WO2018079781A1 - Wire rod and manufacturing method therefor - Google Patents

Wire rod and manufacturing method therefor Download PDF

Info

Publication number
WO2018079781A1
WO2018079781A1 PCT/JP2017/039166 JP2017039166W WO2018079781A1 WO 2018079781 A1 WO2018079781 A1 WO 2018079781A1 JP 2017039166 W JP2017039166 W JP 2017039166W WO 2018079781 A1 WO2018079781 A1 WO 2018079781A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
pro
eutectoid cementite
cementite
content
Prior art date
Application number
PCT/JP2017/039166
Other languages
French (fr)
Japanese (ja)
Inventor
昌 坂本
児玉 順一
圭佑 齋藤
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to EP17866036.1A priority Critical patent/EP3533898B1/en
Priority to CN201780065792.2A priority patent/CN109963960B/en
Priority to KR1020197014444A priority patent/KR102247234B1/en
Priority to JP2018547829A priority patent/JP6733741B2/en
Publication of WO2018079781A1 publication Critical patent/WO2018079781A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a wire and a method for manufacturing the same.
  • the present application claims priority based on Japanese Patent Application No. 2016-212590 filed in Japan on October 28, 2016, the contents of which are incorporated herein by reference.
  • High-strength steel wires such as steel cords and sawing wires are usually manufactured by drawing a high carbon steel wire having a C content of about 0.7 to 0.9%. Since high carbon steel has high strength, disconnection is likely to occur during wire drawing. When the processing strain increases in the wire drawing process, the wire drawing material becomes higher in strength and lower in ductility, so that disconnection is particularly likely to occur. Disconnection during wire drawing significantly reduces productivity. Therefore, a high carbon steel wire rod that is difficult to be disconnected at the time of wire drawing (that is, a high carbon steel wire rod having good wire drawing workability) is demanded.
  • steel wire is required to have high strength.
  • steel cords are required to have high strength in order to reduce the weight of tires and improve the fuel efficiency of automobiles.
  • Sewing wires are required to have high strength and a small diameter in order to prevent disconnection when cutting silicon wafers and reduce cutting allowances.
  • high carbon steel particularly hypereutectoid steel containing an amount of C more than eutectoid steel, is used as a steel material.
  • the “hot rolled wire” means a wire that is not hot-rolled after hot rolling and is not subjected to heat treatment.
  • Patent Document 1 discloses that the drawing processability of a hot-rolled wire is improved by defining the pearlite lamella spacing of the hot-rolled wire.
  • Patent Document 1 does not examine the effect of pro-eutectoid cementite on wire drawing workability.
  • the cooling rate from winding to predetermined temperature shall be 20 degrees C / s or more, and it has the process of heating after that, and a manufacturing process is complicated. Furthermore, there is a problem that the cooling capacity after winding is heavy and the manufacturing cost is high.
  • Patent Document 2 aims to improve the drawing workability of the hot rolled wire by limiting the tensile strength, fracture drawing, nodule diameter, and the like of the hot rolled wire.
  • Patent Document 2 does not examine the effect of proeutectoid cementite on the wire drawing workability, as in Patent Document 1.
  • a wire with a high C content achieves the fracture drawing and the nodule diameter, which are limited in Patent Document 2
  • a large amount of proeutectoid cementite precipitates, which may reduce wire drawing workability.
  • Patent document 3 refines the austenite grains of the wire after hot rolling, and sets the area fraction and aspect ratio of the pro-eutectoid cementite after cooling within a predetermined range, thereby improving the wire drawing workability of the wire. It is improving.
  • the wire disclosed in Patent Document 3 is expected to reduce the manufacturing cost by further reducing the tensile strength, thereby improving the wire drawing workability and reducing the load during wire drawing.
  • Japanese Patent No. 5179331 Japanese Patent No. 4088220 Japanese Unexamined Patent Publication No. 2001-181789
  • the present invention has been made to solve the above problems. That is, the present invention provides a wire having excellent wire drawing workability and a method for producing the same, which contains C in an amount equal to or greater than eutectoid steel, and is obtained without performing a heat treatment to be heated again after hot rolling. Objective.
  • the present inventors have used a steel material having a C content of 0.90 to 1.15% and a high-carbon steel hot-rolled wire material (hereinafter referred to as “wire material”) in which the metal structure and tensile strength are controlled under various rolling conditions. May be described).
  • wire material a high-carbon steel hot-rolled wire material
  • the present inventors evaluated the wire drawing workability of these wires, and examined in detail the influence of the wire structure and tensile strength on the wire drawing workability.
  • the present inventors control the tensile strength within a predetermined range according to the C content and Cr content, suppress the area fraction and thickness of pro-eutectoid cementite, and further, per unit area It was found that the wire drawing processability of the wire is improved by controlling the total length of proeutectoid cementite.
  • drawing workability refers to the property of drawing without disconnection. In this specification, the wire drawing workability of the wire is evaluated based on the true strain when disconnection occurs during the wire drawing.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the wire according to one embodiment of the present invention is, in mass%, C: 0.90 to 1.15%, Si: 0.10 to 0.50%, Mn: 0.10 to 0.80%, Cr: 0.10 to 0.50%, Ni: 0 to 0.50%, Co: 0 to 1.00%, Mo: 0 to 0.20% and B: 0 to 0.0030%, P: 0.020% or less and S: 0.010% or less, the balance is Fe and impurities, and when the radius of the wire is R, (1/5) R from the center of the cross section of the wire.
  • the area fraction of pearlite is 90.0% or more and the area fraction of pro-eutectoid cementite is 1.00% or less in the structure observed in the central part of In the central part, the proeutectoid cementer per unit area
  • the total length of the bets is less than 40.0 mm / mm 2, a tensile strength satisfies the equation (1), having a diameter of 3.0 ⁇ 5.5 mm
  • the total length of pro-eutectoid cementite per unit area (mm / mm 2 ) is the total length of pro-eutectoid cementite observed per unit area.
  • the TS in the formula (1) indicates the tensile strength of the wire when the unit is MPa.
  • the “C amount (%)” in the formula (1) indicates the C content mass% in the wire, and the “Cr amount (%)” indicates the Cr content mass% in the wire.
  • the area fraction of the pro-eutectoid cementite may be more than 0% to 1.00%.
  • the structure observed in the central portion includes one or more of pro-eutectoid cementite, grain boundary ferrite, and bainite. You may go out.
  • a steel piece having the component described in (1) above is hot rolled to a diameter of 3.0 to 5.5 mm, and then 940 to 800 ° C. After winding, cool to 650 ° C at an average cooling rate of 6.0 to 15.0 ° C / s, and cool at 650 to 600 ° C at an average cooling rate of 1.0 to 3.0 ° C / s. Then, it is cooled at 600 to 300 ° C. at an average cooling rate of 10.0 ° C./s or more.
  • the wire drawing workability of the wire of a hypereutectoid steel composition can be improved, without requiring extra equipment cost.
  • the cost increase factor accompanying the increase in strength of the steel cord, the sawing wire, etc. increased disconnection rate during wire drawing, implementation of intermediate patenting, increased die wear, and wire drawing) Time load etc.
  • the wire according to the above aspect is useful as a material for high-strength steel wires such as steel cords used as reinforcing materials for tires and hoses, and sawing wires used for cutting silicon wafers and the like.
  • the wire according to the present embodiment will be described.
  • this embodiment is described in detail for better understanding of the gist of the present invention, the present invention is not limited unless otherwise specified.
  • the steel composition of the wire according to this embodiment will be described.
  • “%” regarding the steel composition indicates “% by mass”.
  • C 0.90 to 1.15%
  • C is an essential element for securing the strength of the steel wire. If the C content is less than 0.90%, the strength of the steel wire is reduced. Therefore, the lower limit of the C content is set to 0.90%. The lower limit of the preferable C content is 0.96% or 1.00%. On the other hand, if the C content exceeds 1.15%, a large amount of pro-eutectoid cementite precipitates in the wire, and disconnection is likely to occur. On the other hand, if the C content exceeds 1.15%, the wire and steel wire strength becomes excessively high, so that the wire workability of the wire and steel wire is lowered. Therefore, the upper limit of the C content is 1.15%. The upper limit of the preferable C content is 1.10% or 1.08%.
  • Si 0.10 to 0.50% Si has an action of increasing the strength of ferrite in pearlite.
  • the lower limit of the Si content is 0.10%.
  • the lower limit of the preferred Si content is 0.15% or 0.20%.
  • the upper limit of Si content is 0.50%.
  • the upper limit of the preferable Si content is 0.40% or 0.35%.
  • Mn 0.10 to 0.80%
  • Mn has an action of delaying transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite, and is an element useful for obtaining a pearlite-based structure.
  • the lower limit of the Mn content is 0.10%.
  • the lower limit of the preferable Mn content is 0.20% or 0.30%.
  • Mn has the effect
  • the upper limit of the Mn content is 0.80%.
  • the upper limit of the preferable Mn content is 0.70%, 0.60%, or 0.50%.
  • Cr 0.10 to 0.50% Cr has the effect of increasing the work hardening rate of steel pearlite. When the work hardening rate of pearlite increases, a higher tensile strength can be obtained by a low strain drawing process.
  • Cr is an element useful for obtaining a pearlite-based structure because it has the effect of delaying the transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite.
  • the lower limit of the Cr content is 0.10%.
  • the lower limit of the preferred Cr content is 0.15% or 0.20%.
  • the upper limit of Cr content is 0.50%.
  • the upper limit of preferable Cr content is 0.40% or 0.35%.
  • Both Mn and Cr are elements that have the effect of improving the hardenability of the steel and delaying the transformation to proeutectoid cementite.
  • the lower limit of the total content of Mn and Cr is preferably 0.40% or 0.45%.
  • the upper limit of the total content of Mn and Cr is preferably 0.60% or 0.55%.
  • the wire according to this embodiment may further contain one or more of Ni, Co, Mo, and B shown below. When these elements are not contained, the content of these elements is 0%.
  • Ni has a function of delaying transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite, and is a useful element for obtaining a pearlite-based structure.
  • Ni is an element that also has an effect of increasing the toughness of the wire drawing material.
  • the lower limit of the Ni content is preferably 0.10%.
  • a more preferable lower limit of the Ni content is 0.15% or 0.20%.
  • the upper limit of the Ni content is preferably 0.50%.
  • a more preferable upper limit of the Ni content is 0.30% or 0.25%.
  • Co has a function of suppressing precipitation of pro-eutectoid ferrite in the rolled material. Co has an effect of improving the ductility of the wire drawing material.
  • the lower limit of the Co content is preferably 0.10%.
  • a more preferable lower limit of the Co content is 0.20%, 0.30%, or 0.40%.
  • the upper limit of the Co content is preferably 1.00%.
  • a more preferable upper limit of the Co content is 0.90% or 0.80%.
  • Mo has an action of delaying transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite, and is an element useful for obtaining a pearlite-based structure.
  • a more preferable lower limit of the Mo content is 0.08%.
  • the Mo content exceeds 0.20%, the hardenability becomes excessive, and a supercooled structure such as bainite and martensite is generated in the cooling process after hot rolling, or the wire drawing workability of the wire is lowered. There is a case. Therefore, it is preferable that the upper limit of the Mo content is 0.20%. A more preferable upper limit of the Mo content is 0.15% or 0.11%.
  • B 0 to 0.0030%
  • B has an effect of concentrating on the grain boundary and suppressing precipitation of pro-eutectoid ferrite.
  • the lower limit of the B content is preferably 0.0002%.
  • a more preferable lower limit of the B content is 0.0005%, 0.0007%, 0.0008%, or 0.0009%.
  • B when B is contained excessively, B may form carbides such as Fe 23 (CB) 6 in austenite, which may reduce the wire drawing workability of the wire. Therefore, it is preferable that the upper limit of the B content be 0.0030%.
  • a more preferable upper limit of the B content is 0.0020%.
  • the wire according to the present embodiment contains one or more of Ni, Co, Mo, and B as necessary, and the balance is substantially Fe and impurities.
  • the wire according to the present embodiment may include P and S as impurities mixed during the manufacture of molten steel.
  • P 0.020% or less
  • P is an element that decreases the wire drawing workability of the wire by segregating at the grain boundaries. Therefore, it is preferable to reduce the P content as much as possible.
  • the upper limit of the P content is 0.020%.
  • a preferable upper limit of the P content is 0.014% or 0.010%.
  • P may be mixed as an impurity during the production of molten steel, but its lower limit is not particularly limited, and the lower limit is 0%. If the P content is excessively reduced, the melting cost may increase, so the lower limit of the P content may be 0.003% or 0.005%.
  • S 0.010% or less
  • S is an element that reduces the wire drawing workability of the wire by forming precipitates with Mn and the like. Therefore, it is preferable to reduce the S content as much as possible.
  • the upper limit of the S content is 0.010%.
  • the upper limit of the preferable S content is 0.008%, 0.007%, or 0.005%.
  • S may be mixed as an impurity during the production of molten steel, but its lower limit is not particularly limited, and the lower limit is 0%. If the S content is excessively reduced, the melting cost may increase, so the lower limit of the S content may be 0.001% or 0.003%.
  • the wire according to the present embodiment has pearlite as a main structure, and the remaining structure is composed of one or more of proeutectoid cementite, grain boundary ferrite, and bainite.
  • the remaining structures, proeutectoid cementite, intergranular ferrite, and bainite may be the propagation path of fracture, and the wire area drawability of the wire may be reduced by increasing the area fraction of these remaining structures. is there. Therefore, the wire according to the present embodiment has a pearlite area fraction of 90 in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire, where R is the radius of the wire. 0.0% or more, and the area fraction of pro-eutectoid cementite is 1.00% or less.
  • the area fraction of pearlite is preferably 93.0% or more, 95.0% or more, or 97.0% or more.
  • a preferred area fraction of pro-eutectoid cementite is 0.50% or less, or 0.20%
  • the area fraction of pearlite may be 100%, but with the chemical composition of the wire rod according to the present embodiment, It is difficult to completely suppress the precipitation of proeutectoid cementite, grain boundary ferrite and bainite.
  • the area fraction of pearlite may be less than 100%.
  • Proeutectoid cementite does not deteriorate the wire drawing workability of the wire if the precipitation amount is small.
  • the area fraction of pro-eutectoid cementite may be more than 0% in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire.
  • the total area fraction of the grain boundary ferrite and bainite is preferably 5.0% or less, or 4.5% or less. Setting the total area fraction of the grain boundary ferrite and bainite to 0% may cause an increase in manufacturing cost, so the total area fraction of the grain boundary ferrite and bainite may be more than 0%.
  • the proeutectoid cementite in the wire becomes a cause of wire breakage during wire drawing.
  • the precipitation amount of pro-eutectoid cementite is small, it is possible to suppress a decrease in wire drawing workability, particularly by appropriately adjusting the relationship with the prior austenite grain boundaries.
  • the thickness of pro-eutectoid cementite and shortening the total length of pro-eutectoid cementite per unit area it is possible to suppress a reduction in wire drawing workability of the wire.
  • FIG. 1 is a schematic diagram showing the precipitation state of pro-eutectoid cementite at the prior austenite grain boundaries.
  • FIG. 2 is a view for explaining a method for measuring the thickness and length of the pro-eutectoid cementite 10a of FIG.
  • FIGS. 3 and 4 are diagrams for explaining a method of measuring the thickness and length of the pro-eutectoid cementite 10b and 10c in FIG. 1, respectively.
  • Proeutectoid cementite precipitates in a shape along the former austenite grain boundary. Specifically, as shown in FIG. 1, the pro-eutectoid cementite 10a to 10d precipitates along the prior austenite grain boundary 20.
  • the length is defined in the direction along the prior austenite grain boundary
  • the thickness is defined in the direction perpendicular to the prior austenite grain boundary.
  • the thickness is measured at three places at intervals equal to the length along the former austenite grain boundary, and the average of these measured values is defined as the thickness of the pro-eutectoid cementite. To do.
  • the location is not included in the average. That is, in FIG. 2, the length of pro-eutectoid cementite 10a is L1, and the thickness of pro-eutectoid cementite 10a is the average of T1, T2, and T3.
  • the pro-eutectoid cementite 10b in FIG. 1 for the pro-eutectoid cementite having branches, the total length of each branch is defined as the length of the pro-eutectoid cementite. That is, in FIG.
  • the length of the pro-eutectoid cementite 10b is the sum of OA, OB and OC. Further, the thickness of pro-eutectoid cementite was measured at three locations at intervals equal to the length of the former austenite grain boundary in each branch as described above, and the average of these measured values was measured for the pro-eutectoid cementite. Defined as thickness. That is, in FIG. 3, the thickness of proeutectoid cementite 10b is the average of TA1, TA2, TA3, TB1, TB2, TB3, TC1, TC2, and TC3.
  • the length of pro-eutectoid cementite 10c is the sum of O'D and O'E.
  • the thickness is divided at the bent part, and each part is measured at three points at intervals of four equal lengths in the direction along the former austenite grain boundary as described above, and the average of the measured values is analyzed for the first analysis. It is defined as the thickness of cementite. That is, in FIG.
  • the thickness of proeutectoid cementite 10c is the average of TD1, TD2, TD3, TE1, TE2, and TE3.
  • the total length of pro-eutectoid cementite in FIG. 1 is the total length of pro-eutectoid cementite 10a to 10d.
  • the wire according to this embodiment has an average thickness of pro-eutectoid cementite of 0.25 ⁇ m or less in a structure observed in the central portion within (1/5) R from the center of the cross section of the wire, and per unit area
  • the total length of pro-eutectoid cementite is less than 40.0 mm / mm 2 .
  • the average thickness of preferable pro-eutectoid cementite is 0.20 ⁇ m or less.
  • the total length of pro-eutectoid cementite per unit area is 30.0 mm / mm 2 or less, 20.0 mm / mm 2 or less, or 10.0 mm / mm 2 or less.
  • the wire according to the present embodiment in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire, by reducing the degree of occupancy in the prior austenite grain boundaries of proeutectoid cementite, You may further reduce the wire drawing workability of a wire.
  • the degree of occupation of pro-eutectoid cementite in the prior austenite grain boundaries is evaluated by the product of the total length of pro-eutectoid cementite per unit area and the prior austenite grain size, as shown on the left side of the following formula (A). It is preferable that the left side of following formula (A) is less than 1.2. More preferably, the left side of the following formula (A) is less than 1.0.
  • the tensile strength (MPa) of the wire according to this embodiment is defined by the following formula (1) according to the C content (mass%) and the Cr content (mass%). If the tensile strength of the wire falls below the lower limit (left side) shown in the following formula (1), it causes coarsening of pro-eutectoid cementite, increase in area fraction of pro-eutectoid cementite, or increase in thickness of lamellar cementite. The wire drawing workability of the wire may be reduced. On the other hand, if the tensile strength of the wire exceeds the upper limit (right side) shown in the following formula (1), the work hardening rate during wire drawing increases, the tensile strength of the wire increases, and ductility decreases.
  • the wire drawing workability of the wire drawing material may be reduced. Moreover, when the tensile strength of a wire exceeds the upper limit (right side) shown in the following formula (1), the manufacturing cost may increase due to an increase in the load on the die and the wire drawing machine.
  • the constant term on the right side of the preferred formula (1) is +150 (MPa).
  • the tensile strength of the wire preferably satisfies the following formula (2).
  • a more preferable constant term on the left side of the formula (1) is +80 (MPa), and a more preferable constant term on the right side is +150 (MPa).
  • it is more preferable that the tensile strength of the wire satisfies the following formula (3).
  • a more preferable constant term on the left side of the formula (1) is +90 (MPa), and a more preferable constant term on the right side is +140 (MPa).
  • TS represents the tensile strength of the wire
  • C amount (%) represents the mass content of C in the wire
  • Cr amount (%) Indicates the mass content of Cr in the wire.
  • the wire diameter of the wire affects the cooling rate after winding, and as a result, the metal structure and tensile strength of the wire.
  • the diameter of the wire exceeds 5.5 mm, a large amount of proeutectoid cementite may be generated in the wire due to a slow cooling rate at the center of the wire.
  • the diameter of the wire is less than 3.0 mm, it may be difficult to manufacture the wire, and the production efficiency may decrease, which may increase the cost of the wire. Therefore, the wire diameter of the wire according to this embodiment is set to 3.0 to 5.5 mm.
  • the area fraction of pearlite and pro-eutectoid cementite is measured by the following method.
  • the resin-filled wire is polished with polishing paper and alumina abrasive grains, and further mirror-finished to prepare a sample.
  • SEM scanning electron microscope
  • the nital solution is a mixture of oxalic acid and ethyl alcohol.
  • Corrosion of the observation surface of the sample includes a method of immersing the observation surface in a nital solution having a concentration of 5% or less and a temperature of about 15 to 30 ° C. for several seconds to 1 min, and a nital solution having the above-described concentration and temperature. This is done by wiping the observation surface with absorbent cotton soaked in water.
  • the picral solution is a mixed solution of picric acid and ethyl alcohol. Corrosion of the observation surface of the sample is performed by immersing the observation surface in a picral solution having a concentration of about 5% and a temperature of about 40 to 60 ° C. for 30 seconds to 2 minutes. After corrosion, immediately rinse the observation surface of the sample thoroughly with water, and then quickly dry it with cold or warm air.
  • the central area of the sample (the area within (1/5) R from the center of the wire, where R is the radius of the wire) is a magnification of 2000 times or more, and the total viewing field area A plurality of fields of view are photographed so that becomes 0.08 mm 2 or more.
  • image analysis software such as particle analysis software, the area fraction of pearlite and proeutectoid cementite at the center of the wire is obtained.
  • the average thickness and length of proeutectoid cementite are measured using the SEM photograph.
  • the average thickness of pro-eutectoid cementite is obtained by calculating the average value of the thicknesses of all pro-eutectoid cementite in the SEM photograph.
  • the thickness of pro-eutectoid cementite can be obtained by measuring the thickness in the direction perpendicular to the prior austenite grain boundaries. In the case of the cementite 10a in FIG. 2, the thicknesses T1, T2, and T3 are measured, and the average of these is taken as the thickness of the proeutectoid cementite.
  • the length (mm) of pro-eutectoid cementite draws the line which imagines the prior austenite grain boundary based on the shape of pro-eutectoid cementite in the said SEM photograph, and measures length along the line. If the cementite does not have a particularly bent shape like the cementite 10a in FIG. 2, a straight line imagining the prior austenite grain boundary is drawn along the major axis direction, and the length L1 is measured along the straight line. . If it is a pro-eutectoid cementite with a specific curved part like the cementite 10c in Fig.
  • a line imagining the prior austenite grain boundary is drawn according to the shape, and the pro-eutectoid cementite length is measured along that line. To do. If it is a pro-eutectoid cementite with a branch like the cementite 10b of FIG. 3, the length for every branch is totaled.
  • the total length (mm / mm 2 ) of pro-eutectoid cementite per unit area is a value obtained by dividing the total length of pro-eutectoid cementite in the measured visual field by the visual field area.
  • the total length of pro-eutectoid cementite per unit area is the total length of pro-eutectoid cementite observed per unit area.
  • an area containing pro-eutectoid cementite may be photographed at a higher magnification to measure the average thickness and length of pro-eutectoid cementite.
  • the prior austenite grain size is measured by using a wire rod that has been quenched by water cooling several rings from the final end of the coil after hot rolling and immediately after winding.
  • the hardened wire is cut, and the wire is filled with resin so that the cross section can be observed.
  • the resin-filled wire is polished with abrasive paper and alumina, and further mirror-finished to obtain a sample.
  • the prior austenite grain boundaries are exposed by corroding the observation surface of the sample (that is, the cross section of the wire) with an alkali picric acid solution. Corrosion of the observation surface of the sample is performed by immersing the observation surface of the sample for about 10 to 20 minutes in an alkali picrate solution at a temperature of 75 to 90 ° C.
  • the picric acid alkali solution used for corrosion of an observation surface is a mixed solution of the ratio of picric acid 2, sodium hydroxide 5, and water 100 by weight ratio.
  • the central portion of the observation surface of the sample (the radius of the wire is R and the region within (1/5) R from the center of the wire) is a total observation field of view at a magnification of 400 times or more. Multiple fields of view are taken so that the area is 0.15 mm 2 or more.
  • the prior austenite particle size is measured using the photographed photograph and the cutting method described in JIS G 0551: 2013. In the cutting method, 10 or more straight lines having a length of 400 ⁇ m are drawn so as not to overlap each other at 100 ⁇ m intervals, and evaluation is performed based on the number of captured crystal grains captured by a total of 4 mm or more.
  • the tensile strength of the wire is measured by the following method. Three or more samples are collected from the front part, middle part, and tail part of the wire coil except for the unsteady part. A tensile test is performed according to JIS Z 2241: 2011 using the collected samples. By calculating the average value of the tensile strength of all the samples, the tensile strength of the wire is obtained.
  • the material used for hot rolling can be obtained under normal manufacturing conditions. For example, after casting steel having the above-described components and performing a soaking process (heat treatment for reducing segregation generated in casting) that holds the slab at about 1100 to 1200 ° C. for 10 to 20 hours, By applying, a steel slab having a size suitable for hot rolling (a steel slab before hot rolling generally called a billet) is obtained.
  • hot rolling is performed under the following conditions.
  • the steel slab is heated to 900 to 1200 ° C., and the start temperature of finish rolling is controlled to 750 to 950 ° C.
  • the temperature of the wire during hot rolling indicates the surface temperature of the wire. What is necessary is just to measure the temperature of the wire at the time of hot rolling using a radiation thermometer.
  • the temperature of the wire rod after finish rolling rises higher than the finish rolling start temperature due to processing heat generation.
  • the winding temperature is controlled to 800 to 940 ° C.
  • the austenite grain size of the wire becomes finer, so that pro-eutectoid cementite, intergranular ferrite and bainite are likely to precipitate, and the mechanical scale peelability of the wire may decrease. is there.
  • the coiling temperature exceeds 940 ° C., the austenite grain size of the wire becomes excessively large, and the wire drawing workability of the wire may be reduced.
  • a preferable winding temperature is 830 to 920 ° C.
  • a more preferable winding temperature is 850 to 900 ° C.
  • the grain size of the prior austenite of the wire is 15 to 60 ⁇ m by controlling the start temperature and the winding temperature of the finish rolling as described above.
  • a more preferable prior austenite particle size is 20 to 45 ⁇ m.
  • the cooling rate after winding is an important factor for controlling the structure and tensile strength of the wire.
  • the cooling after winding is divided into three temperature ranges, and the average cooling rate in each temperature range is controlled.
  • the average cooling rate to 650 ° C. is less than 6.0 ° C./s, it may be difficult to suppress the precipitation of proeutectoid cementite.
  • the average cooling rate up to 650 ° C. after winding is over 15.0 ° C./s, transformation from austenite to bainite, deterioration of wire drawing process due to high strength, and mechanical scale peeling property of the wire. May occur.
  • the average cooling rate up to 650 ° C. exceeds 15.0 ° C./s after winding, equipment costs may increase due to the need for large-scale cooling equipment. Therefore, after winding, the average cooling rate to 650 ° C. is 6.0 to 15.0 ° C./s. After winding, the preferred average cooling rate up to 650 ° C. is 7.0 to 10.0 ° C./s.
  • the average cooling rate is controlled to 1.0 to 3.0 ° C./s in order to transform austenite in the wire into pearlite. If the average cooling rate at 650 to 600 ° C. is less than 1.0 ° C./s, the tensile strength of the wire may decrease or the thickness of the proeutectoid cementite may increase, which may reduce the wire drawing workability of the wire. is there. On the other hand, when the average cooling rate at 650 to 600 ° C. exceeds 3.0 ° C./s, the transformation from austenite to pearlite is not completed by 600 ° C., and the tensile strength of the wire is increased. May decrease, and the life of the wire drawing die may decrease.
  • a preferable average cooling rate at 650 to 600 ° C. is 1.5 to 2.8 ° C./s.
  • the average cooling rate is set to 10.0 ° C./s or higher and the cooling is performed to 300 ° C. or lower. This is because the tensile strength of the wire may decrease if the wire is held near the transformation temperature even after austenite is transformed into pearlite.
  • a preferable average cooling rate at 600 to 300 ° C. is 15.0 ° C./s or more. If the average cooling rate at 600 to 300 ° C. is to exceed 50 ° C./s, an excellent cooling facility is required, which increases the equipment cost. Therefore, the upper limit of the average cooling rate at 600 to 300 ° C. may be 50 ° C./s or less.
  • the temperature of the wire during cooling should be measured with a radiation thermometer.
  • cooling after hot rolling of a wire rod is performed after winding it in a coil shape.
  • the wire wound up in a coil shape includes a dense portion where the overlapping of the wires is large and a sparse portion where the overlapping of the wires is small.
  • the temperature of the wire after winding is measured at a portion (dense portion) where the wires are overlapped with each other in the wire wound in a coil shape.
  • the structure and tensile strength of the wire can be made within the scope of the present invention.
  • Table 1 shows the chemical composition and hot rolling conditions of steel
  • Table 2 shows the results of evaluating the structure of the wire, and the results of evaluating tensile properties and wire drawing workability.
  • the cooling rates 1 to 3 in Table 1 are as follows. The average cooling rate was controlled by adjusting the amount of blast. In Tables 1 and 2, numbers outside the scope of the present invention are underlined.
  • Cooling rate 1 Average cooling rate from 650 ° C after winding up
  • Cooling rate 2 Average cooling rate from 650 ° C to 600 ° C
  • Cooling rate 3 Average cooling rate from 600 ° C to 300 ° C
  • the billet was heated to 1000 to 1200 ° C. in a heating furnace, and then the finish rolling start temperature was set to 750 to 950 ° C.
  • the wire temperature increased by heat generated during finish rolling was controlled, and the coil was wound into a coil at the winding temperature shown in Table 1.
  • Cooling after winding is performed by means of an average cooling rate from 650 ° C. after cooling (cooling rate 1 in Table 1), an average cooling rate from 650 ° C. to 600 ° C. (cooling rate 2 from Table 1), and 600 ° C. to 300
  • the average cooling rate up to ° C. (cooling rate 3 in Table 1) was performed under the conditions shown in Table 1.
  • the wire which has a wire diameter shown in Table 1 was obtained.
  • the area fraction of pearlite in the wire and the area fraction of pro-eutectoid cementite were measured by the following methods.
  • the wire was cut and filled with resin so that a cross section perpendicular to the longitudinal direction could be observed.
  • the resin-filled wire was polished with polishing paper and alumina abrasive grains, and further mirror finished to prepare a sample.
  • the observation surface of the sample was observed using a scanning electron microscope (SEM).
  • the used nital solution was a mixed solution of oxalic acid and ethyl alcohol.
  • Corrosion of the observation surface of the sample is performed by immersing the observation surface in a nital solution for several seconds to 1 min with a concentration of 5% or less and a temperature of about 15 to 30 ° C., and the above-described concentration and temperature of the nital solution.
  • the observation surface was wiped with a dipped absorbent cotton.
  • the picral solution used was a mixed solution of picric acid and ethyl alcohol.
  • Corrosion of the observation surface of the sample was performed by immersing the observation surface in a picral solution having a concentration of about 5% and a temperature of about 40 to 60 ° C. for 30 seconds to 2 minutes. After the corrosion, the observation surface of the sample was immediately washed thoroughly with water and quickly dried with cold air or hot air.
  • the central portion of the sample (the radius of the wire is R, and the region within (1/5) R from the center of the wire) is 2000 times magnification or more, and the total observation visual field area is A plurality of fields of view were photographed so as to be 0.08 mm 2 or more.
  • image analysis software such as particle analysis software, the area fraction of pearlite and proeutectoid cementite at the center of the wire was obtained.
  • Luzex registered trademark, manufactured by Nireco Corporation
  • the metal structure observed in the central portion was one or more composite structures of pearlite, proeutectoid cementite, grain boundary ferrite, and bainite.
  • the average thickness and length of proeutectoid cementite were measured using the SEM photograph.
  • the average thickness of pro-eutectoid cementite was obtained by measuring the thickness of all pro-eutectoid cementite in the SEM photograph and calculating the average value.
  • the thickness of pro-eutectoid cementite was obtained by measuring the thickness in the direction perpendicular to the prior austenite grain boundaries. In the case of cementite having a shape like the cementite 10a in FIG. 2, the thicknesses T1, T2, and T3 were measured, and the average of these was the thickness of the pro-eutectoid cementite.
  • the length of pro-eutectoid cementite was measured by drawing a line imagining a prior austenite grain boundary based on the shape of pro-eutectoid cementite in the SEM photograph, and measuring the length of pro-eutectoid cementite along the line. If the cementite does not have a particularly bent shape like the cementite 10a in FIG. 2, a straight line imagining the prior austenite grain boundary is drawn along the major axis direction, and the length L1 is measured along the straight line. . If it is a pro-eutectoid cementite with a specific curved part like the cementite 10c in Fig.
  • a line imagining the prior austenite grain boundary is drawn according to the shape, and the pro-eutectoid cementite length is measured along that line. did.
  • the length of each branch was totaled.
  • the total length of pro-eutectoid cementite per unit area was obtained by dividing the total length of pro-eutectoid cementite in the measured visual field by the visual field area. That is, the total length (mm / mm 2 ) of pro-eutectoid cementite per unit area was the total length of pro-eutectoid cementite observed per unit area.
  • an area containing pro-eutectoid cementite was photographed at a magnification of 3000 to 5000 times, and the average thickness and length of pro-eutectoid cementite were measured.
  • the prior austenite grain size was measured by using a wire rod that was water-cooled after several rings from the final end of the coil after hot rolling and immediately after winding.
  • the quenched wire was cut and filled with a resin so that the cross section could be observed, and then polished with alumina to obtain a sample. Thereafter, the polished sample was corroded with an alkali picrate solution to reveal prior austenite grain boundaries.
  • Corrosion of the observation surface of the sample was performed by immersing the observation surface of the sample for about 10 to 20 minutes in an alkali picrate solution at a temperature of 75 to 90 ° C. After corrosion, the observation surface of the sample was immediately washed thoroughly with water, and then quickly dried with cold air or hot air.
  • the alkaline picric acid solution used for corrosion of the observation surface was a mixed solution of picric acid 2, sodium hydroxide 5 and water 100 in weight ratio.
  • the observation surface of the sample was corroded by immersing the observation surface of the sample in an alkaline picric acid solution at a temperature of 75 to 90 ° C. for about 10 to 20 minutes. After the corrosion, the observation surface of the sample was immediately washed thoroughly with water and quickly dried with cold air or hot air. Thereafter, using an optical microscope, the central portion of the observation surface of the sample (the radius of the wire is R, and the region within (1/5) R from the center of the wire) is 400 ⁇ magnification and the total observation field area is 0.18 mm. A plurality of fields of view were taken so as to be 2 . Using these SEM photographs and the cutting method described in JIS G0551: 2013, the prior austenite particle size was measured. In the cutting method, 15 or more straight lines having a length of 400 ⁇ m were drawn at intervals of 100 ⁇ m, and evaluation was performed based on the number of captured crystal grains captured by a total of 6 mm straight lines.
  • the tensile strength was measured by the following method. Of the wire, front part (location on the tail end side of the 50 ring from the tip), middle part (within 100 rings from the middle of the tip and tail end in the coil), and tail part (location on the tip end side of the 50 ring from the tail end) From each ring, 3 rings were collected, and 8 samples were collected from each ring at equal intervals, for a total of 72 samples. Using these samples, a tensile test was performed according to JIS Z 2241: 2011. The tensile strength of the wire was obtained by calculating the average value of the tensile strength obtained from these 72 samples. The tensile test was performed with the sample length of 400 mm, the crosshead speed of 10 mm / min, and the distance between jigs of 200 mm.
  • the wire drawing workability of the wire was evaluated by the following method. Ten rings were collected from the wire, pickled and scaled, and then subjected to lime film treatment. Thereafter, wire drawing (dry wire drawing) was performed without performing a patenting treatment. The area reduction per pass during wire drawing was 17-23%. When the wire strain was performed and the true strain at the time of disconnection was 2.9 or more, it was determined to be acceptable because of excellent wireworkability. On the other hand, when the wire drawing was performed and the true strain at the time of disconnection was less than 2.9, it was determined to be rejected because the wire drawing workability was poor. The true strain was obtained by calculating ⁇ 2 ⁇ ln (the wire diameter of the drawn wire / the wire diameter of the wire). “Ln” is a natural logarithm.
  • No. A1 to A22 are all examples of the present invention, and showed excellent wire drawing workability that enables wire drawing with a true strain of 2.9 or more without performing a patenting treatment.
  • B1 has a high C content
  • the area fraction of pro-eutectoid cementite of the wire increases, the average thickness of pro-eutectoid cementite increases, and the total length of pro-eutectoid cementite per unit area increases.
  • the wire drawing workability was reduced.
  • B2 has a high Si content.
  • B3 had a high Mn content
  • the tensile strength of the wire increased and the wire drawing workability decreased.
  • B4 had a high Cr content
  • the area fraction of pearlite decreased, the tensile strength increased, and the wire drawing processability of the wire decreased.
  • No. B8 since the average cooling rate (cooling rate 1) up to 650 ° C. after winding was large, the wire was excessively cooled, the tensile strength increased, and the wire drawing workability decreased.
  • No. B9 has a low coiling temperature and a small average cooling rate (cooling rate 1) from 650 ° C. after winding, so that the prior austenite grain size is refined and a large amount of proeutectoid cementite is precipitated. The total length of pro-eutectoid cementite per area increased, and the wire drawing processability of the wire decreased.
  • No. B10 had a small average cooling rate (cooling rate 3) of 600 to 300 ° C., so that the tensile strength of the wire was lowered and the wire drawing workability was lowered.

Abstract

A wire rod according to this embodiment has a predetermined chemical composition, and, in a structure observed in a center portion of a lateral cross-section of the wire rod, the area proportion of perlite is equal to or greater than 90.0%, the area proportion of pro-eutectoid cementite is equal to or less than 1.00%, the average thickness of the pro-eutectoid cementite is equal to or less than 0.25 μm, the total length of the pro-eutectoid cementite per unit area is less than 40.0 mm/mm2, the tensile strength satisfies expression (1), and the diameter is 3.0-5.5 mm. Expression (1): 1000 × C content (%) + 300 × Cr content (%) + 70 ≤ TS ≤ 1000 × C content (%) + 300 × Cr content (%) + 160

Description

線材およびその製造方法Wire rod and manufacturing method thereof
 本発明は線材およびその製造方法に関する。
 本願は、2016年10月28日に、日本に出願された特願2016-211590号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a wire and a method for manufacturing the same.
The present application claims priority based on Japanese Patent Application No. 2016-212590 filed in Japan on October 28, 2016, the contents of which are incorporated herein by reference.
 スチールコード及びソーイングワイヤ等の高強度鋼線は、通常、C含有量が0.7~0.9%程度の高炭素鋼線材を伸線加工することで製造される。高炭素鋼は強度が高いため、伸線加工する時に断線が発生しやすい。伸線加工で加工歪が増加すると、伸線材が高強度化および低延性化するため、断線が特に発生しやすくなる。伸線加工時の断線は、生産性を著しく低下させる。そのため、伸線加工時に断線しにくい高炭素鋼線材(すなわち、伸線加工性のよい高炭素鋼線材)が求められている。 High-strength steel wires such as steel cords and sawing wires are usually manufactured by drawing a high carbon steel wire having a C content of about 0.7 to 0.9%. Since high carbon steel has high strength, disconnection is likely to occur during wire drawing. When the processing strain increases in the wire drawing process, the wire drawing material becomes higher in strength and lower in ductility, so that disconnection is particularly likely to occur. Disconnection during wire drawing significantly reduces productivity. Therefore, a high carbon steel wire rod that is difficult to be disconnected at the time of wire drawing (that is, a high carbon steel wire rod having good wire drawing workability) is demanded.
 一方で、鋼線には高い強度が求められている。たとえば、スチールコードには、タイヤの軽量化及び自動車の燃費改善等のため高強度化が求められている。ソーイングワイヤには、シリコンウェハ切断時の断線防止及び切代低減等のため高強度化及び細径化が求められている。これら鋼線への強度の要求に応じるため、鋼素材として高炭素鋼、特に共析鋼以上の量のCを含有する過共析鋼が用いられている。 On the other hand, steel wire is required to have high strength. For example, steel cords are required to have high strength in order to reduce the weight of tires and improve the fuel efficiency of automobiles. Sewing wires are required to have high strength and a small diameter in order to prevent disconnection when cutting silicon wafers and reduce cutting allowances. In order to meet the strength requirements for these steel wires, high carbon steel, particularly hypereutectoid steel containing an amount of C more than eutectoid steel, is used as a steel material.
 過共析鋼においては、一般に、熱間圧延線材に初析セメンタイトが析出することで、線材の伸線加工性が著しく低下する。そのため、過共析鋼の熱間圧延線材における初析セメンタイトの析出量の抑制が望まれていた。ここで、本明細書において、「熱間圧延線材」とは、熱間圧延後、再度加熱する熱処理を施されていない熱間圧延まま線材を意味する。 In hypereutectoid steel, in general, proeutectoid cementite precipitates on a hot-rolled wire, so that the wire drawing workability of the wire is significantly reduced. Therefore, suppression of the precipitation amount of pro-eutectoid cementite in the hot rolled wire rod of hypereutectoid steel has been desired. Here, in the present specification, the “hot rolled wire” means a wire that is not hot-rolled after hot rolling and is not subjected to heat treatment.
 特許文献1は、熱間圧延線材のパーライトラメラ間隔を規定することで、熱間圧延線材の伸線加工性が向上すると開示している。しかし、特許文献1では、伸線加工性に及ぼす初析セメンタイトの影響については検討していない。また、特許文献1では、巻取りから所定の温度までの冷却速度を20℃/s以上とし、その後、加熱する工程を有しており、製造工程が複雑である。さらに、巻取り後の冷却能力の負荷が大きく、製造コストが高くなる等の問題がある。 Patent Document 1 discloses that the drawing processability of a hot-rolled wire is improved by defining the pearlite lamella spacing of the hot-rolled wire. However, Patent Document 1 does not examine the effect of pro-eutectoid cementite on wire drawing workability. Moreover, in patent document 1, the cooling rate from winding to predetermined temperature shall be 20 degrees C / s or more, and it has the process of heating after that, and a manufacturing process is complicated. Furthermore, there is a problem that the cooling capacity after winding is heavy and the manufacturing cost is high.
 特許文献2は、熱間圧延線材の引張強度、破断絞り及びノジュール径等を限定することで、熱間圧延線材の伸線加工性の向上を目指している。しかし、特許文献2は、特許文献1と同様に、伸線加工性に及ぼす初析セメンタイトの影響について検討していない。C含有量が高い線材において、特許文献2で限定された破断絞り及びノジュール径等を実現すると、初析セメンタイトが大量に析出することで、伸線加工性が低下する場合がある。 Patent Document 2 aims to improve the drawing workability of the hot rolled wire by limiting the tensile strength, fracture drawing, nodule diameter, and the like of the hot rolled wire. However, Patent Document 2 does not examine the effect of proeutectoid cementite on the wire drawing workability, as in Patent Document 1. When a wire with a high C content achieves the fracture drawing and the nodule diameter, which are limited in Patent Document 2, a large amount of proeutectoid cementite precipitates, which may reduce wire drawing workability.
 特許文献3は、熱間圧延後の線材のオーステナイト粒を微細化し、かつ冷却後の初析セメンタイトの面積分率及びアスペクト比等を所定の範囲内とすることで、線材の伸線加工性を向上させている。特許文献3に開示された線材は、引張強度を更に低減することで、伸線加工性の向上及び伸線加工時の負荷低減による製造コストの削減が期待される。 Patent document 3 refines the austenite grains of the wire after hot rolling, and sets the area fraction and aspect ratio of the pro-eutectoid cementite after cooling within a predetermined range, thereby improving the wire drawing workability of the wire. It is improving. The wire disclosed in Patent Document 3 is expected to reduce the manufacturing cost by further reducing the tensile strength, thereby improving the wire drawing workability and reducing the load during wire drawing.
日本国特許第5179331号公報Japanese Patent No. 5179331 日本国特許第4088220号公報Japanese Patent No. 4088220 日本国特開2001-181789号公報Japanese Unexamined Patent Publication No. 2001-181789
 本発明は、上記のような問題を解決するためになされたものである。すなわち本発明は、共析鋼以上の量のCを含有し、熱間圧延後に再度加熱する熱処理を施すことなく得られる、優れた伸線加工性を有する線材及びその製造方法を提供することを目的とする。 The present invention has been made to solve the above problems. That is, the present invention provides a wire having excellent wire drawing workability and a method for producing the same, which contains C in an amount equal to or greater than eutectoid steel, and is obtained without performing a heat treatment to be heated again after hot rolling. Objective.
 本発明者らは、C含有量が0.90~1.15%の鋼材を用いて、種々の圧延条件で金属組織及び引張強度を制御した高炭素鋼熱間圧延線材(以下、「線材」と記載する場合がある)を作製した。本発明者らは、これら線材の伸線加工性を評価し、線材の組織及び引張強度が伸線加工性に及ぼす影響について詳細に検討した。その結果、本発明者らは、C含有量及びCr含有量に応じて、引張強度を所定の範囲内に制御し、初析セメンタイトの面積分率及び厚さを抑制し、さらに単位面積当たりの初析セメンタイトの総長さを制御することで、線材の伸線加工性が向上するという知見を得た。なお、本明細書において、「伸線加工性」とは断線せずに伸線できる性質を示す。本明細書では、線材の伸線加工性は、伸線加工時に断線が発生した際の真歪によって評価する。 The present inventors have used a steel material having a C content of 0.90 to 1.15% and a high-carbon steel hot-rolled wire material (hereinafter referred to as “wire material”) in which the metal structure and tensile strength are controlled under various rolling conditions. May be described). The present inventors evaluated the wire drawing workability of these wires, and examined in detail the influence of the wire structure and tensile strength on the wire drawing workability. As a result, the present inventors control the tensile strength within a predetermined range according to the C content and Cr content, suppress the area fraction and thickness of pro-eutectoid cementite, and further, per unit area It was found that the wire drawing processability of the wire is improved by controlling the total length of proeutectoid cementite. In the present specification, “drawing workability” refers to the property of drawing without disconnection. In this specification, the wire drawing workability of the wire is evaluated based on the true strain when disconnection occurs during the wire drawing.
 本発明は、以上の知見に基づいて完成したものであり、その要旨は以下の通りである。 The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1)本発明の一態様に係る線材は、質量%で、C:0.90~1.15%、Si:0.10~0.50%、Mn:0.10~0.80%、Cr:0.10~0.50%、Ni:0~0.50%、Co:0~1.00%、Mo:0~0.20%およびB:0~0.0030%を含有し、P:0.020%以下およびS:0.010%以下に制限し、残部はFeおよび不純物からなり、線材の半径をRとした時、前記線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、パーライトの面積分率が90.0%以上であり、初析セメンタイトの面積分率が1.00%以下であり、前記中心部において、前記初析セメンタイトの平均厚さが0.25μm以下であり、前記中心部において、単位面積当たりの前記初析セメンタイトの総長さが40.0mm/mm未満であり、引張強度が式(1)を満たし、直径が3.0~5.5mmである。
 1000×C量(%)+300×Cr量(%)+70≦TS≦1000×C量(%)+300×Cr量(%)+160・・・式(1)
 なお、前記単位面積当たりの初析セメンタイトの総長さ(mm/mm)は、単位面積当たりに観察される初析セメンタイトの長さの合計である。前記式(1)中の前記TSは、単位をMPaとした時の前記線材の引張強度を示す。前記式(1)中の「C量(%)」は、前記線材中のCの含有質量%を示し、「Cr量(%)」は、前記線材中のCrの含有質量%を示す。
(2)上記(1)に記載の線材では、質量%で、Ni:0.10~0.50%、Co:0.10~1.00%、Mo:0.05~0.20%およびB:0.0002~0.0030%のいずれか1種または2種以上を含有してもよい。
(3)上記(1)又は(2)に記載の線材では、前記初析セメンタイトの面積分率が0%超~1.00%であってもよい。
(4)上記(1)~(3)の何れか一態様に記載の線材では、前記中心部で観察される組織において、初析セメンタイト、粒界フェライトおよびベイナイトの1種または2種以上を含んでいてもよい。
(5)本発明の別の態様に係る線材の製造方法では、上記(1)に記載の成分を有する鋼片を熱間で直径3.0~5.5mmに圧延した後、940~800℃で巻取り、巻取り後650℃までを6.0~15.0℃/sの平均冷却速度で冷却し、650~600℃を1.0~3.0℃/sの平均冷却速度で冷却し、600~300℃を10.0℃/s以上の平均冷却速度で冷却する。
(1) The wire according to one embodiment of the present invention is, in mass%, C: 0.90 to 1.15%, Si: 0.10 to 0.50%, Mn: 0.10 to 0.80%, Cr: 0.10 to 0.50%, Ni: 0 to 0.50%, Co: 0 to 1.00%, Mo: 0 to 0.20% and B: 0 to 0.0030%, P: 0.020% or less and S: 0.010% or less, the balance is Fe and impurities, and when the radius of the wire is R, (1/5) R from the center of the cross section of the wire The area fraction of pearlite is 90.0% or more and the area fraction of pro-eutectoid cementite is 1.00% or less in the structure observed in the central part of In the central part, the proeutectoid cementer per unit area The total length of the bets is less than 40.0 mm / mm 2, a tensile strength satisfies the equation (1), having a diameter of 3.0 ~ 5.5 mm.
1000 × C amount (%) + 300 × Cr amount (%) + 70 ≦ TS ≦ 1000 × C amount (%) + 300 × Cr amount (%) + 160 Expression (1)
The total length of pro-eutectoid cementite per unit area (mm / mm 2 ) is the total length of pro-eutectoid cementite observed per unit area. The TS in the formula (1) indicates the tensile strength of the wire when the unit is MPa. The “C amount (%)” in the formula (1) indicates the C content mass% in the wire, and the “Cr amount (%)” indicates the Cr content mass% in the wire.
(2) In the wire described in the above (1), by mass%, Ni: 0.10 to 0.50%, Co: 0.10 to 1.00%, Mo: 0.05 to 0.20% and B: Any one or more of 0.0002 to 0.0030% may be contained.
(3) In the wire described in (1) or (2) above, the area fraction of the pro-eutectoid cementite may be more than 0% to 1.00%.
(4) In the wire according to any one of the above (1) to (3), the structure observed in the central portion includes one or more of pro-eutectoid cementite, grain boundary ferrite, and bainite. You may go out.
(5) In the method for producing a wire according to another aspect of the present invention, a steel piece having the component described in (1) above is hot rolled to a diameter of 3.0 to 5.5 mm, and then 940 to 800 ° C. After winding, cool to 650 ° C at an average cooling rate of 6.0 to 15.0 ° C / s, and cool at 650 to 600 ° C at an average cooling rate of 1.0 to 3.0 ° C / s. Then, it is cooled at 600 to 300 ° C. at an average cooling rate of 10.0 ° C./s or more.
 上記態様によれば、共析鋼以上の量のCを含有する、熱間圧延後に再度加熱する熱処理を施すことなく得られる、優れた伸線加工性を有する線材及びその製造方法を提供することができる。また、上記態様によれば、余分な設備コストを要することなく、過共析鋼組成の線材の伸線加工性を向上することができる。また、上記態様によれば、スチールコード及びソーイングワイヤ等の高強度化に伴うコストの増大因子(伸線加工中の断線率の上昇、中間パテンティングの実施、ダイスの摩耗増加、及び伸線加工時の負荷増加等)を抑制することができる。そのため、上記態様に係る線材は、タイヤ及びホースの補強材等として用いられるスチールコード、及びシリコンウェハ等の切断に使用するソーイングワイヤ等の高強度鋼線の素材として有用である。 According to the above aspect, it is possible to provide a wire rod having excellent wire drawing workability and a method for producing the same, which is obtained without performing heat treatment again after hot rolling, containing C in an amount equal to or greater than eutectoid steel. Can do. Moreover, according to the said aspect, the wire drawing workability of the wire of a hypereutectoid steel composition can be improved, without requiring extra equipment cost. In addition, according to the above-described aspect, the cost increase factor accompanying the increase in strength of the steel cord, the sawing wire, etc. (increased disconnection rate during wire drawing, implementation of intermediate patenting, increased die wear, and wire drawing) Time load etc.) can be suppressed. Therefore, the wire according to the above aspect is useful as a material for high-strength steel wires such as steel cords used as reinforcing materials for tires and hoses, and sawing wires used for cutting silicon wafers and the like.
旧オーステナイト粒界における初析セメンタイトの析出状態を示す概略図である。It is the schematic which shows the precipitation state of pro-eutectoid cementite in a prior austenite grain boundary. 初析セメンタイトの厚さ及び長さの測定方法を説明する図である。It is a figure explaining the measuring method of the thickness and length of pro-eutectoid cementite. 初析セメンタイトの厚さ及び長さの測定方法を説明する図である。It is a figure explaining the measuring method of the thickness and length of pro-eutectoid cementite. 初析セメンタイトの厚さ及び長さの測定方法を説明する図である。It is a figure explaining the measuring method of the thickness and length of pro-eutectoid cementite.
 以下、本実施形態に係る線材について説明する。なお、本実施形態は、本発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
 まず、本実施形態に係る線材の鋼組成について説明する。以下、特に断りが無い限り、鋼組成に関する%は質量%を示す。
Hereinafter, the wire according to the present embodiment will be described. In addition, since this embodiment is described in detail for better understanding of the gist of the present invention, the present invention is not limited unless otherwise specified.
First, the steel composition of the wire according to this embodiment will be described. Hereinafter, unless otherwise specified, “%” regarding the steel composition indicates “% by mass”.
 C:0.90~1.15%
 Cは、鋼線の強度を確保するために必須の元素である。C含有量が0.90%未満では、鋼線の強度低下を引き起こす。そのため、C含有量の下限を0.90%とする。好ましいC含有量の下限は、0.96%、又は1.00%である。一方、C含有量が1.15%を超えると、線材中に初析セメンタイトが多量析出することで、断線が発生しやすくなる。また、C含有量が1.15%を超えると、線材および鋼線の強度が過度に高くなることで、線材および鋼線の伸線加工性が低下する。そのため、C含有量の上限を1.15%とする。好ましいC含有量の上限は、1.10%、又は1.08%である。
C: 0.90 to 1.15%
C is an essential element for securing the strength of the steel wire. If the C content is less than 0.90%, the strength of the steel wire is reduced. Therefore, the lower limit of the C content is set to 0.90%. The lower limit of the preferable C content is 0.96% or 1.00%. On the other hand, if the C content exceeds 1.15%, a large amount of pro-eutectoid cementite precipitates in the wire, and disconnection is likely to occur. On the other hand, if the C content exceeds 1.15%, the wire and steel wire strength becomes excessively high, so that the wire workability of the wire and steel wire is lowered. Therefore, the upper limit of the C content is 1.15%. The upper limit of the preferable C content is 1.10% or 1.08%.
 Si:0.10~0.50%
 Siは、パーライト中のフェライトの強度を増加させる作用を有する。上記作用を有効に発揮させるために、Si含有量の下限を0.10%とする。好ましいSi含有量の下限は、0.15%、又は0.20%である。しかしながら、Siを過剰に含有させると、線材の伸線加工性に有害なSiO系介在物が発生する場合がある。そのため、Si含有量の上限を0.50%とする。好ましいSi含有量の上限は0.40%、または0.35%である。
Si: 0.10 to 0.50%
Si has an action of increasing the strength of ferrite in pearlite. In order to effectively exhibit the above action, the lower limit of the Si content is 0.10%. The lower limit of the preferred Si content is 0.15% or 0.20%. However, if Si is excessively contained, SiO 2 inclusions that are harmful to the wire drawing workability of the wire may be generated. Therefore, the upper limit of Si content is 0.50%. The upper limit of the preferable Si content is 0.40% or 0.35%.
 Mn:0.10~0.80%
 Mnは、オーステナイトから初析セメンタイト及び初析フェライトへの変態を遅延させる作用を有しており、パーライト主体の組織を得るために有用な元素である。上記作用を有効に発揮させるために、Mn含有量の下限を0.10%とする。好ましいMn含有量の下限は、0.20%、又は0.30%とする。但し、Mnを過剰に含有させても、上記作用が飽和する。さらに、Mnは鋼の焼き入れ性を向上させる作用を有する。そのため、線材がMnを過剰に含有する場合、熱間圧延後の冷却過程で線材中にベイナイト及びマルテンサイト等の過冷組織が発生したり、線材の強度が過度に上昇し伸線加工性が劣化する。そのため、Mn含有量の上限を0.80%とする。好ましいMn含有量の上限は0.70%、0.60%、又は0.50%である。
Mn: 0.10 to 0.80%
Mn has an action of delaying transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite, and is an element useful for obtaining a pearlite-based structure. In order to effectively exhibit the above action, the lower limit of the Mn content is 0.10%. The lower limit of the preferable Mn content is 0.20% or 0.30%. However, even if Mn is contained excessively, the above action is saturated. Furthermore, Mn has the effect | action which improves the hardenability of steel. Therefore, when the wire contains excessive Mn, an overcooled structure such as bainite and martensite is generated in the wire during the cooling process after hot rolling, or the wire strength is excessively increased and the wire drawing workability is increased. to degrade. Therefore, the upper limit of the Mn content is 0.80%. The upper limit of the preferable Mn content is 0.70%, 0.60%, or 0.50%.
 Cr:0.10~0.50%
 Crは、鋼のパーライトの加工硬化率を高める作用を有する。パーライトの加工硬化率が高くなると、低ひずみの伸線加工でより高い引張強度を得ることができる。また、Crは、オーステナイトから初析セメンタイト及び初析フェライトへの変態を遅延させる作用があるため、パーライト主体の組織を得るために有用な元素である。上記作用を有効に発揮させるために、Cr含有量の下限を0.10%とする。好ましいCr含有量の下限は、0.15%、又は0.20%である。しかし、Cr含有量が0.50%を超えると、線材の焼入れ性が高くなり、熱間圧延後の冷却過程でベイナイト及びマルテンサイト等の過冷組織が発生したり、線材が過剰に高強度化して伸線加工性が低下する。そのため、Cr含有量の上限を0.50%とする。好ましいCr含有量の上限は、0.40%、又は0.35%である。
Cr: 0.10 to 0.50%
Cr has the effect of increasing the work hardening rate of steel pearlite. When the work hardening rate of pearlite increases, a higher tensile strength can be obtained by a low strain drawing process. Cr is an element useful for obtaining a pearlite-based structure because it has the effect of delaying the transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite. In order to effectively exhibit the above action, the lower limit of the Cr content is 0.10%. The lower limit of the preferred Cr content is 0.15% or 0.20%. However, if the Cr content exceeds 0.50%, the hardenability of the wire becomes high, and a supercooled structure such as bainite and martensite is generated in the cooling process after hot rolling, or the wire has an excessively high strength. And wire drawing processability is reduced. Therefore, the upper limit of Cr content is 0.50%. The upper limit of preferable Cr content is 0.40% or 0.35%.
 Mn及びCrは、どちらも鋼の焼入れ性を向上させ、かつ、初析セメンタイトへの変態を遅延させる作用を持つ元素である。線材への非パーライト組織(初析セメンタイト、ベイナイトおよびマルテンサイト等)の発生を抑制するため、Mn及びCrの合計含有量を制御することが好ましい。Mn及びCrの合計含有量の下限は、0.40%、又は0.45%が好ましい。Mn及びCrの合計含有量の上限は、0.60%又は0.55%が好ましい。 Both Mn and Cr are elements that have the effect of improving the hardenability of the steel and delaying the transformation to proeutectoid cementite. In order to suppress the occurrence of non-pearlite structures (such as pro-eutectoid cementite, bainite and martensite) in the wire, it is preferable to control the total content of Mn and Cr. The lower limit of the total content of Mn and Cr is preferably 0.40% or 0.45%. The upper limit of the total content of Mn and Cr is preferably 0.60% or 0.55%.
 本実施形態に係る線材は、上述した基本元素に加え、さらに下記に示すNi、Co、Mo及びBのうち1種または2種以上を選択的に含有させてもよい。これら元素を含有させない場合、これら元素の含有量は0%である。 In addition to the basic elements described above, the wire according to this embodiment may further contain one or more of Ni, Co, Mo, and B shown below. When these elements are not contained, the content of these elements is 0%.
 Ni:0~0.50%
 Niは、オーステナイトから初析セメンタイトおよび初析フェライトへの変態を遅延させる作用があるため、パーライト主体の組織を得るために有用な元素である。またNiは、伸線材の靭性を高める作用も有する元素である。上記作用を得るために、Ni含有量の下限を0.10%とすることが好ましい。より好ましいNi含有量の下限は、0.15%、又は0.20%である。一方、Niを過剰に含有させると、焼入れ性が過大となり、熱間圧延後の冷却過程で線材中にベイナイト及びマルテンサイト等の過冷組織が発生することで、線材の伸線加工性が低下する場合がある。そのため、Ni含有量の上限を0.50%とすることが好ましい。より好ましいNi含有量の上限は0.30%、又は0.25%である。
Ni: 0 to 0.50%
Ni has a function of delaying transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite, and is a useful element for obtaining a pearlite-based structure. Ni is an element that also has an effect of increasing the toughness of the wire drawing material. In order to obtain the above action, the lower limit of the Ni content is preferably 0.10%. A more preferable lower limit of the Ni content is 0.15% or 0.20%. On the other hand, when Ni is contained excessively, the hardenability becomes excessive, and the wire wire drawing workability deteriorates due to the occurrence of supercooled structures such as bainite and martensite in the wire during the cooling process after hot rolling. There is a case. For this reason, the upper limit of the Ni content is preferably 0.50%. A more preferable upper limit of the Ni content is 0.30% or 0.25%.
 Co:0~1.00%
 Coは、圧延材における初析フェライトの析出を抑制する作用を有する。また、Coは、伸線材の延性を向上させる作用を有する。上記作用を有効に発揮させるために、Co含有量の下限は0.10%とすることが好ましい。より好ましいCo含有量の下限は、0.20%、0.30%、又は0.40%である。一方、Coを過剰に含有させても、上記作用が飽和するため、コストが増大する。そのため、Co含有量の上限を1.00%とすることが好ましい。より好ましいCo含有量の上限は0.90%、又は0.80%である。
Co: 0 to 1.00%
Co has a function of suppressing precipitation of pro-eutectoid ferrite in the rolled material. Co has an effect of improving the ductility of the wire drawing material. In order to effectively exhibit the above action, the lower limit of the Co content is preferably 0.10%. A more preferable lower limit of the Co content is 0.20%, 0.30%, or 0.40%. On the other hand, even if Co is excessively contained, the above-mentioned action is saturated, and the cost increases. Therefore, the upper limit of the Co content is preferably 1.00%. A more preferable upper limit of the Co content is 0.90% or 0.80%.
 Mo:0~0.20%
 Moは、オーステナイトから初析セメンタイト及び初析フェライトへの変態を遅延させる作用を有し、パーライト主体の組織を得るために有用な元素である。上記作用を得るために、Mo含有量の下限を0.05%とすることが好ましい。より好ましいMo含有量の下限は、0.08%である。しかしながら、Mo含有量が0.20%を超えると、焼入れ性が過大となり、熱間圧延後の冷却過程でベイナイト及びマルテンサイト等の過冷組織が発生したり、線材の伸線加工性が低下する場合がある。そのため、Mo含有量の上限を0.20%とすることが好ましい。より好ましいMo含有量の上限は0.15%、又は0.11%である。
Mo: 0 to 0.20%
Mo has an action of delaying transformation from austenite to pro-eutectoid cementite and pro-eutectoid ferrite, and is an element useful for obtaining a pearlite-based structure. In order to acquire the said effect | action, it is preferable to make the minimum of Mo content into 0.05%. A more preferable lower limit of the Mo content is 0.08%. However, if the Mo content exceeds 0.20%, the hardenability becomes excessive, and a supercooled structure such as bainite and martensite is generated in the cooling process after hot rolling, or the wire drawing workability of the wire is lowered. There is a case. Therefore, it is preferable that the upper limit of the Mo content is 0.20%. A more preferable upper limit of the Mo content is 0.15% or 0.11%.
 B:0~0.0030%
 Bは、粒界に濃化して、初析フェライトの析出を抑制する作用を有する。上記作用を得るために、B含有量の下限は0.0002%とすることが好ましい。より好ましいB含有量の下限は、0.0005%、0.0007%、0.0008%、又は0.0009%である。一方、Bを過剰に含有させると、Bがオーステナイト中にFe23(CB)等の炭化物を形成し、線材の伸線加工性を低下させる場合がある。そのため、B含有量の上限を0.0030%とすることが好ましい。より好ましいB含有量の上限は、0.0020%である。
B: 0 to 0.0030%
B has an effect of concentrating on the grain boundary and suppressing precipitation of pro-eutectoid ferrite. In order to obtain the above action, the lower limit of the B content is preferably 0.0002%. A more preferable lower limit of the B content is 0.0005%, 0.0007%, 0.0008%, or 0.0009%. On the other hand, when B is contained excessively, B may form carbides such as Fe 23 (CB) 6 in austenite, which may reduce the wire drawing workability of the wire. Therefore, it is preferable that the upper limit of the B content be 0.0030%. A more preferable upper limit of the B content is 0.0020%.
 本実施形態に係る線材は、上記基本元素及び必要に応じてNi、Co、Mo及びBのうち1種または2種以上を含有し、残部は実質的にFeおよび不純物である。本実施形態に係る線材には、溶鋼製造時に混入する不純物として、PおよびSが含まれる場合がある。 The wire according to the present embodiment contains one or more of Ni, Co, Mo, and B as necessary, and the balance is substantially Fe and impurities. The wire according to the present embodiment may include P and S as impurities mixed during the manufacture of molten steel.
 P:0.020%以下
 Pは、粒界に偏析することで、線材の伸線加工性を低下させる元素である。そのため、P含有量は可能な限り低減することが好ましい。線材の伸線加工性を確保するため、P含有量の上限を0.020%とする。好ましいP含有量の上限は、0.014%、又は0.010%である。Pは、溶鋼製造時に不純物として混入する場合があるが、その下限を特に制限する必要はなく、その下限は0%である。P含有量を過剰に低減すると、溶製コストが上昇する場合があるため、P含有量の下限を0.003%、又は0.005%としてもよい。
P: 0.020% or less P is an element that decreases the wire drawing workability of the wire by segregating at the grain boundaries. Therefore, it is preferable to reduce the P content as much as possible. In order to ensure the wire drawing workability of the wire, the upper limit of the P content is 0.020%. A preferable upper limit of the P content is 0.014% or 0.010%. P may be mixed as an impurity during the production of molten steel, but its lower limit is not particularly limited, and the lower limit is 0%. If the P content is excessively reduced, the melting cost may increase, so the lower limit of the P content may be 0.003% or 0.005%.
 S:0.010%以下
 Sは、Mn等と析出物を形成することで、線材の伸線加工性を低下させる元素である。そのため、S含有量は可能な限り低減することが好ましい。線材の伸線加工性を確保するため、S含有量の上限を0.010%とする。好ましいS含有量の上限は、0.008%、0.007%、又は0.005%である。Sは、溶鋼製造時に不純物として混入する場合があるが、その下限を特に制限する必要はなく、その下限は0%である。S含有量を過剰に低減すると、溶製コストが上昇する場合があるため、S含有量の下限を0.001%、又は0.003%としてもよい。
S: 0.010% or less S is an element that reduces the wire drawing workability of the wire by forming precipitates with Mn and the like. Therefore, it is preferable to reduce the S content as much as possible. In order to ensure the wire drawing workability of the wire, the upper limit of the S content is 0.010%. The upper limit of the preferable S content is 0.008%, 0.007%, or 0.005%. S may be mixed as an impurity during the production of molten steel, but its lower limit is not particularly limited, and the lower limit is 0%. If the S content is excessively reduced, the melting cost may increase, so the lower limit of the S content may be 0.001% or 0.003%.
 本実施形態に係る線材は、パーライトを主な組織とし、残部組織は、初析セメンタイト、粒界フェライト及びベイナイトのいずれか1種もしくは2種以上からなる。残部組織である初析セメンタイト、粒界フェライト、及びベイナイトは、破壊の伝播経路となる場合があり、これら残部組織の面積分率が大きくなることで、線材の伸線加工性が低下する場合がある。そのため、本実施形態に係る線材は、線材の半径をRとした時、線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、パーライトの面積分率を90.0%以上とし、かつ初析セメンタイトの面積分率を1.00%以下とする。好ましいパーライトの面積分率は93.0%以上、95.0%以上、又は97.0%以上である。好ましい初析セメンタイトの面積分率は、0.50%以下、又は0.20%以下である。 The wire according to the present embodiment has pearlite as a main structure, and the remaining structure is composed of one or more of proeutectoid cementite, grain boundary ferrite, and bainite. The remaining structures, proeutectoid cementite, intergranular ferrite, and bainite, may be the propagation path of fracture, and the wire area drawability of the wire may be reduced by increasing the area fraction of these remaining structures. is there. Therefore, the wire according to the present embodiment has a pearlite area fraction of 90 in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire, where R is the radius of the wire. 0.0% or more, and the area fraction of pro-eutectoid cementite is 1.00% or less. The area fraction of pearlite is preferably 93.0% or more, 95.0% or more, or 97.0% or more. A preferred area fraction of pro-eutectoid cementite is 0.50% or less, or 0.20% or less.
 線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、パーライトの面積分率は100%であってもよいが、本実施形態に係る線材の化学組成で、初析セメンタイト、粒界フェライト及びベイナイトの析出を完全に抑制することは困難である。線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、パーライトの面積分率を100%にしようとすると、非常に優れた冷却能力が必要となり、設備コストが増加する場合、線材の引張強度の上昇によって伸線加工性が低下する場合、及び伸線加工時の負荷増加により、二次加工でコストが増加する場合がある。そのため、線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、パーライトの面積分率を100%未満としてもよい。 In the structure observed in the central portion within (1/5) R from the center of the cross section of the wire rod, the area fraction of pearlite may be 100%, but with the chemical composition of the wire rod according to the present embodiment, It is difficult to completely suppress the precipitation of proeutectoid cementite, grain boundary ferrite and bainite. In the structure observed in the central portion within (1/5) R from the center of the cross section of the wire rod, if an attempt is made to make the area fraction of pearlite 100%, a very good cooling capacity is required and the equipment cost is reduced. If it increases, the drawing processability may decrease due to an increase in the tensile strength of the wire, and the cost may increase in the secondary processing due to an increase in the load during the drawing process. Therefore, in the structure observed at the central portion within (1/5) R from the center of the cross section of the wire, the area fraction of pearlite may be less than 100%.
 初析セメンタイトは、析出量が少量であれば、線材の伸線加工性を低下させない。一方、線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、初析セメンタイトの面積分率を0%とするには、優れた冷却能力が必要となり、設備コストが増加する場合がある。そのため、線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、初析セメンタイトの面積分率を0%超としても良い。 Proeutectoid cementite does not deteriorate the wire drawing workability of the wire if the precipitation amount is small. On the other hand, in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire rod, in order to reduce the area fraction of proeutectoid cementite to 0%, an excellent cooling capacity is required. Cost may increase. Therefore, the area fraction of pro-eutectoid cementite may be more than 0% in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire.
 線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、粒界フェライト及びベイナイトの面積分率は可能な限り低減することが好ましい。粒界フェライト及びベイナイトの合計の面積分率を5.0%以下、又は4.5%以下とすることが好ましい。粒界フェライト及びベイナイトの合計の面積分率を0%とするのは、製造コストの増大を引き起こす場合があるため、粒界フェライト及びベイナイトの合計の面積分率を0%超としてもよい。 In the structure observed in the central portion within (1/5) R from the center of the cross section of the wire rod, it is preferable to reduce the area fraction of grain boundary ferrite and bainite as much as possible. The total area fraction of the grain boundary ferrite and bainite is preferably 5.0% or less, or 4.5% or less. Setting the total area fraction of the grain boundary ferrite and bainite to 0% may cause an increase in manufacturing cost, so the total area fraction of the grain boundary ferrite and bainite may be more than 0%.
 線材中の初析セメンタイトは、伸線加工時の断線の要因となる。しかし、初析セメンタイトの析出量が少量であれば、特にその旧オーステナイト粒界との関係を適切に調整することにより、伸線加工性の低下を抑制することができる。具体的には、初析セメンタイトの厚さを小さくし、且つ単位面積当たりの初析セメンタイトの総長さを短くすることで、線材の伸線加工性の低下を抑制することができる。 The proeutectoid cementite in the wire becomes a cause of wire breakage during wire drawing. However, if the precipitation amount of pro-eutectoid cementite is small, it is possible to suppress a decrease in wire drawing workability, particularly by appropriately adjusting the relationship with the prior austenite grain boundaries. Specifically, by reducing the thickness of pro-eutectoid cementite and shortening the total length of pro-eutectoid cementite per unit area, it is possible to suppress a reduction in wire drawing workability of the wire.
 初析セメンタイトの厚さ及び総長さについて図1~図4を参照して説明する。図1は、旧オーステナイト粒界における初析セメンタイトの析出状態を示す概略図である。図2は、図1の初析セメンタイト10aの厚さ及び長さの測定方法を説明する図である。図3及び図4はそれぞれ、図1の初析セメンタイト10b及び10cの厚さ及び長さの測定方法を説明する図である。 The thickness and total length of proeutectoid cementite will be described with reference to FIGS. FIG. 1 is a schematic diagram showing the precipitation state of pro-eutectoid cementite at the prior austenite grain boundaries. FIG. 2 is a view for explaining a method for measuring the thickness and length of the pro-eutectoid cementite 10a of FIG. FIGS. 3 and 4 are diagrams for explaining a method of measuring the thickness and length of the pro-eutectoid cementite 10b and 10c in FIG. 1, respectively.
 初析セメンタイトは、旧オーステナイト粒界に沿う形状で析出する。具体的には、図1に示すように、初析セメンタイト10a~10dは、旧オーステナイト粒界20に沿うように析出する。それぞれの初析セメンタイトにおいて、長さを旧オーステナイト粒界に沿う方向に定義し、厚さを旧オーステナイト粒界に垂直な方向に定義する。初析セメンタイトの厚さについては、旧オーステナイト粒界に沿う方向で長さを4等分した間隔で3カ所にて厚さを測定し、それら測定値の平均をその初析セメンタイトの厚さと定義する。なお、初析セメンタイトの厚さの測定において、測定箇所が分岐点や端部など通常と異なると判断される場合は、その箇所は平均に含めないとする。すなわち、図2において、初析セメンタイト10aの長さはL1であり、初析セメンタイト10aの厚さはT1、T2、及びT3の平均である。図1の初析セメンタイト10bのように、分岐を持つ初析セメンタイトについては、各分岐の長さの合計を当該初析セメンタイトの長さと定義する。すなわち、図3において、初析セメンタイト10bの長さは、OA、OB及びOCの合計である。また、初析セメンタイトの厚さは、各分岐で前記のように旧オーステナイト粒界に沿う方向で長さを4等分した間隔で3カ所測定し、それら測定値の平均をその初析セメンタイトの厚さと定義する。すなわち、図3において、初析セメンタイト10bの厚さは、TA1、TA2、TA3、TB1、TB2、TB3、TC1、TC2、及びTC3の平均である。図1の初析セメンタイト10cのように、旧オーステナイト粒界に沿って曲がった形状を持つ初析セメンタイトについては、長さを旧オーステナイト粒界に沿って測定する。すなわち、図4において、初析セメンタイト10cの長さは、O’DおよびO’Eの合計である。また、厚さは曲がった箇所で分割し、各部位を前記のように旧オーステナイト粒界に沿う方向で長さを4等分した間隔で3カ所測定し、それら測定値の平均をその初析セメンタイトの厚さと定義する。すなわち、図4において、初析セメンタイト10cの厚さは、TD1、TD2、TD3、TE1、TE2、及びTE3の平均である。図1における初析セメンタイトの総長さは、初析セメンタイト10a~10dの長さの合計である。 Proeutectoid cementite precipitates in a shape along the former austenite grain boundary. Specifically, as shown in FIG. 1, the pro-eutectoid cementite 10a to 10d precipitates along the prior austenite grain boundary 20. In each proeutectoid cementite, the length is defined in the direction along the prior austenite grain boundary, and the thickness is defined in the direction perpendicular to the prior austenite grain boundary. About the thickness of pro-eutectoid cementite, the thickness is measured at three places at intervals equal to the length along the former austenite grain boundary, and the average of these measured values is defined as the thickness of the pro-eutectoid cementite. To do. In the measurement of the thickness of proeutectoid cementite, if it is determined that the measurement location is different from usual, such as a branch point or an end, the location is not included in the average. That is, in FIG. 2, the length of pro-eutectoid cementite 10a is L1, and the thickness of pro-eutectoid cementite 10a is the average of T1, T2, and T3. As for the pro-eutectoid cementite 10b in FIG. 1, for the pro-eutectoid cementite having branches, the total length of each branch is defined as the length of the pro-eutectoid cementite. That is, in FIG. 3, the length of the pro-eutectoid cementite 10b is the sum of OA, OB and OC. Further, the thickness of pro-eutectoid cementite was measured at three locations at intervals equal to the length of the former austenite grain boundary in each branch as described above, and the average of these measured values was measured for the pro-eutectoid cementite. Defined as thickness. That is, in FIG. 3, the thickness of proeutectoid cementite 10b is the average of TA1, TA2, TA3, TB1, TB2, TB3, TC1, TC2, and TC3. As for the pro-eutectoid cementite having a shape bent along the prior austenite grain boundary, as in the pro-eutectoid cementite 10c in FIG. 1, the length is measured along the prior austenite grain boundary. That is, in FIG. 4, the length of pro-eutectoid cementite 10c is the sum of O'D and O'E. In addition, the thickness is divided at the bent part, and each part is measured at three points at intervals of four equal lengths in the direction along the former austenite grain boundary as described above, and the average of the measured values is analyzed for the first analysis. It is defined as the thickness of cementite. That is, in FIG. 4, the thickness of proeutectoid cementite 10c is the average of TD1, TD2, TD3, TE1, TE2, and TE3. The total length of pro-eutectoid cementite in FIG. 1 is the total length of pro-eutectoid cementite 10a to 10d.
 本実施形態に係る線材は、線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、初析セメンタイトの平均厚さを0.25μm以下とし、かつ単位面積当たりの初析セメンタイトの総長さを40.0mm/mm未満とする。好ましい初析セメンタイトの平均厚さは0.20μm以下である。好ましい単位面積当たりの初析セメンタイトの総長さは30.0mm/mm以下、20.0mm/mm以下、又は10.0mm/mm以下である。初析セメンタイトの平均厚さが0.25μmを超える、又は単位面積当たりの初析セメンタイトの総長さが40.0mm/mm以上となると、線材の伸線加工時の欠陥が大きくなり、断線の要因となる場合がある。 The wire according to this embodiment has an average thickness of pro-eutectoid cementite of 0.25 μm or less in a structure observed in the central portion within (1/5) R from the center of the cross section of the wire, and per unit area The total length of pro-eutectoid cementite is less than 40.0 mm / mm 2 . The average thickness of preferable pro-eutectoid cementite is 0.20 μm or less. The total length of pro-eutectoid cementite per unit area is 30.0 mm / mm 2 or less, 20.0 mm / mm 2 or less, or 10.0 mm / mm 2 or less. When the average thickness of pro-eutectoid cementite exceeds 0.25 μm, or the total length of pro-eutectoid cementite per unit area is 40.0 mm / mm 2 or more, defects during wire drawing of the wire become large, It may be a factor.
 本実施形態に係る線材は、線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、初析セメンタイトの旧オーステナイト粒界における占有の程度を小さくすることで、線材の伸線加工性を更に低下させてもよい。初析セメンタイトの旧オーステナイト粒界における占有の程度は、下記式(A)の左辺に示すように、単位面積当たりの初析セメンタイトの総長さ及び旧オーステナイト粒径の積で評価する。下記式(A)の左辺が1.2未満であることが好ましい。より好ましくは、下記式(A)の左辺が1.0未満である。 The wire according to the present embodiment, in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire, by reducing the degree of occupancy in the prior austenite grain boundaries of proeutectoid cementite, You may further reduce the wire drawing workability of a wire. The degree of occupation of pro-eutectoid cementite in the prior austenite grain boundaries is evaluated by the product of the total length of pro-eutectoid cementite per unit area and the prior austenite grain size, as shown on the left side of the following formula (A). It is preferable that the left side of following formula (A) is less than 1.2. More preferably, the left side of the following formula (A) is less than 1.0.
 単位面積当たりの初析セメンタイト総長さ(mm/mm)×旧オーステナイト粒径(mm)<1.2 ・・・式(A) Total length of pro-eutectoid cementite per unit area (mm / mm 2 ) × old austenite particle size (mm) <1.2 Formula (A)
 本実施形態に係る線材の引張強度(MPa)は、C含有量(質量%)およびCr含有量(質量%)に応じて、下記式(1)で規定する。線材の引張強度が下記式(1)に示す下限値(左辺)を下回ると、初析セメンタイトの粗大化、初析セメンタイトの面積分率の増加、又はラメラセメンタイトの厚さの増大を引き起こすことで、線材の伸線加工性が低下する場合がある。一方、線材の引張強度が下記式(1)に示す上限値(右辺)を上回ると、伸線加工時の加工硬化率が高くなり、伸線材の引張強度が増加して延性が低下することで、伸線材の伸線加工性が低下する場合がある。また、線材の引張強度が下記式(1)に示す上限値(右辺)を上回ると、ダイス及び伸線加工機等の負荷が増加することで、製造コストが増加する場合がある。 The tensile strength (MPa) of the wire according to this embodiment is defined by the following formula (1) according to the C content (mass%) and the Cr content (mass%). If the tensile strength of the wire falls below the lower limit (left side) shown in the following formula (1), it causes coarsening of pro-eutectoid cementite, increase in area fraction of pro-eutectoid cementite, or increase in thickness of lamellar cementite. The wire drawing workability of the wire may be reduced. On the other hand, if the tensile strength of the wire exceeds the upper limit (right side) shown in the following formula (1), the work hardening rate during wire drawing increases, the tensile strength of the wire increases, and ductility decreases. The wire drawing workability of the wire drawing material may be reduced. Moreover, when the tensile strength of a wire exceeds the upper limit (right side) shown in the following formula (1), the manufacturing cost may increase due to an increase in the load on the die and the wire drawing machine.
 好ましい式(1)の右辺の定数項は+150(MPa)である。換言すると、線材の引張強度は、下記式(2)を満たすことが好ましい。より好ましい式(1)の左辺の定数項は+80(MPa)であり、より好ましい右辺の定数項は+150(MPa)である。換言すると、線材の引張強度は、下記式(3)を満たすことがより好ましい。更に好ましい式(1)の左辺の定数項は+90(MPa)であり、更に好ましい右辺の定数項は+140(MPa)である。換言すると、線材の引張強度は、下記式(4)を満たすことが更に好ましい。なお、下記式(1)~(4)中のTSは、線材の引張強度を示し、「C量(%)」は、線材中のCの含有質量%を示し、「Cr量(%)」は、線材中のCrの含有質量%を示す。 The constant term on the right side of the preferred formula (1) is +150 (MPa). In other words, the tensile strength of the wire preferably satisfies the following formula (2). A more preferable constant term on the left side of the formula (1) is +80 (MPa), and a more preferable constant term on the right side is +150 (MPa). In other words, it is more preferable that the tensile strength of the wire satisfies the following formula (3). A more preferable constant term on the left side of the formula (1) is +90 (MPa), and a more preferable constant term on the right side is +140 (MPa). In other words, it is more preferable that the tensile strength of the wire satisfies the following formula (4). In the following formulas (1) to (4), TS represents the tensile strength of the wire, “C amount (%)” represents the mass content of C in the wire, and “Cr amount (%)”. Indicates the mass content of Cr in the wire.
 1000×C量(%)+300×Cr量(%)+70≦TS≦1000×C量(%)+300×Cr量(%)+160・・・式(1)
 1000×C量(%)+300×Cr量(%)+70≦TS≦1000×C量(%)+300×Cr量(%)+150・・・式(2)
 1000×C量(%)+300×Cr量(%)+80≦TS≦1000×C量(%)+300×Cr量(%)+150・・・式(3)
 1000×C量(%)+300×Cr量(%)+90≦TS≦1000×C量(%)+300×Cr量(%)+140・・・式(4)
1000 × C amount (%) + 300 × Cr amount (%) + 70 ≦ TS ≦ 1000 × C amount (%) + 300 × Cr amount (%) + 160 Expression (1)
1000 × C amount (%) + 300 × Cr amount (%) + 70 ≦ TS ≦ 1000 × C amount (%) + 300 × Cr amount (%) + 150 (2)
1000 × C amount (%) + 300 × Cr amount (%) + 80 ≦ TS ≦ 1000 × C amount (%) + 300 × Cr amount (%) + 150 (3)
1000 × C amount (%) + 300 × Cr amount (%) + 90 ≦ TS ≦ 1000 × C amount (%) + 300 × Cr amount (%) + 140 Expression (4)
 線材の線径は、巻取り後の冷却速度に影響し、その結果として、線材の金属組織及び引張強度等に影響する。線材の直径が5.5mmを超えると、線材中心部の冷却速度が遅くなることで、線材中に初析セメンタイトが多量に生成する場合がある。一方、線材の直径が3.0mm未満では、線材の製造が困難となり、生産効率が低下することで、線材のコストが上昇する場合がある。したがって、本実施形態に係る線材の線径は3.0~5.5mmとする。 The wire diameter of the wire affects the cooling rate after winding, and as a result, the metal structure and tensile strength of the wire. When the diameter of the wire exceeds 5.5 mm, a large amount of proeutectoid cementite may be generated in the wire due to a slow cooling rate at the center of the wire. On the other hand, if the diameter of the wire is less than 3.0 mm, it may be difficult to manufacture the wire, and the production efficiency may decrease, which may increase the cost of the wire. Therefore, the wire diameter of the wire according to this embodiment is set to 3.0 to 5.5 mm.
 パーライト及び初析セメンタイトの面積分率の測定は、以下の方法で行う。
 まず、線材を切断し、線材の長手方向と垂直な横断面を観察できるように、線材を樹脂埋めする。樹脂埋めした線材を研磨紙及びアルミナ砥粒で研磨し、更に鏡面仕上げして試料とする。試料の観察面(すなわち線材の横断面)をナイタール溶液もしくはピクラール溶液で腐食した後、走査型電子顕微鏡(SEM)を用いて試料の観察面を観察する。
The area fraction of pearlite and pro-eutectoid cementite is measured by the following method.
First, the wire is cut, and the wire is filled with a resin so that a cross section perpendicular to the longitudinal direction of the wire can be observed. The resin-filled wire is polished with polishing paper and alumina abrasive grains, and further mirror-finished to prepare a sample. After observing the observation surface of the sample (that is, the cross section of the wire) with a nital solution or picral solution, the observation surface of the sample is observed using a scanning electron microscope (SEM).
 ナイタール溶液は、しょう酸及びエチルアルコールを混合した溶液である。試料の観察面の腐食は、濃度を5%以下、温度を15~30℃程度としたナイタール溶液に、数s~1minの間、観察面を浸漬する方法、及び上述の濃度及び温度のナイタール溶液を浸した脱脂綿で観察面を拭く方法等で行う。ピクラール溶液は、ピクリン酸及びエチルアルコールを混合した溶液である。試料の観察面の腐食は、濃度を5%程度、温度を40~60℃程度としたピクラール溶液に、30s~2minの間、観察面を浸漬する方法で行う。腐食後は、試料の観察面を直ちに十分に水洗いした後、冷風もしくは温風で速やかに乾燥させる。 The nital solution is a mixture of oxalic acid and ethyl alcohol. Corrosion of the observation surface of the sample includes a method of immersing the observation surface in a nital solution having a concentration of 5% or less and a temperature of about 15 to 30 ° C. for several seconds to 1 min, and a nital solution having the above-described concentration and temperature. This is done by wiping the observation surface with absorbent cotton soaked in water. The picral solution is a mixed solution of picric acid and ethyl alcohol. Corrosion of the observation surface of the sample is performed by immersing the observation surface in a picral solution having a concentration of about 5% and a temperature of about 40 to 60 ° C. for 30 seconds to 2 minutes. After corrosion, immediately rinse the observation surface of the sample thoroughly with water, and then quickly dry it with cold or warm air.
 続いて、SEM付属の写真撮影装置を用いて、試料の中心部(線材の半径をRとして、線材の中心から(1/5)R以内の領域)を倍率2000倍以上で、総観察視野面積が0.08mm以上となるように複数視野撮影する。これらSEM写真及び粒子解析ソフトウエアなどの画像解析ソフトウエアを用いて、線材の中心部のパーライト及び初析セメンタイトの面積分率を得る。 Subsequently, using the photographic apparatus attached to the SEM, the central area of the sample (the area within (1/5) R from the center of the wire, where R is the radius of the wire) is a magnification of 2000 times or more, and the total viewing field area A plurality of fields of view are photographed so that becomes 0.08 mm 2 or more. Using these SEM photographs and image analysis software such as particle analysis software, the area fraction of pearlite and proeutectoid cementite at the center of the wire is obtained.
 初析セメンタイトの平均厚さ及び長さは、上記SEM写真を用いて測定する。初析セメンタイトの平均厚さは、上記SEM写真中の全ての初析セメンタイトの厚さを求め、その平均値を算出することで得る。初析セメンタイトの厚さは、旧オーステナイト粒界に垂直な方向の厚さを測定することで得る。図2のセメンタイト10aであれば、厚さT1、T2、T3を測定し、それらの平均をその初析セメンタイトの厚さとする。また、初析セメンタイトの長さ(mm)は、上記SEM写真中の初析セメンタイトの形状に基づいて旧オーステナイト粒界を仮想する線を描いて、その線に沿って長さを測定する。図2のセメンタイト10aのように、特段曲がった形状を持たないセメンタイトであれば、その長軸方向に沿って旧オーステナイト粒界を仮想する直線を描き、当該直線に沿って長さL1を測定する。図4のセメンタイト10cのように、特異な曲部を持つ初析セメンタイトであれば、その形状に合わせて旧オーステナイト粒界を仮想する線を描き、その線に沿って初析セメンタイト長さを測定する。図3のセメンタイト10bのように、分岐を持つ初析セメンタイトであれば、分岐ごとの長さを総計する。単位面積当たりの初析セメンタイトの総長さ(mm/mm)は、測定した測定視野における各初析セメンタイトの長さの合計を視野面積で除した値とする。すなわち、単位面積当たりの初析セメンタイトの総長さ(mm/mm)は、単位面積当たりに観察される初析セメンタイトの長さの合計である。なお、測定に際して、必要に応じて、初析セメンタイトを含む領域をより高倍率で撮影して、初析セメンタイトの平均厚さ及び長さを測定してもよい。 The average thickness and length of proeutectoid cementite are measured using the SEM photograph. The average thickness of pro-eutectoid cementite is obtained by calculating the average value of the thicknesses of all pro-eutectoid cementite in the SEM photograph. The thickness of pro-eutectoid cementite can be obtained by measuring the thickness in the direction perpendicular to the prior austenite grain boundaries. In the case of the cementite 10a in FIG. 2, the thicknesses T1, T2, and T3 are measured, and the average of these is taken as the thickness of the proeutectoid cementite. Moreover, the length (mm) of pro-eutectoid cementite draws the line which imagines the prior austenite grain boundary based on the shape of pro-eutectoid cementite in the said SEM photograph, and measures length along the line. If the cementite does not have a particularly bent shape like the cementite 10a in FIG. 2, a straight line imagining the prior austenite grain boundary is drawn along the major axis direction, and the length L1 is measured along the straight line. . If it is a pro-eutectoid cementite with a specific curved part like the cementite 10c in Fig. 4, a line imagining the prior austenite grain boundary is drawn according to the shape, and the pro-eutectoid cementite length is measured along that line. To do. If it is a pro-eutectoid cementite with a branch like the cementite 10b of FIG. 3, the length for every branch is totaled. The total length (mm / mm 2 ) of pro-eutectoid cementite per unit area is a value obtained by dividing the total length of pro-eutectoid cementite in the measured visual field by the visual field area. That is, the total length of pro-eutectoid cementite per unit area (mm / mm 2 ) is the total length of pro-eutectoid cementite observed per unit area. In measurement, if necessary, an area containing pro-eutectoid cementite may be photographed at a higher magnification to measure the average thickness and length of pro-eutectoid cementite.
 旧オーステナイト粒径は、熱間圧延後かつ巻取り直後のコイルの最終端から数リングを水冷し、焼き入れた線材を用いて測定する。焼き入れた線材を切断し、横断面を観察できるように線材を樹脂埋めする。樹脂埋めした線材を研磨紙及びアルミナで研磨し、更に鏡面仕上げして試料とする。試料の観察面(すなわち線材の横断面)をピクリン酸アルカリ溶液で腐食することで、旧オーステナイト粒界を現出させる。試料の観察面の腐食は、温度を75~90℃としたピクリン酸アルカリ溶液に、試料の観察面を10~20min程度浸漬することで行う。腐食後は、試料の観察面を直ちによく水洗した後、冷風もしくは温風で速やかに乾燥させる。なお、観察面の腐食に使用するピクリン酸アルカリ溶液は、重量比でピクリン酸2、水酸化ナトリウム5、水100の割合の混合溶液である。 The prior austenite grain size is measured by using a wire rod that has been quenched by water cooling several rings from the final end of the coil after hot rolling and immediately after winding. The hardened wire is cut, and the wire is filled with resin so that the cross section can be observed. The resin-filled wire is polished with abrasive paper and alumina, and further mirror-finished to obtain a sample. The prior austenite grain boundaries are exposed by corroding the observation surface of the sample (that is, the cross section of the wire) with an alkali picric acid solution. Corrosion of the observation surface of the sample is performed by immersing the observation surface of the sample for about 10 to 20 minutes in an alkali picrate solution at a temperature of 75 to 90 ° C. After corrosion, immediately wash the observation surface of the sample thoroughly with water, and then quickly dry it with cold or warm air. In addition, the picric acid alkali solution used for corrosion of an observation surface is a mixed solution of the ratio of picric acid 2, sodium hydroxide 5, and water 100 by weight ratio.
 観察面を腐食した後、光学顕微鏡を用いて試料の観察面の中心部(線材の半径をRとして、線材の中心から(1/5)R以内の領域)を倍率400倍以上で総観察視野面積が0.15mm以上となるように複数視野撮影する。撮影した写真及びJIS G 0551:2013に記載の切断法を用いて、旧オーステナイト粒径を測定する。切断法では、長さ400μmの直線を100μm間隔で重ならないように10本以上引き、合計で4mm以上の直線で捕捉した捕捉結晶粒数で評価する。 After corroding the observation surface, using an optical microscope, the central portion of the observation surface of the sample (the radius of the wire is R and the region within (1/5) R from the center of the wire) is a total observation field of view at a magnification of 400 times or more. Multiple fields of view are taken so that the area is 0.15 mm 2 or more. The prior austenite particle size is measured using the photographed photograph and the cutting method described in JIS G 0551: 2013. In the cutting method, 10 or more straight lines having a length of 400 μm are drawn so as not to overlap each other at 100 μm intervals, and evaluation is performed based on the number of captured crystal grains captured by a total of 4 mm or more.
 線材の引張強度は、以下の方法により測定する。線材のうち、非定常部を除いて、線材コイルのフロント部、ミドル部、及びテール部からそれぞれ3本以上のサンプルを採取する。採取したサンプルを用いて、JIS Z 2241:2011に準じて引張試験を行う。全てのサンプルの引張強度の平均値を算出することで、線材の引張強度を得る。 The tensile strength of the wire is measured by the following method. Three or more samples are collected from the front part, middle part, and tail part of the wire coil except for the unsteady part. A tensile test is performed according to JIS Z 2241: 2011 using the collected samples. By calculating the average value of the tensile strength of all the samples, the tensile strength of the wire is obtained.
 次に、本実施形態に係る線材の製造方法について説明する。なお、以下に説明する製造方法は一例であり、以下の手順および方法で限定するものではなく、本実施形態に係る線材の構成を実現できる方法であれば、如何なる方法を採用することができる。 Next, a method for manufacturing the wire according to this embodiment will be described. In addition, the manufacturing method demonstrated below is an example, and is not limited by the following procedures and methods, What kind of method can be employ | adopted if it is a method which can implement | achieve the structure of the wire which concerns on this embodiment.
 熱間圧延に供する材料は、通常の製造条件で得ることができる。例えば、上述した成分を有する鋼を鋳造し、鋳片を1100~1200℃程度で10~20hr保持するソーキング処理(鋳造で発生する偏析を軽減させるための熱処理)を施した後、分塊圧延を施すことで、熱間圧延に適した大きさの鋼片(一般にビレットと呼ばれる熱間圧延前の鋼片)を得る。 The material used for hot rolling can be obtained under normal manufacturing conditions. For example, after casting steel having the above-described components and performing a soaking process (heat treatment for reducing segregation generated in casting) that holds the slab at about 1100 to 1200 ° C. for 10 to 20 hours, By applying, a steel slab having a size suitable for hot rolling (a steel slab before hot rolling generally called a billet) is obtained.
 次に、以下に示す条件で熱間圧延を行う。まず、上記鋼片を900~1200℃に加熱し、仕上げ圧延の開始温度を750~950℃に制御する。熱間圧延時の線材の温度は、線材の表面温度を示す。熱間圧延時の線材の温度は、放射温度計を用いて測定すればよい。 Next, hot rolling is performed under the following conditions. First, the steel slab is heated to 900 to 1200 ° C., and the start temperature of finish rolling is controlled to 750 to 950 ° C. The temperature of the wire during hot rolling indicates the surface temperature of the wire. What is necessary is just to measure the temperature of the wire at the time of hot rolling using a radiation thermometer.
 仕上げ圧延後の線材は、加工発熱によって、仕上げ圧延の開始温度よりも温度が上昇する。本実施形態では、巻取り温度を800~940℃に制御する。巻取り温度が800℃未満では、線材のオーステナイト粒径が微細化することで、初析セメンタイト、粒界フェライト及びベイナイトが析出しやすくなる場合、並びに線材のメカニカルなスケールはく離性が低下する場合がある。一方、巻き取り温度が940℃を超えると、線材のオーステナイト粒径が過剰に大きくなることで、線材の伸線加工性が低下する場合がある。好ましい巻取り温度は、830~920℃である。より好ましい巻取温度は、850~900℃である。 The temperature of the wire rod after finish rolling rises higher than the finish rolling start temperature due to processing heat generation. In this embodiment, the winding temperature is controlled to 800 to 940 ° C. When the coiling temperature is less than 800 ° C., the austenite grain size of the wire becomes finer, so that pro-eutectoid cementite, intergranular ferrite and bainite are likely to precipitate, and the mechanical scale peelability of the wire may decrease. is there. On the other hand, when the coiling temperature exceeds 940 ° C., the austenite grain size of the wire becomes excessively large, and the wire drawing workability of the wire may be reduced. A preferable winding temperature is 830 to 920 ° C. A more preferable winding temperature is 850 to 900 ° C.
 上記のように仕上げ圧延の開始温度及び巻取温度を制御することで、線材の旧オーステナイトの粒径を15~60μmにすることが好ましい。より好ましい旧オーステナイトの粒径は、20~45μmである。 It is preferable that the grain size of the prior austenite of the wire is 15 to 60 μm by controlling the start temperature and the winding temperature of the finish rolling as described above. A more preferable prior austenite particle size is 20 to 45 μm.
 線材中のオーステナイトは、巻取り後の冷却中に、パーライトに変態する。そのため、巻取り後の冷却速度は、線材の組織及び引張強度を制御するために重要な因子である。本実施形態では、巻取後の冷却を3段階の温度範囲に分けて、それぞれの温度範囲における平均冷却速度を制御する。 Austenite in the wire transforms into pearlite during cooling after winding. Therefore, the cooling rate after winding is an important factor for controlling the structure and tensile strength of the wire. In this embodiment, the cooling after winding is divided into three temperature ranges, and the average cooling rate in each temperature range is controlled.
 巻取後、650℃までの平均冷却速度が6.0℃/s未満では、初析セメンタイトの析出を抑制することが困難となる場合がある。一方、巻取後、650℃までの平均冷却速度が15.0℃/sを超えると、オーステナイトからベイナイトへの変態、高強度化による伸線加工性の低下、及び線材のメカニカルなスケールはく離性の低下が起きる場合がある。また、巻取後、650℃までの平均冷却速度が15.0℃/sを超えると、大規模な冷却設備が必要になることで、設備コストが増加する場合がある。したがって、巻取り後、650℃までの平均冷却速度は、6.0~15.0℃/sとする。巻取り後、650℃までの好ましい平均冷却速度は7.0~10.0℃/sである。 After winding, if the average cooling rate to 650 ° C. is less than 6.0 ° C./s, it may be difficult to suppress the precipitation of proeutectoid cementite. On the other hand, when the average cooling rate up to 650 ° C. after winding is over 15.0 ° C./s, transformation from austenite to bainite, deterioration of wire drawing process due to high strength, and mechanical scale peeling property of the wire. May occur. In addition, if the average cooling rate up to 650 ° C. exceeds 15.0 ° C./s after winding, equipment costs may increase due to the need for large-scale cooling equipment. Therefore, after winding, the average cooling rate to 650 ° C. is 6.0 to 15.0 ° C./s. After winding, the preferred average cooling rate up to 650 ° C. is 7.0 to 10.0 ° C./s.
 650~600℃の温度範囲では、線材中のオーステナイトをパーライトに変態させるために、平均冷却速度を1.0~3.0℃/sに制御する。650~600℃における平均冷却速度が1.0℃/s未満では、線材の引張強度が低下したり、初析セメンタイトの厚さが増加することで、線材の伸線加工性が低下する場合がある。一方、650~600℃における平均冷却速度が3.0℃/sを超えると、オーステナイトからパーライトへの変態が600℃までに終了せず、線材の引張強度が上昇することで、伸線加工性が低下する場合、及び伸線ダイスの寿命が低下する場合がある。650~600℃における好ましい平均冷却速度は、1.5~2.8℃/sである。 In the temperature range of 650 to 600 ° C., the average cooling rate is controlled to 1.0 to 3.0 ° C./s in order to transform austenite in the wire into pearlite. If the average cooling rate at 650 to 600 ° C. is less than 1.0 ° C./s, the tensile strength of the wire may decrease or the thickness of the proeutectoid cementite may increase, which may reduce the wire drawing workability of the wire. is there. On the other hand, when the average cooling rate at 650 to 600 ° C. exceeds 3.0 ° C./s, the transformation from austenite to pearlite is not completed by 600 ° C., and the tensile strength of the wire is increased. May decrease, and the life of the wire drawing die may decrease. A preferable average cooling rate at 650 to 600 ° C. is 1.5 to 2.8 ° C./s.
 600℃以下の温度範囲では、平均冷却速度を10.0℃/s以上とし、且つ300℃以下まで冷却する。これは、オーステナイトがパーライトに変態した後も変態温度付近で線材を保持すると、線材の引張強度が低下する場合があるためである。600~300℃における好ましい平均冷却速度は、15.0℃/s以上である。600~300℃における平均冷却速度を50℃/s超にしようとすると、優れた冷却設備が必要になることで、設備コストが増大する。そのため、600~300℃における平均冷却速度の上限を50℃/s以下としてもよい。 In the temperature range of 600 ° C. or lower, the average cooling rate is set to 10.0 ° C./s or higher and the cooling is performed to 300 ° C. or lower. This is because the tensile strength of the wire may decrease if the wire is held near the transformation temperature even after austenite is transformed into pearlite. A preferable average cooling rate at 600 to 300 ° C. is 15.0 ° C./s or more. If the average cooling rate at 600 to 300 ° C. is to exceed 50 ° C./s, an excellent cooling facility is required, which increases the equipment cost. Therefore, the upper limit of the average cooling rate at 600 to 300 ° C. may be 50 ° C./s or less.
 冷却時の線材の温度は、放射温度計により測定するとよい。一般に、線材の熱間圧延後の冷却は、コイル状に巻き取ってから冷却する。コイル状に巻き取った線材には、線材同士の重なりが多い密部、及び線材同士の重なりが少ない疎部がある。本実施形態に係る線材の製造方法では、巻取り後の線材の温度は、コイル状に巻き取った線材の、線材同士の重なりが多い箇所(密部)を測定する。 ¡The temperature of the wire during cooling should be measured with a radiation thermometer. Generally, cooling after hot rolling of a wire rod is performed after winding it in a coil shape. The wire wound up in a coil shape includes a dense portion where the overlapping of the wires is large and a sparse portion where the overlapping of the wires is small. In the method for manufacturing a wire according to the present embodiment, the temperature of the wire after winding is measured at a portion (dense portion) where the wires are overlapped with each other in the wire wound in a coil shape.
 上述した成分組成を有し、製造条件を上記のように調整することにより、線材の組織及び引張強度を本発明の範囲内とすることができる。 By having the above-described component composition and adjusting the manufacturing conditions as described above, the structure and tensile strength of the wire can be made within the scope of the present invention.
 以下、本発明に係る線材の実施例を挙げ、本発明をより具体的に説明する。しかし本発明は、もとより下記実施例に限定されるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the present invention will be described more specifically with reference to examples of the wire according to the present invention. However, the present invention is not limited to the following examples, and can be implemented with appropriate modifications within a range that can be adapted to the spirit of the present invention. It is included in the range.
 表1に鋼の化学組成および熱間圧延条件を示し、表2に線材の組織を評価した結果、並びに引張特性および伸線加工性を評価した結果を示す。表1における冷却速度1~3は下記の通りである。平均冷却速度は、衝風の風量を調整することで制御した。なお、表1及び表2において、本発明の範囲から外れる数値にはアンダーラインを付している。 Table 1 shows the chemical composition and hot rolling conditions of steel, and Table 2 shows the results of evaluating the structure of the wire, and the results of evaluating tensile properties and wire drawing workability. The cooling rates 1 to 3 in Table 1 are as follows. The average cooling rate was controlled by adjusting the amount of blast. In Tables 1 and 2, numbers outside the scope of the present invention are underlined.
 冷却速度1:巻取り後650℃までの平均冷却速度
 冷却速度2:650℃から600℃までの平均冷却速度
 冷却速度3:600℃から300℃までの平均冷却速度
Cooling rate 1: Average cooling rate from 650 ° C after winding up Cooling rate 2: Average cooling rate from 650 ° C to 600 ° C Cooling rate 3: Average cooling rate from 600 ° C to 300 ° C
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1のNo.A1~A22は本発明例である。また、表1のNo.B1~B13は成分または熱間圧延条件のいずれか1つ以上が適正範囲を外れた比較例である。 No. in Table 1. A1 to A22 are examples of the present invention. In Table 1, No. B1 to B13 are comparative examples in which any one or more of the components and hot rolling conditions are out of the proper range.
 本発明例、比較例とも、ビレットを加熱炉にて1000~1200℃まで加熱した後、仕上げ圧延の開始温度を750~950℃とした。仕上げ圧延時に加工発熱によって上昇した線材温度を制御して、表1に示す巻取温度でコイル状に巻き取った。巻取り後の冷却は、巻取り後650℃までの平均冷却速度(表1の冷却速度1)、650℃から600℃までの平均冷却速度(表1の冷却速度2)、及び600℃から300℃までの平均冷却速度(表1の冷却速度3)を表1に示す条件で行った。以上の方法により、表1に示す線径を有する線材を得た。 In both the inventive example and the comparative example, the billet was heated to 1000 to 1200 ° C. in a heating furnace, and then the finish rolling start temperature was set to 750 to 950 ° C. The wire temperature increased by heat generated during finish rolling was controlled, and the coil was wound into a coil at the winding temperature shown in Table 1. Cooling after winding is performed by means of an average cooling rate from 650 ° C. after cooling (cooling rate 1 in Table 1), an average cooling rate from 650 ° C. to 600 ° C. (cooling rate 2 from Table 1), and 600 ° C. to 300 The average cooling rate up to ° C. (cooling rate 3 in Table 1) was performed under the conditions shown in Table 1. By the above method, the wire which has a wire diameter shown in Table 1 was obtained.
 線材のパーライトの面積分率および初析セメンタイトの面積分率は、以下の方法によって測定した。 The area fraction of pearlite in the wire and the area fraction of pro-eutectoid cementite were measured by the following methods.
 まず、線材を切断し、長手方向と垂直な横断面を観察できるように線材を樹脂埋めした。樹脂埋めした線材を研磨紙及びアルミナ砥粒で研磨し、更に鏡面仕上げして試料とした。試料の観察面(すなわち線材の横断面)をナイタール溶液もしくはピクラール溶液で腐食した後、走査型電子顕微鏡(SEM)を用いて試料の観察面を観察した。使用したナイタール溶液は、しょう酸及びエチルアルコールを混合した溶液であった。試料の観察面の腐食は、濃度を5%以下、温度を15~30℃程度としナイタール溶液に、数s~1minの間、観察面を浸漬する方法、及び上述の濃度及び温度のナイタール溶液を浸した脱脂綿で、観察面を拭く方法等で行った。使用したピクラール溶液は、ピクリン酸及びエチルアルコールを混合した溶液であった。試料の観察面の腐食は、濃度を5%程度、温度を40~60℃程度としたピクラール溶液に、30s~2minの間、観察面を浸漬する方法で行った。腐食後は、試料の観察面を直ちに十分に水洗いし、冷風もしくは温風で速やかに乾燥させた。 First, the wire was cut and filled with resin so that a cross section perpendicular to the longitudinal direction could be observed. The resin-filled wire was polished with polishing paper and alumina abrasive grains, and further mirror finished to prepare a sample. After observing the observation surface of the sample (that is, the cross section of the wire) with a nital solution or picral solution, the observation surface of the sample was observed using a scanning electron microscope (SEM). The used nital solution was a mixed solution of oxalic acid and ethyl alcohol. Corrosion of the observation surface of the sample is performed by immersing the observation surface in a nital solution for several seconds to 1 min with a concentration of 5% or less and a temperature of about 15 to 30 ° C., and the above-described concentration and temperature of the nital solution. The observation surface was wiped with a dipped absorbent cotton. The picral solution used was a mixed solution of picric acid and ethyl alcohol. Corrosion of the observation surface of the sample was performed by immersing the observation surface in a picral solution having a concentration of about 5% and a temperature of about 40 to 60 ° C. for 30 seconds to 2 minutes. After the corrosion, the observation surface of the sample was immediately washed thoroughly with water and quickly dried with cold air or hot air.
 続いて、SEM付属の写真撮影装置を用い、試料の中心部(線材の半径をRとして、線材の中心から(1/5)R以内の領域)を倍率2000倍以上で、総観察視野面積が0.08mm以上となるように複数視野撮影した。これらSEM写真及び粒子解析ソフトウエアなどの画像解析ソフトウエアを用いて、線材の中心部のパーライト及び初析セメンタイトの面積分率を得た。なお、画像解析ソフトウエアは、Luzex(登録商標、株式会社ニレコ製)を用いた。 Subsequently, using a photographic apparatus attached to the SEM, the central portion of the sample (the radius of the wire is R, and the region within (1/5) R from the center of the wire) is 2000 times magnification or more, and the total observation visual field area is A plurality of fields of view were photographed so as to be 0.08 mm 2 or more. Using these SEM photographs and image analysis software such as particle analysis software, the area fraction of pearlite and proeutectoid cementite at the center of the wire was obtained. Note that Luzex (registered trademark, manufactured by Nireco Corporation) was used as the image analysis software.
 本発明例、比較例いずれも、上記中心部において観察された金属組織は、パーライト、並びに初析セメンタイト、粒界フェライト、およびベイナイトの1種又は2種以上の複合組織であった。 In both the inventive examples and the comparative examples, the metal structure observed in the central portion was one or more composite structures of pearlite, proeutectoid cementite, grain boundary ferrite, and bainite.
 初析セメンタイトの平均厚さ及び長さは、上記SEM写真を用いて測定した。初析セメンタイトの平均厚さは、上記SEM写真中の全ての初析セメンタイトについて厚さを測定し、その平均値を算出することで得た。初析セメンタイトの厚さは、旧オーステナイト粒界に垂直な方向の厚さを測定することで得た。図2のセメンタイト10aのような形状のセメンタイトであれば、厚さT1、T2、T3を測定し、それらの平均をその初析セメンタイトの厚さとした。また、初析セメンタイトの長さは、上記SEM写真中の初析セメンタイトの形状に基づいて旧オーステナイト粒界を仮想する線を描いて、その線に沿って初析セメンタイトの長さを測定した。図2のセメンタイト10aのように、特段曲がった形状を持たないセメンタイトであれば、その長軸方向に沿って旧オーステナイト粒界を仮想する直線を描き、当該直線に沿って長さL1を測定した。図4のセメンタイト10cのように、特異な曲部を持つ初析セメンタイトであれば、その形状に合わせて旧オーステナイト粒界を仮想する線を描き、その線に沿って初析セメンタイト長さを測定した。図3のセメンタイト10bのように、分岐を持つ初析セメンタイトであれば、分岐ごとの長さを総計した。単位面積当たりの初析セメンタイトの総長さは、測定した測定視野における各初析セメンタイトの長さの合計を視野面積で除した値とした。すなわち、単位面積当たりの初析セメンタイトの総長さ(mm/mm)は、単位面積当たりに観察される初析セメンタイトの長さの合計とした。測定に際しては、必要に応じて、初析セメンタイトを含む領域を倍率3000~5000倍で撮影し、初析セメンタイトの平均厚さ及び長さを測定した。 The average thickness and length of proeutectoid cementite were measured using the SEM photograph. The average thickness of pro-eutectoid cementite was obtained by measuring the thickness of all pro-eutectoid cementite in the SEM photograph and calculating the average value. The thickness of pro-eutectoid cementite was obtained by measuring the thickness in the direction perpendicular to the prior austenite grain boundaries. In the case of cementite having a shape like the cementite 10a in FIG. 2, the thicknesses T1, T2, and T3 were measured, and the average of these was the thickness of the pro-eutectoid cementite. The length of pro-eutectoid cementite was measured by drawing a line imagining a prior austenite grain boundary based on the shape of pro-eutectoid cementite in the SEM photograph, and measuring the length of pro-eutectoid cementite along the line. If the cementite does not have a particularly bent shape like the cementite 10a in FIG. 2, a straight line imagining the prior austenite grain boundary is drawn along the major axis direction, and the length L1 is measured along the straight line. . If it is a pro-eutectoid cementite with a specific curved part like the cementite 10c in Fig. 4, a line imagining the prior austenite grain boundary is drawn according to the shape, and the pro-eutectoid cementite length is measured along that line. did. In the case of a pro-eutectoid cementite having branches like the cementite 10b in FIG. 3, the length of each branch was totaled. The total length of pro-eutectoid cementite per unit area was obtained by dividing the total length of pro-eutectoid cementite in the measured visual field by the visual field area. That is, the total length (mm / mm 2 ) of pro-eutectoid cementite per unit area was the total length of pro-eutectoid cementite observed per unit area. In measurement, if necessary, an area containing pro-eutectoid cementite was photographed at a magnification of 3000 to 5000 times, and the average thickness and length of pro-eutectoid cementite were measured.
 旧オーステナイト粒径は、熱間圧延後かつ巻取り直後のコイルの最終端から数リングを水冷し、焼き入れた線材を用いて測定した。焼き入れた線材を切断し、横断面を観察できるように樹脂埋めした後、アルミナで研磨してサンプルを得た。その後、研磨したサンプルをピクリン酸アルカリ溶液で腐食し、旧オーステナイト粒界を現出させた。試料の観察面の腐食は、温度を75~90℃としたピクリン酸アルカリ溶液に、試料の観察面を10~20min程度浸漬することで行った。腐食後は、試料の観察面を直ちによく水洗した後、冷風もしくは温風で速やかに乾燥させた。なお、観察面の腐食に使用するピクリン酸アルカリ溶液は、重量比でピクリン酸2、水酸化ナトリウム5、水100の割合の混合溶液であった。 The prior austenite grain size was measured by using a wire rod that was water-cooled after several rings from the final end of the coil after hot rolling and immediately after winding. The quenched wire was cut and filled with a resin so that the cross section could be observed, and then polished with alumina to obtain a sample. Thereafter, the polished sample was corroded with an alkali picrate solution to reveal prior austenite grain boundaries. Corrosion of the observation surface of the sample was performed by immersing the observation surface of the sample for about 10 to 20 minutes in an alkali picrate solution at a temperature of 75 to 90 ° C. After corrosion, the observation surface of the sample was immediately washed thoroughly with water, and then quickly dried with cold air or hot air. The alkaline picric acid solution used for corrosion of the observation surface was a mixed solution of picric acid 2, sodium hydroxide 5 and water 100 in weight ratio.
 試料の観察面は、温度を75~90℃としたピクリン酸アルカリ溶液に、試料の観察面を10~20min程度浸漬して腐食した。腐食後は、試料の観察面を直ちによく水洗し、冷風もしくは温風で速やかに乾燥させた。その後、光学顕微鏡を用いてサンプルの観察面の中心部(線材の半径をRとして、線材の中心から(1/5)R以内の領域)を倍率400倍以上で総観察視野面積が0.18mmとなるように複数視野撮影した。これらSEM写真、及びJIS G0551:2013記載の切断法を用いて、旧オーステナイト粒径を測定した。切断法では、長さ400μmの直線を100μm間隔で重ならないように15以上引き、合計で6mmの直線で捕捉した捕捉結晶粒数で評価した。 The observation surface of the sample was corroded by immersing the observation surface of the sample in an alkaline picric acid solution at a temperature of 75 to 90 ° C. for about 10 to 20 minutes. After the corrosion, the observation surface of the sample was immediately washed thoroughly with water and quickly dried with cold air or hot air. Thereafter, using an optical microscope, the central portion of the observation surface of the sample (the radius of the wire is R, and the region within (1/5) R from the center of the wire) is 400 × magnification and the total observation field area is 0.18 mm. A plurality of fields of view were taken so as to be 2 . Using these SEM photographs and the cutting method described in JIS G0551: 2013, the prior austenite particle size was measured. In the cutting method, 15 or more straight lines having a length of 400 μm were drawn at intervals of 100 μm, and evaluation was performed based on the number of captured crystal grains captured by a total of 6 mm straight lines.
 引張強度は、以下の方法により測定した。線材のうち、フロント部(先端から50リング尾端側の場所)、ミドル部(コイル内の先端と尾端の中間から100リング内)、及びテール部(尾端から50リング先端側の場所)からそれぞれ3リング採取し、各リングから、等間隔になるようにサンプルを8本、計72本採取した。これらのサンプルを用いて、JIS Z 2241:2011に準じて引張試験を行った。これら72本のサンプルから得られた引張強度の平均値を算出することで、線材の引張強度を得た。なお、サンプル長さは400mmとし、クロスヘッドスピードを10mm/min、治具間を200mmとして、引張試験を行った。 The tensile strength was measured by the following method. Of the wire, front part (location on the tail end side of the 50 ring from the tip), middle part (within 100 rings from the middle of the tip and tail end in the coil), and tail part (location on the tip end side of the 50 ring from the tail end) From each ring, 3 rings were collected, and 8 samples were collected from each ring at equal intervals, for a total of 72 samples. Using these samples, a tensile test was performed according to JIS Z 2241: 2011. The tensile strength of the wire was obtained by calculating the average value of the tensile strength obtained from these 72 samples. The tensile test was performed with the sample length of 400 mm, the crosshead speed of 10 mm / min, and the distance between jigs of 200 mm.
 線材の伸線加工性は、以下の方法により評価した。線材から10リング採取し、酸洗してスケール除去を行った後、石灰皮膜処理を行った。その後、パテンティング処理を施すことなく、伸線加工(乾式伸線加工)を行った。伸線加工時の1パス当たりの減面率は、17~23%とした。伸線加工を行って、断線した際の真歪が2.9以上である場合を、伸線加工性に優れるため合格と判定した。一方、伸線加工を行って、断線した際の真歪が2.9未満である場合を、伸線加工性に劣るため不合格と判定した。なお、真歪は、-2×ln(伸線材の線径/線材の線径)を算出することで得た。「ln」は自然対数である。 The wire drawing workability of the wire was evaluated by the following method. Ten rings were collected from the wire, pickled and scaled, and then subjected to lime film treatment. Thereafter, wire drawing (dry wire drawing) was performed without performing a patenting treatment. The area reduction per pass during wire drawing was 17-23%. When the wire strain was performed and the true strain at the time of disconnection was 2.9 or more, it was determined to be acceptable because of excellent wireworkability. On the other hand, when the wire drawing was performed and the true strain at the time of disconnection was less than 2.9, it was determined to be rejected because the wire drawing workability was poor. The true strain was obtained by calculating −2 × ln (the wire diameter of the drawn wire / the wire diameter of the wire). “Ln” is a natural logarithm.
 No.A1~A22は、いずれも本発明例であり、パテンティング処理を施すことなく、真歪が2.9以上の伸線加工を可能とする優れた伸線加工性を示した。 No. A1 to A22 are all examples of the present invention, and showed excellent wire drawing workability that enables wire drawing with a true strain of 2.9 or more without performing a patenting treatment.
 一方、No.B1~B13は、本発明の要件のいずれかを満たしていないため、断線時の真歪が2.9未満となり、伸線加工性が本発明例に比べて劣位であった。 On the other hand, No. Since B1 to B13 did not satisfy any of the requirements of the present invention, the true strain at the time of disconnection was less than 2.9, and the wire drawing workability was inferior to the examples of the present invention.
 No.B1は、C含有量が高かったため、線材の初析セメンタイトの面積分率が増加し、初析セメンタイトの平均厚さが大きくなり、更に単位面積当たりの初析セメンタイトの総長さが長くなり、線材の伸線加工性が低下した。
 No.B2はSi含有量が高く、またNo.B3はMn含有量が高かったため、いずれも線材の引張強度が上昇し、伸線加工性が低下した。
 No.B4は、Cr含有量が高かったため、パーライトの面積分率が減り、また、引張強度が上昇し、線材の伸線加工性が低下した。
No. Since B1 has a high C content, the area fraction of pro-eutectoid cementite of the wire increases, the average thickness of pro-eutectoid cementite increases, and the total length of pro-eutectoid cementite per unit area increases. The wire drawing workability was reduced.
No. B2 has a high Si content. Since B3 had a high Mn content, the tensile strength of the wire increased and the wire drawing workability decreased.
No. Since B4 had a high Cr content, the area fraction of pearlite decreased, the tensile strength increased, and the wire drawing processability of the wire decreased.
 No.B5、及びNo.B11は、650~600℃の平均冷却速度(冷却速度2)が大きかったため、引張強度が上昇し、線材の伸線加工性が低下した。
 No.B6は、巻取り後から650℃までの平均冷却速度(冷却速度1)が小さかったため、初析セメンタイトの平均厚さが増加し、線材の伸線加工性が低下した。
 No.B7は、650~600℃の平均冷却速度(冷却速度2)が小さかったため、引張強度が低下し、線材の伸線加工性が低下した。
No. B5, and No. Since B11 had a large average cooling rate (cooling rate 2) of 650 to 600 ° C., the tensile strength increased and the wire drawing workability of the wire decreased.
No. In B6, since the average cooling rate (cooling rate 1) from 650 ° C. after winding was small, the average thickness of pro-eutectoid cementite increased, and the wire drawing workability of the wire decreased.
No. In B7, since the average cooling rate (cooling rate 2) at 650 to 600 ° C. was small, the tensile strength was lowered and the wire drawing workability of the wire was lowered.
 No.B8は、巻取り後から650℃までの平均冷却速度(冷却速度1)が大きかったため、線材が過度に冷却され、引張強度が上昇し、伸線加工性が低下した。
 No.B9は、巻取り温度が低く、かつ巻取り後から650℃までの平均冷却速度(冷却速度1)が小さかったため、旧オーステナイト粒径が微細化し、初析セメンタイトが大量に析出することで、単位面積当たりの初析セメンタイトの総長さが長くなり、線材の伸線加工性が低下した。
 No.B10は、600~300℃の平均冷却速度(冷却速度3)が小さかったため、線材の引張強度が低下し、伸線加工性が低下した。
No. In B8, since the average cooling rate (cooling rate 1) up to 650 ° C. after winding was large, the wire was excessively cooled, the tensile strength increased, and the wire drawing workability decreased.
No. B9 has a low coiling temperature and a small average cooling rate (cooling rate 1) from 650 ° C. after winding, so that the prior austenite grain size is refined and a large amount of proeutectoid cementite is precipitated. The total length of pro-eutectoid cementite per area increased, and the wire drawing processability of the wire decreased.
No. B10 had a small average cooling rate (cooling rate 3) of 600 to 300 ° C., so that the tensile strength of the wire was lowered and the wire drawing workability was lowered.
 No.B12は、巻取り温度が高かったため、旧オーステナイト粒径が大きくなり、更に単位面積当たりの初析セメンタイトの総長さが長くなり、線材の伸線加工性が低下した。
 No.B13は、巻取り後から650℃までの平均冷却速度(冷却速度1)が小さかったため、初析セメンタイトの面積分率が増加し、初析セメンタイトの平均厚さが大きくなり、更に単位面積当たりの初析セメンタイトの総長さが長くなり、線材の伸線加工性が低下した。
No. Since the coiling temperature of B12 was high, the prior austenite grain size was increased, the total length of proeutectoid cementite per unit area was increased, and the wire drawing workability of the wire was lowered.
No. In B13, since the average cooling rate (cooling rate 1) from 650 ° C. after winding was small, the area fraction of pro-eutectoid cementite increased, the average thickness of pro-eutectoid cementite increased, and further per unit area The total length of proeutectoid cementite became longer, and the wire drawing processability of the wire decreased.

Claims (5)

  1.  質量%で、
    C:0.90~1.15%、
    Si:0.10~0.50%、
    Mn:0.10~0.80%、
    Cr:0.10~0.50%、
    Ni:0~0.50%、
    Co:0~1.00%、
    Mo:0~0.20%および
    B:0~0.0030%
    を含有し、
    P:0.020%以下および
    S:0.010%以下
    に制限し、残部はFeおよび不純物からなり、
     線材の半径をRとした時、前記線材の横断面の中心から(1/5)R以内の中心部で観察される組織において、パーライトの面積分率が90.0%以上であり、初析セメンタイトの面積分率が1.00%以下であり、
     前記中心部において、前記初析セメンタイトの平均厚さが0.25μm以下であり、
     前記中心部において、単位面積当たりの前記初析セメンタイトの総長さが40.0mm/mm未満であり、
     引張強度が式(1)を満たし、
     直径が3.0~5.5mmである線材。
     1000×C量(%)+300×Cr量(%)+70≦TS≦1000×C量(%)+300×Cr量(%)+160・・・式(1)
     なお、前記単位面積当たりの初析セメンタイトの総長さ(mm/mm)は、単位面積当たりに観察される初析セメンタイトの長さの合計である。前記式(1)中の前記TSは、単位をMPaとした時の前記線材の引張強度を示す。前記式(1)中の「C量(%)」は、前記線材中のCの含有質量%を示し、「Cr量(%)」は、前記線材中のCrの含有質量%を示す。
    % By mass
    C: 0.90 to 1.15%,
    Si: 0.10 to 0.50%,
    Mn: 0.10 to 0.80%,
    Cr: 0.10 to 0.50%,
    Ni: 0 to 0.50%,
    Co: 0 to 1.00%,
    Mo: 0 to 0.20% and B: 0 to 0.0030%
    Containing
    P: 0.020% or less and S: 0.010% or less, the balance consists of Fe and impurities,
    When the radius of the wire is R, the area fraction of pearlite is 90.0% or more in the structure observed in the central portion within (1/5) R from the center of the cross section of the wire, The area fraction of cementite is 1.00% or less,
    In the central part, the average thickness of the pro-eutectoid cementite is 0.25 μm or less,
    In the central portion, the total length of the pro-eutectoid cementite per unit area is less than 40.0 mm / mm 2 ,
    The tensile strength satisfies the formula (1),
    A wire having a diameter of 3.0 to 5.5 mm.
    1000 × C amount (%) + 300 × Cr amount (%) + 70 ≦ TS ≦ 1000 × C amount (%) + 300 × Cr amount (%) + 160 Expression (1)
    The total length of pro-eutectoid cementite per unit area (mm / mm 2 ) is the total length of pro-eutectoid cementite observed per unit area. The TS in the formula (1) indicates the tensile strength of the wire when the unit is MPa. The “C amount (%)” in the formula (1) indicates the C content mass% in the wire, and the “Cr amount (%)” indicates the Cr content mass% in the wire.
  2.  質量%で、
    Ni:0.10~0.50%、
    Co:0.10~1.00%、
    Mo:0.05~0.20%および
    B:0.0002~0.0030%
    のいずれか1種または2種以上を含有する請求項1に記載の線材。
    % By mass
    Ni: 0.10 to 0.50%,
    Co: 0.10 to 1.00%,
    Mo: 0.05-0.20% and B: 0.0002-0.0030%
    The wire according to claim 1, which contains any one or more of the above.
  3.  前記初析セメンタイトの面積分率が0%超~1.00%である請求項1又は請求項2に記載の線材。 The wire according to claim 1 or 2, wherein an area fraction of the pro-eutectoid cementite is more than 0% to 1.00%.
  4.  前記中心部で観察される組織において、初析セメンタイト、粒界フェライトおよびベイナイトの1種または2種以上を含む請求項1~請求項3の何れか1項に記載の線材。 The wire according to any one of claims 1 to 3, wherein the structure observed in the central portion contains one or more of pro-eutectoid cementite, grain boundary ferrite, and bainite.
  5.  請求項1に記載の成分を有する鋼片を熱間で直径3.0~5.5mmに圧延した後、940~800℃で巻取り、巻取り後650℃までを6.0~15.0℃/sの平均冷却速度で冷却し、650~600℃を1.0~3.0℃/sの平均冷却速度で冷却し、600~300℃を10.0℃/s以上の平均冷却速度で冷却することを特徴とする請求項1~請求項4の何れか一項に記載の線材を製造する線材の製造方法。 The steel slab having the composition according to claim 1 is hot rolled to a diameter of 3.0 to 5.5 mm, wound at 940 to 800 ° C., and wound up to 650 ° C. to 6.0 to 15.0. Cooling at an average cooling rate of ° C / s, cooling from 650 to 600 ° C at an average cooling rate of 1.0 to 3.0 ° C / s, and cooling from 600 to 300 ° C at an average cooling rate of 10.0 ° C / s or more The method for producing a wire material for producing the wire material according to any one of claims 1 to 4, wherein the wire material is cooled by heating.
PCT/JP2017/039166 2016-10-28 2017-10-30 Wire rod and manufacturing method therefor WO2018079781A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17866036.1A EP3533898B1 (en) 2016-10-28 2017-10-30 Wire rod and manufacturing method therefor
CN201780065792.2A CN109963960B (en) 2016-10-28 2017-10-30 Wire rod and method for producing same
KR1020197014444A KR102247234B1 (en) 2016-10-28 2017-10-30 Wire rod and its manufacturing method
JP2018547829A JP6733741B2 (en) 2016-10-28 2017-10-30 Wire rod and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016211590 2016-10-28
JP2016-211590 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079781A1 true WO2018079781A1 (en) 2018-05-03

Family

ID=62023682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039166 WO2018079781A1 (en) 2016-10-28 2017-10-30 Wire rod and manufacturing method therefor

Country Status (5)

Country Link
EP (1) EP3533898B1 (en)
JP (1) JP6733741B2 (en)
KR (1) KR102247234B1 (en)
CN (1) CN109963960B (en)
WO (1) WO2018079781A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080415A1 (en) * 2018-10-16 2020-04-23 日本製鉄株式会社 Hot-rolled wire rod
JP2020180330A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Steel wire and aluminum-coated steel wire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254526A (en) * 1991-02-06 1992-09-09 Nippon Steel Corp Manufacture of high carbon steel wire excellent in wire drawability
JPH05295436A (en) * 1992-04-21 1993-11-09 Nippon Steel Corp Production of hypereutectoid steel wire rod
JPH08295933A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Wire rod excellent in wire drawability
JP2001181789A (en) 1999-12-22 2001-07-03 Nippon Steel Corp Small-diameter hot rolled high carbon steel wire rod excellent in wire drawability
JP2003183778A (en) * 2001-12-13 2003-07-03 Sumitomo Metal Ind Ltd Steel wire rod, steel wire, and manufacturing methods therefor
JP4088220B2 (en) 2002-09-26 2008-05-21 株式会社神戸製鋼所 Hot-rolled wire rod with excellent wire drawing workability that can omit heat treatment before wire drawing
JP5179331B2 (en) 2008-12-02 2013-04-10 株式会社神戸製鋼所 Hot rolled wire rod excellent in wire drawing workability and mechanical descaling property and manufacturing method thereof
JP2016211590A (en) 2015-04-28 2016-12-15 山下ゴム株式会社 Liquid-sealed vibration isolation device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583929A (en) * 1981-07-01 1983-01-10 Daido Steel Co Ltd Manufacture of steel wire rod
JPH06228642A (en) * 1993-02-01 1994-08-16 Nippon Steel Corp Production of hyper-eutectoid steel wire rod
JP2001164337A (en) * 1999-12-09 2001-06-19 Nippon Steel Corp High tensile strength steel excellent in delayed fracture characteristic and producing method therefor
JP3997867B2 (en) * 2002-09-04 2007-10-24 住友金属工業株式会社 Steel wire, method for producing the same, and method for producing steel wire using the steel wire
JP2005206853A (en) * 2004-01-20 2005-08-04 Kobe Steel Ltd High carbon steel wire rod having excellent wire drawability, and production method therefor
KR101011565B1 (en) * 2005-06-29 2011-01-27 신닛뽄세이테쯔 카부시키카이샤 High-strength wire rod excelling in wire drawing performance and process for producing the same
KR20100029135A (en) * 2008-03-25 2010-03-15 신닛뽄세이테쯔 카부시키카이샤 Wire rod and high-strength steel wire excellent in ductility, and processes for production of both
KR101253852B1 (en) * 2009-08-04 2013-04-12 주식회사 포스코 Non-heat Treatment Rolled Steel and Drawn Wire Rod Having High Toughness and Method Of Manufacturing The Same
KR101382659B1 (en) * 2010-01-25 2014-04-07 신닛테츠스미킨 카부시키카이샤 Wire rod, steel wire, and method for manufacturing wire rod
EP2557191B1 (en) * 2010-04-08 2016-07-27 Nippon Steel & Sumitomo Metal Corporation Wire material for saw wire and method for producing same
JP4958998B1 (en) * 2010-12-27 2012-06-20 株式会社神戸製鋼所 Steel wire rod and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254526A (en) * 1991-02-06 1992-09-09 Nippon Steel Corp Manufacture of high carbon steel wire excellent in wire drawability
JPH05295436A (en) * 1992-04-21 1993-11-09 Nippon Steel Corp Production of hypereutectoid steel wire rod
JPH08295933A (en) * 1995-04-24 1996-11-12 Nippon Steel Corp Wire rod excellent in wire drawability
JP2001181789A (en) 1999-12-22 2001-07-03 Nippon Steel Corp Small-diameter hot rolled high carbon steel wire rod excellent in wire drawability
JP2003183778A (en) * 2001-12-13 2003-07-03 Sumitomo Metal Ind Ltd Steel wire rod, steel wire, and manufacturing methods therefor
JP4088220B2 (en) 2002-09-26 2008-05-21 株式会社神戸製鋼所 Hot-rolled wire rod with excellent wire drawing workability that can omit heat treatment before wire drawing
JP5179331B2 (en) 2008-12-02 2013-04-10 株式会社神戸製鋼所 Hot rolled wire rod excellent in wire drawing workability and mechanical descaling property and manufacturing method thereof
JP2016211590A (en) 2015-04-28 2016-12-15 山下ゴム株式会社 Liquid-sealed vibration isolation device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3533898A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080415A1 (en) * 2018-10-16 2020-04-23 日本製鉄株式会社 Hot-rolled wire rod
CN112840044A (en) * 2018-10-16 2021-05-25 日本制铁株式会社 Hot-rolled wire
KR20210072067A (en) * 2018-10-16 2021-06-16 닛폰세이테츠 가부시키가이샤 hot rolled wire rod
JPWO2020080415A1 (en) * 2018-10-16 2021-09-09 日本製鉄株式会社 Hot rolled wire
US20210395868A1 (en) * 2018-10-16 2021-12-23 Nippon Steel Corporation Hot-rolled wire rod
JP7063394B2 (en) 2018-10-16 2022-05-09 日本製鉄株式会社 Hot rolled wire
CN112840044B (en) * 2018-10-16 2022-11-22 日本制铁株式会社 Hot-rolled wire
KR102534998B1 (en) 2018-10-16 2023-05-26 닛폰세이테츠 가부시키가이샤 hot rolled wire rod
JP2020180330A (en) * 2019-04-24 2020-11-05 日本製鉄株式会社 Steel wire and aluminum-coated steel wire
JP7230669B2 (en) 2019-04-24 2023-03-01 日本製鉄株式会社 Steel wire and aluminum-coated steel wire

Also Published As

Publication number Publication date
EP3533898B1 (en) 2020-12-02
EP3533898A4 (en) 2020-03-04
CN109963960A (en) 2019-07-02
CN109963960B (en) 2021-04-09
JPWO2018079781A1 (en) 2019-09-19
EP3533898A1 (en) 2019-09-04
KR20190073456A (en) 2019-06-26
JP6733741B2 (en) 2020-08-05
KR102247234B1 (en) 2021-05-03

Similar Documents

Publication Publication Date Title
US9689053B2 (en) Steel rod and high strength steel wire having superior ductility and methods of production of same
KR101925735B1 (en) Steel wire for wire drawing
EP2532764A1 (en) Wire material, steel wire, and processes for production of those products
JP5590256B2 (en) Rolled wire rod and manufacturing method thereof
US10597748B2 (en) Steel wire rod for wire drawing
EP3527681A1 (en) Steel wire material and production method for steel wire material
JP5201009B2 (en) High-strength extra-fine steel wire, high-strength extra-fine steel wire, and manufacturing methods thereof
EP3486345A1 (en) Steel wire
EP2905353A1 (en) Shaped steel wire for undersea-cable protecting tube, manufacturing method therefor, and pressure-resistant layer
WO2018079781A1 (en) Wire rod and manufacturing method therefor
JP2010229469A (en) High-strength wire rod excellent in cold working characteristic and method of producing the same
JP5796781B2 (en) Steel wire for high strength spring excellent in spring workability, manufacturing method thereof, and high strength spring
KR102534998B1 (en) hot rolled wire rod
JP6828592B2 (en) Hot-rolled wire rod for wire drawing
JP6614005B2 (en) Hot rolled wire rod for high-strength steel wire and method for producing the same
JPH08283867A (en) Production of hyper-eutectoid steel wire rod for wiredrawing
JP6922726B2 (en) Hot rolled wire
JP6724435B2 (en) Hot rolled wire rod and method for manufacturing the same
JP7469642B2 (en) High-strength steel wire
JP6536382B2 (en) Hot rolled wire for wire drawing
JP2022153697A (en) Wire for bearing
JP2021161445A (en) Steel wire material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018547829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197014444

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017866036

Country of ref document: EP

Effective date: 20190528