 parts of the emulsion polymerization solution obtained by polymerization is stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (trade name “Irganox 1076”, BASF) as an anti-aging agent. Co., Ltd.) 0.3 parts (total of the monomers used in the production of the emulsion polymerization liquid (that is, ethyl acrylate, n-butyl acrylate, mono n-butyl fumarate) 100 parts 1 part), 0.011 part of polyethylene oxide (weight average molecular weight (Mw) = 100,000) (0.039 part with respect to a total of 100 parts of the charged monomers used in producing the emulsion polymerization liquid) ), And polyoxyethylene stearyl ether phosphoric acid (trade name “phosphanol RL-210”, weight average molecular weight: about 500, Toho Chemical Industries, Ltd.) ) Was obtained 0.075 parts (mixture by mixing 0.25 parts per 100 parts of monomer charged) was used in preparing the polymer emulsion. Then, the obtained mixed liquid was transferred to a coagulation tank. To 100 parts of this mixed liquid, 60 parts of industrial water was added and the temperature was raised to 85 ° C., and then the mixed liquid was stirred at a temperature of 85 ° C. However, 3.3 parts of sodium sulfate as a coagulant (11 parts with respect to 100 parts of the polymer contained in the mixed solution) was continuously added to coagulate the polymer, whereby acrylic rubber (A1) Of hydrated crumbs.
 次いで、上記にて得られた含水クラムの固形分100部に対し、工業用水194部を添加し、凝固槽内で、15℃、5分間撹拌した後、凝固槽から水分を排出させることで、含水クラムの水洗を行った。なお、本製造例では、このような水洗を4回繰り返した。 Next, 194 parts of industrial water was added to 100 parts of the solid content of the hydrated crumb obtained above, and after stirring for 15 minutes at 15 ° C. in the coagulation tank, the water was discharged from the coagulation tank, The water-containing crumb was washed with water. In this production example, such washing with water was repeated four times.
 次いで、上記にて水洗を行った含水クラムの固形分100部に対し、工業用水194部および濃硫酸0.13部を混合してなる硫酸水溶液(pH=3)を添加し、凝固槽内で、15℃、5分間撹拌した後、凝固槽から水分を排出させることで、含水クラムの酸洗を行った。なお、酸洗後の含水クラムのpH(含水クラム中の水のpH)を測定したこところ、pH=3であった。次いで、酸洗を行った含水クラムの固形分100部に対し、純水194部を添加し、凝固槽内で、15℃、5分間撹拌した後、凝固槽から水分を排出させることで、含水クラムの純水洗浄を行い、純水洗浄を行った含水クラムを、熱風乾燥機にて110℃で1時間乾燥させることにより、固形状のアクリルゴム(A1)を得た。 Next, a sulfuric acid aqueous solution (pH = 3) obtained by mixing 194 parts of industrial water and 0.13 part of concentrated sulfuric acid is added to 100 parts of the solid content of the hydrated crumb which has been washed with water in the above, and in the coagulation tank. After stirring at 15 ° C. for 5 minutes, the water-containing crumb was pickled by draining water from the coagulation tank. The pH of the hydrated crumb after pickling (pH of water in the hydrated crumb) was measured, and the pH was 3. Next, 194 parts of pure water is added to 100 parts of the solid content of the pickled water-containing crumb, and after stirring for 5 minutes at 15 ° C. in the coagulation tank, the water content is discharged from the coagulation tank. The crumb was washed with pure water, and the hydrated crumb that had been washed with pure water was dried with a hot air dryer at 110 ° C. for 1 hour to obtain a solid acrylic rubber (A1).
 得られたアクリルゴム(A1)のムーニー粘度(ML1+4、100℃)は31、アクリルゴム(A1)の回収率は100%であり、アクリルゴム(A1)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A1)について、アクリルゴム(A1)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A1) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 31, the recovery rate of the acrylic rubber (A1) is 100%, and the composition of the acrylic rubber (A1) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, about acrylic rubber (A1), the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A1) was measured according to the said method. The results are shown in Table 1.
〔製造例2〕
 アニオン性界面活性剤としてのラウリル硫酸ナトリウムの使用量を0.709部から0.624部に、ノニオン性界面活性剤としてのポリオキシエチレンドデシルエーテルの使用量を1.82部から1.5部に、それぞれ変更した以外は、製造例1と同様にして、単量体乳化液を得た。そして、得られた単量体乳化液を使用した以外は、製造例1同様にして、固形状のアクリルゴム(A2)を得た。
[Production Example 2]
The amount of sodium lauryl sulfate used as an anionic surfactant is changed from 0.709 parts to 0.624 parts, and the amount of polyoxyethylene dodecyl ether used as a nonionic surfactant is changed from 1.82 parts to 1.5 parts. A monomer emulsion was obtained in the same manner as in Production Example 1, except that each was changed. And solid acrylic rubber (A2) was obtained like manufacture example 1 except having used the obtained monomer emulsified liquid.
 得られたアクリルゴム(A2)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A2)の回収率は100%であり、アクリルゴム(A2)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A2)について、アクリルゴム(A2)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A2) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A2) has a recovery rate of 100%, and the composition of the acrylic rubber (A2) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, about acrylic rubber (A2), the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A2) was measured according to the said method. The results are shown in Table 1.
〔製造例3〕
 アニオン性界面活性剤としてのラウリル硫酸ナトリウムの使用量を0.709部から0.567部に、ノニオン性界面活性剤としてのポリオキシエチレンドデシルエーテルの使用量を1.82部から1.4部に、それぞれ変更した以外は、製造例1と同様にして、単量体乳化液を得た。そして、得られた単量体乳化液を使用した以外は、製造例1同様にして、固形状のアクリルゴム(A3)を得た。
[Production Example 3]
The amount of sodium lauryl sulfate used as an anionic surfactant is changed from 0.709 parts to 0.567 parts, and the amount of polyoxyethylene dodecyl ether used as a nonionic surfactant is changed from 1.82 parts to 1.4 parts. A monomer emulsion was obtained in the same manner as in Production Example 1, except that each was changed. And solid acrylic rubber (A3) was obtained like manufacture example 1 except having used the obtained monomer emulsified liquid.
 得られたアクリルゴム(A3)のムーニー粘度(ML1+4、100℃)は34、アクリルゴム(A3)の回収率は100%であり、アクリルゴム(A3)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A3)について、アクリルゴム(A3)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A3) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 34, the acrylic rubber (A3) has a recovery rate of 100%, and the composition of the acrylic rubber (A3) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, about acrylic rubber (A3), the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A3) was measured according to the said method. The results are shown in Table 1.
〔製造例4〕
 アニオン性界面活性剤としてのラウリル硫酸ナトリウムの使用量を0.709部から0.567部に、ノニオン性界面活性剤としてのポリオキシエチレンドデシルエーテルの使用量を1.82部から1.4部に、それぞれ変更した以外は、製造例1と同様にして、単量体乳化液を得た。
[Production Example 4]
The amount of sodium lauryl sulfate used as an anionic surfactant is changed from 0.709 parts to 0.567 parts, and the amount of polyoxyethylene dodecyl ether used as a nonionic surfactant is changed from 1.82 parts to 1.4 parts. A monomer emulsion was obtained in the same manner as in Production Example 1, except that each was changed.
 次いで、温度計、攪拌装置を備えた重合反応槽に、純水179部、上記にて得られた単量体乳化液2.98部を投入し、窒素気流下で温度12℃まで冷却した。次いで、重合反応槽に、還元剤としての硫酸第一鉄0.00033部、還元剤としてのホルムアルデヒドスルホネートナトリウム0.264部、および重合開始剤としての過硫酸カリウム0.22部を一括で投入した後、重合反応槽中に、上記にて得られた単量体乳化液145.29部を3時間かけて連続的に滴下し、その後、重合反応槽内の温度を23℃に保った状態にて、1時間反応を継続し、重合転化率が90%に達したことを確認し、重合停止剤としてのハイドロキノンを添加して重合反応を停止し、乳化重合液を得た。 Next, 179 parts of pure water and 2.98 parts of the monomer emulsion obtained above were charged into a polymerization reaction tank equipped with a thermometer and a stirrer, and cooled to a temperature of 12 ° C. under a nitrogen stream. Next, 0.00033 parts of ferrous sulfate as a reducing agent, 0.264 parts of sodium formaldehyde sulfonate as a reducing agent, and 0.22 parts of potassium persulfate as a polymerization initiator were collectively charged into the polymerization reaction vessel. Thereafter, 145.29 parts of the monomer emulsion obtained above was continuously dropped into the polymerization reaction tank over 3 hours, and then the temperature in the polymerization reaction tank was maintained at 23 ° C. Then, the reaction was continued for 1 hour, and it was confirmed that the polymerization conversion rate reached 90%. Hydroquinone as a polymerization terminator was added to stop the polymerization reaction, and an emulsion polymerization solution was obtained.
 そして、上記にて得られた乳化重合液に対し、製造例1と同様にして、老化防止剤および滑剤を添加し、混合することで混合液を得て、得られた混合液に対して同様にして凝固操作を行うことで、アクリルゴム(A4)の含水クラムを得て、得られた含水クラムについて、同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A4)を得た。 Then, an anti-aging agent and a lubricant are added to the emulsion polymerization liquid obtained above in the same manner as in Production Example 1 and mixed to obtain a liquid mixture, which is similar to the obtained liquid mixture. By performing the coagulation operation as described above, a water-containing crumb of acrylic rubber (A4) was obtained, and the obtained water-containing crumb was similarly subjected to four times of water washing, pickling, pure water washing and drying, A solid acrylic rubber (A4) was obtained.
 得られたアクリルゴム(A4)のムーニー粘度(ML1+4、100℃)は31、アクリルゴム(A4)の回収率は100%であり、アクリルゴム(A4)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A4)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A4) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 31, the recovery rate of the acrylic rubber (A4) is 100%, and the composition of the acrylic rubber (A4) is ethyl acrylate units 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A4) was measured according to the above method. The results are shown in Table 1.
〔製造例5〕
 製造例3と同様にして得られた単量体乳化液を使用した以外は、製造例1と同様にして、乳化重合液を得た。そして、得られた乳化重合液に対し、製造例1と同様にして、老化防止剤および滑剤を添加し、混合することで混合液を得て、得られた混合液に対して同様にして凝固操作を行うことで、アクリルゴム(A5)の含水クラムを得た。
[Production Example 5]
An emulsion polymerization solution was obtained in the same manner as in Production Example 1 except that the monomer emulsion obtained in the same manner as in Production Example 3 was used. Then, an anti-aging agent and a lubricant are added to and mixed with the obtained emulsion polymerization liquid in the same manner as in Production Example 1 to obtain a mixed liquid, and the resulting mixed liquid is coagulated in the same manner. By performing the operation, a water-containing crumb of acrylic rubber (A5) was obtained.
 次いで、水洗の回数を4回から2回に変更した以外は、製造例1と同様にして、水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A5)を得た。得られたアクリルゴム(A5)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A5)の回収率は100%であり、アクリルゴム(A5)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A5)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Next, solid acrylic rubber (A5) is obtained by performing water washing, pickling, pure water washing and drying in the same manner as in Production Example 1 except that the number of water washing is changed from 4 to 2 times. It was. The resulting acrylic rubber (A5) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A5) is 100%, and the composition of the acrylic rubber (A5) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A5) was measured according to the above method. The results are shown in Table 1.
〔製造例6〕
 製造例3と同様にして得られた単量体乳化液を使用した以外は、製造例1と同様にして、乳化重合液を得た。そして、得られた乳化重合液に対し、製造例1と同様にして、老化防止剤および滑剤を添加し、混合することで混合液を得て、得られた混合液に対して同様にして凝固操作を行うことで、アクリルゴム(A6)の含水クラムを得た。
[Production Example 6]
An emulsion polymerization solution was obtained in the same manner as in Production Example 1 except that the monomer emulsion obtained in the same manner as in Production Example 3 was used. Then, an anti-aging agent and a lubricant are added to and mixed with the obtained emulsion polymerization liquid in the same manner as in Production Example 1 to obtain a mixed liquid, and the resulting mixed liquid is coagulated in the same manner. By performing the operation, a water-containing crumb of acrylic rubber (A6) was obtained.
 次いで、水洗の回数を4回から1回に変更した以外は、製造例1と同様にして、水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A6)を得た。得られたアクリルゴム(A6)のムーニー粘度(ML1+4、100℃)は32、アクリルゴム(A6)の回収率は100%であり、アクリルゴム(A6)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A6)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Next, solid acrylic rubber (A6) is obtained by performing water washing, pickling, pure water washing and drying in the same manner as in Production Example 1 except that the number of washings is changed from 4 to 1. It was. The resulting acrylic rubber (A6) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 32, the acrylic rubber (A6) has a recovery rate of 100%, and the composition of the acrylic rubber (A6) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A6) was measured according to the above method. The results are shown in Table 1.
〔製造例7〕
 凝固操作を行う際に用いる凝固剤として、硫酸ナトリウム3.3部に代えて、硫酸マグネシウム3.3部を使用した以外は、製造例3と同様にして、アクリルゴム(A7)の含水クラムを得た。次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A7)を得た。
[Production Example 7]
A water-containing crumb of acrylic rubber (A7) was prepared in the same manner as in Production Example 3 except that 3.3 parts of magnesium sulfate was used instead of 3.3 parts of sodium sulfate as a coagulant used for the coagulation operation. Obtained. Next, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A7).
 得られたアクリルゴム(A7)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A7)の回収率は100%であり、アクリルゴム(A7)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A7)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A7) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A7) is 100%, and the composition of the acrylic rubber (A7) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A7) was measured according to the above method. The results are shown in Table 1.
〔製造例8〕
 凝固操作を行う際に用いる凝固剤として、硫酸ナトリウム3.3部に代えて、塩化カルシウム3.3部を使用した以外は、製造例3と同様にして、アクリルゴム(A8)の含水クラムを得た。次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A8)を得た。
[Production Example 8]
A water-containing crumb of acrylic rubber (A8) was prepared in the same manner as in Production Example 3 except that 3.3 parts of calcium chloride was used instead of 3.3 parts of sodium sulfate as a coagulant used for the coagulation operation. Obtained. Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A8).
 得られたアクリルゴム(A8)のムーニー粘度(ML1+4、100℃)は35、アクリルゴム(A8)の回収率は100%であり、アクリルゴム(A8)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A8)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A8) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 35, the recovery rate of the acrylic rubber (A8) is 100%, and the composition of the acrylic rubber (A8) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A8) was measured according to the said method. The results are shown in Table 1.
〔製造例9〕
 重合により得られた乳化重合液100重量部に対して配合する老化防止剤として、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル0.3部に代えて、2,4-ビス[(オクチルチオ)メチル]-6-メチルフェノール(商品名「Irganox 1520L」、BASF社製)0.3部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して1部)を使用した以外は、製造例3と同様にして、アクリルゴム(A9)の含水クラムを得た。
[Production Example 9]
As an antioxidant to be blended with 100 parts by weight of the emulsion polymerization solution obtained by polymerization, instead of 0.3 part of stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 0.3 part of 2,4-bis [(octylthio) methyl] -6-methylphenol (trade name “Irganox 1520L”, manufactured by BASF) (total amount of monomers used in the preparation of the emulsion polymerization liquid) A water-containing crumb of acrylic rubber (A9) was obtained in the same manner as in Production Example 3, except that 1 part was used per 100 parts.
 次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A9)を得た。得られたアクリルゴム(A9)のムーニー粘度(ML1+4、100℃)は34、アクリルゴム(A9)の回収率は100%であり、アクリルゴム(A9)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A9)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Next, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A9). The resulting acrylic rubber (A9) had a Mooney viscosity (ML1 + 4, 100 ° C.) of 34, the recovery rate of the acrylic rubber (A9) was 100%, and the composition of the acrylic rubber (A9) was 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A9) was measured according to the above method. The results are shown in Table 1.
〔製造例10〕
 重合により得られた乳化重合液100重量部に対して配合する老化防止剤として、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル0.3部に代えて、2-メルカプトベンズイミダゾール(商品名「ノクラック MB」、大内新興化学工業社製)0.3部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して1部)を使用した以外は、製造例3と同様にして、アクリルゴム(A10)の含水クラムを得た。
[Production Example 10]
As an antioxidant to be blended with 100 parts by weight of the emulsion polymerization solution obtained by polymerization, instead of 0.3 part of stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 0.3 parts of 2-mercaptobenzimidazole (trade name “NOCRACK MB”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) (1 part for a total of 100 parts of the charged monomers used to produce the emulsion polymerization liquid) ) Was used in the same manner as in Production Example 3 to obtain a hydrated crumb of acrylic rubber (A10).
 次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A10)を得た。得られたアクリルゴム(A10)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A10)の回収率は100%であり、アクリルゴム(A10)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A10)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Next, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A10). The resulting acrylic rubber (A10) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A10) has a recovery rate of 100%, and the composition of the acrylic rubber (A10) is ethyl acrylate units 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A10) was measured according to the said method. The results are shown in Table 1.
〔製造例11〕
 重合により得られた乳化重合液100重量部に対して配合する老化防止剤として、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル0.3部に代えて、4, 4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラック CD」、大内新興化学工業社製)0.3部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して1部)を使用した以外は、製造例3と同様にして、アクリルゴム(A11)の含水クラムを得た。
[Production Example 11]
As an antioxidant to be blended with 100 parts by weight of the emulsion polymerization solution obtained by polymerization, instead of 0.3 part of stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 4,4'-bis (α, α-dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd.) 0.3 part (single amount used for preparing the emulsion polymerization liquid) A water-containing crumb of acrylic rubber (A11) was obtained in the same manner as in Production Example 3, except that 1 part) was used for a total of 100 parts of the body.
 次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A11)を得た。得られたアクリルゴム(A11)のムーニー粘度(ML1+4、100℃)は32、アクリルゴム(A11)の回収率は100%であり、アクリルゴム(A11)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A11)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A11). The resulting acrylic rubber (A11) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 32, the acrylic rubber (A11) has a recovery rate of 100%, and the composition of the acrylic rubber (A11) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A11) was measured according to the said method. The results are shown in Table 1.
〔製造例12〕
 重合により得られた乳化重合液100重量部に対して配合する老化防止剤として、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸ステアリル0.3部に代えて、モノ(又はジ、又はトリ)(α-メチルベンジル)フェノール(商品名「ノクラック SP」、大内新興化学工業社製)0.3部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して1部)を使用した以外は、製造例1と同様にして、アクリルゴム(A12)の含水クラムを得た。
[Production Example 12]
As an antioxidant to be blended with 100 parts by weight of the emulsion polymerization solution obtained by polymerization, instead of 0.3 part of stearyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, Mono (or di- or tri-) (α-methylbenzyl) phenol (trade name “NOCRACK SP”, manufactured by Ouchi Shinsei Chemical Co., Ltd.) 0.3 part (single amount of preparation used for producing emulsion polymerization liquid) A water-containing crumb of acrylic rubber (A12) was obtained in the same manner as in Production Example 1 except that 1 part) was used with respect to 100 parts in total.
 次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A12)を得た。得られたアクリルゴム(A12)のムーニー粘度(ML1+4、100℃)は31、アクリルゴム(A12)の回収率は100%であり、アクリルゴム(A12)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A12)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A12). The resulting acrylic rubber (A12) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 31, the recovery rate of the acrylic rubber (A12) is 100%, and the composition of the acrylic rubber (A12) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A12) was measured according to the above method. The results are shown in Table 1.
〔製造例13〕
 重合により得られた乳化重合液100重量部に対して配合する滑剤として、ポリオキシエチレンステアリルエーテルリン酸0.075部に代えて、高級脂肪酸(商品名「Moldwiz Int21G」、巴工業社製)0.075部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して0.25部)を使用した以外は、製造例1と同様にして、アクリルゴム(A13)の含水クラムを得た。
[Production Example 13]
As a lubricant to be blended with respect to 100 parts by weight of the emulsion polymerization solution obtained by the polymerization, instead of 0.075 part of polyoxyethylene stearyl ether phosphoric acid, a higher fatty acid (trade name “Moldwiz Int21G”, manufactured by Sakai Kogyo Co., Ltd.) 0 Acrylic rubber (A13) in the same manner as in Production Example 1 except that 0.075 part (0.25 part with respect to a total of 100 parts of charged monomers used in producing the emulsion polymerization liquid) was used. Of hydrated crumbs.
 次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A13)を得た。得られたアクリルゴム(A13)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A13)の回収率は100%であり、アクリルゴム(A13)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A13)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, pure water, and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A13). The resulting acrylic rubber (A13) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A13) has a recovery rate of 100%, and the composition of the acrylic rubber (A13) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant | flocculant, surfactant, lubricant, and anti-aging agent in acrylic rubber (A13) was measured according to the said method. The results are shown in Table 1.
〔製造例14〕
 重合により得られた乳化重合液100重量部に対して配合する滑剤として、ポリオキシエチレンステアリルエーテルリン酸0.075部に代えて、高級脂肪酸(商品名「Moldwiz Int21G」、巴工業社製)0.075部(乳化重合液を製造する際に用いた仕込みの単量体の合計100部に対して0.25部)を使用するとともに、凝固操作を行う際に用いる凝固剤として、硫酸ナトリウム3.3部に代えて、塩化ナトリウム3.3部を使用した以外は、製造例12と同様にして、アクリルゴム(A13)の含水クラムを得た。
[Production Example 14]
As a lubricant to be blended with respect to 100 parts by weight of the emulsion polymerization solution obtained by the polymerization, instead of 0.075 part of polyoxyethylene stearyl ether phosphoric acid, a higher fatty acid (trade name “Moldwiz Int21G”, manufactured by Sakai Kogyo Co., Ltd.) 0 0.075 part (0.25 part with respect to a total of 100 parts of the charged monomers used for producing the emulsion polymerization solution) and sodium coagulant 3 as a coagulant used for coagulation operation A hydrous crumb of acrylic rubber (A13) was obtained in the same manner as in Production Example 12 except that 3.3 parts of sodium chloride was used instead of 3 parts.
 次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A14)を得た。得られたアクリルゴム(A14)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A14)の回収率は100%であり、アクリルゴム(A14)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A14)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A14). The resulting acrylic rubber (A14) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A14) has a recovery rate of 100%, and the composition of the acrylic rubber (A14) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant and anti-aging agent in the acrylic rubber (A14) was measured according to the above method. The results are shown in Table 1.
〔製造例15〕
 凝固操作を行う際に用いる凝固剤としての硫酸ナトリウムの使用量を3.3部から0.3部(混合液に含まれる重合体100部に対して1部)に変更した以外は、製造例13と同様にして、アクリルゴム(A15)の含水クラムを得た。次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A15)を得た。
[Production Example 15]
Production Example, except that the amount of sodium sulfate used as a coagulant used for the coagulation operation was changed from 3.3 parts to 0.3 parts (1 part with respect to 100 parts of the polymer contained in the mixed solution). In the same manner as in Example 13, a water-containing crumb of acrylic rubber (A15) was obtained. Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A15).
 得られたアクリルゴム(A15)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A15)の回収率は42%であり、アクリルゴム(A15)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A15)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A15) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the acrylic rubber (A15) has a recovery rate of 42%, and the composition of the acrylic rubber (A15) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A15) was measured according to the above method. The results are shown in Table 1.
〔製造例16〕
 凝固操作を行う際に用いる凝固剤としての硫酸ナトリウムの使用量を3.3部から0.6部(混合液に含まれる重合体100部に対して2部)に変更した以外は、製造例13と同様にして、アクリルゴム(A16)の含水クラムを得た。次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A16)を得た。
[Production Example 16]
Production Example, except that the amount of sodium sulfate used as the coagulant used in the coagulation operation was changed from 3.3 parts to 0.6 parts (2 parts with respect to 100 parts of the polymer contained in the mixed solution). In the same manner as in Example 13, a water-containing crumb of acrylic rubber (A16) was obtained. Subsequently, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A16).
 得られたアクリルゴム(A16)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A16)の回収率は63%であり、アクリルゴム(A16)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A16)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A16) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A16) is 63%, and the composition of the acrylic rubber (A16) has an ethyl acrylate unit of 49.3. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A16) was measured according to the above method. The results are shown in Table 1.
〔製造例17〕
 凝固操作を行う際に用いる凝固剤としての硫酸ナトリウムの使用量を3.3部から10部(混合液に含まれる重合体100部に対して33.3部)に変更した以外は、製造例13と同様にして、アクリルゴム(A17)の含水クラムを得た。次いで、得られた含水クラムについて、製造例1と同様にして、4回の水洗、酸洗、純水洗浄および乾燥を行うことで、固形状のアクリルゴム(A17)を得た。
[Production Example 17]
Production Example, except that the amount of sodium sulfate used as the coagulant used in the coagulation operation was changed from 3.3 parts to 10 parts (33.3 parts relative to 100 parts of the polymer contained in the mixed solution). In the same manner as in Example 13, a water-containing crumb of acrylic rubber (A17) was obtained. Next, the obtained water-containing crumb was subjected to washing with water, pickling, washing with pure water and drying in the same manner as in Production Example 1 to obtain a solid acrylic rubber (A17).
 得られたアクリルゴム(A17)のムーニー粘度(ML1+4、100℃)は33、アクリルゴム(A17)の回収率は100%であり、アクリルゴム(A17)の組成は、アクリル酸エチル単位49.3重量%、アクリル酸n-ブチル単位49.3重量%、フマル酸モノn-ブチル単位1.4重量%であった。また、アクリルゴム(A17)中における、凝固剤、界面活性剤、滑剤、および老化防止剤の残留量を、上記方法にしたがって測定した。結果を表1に示す。 The resulting acrylic rubber (A17) has a Mooney viscosity (ML1 + 4, 100 ° C.) of 33, the recovery rate of the acrylic rubber (A17) is 100%, and the composition of the acrylic rubber (A17) is 49.3 ethyl acrylate units. % By weight, n-butyl acrylate unit 49.3% by weight, and mono n-butyl fumarate unit 1.4% by weight. Moreover, the residual amount of the coagulant, surfactant, lubricant, and anti-aging agent in the acrylic rubber (A17) was measured according to the above method. The results are shown in Table 1.
〔実施例1〕
 バンバリーミキサーを用いて、製造例1で得られたアクリルゴム(A1)100部に、クレー(商品名「サティントンクレー5A」、竹原化学工業社製、焼成カオリン)30部、シリカ(商品名「カープレックス1120」、Evonik社製)15部、シリカ(商品名「カープレックス67」、Evonik社製)35部、ステアリン酸2部、エステル系ワックス(商品名「グレックG-8205」、大日本インキ化学社製)1部、4, 4’-ビス(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラック CD」、大内新興化学工業社製)2部、および、3-メタクリロキシプロピルトリメトキシシラン(商品名「KBM-503」、信越シリコーン社製、シランカップリング剤)1部を添加して、50℃で5分間混合した。次いで、得られた混合物を50℃のロールに移して、ヘキサメチレンジアミンカーバメート(商品名「Diak#1」、デュポンダウエラストマー社製、脂肪族多価アミン化合物)0.6部、および1,3-ジ-o-トリルグアニジン(商品名「ノクセラーDT」、大内新興化学工業社製、架橋促進剤)2部を配合して、混練することにより、アクリルゴム組成物を得た。
[Example 1]
Using a Banbury mixer, 100 parts of the acrylic rubber (A1) obtained in Production Example 1, 30 parts of clay (trade name “Satinton Clay 5A”, manufactured by Takehara Chemical Industry Co., Ltd., calcined kaolin), silica (trade name “ Carplex 1120 ", Evonik 15 parts, silica (trade name" Carplex 67 ", Evonik) 35 parts, stearic acid 2 parts, ester wax (trade name" Greg G-8205 ", Dainippon Ink Chemical Co., Ltd.) 1 part, 4,4′-bis (α, α-dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, Ouchi Shinsei Chemical Co., Ltd.) 2 parts, and 3-methacryloxypropyltrimethoxy 1 part of silane (trade name “KBM-503”, manufactured by Shin-Etsu Silicone Co., Ltd., silane coupling agent) was added and mixed at 50 ° C. for 5 minutes. Subsequently, the obtained mixture was transferred to a roll at 50 ° C., and 0.6 parts of hexamethylenediamine carbamate (trade name “Diak # 1”, manufactured by DuPont Dow Elastomer Co., Ltd., aliphatic polyvalent amine compound) and 1,3 -2 parts of di-o-tolylguanidine (trade name “Noxeller DT”, manufactured by Ouchi Shinsei Chemical Industry Co., Ltd., crosslinking accelerator) was blended and kneaded to obtain an acrylic rubber composition.
 そして、得られたアクリルゴム組成物を用いて、上記方法にしたがい、常態物性、熱老化試験、圧縮永久歪み、および耐水性の各測定・評価を行った。結果を表2に示す。 Then, using the obtained acrylic rubber composition, according to the above methods, normal properties, thermal aging test, compression set, and water resistance were measured and evaluated. The results are shown in Table 2.
〔実施例2~16〕
 製造例1で得られたアクリルゴム(A1)に代えて、製造例2~16で得られたアクリルゴム(A2)~(A16)をそれぞれ使用した以外は、実施例1と同様にして、アクリルゴム組成物を得て、同様に測定・評価を行った結果を表2に示す。
[Examples 2 to 16]
In the same manner as in Example 1 except that the acrylic rubbers (A2) to (A16) obtained in Production Examples 2 to 16 were used in place of the acrylic rubber (A1) obtained in Production Example 1, respectively. Table 2 shows the results of measurement and evaluation in the same manner after obtaining the rubber composition.
〔比較例1〕
 製造例1で得られたアクリルゴム(A1)に代えて、製造例17で得られたアクリルゴム(A17)を使用した以外は、実施例1と同様にして、アクリルゴム組成物を得て、同様に測定・評価を行った結果を表2に示す。
[Comparative Example 1]
An acrylic rubber composition was obtained in the same manner as in Example 1 except that the acrylic rubber (A17) obtained in Production Example 17 was used instead of the acrylic rubber (A1) obtained in Production Example 1. The results of measurement / evaluation are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
(*1)単量体乳化液作製のための配合剤の添加量は、仕込み単量体100部に対する配合量で示した。
(*2)凝固前の乳化重合液に添加した配合剤の添加量は、乳化重合液100部に対する配合量で示した。
(*3)凝固工程で使用した凝固剤の添加量は、乳化重合液に、老化防止剤、ポリエチレンオキシド、および滑剤を添加することにより得られた混合液100部に対する配合量で示した。
Figure JPOXMLDOC01-appb-T000001
(* 1) The addition amount of the compounding agent for preparing the monomer emulsion is shown by the compounding amount with respect to 100 parts of the charged monomer.
(* 2) The addition amount of the compounding agent added to the emulsion polymerization solution before coagulation was shown as the compounding amount with respect to 100 parts of the emulsion polymerization solution.
(* 3) The addition amount of the coagulant used in the coagulation step is shown as a blending amount with respect to 100 parts of the mixed solution obtained by adding an antioxidant, polyethylene oxide and a lubricant to the emulsion polymerization solution.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1,2に示すように、製造例1~16により得られたアクリルゴムは、いずれも凝固剤の残留量が、10重量ppm以上、10,000重量ppm以下であり、これらを用いて得られるゴム架橋物は、いずれも耐圧縮永久歪み性および耐水性に優れたものであった(実施例1~16)。なお、表1からも確認できるように、凝固前の乳化重合液に添加した老化防止剤および滑剤は、凝固、乾燥を経た後も実質的に除去されず、配合した量と同程度の量の老化防止剤および滑剤がアクリルゴム中に残存していた。
 一方、製造例17により得られたアクリルゴムは、凝固剤の残留量が10,000重量ppm超であり、これを用いて得られるゴム架橋物は、耐水性に劣る結果となった(比較例1)。
As shown in Tables 1 and 2, all of the acrylic rubbers obtained in Production Examples 1 to 16 have a residual amount of coagulant of 10 ppm by weight or more and 10,000 ppm by weight or less. The rubber cross-linked products obtained were excellent in compression set resistance and water resistance (Examples 1 to 16). As can also be seen from Table 1, the anti-aging agent and lubricant added to the emulsion polymerization solution before coagulation are not substantially removed even after coagulation and drying, and the amount is about the same as the blended amount. Anti-aging agent and lubricant remained in the acrylic rubber.
On the other hand, the acrylic rubber obtained in Production Example 17 has a residual amount of coagulant exceeding 10,000 ppm by weight, and the rubber cross-linked product obtained by using this has a poor water resistance (Comparative Example). 1).

Claims (14)

  1.  凝固剤の残留量が、10重量ppm以上、10,000重量ppm以下であるアクリルゴム。 An acrylic rubber having a residual amount of coagulant of 10 ppm by weight or more and 10,000 ppm by weight or less.
  2.  凝固剤の残留量が、10重量ppm以上、3,500重量ppm以下である請求項1に記載のアクリルゴム。 The acrylic rubber according to claim 1, wherein the residual amount of the coagulant is 10 ppm by weight or more and 3,500 ppm by weight or less.
  3.  凝固剤の残留量が、500重量ppm以上、3,500重量ppm以下である請求項1または2に記載のアクリルゴム。 The acrylic rubber according to claim 1 or 2, wherein the residual amount of the coagulant is 500 ppm by weight or more and 3,500 ppm by weight or less.
  4.  前記凝固剤が、1~3価の金属塩である請求項1~3のいずれかに記載のアクリルゴム。 4. The acrylic rubber according to claim 1, wherein the coagulant is a monovalent to trivalent metal salt.
  5.  前記凝固剤が、塩化カルシウム、塩化ナトリウム、硫酸マグネシウム、または硫酸ナトリウムである請求項4に記載のアクリルゴム。 The acrylic rubber according to claim 4, wherein the coagulant is calcium chloride, sodium chloride, magnesium sulfate, or sodium sulfate.
  6.  乳化剤の残留量が、10重量ppm以上、22,000重量ppm以下である請求項1~5のいずれかに記載のアクリルゴム。 The acrylic rubber according to any one of claims 1 to 5, wherein the residual amount of the emulsifier is 10 ppm by weight or more and 22,000 ppm by weight or less.
  7.  滑材の残留量が、0.1~0.4重量%である請求項1~6のいずれかに記載のアクリルゴム。 The acrylic rubber according to any one of claims 1 to 6, wherein the residual amount of the lubricant is 0.1 to 0.4% by weight.
  8.  老化防止剤の残留量が、500重量ppm以上、12,000重量ppm以下である請求項1~7のいずれかに記載のアクリルゴム。 The acrylic rubber according to any one of claims 1 to 7, wherein the residual amount of the anti-aging agent is 500 ppm by weight or more and 12,000 ppm by weight or less.
  9.  アクリルゴム成分の含有量が95重量%以上である請求項1~8のいずれかに記載のアクリルゴム。 The acrylic rubber according to any one of claims 1 to 8, wherein the content of the acrylic rubber component is 95% by weight or more.
  10.  請求項1~9のいずれかに記載のアクリルゴムを製造する方法であって、
     アクリルゴムを形成するための単量体を乳化重合することで、乳化重合液を得る乳化重合工程と、
     前記乳化重合液に、凝固剤を添加し、含水クラムを得る凝固工程と、
     前記含水クラムに対して、洗浄を行う洗浄工程と、
     洗浄を行った含水クラムに対し、乾燥を行う乾燥工程と、
     を備えるアクリルゴムの製造方法。
    A method for producing the acrylic rubber according to any one of claims 1 to 9,
    An emulsion polymerization step of obtaining an emulsion polymerization liquid by emulsion polymerization of a monomer for forming an acrylic rubber; and
    A coagulation step of adding a coagulant to the emulsion polymerization liquid to obtain a hydrous crumb;
    A cleaning step of cleaning the water-containing crumb;
    A drying process for drying the washed hydrous crumb;
    A method for producing acrylic rubber comprising:
  11.  前記凝固剤の添加量が、前記乳化重合液中に含まれるアクリルゴム成分100重量部に対して、3~20重量部である請求項10に記載のアクリルゴムの製造方法。 The method for producing acrylic rubber according to claim 10, wherein the addition amount of the coagulant is 3 to 20 parts by weight with respect to 100 parts by weight of the acrylic rubber component contained in the emulsion polymerization liquid.
  12.  凝固を行う前の前記乳化重合液に、滑剤、老化防止剤およびエチレンオキシド系重合体から選択される少なくとも1つを含有させる添加工程をさらに備える請求項10または11に記載のアクリルゴムの製造方法。 The method for producing acrylic rubber according to claim 10 or 11, further comprising an addition step of adding at least one selected from a lubricant, an anti-aging agent and an ethylene oxide polymer to the emulsion polymerization liquid before coagulation.
  13.  請求項1~9のいずれかに記載のアクリルゴムと、架橋剤とを含有するアクリルゴム組成物。 An acrylic rubber composition comprising the acrylic rubber according to any one of claims 1 to 9 and a crosslinking agent.
  14.  請求項13に記載のアクリルゴム組成物を架橋してなるゴム架橋物。 A rubber cross-linked product obtained by cross-linking the acrylic rubber composition according to claim 13.
PCT/JP2017/039177 2016-10-31 2017-10-30 Acrylic rubber and crosslinked rubber WO2018079783A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547831A JP6696583B2 (en) 2016-10-31 2017-10-30 Acrylic rubber and crosslinked rubber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016213493 2016-10-31
JP2016-213493 2016-10-31

Publications (1)

Publication Number Publication Date
WO2018079783A1 true WO2018079783A1 (en) 2018-05-03

Family

ID=62023689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039177 WO2018079783A1 (en) 2016-10-31 2017-10-30 Acrylic rubber and crosslinked rubber

Country Status (3)

Country Link
JP (1) JP6696583B2 (en)
TW (1) TW201817800A (en)
WO (1) WO2018079783A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019208821A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Method for producing acrylic rubber, and acrylic rubber obtained by said production method
JP2019189837A (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Process for producing acrylic rubber
WO2020203301A1 (en) * 2019-03-29 2020-10-08 株式会社大阪ソーダ Method for producing acrylic rubber
WO2021014788A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber having excellent water resistance
WO2021014790A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber bale having excellent workability and water resistance
WO2021014789A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber sheet having excellent water resistance
WO2021014796A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber bale having excellent storage stability and water resistance
WO2021014795A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber having superior water resistance
JP2021017555A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber bale excellent in storage stability and processability
JP2021017591A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber bale excellent in storage stability and water resistance
JP2021017600A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber sheet excellent in storage stability and processability
JP2021105128A (en) * 2019-12-26 2021-07-26 日本ゼオン株式会社 Acryl rubber having excellent heat resistance, water resistance and workability
WO2021200933A1 (en) * 2020-03-31 2021-10-07 株式会社大阪ソーダ Acrylic copoymer, acrylic copoymer-containing composition and crosslinked product of same
WO2021261215A1 (en) * 2020-06-23 2021-12-30 日本ゼオン株式会社 Acrylic rubber bale having excellent banbury processability and water resistance
CN114144438A (en) * 2019-09-12 2022-03-04 株式会社大阪曹達 Method for producing acrylate rubber
EP3859858A4 (en) * 2018-09-28 2022-06-29 Zeon Corporation All-solid secondary battery binder composition, all-solid secondary battery slurry composition, solid-electrolyte-containing layer, and all-solid secondary battery
JP7452009B2 (en) 2019-12-26 2024-03-19 日本ゼオン株式会社 Acrylic rubber with excellent heat resistance and water resistance
JP7452008B2 (en) 2019-12-26 2024-03-19 日本ゼオン株式会社 Acrylic rubber with excellent heat resistance and water resistance
JP7484920B2 (en) 2019-07-19 2024-05-16 日本ゼオン株式会社 Water-resistant acrylic rubber sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4618141B1 (en) * 1965-04-12 1971-05-20
JPS50119087A (en) * 1974-03-05 1975-09-18
JPS51149360A (en) * 1975-06-17 1976-12-22 Kanegafuchi Chemical Ind Method of improving powder properties of synthetic resin powder
JPH02212574A (en) * 1989-02-10 1990-08-23 Japan Synthetic Rubber Co Ltd Adhesive for printed circuit board
JP2003342321A (en) * 2002-03-20 2003-12-03 Mitsubishi Rayon Co Ltd Method for manufacturing polymer
JP2004131654A (en) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd Method for recovery of polymer and recovering apparatus
WO2005085299A1 (en) * 2004-03-08 2005-09-15 Kaneka Corporation Method for producing coagulated particles from emulsion polymerization latex

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4618141B1 (en) * 1965-04-12 1971-05-20
JPS50119087A (en) * 1974-03-05 1975-09-18
JPS51149360A (en) * 1975-06-17 1976-12-22 Kanegafuchi Chemical Ind Method of improving powder properties of synthetic resin powder
JPH02212574A (en) * 1989-02-10 1990-08-23 Japan Synthetic Rubber Co Ltd Adhesive for printed circuit board
JP2003342321A (en) * 2002-03-20 2003-12-03 Mitsubishi Rayon Co Ltd Method for manufacturing polymer
JP2004131654A (en) * 2002-10-11 2004-04-30 Nippon Zeon Co Ltd Method for recovery of polymer and recovering apparatus
WO2005085299A1 (en) * 2004-03-08 2005-09-15 Kaneka Corporation Method for producing coagulated particles from emulsion polymerization latex

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"non-official translation (Recent trends of acrylic rubber ''2. Production method", TATEMICHI, HIDEMARO, THE SOCIETY OF POLYMER SCIENCE , JAPAN, vol. 9, pages 774 - 777 *
ASAI, HARUMI: "Easily understood synthetic rubber production method (I) Basic concept of how to make synthetic rubber", JOURNAL OF THE SOCIETY OF RUBBER INDUSTRY, vol. 50, no. 9, 1977 *
MAEDA, MORIKAZU: "Various properties of the mixed design and vulcanized rubber: oil resistance, chemical resistance, water resistance, ''4.1 Water absorption mechanism of rubber", JOURNAL OF THE SOCIETY OF RUBBER SCIENCE AND TECHNOLOGY, vol. 46, no. 8, 1973, Japan *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019189837A (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Process for producing acrylic rubber
JPWO2019208821A1 (en) * 2018-04-27 2020-05-28 日本ゼオン株式会社 Acrylic rubber manufacturing method and acrylic rubber obtained by the manufacturing method
WO2019208821A1 (en) * 2018-04-27 2019-10-31 日本ゼオン株式会社 Method for producing acrylic rubber, and acrylic rubber obtained by said production method
EP3859858A4 (en) * 2018-09-28 2022-06-29 Zeon Corporation All-solid secondary battery binder composition, all-solid secondary battery slurry composition, solid-electrolyte-containing layer, and all-solid secondary battery
WO2020203301A1 (en) * 2019-03-29 2020-10-08 株式会社大阪ソーダ Method for producing acrylic rubber
EP4001318A4 (en) * 2019-07-19 2023-08-30 Zeon Corporation Acrylic rubber having excellent water resistance
WO2021014788A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber having excellent water resistance
WO2021014796A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber bale having excellent storage stability and water resistance
WO2021014795A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber having superior water resistance
JP2021017555A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber bale excellent in storage stability and processability
JP2021017591A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber bale excellent in storage stability and water resistance
JP2021017600A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber sheet excellent in storage stability and processability
JP2021017558A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber sheet excellent in storage stability and processability
JP2021017547A (en) * 2019-07-19 2021-02-15 日本ゼオン株式会社 Acrylic rubber bale excellent in storage stability and water resistance
JP7484920B2 (en) 2019-07-19 2024-05-16 日本ゼオン株式会社 Water-resistant acrylic rubber sheet
CN114080402B (en) * 2019-07-19 2024-02-27 日本瑞翁株式会社 Acrylic rubber having excellent water resistance
JP7424380B2 (en) 2019-07-19 2024-01-30 日本ゼオン株式会社 Acrylic rubber with excellent water resistance
JP7424381B2 (en) 2019-07-19 2024-01-30 日本ゼオン株式会社 Acrylic rubber with excellent water resistance
CN114080422A (en) * 2019-07-19 2022-02-22 日本瑞翁株式会社 Acrylic rubber sheet having excellent water resistance
CN114080402A (en) * 2019-07-19 2022-02-22 日本瑞翁株式会社 Acrylic rubber having excellent water resistance
CN114080422B (en) * 2019-07-19 2023-11-24 日本瑞翁株式会社 Acrylic rubber sheet with excellent water resistance
KR20220038049A (en) 2019-07-19 2022-03-25 니폰 제온 가부시키가이샤 Acrylic rubber with excellent water resistance
KR20220038287A (en) 2019-07-19 2022-03-28 니폰 제온 가부시키가이샤 Acrylic rubber with excellent water resistance
KR20220038285A (en) 2019-07-19 2022-03-28 니폰 제온 가부시키가이샤 Acrylic rubber veil with excellent processability and water resistance
KR20220038296A (en) 2019-07-19 2022-03-28 니폰 제온 가부시키가이샤 Acrylic rubber veil with excellent storage stability and water resistance
KR20220038284A (en) 2019-07-19 2022-03-28 니폰 제온 가부시키가이샤 Acrylic rubber sheet with good water resistance
WO2021014790A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber bale having excellent workability and water resistance
JP7296328B2 (en) 2019-07-19 2023-06-22 日本ゼオン株式会社 Acrylic rubber veil with excellent storage stability and workability
JP7296352B2 (en) 2019-07-19 2023-06-22 日本ゼオン株式会社 Acrylic rubber sheet with excellent storage stability and workability
JP7296329B2 (en) 2019-07-19 2023-06-22 日本ゼオン株式会社 Acrylic rubber sheet with excellent storage stability and workability
WO2021014789A1 (en) 2019-07-19 2021-01-28 日本ゼオン株式会社 Acrylic rubber sheet having excellent water resistance
EP4001319A4 (en) * 2019-07-19 2023-08-30 Zeon Corporation Acrylic rubber sheet having excellent water resistance
CN114144438A (en) * 2019-09-12 2022-03-04 株式会社大阪曹達 Method for producing acrylate rubber
JP7452009B2 (en) 2019-12-26 2024-03-19 日本ゼオン株式会社 Acrylic rubber with excellent heat resistance and water resistance
JP7452008B2 (en) 2019-12-26 2024-03-19 日本ゼオン株式会社 Acrylic rubber with excellent heat resistance and water resistance
JP2021105128A (en) * 2019-12-26 2021-07-26 日本ゼオン株式会社 Acryl rubber having excellent heat resistance, water resistance and workability
WO2021200933A1 (en) * 2020-03-31 2021-10-07 株式会社大阪ソーダ Acrylic copoymer, acrylic copoymer-containing composition and crosslinked product of same
EP4130054A4 (en) * 2020-03-31 2024-05-08 Osaka Soda Co Ltd Acrylic copolymer, acrylic copolymer-containing composition and crosslinked product of same
WO2021261216A1 (en) * 2020-06-23 2021-12-30 日本ゼオン株式会社 Acrylic rubber bale having excellent banbury processability and injection moldability
WO2021261215A1 (en) * 2020-06-23 2021-12-30 日本ゼオン株式会社 Acrylic rubber bale having excellent banbury processability and water resistance

Also Published As

Publication number Publication date
TW201817800A (en) 2018-05-16
JP6696583B2 (en) 2020-05-20
JPWO2018079783A1 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6696583B2 (en) Acrylic rubber and crosslinked rubber
JP6760403B2 (en) Acrylic rubber manufacturing method
JP7010318B2 (en) Acrylic rubber manufacturing method
JP6708316B2 (en) Acrylic rubber manufacturing method and acrylic rubber obtained by the manufacturing method
KR102457641B1 (en) Method for manufacturing acrylic rubber
JP6696585B2 (en) Acrylic rubber and crosslinked rubber
JPWO2018147142A1 (en) Acrylic rubber
JP6729758B2 (en) Acrylic rubber production and resulting acrylic rubber
JP6753429B2 (en) Acrylic rubber manufacturing method and acrylic rubber obtained by the manufacturing method
JP6696584B2 (en) Acrylic rubber and method for producing the same
JP2019194326A (en) Production of acrylic rubber and obtained acrylic rubber
JP6753431B2 (en) Acrylic rubber manufacturing method, and acrylic rubber, rubber composition, and rubber crosslinked product obtained by the manufacturing method.
JP2023124548A (en) Copolymer rubber, rubber composition, crosslinked rubber, hose material, and seal material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865098

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17865098

Country of ref document: EP

Kind code of ref document: A1