WO2018079675A1 - Rinsing agent composition for silicon wafers - Google Patents

Rinsing agent composition for silicon wafers Download PDF

Info

Publication number
WO2018079675A1
WO2018079675A1 PCT/JP2017/038767 JP2017038767W WO2018079675A1 WO 2018079675 A1 WO2018079675 A1 WO 2018079675A1 JP 2017038767 W JP2017038767 W JP 2017038767W WO 2018079675 A1 WO2018079675 A1 WO 2018079675A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
soluble polymer
silicon wafer
mass
rinsing
Prior art date
Application number
PCT/JP2017/038767
Other languages
French (fr)
Japanese (ja)
Inventor
内田洋平
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017206437A external-priority patent/JP7061862B2/en
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to US16/345,444 priority Critical patent/US20190249122A1/en
Priority to DE112017005434.6T priority patent/DE112017005434T5/en
Priority to CN201780063904.0A priority patent/CN109844908B/en
Priority to KR1020197005601A priority patent/KR102370806B1/en
Publication of WO2018079675A1 publication Critical patent/WO2018079675A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/008Polymeric surface-active agents
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/20Water-insoluble oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/06Etching, surface-brightening or pickling compositions containing an inorganic acid with organic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/16Sulfonic acids or sulfuric acid esters; Salts thereof derived from divalent or polyvalent alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3753Polyvinylalcohol; Ethers or esters thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/08Acids
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/26Organic compounds containing oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/22Electronic devices, e.g. PCBs or semiconductors

Definitions

  • the present invention relates to a rinsing agent composition for silicon wafers, a rinsing method for silicon wafers using the same, a method for producing silicon wafers, and a method for producing semiconductor substrates.
  • the polishing process for polishing the silicon wafer includes a lapping (rough polishing) process for planarizing the silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape.
  • a final polishing process in which the surface of the silicon wafer is mirror-finished after etching the lapped silicon wafer.
  • the final polishing performed at the final stage of polishing is performed for the purpose of suppressing haze and suppressing LPD such as particles, scratches and pits by improving wettability (hydrophilization) of the polished silicon wafer surface.
  • a polishing liquid composition used for polishing a silicon wafer a polishing liquid composition containing silica particles, hydroxyethyl cellulose (HEC), polyethylene oxide, and an alkali compound is disclosed for the purpose of improving the haze level.
  • HEC hydroxyethyl cellulose
  • polyethylene oxide polyethylene oxide
  • alkali compound an alkali compound
  • Patent Document 2 A polishing composition for silicon wafers containing a water-soluble polymer having a value within a predetermined range of the number of oxygen atoms derived from polyoxyalkylene has been disclosed (Patent Document 2).
  • Patent Document 2 A polishing composition for silicon wafers containing a water-soluble polymer having a value within a predetermined range of the number of oxygen atoms derived from polyoxyalkylene has been disclosed (Patent Document 2).
  • a solution having a pH of 2.0 or more and a polyvinyl alcohol resin having a 1,2-diol structure in the side chain for the purpose of reducing contamination of the polished workpiece surface while suppressing aggregation of abrasive grains.
  • Patent Document 3 a polishing composition for silicon wafers, which contains abrasive grains whose surface is chemically modified so that the surface zeta potential is negative and has no isoelectric point.
  • Patent Document 4 A polishing composition for silicon wafers containing hydroxypropylmethylcellulose and having a negative zeta potential in the polishing liquid composition has been disclosed for the purpose of suppressing a decrease in smoothness and reducing the number of defects.
  • Patent Document 4 It is not a polishing composition, nor is it used for the silicon wafer surface, but it can remove contaminants on the semiconductor device substrate surface after the CMP process and clean the substrate surface in a short time.
  • the purpose is to contain polyvinyl pyrrolidone and polyethylene oxide-polypropylene oxide block copolymer as a polymer flocculant, and increase the particle size of the fine particles by aggregation, while making the fine particles have a negative zeta potential, and fine particles on the surface of the semiconductor device substrate.
  • a substrate cleaning solution for a semiconductor device that suppresses adhesion of the semiconductor is disclosed (Patent Document 5).
  • JP 2004-128089 A WO2015 / 060293 WO2014 / 084091 JP 2014-154707 A JP 2012-94852 A
  • both the surface charge of the silica particles and the silicon wafer are negatively charged, and due to the repulsion of the charges, the silica particles cannot approach the silicon wafer and the polishing rate cannot be fully expressed, but they are contained in the polishing composition. Since the polymer is adsorbed on both the surface of the silicon wafer and the silica particles, it suppresses the charge repulsion between the silicon wafer and the silica particles, develops the binder effect, and contributes to the improvement of the polishing rate of the silicon wafer. .
  • the polished silicon wafer since the polymer adheres to the surface of the silicon wafer polished in the polishing process (hereinafter also referred to as “the polished silicon wafer”), for example, water is supplied between the polished silicon wafer and the pad.
  • the so-called water rinse is performed in which the pad is moved relative to the silicon wafer after polishing while the silicon wafer and the pad are in contact with each other, silica particles are reattached to the surface of the silicon wafer. After the polishing, it took a considerable amount of time to clean the silicon wafer, which hindered improvement in productivity and cost reduction.
  • a rinsing agent composition for a silicon wafer a silicon wafer rinsing method using the same, a silicon wafer rinsing method, a silicon wafer manufacturing method, A method for manufacturing a semiconductor substrate is provided.
  • the rinse composition for a silicon wafer of the present invention is a rinse composition for a silicon wafer containing a water-soluble polymer and an aqueous medium
  • the water-soluble polymer is It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary.
  • the concentration of the water-soluble polymer is 0.1% by mass, the concentration of the silica particles is 0.1% by mass, 25 ° C.
  • Zeta potential Z of water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion S) having a pH of 7.0, silica particles, water, and optionally hydrochloric acid or ammonia, and the concentration of the silica particles is 0.1 wt%
  • 25 aqueous silica dispersion of pH at °C 7.0 difference (Z-Z 0) between the zeta potential Z 0 of the (aqueous dispersion S 0) is a water-soluble polymer which becomes less 25mV It is the rinse agent composition for silicon wafers.
  • the rinse composition for a silicon wafer of the present invention is a rinse composition for a silicon wafer containing a water-soluble polymer and an aqueous medium,
  • the method for rinsing a silicon wafer according to the present invention includes a step of rinsing a polished silicon wafer using the rinse agent composition for a silicon wafer according to the present invention.
  • the water-soluble polymer contained in the rinse composition for a silicon wafer of the present invention is referred to as a water-soluble polymer A.
  • the water-soluble polymer A and the water-soluble polymer B may be the same or different.
  • the method for producing a semiconductor substrate of the present invention includes a step of rinsing a polished silicon wafer using the rinse agent composition for a silicon wafer of the present invention.
  • the semiconductor substrate manufacturing method of the present invention includes a process of manufacturing a silicon wafer by the silicon wafer manufacturing method of the present invention.
  • a rinsing agent composition for a silicon wafer and a rinsing method for a silicon wafer using the rinsing agent composition for a silicon wafer which can shorten the cleaning time of the silicon wafer after polishing and reduce the LPD.
  • the present invention relates to a method for manufacturing a silicon wafer and a method for manufacturing a semiconductor substrate.
  • the rinsing agent composition for silicon wafer (hereinafter sometimes abbreviated as “rinsing agent composition”) is the water-soluble polymer, silica particles, and water as the specific water-soluble polymer.
  • the water-soluble polymer-containing silica is composed of hydrochloric acid or ammonia
  • the water-soluble polymer concentration is 0.1% by mass
  • the silica particle concentration is 0.1% by mass
  • the pH at 25 ° C. is 7.0.
  • It consists of zeta potential Z of the aqueous dispersion (aqueous dispersion S), silica particles, water, and hydrochloric acid or ammonia as necessary.
  • the concentration of the silica particles is 0.1% by mass, and the pH at 25 ° C. is 7.
  • a water-soluble polymer (hereinafter referred to as “water-soluble polymer A”) having a property that the difference (Z ⁇ Z 0 ) between the zero aqueous silica dispersion (aqueous dispersion S 0 ) and the zeta potential Z 0 is 25 mV or less.
  • water-soluble polymer A having a property that the difference (Z ⁇ Z 0 ) between the zero aqueous silica dispersion (aqueous dispersion S 0 ) and the zeta potential Z 0 is 25 mV or less.
  • silicon after polishing To enable shortening and LPD reduction in cleaning time Eha, based on the finding that.
  • the rinsing agent composition of the present invention When the rinsing agent composition of the present invention is supplied and the rinsing process using the rinsing agent composition is started, the physical force when the pad is moved relative to the silicon wafer after polishing, The water-soluble polymer B, which is a constituent component of the polishing liquid composition adsorbed on the surface of the silica particles, is replaced with the water-soluble polymer A. Then, since the reattachment of the silica particles to the silicon wafer surface after polishing is suppressed, the residual amount of silica particles on the polished silicon wafer subjected to the cleaning process can be remarkably reduced.
  • the rinse agent composition of the present invention contains the water-soluble polymer A, so that the reduction of LPD and the cleaning time of the polished silicon wafer are realized.
  • the rinse agent composition of the present invention includes a water-soluble polymer A, an aqueous medium, and optional components as long as the effects of the present invention are not hindered. Details of the optional component will be described later.
  • the water-soluble polymer A is a water-soluble polymer having such a property that the difference (Z ⁇ Z 0 ) between the zeta potential Z of the aqueous dispersion S and the zeta potential Z 0 of the aqueous dispersion S 0 is 25 mV or less.
  • the aqueous dispersion S is composed of a water-soluble polymer A, silica particles, water, and hydrochloric acid or ammonia as required.
  • the concentration of the water-soluble polymer A is 0.1% by mass, and the concentration of silica particles is A water-soluble polymer-containing silica aqueous dispersion having a pH of 7.0% by mass and 25 ° C.
  • the aqueous dispersion S 0 is a silica aqueous dispersion comprising silica particles, water, and optionally hydrochloric acid or ammonia, and having a silica particle concentration of 0.1 mass% and a pH of 7.0 at 25 ° C. .
  • the zeta potential can be measured by the method described in the examples.
  • the water-soluble polymer A is composed of two or more water-soluble polymers, a mixture of two or more water-soluble polymers has a property that the difference (ZZ 0 ) is 25 mV or less.
  • the concentration of the water-soluble polymer A is 0.1% by mass means that the mixture in the aqueous dispersion S This means that the total concentration of each water-soluble polymer in the aqueous dispersion S is 0.1% by mass.
  • the difference (Z ⁇ Z 0 ) is 25 mV or less, preferably 15 mV or less, more preferably from the viewpoint of suppressing aggregation of silica particles. 9 mV or less, more preferably 7 mV or less.
  • the difference (Z ⁇ Z 0 ) is 25 mV or less from the viewpoint of suppressing aggregation of silica particles.
  • it is 15 mV or less, More preferably, it is 12 mV or less, More preferably, it is 9 mV or less.
  • the zeta potential Z 0 of the aqueous dispersion S 0 is, for example, a predetermined value within a range of ⁇ 40 mV to ⁇ 50 mV, and is adjusted using a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.) as an example.
  • the zeta potential of the prepared aqueous dispersion S 0 (for example, ⁇ 46 mV).
  • the water-soluble polymer A is a secondary particle size of the silica particles in the aqueous dispersion S from the viewpoint of suppressing aggregation of the silica particles.
  • the ratio (d / d 0 ) of d to the secondary particle size d 0 of the silica particles in the aqueous dispersion S 0 is preferably 1.35 or less, more preferably 1.17 or less, and still more preferably 1 .10 or less, still more preferably 1.08 or less, and from the viewpoint of LPD reduction, preferably 1.00 or more, more preferably 1.02 or more, and still more preferably 1.04.
  • the water-soluble polymer is more preferably 1.05 or more.
  • the water-soluble polymer A is a mixture of a water-soluble polymer a1 to be described later and a water-soluble polymer a2 to be described later, the water-soluble polymer A is the aqueous dispersion from the viewpoint of suppressing aggregation of silica particles.
  • the ratio of the secondary particle diameter d 0 of the silica particles of the aqueous dispersion S in 0 is preferably 1.35 or less, more preferably Is a water-soluble polymer having a value of 1.34 or less, more preferably 1.33 or less, and even more preferably 1.32 or less, and preferably from 1.00 or more, more preferably 1 from the viewpoint of reducing LPD. .25 or more, more preferably 1.30 or more, and even more preferably 1.31 or more.
  • the secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is, for example, a predetermined value within the range of 64 to 73 nm, preferably a predetermined value within the range of 66 to 69 nm.
  • the content of the water-soluble polymer A in the rinse agent composition is preferably 0.001% by mass or more, more preferably 0.015% by mass or more, and still more preferably from the viewpoint of shortening the washing time and reducing the LPD. 0.020% by mass or more, still more preferably 0.025% by mass or more, still more preferably 0.03% by mass or more, and from the same viewpoint, preferably 1.0% by mass or less, more preferably It is 0.7 mass% or less, More preferably, it is 0.4 mass% or less, More preferably, it is 0.1 mass% or less, More preferably, it is 0.08 mass% or less.
  • the water-soluble polymer A is preferably at least selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide from the viewpoint of shortening the washing time and reducing LPD.
  • polyglycerin derivative those in which a functional group is added to polyglycerin with an ether bond or an ester bond are preferable, and those with an ether bond are more preferable.
  • the polyglycerin derivative is preferably polyglycerin alkyl ether, polyglycerin dialkyl ether, polyglycerin fatty acid ester, polyethylene oxide-added polyglycerin, polypropylene oxide-added polyglycerin, amino, from the viewpoint of shortening the washing time and reducing the LPD.
  • Polyglycerol, etc. more preferably polyglycerol alkyl ether. These may be used alone or in combination of two or more.
  • the polyglycidol derivative is preferably a polyglycidol alkyl ether, a polyglycidol dialkyl ether, a polyglycidol fatty acid ester, a polyethylene oxide-added polyglycidol, a polypropylene oxide-added polyglycidol, an amino acid, from the viewpoint of shortening the washing time and reducing the LPD.
  • Polyglycidol may be used alone or in combination of two or more.
  • polyvinyl alcohol derivative examples include polyethylene oxide-modified polyvinyl alcohol and sulfonic acid-modified polyvinyl alcohol from the viewpoint of shortening the washing time and reducing the LPD. These may be used alone or in combination of two or more.
  • the water-soluble polymer a1 is preferably polyglycerin, polyglycerin alkyl ether, polyglycerin dialkyl ether, polyglycerin fatty acid ester, polyethylene oxide-modified polyvinyl, from the viewpoints of shortening the washing time and reducing LPD. It is at least one selected from the group consisting of alcohol, sulfonic acid-modified polyvinyl alcohol, and polyacrylamide, more preferably at least one selected from the group consisting of polyglycerin and polyglycerin alkyl ether, and even more preferably. , A polyglycerin alkyl ether.
  • the water-soluble polymer a1 may be used by selecting two or more of them from the above.
  • the rinse agent composition is composed of polyglycerin and polyglycerin alkyl ether. It is preferable that both are included.
  • the number of carbon atoms of the hydrophobic group of the polyglycerol derivative is preferably 6 or more, more preferably 8 or more, and preferably 22 or less, more preferably 18 or less.
  • these mass ratios are preferably 0.5 or more, more preferably, from the viewpoint of reducing LPD. 1.0 or more, more preferably 2.0 or more, and from the same viewpoint, it is preferably 10 or less, more preferably 6.0 or less, and still more preferably 5.0 or less.
  • the weight average molecular weight of the water-soluble polymer a1 is preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, from the viewpoint of shortening the washing time and LPD, and from the same viewpoint, Preferably it is 1,500,000 or less, more preferably 500,000 or less, still more preferably 100,000 or less, even more preferably 25,000 or less, and even more preferably 10,000 or less.
  • the weight average molecular weight of water-soluble polymer A can be measured by the method as described in an Example.
  • the water-soluble polymer a1 is preferably a pentamer or more, more preferably a 10mer or more, still more preferably a 15mer or more, from the viewpoint of shortening the washing time and reducing the LPD, and the same viewpoint. Therefore, it is preferably 5,000 mer or less, more preferably 500 mer or less, still more preferably 200 mer or less, still more preferably 150 mer or less, and even more preferably 100 mer or less.
  • the water-soluble polymer A is a water-soluble polymer containing the water-soluble polymer a1 and a betaine structure (hereinafter referred to as “water-soluble polymer containing a betaine structure”). And a mixture thereof.
  • the betaine structure refers to a structure having a positive charge and a negative charge in the same molecule, and the charge is neutralized.
  • the betaine structure preferably has the positive charge and the negative charge at positions not adjacent to each other, and preferably at a position through one or more atoms.
  • the water-soluble polymer a2 includes a polymer of a monomer containing a betaine structure, a copolymer of a monomer containing a betaine structure and a monomer containing a hydrophobic group, and a betaine structure from the viewpoint of reducing LPD.
  • Copolymer of monomer and monomer containing hydroxyl group copolymer of monomer containing betaine structure and monomer containing oxyalkylene group, monomer containing betaine structure and monomer containing amino group
  • at least one water-soluble polymer selected from a copolymer of a monomer and a monomer having a betaine structure and a monomer having a quaternary ammonium group, and a monomer having a betaine structure,
  • a monomer copolymer containing a hydrophobic group is more preferred.
  • betaine structure examples include sulfobetaine, carbobetaine, phosphobetaine, and the like. From the viewpoint of reducing LPD, carbobetaine and phosphobetaine are more preferable, and phosphobetaine is more preferable.
  • the structural unit A derived from the monomer containing a betaine structure is preferably a structural unit represented by the following formula (1) from the viewpoint of reducing LPD.
  • R 1 to R 3 the same or different, a hydrogen atom, a methyl group, or an ethyl group
  • R 4 an alkylene group having 1 to 4 carbon atoms, or —Y 1 —OPO 3 — —Y 2 — Y 1 , Y 2 : the same or different, an alkylene group having 1 to 4 carbon atoms
  • R 5 , R 6 the same or different, a hydrocarbon group having 1 to 4 carbon atoms
  • X 1 O or NR 7
  • R 7 a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • X 2 a hydrocarbon group having 1 to 4 carbon atoms
  • R 17 SO 3 ⁇ —R 18 COO ⁇
  • R 17 and R 18 are the same or different and each represents an alkylene group having 1 to 4 carbon atoms.
  • X 2 is —R 17 SO 3 ⁇ or —R 18 COO — when R 4 is an alkylene group having 1 to 4 carbon atoms, and R 4 is —Y 1 —OPO 3 — —Y 2. In the case of-, it is a hydrocarbon group having 1 to 4 carbon atoms.
  • R 1 and R 2 are each preferably a hydrogen atom from the viewpoint of monomer availability, monomer polymerizability, and LPD reduction.
  • R 3 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoints of monomer availability, monomer polymerizability, and LPD reduction.
  • X 1 is preferably O (oxygen atom) from the viewpoint of monomer availability, monomer polymerizability, and LPD reduction.
  • R 4 is, from the viewpoint of reducing the LPD, alkylene group having 2 or 3 carbon atoms, or -Y 1 -OPO 3 - -Y 2 - is preferably an alkylene group having 2 carbon atoms, or -Y 1 -OPO 3 - -Y 2 - is more preferred, -Y 1 -OPO 3 - -Y 2 - is more preferable.
  • Y 1 and Y 2 are each preferably an alkylene group having 2 or 3 carbon atoms, more preferably an alkylene group having 2 carbon atoms, from the viewpoint of availability of monomers, polymerizability of monomers, and reduction of LPD. .
  • R 5 and R 6 are each preferably a methyl group or an ethyl group, and more preferably a methyl group, from the viewpoint of monomer availability, monomer polymerizability, and LPD reduction.
  • X 2 is —R 17 SO 3 ⁇ or —R 18 COO — when R 4 is an alkylene group having 1 to 4 carbon atoms, and —R 18 COO — is preferable from the viewpoint of reducing LPD.
  • X 2 is a hydrocarbon group having 1 to 4 carbon atoms when R 4 is —Y 1 —OPO 3 — —Y 2 —, and a methyl group is more preferable from the viewpoint of reducing LPD.
  • the number of carbon atoms of R 17 is preferably 1 or more and 3 or less, more preferably 2 or more and 3 or less, from the viewpoints of availability of monomers, monomer polymerizability, and LPD reduction.
  • the number of carbon atoms of R 18 is preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less, from the viewpoint of availability of unsaturated monomers, monomer polymerization and LPD reduction.
  • the structural unit A is preferably a structural unit derived from at least one monomer selected from sulfobetaine methacrylate, methacryloyloxyethyl phosphorylcholine, and carboxybetaine methacrylate from the viewpoint of reducing LPD, and methacryloyloxyethyl phosphorylcholine and A structural unit derived from at least one monomer selected from carboxybetaine methacrylate is more preferable, and a structural unit derived from methacryloyloxyethyl phosphorylcholine is more preferable.
  • the water-soluble polymer a2 is a monomer containing a hydrophobic group, a monomer containing a hydroxyl group, a monomer containing an oxyalkylene group, a monomer containing an amino group, and a monomer containing a quaternary ammonium group.
  • it is a copolymer of at least one selected monomer (hereinafter sometimes abbreviated as “monomer B”) and a monomer containing a betaine structure, it is derived from monomer B
  • the structural unit B for example, the structural unit B represented by the following formula (2) is preferable from the viewpoint of reducing the LPD.
  • R 8 to R 10 the same or different, hydrogen atom, methyl group or ethyl group
  • X 3 O or NR 19
  • R 19 a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • R 11 an alkylene group having 1 to 22 carbon atoms (however, the hydrogen atom of the alkylene group may be substituted with a hydroxyl group) or — (AO) m — (Where AO is an alkyleneoxy group having 2 to 4 carbon atoms, and m is 1 to 150 in terms of the average number of moles added.)
  • X 4 hydrogen atom, hydrocarbon group having 1 to 4 carbon atoms (however, the hydrogen atom of the hydrocarbon group may be substituted with a hydroxyl group), hydroxyl group, N + R 12 R 13 R 14 or NR 15 R 16 R 12 to R 16 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 8 and R 9 are each preferably a hydrogen atom from the viewpoints of availability of monomers, polymerizability of monomers, and reduction of LPD.
  • R 10 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoints of availability of the monomer, polymerizability of the monomer, and reduction of LPD.
  • X 3 is preferably O from the viewpoint of availability of monomers, polymerizability of monomers, and reduction of LPD.
  • the number of carbon atoms of the alkylene group of R 11 is preferably 3 or more, more preferably 4 or more, from the viewpoints of monomer availability, monomer polymerizability, and LPD reduction. 6 or more are more preferable, 18 or less are preferable, 12 or less are more preferable, and m is preferably 2 or more and 30 or less from the same viewpoint.
  • R 11 is preferably — (AO) m — from the viewpoints of availability of monomers, polymerizability of monomers, and reduction of LPD.
  • the m is preferably 4 or more and 90 or less.
  • AO is an ethyleneoxy group (EO) which is an alkyleneoxy group having 2 carbon atoms and propylene which is an alkyleneoxy group having 3 carbon atoms from the viewpoint of availability of monomers, polymerizability of monomers and reduction of LPD. It is preferably composed of one or more alkyleneoxy groups selected from oxy groups (PO), more preferably composed of EO.
  • EO ethyleneoxy group
  • PO oxy groups
  • EO ethyleneoxy groups
  • R 11 has 1 or more carbon atoms from the viewpoints of availability of monomers, polymerizability of monomers and reduction of LPD.
  • An alkylene group of 22 or less (wherein the hydrogen atom of the hydrocarbon group may be substituted with a hydroxyl group) is preferred, and the number of carbon atoms of the alkylene group is preferably 2 or more, and preferably 3 or less, from the same viewpoint. 2 is more preferable.
  • X 4 is preferably a hydrogen atom, a methyl group, a hydroxyl group, or N + R 12 R 13 R 14 from the viewpoints of monomer availability, monomer polymerizability, and LPD reduction, and R 12 to R 14 Are each preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • a hydrophobic group such as alkyl methacrylate (a hydrogen atom of the hydrophobic group may be substituted with a hydroxyl group) from the viewpoints of availability of monomers, polymerizability of monomers, and reduction of LPD.
  • An unsaturated monomer having a cationic group such as a methacrylate having a quaternary ammonium cation, and an unsaturated monomer having a nonionic group such as a methacrylate having an ethyleneoxy group.
  • a structural unit derived from a seed monomer is preferable, and a structural unit derived from an unsaturated monomer having a hydrophobic group such as alkyl methacrylate (the hydrogen atom of the hydrophobic group may be substituted with a hydroxyl group) is more preferable. preferable.
  • BMA 2-ethylhexyl methacrylate
  • LMA lauryl methacrylate
  • SMA stearyl methacrylate
  • MOEDES methacryloyl
  • the molar ratio of the structural unit A to the structural unit B in the water-soluble polymer a2 is preferably 10/90 or more, more preferably 20/80 or more, from the viewpoint of reducing LPD. Preferably, it is 30/70 or more, and from the same viewpoint, it is preferably 98/2 or less, more preferably 95/5 or less.
  • the water-soluble polymer a2 may contain a structural unit other than the structural unit A and the structural unit B as long as the effects of the present invention are not impaired.
  • a structural unit other than the structural unit A and the structural unit B a structural unit derived from a hydrophobic unsaturated monomer such as styrene is preferable.
  • the content of structural units other than the structural unit A and the structural unit B in the water-soluble polymer a2 is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, More preferably, it is 0.05 mass% or less.
  • the content of structural units other than the structural unit A and the structural unit B in the water-soluble polymer a2 may be 0% by mass.
  • the total content of the structural unit A and the structural unit B in the water-soluble polymer a2 is preferably 99% by mass or more, more preferably 99.5% by mass or more, still more preferably 99.9% by mass or more, and even more. Preferably it is 99.95 mass% or more, and may be 100 mass%.
  • the weight average molecular weight of the water-soluble polymer a2 is preferably 10000 or more, more preferably 30,000 or more, still more preferably 50,000 or more, and the water-soluble polymer a2 From the viewpoints of improving solubility and reducing LPD, 1.5 million or less is preferable, 1.2 million or less is more preferable, and 1 million or less is more preferable.
  • the content of the water-soluble polymer a2 in the rinse agent composition of the present invention is preferably 0.00001% by mass or more, more preferably 0.00005% by mass or more, and 0.0001% by mass or more from the viewpoint of reducing LPD. Is more preferable, and from the viewpoint of LPD reduction, it is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
  • the mass ratio of the water-soluble polymer a1 and the water-soluble polymer a2 is 0.5 or more from the viewpoint of reducing the LPD.
  • 1 or more is more preferable, 2 or more is more preferable, and from the viewpoint of LPD reduction, 500 or less is preferable, 200 or less is more preferable, and 100 or less is more preferable.
  • aqueous medium examples of the aqueous medium contained in the rinse agent composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent.
  • the solvent include polyhydric alcohols having 2 to 4 carbon atoms, and glycerin or propylene glycol is preferable.
  • water in the aqueous medium ion exchange water or ultrapure water is preferable, and ultrapure water is more preferable.
  • the aqueous medium is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium is preferably 90% by mass or more, more preferably 92% by mass or more, and further more preferably 95% by mass or more from the viewpoint of economy. preferable.
  • the content of the aqueous medium in the rinsing agent composition of the present invention is preferably the remainder of the water-soluble polymer A, a basic compound to be described later added as necessary, and other optional components to be described later.
  • the rinsing agent composition of the present invention is selected from pH adjusters, preservatives, alcohols, chelating agents, anionic surfactants, and nonionic surfactants as long as the effects of the present invention are not hindered. At least one optional component may be included.
  • pH adjuster examples include basic compounds, acidic compounds, and salts thereof.
  • the salt of the acidic compound is preferably at least one selected from alkali metal salts, ammonium salts, and amine salts, and more preferably ammonium salts.
  • the counter ion is preferably at least one selected from hydroxide ions, chloride ions and iodide ions, more preferably hydroxide ions and chloride ions. Is at least one selected from
  • Basic compound examples include sodium hydroxide, potassium hydroxide, ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, trimethylamine.
  • Ethanolamine N-methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N- ( ⁇ - Aminoethyl) ethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenediamine, piperazine hexahydrate, anhydrous piperazi 1- (2-aminoethyl) piperazine, N- methylpiperazine, diethylenetriamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide. Two or more of these basic compounds may be used. As the basic compound, ammonia is more preferable from the viewpoint of coexistence of reduction of Haze and LPD of the silicon
  • acidic compounds examples include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.
  • Preservatives include phenoxyethanol, benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or A chlorite etc. are mentioned.
  • Alcohols examples include methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanool, ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like.
  • the content of alcohol in the rinse agent composition of the present invention is preferably 0.01% by mass to 10% by mass.
  • chelating agent examples include 1-hydroxyethane 1,1-diphosphonic acid, ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediaminetriacetic acid Examples thereof include sodium, triethylenetetramine hexaacetic acid, sodium triethylenetetramine hexaacetate and the like.
  • the content of the chelating agent in the rinse agent composition of the present invention is preferably 0.001 to 10% by mass.
  • anionic surfactant examples include fatty acid soaps, carboxylates such as alkyl ether carboxylates, sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates, higher alcohol sulfates, alkyl ether sulfates. And sulfate ester salts such as alkyl phosphate esters and the like.
  • Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, Examples include polyethylene glycol types such as oxyalkylene (hardened) castor oil, polyhydric alcohol types such as sucrose fatty acid esters and alkylglycosides, and fatty acid alkanolamides.
  • the pH at 25 ° C. of the rinse agent composition of the present invention is preferably 2 or more, more preferably 2.5 or more, from the viewpoint of shortening the washing time, reducing the LPD, and improving the storage stability of the rinse agent composition. 3.0 or more is more preferable, and from the same viewpoint, 12 or less is preferable, 11.5 or less is more preferable, and 11.0 or less is more preferable.
  • the pH can be adjusted by appropriately adding a pH adjusting agent as necessary.
  • the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after the electrode is immersed in the rinse agent composition.
  • the rinse agent composition of the present invention may be stored and supplied in a concentrated state as long as its storage stability is not impaired. Good. In this case, it is preferable in that the manufacturing and transportation costs can be further reduced.
  • the concentrate may be used after appropriately diluted with the above-mentioned aqueous medium as necessary.
  • the concentration ratio is not particularly limited as long as the concentration at the time of polishing after dilution can be secured, but from the viewpoint of further reducing the production and transportation costs, it is preferably at least 2 times, more preferably at least 10 times, Preferably it is 20 times or more, and still more preferably 30 times or more.
  • the content of the water-soluble polymer A in the concentrated solution is preferably 0.02% by mass or more, more preferably from the viewpoint of reducing production and transportation costs. 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, still more preferably 1.5% by mass or more, and from the viewpoint of improving storage stability. Preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less, More preferably, it is 7.0 mass% or less.
  • the pH of the concentrated liquid at 25 ° C. is preferably 1.5 or higher, more preferably 1.7 or higher, still more preferably 2.0 or higher, And preferably it is 12.5 or less, More preferably, it is 12.0 or less, More preferably, it is 11.5 or less.
  • the rinse agent composition of this invention can be manufactured by the manufacturing method including the process of mix
  • mixing includes mixing the water-soluble polymer A and optional components as necessary with an aqueous medium simultaneously or sequentially. There is no restriction
  • the blending can be performed, for example, using a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill.
  • a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill.
  • the compounding quantity of each component in the manufacturing method of the rinse agent composition of this embodiment can be made the same as content of each component of the rinse agent composition mentioned above.
  • the rinse agent composition of this invention is used in order to remove the residue which remained on the surface of the silicon wafer after grind
  • FIG. An example of the method for producing a semiconductor substrate of the present invention includes a polishing step of polishing a silicon wafer to be polished (also referred to as “substrate to be polished”) using a polishing composition containing abrasive grains, and a silicon wafer after polishing.
  • a rinsing process for rinsing with the rinsing agent composition of the present invention, and a cleaning process for cleaning the silicon wafer rinsed in the rinsing process also referred to as “post-rinsing silicon wafer”.
  • An example of the semiconductor substrate is, for example, a silicon wafer, and an example of the semiconductor substrate manufacturing method of the present invention is a silicon wafer manufacturing method.
  • Another example of the method for producing a semiconductor substrate of the present invention is a method for producing a semiconductor substrate including a step of producing a silicon wafer by the method for producing a silicon wafer of the present invention, and the step uses a polishing liquid composition.
  • a final polishing process that mirrors the surface.
  • polishing liquid composition is supplied between the silicon wafer to be polished and the pad, and the pad is moved relative to the silicon wafer to be polished while the silicon wafer to be polished and the pad are in contact with each other.
  • Polishing conditions such as the number of revolutions of the pad, the number of revolutions of the substrate to be polished, the polishing load set in the polishing apparatus equipped with the pad, the supply speed of the polishing composition, and the polishing time are the same as conventionally known polishing conditions. Good.
  • the abrasive composition used in the polishing step preferably contains silica particles as abrasive grains and water-soluble polymer B from the viewpoint of improving the polishing rate and reducing the haze of the silicon wafer.
  • a rinse agent composition is supplied between the polished silicon wafer and the pad, and the pad is moved relative to the polished silicon wafer in a state where the polished silicon wafer and the pad are in contact with each other.
  • the rinsing process in the rinsing process can be performed using a polishing apparatus used in the polishing process.
  • the number of rotations of the pad, the number of rotations of the silicon wafer after polishing, the load set in the polishing apparatus equipped with the pad, the supply speed of the rinse agent composition, etc. may be the same as or different from the corresponding conditions in the polishing process. Good.
  • the rinse time is preferably 1 second or more, more preferably 3 seconds or more from the viewpoint of suppressing the adhesion of abrasive grains, and preferably 60 seconds or less, more preferably 30 seconds or less from the viewpoint of improving productivity.
  • the rinse time means the time during which the rinse agent composition is supplied.
  • the rinsing step may include a water rinsing treatment using water as a rinsing liquid before the rinsing treatment performed using the rinsing agent composition of the present invention.
  • the water rinse treatment time is preferably 2 seconds or more and 30 seconds or less.
  • the pad used in the rinsing process may be the same as the pad used in the polishing process, and may be any kind such as a nonwoven fabric type or a suede type. Further, the pad used in the polishing step may be used as it is in the rinsing step without being exchanged. In this case, the pad may contain some abrasive grains of the polishing composition.
  • the rinsing step may be performed on the silicon wafer that is still attached to the polishing apparatus immediately after the polishing step.
  • the temperature of the rinsing agent composition used in the rinsing step is preferably 5 to 60 ° C.
  • the rinsing step is preferably performed at least after the finish polishing step, but may be performed after each step of the rough polishing step and the finish polishing step.
  • the rinsed silicon wafer is immersed in a cleaning agent, or the cleaning agent is injected onto the surface to be cleaned of the rinsed silicon wafer.
  • a conventionally known cleaning agent may be used as the cleaning agent, and examples thereof include an aqueous solution containing ozone and an aqueous solution containing ammonium hydrogen fluoride.
  • the cleaning time may be set according to the cleaning method.
  • the polishing composition used in the polishing step includes, for example, silica particles, a water-soluble polymer B, a nitrogen-containing basic compound, and an aqueous medium.
  • the abrasive composition preferably contains a water-soluble polymer B from the viewpoint of achieving both improvement in polishing rate and reduction in LPD.
  • Water-soluble polymer B is a water-soluble polymer in which the difference (z ⁇ z 0 ) between the zeta potential z of the aqueous dispersion s and the zeta potential z 0 of the aqueous dispersion s 0 is 15 mV or more.
  • the aqueous dispersion s is composed of a water-soluble polymer B, silica particles, water, and hydrochloric acid or ammonia as necessary.
  • the concentration of the water-soluble polymer B is 0.01% by mass, and the concentration of silica particles is A water-soluble polymer-containing silica water dispersion having a pH of 10.0% by mass and 10.0 at 25 ° C.
  • the aqueous dispersion s 0 is a silica aqueous dispersion comprising silica particles, water, and optionally hydrochloric acid or ammonia, and having a concentration of the silica particles of 0.1% by mass and a pH at 25 ° C. of 10.0. .
  • the zeta potentials z and z 0 can be measured by the method described in the examples.
  • the water-soluble polymer B is composed of two or more types of water-soluble polymers
  • a mixture of the two or more types of water-soluble polymers B has a property that the zeta potential difference (z ⁇ z 0 ) is 15 mV or more.
  • the zeta potential difference (z ⁇ z 0 ) is 15 mV or more, preferably 25 mV or more, more preferably 30 mV or more from the viewpoint of improving the polishing rate, and preferably 50 mV or less, more preferably 46 mV or less from the viewpoint of LPD reduction. It is.
  • the zeta potential z 0 of the aqueous dispersion s 0 is, for example, a predetermined value within a range of ⁇ 50 mV to ⁇ 70 mV, and is adjusted using, for example, a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.).
  • the zeta potential (for example, ⁇ 61 mV) of the prepared aqueous dispersion z 0 is, for example, a predetermined value within a range of ⁇ 50 mV to ⁇ 70 mV, and is adjusted using, for example, a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.).
  • the zeta potential (for example, ⁇ 61 mV) of the prepared aqueous dispersion z 0 is, for example, a predetermined value within a range of ⁇ 50 mV to ⁇ 70 mV, and is adjusted using, for example, a silica stock solution (“
  • the ratio (D / D 0 ) between the secondary particle diameter D of the silica particles in the aqueous dispersion s and the secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is a viewpoint of improving the polishing rate. Therefore, it is preferably 1.10 or more, more preferably 1.15 or more, still more preferably 1.30 or more, and preferably 1.60 or less from the viewpoint of LPD reduction.
  • the secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is, for example, a predetermined value within the range of 64 to 73 nm, preferably a predetermined value within the range of 66 to 69 nm.
  • the water-soluble polymer B is preferably at least one selected from the group consisting of polysaccharides, alkylacrylamide polymers, polyvinyl alcohol (PVA), and polyvinyl alcohol derivatives (excluding anion-modified polyvinyl alcohol).
  • PVA polyvinyl alcohol
  • polyvinyl alcohol derivatives excluding anion-modified polyvinyl alcohol.
  • polysaccharide hydroxyethyl cellulose (HEC) is preferable.
  • HEC hydroxyethyl cellulose
  • alkyl acrylamide polymer poly (hydroxy) alkyl acrylamide and polyalkyl acrylamide are preferable, and polyhydroxyethyl acrylamide (pHEAA) is more preferable.
  • the polyvinyl alcohol derivative is preferably polyvinyl alcohol / polyethylene glycol / graft copolymer (PEG-g-PVA) or polyethylene oxide-modified polyvinyl alcohol.
  • the water-soluble polymer B is preferably HEC, poly (hydroxy) alkylacrylamide, PVA, PEG-g-PVA, and polyethylene oxide-modified polyvinyl alcohol from the viewpoint of achieving both improvement in polishing rate and reduction in LPD.
  • the weight average molecular weight of the water-soluble polymer B is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more, from the viewpoint of achieving both improvement of the polishing rate and LPD reduction. From the viewpoint, it is preferably 5 million or less, more preferably 3 million or less, and still more preferably 1 million or less.
  • the weight average molecular weight of the water-soluble polymer B can be measured by the method described in the examples.
  • the content of the water-soluble polymer B in the polishing composition is preferably 0.001% by mass or more, more preferably 0.003% by mass or more, and still more preferably 0.005% by mass from the viewpoint of improving the polishing rate. From the same viewpoint, it is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.1% by mass or less.
  • the water-soluble polymer A contained in the rinse agent composition used in the rinsing step is at least one selected from polyglycerin and polyglycerin derivatives
  • the water-soluble polymer contained in the polishing liquid composition used in the polishing step The high molecular weight polymer B is preferably HEC and poly (hydroxy) alkylacrylamide from the viewpoint of achieving both improvement in polishing rate and reduction in LPD.
  • the water-soluble polymer A contained in the rinse agent composition used in the rinsing step is a polyglycerin derivative
  • the water-soluble polymer B contained in the polishing composition used in the polishing step is HEC. preferable.
  • the polyglycerol derivative preferably contains a polyglycerol alkyl ether, and more preferably a polyglycerol alkyl ether.
  • the silica particles contained in the polishing composition are more preferably colloidal silica, and from the viewpoint of preventing contamination of the silicon wafer with alkali metal, alkaline earth metal, etc. It is preferable that it is obtained from the hydrolyzate.
  • the average primary particle diameter of the silica particles contained in the polishing composition is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of securing a high polishing rate, and preferably 50 nm or less from the viewpoint of reducing the LPD. More preferably, it is 45 nm or less.
  • the average primary particle diameter of the silica particles can be calculated using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
  • the degree of association of the silica particles is preferably 1.1 or more and 3.0 or less, more preferably 1.8 or more and 2.5 or less, from the viewpoint of securing a high polishing rate and reducing LPD.
  • the association degree of silica particles is a coefficient representing the shape of silica particles, and is calculated by the following formula.
  • the content of silica particles contained in the polishing liquid composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of ensuring a high polishing rate, and economic efficiency, and From the viewpoint of suppressing aggregation of silica particles and improving dispersion stability in the polishing composition, it is preferably 10% by mass or less, more preferably 7.5% by mass or less.
  • the nitrogen-containing basic compound contained in the polishing composition is at least one selected from an amine compound and an ammonium compound from the viewpoints of ensuring a high polishing rate and reducing surface roughness (haze) and surface defects (LPD).
  • nitrogen-containing basic compounds are, for example, ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, dimethylamine, trimethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, monoisopropanol Ami , Diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenediamine, piperazine hexahydrate, anhydrous piperazine, 1- (2-aminoethyl) piperazine, N-methylpiperazine, diethylenetriamine, tetramethylammonium hydroxide, and hydroxy An amine etc. are mentioned. Among these, ammonia,
  • the content of the nitrogen-containing basic compound contained in the polishing composition is preferably 0.001 from the viewpoint of reducing the surface roughness (haze) and surface defects (LPD) of the silicon wafer and ensuring a high polishing rate. From the viewpoint of reducing the surface roughness (haze) and surface defects (LPD) of the silicon wafer, it is preferably 1% by mass or less, more preferably 0% by mass or more, more preferably 0.005% by mass or more. .5% by mass or less.
  • the aqueous medium contained in the polishing liquid composition may be the same as the aqueous medium contained in the rinse agent composition of the present invention.
  • the content of the aqueous medium in the polishing liquid composition may be, for example, the residue excluding silica particles, water-soluble polymer B, nitrogen-containing basic compound, and optional components described below.
  • the pH of the polishing composition at 25 ° C. is preferably 8 or more, more preferably 9 or more, still more preferably 10 or more from the viewpoint of ensuring a high polishing rate, and preferably 12 or less from the viewpoint of safety. More preferably, it is 11 or less.
  • the pH can be adjusted by appropriately adding a nitrogen-containing basic compound and / or a pH adjuster.
  • the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after the electrode is immersed in the polishing composition.
  • the polishing composition can be produced, for example, by a production method including a step of blending silica particles, a water-soluble polymer B, an aqueous medium, a nitrogen-containing basic compound, and optional components as necessary, by a known method.
  • the optional component include at least one optional component selected from water-soluble polymers other than the water-soluble polymer B, pH adjusters, preservatives, alcohols, chelating agents, and nonionic surfactants.
  • the semiconductor substrate manufacturing method of the present invention may further include an element isolation film forming process, an interlayer insulating film flattening process, a metal wiring forming process and the like in addition to the silicon wafer manufacturing process.
  • the method for rinsing a silicon wafer of the present invention includes a rinsing step of rinsing the silicon wafer after polishing using the rinse agent composition of the present invention.
  • the rinsing step in the rinsing method of the present invention can be performed in the same manner as the rinsing step in the above-described method for manufacturing a silicon wafer of the present invention and the method for manufacturing a semiconductor substrate of the present invention.
  • the rinse agent composition of the present invention since the rinse agent composition of the present invention is used in the rinsing step, the residual amount of abrasive grains on the silicon wafer after polishing can be remarkably reduced. Since it can be suppressed, the cleaning time of the silicon wafer performed after rinsing can be shortened and LPD can be reduced.
  • the present invention further relates to the following composition, production method and the like.
  • a rinse agent composition for silicon wafers comprising a water-soluble polymer and an aqueous medium
  • the water-soluble polymer is It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary.
  • the concentration of the water-soluble polymer is 0.1% by mass
  • the concentration of the silica particles is 0.1% by mass
  • a rinsing agent composition for a silicon wafer comprising a water-soluble polymer and an aqueous medium
  • a rinsing agent composition for silicon wafers wherein the water-soluble polymer contains at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide.
  • the water-soluble polymer is The ratio (d / d 0 ) between the secondary particle diameter d of the silica particles in the aqueous dispersion S and the secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is preferably 1.35. Or less, more preferably 1.17 or less, still more preferably 1.10 or less, even more preferably 1.08 or less, and preferably 1.00 or more, more preferably 1.02 or more, and still more preferably 1.
  • the water-soluble polymer is preferably at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide.
  • the rinse agent composition for silicon wafers in any one of [3] and [4].
  • the polyglycerin derivative is preferably a polyglycerin obtained by adding a functional group to an ether bond or an ester bond, and more preferably a polyglycerin obtained by adding a functional group to an ether bond.
  • the water-soluble polymer is preferably selected from the group consisting of polyglycerol, polyglycerol alkyl ether, polyglycerol dialkyl ether, polyglycerol fatty acid ester, polyethylene oxide modified polyvinyl alcohol, sulfonic acid modified polyvinyl alcohol, and polyacrylamide.
  • the rinse composition for a silicon wafer according to any one of [1] to [4], wherein the water-soluble polymer preferably contains both polyglycerin and polyglycerin alkyl ether.
  • the number of carbon atoms of the hydrophobic group of the polyglycerol derivative is preferably 6 or more, more preferably 8 or more, and preferably 22 or less, more preferably 18 or less, [2], [5] To [7].
  • the mass ratio (polyglycerin / polyglycerin alkyl ether) is preferably 0.5 or more, more preferably 1.0 or more, still more preferably 2.0 or more, and preferably 10 or less, more preferably Is 6.0 or less, more preferably 5.0 or less, the rinse agent composition for silicon wafers according to the above [9].
  • the weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, and preferably 1,500,000 or less, more preferably 500,000.
  • the silicon wafer according to any one of [2], [5] to [11], which is more preferably 100,000 or less, still more preferably 25,000 or less, and still more preferably 10,000 or less.
  • the water-soluble polymer is preferably a pentamer or more, more preferably a 10-mer or more, still more preferably a 15-mer or more, and preferably a 5,000-mer or less, more preferably 500.
  • the content of the water-soluble polymer in the rinse agent composition is preferably 0.001% by mass or more, more preferably 0.015% by mass or more, still more preferably 0.020% by mass or more, and still more preferably. Is 0.025% by mass or more, more preferably 0.03% by mass or more, and preferably 1.0% by mass or less, more preferably 0.7% by mass or less, and further preferably 0.4% by mass.
  • the rinse agent composition for silicon wafers according to any one of [1] to [13], which is still more preferably 0.1% by mass or less, and still more preferably 0.08% by mass or less.
  • the water-soluble polymer is at least one water-soluble polymer a1 selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide, and a betaine structure.
  • Agent composition [18]
  • the water-soluble polymer is The ratio (d / d 0 ) between the secondary particle diameter d of the silica particles in the aqueous dispersion S and the secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is preferably 1.35.
  • the rinsing composition for silicon wafers according to any one of [15] to [17], which is a water-soluble polymer that is 30 or more, and even more preferably 1.31 or more.
  • the content of the water-soluble polymer a2 in the rinse agent composition is preferably 0.00001% by mass or more, more preferably 0.00005% by mass or more, and further preferably 0.0001% by mass or more.
  • the mass ratio of the water-soluble polymer a1 and the water-soluble polymer a2 (water-soluble polymer a1 / water-soluble polymer a2) is preferably 0.5 or more, more preferably 1 or more, and still more preferably.
  • X 2 is —R 17 SO 3 ⁇ or —R 18 COO — when R 4 is an alkylene group having 1 to 4 carbon atoms, and R 4 is —Y 1 —OPO 3 — —Y 2. In the case of-, it is a hydrocarbon group having 1 to 4 carbon atoms.
  • R 8 to R 10 the same or different, hydrogen atom, methyl group or ethyl group
  • X 3 O or NR 19
  • R 19 a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms
  • R 11 an alkylene group having 1 to 22 carbon atoms (however, the hydrogen atom of the alkylene group may be substituted with a hydroxyl group) or — (AO) m — (Where AO is an alkyleneoxy group having 2 to 4 carbon atoms, and m is 1 to 150 in terms of the average number of moles added.)
  • X 4 hydrogen atom, hydrocarbon group having 1 to 4 carbon atoms (however, the hydrogen atom of the hydrocarbon group may be substituted with a hydroxyl group), hydroxyl group, N + R 12 R 13 R 14 or NR 15 R 16 R 12 to R 16 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • the molar ratio of the structural unit A to the structural unit B (structural unit A / structural unit B) in the water-soluble polymer a2 is preferably 10/90 or more, more preferably 20/80 or more, and still more preferably. Is 30/70 or more, and preferably 98/2 or less, more preferably 95/5 or less, the rinse agent composition for silicon wafers according to the above [22]. [twenty four] The rinse agent composition for silicon wafers according to any one of [1] to [23], further including a basic compound. [25] The pH of the rinse agent composition at 25 ° C. is preferably 2 or more, more preferably 2.5 or more, more preferably 3.0 or more, and preferably 12 or less, more preferably 11.
  • the rinse agent composition for silicon wafers according to any one of [1] to [24], which is 5 or less, more preferably 11.0 or less.
  • the rinse composition for a silicon wafer is a rinse composition for a silicon wafer used for a silicon wafer polished with a polishing liquid composition containing silica particles and a water-soluble polymer. , [1], [3] to [25], wherein the silica particles used for the preparation of the aqueous dispersion S and the aqueous dispersion S 0 are the same as the silica particles contained in the polishing liquid composition.
  • the rinse agent composition for silicon wafers in any one of.
  • a method for rinsing a silicon wafer including a step of rinsing a polished silicon wafer using the rinse agent composition according to any one of [1] to [26].
  • a method for producing a semiconductor substrate comprising a step of rinsing a polished silicon wafer using the rinse agent composition according to any one of [1] to [26].
  • the polishing step is preferably a rough polishing step for planarizing a silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape, or after etching a lapped silicon wafer,
  • a water-soluble polymer A A polishing step of polishing a silicon wafer to be polished using a polishing liquid composition containing silica particles, a water-soluble polymer B, a nitrogen-containing basic compound, and an aqueous medium; A rinsing step of rinsing the polished silicon wafer using the rinsing agent composition according to any one of [1] to [26]; And a cleaning process for cleaning the rinsed silicon wafer.
  • the water-soluble polymer B is It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary.
  • the concentration of the water-soluble polymer is 0.01% by mass, the concentration of the silica particles is 0.1% by mass, 25 A zeta potential z of a water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion s) having a pH of 10.0 at 0 ° C., silica particles, water, and optionally hydrochloric acid or ammonia, Water solubility in which the difference (z ⁇ z 0 ) from the zeta potential z 0 of a silica aqueous dispersion (aqueous dispersion s 0 ) having a concentration of 0.1% by mass and a pH of 10.0 at 25 ° C.
  • the water-soluble polymer B is The ratio (D / D 0 ) between the secondary particle diameter D of the silica particles in the aqueous dispersion s and the secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is 1.10 or more.
  • the water-soluble polymer B is at least one selected from the group consisting of polysaccharides, alkylacrylamide polymers, polyvinyl alcohol, and polyvinyl alcohol derivatives (excluding anion-modified polyvinyl alcohol).
  • [31] The method for producing a silicon wafer according to any one of [33].
  • the water-soluble polymer B is hydroxyethyl cellulose
  • [36] The method for producing a silicon wafer according to any one of [31] to [35], wherein in the rinsing step, a water rinsing process using water as a rinsing liquid is performed before the rinsing process.
  • Measuring method of various parameters (1) Measuring method of zeta potential of aqueous dispersion S 0 , S, s 0 , s The aqueous dispersion was put into capillary cell DTS1070, and “Zeta Sizer Nano ZS” manufactured by Malvern was used. The zeta potential was measured under the following conditions. Sample: Refractive index: 1.450 Absorption rate: 0.010 Dispersion medium: viscosity: 0.8872 cP, refractive index: 1.330, dielectric constant: 78.5 Temperature: 25 ° C
  • rinse agent composition Water-soluble polymer A listed in Tables 1 and 2 and ion-exchanged water are mixed with stirring, and if necessary, aqueous hydrochloric acid or 28% by mass ammonia water (Kishida Chemical Co., Ltd. reagent special grade) was used to adjust the pH at 25 ° C. to 7.0, and the rinse agent compositions of Examples 1 to 17 and Comparative Examples 1 to 5 (both concentrated solutions) were obtained. However, Example 9 was adjusted such that the pH was 4.0, Example 10 was adjusted so that the pH was 10.0, and Comparative Example 5 was prepared so that the ammonia concentration was 5 ppm.
  • the remainder excluding the water-soluble polymer, hydrochloric acid or ammonia is ion-exchanged water.
  • content of each component in Table 1 is a value about the rinse agent composition obtained by diluting the concentrate 20 times.
  • the rinse agent compositions of Examples 18 to 27 and Comparative Example 6 each had a pH of 7.0 at 25 ° C., and when diluted 20-fold, contained the water-soluble polymer A The amount was adjusted to be 0.05% by mass.
  • Examples 25 to 27 were prepared so that the polyglycerin alkyl ether was 0.049% by mass and the water-soluble polymer having a betaine structure was 0.001% by mass.
  • aqueous polymer solution containing a water-soluble polymer A11 (a copolymer of MPC and LMA).
  • the molar ratio (MPC / LMA) of the structural units in the water-soluble polymer A11 was 80/20, and the weight average molecular weight of the water-soluble polymer A11 was 100,000.
  • Rinsing Method A rinse agent composition obtained by diluting a rinse agent composition (concentrated solution) 20 times with ion-exchanged water was filtered with a filter (advancetech's compact cartridge filter “MCP-LX-C10S” immediately before the start of the rinse treatment). )), And the following silicon wafer (silicon single-sided mirror wafer with a diameter of 200 mm (conductivity type: P, crystal orientation: 100, resistivity 0.1 ⁇ ⁇ cm or more and less than 100 ⁇ ⁇ cm)) A rinsing treatment was performed. Prior to the rinse treatment, rough polishing was performed on the silicon wafer in advance using a commercially available abrasive composition.
  • the haze of the silicon wafer subjected to the final polishing after finishing the rough polishing was 2.680 (ppm).
  • Haze is a value in a dark field wide oblique incidence channel (DWO) measured using “Surfscan SP1-DLS” manufactured by KLA Tencor. Thereafter, finish polishing was performed under the following conditions, and immediately after that, rinse treatment was performed under the following conditions using each rinse agent composition.
  • DWO dark field wide oblique incidence channel
  • the abrasive composition used in the final polishing performed before the rinsing process using the rinse agent compositions of Examples 1 to 17 and Comparative Examples 1 to 5 was SE-400 (manufactured by Daicel Corporation, HEC, Molecular weight 250,000), PEG 6000 (Wako Pure Chemical Industries, Ltd., Wako First Grade), ammonia water (Kishida Chemical Co., Ltd., reagent special grade), PL-3 (manufactured by Fuso Chemical Industry Co., Ltd.), ion-exchanged water A concentrated solution was obtained by stirring and mixing, and then the concentrated solution was diluted 40 times with ion-exchanged water just before use.
  • composition of the abrasive composition used in the final polishing is as follows. Silica particles (PL-3, average primary particle size 35 nm, average secondary particle size 69 nm, association degree 2.0): 0.17% by mass HEC (SE-400): 0.01% by mass Ammonia: 0.01% by mass PEG (weight average molecular weight 6000); 0.0008% by mass
  • compositions of the polishing liquid compositions of Examples 18 to 27 and Comparative Example 6 shown in Table 2 are as follows.
  • Polishing machine Single-sided 8-inch polishing machine "GRIND-X SPP600s” manufactured by Okamoto Polishing pad: Suede pad manufactured by Toray Cortex Co., Ltd. (Asker hardness: 64, thickness: 1.37 mm, nap length: 450 ⁇ m, opening diameter: 60 ⁇ m) Silicon wafer polishing pressure: 100 g / cm 2 Surface plate rotation speed: 60 rpm Polishing time: 5 minutes Supply rate of the abrasive composition: 150 g / min Temperature of the abrasive composition: 23 ° C. Carrier rotation speed: 60rpm
  • Polishing machine Single-sided 8-inch polishing machine "GRIND-X SPP600s” manufactured by Okamoto Polishing pad: Suede pad manufactured by Toray Cortex Co., Ltd. (Asker hardness: 64, thickness: 1.37 mm, nap length: 450 um, opening diameter: 60 um) Silicon wafer rinse pressure: 60 g / cm 2 Surface plate rotation speed: 30 rpm Rinse time: 10 seconds Feed rate of rinse agent composition: 1000 mL / min Temperature of rinse agent composition: 23 ° C. Carrier rotation speed: 30rpm
  • the silicon wafer was subjected to ozone cleaning and dilute hydrofluoric acid cleaning as follows.
  • ozone cleaning an aqueous solution containing 20 ppm of ozone was sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 3 minutes. At this time, the temperature of the ozone water was normal temperature.
  • dilute hydrofluoric acid cleaning was performed.
  • dilute hydrofluoric acid cleaning an aqueous solution containing 0.5% by mass of ammonium hydrogen fluoride (special grade: Nakarai Tex Co., Ltd.) is sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 5 seconds. did.
  • the above ozone cleaning and dilute hydrofluoric acid cleaning were performed as a set, for a total of 2 sets, and finally spin drying was performed. In spin drying, the silicon wafer was rotated at 1500 rpm.
  • polishing rate was evaluated by the following method. The weight of each silicon wafer before and after polishing was measured using a precision balance (“BP-210S” manufactured by Sartorius), and the obtained weight difference was divided by the density, area and polishing time of the silicon wafer, and unit time The single-side polishing rate per hit was determined. The results are shown in Table 2 as relative values with the polishing rate of Comparative Example 6 set to 1.00.
  • the use of the rinse agent composition of the present invention can shorten the cleaning time of the silicon wafer, and thus contributes to improvement of productivity and cost reduction in the production of a semiconductor substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Detergent Compositions (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The rinsing agent composition for silicon wafers according to the present invention comprises a water-soluble polymer and water, wherein the water-soluble polymer exhibits a difference (Z-Z0) of 25 mV or less between the zeta potential Z of a water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion S) that comprises the water-soluble polymer, silica particles, water, and if necessary, hydrochloric acid or ammonia, and that has a water-soluble polymer concentration of 0.1 mass%, a silica particle concentration of 0.1 mass%, and a pH of 7.0 at 25°C, and the zeta potential Z0 of a silica aqueous dispersion (aqueous dispersion S0) that comprises silica particles, water, and if necessary, hydrochloric acid or ammonia, and that has a silica particle concentration of 0.1 mass% and a pH of 7.0 at 25°C.

Description

シリコンウェーハ用リンス剤組成物Rinsing agent composition for silicon wafer
 本発明はシリコンウェーハ用リンス剤組成物及びこれを用いたシリコンウェーハのリンス方法、シリコンウェーハの製造方法並びに半導体基板の製造方法に関する。 The present invention relates to a rinsing agent composition for silicon wafers, a rinsing method for silicon wafers using the same, a method for producing silicon wafers, and a method for producing semiconductor substrates.
 近年、半導体メモリの高記録容量化に対する要求の高まりから半導体装置のデザインルールは微細化が進んでいる。このため半導体装置の製造過程で行われるフォトリソグラフィーにおいて焦点深度は浅くなり、シリコンウェーハ(ベアウェーハ)の表面欠陥(LPD:Light point defects)や表面粗さ(Haze)の低減に対する要求はますます厳しくなっている。 In recent years, the design rule of semiconductor devices has been miniaturized due to the increasing demand for higher recording capacity of semiconductor memories. For this reason, the depth of focus becomes shallow in the photolithography performed in the manufacturing process of the semiconductor device, and the demand for reduction of surface defects (LPD: Light point defects) and surface roughness (Haze) of the silicon wafer (bare wafer) becomes more severe. It has become.
 シリコンウェーハの品質を向上する目的で、シリコンウェーハを研磨する研磨工程には、シリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウェーハを平面化するラッピング(粗研磨)工程と、ラッピングされたシリコンウェーハをエッチングした後、シリコンウェーハ表面を鏡面化する仕上げ研磨工程とがある。特に研磨の最終段階で行われる仕上げ研磨は、Hazeの抑制と、研磨されたシリコンウェーハ表面のぬれ性向上(親水化)によるパーティクルやスクラッチ、ピット等のLPDの抑制と、を目的として行われている。 In order to improve the quality of the silicon wafer, the polishing process for polishing the silicon wafer includes a lapping (rough polishing) process for planarizing the silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape. There is a final polishing process in which the surface of the silicon wafer is mirror-finished after etching the lapped silicon wafer. In particular, the final polishing performed at the final stage of polishing is performed for the purpose of suppressing haze and suppressing LPD such as particles, scratches and pits by improving wettability (hydrophilization) of the polished silicon wafer surface. Yes.
 シリコンウェーハの研磨に用いられる研磨液組成物として、ヘイズレベルの改善を目的とし、シリカ粒子と、ヒドロキシエチルセルロース(HEC)と、ポリエチレンオキサイドと、アルカリ化合物とを含む研磨用液成物が開示されている(特許文献1)。表面粗さ(ヘイズ)の低減と表面欠陥(LPD)の低減とを両立することを目的として、水酸基由来の酸素原子数とポリオキシアルキレン由来の酸素原子数の比(水酸基由来の酸素原子数/ポリオキシアルキレン由来の酸素原子数)が、所定の範囲内の値である水溶性高分子を含むシリコンウェーハ用研磨液組成物が開示されている(特許文献2)。研粒の凝集を抑制しつつ、研磨された被研磨物表面の汚染を低減することを目的として、側鎖に1,2-ジオール構造を有するポリビニルアルコール系樹脂と、pH2.0以上の溶液中で表面のゼータ電位がマイナスであり且つ等電点を持たないように表面が化学修飾された砥粒を含む、シリコンウェーハ用の研磨組成物が開示されている(特許文献3)。平滑性の低下の抑制と欠陥数の低減とを目的として、ヒドロキシプロピルメチルセルロースを含み、砥粒が研磨液組成物中において負のゼータ電位を有する、シリコンウェーハ用の研磨組成物が開示されている(特許文献4)。研磨液組成物でもなく、シリコンウェーハ表面に対して使用されるものでもないが、CMP工程後の半導体デバイス用基板表面の汚染物を除去でき、しかも当該基板表面を短時間で清浄化することを目的として、ポリビニルピロリドン、ポリエチレンオキシド-ポリプロピレンオキシドブロック共重合体を高分子凝集剤として含み、微粒子の粒子径を凝集により大きくしつつ、微粒子のゼータ電位を負にして半導体デバイス用基板表面への微粒子の付着を抑制する、半導体デバイス用基板洗浄液が開示されている(特許文献5)。 As a polishing liquid composition used for polishing a silicon wafer, a polishing liquid composition containing silica particles, hydroxyethyl cellulose (HEC), polyethylene oxide, and an alkali compound is disclosed for the purpose of improving the haze level. (Patent Document 1). In order to achieve both reduction in surface roughness (haze) and reduction in surface defects (LPD), the ratio of the number of oxygen atoms derived from hydroxyl groups to the number of oxygen atoms derived from polyoxyalkylenes (number of oxygen atoms derived from hydroxyl groups / A polishing composition for silicon wafers containing a water-soluble polymer having a value within a predetermined range of the number of oxygen atoms derived from polyoxyalkylene has been disclosed (Patent Document 2). In a solution having a pH of 2.0 or more and a polyvinyl alcohol resin having a 1,2-diol structure in the side chain for the purpose of reducing contamination of the polished workpiece surface while suppressing aggregation of abrasive grains. And a polishing composition for silicon wafers, which contains abrasive grains whose surface is chemically modified so that the surface zeta potential is negative and has no isoelectric point (Patent Document 3). A polishing composition for silicon wafers containing hydroxypropylmethylcellulose and having a negative zeta potential in the polishing liquid composition has been disclosed for the purpose of suppressing a decrease in smoothness and reducing the number of defects. (Patent Document 4). It is not a polishing composition, nor is it used for the silicon wafer surface, but it can remove contaminants on the semiconductor device substrate surface after the CMP process and clean the substrate surface in a short time. The purpose is to contain polyvinyl pyrrolidone and polyethylene oxide-polypropylene oxide block copolymer as a polymer flocculant, and increase the particle size of the fine particles by aggregation, while making the fine particles have a negative zeta potential, and fine particles on the surface of the semiconductor device substrate. A substrate cleaning solution for a semiconductor device that suppresses adhesion of the semiconductor is disclosed (Patent Document 5).
特開2004-128089号公報JP 2004-128089 A WO2015/060293号公報WO2015 / 060293 WO2014/084091号公報WO2014 / 084091 特開2014-154707号公報JP 2014-154707 A 特開2012-94852号公報JP 2012-94852 A
 アルカリ条件ではシリカ粒子とシリコンウェーハの表面電荷はともに負に帯電しており、その電荷反発によってシリカ粒子がシリコンウェーハに接近できず、研磨速度が十分に発現できないが、研磨液組成物に含まれるポリマーが、シリコンウェーハと、シリカ粒子の両方の表面に吸着することから、シリコンウェーハとシリカ粒子の電荷反発を抑制し、バインダー効果を発現して、シリコンウェーハの研磨速度の向上に寄与している。 Under alkaline conditions, both the surface charge of the silica particles and the silicon wafer are negatively charged, and due to the repulsion of the charges, the silica particles cannot approach the silicon wafer and the polishing rate cannot be fully expressed, but they are contained in the polishing composition. Since the polymer is adsorbed on both the surface of the silicon wafer and the silica particles, it suppresses the charge repulsion between the silicon wafer and the silica particles, develops the binder effect, and contributes to the improvement of the polishing rate of the silicon wafer. .
 しかし、研磨工程で研磨されたシリコンウェーハ(以下「研磨後シリコンウェーハ」とも言う。)の表面には、ポリマーが付着しているので、例えば、研磨後シリコンウェーハとパットとの間に水を供給し、研磨後シリコンウェーハとパットとが接した状態で、パットを研磨後シリコンウェーハに対して相対運動させる、いわゆる、水リンスを行っても、シリカ粒子がシリコンウェーハ表面に再付着してしまうため、研磨後シリコンウェーハの洗浄にかなりの時間を要し、この事が、生産性向上及びコスト低減の妨げとなっていた。 However, since the polymer adheres to the surface of the silicon wafer polished in the polishing process (hereinafter also referred to as “the polished silicon wafer”), for example, water is supplied between the polished silicon wafer and the pad. In addition, even when the so-called water rinse is performed in which the pad is moved relative to the silicon wafer after polishing while the silicon wafer and the pad are in contact with each other, silica particles are reattached to the surface of the silicon wafer. After the polishing, it took a considerable amount of time to clean the silicon wafer, which hindered improvement in productivity and cost reduction.
 そこで、本発明では、研磨後シリコンウェーハの洗浄時間の短縮化及びLPDの低減を可能とする、シリコンウェーハ用リンス剤組成物、及びこれを用いたシリコンウェーハのリンス方法、シリコンウェーハの製造方法並びに半導体基板の製造方法を提供する。 Accordingly, in the present invention, a rinsing agent composition for a silicon wafer, a silicon wafer rinsing method using the same, a silicon wafer rinsing method, a silicon wafer manufacturing method, A method for manufacturing a semiconductor substrate is provided.
 本発明のシリコンウェーハ用リンス剤組成物は、水溶性高分子及び水系媒体を含むシリコンウェーハ用リンス剤組成物であって、
 前記水溶性高分子は、
 前記水溶性高分子とシリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、前記水溶性高分子の濃度が0.1質量%、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0の水溶性高分子含有シリカ水分散液(水分散液S)のゼータ電位Zと、シリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0のシリカ水分散液(水分散液S0)のゼータ電位Z0との差(Z-Z0)が、25mV以下となる水溶性高分子である、シリコンウェーハ用リンス剤組成物である。
The rinse composition for a silicon wafer of the present invention is a rinse composition for a silicon wafer containing a water-soluble polymer and an aqueous medium,
The water-soluble polymer is
It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the water-soluble polymer is 0.1% by mass, the concentration of the silica particles is 0.1% by mass, 25 ° C. Zeta potential Z of water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion S) having a pH of 7.0, silica particles, water, and optionally hydrochloric acid or ammonia, and the concentration of the silica particles is 0.1 wt%, 25 aqueous silica dispersion of pH at ℃ 7.0 difference (Z-Z 0) between the zeta potential Z 0 of the (aqueous dispersion S 0) is a water-soluble polymer which becomes less 25mV It is the rinse agent composition for silicon wafers.
 本発明のシリコンウェーハ用リンス剤組成物は、水溶性高分子及び水系媒体を含むシリコンウェーハ用リンス剤組成物であって、
 前記水溶性高分子が、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体、及びポリアクリルアミドからなる群から選ばれる少なくとも1種を含む、シリコンウェーハ用リンス剤組成物である。
The rinse composition for a silicon wafer of the present invention is a rinse composition for a silicon wafer containing a water-soluble polymer and an aqueous medium,
The rinse composition for silicon wafers, wherein the water-soluble polymer contains at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide.
 本発明のシリコンウェーハのリンス方法は、研磨されたシリコンウェーハを、本発明のシリコンウェーハ用リンス剤組成物を用いてリンスする工程を含む。 The method for rinsing a silicon wafer according to the present invention includes a step of rinsing a polished silicon wafer using the rinse agent composition for a silicon wafer according to the present invention.
 本発明のシリコンウェーハの製造方法は、本発明のシリコンウェーハ用リンス剤組成物に含まれる前記水溶性高分子を水溶性高分子Aと称することとすると、
 シリカ粒子と水溶性高分子Bと含窒素塩基性化合物と水系媒体とを含む研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程と、
 研磨されたシリコンウェーハを本発明のリンス剤組成物を用いてリンスするリンス工程と、
 リンスされたシリコンウェーハを洗浄する洗浄工程と、を含む。
 尚、前記水溶性高分子Aと前記水溶性高分子Bは、同一であっても異なっていてもよい。
In the method for producing a silicon wafer of the present invention, the water-soluble polymer contained in the rinse composition for a silicon wafer of the present invention is referred to as a water-soluble polymer A.
A polishing step of polishing a silicon wafer to be polished using a polishing liquid composition containing silica particles, a water-soluble polymer B, a nitrogen-containing basic compound, and an aqueous medium;
A rinsing step of rinsing the polished silicon wafer with the rinse agent composition of the present invention;
Cleaning the rinsed silicon wafer.
The water-soluble polymer A and the water-soluble polymer B may be the same or different.
 本発明の半導体基板の製造方法は、研磨されたシリコンウェーハを、本発明のシリコンウェーハ用リンス剤組成物を用いてリンスする工程を含む。 The method for producing a semiconductor substrate of the present invention includes a step of rinsing a polished silicon wafer using the rinse agent composition for a silicon wafer of the present invention.
 本発明の半導体基板の製造方法は、本発明のシリコンウェーハの製造方法でシリコンウェーハを製造する工程を含む。 The semiconductor substrate manufacturing method of the present invention includes a process of manufacturing a silicon wafer by the silicon wafer manufacturing method of the present invention.
 本発明によれば、研磨後シリコンウェーハの洗浄時間の短縮化及びLPDの低減を可能とする、シリコンウェーハ用リンス剤組成物、及び当該シリコンウェーハ用リンス剤組成物を用いたシリコンウェーハのリンス方法、シリコンウェーハの製造方法並びに半導体基板の製造方法に関する。 INDUSTRIAL APPLICABILITY According to the present invention, a rinsing agent composition for a silicon wafer and a rinsing method for a silicon wafer using the rinsing agent composition for a silicon wafer, which can shorten the cleaning time of the silicon wafer after polishing and reduce the LPD. The present invention relates to a method for manufacturing a silicon wafer and a method for manufacturing a semiconductor substrate.
 本発明では、シリコンウェーハ用リンス剤組成物(以下、「リンス剤組成物」と略称する場合もある。)が特定の水溶性高分子として、前記水溶性高分子とシリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、前記水溶性高分子の濃度が0.1質量%、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0の水溶性高分子含有シリカ水分散液(水分散液S)のゼータ電位Zと、シリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0のシリカ水分散液(水分散液S0)のゼータ電位Z0との差(Z-Z0)が、25mV以下となる性質を有する水溶性高分子(以下「水溶性高分子A」呼ぶ場合がある。)含むことにより、研磨後シリコンウェーハの洗浄時間の短縮化及びLPDの低減を可能とする、という知見に基づく。 In the present invention, the rinsing agent composition for silicon wafer (hereinafter sometimes abbreviated as “rinsing agent composition”) is the water-soluble polymer, silica particles, and water as the specific water-soluble polymer. Accordingly, the water-soluble polymer-containing silica is composed of hydrochloric acid or ammonia, the water-soluble polymer concentration is 0.1% by mass, the silica particle concentration is 0.1% by mass, and the pH at 25 ° C. is 7.0. It consists of zeta potential Z of the aqueous dispersion (aqueous dispersion S), silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the silica particles is 0.1% by mass, and the pH at 25 ° C. is 7. A water-soluble polymer (hereinafter referred to as “water-soluble polymer A”) having a property that the difference (Z−Z 0 ) between the zero aqueous silica dispersion (aqueous dispersion S 0 ) and the zeta potential Z 0 is 25 mV or less. In some cases, including silicon after polishing To enable shortening and LPD reduction in cleaning time Eha, based on the finding that.
 本発明のリンス剤組成物を用いて研磨後シリコンウェーハに対して、リンス処理をした場合に、研磨後シリコンウェーハのLPDの低減及び洗浄時間の短縮化が行えるという本発明の効果の発現機構は、以下の通りと推定している。 When the rinsed silicon wafer is rinsed with the rinse agent composition of the present invention, the mechanism of manifestation of the effect of the present invention that the LPD of the polished silicon wafer can be reduced and the cleaning time can be shortened. Estimated as follows.
 本発明のリンス剤組成物が供給され、リンス剤組成物を用いたリンス処理が開始されると、パットを研磨後シリコンウェーハに対して相対運動させた際の物理力により、研磨後シリコンウェーハとシリカ粒子の表面に各々吸着していた研磨液組成物の構成成分である水溶性高分子Bと、上記水溶性高分子Aとが置換される。すると、シリカ粒子の研磨後シリコンウェーハ表面への再付着が抑制されるので、洗浄工程に供される研磨後シリコンウェーハ上のシリカ粒子の残留量を顕著に低減することができ、加えて、水溶性高分子Aはシリカ粒子に吸着しても、シリカ粒子のゼータ電位を大きく変動させず、シリカ粒子のゼータ電位を負に大きい値に保持できるので、シリカ粒子の凝集も抑制される。したがって、本発明のリンス剤組成物が、上記水溶性高分子Aを含むことで、研磨後シリコンウェーハのLPDの低減と洗浄時間の短縮化とが実現されているものと推定される。 When the rinsing agent composition of the present invention is supplied and the rinsing process using the rinsing agent composition is started, the physical force when the pad is moved relative to the silicon wafer after polishing, The water-soluble polymer B, which is a constituent component of the polishing liquid composition adsorbed on the surface of the silica particles, is replaced with the water-soluble polymer A. Then, since the reattachment of the silica particles to the silicon wafer surface after polishing is suppressed, the residual amount of silica particles on the polished silicon wafer subjected to the cleaning process can be remarkably reduced. Even when the functional polymer A is adsorbed to the silica particles, the zeta potential of the silica particles is not greatly changed, and the zeta potential of the silica particles can be maintained at a negative large value, so that aggregation of the silica particles is also suppressed. Therefore, it is presumed that the rinse agent composition of the present invention contains the water-soluble polymer A, so that the reduction of LPD and the cleaning time of the polished silicon wafer are realized.
 [リンス剤組成物]
 本発明のリンス剤組成物は、水溶性高分子Aと、水系媒体と、本発明の効果が妨げられない範囲で、任意成分とを含む。任意成分の詳細については、後述する。
[Rinse composition]
The rinse agent composition of the present invention includes a water-soluble polymer A, an aqueous medium, and optional components as long as the effects of the present invention are not hindered. Details of the optional component will be described later.
 [水溶性高分子A]
 水溶性高分子Aは、水分散液Sのゼータ電位Zと水分散液S0のゼータ電位Z0との差(Z-Z0)が、25mV以下となる性質を有する水溶性高分子である。ここで、水分散液Sは、水溶性高分子Aとシリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、水溶性高分子Aの濃度が0.1質量%、シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0の水溶性高分子含有シリカ水分散液である。水分散液S0は、シリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0のシリカ水分散液である。ゼータ電位は、実施例に記載の方法により測定できる。水溶性高分子Aが2種以上の水溶性高分子からなる場合、2種以上の水溶性高分子の混合物が、差(Z-Z0)が25mV以下となる性質を有する。水溶性高分子Aが、2種以上の水溶性高分子の混合物である場合、「水溶性高分子Aの濃度が0.1質量%」である、ということは、水分散液Sにおける当該混合物の濃度が0.1質量%であること、換言すると、各水溶性高分子の水分散液Sにおける濃度の合計が0.1質量%であることを意味する。
[Water-soluble polymer A]
The water-soluble polymer A is a water-soluble polymer having such a property that the difference (Z−Z 0 ) between the zeta potential Z of the aqueous dispersion S and the zeta potential Z 0 of the aqueous dispersion S 0 is 25 mV or less. . Here, the aqueous dispersion S is composed of a water-soluble polymer A, silica particles, water, and hydrochloric acid or ammonia as required. The concentration of the water-soluble polymer A is 0.1% by mass, and the concentration of silica particles is A water-soluble polymer-containing silica aqueous dispersion having a pH of 7.0% by mass and 25 ° C. is 7.0. The aqueous dispersion S 0 is a silica aqueous dispersion comprising silica particles, water, and optionally hydrochloric acid or ammonia, and having a silica particle concentration of 0.1 mass% and a pH of 7.0 at 25 ° C. . The zeta potential can be measured by the method described in the examples. When the water-soluble polymer A is composed of two or more water-soluble polymers, a mixture of two or more water-soluble polymers has a property that the difference (ZZ 0 ) is 25 mV or less. When the water-soluble polymer A is a mixture of two or more water-soluble polymers, “the concentration of the water-soluble polymer A is 0.1% by mass” means that the mixture in the aqueous dispersion S This means that the total concentration of each water-soluble polymer in the aqueous dispersion S is 0.1% by mass.
 水溶性高分子Aが、後述する水溶性高分子a1のみからなる場合、前記差(Z-Z0)は、シリカ粒子の凝集の抑制の観点から、25mV以下、好ましくは15mV以下、より好ましくは9mV以下、更に好ましくは7mV以下である。 When the water-soluble polymer A comprises only the water-soluble polymer a1 described later, the difference (Z−Z 0 ) is 25 mV or less, preferably 15 mV or less, more preferably from the viewpoint of suppressing aggregation of silica particles. 9 mV or less, more preferably 7 mV or less.
 水溶性高分子Aが、後述する水溶性高分子a1と水溶性高分子a2との混合物である場合、前記差(Z-Z0)は、シリカ粒子の凝集の抑制の観点から、25mV以下、好ましくは15mV以下、より好ましくは12mV以下、更に好ましくは9mV以下である。 When the water-soluble polymer A is a mixture of a water-soluble polymer a1 and a water-soluble polymer a2 described later, the difference (Z−Z 0 ) is 25 mV or less from the viewpoint of suppressing aggregation of silica particles. Preferably it is 15 mV or less, More preferably, it is 12 mV or less, More preferably, it is 9 mV or less.
 水分散液S0のゼータ電位Z0は、例えば、-40mV~-50mVの範囲内の所定の値であり、その一例として、シリカ原液(扶桑化学社製「PL-3」)を用いて調整された水分散液S0のゼータ電位(例えば、-46mV)である。 The zeta potential Z 0 of the aqueous dispersion S 0 is, for example, a predetermined value within a range of −40 mV to −50 mV, and is adjusted using a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.) as an example. The zeta potential of the prepared aqueous dispersion S 0 (for example, −46 mV).
 水溶性高分子Aが、後述する水溶性高分子a1のみからなる場合、水溶性高分子Aは、シリカ粒子の凝集の抑制の観点から、前記水分散液S中のシリカ粒子の二次粒径dと、前記水分散液S0中のシリカ粒子の二次粒径d0との比(d/d0)が、好ましくは1.35以下、より好ましくは1.17以下、更に好ましくは1.10以下、更により好ましくは1.08以下となる水溶性高分子であり、そして、LPD低減の観点から、好ましくは1.00以上、より好ましくは1.02以上、更に好ましくは1.04以上、更により好ましくは1.05以上となる水溶性高分子である。 When the water-soluble polymer A is composed only of the water-soluble polymer a1 described later, the water-soluble polymer A is a secondary particle size of the silica particles in the aqueous dispersion S from the viewpoint of suppressing aggregation of the silica particles. The ratio (d / d 0 ) of d to the secondary particle size d 0 of the silica particles in the aqueous dispersion S 0 is preferably 1.35 or less, more preferably 1.17 or less, and still more preferably 1 .10 or less, still more preferably 1.08 or less, and from the viewpoint of LPD reduction, preferably 1.00 or more, more preferably 1.02 or more, and still more preferably 1.04. As described above, the water-soluble polymer is more preferably 1.05 or more.
 水溶性高分子Aが、後述する水溶性高分子a1と後述する水溶性高分子a2との混合物である場合、水溶性高分子Aは、シリカ粒子の凝集の抑制の観点から、前記水分散液S中のシリカ粒子の二次粒径dと、前記水分散液S0中のシリカ粒子の二次粒径d0との比(d/d0)が、好ましくは1.35以下、より好ましくは1.34以下、更に好ましくは1.33以下、更により好ましくは1.32以下となる水溶性高分子であり、そして、LPD低減の観点から、好ましくは1.00以上、より好ましくは1.25以上、更に好ましくは1.30以上、更により好ましくは1.31以上となる水溶性高分子である。 When the water-soluble polymer A is a mixture of a water-soluble polymer a1 to be described later and a water-soluble polymer a2 to be described later, the water-soluble polymer A is the aqueous dispersion from the viewpoint of suppressing aggregation of silica particles. a secondary particle diameter d of the silica particles in S, the ratio of the secondary particle diameter d 0 of the silica particles of the aqueous dispersion S in 0 (d / d 0) is preferably 1.35 or less, more preferably Is a water-soluble polymer having a value of 1.34 or less, more preferably 1.33 or less, and even more preferably 1.32 or less, and preferably from 1.00 or more, more preferably 1 from the viewpoint of reducing LPD. .25 or more, more preferably 1.30 or more, and even more preferably 1.31 or more.
 水分散液S0中のシリカ粒子の二次粒径d0は、例えば、64~73nmの範囲内の所定の値、好ましくは66~69nmの範囲内の所定の値であり、その一例として、シリカ原液(扶桑化学社製「PL-3」)をシリカ粒子の供給源として含む水分散液S0中のシリカ粒子の二次粒径(例えば、68.4nm)である。 The secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is, for example, a predetermined value within the range of 64 to 73 nm, preferably a predetermined value within the range of 66 to 69 nm. This is the secondary particle size (for example, 68.4 nm) of silica particles in the aqueous dispersion S 0 containing a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.) as a silica particle supply source.
 リンス剤組成物における水溶性高分子Aの含有量は、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは0.001質量%以上、より好ましくは0.015質量%以上、更に好ましくは0.020質量%以上、更により好ましくは0.025質量%以上、更により好ましくは0.03質量%以上であり、そして、同様の観点から、好ましくは1.0質量%以下、より好ましくは0.7質量%以下、更に好ましくは0.4質量%以下、更により好ましくは0.1質量%以下、更により好ましくは0.08質量%以下である。 The content of the water-soluble polymer A in the rinse agent composition is preferably 0.001% by mass or more, more preferably 0.015% by mass or more, and still more preferably from the viewpoint of shortening the washing time and reducing the LPD. 0.020% by mass or more, still more preferably 0.025% by mass or more, still more preferably 0.03% by mass or more, and from the same viewpoint, preferably 1.0% by mass or less, more preferably It is 0.7 mass% or less, More preferably, it is 0.4 mass% or less, More preferably, it is 0.1 mass% or less, More preferably, it is 0.08 mass% or less.
 水溶性高分子Aは、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体及びポリアクリルアミドからなる群から選ばれる少なくとも1種の水溶性高分子a1である。 The water-soluble polymer A is preferably at least selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide from the viewpoint of shortening the washing time and reducing LPD. One type of water-soluble polymer a1.
 ポリグリセリン誘導体としては、ポリグリセリンに官能基がエーテル結合又はエステル結合で付加したものが好ましく、エーテル結合で付加したものがより好ましい。 As the polyglycerin derivative, those in which a functional group is added to polyglycerin with an ether bond or an ester bond are preferable, and those with an ether bond are more preferable.
 ポリグリセリン誘導体としては、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは、ポリグリセリンアルキルエーテル、ポリグリセリンジアルキルエーテル、ポリグリセリン脂肪酸エステル、ポリエチレンオキサイド付加ポリグリセリン、ポリプロピレンオキサイド付加ポリグリセリン、アミノ化ポリグリセリン等であり、より好ましくはポリグリセリンアルキルエーテルである。これらは一種又は2種以上を併用してもよい。 The polyglycerin derivative is preferably polyglycerin alkyl ether, polyglycerin dialkyl ether, polyglycerin fatty acid ester, polyethylene oxide-added polyglycerin, polypropylene oxide-added polyglycerin, amino, from the viewpoint of shortening the washing time and reducing the LPD. Polyglycerol, etc., more preferably polyglycerol alkyl ether. These may be used alone or in combination of two or more.
 ポリグリシドール誘導体としては、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは、ポリグリシドールアルキルエーテル、ポリグリシドールジアルキルエーテル、ポリグリシドール脂肪酸エステル、ポリエチレンオキサイド付加ポリグリシドール、ポリプロピレンオキサイド付加ポリグリシドール、アミノ化ポリグリシドール等である。これらは一種又は2種以上を併用してもよい。 The polyglycidol derivative is preferably a polyglycidol alkyl ether, a polyglycidol dialkyl ether, a polyglycidol fatty acid ester, a polyethylene oxide-added polyglycidol, a polypropylene oxide-added polyglycidol, an amino acid, from the viewpoint of shortening the washing time and reducing the LPD. Polyglycidol. These may be used alone or in combination of two or more.
 ポリビニルアルコール誘導体としては、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは、ポリエチレンオキサイド変性ポリビニルアルコール、スルホン酸変性ポリビニルアルコールなどがある。これらは一種又は2種以上を併用してもよい。 Preferred examples of the polyvinyl alcohol derivative include polyethylene oxide-modified polyvinyl alcohol and sulfonic acid-modified polyvinyl alcohol from the viewpoint of shortening the washing time and reducing the LPD. These may be used alone or in combination of two or more.
 水溶性高分子a1は、洗浄時間の短縮化及びLPDの低減の観点から、上記の中でも、より好ましくは、ポリグリセリン、ポリグリセリンアルキルエーテル、ポリグリセリンジアルキルエーテル、ポリグリセリン脂肪酸エステル、ポリエチレンオキサイド変性ポリビニルアルコール、スルホン酸変性ポリビニルアルコール、及びポリアクリルアミドからなる群から選ばれる少なくとも1種であり、更に好ましくは、ポリグリセリン及びポリグリセリンアルキルエーテルからなる群から選ばれる少なくとも1種であり、更により好ましくは、ポリグリセリンアルキルエーテルである。水溶性高分子a1は、上記の中から2種以上を選択して用いてもよく、洗浄時間の短縮化及びLPDの低減の観点から、リンス剤組成物は、ポリグリセリンとポリグリセリンアルキルエーテルの両方を含んでいると好ましい。ポリグリセリン誘導体の疎水基の炭素数は、好ましくは6以上、より好ましくは8以上であり、そして、好ましくは22以下、より好ましくは18以下である。 Among the above, the water-soluble polymer a1 is preferably polyglycerin, polyglycerin alkyl ether, polyglycerin dialkyl ether, polyglycerin fatty acid ester, polyethylene oxide-modified polyvinyl, from the viewpoints of shortening the washing time and reducing LPD. It is at least one selected from the group consisting of alcohol, sulfonic acid-modified polyvinyl alcohol, and polyacrylamide, more preferably at least one selected from the group consisting of polyglycerin and polyglycerin alkyl ether, and even more preferably. , A polyglycerin alkyl ether. The water-soluble polymer a1 may be used by selecting two or more of them from the above. From the viewpoint of shortening the washing time and reducing the LPD, the rinse agent composition is composed of polyglycerin and polyglycerin alkyl ether. It is preferable that both are included. The number of carbon atoms of the hydrophobic group of the polyglycerol derivative is preferably 6 or more, more preferably 8 or more, and preferably 22 or less, more preferably 18 or less.
 水溶性高分子a1が、ポリグリセリンとポリグリセリンアルキルエーテルを含む場合、これらの質量比(ポリグリセリン/ポリグリセリンアルキルエーテル)は、LPDの低減の観点から、好ましくは0.5以上、より好ましくは1.0以上、更に好ましくは2.0以上であり、そして、同様の観点から、好ましくは10以下、より好ましくは6.0以下、更に好ましくは5.0以下である。 When the water-soluble polymer a1 contains polyglycerin and polyglycerin alkyl ether, these mass ratios (polyglycerin / polyglycerin alkyl ether) are preferably 0.5 or more, more preferably, from the viewpoint of reducing LPD. 1.0 or more, more preferably 2.0 or more, and from the same viewpoint, it is preferably 10 or less, more preferably 6.0 or less, and still more preferably 5.0 or less.
 水溶性高分子a1の重量平均分子量は、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは500以上、より好ましくは700以上、更に好ましくは900以上であり、そして、同様の観点から、好ましくは1,500,000以下、より好ましくは500,000以下、更に好ましくは100,000以下、更により好ましくは25,000以下、更により好ましくは10,000以下である。尚、水溶性高分子Aの重量平均分子量は、実施例に記載の方法により測定できる。 The weight average molecular weight of the water-soluble polymer a1 is preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, from the viewpoint of shortening the washing time and LPD, and from the same viewpoint, Preferably it is 1,500,000 or less, more preferably 500,000 or less, still more preferably 100,000 or less, even more preferably 25,000 or less, and even more preferably 10,000 or less. In addition, the weight average molecular weight of water-soluble polymer A can be measured by the method as described in an Example.
 水溶性高分子a1は、洗浄時間の短縮化及びLPDの低減の観点から、好ましくは5量体以上、より好ましくは10量体以上、更に好ましくは15量体以上であり、そして、同様の観点から、好ましくは5,000量体以下、より好ましくは500量体以下、更に好ましくは200量体以下、更により好ましくは150量体以下、更により好ましくは100量体以下である。 The water-soluble polymer a1 is preferably a pentamer or more, more preferably a 10mer or more, still more preferably a 15mer or more, from the viewpoint of shortening the washing time and reducing the LPD, and the same viewpoint. Therefore, it is preferably 5,000 mer or less, more preferably 500 mer or less, still more preferably 200 mer or less, still more preferably 150 mer or less, and even more preferably 100 mer or less.
 水溶性高分子Aは、LPDの低減の観点から、前記水溶性高分子a1とベタイン構造を含む水溶性高分子(以下、「ベタイン構造を含む水溶性高分子」を「水溶性高分子a2」と略称する場合もある。)との混合物であると好ましい。 From the viewpoint of reducing LPD, the water-soluble polymer A is a water-soluble polymer containing the water-soluble polymer a1 and a betaine structure (hereinafter referred to as “water-soluble polymer containing a betaine structure”). And a mixture thereof.
 [ベタイン構造を含む水溶性高分子]
 本願において、ベタイン構造とは、正電荷と負電荷とを同一分子内に持ち、電荷が中和されている構造を示す。前記ベタイン構造は、前記正電荷と負電荷とを、好ましくは隣り合わない位置に持ち、そして、好ましくは1つ以上の原子を介する位置に持つ。
[Water-soluble polymer containing betaine structure]
In the present application, the betaine structure refers to a structure having a positive charge and a negative charge in the same molecule, and the charge is neutralized. The betaine structure preferably has the positive charge and the negative charge at positions not adjacent to each other, and preferably at a position through one or more atoms.
 水溶性高分子a2としては、LPDの低減の観点から、ベタイン構造を含む単量体の重合体、ベタイン構造を含む単量体と疎水基を含む単量体の共重合体、ベタイン構造を含む単量体と水酸基を含む単量体の共重合体、ベタイン構造を含む単量体とオキシアルキレン基を含む単量体の共重合体、ベタイン構造を含む単量体とアミノ基を含む単量体の共重合体、及びベタイン構造を含む単量体と4級アンモニウム基を含む単量体の共重合体から選ばれる少なくとも1種の水溶性高分子が好ましく、ベタイン構造を含む単量体と疎水基を含む単量体の共重合体がより好ましい。 The water-soluble polymer a2 includes a polymer of a monomer containing a betaine structure, a copolymer of a monomer containing a betaine structure and a monomer containing a hydrophobic group, and a betaine structure from the viewpoint of reducing LPD. Copolymer of monomer and monomer containing hydroxyl group, copolymer of monomer containing betaine structure and monomer containing oxyalkylene group, monomer containing betaine structure and monomer containing amino group And at least one water-soluble polymer selected from a copolymer of a monomer and a monomer having a betaine structure and a monomer having a quaternary ammonium group, and a monomer having a betaine structure, A monomer copolymer containing a hydrophobic group is more preferred.
 ベタイン構造としては、スルホベタイン、カルボベタイン、ホスホベタイン等が挙げられ、LPD低減の観点からカルボベタイン、ホスホベタインがより好ましく、ホスホベタインが更に好ましい。 Examples of the betaine structure include sulfobetaine, carbobetaine, phosphobetaine, and the like. From the viewpoint of reducing LPD, carbobetaine and phosphobetaine are more preferable, and phosphobetaine is more preferable.
 ベタイン構造を含む単量体に由来の構成単位Aとしては、LPDの低減の観点から、好ましくは下記式(1)で表される構成単位である。
Figure JPOXMLDOC01-appb-C000001
The structural unit A derived from the monomer containing a betaine structure is preferably a structural unit represented by the following formula (1) from the viewpoint of reducing LPD.
Figure JPOXMLDOC01-appb-C000001
 前記式(1)中、
1~R3:同一又は異なって、水素原子、メチル基、又はエチル基
4:炭素数1以上4以下のアルキレン基、又は-Y1-OPO3 --Y2
1、Y2:同一又は異なって、炭素数1以上4以下のアルキレン基
5、R6:同一又は異なって、炭素数1以上4以下の炭化水素基
1:O又はNR7
7:水素原子又は炭素数1以上4以下の炭化水素基
2:炭素数1以上4以下の炭化水素基、-R17SO3 -、又は-R18COO-
17、R18:同一又は異なって、炭素数1以上4以下のアルキレン基、を示す。
 ただし、X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R17SO3 -、又は-R18COO-であり、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基である。
In the formula (1),
R 1 to R 3 : the same or different, a hydrogen atom, a methyl group, or an ethyl group R 4 : an alkylene group having 1 to 4 carbon atoms, or —Y 1 —OPO 3 —Y 2
Y 1 , Y 2 : the same or different, an alkylene group having 1 to 4 carbon atoms R 5 , R 6 : the same or different, a hydrocarbon group having 1 to 4 carbon atoms X 1 : O or NR 7
R 7 : a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms X 2 : a hydrocarbon group having 1 to 4 carbon atoms, —R 17 SO 3 , or —R 18 COO
R 17 and R 18 are the same or different and each represents an alkylene group having 1 to 4 carbon atoms.
X 2 is —R 17 SO 3 or —R 18 COO when R 4 is an alkylene group having 1 to 4 carbon atoms, and R 4 is —Y 1 —OPO 3 —Y 2. In the case of-, it is a hydrocarbon group having 1 to 4 carbon atoms.
 R1及びR2は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、それぞれ、水素原子が好ましい。 R 1 and R 2 are each preferably a hydrogen atom from the viewpoint of monomer availability, monomer polymerizability, and LPD reduction.
 R3は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。 R 3 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoints of monomer availability, monomer polymerizability, and LPD reduction.
 X1は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、O(酸素原子)が好ましい。 X 1 is preferably O (oxygen atom) from the viewpoint of monomer availability, monomer polymerizability, and LPD reduction.
 R4は、LPDの低減の観点からは、炭素数2又は3のアルキレン基、又は-Y1-OPO3 --Y2-が好ましく、炭素数2のアルキレン基、又は-Y1-OPO3 --Y2-がより好ましく、-Y1-OPO3 --Y2-が更に好ましい。 R 4 is, from the viewpoint of reducing the LPD, alkylene group having 2 or 3 carbon atoms, or -Y 1 -OPO 3 - -Y 2 - is preferably an alkylene group having 2 carbon atoms, or -Y 1 -OPO 3 - -Y 2 - is more preferred, -Y 1 -OPO 3 - -Y 2 - is more preferable.
 Y1、Y2は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、それぞれ、炭素数2又は3のアルキレン基が好ましく、炭素数2のアルキレン基がより好ましい。 Y 1 and Y 2 are each preferably an alkylene group having 2 or 3 carbon atoms, more preferably an alkylene group having 2 carbon atoms, from the viewpoint of availability of monomers, polymerizability of monomers, and reduction of LPD. .
 R5、R6は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、それぞれ、メチル基又はエチル基が好ましく、メチル基がより好ましい。 R 5 and R 6 are each preferably a methyl group or an ethyl group, and more preferably a methyl group, from the viewpoint of monomer availability, monomer polymerizability, and LPD reduction.
 X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R17SO3 -、又は-R18COO-であり、LPDの低減の観点から、-R18COO-が好ましい。X2は、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基であり、LPDの低減の観点から、メチル基がより好ましい。 X 2 is —R 17 SO 3 or —R 18 COO when R 4 is an alkylene group having 1 to 4 carbon atoms, and —R 18 COO is preferable from the viewpoint of reducing LPD. X 2 is a hydrocarbon group having 1 to 4 carbon atoms when R 4 is —Y 1 —OPO 3 —Y 2 —, and a methyl group is more preferable from the viewpoint of reducing LPD.
 R17の炭素数は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、1以上3以下が好ましく、2以上3以下がより好ましい。R18の炭素数は、不飽和単量体の入手性の観点、単量体の重合性の観点及びLPDの低減の観点から、1以上3以下が好ましく、1以上2以下がより好ましい。 The number of carbon atoms of R 17 is preferably 1 or more and 3 or less, more preferably 2 or more and 3 or less, from the viewpoints of availability of monomers, monomer polymerizability, and LPD reduction. The number of carbon atoms of R 18 is preferably 1 or more and 3 or less, and more preferably 1 or more and 2 or less, from the viewpoint of availability of unsaturated monomers, monomer polymerization and LPD reduction.
 構成単位Aとしては、LPDの低減の観点からは、スルホベタインメタクリレート、メタクリロイルオキシエチルホスホリルコリン、及びカルボキシベタインメタクリレートから選ばれる少なくとも1種の単量体に由来する構成単位が好ましく、メタクリロイルオキシエチルホスホリルコリン及びカルボキシベタインメタクリレートから選ばれる少なくとも1種の単量体に由来する構成単位がより好ましく、メタクリロイルオキシエチルホスホリルコリンに由来する構成単位が更に好ましい。 The structural unit A is preferably a structural unit derived from at least one monomer selected from sulfobetaine methacrylate, methacryloyloxyethyl phosphorylcholine, and carboxybetaine methacrylate from the viewpoint of reducing LPD, and methacryloyloxyethyl phosphorylcholine and A structural unit derived from at least one monomer selected from carboxybetaine methacrylate is more preferable, and a structural unit derived from methacryloyloxyethyl phosphorylcholine is more preferable.
 水溶性高分子a2が、疎水基を含む単量体、水酸基を含む単量体、オキシアルキレン基を含む単量体、アミノ基を含む単量体、及び4級アンモニウム基を含む単量体から選ばれる少なくとも1種の単量体(以下、「単量体B」と略称する場合がある。)と、ベタイン構造を含む単量体との共重合体である場合、単量体Bに由来の構成単位Bとしては、LPDの低減の観点から、例えば、下記式(2)で表される構成単位Bが好ましい。
Figure JPOXMLDOC01-appb-C000002
The water-soluble polymer a2 is a monomer containing a hydrophobic group, a monomer containing a hydroxyl group, a monomer containing an oxyalkylene group, a monomer containing an amino group, and a monomer containing a quaternary ammonium group. When it is a copolymer of at least one selected monomer (hereinafter sometimes abbreviated as “monomer B”) and a monomer containing a betaine structure, it is derived from monomer B As the structural unit B, for example, the structural unit B represented by the following formula (2) is preferable from the viewpoint of reducing the LPD.
Figure JPOXMLDOC01-appb-C000002
 ただし、式(2)中、
8~R10:同一又は異なって、水素原子、メチル基又はエチル基
3:O又はNR19
19:水素原子又は炭素数1以上4以下の炭化水素基
11:炭素数1以上22以下のアルキレン基(ただし、前記アルキレン基の水素原子は水酸基で置換されていてもよい。)又は-(AO)m-(ただし、AOは炭素数2以上4以下のアルキレンオキシ基、mは平均付加モル数で1以上150以下である。)
4:水素原子、炭素数1以上4以下の炭化水素基(ただし、前記炭化水素基の水素原子は水酸基で置換されていてもよい。)、水酸基、N+121314又はNR1516
12~R16:同一又は異なって、水素原子又は炭素数1以上4以下の炭化水素基、を示す。
However, in Formula (2),
R 8 to R 10 : the same or different, hydrogen atom, methyl group or ethyl group X 3 : O or NR 19
R 19 : a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms R 11 : an alkylene group having 1 to 22 carbon atoms (however, the hydrogen atom of the alkylene group may be substituted with a hydroxyl group) or — (AO) m — (Where AO is an alkyleneoxy group having 2 to 4 carbon atoms, and m is 1 to 150 in terms of the average number of moles added.)
X 4 : hydrogen atom, hydrocarbon group having 1 to 4 carbon atoms (however, the hydrogen atom of the hydrocarbon group may be substituted with a hydroxyl group), hydroxyl group, N + R 12 R 13 R 14 or NR 15 R 16
R 12 to R 16 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
 R8及びR9は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、それぞれ、水素原子が好ましい。 R 8 and R 9 are each preferably a hydrogen atom from the viewpoints of availability of monomers, polymerizability of monomers, and reduction of LPD.
 R10は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、水素原子又はメチル基が好ましく、メチル基がより好ましい。 R 10 is preferably a hydrogen atom or a methyl group, and more preferably a methyl group, from the viewpoints of availability of the monomer, polymerizability of the monomer, and reduction of LPD.
 X3は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、Oが好ましい。 X 3 is preferably O from the viewpoint of availability of monomers, polymerizability of monomers, and reduction of LPD.
 X4が水素原子のとき、R11のアルキレン基の炭素数は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、3以上が好ましく、4以上がより好ましく、6以上が更に好ましく、そして、18以下が好ましく、12以下がより好ましく、mは、同様の観点から、2以上30以下が好ましい。 When X 4 is a hydrogen atom, the number of carbon atoms of the alkylene group of R 11 is preferably 3 or more, more preferably 4 or more, from the viewpoints of monomer availability, monomer polymerizability, and LPD reduction. 6 or more are more preferable, 18 or less are preferable, 12 or less are more preferable, and m is preferably 2 or more and 30 or less from the same viewpoint.
 X4が炭素数1以上4以下の炭化水素基のとき、R11は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、-(AO)m-が好ましく、前記mは、4以上90以下が好ましい。 When X 4 is a hydrocarbon group having 1 to 4 carbon atoms, R 11 is preferably — (AO) m — from the viewpoints of availability of monomers, polymerizability of monomers, and reduction of LPD. The m is preferably 4 or more and 90 or less.
 AOは、単量体の入手性、単量体の重合性及びLPDの低減の観点から、炭素数2のアルキレンオキシ基であるエチレンオキシ基(EO)及び炭素数3のアルキレンオキシ基であるプロピレンオキシ基(PO)から選ばれる1種以上のアルキレンオキシ基からなると好ましく、EOからなるとより好ましい。-(AO)m-が、炭素数の異なる2種以上のアルキレンオキシ基を含む場合、各種アルキレンオキシ基の配列は、ブロックでもランダムでも良く、好ましくはブロックである。 AO is an ethyleneoxy group (EO) which is an alkyleneoxy group having 2 carbon atoms and propylene which is an alkyleneoxy group having 3 carbon atoms from the viewpoint of availability of monomers, polymerizability of monomers and reduction of LPD. It is preferably composed of one or more alkyleneoxy groups selected from oxy groups (PO), more preferably composed of EO. When — (AO) m — contains two or more alkyleneoxy groups having different carbon numbers, the arrangement of the various alkyleneoxy groups may be block or random, and is preferably a block.
 X4が水酸基、N+121314又はNR1516のとき、R11は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、炭素数1以上22以下のアルキレン基(ただし、前記炭化水素基の水素原子は水酸基で置換されていてもよい。)が好ましく、前記アルキレン基の炭素数は、同様の観点から、2以上が好ましく、3以下が好ましく、そして、2がより好ましい。 When X 4 is a hydroxyl group, N + R 12 R 13 R 14 or NR 15 R 16 , R 11 has 1 or more carbon atoms from the viewpoints of availability of monomers, polymerizability of monomers and reduction of LPD. An alkylene group of 22 or less (wherein the hydrogen atom of the hydrocarbon group may be substituted with a hydroxyl group) is preferred, and the number of carbon atoms of the alkylene group is preferably 2 or more, and preferably 3 or less, from the same viewpoint. 2 is more preferable.
 X4は、単量体の入手性、単量体の重合性及びLPDの低減の観点から、水素原子、メチル基、水酸基、又はN+121314が好ましく、R12~R14は、同様の観点から、それぞれ、メチル基又はエチル基が好ましく、メチル基がより好ましい。 X 4 is preferably a hydrogen atom, a methyl group, a hydroxyl group, or N + R 12 R 13 R 14 from the viewpoints of monomer availability, monomer polymerizability, and LPD reduction, and R 12 to R 14 Are each preferably a methyl group or an ethyl group, and more preferably a methyl group.
 構成単位Bとしては、単量体の入手性、単量体の重合性及びLPDの低減の観点から、アルキルメタクリレート等の疎水基(疎水基の水素原子は水酸基で置換されていてもよい。)を有する不飽和単量体、4級アンモニウムカチオンを有するメタクリレート等のカチオン基を有する不飽和単量体、及びエチレンオキシ基を有するメタクリレート等のノニオン基を有する不飽和単量体から選ばれる少なくとも1種の単量体に由来する構成単位が好ましく、アルキルメタクリレート等の疎水基(疎水基の水素原子は水酸基で置換されていてもよい。)を有する不飽和単量体に由来する構成単位がより好ましい。 As the structural unit B, a hydrophobic group such as alkyl methacrylate (a hydrogen atom of the hydrophobic group may be substituted with a hydroxyl group) from the viewpoints of availability of monomers, polymerizability of monomers, and reduction of LPD. An unsaturated monomer having a cationic group such as a methacrylate having a quaternary ammonium cation, and an unsaturated monomer having a nonionic group such as a methacrylate having an ethyleneoxy group. A structural unit derived from a seed monomer is preferable, and a structural unit derived from an unsaturated monomer having a hydrophobic group such as alkyl methacrylate (the hydrogen atom of the hydrophobic group may be substituted with a hydroxyl group) is more preferable. preferable.
 構成単位Bとしては、ブチルメタクリレート(BMA)、2-エチルヘキシルメタクリレート(EHMA)、ラウリルメタクリレート(LMA)、ステアリルメタクリレート(SMA)、メタクリロイルオキシエチルジメチルエチルアミニウム(MOEDES)、メタクリル酸2-ヒドロキシ-3-(トリメチルアミニオ)プロピル(THMPA)、メタクリロイルエチルトリメチルアミニウム(MOETMA)、メトキシポリエチレングリコールメタクリレート(MPEGMA)、ポリエチレングリコールメタクリレート(PEGMA)、メトキシポリプロピレングリコールメタクリレート(MPPGMA)、ポリプロピレングリコールメタクリレート(PPGMA)及びヒドロキシエチルメタクリレート(HEMA)から選ばれる少なくとも1種の単量体に由来する構成単位がより好ましく、BMA、及びLMAから選ばれる少なくとも1種の単量体に由来する構成単位がより好ましい。 As the structural unit B, butyl methacrylate (BMA), 2-ethylhexyl methacrylate (EHMA), lauryl methacrylate (LMA), stearyl methacrylate (SMA), methacryloyloxyethyldimethylethylaminium (MOEDES), 2-hydroxy-3 methacrylate -(Trimethylaminio) propyl (THMPA), methacryloylethyltrimethylaminium (MOETMA), methoxypolyethylene glycol methacrylate (MPEGMA), polyethylene glycol methacrylate (PEGMA), methoxypolypropylene glycol methacrylate (MPPGMA), polypropylene glycol methacrylate (PPGMA) and A small amount selected from hydroxyethyl methacrylate (HEMA) Both are more preferable structural units derived from one monomer, BMA, and at least one constituent unit derived from a monomer selected from the LMA more preferable.
 (構成単位Aと構成単位Bのモル比)
 水溶性高分子a2における構成単位Aと構成単位Bのモル比(構成単位A/構成単位B)は、LPDの低減の観点から、好ましくは10/90以上、より好ましくは20/80以上、更に好ましくは30/70以上であり、同様の観点から、好ましくは98/2以下、より好ましくは95/5以下である。
(Molar ratio of structural unit A to structural unit B)
The molar ratio of the structural unit A to the structural unit B in the water-soluble polymer a2 (structural unit A / structural unit B) is preferably 10/90 or more, more preferably 20/80 or more, from the viewpoint of reducing LPD. Preferably, it is 30/70 or more, and from the same viewpoint, it is preferably 98/2 or less, more preferably 95/5 or less.
 (構成単位A及び構成単位B以外の構成単位)
 水溶性高分子a2は、本発明の効果を損なわない範囲で、構成単位A及び構成単位B以外の構成単位を含有してもよい。構成単位A及び構成単位B以外の構成単位としては、スチレン等の疎水性不飽和単量体に由来する構成単位が好ましい。
(Structural units other than structural unit A and structural unit B)
The water-soluble polymer a2 may contain a structural unit other than the structural unit A and the structural unit B as long as the effects of the present invention are not impaired. As the structural unit other than the structural unit A and the structural unit B, a structural unit derived from a hydrophobic unsaturated monomer such as styrene is preferable.
 水溶性高分子a2中の構成単位A及び構成単位B以外の構成単位の含有量は、好ましくは1質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.1質量%以下、より更に好ましくは0.05質量%以下である。水溶性高分子a2中の構成単位A及び構成単位B以外の構成単位の含有量は0質量%であってもよい。 The content of structural units other than the structural unit A and the structural unit B in the water-soluble polymer a2 is preferably 1% by mass or less, more preferably 0.5% by mass or less, still more preferably 0.1% by mass or less, More preferably, it is 0.05 mass% or less. The content of structural units other than the structural unit A and the structural unit B in the water-soluble polymer a2 may be 0% by mass.
 水溶性高分子a2中の構成単位A及び構成単位Bの合計の含有量は、好ましくは99質量%以上、より好ましくは99.5質量%以上、更に好ましくは99.9質量%以上、より更に好ましくは99.95質量%以上であり、100質量%であってもよい。 The total content of the structural unit A and the structural unit B in the water-soluble polymer a2 is preferably 99% by mass or more, more preferably 99.5% by mass or more, still more preferably 99.9% by mass or more, and even more. Preferably it is 99.95 mass% or more, and may be 100 mass%.
 水溶性高分子a2の重量平均分子量は、LPD低減の観点から、0.1万以上が好ましく、0.3万以上がより好ましく、0.5万以上が更に好ましく、そして、水溶性高分子a2の溶解性向上及びLPD低減の観点から、150万以下が好ましく、120万以下がより好ましく、100万以下が更に好ましい。 From the viewpoint of LPD reduction, the weight average molecular weight of the water-soluble polymer a2 is preferably 10000 or more, more preferably 30,000 or more, still more preferably 50,000 or more, and the water-soluble polymer a2 From the viewpoints of improving solubility and reducing LPD, 1.5 million or less is preferable, 1.2 million or less is more preferable, and 1 million or less is more preferable.
 本発明のリンス剤組成物における水溶性高分子a2の含有量は、LPDの低減の観点から、0.00001質量%以上が好ましく、0.00005質量%以上がより好ましく、0.0001質量%以上が更に好ましく、そして、LPD低減の観点から、10質量%以下が好ましく、5質量%以下がより好ましく、1質量%以下が更に好ましい。 The content of the water-soluble polymer a2 in the rinse agent composition of the present invention is preferably 0.00001% by mass or more, more preferably 0.00005% by mass or more, and 0.0001% by mass or more from the viewpoint of reducing LPD. Is more preferable, and from the viewpoint of LPD reduction, it is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
 本発明のリンス剤組成物における、水溶性高分子a1と水溶性高分子a2の質量比(水溶性高分子a1/水溶性高分子a2)は、LPDの低減の観点から、0.5以上が好ましく、1以上がより好ましく、2以上が更に好ましく、そしてLPD低減の観点から、500以下が好ましく、200以下がより好ましく、100以下が更に好ましい。 In the rinse agent composition of the present invention, the mass ratio of the water-soluble polymer a1 and the water-soluble polymer a2 (water-soluble polymer a1 / water-soluble polymer a2) is 0.5 or more from the viewpoint of reducing the LPD. Preferably, 1 or more is more preferable, 2 or more is more preferable, and from the viewpoint of LPD reduction, 500 or less is preferable, 200 or less is more preferable, and 100 or less is more preferable.
 [水系媒体]
 本発明のリンス剤組成物に含まれる水系媒体としては、イオン交換水や超純水等の水、又は水と溶媒の混合媒体等が挙げられる。上記溶媒としては、例えば、炭素数2以上4以下の多価アルコールが挙げられ、グリセリン又はプロピレングリコールが好ましい。水系媒体における水としては、イオン交換水又は超純水が好ましく、超純水がより好ましい。水系媒体が、水と溶媒の混合媒体である場合、混合媒体全体に対する水の割合は、経済性の観点から、90質量%以上が好ましく、92質量%以上がより好ましく、95質量%以上が更に好ましい。
[Aqueous medium]
Examples of the aqueous medium contained in the rinse agent composition of the present invention include water such as ion-exchanged water and ultrapure water, or a mixed medium of water and a solvent. Examples of the solvent include polyhydric alcohols having 2 to 4 carbon atoms, and glycerin or propylene glycol is preferable. As water in the aqueous medium, ion exchange water or ultrapure water is preferable, and ultrapure water is more preferable. When the aqueous medium is a mixed medium of water and a solvent, the ratio of water to the entire mixed medium is preferably 90% by mass or more, more preferably 92% by mass or more, and further more preferably 95% by mass or more from the viewpoint of economy. preferable.
 本発明のリンス剤組成物における水系媒体の含有量は、好ましくは、水溶性高分子A、必要に応じて添加される後述の塩基性化合物、及び後述するその他の任意成分の残余である。 The content of the aqueous medium in the rinsing agent composition of the present invention is preferably the remainder of the water-soluble polymer A, a basic compound to be described later added as necessary, and other optional components to be described later.
 [任意成分(助剤)]
 本発明のリンス剤組成物には、本発明の効果が妨げられない範囲で、更に、pH調整剤、防腐剤、アルコール類、キレート剤、アニオン性界面活性剤、及びノニオン性界面活性剤から選ばれる少なくとも1種の任意成分が含まれてもよい。
[Optional ingredients (auxiliaries)]
The rinsing agent composition of the present invention is selected from pH adjusters, preservatives, alcohols, chelating agents, anionic surfactants, and nonionic surfactants as long as the effects of the present invention are not hindered. At least one optional component may be included.
 [pH調整剤]
 pH調整剤としては、塩基性化合物、酸性化合物、及びこれらの塩等が挙げられる。前記酸性化合物の塩としては、好ましくは、アルカリ金属塩、アンモニウム塩、及びアミン塩から選ばれる少なくとも1種であり、より好ましくは、アンモニウム塩である。塩基性化合物が塩の形態を取る場合の対イオンとしては、好ましくは水酸化物イオン、塩化物イオン及びヨウ化物イオンから選ばれる少なくとも1種であり、より好ましくは水酸化物イオン及び塩化物イオンから選ばれる少なくとも1種である。
[pH adjuster]
Examples of the pH adjuster include basic compounds, acidic compounds, and salts thereof. The salt of the acidic compound is preferably at least one selected from alkali metal salts, ammonium salts, and amine salts, and more preferably ammonium salts. When the basic compound takes a salt form, the counter ion is preferably at least one selected from hydroxide ions, chloride ions and iodide ions, more preferably hydroxide ions and chloride ions. Is at least one selected from
 (塩基性化合物)
 塩基性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N-メチル-N,N一ジエタノ-ルアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(β-アミノエチル)エタノ-ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ジエチレントリアミン、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウムが挙げられる。これらの塩基性化合物は2種以上を用いてもよい。塩基性化合物としては、シリコンウェーハのHazeの低減とLPDの低減の両立の観点、リンス剤組成物の保存安定性の向上の観点からアンモニアがより好ましい。
(Basic compound)
Examples of the basic compound include sodium hydroxide, potassium hydroxide, ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, trimethylamine. Ethanolamine, N-methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N- (β- Aminoethyl) ethanolamine, monoisopropanolamine, diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenediamine, piperazine hexahydrate, anhydrous piperazi 1- (2-aminoethyl) piperazine, N- methylpiperazine, diethylenetriamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide. Two or more of these basic compounds may be used. As the basic compound, ammonia is more preferable from the viewpoint of coexistence of reduction of Haze and LPD of the silicon wafer and improvement of storage stability of the rinse agent composition.
 (酸性化合物)
 酸性化合物としては、硫酸、塩酸、硝酸又はリン酸等の無機酸、酢酸、シュウ酸、コハク酸、グリコール酸、リンゴ酸、クエン酸又は安息香酸等の有機酸等が挙げられる。
(Acidic compounds)
Examples of the acidic compound include inorganic acids such as sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, and organic acids such as acetic acid, oxalic acid, succinic acid, glycolic acid, malic acid, citric acid and benzoic acid.
 [防腐剤]
 防腐剤としては、フェノキシエタノール、ベンザルコニウムクロライド、ベンゼトニウムクロライド、1,2-ベンズイソチアゾリン-3-オン、(5-クロロ-)2-メチル-4-イソチアゾリン-3-オン、過酸化水素、又は次亜塩素酸塩等が挙げられる。
[Preservative]
Preservatives include phenoxyethanol, benzalkonium chloride, benzethonium chloride, 1,2-benzisothiazolin-3-one, (5-chloro-) 2-methyl-4-isothiazolin-3-one, hydrogen peroxide, or A chlorite etc. are mentioned.
 [アルコール類]
 アルコール類としては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、2-メチル-2-プロパノオール、エチレングリコール、プロピレングリコール、ポリエチレングリコール、グリセリン等が挙げられる。本発明のリンス剤組成物におけるアルコール類の含有量は、0.01質量%~10質量%が好ましい。
[Alcohols]
Examples of alcohols include methanol, ethanol, propanol, butanol, isopropyl alcohol, 2-methyl-2-propanool, ethylene glycol, propylene glycol, polyethylene glycol, glycerin and the like. The content of alcohol in the rinse agent composition of the present invention is preferably 0.01% by mass to 10% by mass.
 [キレート剤]
 キレート剤としては、1-ヒドロキシエタン1,1-ジホスホン酸、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、トリエチレンテトラミン六酢酸、トリエチレンテトラミン六酢酸ナトリウム等が挙げられる。本発明のリンス剤組成物におけるキレート剤の含有量は、0.001~10質量%が好ましい。
[Chelating agent]
Examples of chelating agents include 1-hydroxyethane 1,1-diphosphonic acid, ethylenediaminetetraacetic acid, sodium ethylenediaminetetraacetate, nitrilotriacetic acid, sodium nitrilotriacetate, ammonium nitrilotriacetate, hydroxyethylethylenediaminetriacetic acid, hydroxyethylethylenediaminetriacetic acid Examples thereof include sodium, triethylenetetramine hexaacetic acid, sodium triethylenetetramine hexaacetate and the like. The content of the chelating agent in the rinse agent composition of the present invention is preferably 0.001 to 10% by mass.
 [アニオン性界面活性剤]
 アニオン性界面活性剤としては、例えば、脂肪酸石鹸、アルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩等のスルホン酸塩、高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩等の硫酸エステル塩、アルキルリン酸エステル等のリン酸エステル塩などが挙げられる。
[Anionic surfactant]
Examples of the anionic surfactant include fatty acid soaps, carboxylates such as alkyl ether carboxylates, sulfonates such as alkylbenzene sulfonates and alkylnaphthalene sulfonates, higher alcohol sulfates, alkyl ether sulfates. And sulfate ester salts such as alkyl phosphate esters and the like.
 [非イオン性界面活性剤]
 非イオン性界面活性剤としては、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビット脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシアルキレン(硬化)ヒマシ油等のポリエチレングリコール型と、ショ糖脂肪酸エステル、アルキルグリコシド等の多価アルコール型及び脂肪酸アルカノールアミド等が挙げられる。
[Nonionic surfactant]
Nonionic surfactants include polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbit fatty acid ester, polyoxyethylene glycerin fatty acid ester, polyoxyethylene fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl phenyl ether, Examples include polyethylene glycol types such as oxyalkylene (hardened) castor oil, polyhydric alcohol types such as sucrose fatty acid esters and alkylglycosides, and fatty acid alkanolamides.
 本発明のリンス剤組成物の25℃におけるpHは、洗浄時間の短縮化及びLPDの低減、リンス剤組成物の保存安定性向上の観点から、2以上が好ましく、2.5以上がより好ましく、3.0以上が更に好しく、そして、同様の観点から、12以下が好ましく、11.5以下がより好ましく、11.0以下が更に好ましい。pHの調整は、必要に応じて、pH調整剤を適宜添加して行うことができる。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定でき、電極のリンス剤組成物への浸漬後1分後の数値である。 The pH at 25 ° C. of the rinse agent composition of the present invention is preferably 2 or more, more preferably 2.5 or more, from the viewpoint of shortening the washing time, reducing the LPD, and improving the storage stability of the rinse agent composition. 3.0 or more is more preferable, and from the same viewpoint, 12 or less is preferable, 11.5 or less is more preferable, and 11.0 or less is more preferable. The pH can be adjusted by appropriately adding a pH adjusting agent as necessary. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after the electrode is immersed in the rinse agent composition.
 上記において説明した各成分の含有量は、使用時における含有量であるが、本発明のリンス剤組成物は、その保存安定性が損なわれない範囲で濃縮された状態で保存及び供給されてもよい。この場合、製造及び輸送コストを更に低くできる点で好ましい。濃縮液は、必要に応じて前述の水系媒体で適宜希釈して使用すればよい。濃縮倍率としては、希釈した後の研磨時の濃度を確保できれば、特に限定するものではないが、製造及び輸送コストを更に低くできる観点から、好ましくは2倍以上、より好ましくは10倍以上、更に好ましくは20倍以上、更により好ましくは30倍以上である。 Although the content of each component described above is the content at the time of use, the rinse agent composition of the present invention may be stored and supplied in a concentrated state as long as its storage stability is not impaired. Good. In this case, it is preferable in that the manufacturing and transportation costs can be further reduced. The concentrate may be used after appropriately diluted with the above-mentioned aqueous medium as necessary. The concentration ratio is not particularly limited as long as the concentration at the time of polishing after dilution can be secured, but from the viewpoint of further reducing the production and transportation costs, it is preferably at least 2 times, more preferably at least 10 times, Preferably it is 20 times or more, and still more preferably 30 times or more.
 本発明のリンス剤組成物が上記濃縮液である場合、濃縮液における水溶性高分子Aの含有量は、製造及び輸送コストを低くする観点から、好ましくは0.02質量%以上、より好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1.0質量%以上、更により好ましくは1.5質量%以上であり、そして、保存安定性の向上の観点から、好ましくは20質量%以下、より好ましくは15質量%以下、更に好ましくは10質量%以下、更により好ましくは7.0質量%以下である。 When the rinse agent composition of the present invention is the above-described concentrated solution, the content of the water-soluble polymer A in the concentrated solution is preferably 0.02% by mass or more, more preferably from the viewpoint of reducing production and transportation costs. 0.1% by mass or more, more preferably 0.5% by mass or more, further preferably 1.0% by mass or more, still more preferably 1.5% by mass or more, and from the viewpoint of improving storage stability. Preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less, More preferably, it is 10 mass% or less, More preferably, it is 7.0 mass% or less.
 本発明のリンス剤組成物が上記濃縮液である場合、上記濃縮液の25℃におけるpHは、好ましくは1.5以上、より好ましくは1.7以上、更に好ましくは2.0以上であり、そして、好ましくは12.5以下、より好ましくは12.0以下、更に好ましくは11.5以下である。 When the rinse agent composition of the present invention is the concentrated liquid, the pH of the concentrated liquid at 25 ° C. is preferably 1.5 or higher, more preferably 1.7 or higher, still more preferably 2.0 or higher, And preferably it is 12.5 or less, More preferably, it is 12.0 or less, More preferably, it is 11.5 or less.
 [リンス剤組成物の製造方法]
 本発明のリンス剤組成物は、例えば、水溶性高分子Aと、水系媒体と、必要に応じて任意成分とを公知の方法で配合する工程を含む製造方法によって製造できる。本願において「配合する」とは、水溶性高分子Aと必要に応じて任意成分を、同時に又は順次、水系媒体と混合することを含む。各成分の混合順序は、制限はない。
[Production method of rinse agent composition]
The rinse agent composition of this invention can be manufactured by the manufacturing method including the process of mix | blending water-soluble polymer A, an aqueous medium, and an arbitrary component as needed by a well-known method, for example. In the present application, “mixing” includes mixing the water-soluble polymer A and optional components as necessary with an aqueous medium simultaneously or sequentially. There is no restriction | limiting in the mixing order of each component.
 前記配合は、例えば、ホモミキサー、ホモジナイザー、超音波分散機及び湿式ボールミル等の混合器を用いて行うことができる。本実施形態のリンス剤組成物の製造方法における各成分の配合量は、上述したリンス剤組成物の各成分の含有量と同じとすることができる。 The blending can be performed, for example, using a mixer such as a homomixer, a homogenizer, an ultrasonic disperser, and a wet ball mill. The compounding quantity of each component in the manufacturing method of the rinse agent composition of this embodiment can be made the same as content of each component of the rinse agent composition mentioned above.
 [半導体基板の製造方法]
 本発明のリンス剤組成物は、砥粒と水溶性高分子Bとを含む研磨液組成物を用いて研磨された後のシリコンウェーハの表面に残った残渣を除去するために用いられる。本発明の半導体基板の製造方法の一例は、砥粒を含む研磨液組成物を用いて、被研磨シリコンウェーハ(「被研磨基板」とも言う。)を研磨する研磨工程と、研磨後シリコンウェーハを、本発明のリンス剤組成物を用いてリンス処理するリンス工程と、前記リンス工程でリンスされたシリコンウェーハ(「リンス後シリコンウェーハ」とも言う。)を洗浄する洗浄工程と、を含む。半導体基板の一例は、例えば、シリコンウェーハであり、本発明の半導体基板の製造方法の一例は、シリコンウェーハの製造方法である。本発明の半導体基板の製造方法の他の一例は、本発明のシリコンウェーハの製造方法でシリコンウェーハを製造する工程を含む半導体基板の製造方法であり、当該工程は、研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程と、研磨されたシリコンウェーハを本発明のリンス剤組成物を用いてリンスするリンス工程と、リンスされたシリコンウェーハを洗浄する洗浄工程とを含む。
[Method for Manufacturing Semiconductor Substrate]
The rinse agent composition of this invention is used in order to remove the residue which remained on the surface of the silicon wafer after grind | polishing using the polishing liquid composition containing an abrasive grain and the water-soluble polymer B. FIG. An example of the method for producing a semiconductor substrate of the present invention includes a polishing step of polishing a silicon wafer to be polished (also referred to as “substrate to be polished”) using a polishing composition containing abrasive grains, and a silicon wafer after polishing. A rinsing process for rinsing with the rinsing agent composition of the present invention, and a cleaning process for cleaning the silicon wafer rinsed in the rinsing process (also referred to as “post-rinsing silicon wafer”). An example of the semiconductor substrate is, for example, a silicon wafer, and an example of the semiconductor substrate manufacturing method of the present invention is a silicon wafer manufacturing method. Another example of the method for producing a semiconductor substrate of the present invention is a method for producing a semiconductor substrate including a step of producing a silicon wafer by the method for producing a silicon wafer of the present invention, and the step uses a polishing liquid composition. A polishing process for polishing the silicon wafer to be polished, a rinsing process for rinsing the polished silicon wafer with the rinse agent composition of the present invention, and a cleaning process for cleaning the rinsed silicon wafer.
 前記研磨工程には、シリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウェーハを平面化するラッピング(粗研磨)工程と、ラッピングされたシリコンウェーハをエッチングした後、シリコンウェーハ表面を鏡面化する仕上げ研磨工程とがある。 In the polishing step, a lapping (rough polishing) step of planarizing a silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape, and etching the lapped silicon wafer, the silicon wafer surface There is a final polishing process that mirrors the surface.
 前記研磨工程では、例えば、被研磨シリコンウェーハとパットとの間に研磨液組成物を供給し、被研磨シリコンウェーハとパットとが接した状態で、パットを被研磨シリコンウェーハに対して相対運動させる。パッドの回転数、被研磨基板の回転数、パッドを備えた研磨装置に設定される研磨荷重、研磨液組成物の供給速度、研磨時間等の研磨条件は、従来から公知の研磨条件と同じでよい。 In the polishing step, for example, a polishing liquid composition is supplied between the silicon wafer to be polished and the pad, and the pad is moved relative to the silicon wafer to be polished while the silicon wafer to be polished and the pad are in contact with each other. . Polishing conditions such as the number of revolutions of the pad, the number of revolutions of the substrate to be polished, the polishing load set in the polishing apparatus equipped with the pad, the supply speed of the polishing composition, and the polishing time are the same as conventionally known polishing conditions. Good.
 研磨工程で使用される研磨剤組成物としては、例えば、研磨速度向上、シリコンウェーハのHaze低減の観点から、砥粒としてシリカ粒子を含み、水溶性高分子Bを含んでいると好ましい。 The abrasive composition used in the polishing step preferably contains silica particles as abrasive grains and water-soluble polymer B from the viewpoint of improving the polishing rate and reducing the haze of the silicon wafer.
 前記リンス工程では、例えば、研磨後シリコンウェーハとパットとの間にリンス剤組成物を供給し、研磨後シリコンウェーハとパットとが接した状態で、パットを研磨後シリコンウェーハに対して相対運動させる。リンス工程におけるリンス処理は、研磨工程で用いられる研磨装置を用いて行える。パッドの回転数、研磨後シリコンウェーハの回転数、パッドを備えた研磨装置に設定される荷重、リンス剤組成物の供給速度等は、研磨工程おける対応する条件と同じでもよいし異なっていてもよい。リンス時間は、砥粒の付着抑制の観点から、好ましくは1秒以上、より好ましくは3秒以上であり、生産性の向上の観点から、好ましくは60秒以下、より好ましくは30秒以下である。ここで、リンス時間とは、リンス剤組成物を供給している時間を意味する。 In the rinsing step, for example, a rinse agent composition is supplied between the polished silicon wafer and the pad, and the pad is moved relative to the polished silicon wafer in a state where the polished silicon wafer and the pad are in contact with each other. . The rinsing process in the rinsing process can be performed using a polishing apparatus used in the polishing process. The number of rotations of the pad, the number of rotations of the silicon wafer after polishing, the load set in the polishing apparatus equipped with the pad, the supply speed of the rinse agent composition, etc. may be the same as or different from the corresponding conditions in the polishing process. Good. The rinse time is preferably 1 second or more, more preferably 3 seconds or more from the viewpoint of suppressing the adhesion of abrasive grains, and preferably 60 seconds or less, more preferably 30 seconds or less from the viewpoint of improving productivity. . Here, the rinse time means the time during which the rinse agent composition is supplied.
 前記リンス工程は、本発明のリンス剤組成物を用いて行われるリンス処理の前に、リンス液として水を用いる水リンス処理を含んでいてもよい。水リンス処理時間は、好ましくは2秒以上30秒以下である。 The rinsing step may include a water rinsing treatment using water as a rinsing liquid before the rinsing treatment performed using the rinsing agent composition of the present invention. The water rinse treatment time is preferably 2 seconds or more and 30 seconds or less.
 前記リンス工程で使用されるパッドは、研磨工程で使用されるパッドと同じでよく、不織布タイプ、スウェードタイプ等のいずれの種類のものであってもよい。また、研磨工程で使用されたパッドは交換せずに、そのままリンス工程に用いてもよく、この場合は、パッド中に研磨液組成物の砥粒が若干含まれていてもよい。前記リンス工程は、前記研磨工程の直後、研磨装置に取り付けられたままのシリコンウェーハに対して行うこともできる。 The pad used in the rinsing process may be the same as the pad used in the polishing process, and may be any kind such as a nonwoven fabric type or a suede type. Further, the pad used in the polishing step may be used as it is in the rinsing step without being exchanged. In this case, the pad may contain some abrasive grains of the polishing composition. The rinsing step may be performed on the silicon wafer that is still attached to the polishing apparatus immediately after the polishing step.
 前記リンス工程で使用されるリンス剤組成物の温度は、5~60℃であることが好ましい。 The temperature of the rinsing agent composition used in the rinsing step is preferably 5 to 60 ° C.
 リンス工程は、少なくとも仕上げ研磨工程の後に行うのが好適であるが、粗研磨工程及び仕上げ研磨工程の各工程の後に、各々行ってもよい。 The rinsing step is preferably performed at least after the finish polishing step, but may be performed after each step of the rough polishing step and the finish polishing step.
 前記洗浄工程では、例えば、リンス後シリコンウェーハを、洗浄剤に浸漬するか、又は、リンス後シリコンウェーハの洗浄されるべき面に洗浄剤を射出する。洗浄剤には、従来から公知の洗浄剤を用いればよく、例えば、オゾンを含んだ水溶液、フッ化水素アンモニウムを含んだ水溶液等があげられる。洗浄時間は、洗浄方法に応じて設定すればよい。 In the cleaning step, for example, the rinsed silicon wafer is immersed in a cleaning agent, or the cleaning agent is injected onto the surface to be cleaned of the rinsed silicon wafer. A conventionally known cleaning agent may be used as the cleaning agent, and examples thereof include an aqueous solution containing ozone and an aqueous solution containing ammonium hydrogen fluoride. The cleaning time may be set according to the cleaning method.
 前記研磨工程で使用する研磨液組成物は、例えば、シリカ粒子と水溶性高分子Bと含窒素塩基性化合物と水系媒体とを含む。前記研磨剤組成物は、研磨速度向上とLPDの低減の両立の観点から、好ましくは水溶性高分子Bを含む。 The polishing composition used in the polishing step includes, for example, silica particles, a water-soluble polymer B, a nitrogen-containing basic compound, and an aqueous medium. The abrasive composition preferably contains a water-soluble polymer B from the viewpoint of achieving both improvement in polishing rate and reduction in LPD.
 [水溶性高分子B]
 (1)水溶性高分子B
 水溶性高分子Bは、水分散液sのゼータ電位zと水分散液s0のゼータ電位z0との差(z-z0)が15mV以上となる水溶性高分子である。ここで、水分散液sは、水溶性高分子Bとシリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、水溶性高分子Bの濃度が0.01質量%、シリカ粒子の濃度が0.1質量%、25℃におけるpHが10.0の水溶性高分子含有シリカ水分散液である。水分散液s0は、シリカ粒子と水と必要に応じて塩酸又はアンモニアとからなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが10.0のシリカ水分散液である。ゼータ電位z、z0は、実施例に記載の方法により測定できる。水溶性高分子Bが2種以上の水溶性高分子からなる場合、2種以上の水溶性高分子Bの混合物が、ゼータ電位差(z-z0)が15mV以上となる性質を有する。
[Water-soluble polymer B]
(1) Water-soluble polymer B
The water-soluble polymer B is a water-soluble polymer in which the difference (z−z 0 ) between the zeta potential z of the aqueous dispersion s and the zeta potential z 0 of the aqueous dispersion s 0 is 15 mV or more. Here, the aqueous dispersion s is composed of a water-soluble polymer B, silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the water-soluble polymer B is 0.01% by mass, and the concentration of silica particles is A water-soluble polymer-containing silica water dispersion having a pH of 10.0% by mass and 10.0 at 25 ° C. The aqueous dispersion s 0 is a silica aqueous dispersion comprising silica particles, water, and optionally hydrochloric acid or ammonia, and having a concentration of the silica particles of 0.1% by mass and a pH at 25 ° C. of 10.0. . The zeta potentials z and z 0 can be measured by the method described in the examples. When the water-soluble polymer B is composed of two or more types of water-soluble polymers, a mixture of the two or more types of water-soluble polymers B has a property that the zeta potential difference (z−z 0 ) is 15 mV or more.
 前記ゼータ電位差(z-z0)は、研磨速度向上の観点から、15mV以上、好ましくは25mV以上、より好ましくは30mV以上であり、LPD低減の観点から、好ましくは50mV以下、より好ましくは46mV以下である。 The zeta potential difference (z−z 0 ) is 15 mV or more, preferably 25 mV or more, more preferably 30 mV or more from the viewpoint of improving the polishing rate, and preferably 50 mV or less, more preferably 46 mV or less from the viewpoint of LPD reduction. It is.
 水分散液s0のゼータ電位z0は、例えば、-50mV~-70mVの範囲内の所定の値であり、その一例として、シリカ原液(扶桑化学社製「PL-3」)を用いて調整された水分散液z0のゼータ電位(例えば、-61mV)である。 The zeta potential z 0 of the aqueous dispersion s 0 is, for example, a predetermined value within a range of −50 mV to −70 mV, and is adjusted using, for example, a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.). The zeta potential (for example, −61 mV) of the prepared aqueous dispersion z 0 .
 前記水分散液s中のシリカ粒子の二次粒径Dと、前記水分散液s0中のシリカ粒子の二次粒径D0との比(D/D0)は、研磨速度向上の観点から、好ましくは1.10以上、より好ましくは1.15以上、更に好ましくは1.30以上であり、そして、LPD低減の観点から、好ましくは1.60以下である。 The ratio (D / D 0 ) between the secondary particle diameter D of the silica particles in the aqueous dispersion s and the secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is a viewpoint of improving the polishing rate. Therefore, it is preferably 1.10 or more, more preferably 1.15 or more, still more preferably 1.30 or more, and preferably 1.60 or less from the viewpoint of LPD reduction.
 水分散液s0中のシリカ粒子の二次粒径D0は、例えば、64~73nmの範囲内の所定の値、好ましくは66~69nmの範囲内の所定の値であり、その一例として、シリカ原液(扶桑化学社製「PL-3」)をシリカ粒子の供給源として含む水分散液s0中のシリカ粒子の二次粒径(例えば、67.7nm)である。 The secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is, for example, a predetermined value within the range of 64 to 73 nm, preferably a predetermined value within the range of 66 to 69 nm. This is the secondary particle size (for example, 67.7 nm) of silica particles in an aqueous dispersion s 0 containing a silica stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.) as a silica particle supply source.
 前記水溶性高分子Bとしては、多糖類、アルキルアクリルアミド系ポリマー、ポリビニルアルコール(PVA)、ポリビニルアルコール誘導体(ただし、アニオン変性ポリビニルアルコールを除く。)からなる群から選ばれる少なくとも1種が好ましく挙げられる。前記多糖類としては、ヒドロキシエチルセルロース(HEC)が好ましい。前記アルキルアクリルアミド系ポリマーとしては、ポリ(ヒドロキシ)アルキルアクリルアミド、ポリアルキルアクリルアミドが好ましく、ポリヒドロキシエチルアクリルアミド(pHEAA)がより好ましい。ポリビニルアルコール誘導体としては、ポリビニルアルコール・ポリエチレングリコール・グラフトコポリマー(PEG-g-PVA)、ポリエチレンオキサイド変性ポリビニルアルコールが好ましい。前記水溶性高分子Bは、これらの中でも、研磨速度向上とLPD低減の両立の観点から、好ましくは、HEC、ポリ(ヒドロキシ)アルキルアクリルアミド、PVA、PEG-g-PVA、及びポリエチレンオキサイド変性ポリビニルアルコールからなる群から選ばれる少なくとも1種であり、より好ましくは、HEC、pHEAA、及びPVAからなる群から選ばれる少なくとも1種であり、更に好ましくは、HEC、及びpHEAAから選ばれる少なくとも1種であり、更により好ましくはHECである。 The water-soluble polymer B is preferably at least one selected from the group consisting of polysaccharides, alkylacrylamide polymers, polyvinyl alcohol (PVA), and polyvinyl alcohol derivatives (excluding anion-modified polyvinyl alcohol). . As the polysaccharide, hydroxyethyl cellulose (HEC) is preferable. As the alkyl acrylamide polymer, poly (hydroxy) alkyl acrylamide and polyalkyl acrylamide are preferable, and polyhydroxyethyl acrylamide (pHEAA) is more preferable. The polyvinyl alcohol derivative is preferably polyvinyl alcohol / polyethylene glycol / graft copolymer (PEG-g-PVA) or polyethylene oxide-modified polyvinyl alcohol. Among these, the water-soluble polymer B is preferably HEC, poly (hydroxy) alkylacrylamide, PVA, PEG-g-PVA, and polyethylene oxide-modified polyvinyl alcohol from the viewpoint of achieving both improvement in polishing rate and reduction in LPD. At least one selected from the group consisting of, more preferably at least one selected from the group consisting of HEC, pHEAA, and PVA, more preferably at least one selected from HEC, and pHEAA. Even more preferred is HEC.
 前記水溶性高分子Bの重量平均分子量は、研磨速度向上とLPD低減の両立の観点から、好ましくは1万以上、より好ましくは5万以上、更に好ましくは10万以上であり、そして、同様の観点から、好ましくは500万以下、より好ましくは300万以下、更に好ましくは100万以下である。尚、前記水溶性高分子Bの重量平均分子量は実施例に記載の方法により測定できる。 The weight average molecular weight of the water-soluble polymer B is preferably 10,000 or more, more preferably 50,000 or more, still more preferably 100,000 or more, from the viewpoint of achieving both improvement of the polishing rate and LPD reduction. From the viewpoint, it is preferably 5 million or less, more preferably 3 million or less, and still more preferably 1 million or less. The weight average molecular weight of the water-soluble polymer B can be measured by the method described in the examples.
 研磨液組成物中における前記水溶性高分子Bの含有量は、研磨速度向上の観点から、好ましくは0.001質量%以上、より好ましくは0.003質量%以上、更に好ましくは0.005質量%以上であり、そして、同様の観点から、好ましくは1.0質量%以下、より好ましくは0.5質量%以下、更に好ましくは0.1質量%以下である。 The content of the water-soluble polymer B in the polishing composition is preferably 0.001% by mass or more, more preferably 0.003% by mass or more, and still more preferably 0.005% by mass from the viewpoint of improving the polishing rate. From the same viewpoint, it is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, and still more preferably 0.1% by mass or less.
 リンス工程で使用するリンス剤組成物に含まれる水溶性高分子Aが、ポリグリセリン及びポリグリセリン誘導体から選ばれる少なくとも1種でありる場合、前記研磨工程で使用する研磨液組成物に含まれる水溶性高分子Bは、研磨速度向上とLPD低減の両立の観点から、HEC及びポリ(ヒドロキシ)アルキルアクリルアミドが好ましい。前記リンス工程で使用するリンス剤組成物に含まれる水溶性高分子Aが、ポリグリセリン誘導体である場合、研磨工程で使用する研磨液組成物に含まれる前記水溶性高分子BはHECであると好ましい。この場合、ポリグリセリン誘導体は、ポリグリセリンアルキルエーテルを含んでいると好ましく、ポリグリセリンアルキルエーテルであるとより好ましい。 When the water-soluble polymer A contained in the rinse agent composition used in the rinsing step is at least one selected from polyglycerin and polyglycerin derivatives, the water-soluble polymer contained in the polishing liquid composition used in the polishing step The high molecular weight polymer B is preferably HEC and poly (hydroxy) alkylacrylamide from the viewpoint of achieving both improvement in polishing rate and reduction in LPD. When the water-soluble polymer A contained in the rinse agent composition used in the rinsing step is a polyglycerin derivative, the water-soluble polymer B contained in the polishing composition used in the polishing step is HEC. preferable. In this case, the polyglycerol derivative preferably contains a polyglycerol alkyl ether, and more preferably a polyglycerol alkyl ether.
 [シリカ粒子]
 研磨液組成物に含まれるシリカ粒子は、シリコンウェーハの表面平滑性を向上させる観点から、コロイダルシリカがより好ましく、アルカリ金属やアルカリ土類金属等によるシリコンウェーハの汚染を防止する観点から、アルコキシシランの加水分解物から得たものであることが好ましい。研磨液組成物に含まれるシリカ粒子の平均一次粒子径は、高研磨速度の確保の観点から、好ましくは5nm以上、より好ましくは10nm以上であり、そして、LPD低減の観点から、好ましくは50nm以下、より好ましくは45nm以下である。シリカ粒子の平均一次粒子径は、BET(窒素吸着)法によって算出される比表面積S(m2/g)を用いて算出できる。
[Silica particles]
From the viewpoint of improving the surface smoothness of the silicon wafer, the silica particles contained in the polishing composition are more preferably colloidal silica, and from the viewpoint of preventing contamination of the silicon wafer with alkali metal, alkaline earth metal, etc. It is preferable that it is obtained from the hydrolyzate. The average primary particle diameter of the silica particles contained in the polishing composition is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of securing a high polishing rate, and preferably 50 nm or less from the viewpoint of reducing the LPD. More preferably, it is 45 nm or less. The average primary particle diameter of the silica particles can be calculated using the specific surface area S (m 2 / g) calculated by the BET (nitrogen adsorption) method.
 シリカ粒子の会合度は、高研磨速度の確保、及びLPDの低減の観点から、好ましくは1.1以上3.0以下、より好ましくは1.8以上2.5以下である。シリカ粒子の会合度とは、シリカ粒子の形状を表す係数であり、下記式により算出される。平均二次粒子径は、動的光散乱法によって測定される値であり、例えば、実施例に記載の装置を用いて測定できる。
会合度=平均二次粒子径/平均一次粒子径
The degree of association of the silica particles is preferably 1.1 or more and 3.0 or less, more preferably 1.8 or more and 2.5 or less, from the viewpoint of securing a high polishing rate and reducing LPD. The association degree of silica particles is a coefficient representing the shape of silica particles, and is calculated by the following formula. The average secondary particle diameter is a value measured by a dynamic light scattering method, and can be measured using, for example, the apparatus described in the examples.
Degree of association = average secondary particle size / average primary particle size
 研磨液組成物に含まれるシリカ粒子の含有量は、高研磨速度の確保の観点から、好ましくは0.05質量%以上、より好ましくは0.1質量%以上であり、そして、経済性、及び研磨液組成物におけるシリカ粒子の凝集抑制及び分散安定性向上の観点から、好ましくは10質量%以下、より好ましくは7.5質量%以下である。 The content of silica particles contained in the polishing liquid composition is preferably 0.05% by mass or more, more preferably 0.1% by mass or more, from the viewpoint of ensuring a high polishing rate, and economic efficiency, and From the viewpoint of suppressing aggregation of silica particles and improving dispersion stability in the polishing composition, it is preferably 10% by mass or less, more preferably 7.5% by mass or less.
 [含窒素塩基性化合物]
 研磨液組成物に含まれる含窒素塩基性化合物は、高研磨速度の確保、及び表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、アミン化合物及びアンモニウム化合物から選ばれる少なくとも1種類以上の含窒素塩基性化合物であり、例えば、アンモニア、水酸化アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、ジメチルアミン、トリメチルアミン、ジエチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N一メチルエタノールアミン、N-メチル-N,N一ジエタノ-ルアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、N,N-ジブチルエタノールアミン、N-(β-アミノエチル)エタノ-ルアミン、モノイソプロパノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、エチレンジアミン、ヘキサメチレンジアミン、ピペラジン・六水和物、無水ピペラジン、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、ジエチレントリアミン、水酸化テトラメチルアンモニウム、及びヒドロキシアミン等が挙げられる。中でも、アンモニア、アンモニアとヒドロキシアミンの混合物が好ましく、アンモニアがより好ましい。
[Nitrogen-containing basic compound]
The nitrogen-containing basic compound contained in the polishing composition is at least one selected from an amine compound and an ammonium compound from the viewpoints of ensuring a high polishing rate and reducing surface roughness (haze) and surface defects (LPD). These nitrogen-containing basic compounds are, for example, ammonia, ammonium hydroxide, ammonium carbonate, ammonium hydrogen carbonate, dimethylamine, trimethylamine, diethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, N-methylethanolamine, N-methyl-N, N-diethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, N, N-dibutylethanolamine, N- (β-aminoethyl) ethanolamine, monoisopropanol Ami , Diisopropanolamine, triisopropanolamine, ethylenediamine, hexamethylenediamine, piperazine hexahydrate, anhydrous piperazine, 1- (2-aminoethyl) piperazine, N-methylpiperazine, diethylenetriamine, tetramethylammonium hydroxide, and hydroxy An amine etc. are mentioned. Among these, ammonia, a mixture of ammonia and hydroxyamine is preferable, and ammonia is more preferable.
 研磨液組成物に含まれる含窒素塩基性化合物の含有量は、シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減、及び高研磨速度の確保の観点から、好ましくは0.001質量%以上、より好ましくは0.005質量%以上であり、そして、シリコンウェーハの表面粗さ(ヘイズ)及び表面欠陥(LPD)の低減の観点から、好ましくは1質量%以下、より好ましくは0.5質量%以下である。 The content of the nitrogen-containing basic compound contained in the polishing composition is preferably 0.001 from the viewpoint of reducing the surface roughness (haze) and surface defects (LPD) of the silicon wafer and ensuring a high polishing rate. From the viewpoint of reducing the surface roughness (haze) and surface defects (LPD) of the silicon wafer, it is preferably 1% by mass or less, more preferably 0% by mass or more, more preferably 0.005% by mass or more. .5% by mass or less.
 [水系媒体]
 研磨液組成物に含まれる水系媒体は、本発明のリンス剤組成物に含まれる水系媒体と同じでよい。研磨液組成物における水系媒体の含有量は、例えば、シリカ粒子、水溶性高分子B、含窒素塩基性化合物、及び後述の任意成分を除いた残余であってよい。
[Aqueous medium]
The aqueous medium contained in the polishing liquid composition may be the same as the aqueous medium contained in the rinse agent composition of the present invention. The content of the aqueous medium in the polishing liquid composition may be, for example, the residue excluding silica particles, water-soluble polymer B, nitrogen-containing basic compound, and optional components described below.
 前記研磨液組成物の25℃におけるpHは、高研磨速度の確保の観点から、好ましくは8以上、より好ましくは9以上、更に好ましくは10以上であり、安全性の観点から、好ましくは12以下、より好ましくは11以下である。pHの調整は、含窒素塩基性化合物及び/又はpH調整剤を適宜添加して行うことができる。ここで、25℃におけるpHは、pHメータ(東亜電波工業株式会社、HM-30G)を用いて測定でき、電極の研磨液組成物への浸漬後1分後の数値である。 The pH of the polishing composition at 25 ° C. is preferably 8 or more, more preferably 9 or more, still more preferably 10 or more from the viewpoint of ensuring a high polishing rate, and preferably 12 or less from the viewpoint of safety. More preferably, it is 11 or less. The pH can be adjusted by appropriately adding a nitrogen-containing basic compound and / or a pH adjuster. Here, the pH at 25 ° C. can be measured using a pH meter (Toa Denpa Kogyo Co., Ltd., HM-30G), and is a value one minute after the electrode is immersed in the polishing composition.
 前記研磨液組成物は、例えば、シリカ粒子と水溶性高分子Bと水系媒体と含窒素塩基性化合物と必要に応じ任意成分とを公知の方法で配合する工程を含む製造方法によって製造できる。任意成分としては、水溶性高分子B以外の水溶性高分子、pH調整剤、防腐剤、アルコール類、キレート剤及び非イオン性界面活性剤から選ばれる少なくとも1種の任意成分が挙げられる。 The polishing composition can be produced, for example, by a production method including a step of blending silica particles, a water-soluble polymer B, an aqueous medium, a nitrogen-containing basic compound, and optional components as necessary, by a known method. Examples of the optional component include at least one optional component selected from water-soluble polymers other than the water-soluble polymer B, pH adjusters, preservatives, alcohols, chelating agents, and nonionic surfactants.
 本発明の半導体基板の製造方法は、シリコンウェーハを製造する工程の他に、素子分離膜の形成工程、層間絶縁膜の平坦化工程、金属配線の形成工程等をさらに含んでいてもよい。 The semiconductor substrate manufacturing method of the present invention may further include an element isolation film forming process, an interlayer insulating film flattening process, a metal wiring forming process and the like in addition to the silicon wafer manufacturing process.
 [リンス方法]
 本発明のシリコンウェーハのリンス方法(以下、「本発明のリンス方法」ともいう。)は、本発明のリンス剤組成物を用いて、研磨後シリコンウェーハに対しリンス処理をするリンス工程を含む。本発明のリンス方法におけるリンス工程は、上記本発明のシリコンウェーハの製造方法、及び本発明の半導体基板の製造方法における、リンス工程と同様にして行える。本発明のリンス方法では、リンス工程において、本発明のリンス剤組成物を用いるので、研磨後シリコンウェーハ上の砥粒の残留量を顕著に低減することができ、加えて、砥粒の凝集も抑制できるので、リンスの後に行われるシリコンウェーハの洗浄の時間の短縮化とLPDの低減が行える。
[Rinse method]
The method for rinsing a silicon wafer of the present invention (hereinafter also referred to as “the rinsing method of the present invention”) includes a rinsing step of rinsing the silicon wafer after polishing using the rinse agent composition of the present invention. The rinsing step in the rinsing method of the present invention can be performed in the same manner as the rinsing step in the above-described method for manufacturing a silicon wafer of the present invention and the method for manufacturing a semiconductor substrate of the present invention. In the rinsing method of the present invention, since the rinse agent composition of the present invention is used in the rinsing step, the residual amount of abrasive grains on the silicon wafer after polishing can be remarkably reduced. Since it can be suppressed, the cleaning time of the silicon wafer performed after rinsing can be shortened and LPD can be reduced.
 本発明は、更に以下の組成物、製造方法等に関する。 The present invention further relates to the following composition, production method and the like.
 [1] 水溶性高分子及び水系媒体を含むシリコンウェーハ用リンス剤組成物であって、
 前記水溶性高分子は、
 前記水溶性高分子とシリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記水溶性高分子の濃度が0.1質量%、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0の水溶性高分子含有シリカ水分散液(水分散液S)のゼータ電位Zと、シリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0のシリカ水分散液(水分散液S0)のゼータ電位Z0との差(Z-Z0)が、25mV以下となる水溶性高分子である、シリコンウェーハ用リンス剤組成物。
 [2] 水溶性高分子及び水系媒体を含むシリコンウェーハ用リンス剤組成物であって、
 前記水溶性高分子が、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体、及びポリアクリルアミドからなる群から選ばれる少なくとも1種のを含む、シリコンウェーハ用リンス剤組成物。
 [3] 前記差(Z-Z0)は、好ましくは15mV以下、より好ましくは9mV以下、更に好ましくは7mV以下である、前記[1]に記載のシリコンウェーハ用リンス剤組成物。
 [4] 前記水溶性高分子が、
 前記水分散液S中のシリカ粒子の二次粒径dと、前記水分散液S0中のシリカ粒子の二次粒径d0との比(d/d0)が、好ましくは1.35以下、より好ましくは1.17以下、更に好ましくは1.10以下、更により好ましくは1.08以下であり、そして、好ましくは1.00以上、より好ましくは1.02以上、更に好ましくは1.04以上、更により好ましくは1.05以上、となる水溶性高分子である、前記[1]又は[3]に記載のシリコンウェーハ用リンス剤組成物。
 [5] 前記水溶性高分子が、好ましくは、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体、及びポリアクリルアミドからなる群から選ばれる少なくとも1種である、前記[1]、[3]、及び[4]のうちのいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [6] 前記ポリグリセリン誘導体は、好ましくはポリグリセリンに官能基がエーテル結合又はエステル結合で付加したもの、より好ましくはポリグリセリンに官能基がエーテル結合で付加したものである、前記[2]又は[5]に記載の、シリコンウェーハ用リンス剤組成物。
 [7] ポリグリセリン誘導体が、好ましくはポリグリセリンのアルキルエーテルである、前記[5]に記載のシリコンウェーハ用リンス剤組成物。
 [8] 前記水溶性高分子は、好ましくは、ポリグリセリン、ポリグリセリンアルキルエーテル、ポリグリセリンジアルキルエーテル、ポリグリセリン脂肪酸エステル、ポリエチレンオキサイド変性ポリビニルアルコール、スルホン酸変性ポリビニルアルコール、及びポリアクリルアミドからなる群から選ばれる少なくとも1種であり、より好ましくは、ポリグリセリンアルキルエーテルである、前記[1]から[4]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [9] 水溶性高分子は、好ましくは、ポリグリセリンとポリグリセリンアルキルエーテルの両方を含んでいる、前記[1]から[4]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [10] ポリグリセリン誘導体の疎水基の炭素数は、好ましくは6以上、より好ましくは8以上であり、そして、好ましくは22以下、より好ましくは18以下である、前記[2]、[5]から[7]のうちのいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [11] 質量比(ポリグリセリン/ポリグリセリンアルキルエーテル)は、好ましくは0.5以上、より好ましくは1.0以上、更に好ましくは2.0以上であり、そして、好ましくは10以下、より好ましくは6.0以下、更に好ましくは5.0以下である、前記[9]に記載のシリコンウェーハ用リンス剤組成物。
 [12] 前記水溶性高分子の重量平均分子量は、好ましくは500以上、より好ましくは700以上、更に好ましくは900以上であり、そして、好ましくは1,500,000以下、より好ましくは500,000以下、更に好ましくは100,000以下、更により好ましくは25,000以下、更により好ましくは10,000以下である、前記[2]、[5]から[11]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [13] 前記水溶性高分子は、好ましくは5量体以上、より好ましくは10量体以上、更に好ましくは15量体以上であり、そして、好ましくは5,000量体以下、より好ましくは500量体以下、更に好ましくは200量体以下、更により好ましくは150量体以下、更により好ましくは100量体以下である、前記[2]、[5]から[12]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [14] リンス剤組成物における前記水溶性高分子の含有量は、好ましくは0.001質量%以上、より好ましくは0.015質量%以上、更に好ましくは0.020質量%以上、更により好ましくは0.025質量%以上、更により好ましくは0.03質量%以上であり、そして、好ましくは1.0質量%以下、より好ましくは0.7質量%以下、更に好ましくは0.4質量%以下、更により好ましくは0.1質量%以下、更により好ましくは0.08質量%以下である、前記[1]から[13]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [15] 前記水溶性高分子が、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体、及びポリアクリルアミドからなる群から選ばれる少なくとも1種の水溶性高分子a1と、ベタイン構造を含む水溶性高分子a2との混合物である、前記[1]に記載のシリコンウェーハ用リンス剤組成物。
 [16] 前記水溶性高分子が、ポリグリセリンアルキルエーテルと、ベタイン構造を含む水溶性高分子a2との混合物である、前記[15]に記載のシリコンウェーハ用リンス剤組成物。
 [17] 前記差(Z-Z0)は、好ましくは15mV以下、より好ましくは12mV以下、更に好ましくは9mV以下である、前記[15]又は[16]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [18] 前記水溶性高分子が、
 前記水分散液S中のシリカ粒子の二次粒径dと、前記水分散液S0中のシリカ粒子の二次粒径d0との比(d/d0)が、好ましくは1.35以下、より好ましくは1.34以下、更に好ましくは1.33以下、更により好ましくは1.32以下であり、そして、好ましくは1.00以上、より好ましくは1.25以上、更に好ましくは1.30以上、更により好ましくは1.31以上、となる水溶性高分子である、前記[15]から[17]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [19] 前記リンス剤組成物における前記水溶性高分子a2の含有量は、好ましくは0.00001質量%以上、より好ましくは0.00005質量%以上、更に好ましくは0.0001質量%以上であり、そして、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは1質量%以下である、前記[15]から[18]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [20] 前記水溶性高分子a1と前記水溶性高分子a2の質量比(水溶性高分子a1/水溶性高分子a2)が、好ましくは0.5以上、より好ましくは1以上、更に好ましくは2以上であり、そして、好ましくは500以下、より好ましくは200以下、更に好ましくは100以下である、前記[15]から[19]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [21] 前記水溶性高分子a2が、下記式(1)で表される構成単位Aを含む、前記[15]から[20]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
Figure JPOXMLDOC01-appb-C000003
 ただし、前記式(1)中、
1~R3:同一又は異なって、水素原子、メチル基、又はエチル基
4:炭素数1以上4以下のアルキレン基、又は-Y1-OPO3 --Y2
1、Y2:同一又は異なって、炭素数1以上4以下のアルキレン基
5、R6:同一又は異なって、炭素数1以上4以下の炭化水素基
1:O又はNR7
7:水素原子又は炭素数1以上4以下の炭化水素基
2:炭素数1以上4以下の炭化水素基、-R17SO3 -、又は-R18COO-
17、R18:同一又は異なって、炭素数1以上4以下のアルキレン基、を示す。
 ただし、X2は、R4が炭素数1以上4以下のアルキレン基のとき、-R17SO3 -、又は-R18COO-であり、R4が-Y1-OPO3 --Y2-のとき、炭素数1以上4以下の炭化水素基である。
 [22] 前記水溶性高分子a2が、下記式(2)で表される構成単位Bを含む、前記[21]に記載のシリコンウェーハ用リンス剤組成物。
Figure JPOXMLDOC01-appb-C000004
 ただし、式(2)中、
8~R10:同一又は異なって、水素原子、メチル基又はエチル基
3:O又はNR19
19:水素原子又は炭素数1以上4以下の炭化水素基
11:炭素数1以上22以下のアルキレン基(ただし、前記アルキレン基の水素原子は水酸基で置換されていてもよい。)又は-(AO)m-(ただし、AOは炭素数2以上4以下のアルキレンオキシ基、mは平均付加モル数で1以上150以下である。)
4:水素原子、炭素数1以上4以下の炭化水素基(ただし、前記炭化水素基の水素原子は水酸基で置換されていてもよい。)、水酸基、N+121314又はNR1516
12~R16:同一又は異なって、水素原子又は炭素数1以上4以下の炭化水素基、を示す。
 [23] 前記水溶性高分子a2における前記構成単位Aと前記構成単位Bのモル比(構成単位A/構成単位B)は、好ましくは10/90以上、より好ましくは20/80以上、更に好ましくは30/70以上であり、そして、好ましくは98/2以下、より好ましくは95/5以下である、前記[22]に記載のシリコンウェーハ用リンス剤組成物。
 [24]
 塩基性化合物をさらに含む、前記[1]から[23]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [25] 前記リンス剤組成物の25℃におけるpHは、好ましくは2以上、より好ましくは2.5以上、より好ましくは3.0以上であり、そして、好ましくは12以下、より好ましくは11.5以下、更に好ましくは11.0以下である、前記[1]から[24]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [26]前記シリコンウェーハ用リンス剤組成物は、シリカ粒子と水溶性高分子と含む研磨液組成物を用いて研磨されたシリコンウェーハに対して使用されるシリコンウェーハ用リンス剤組成物であって、
 前記水分散液Sと前記水分散液S0の調製に用いられるシリカ粒子が、前記研磨液組成物に含まれる前記シリカ粒子と同じものである、前記[1]、[3]から[25]のいずれかに記載のシリコンウェーハ用リンス剤組成物。
 [27] 研磨されたシリコンウェーハを、前記[1]から[26]のいずれかに記載のリンス剤組成物を用いてリンスする工程を含む、シリコンウェーハのリンス方法。
 [28] 研磨されたシリコンウェーハを、前記[1]から[26]のいずれかに記載のリンス剤組成物を用いてリンスする工程を含む、半導体基板の製造方法。
 [29] シリカ粒子と水溶性高分子と含む研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程と、
 研磨されたシリコンウェーハを前記[1]から[26]のいずれかに記載のリンス剤組成物を用いてリンスするリンス工程と、
 リンスされたシリコンウェーハを洗浄する洗浄工程と、を含み、
 前記水分散液Sと前記水分散液S0の調製に用いられるシリカ粒子が、前記研磨液組成物に含まれる前記シリカ粒子と同じものである、半導体基板の製造方法。
 [30] 前記研磨工程は、好ましくはシリコン単結晶インゴットを薄円板状にスライスすることにより得られたシリコンウェーハを平面化する粗研磨工程又はラッピングされたシリコンウェーハをエッチングした後、シリコンウェーハ表面を鏡面化する仕上げ研磨工程、より好ましくは前記仕上げ研磨工程である、前記[29]に記載の半導体基板の製造方法。
 [31] 前記[1]から[26]のいずれかに記載のリンス剤組成物に含まれる前記水溶性高分子を水溶性高分子Aと称することとすると、
 シリカ粒子と水溶性高分子Bと含窒素塩基性化合物と水系媒体を含む研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程と、
 研磨されたシリコンウェーハを前記[1]から[26]のいずれかに記載のリンス剤組成物を用いてリンス処理をするリンス工程と、
 リンスされたシリコンウェーハを洗浄する洗浄工程と、を含む、シリコンウェーハの製造方法。
 [32] 前記水溶性高分子Bが、
 前記水溶性高分子とシリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記水溶性高分子の濃度が0.01質量%、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが10.0の水溶性高分子含有シリカ水分散液(水分散液s)のゼータ電位zと、シリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが10.0のシリカ水分散液(水分散液s0)のゼータ電位z0との差(z-z0)が、15mV以上となる水溶性高分子Bである、前記[31]に記載のシリコンウェーハの製造方法。
 [33] 前記水溶性高分子Bが、
 前記水分散液s中のシリカ粒子の二次粒径Dと、前記水分散液s0中のシリカ粒子の二次粒径D0との比(D/D0)が、1.10以上となる水溶性高分子である、前記[32]に記載のシリコンウェーハの製造方法。
 [34] 前記水溶性高分子Bが、多糖類、アルキルアクリルアミド系ポリマー、ポリビニルアルコール、及びポリビニルアルコール誘導体(ただし、アニオン変性ポリビニルアルコールを除く。)からなる群から選ばれる少なくとも1種である、前記[31]から[33]のいずれかに記載のシリコンウェーハの製造方法。
 [35] 前記水溶性高分子Bがヒドロキシエチルセルロースであり、
 前記水溶性高分子Aがポリグリセリン誘導体である、前記[31]から[34]のいずれかに記載のシリコンウェーハの製造方法。
 [36] 前記リンス工程において、前記リンス処理の前に、リンス液として水を用いる水リンス処理を行う、前記[31]から[35]のいずれかに記載のシリコンウェーハの製造方法。
 [37] 前記リンス工程におけるリンス処理を、研磨工程で用いられる研磨装置を用いて行う、前記[31]から[36]のいずれかに記載のシリコンウェーハの製造方法。
 [38] 前記[31]から[37]のいずれかに記載のシリコンウェーハの製造方法でシリコンウェーハを製造する工程を含む半導体基板の製造方法。
[1] A rinse agent composition for silicon wafers comprising a water-soluble polymer and an aqueous medium,
The water-soluble polymer is
It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the water-soluble polymer is 0.1% by mass, the concentration of the silica particles is 0.1% by mass, 25 A zeta potential Z of a water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion S) having a pH of 7.0 at 0 ° C., silica particles, water, and optionally hydrochloric acid or ammonia. Water solubility in which the difference (Z−Z 0 ) from the zeta potential Z 0 of the silica aqueous dispersion (aqueous dispersion S 0 ) having a concentration of 0.1% by mass and a pH of 7.0 at 25 ° C. is 25 mV or less A rinse composition for silicon wafers, which is a polymer.
[2] A rinsing agent composition for a silicon wafer comprising a water-soluble polymer and an aqueous medium,
A rinsing agent composition for silicon wafers, wherein the water-soluble polymer contains at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide.
[3] The rinse agent composition for silicon wafers according to [1], wherein the difference (Z−Z 0 ) is preferably 15 mV or less, more preferably 9 mV or less, and even more preferably 7 mV or less.
[4] The water-soluble polymer is
The ratio (d / d 0 ) between the secondary particle diameter d of the silica particles in the aqueous dispersion S and the secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is preferably 1.35. Or less, more preferably 1.17 or less, still more preferably 1.10 or less, even more preferably 1.08 or less, and preferably 1.00 or more, more preferably 1.02 or more, and still more preferably 1. The rinse composition for a silicon wafer according to the above [1] or [3], which is a water-soluble polymer of 0.04 or more, and even more preferably 1.05 or more.
[5] The water-soluble polymer is preferably at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide. The rinse agent composition for silicon wafers in any one of [3] and [4].
[6] The polyglycerin derivative is preferably a polyglycerin obtained by adding a functional group to an ether bond or an ester bond, and more preferably a polyglycerin obtained by adding a functional group to an ether bond. The rinse agent composition for silicon wafers according to [5].
[7] The rinse composition for silicon wafers according to [5], wherein the polyglycerol derivative is preferably an alkyl ether of polyglycerol.
[8] The water-soluble polymer is preferably selected from the group consisting of polyglycerol, polyglycerol alkyl ether, polyglycerol dialkyl ether, polyglycerol fatty acid ester, polyethylene oxide modified polyvinyl alcohol, sulfonic acid modified polyvinyl alcohol, and polyacrylamide. The rinse agent composition for silicon wafers according to any one of [1] to [4], which is at least one selected, and more preferably polyglycerin alkyl ether.
[9] The rinse composition for a silicon wafer according to any one of [1] to [4], wherein the water-soluble polymer preferably contains both polyglycerin and polyglycerin alkyl ether.
[10] The number of carbon atoms of the hydrophobic group of the polyglycerol derivative is preferably 6 or more, more preferably 8 or more, and preferably 22 or less, more preferably 18 or less, [2], [5] To [7]. A rinsing agent composition for silicon wafers.
[11] The mass ratio (polyglycerin / polyglycerin alkyl ether) is preferably 0.5 or more, more preferably 1.0 or more, still more preferably 2.0 or more, and preferably 10 or less, more preferably Is 6.0 or less, more preferably 5.0 or less, the rinse agent composition for silicon wafers according to the above [9].
[12] The weight average molecular weight of the water-soluble polymer is preferably 500 or more, more preferably 700 or more, still more preferably 900 or more, and preferably 1,500,000 or less, more preferably 500,000. The silicon wafer according to any one of [2], [5] to [11], which is more preferably 100,000 or less, still more preferably 25,000 or less, and still more preferably 10,000 or less. Rinsing agent composition.
[13] The water-soluble polymer is preferably a pentamer or more, more preferably a 10-mer or more, still more preferably a 15-mer or more, and preferably a 5,000-mer or less, more preferably 500. The above-mentioned [2], [5] to [12], which is a monomer or less, more preferably a 200-mer or less, still more preferably a 150-mer or less, and still more preferably a 100-mer or less. Rinsing agent composition for silicon wafers.
[14] The content of the water-soluble polymer in the rinse agent composition is preferably 0.001% by mass or more, more preferably 0.015% by mass or more, still more preferably 0.020% by mass or more, and still more preferably. Is 0.025% by mass or more, more preferably 0.03% by mass or more, and preferably 1.0% by mass or less, more preferably 0.7% by mass or less, and further preferably 0.4% by mass. Hereinafter, the rinse agent composition for silicon wafers according to any one of [1] to [13], which is still more preferably 0.1% by mass or less, and still more preferably 0.08% by mass or less.
[15] The water-soluble polymer is at least one water-soluble polymer a1 selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide, and a betaine structure. The rinse agent composition for silicon wafers according to [1] above, which is a mixture with a water-soluble polymer a2 containing
[16] The rinse composition for silicon wafers according to [15], wherein the water-soluble polymer is a mixture of polyglycerin alkyl ether and a water-soluble polymer a2 containing a betaine structure.
[17] The silicon wafer rinse according to any one of [15] and [16], wherein the difference (Z−Z 0 ) is preferably 15 mV or less, more preferably 12 mV or less, and further preferably 9 mV or less. Agent composition.
[18] The water-soluble polymer is
The ratio (d / d 0 ) between the secondary particle diameter d of the silica particles in the aqueous dispersion S and the secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is preferably 1.35. Or less, more preferably 1.34 or less, still more preferably 1.33 or less, still more preferably 1.32 or less, and preferably 1.00 or more, more preferably 1.25 or more, still more preferably 1. The rinsing composition for silicon wafers according to any one of [15] to [17], which is a water-soluble polymer that is 30 or more, and even more preferably 1.31 or more.
[19] The content of the water-soluble polymer a2 in the rinse agent composition is preferably 0.00001% by mass or more, more preferably 0.00005% by mass or more, and further preferably 0.0001% by mass or more. And the rinse agent composition for silicon wafers according to any one of [15] to [18], which is preferably 10% by mass or less, more preferably 5% by mass or less, and still more preferably 1% by mass or less.
[20] The mass ratio of the water-soluble polymer a1 and the water-soluble polymer a2 (water-soluble polymer a1 / water-soluble polymer a2) is preferably 0.5 or more, more preferably 1 or more, and still more preferably. The rinse composition for silicon wafers according to any one of [15] to [19], which is 2 or more, and preferably 500 or less, more preferably 200 or less, and still more preferably 100 or less.
[21] The rinse agent composition for silicon wafers according to any one of [15] to [20], wherein the water-soluble polymer a2 includes a structural unit A represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
However, in the formula (1),
R 1 to R 3 : the same or different, a hydrogen atom, a methyl group, or an ethyl group R 4 : an alkylene group having 1 to 4 carbon atoms, or —Y 1 —OPO 3 —Y 2
Y 1 , Y 2 : the same or different, an alkylene group having 1 to 4 carbon atoms R 5 , R 6 : the same or different, a hydrocarbon group having 1 to 4 carbon atoms X 1 : O or NR 7
R 7 : a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms X 2 : a hydrocarbon group having 1 to 4 carbon atoms, —R 17 SO 3 , or —R 18 COO
R 17 and R 18 are the same or different and each represents an alkylene group having 1 to 4 carbon atoms.
X 2 is —R 17 SO 3 or —R 18 COO when R 4 is an alkylene group having 1 to 4 carbon atoms, and R 4 is —Y 1 —OPO 3 —Y 2. In the case of-, it is a hydrocarbon group having 1 to 4 carbon atoms.
[22] The rinse agent composition for silicon wafers according to [21], wherein the water-soluble polymer a2 includes a structural unit B represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
However, in Formula (2),
R 8 to R 10 : the same or different, hydrogen atom, methyl group or ethyl group X 3 : O or NR 19
R 19 : a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms R 11 : an alkylene group having 1 to 22 carbon atoms (however, the hydrogen atom of the alkylene group may be substituted with a hydroxyl group) or — (AO) m — (Where AO is an alkyleneoxy group having 2 to 4 carbon atoms, and m is 1 to 150 in terms of the average number of moles added.)
X 4 : hydrogen atom, hydrocarbon group having 1 to 4 carbon atoms (however, the hydrogen atom of the hydrocarbon group may be substituted with a hydroxyl group), hydroxyl group, N + R 12 R 13 R 14 or NR 15 R 16
R 12 to R 16 are the same or different and each represents a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
[23] The molar ratio of the structural unit A to the structural unit B (structural unit A / structural unit B) in the water-soluble polymer a2 is preferably 10/90 or more, more preferably 20/80 or more, and still more preferably. Is 30/70 or more, and preferably 98/2 or less, more preferably 95/5 or less, the rinse agent composition for silicon wafers according to the above [22].
[twenty four]
The rinse agent composition for silicon wafers according to any one of [1] to [23], further including a basic compound.
[25] The pH of the rinse agent composition at 25 ° C. is preferably 2 or more, more preferably 2.5 or more, more preferably 3.0 or more, and preferably 12 or less, more preferably 11. The rinse agent composition for silicon wafers according to any one of [1] to [24], which is 5 or less, more preferably 11.0 or less.
[26] The rinse composition for a silicon wafer is a rinse composition for a silicon wafer used for a silicon wafer polished with a polishing liquid composition containing silica particles and a water-soluble polymer. ,
[1], [3] to [25], wherein the silica particles used for the preparation of the aqueous dispersion S and the aqueous dispersion S 0 are the same as the silica particles contained in the polishing liquid composition. The rinse agent composition for silicon wafers in any one of.
[27] A method for rinsing a silicon wafer, including a step of rinsing a polished silicon wafer using the rinse agent composition according to any one of [1] to [26].
[28] A method for producing a semiconductor substrate, comprising a step of rinsing a polished silicon wafer using the rinse agent composition according to any one of [1] to [26].
[29] A polishing step of polishing a silicon wafer to be polished using a polishing liquid composition containing silica particles and a water-soluble polymer;
A rinsing step of rinsing the polished silicon wafer using the rinse agent composition according to any one of [1] to [26];
Cleaning the rinsed silicon wafer, and
A method for producing a semiconductor substrate, wherein the silica particles used in the preparation of the aqueous dispersion S and the aqueous dispersion S 0 are the same as the silica particles contained in the polishing liquid composition.
[30] The polishing step is preferably a rough polishing step for planarizing a silicon wafer obtained by slicing a silicon single crystal ingot into a thin disk shape, or after etching a lapped silicon wafer, The method for manufacturing a semiconductor substrate according to [29], wherein the polishing is a mirror polishing, more preferably the final polishing step.
[31] When the water-soluble polymer contained in the rinse agent composition according to any one of [1] to [26] is referred to as a water-soluble polymer A,
A polishing step of polishing a silicon wafer to be polished using a polishing liquid composition containing silica particles, a water-soluble polymer B, a nitrogen-containing basic compound, and an aqueous medium;
A rinsing step of rinsing the polished silicon wafer using the rinsing agent composition according to any one of [1] to [26];
And a cleaning process for cleaning the rinsed silicon wafer.
[32] The water-soluble polymer B is
It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the water-soluble polymer is 0.01% by mass, the concentration of the silica particles is 0.1% by mass, 25 A zeta potential z of a water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion s) having a pH of 10.0 at 0 ° C., silica particles, water, and optionally hydrochloric acid or ammonia, Water solubility in which the difference (z−z 0 ) from the zeta potential z 0 of a silica aqueous dispersion (aqueous dispersion s 0 ) having a concentration of 0.1% by mass and a pH of 10.0 at 25 ° C. is 15 mV or more The method for producing a silicon wafer according to [31], which is the polymer B.
[33] The water-soluble polymer B is
The ratio (D / D 0 ) between the secondary particle diameter D of the silica particles in the aqueous dispersion s and the secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is 1.10 or more. The method for producing a silicon wafer according to [32], which is a water-soluble polymer.
[34] The water-soluble polymer B is at least one selected from the group consisting of polysaccharides, alkylacrylamide polymers, polyvinyl alcohol, and polyvinyl alcohol derivatives (excluding anion-modified polyvinyl alcohol). [31] The method for producing a silicon wafer according to any one of [33].
[35] The water-soluble polymer B is hydroxyethyl cellulose,
The method for producing a silicon wafer according to any one of [31] to [34], wherein the water-soluble polymer A is a polyglycerin derivative.
[36] The method for producing a silicon wafer according to any one of [31] to [35], wherein in the rinsing step, a water rinsing process using water as a rinsing liquid is performed before the rinsing process.
[37] The method for manufacturing a silicon wafer according to any one of [31] to [36], wherein the rinsing process in the rinsing process is performed using a polishing apparatus used in the polishing process.
[38] A method for manufacturing a semiconductor substrate, comprising a step of manufacturing a silicon wafer by the method for manufacturing a silicon wafer according to any one of [31] to [37].
1.各種パラメーターの測定方法
(1)水分散液S0,S,s0,sのゼ-タ電位の測定方法
 水分散液をキャピラリーセルDTS1070に入れ、Malvern社製「ゼータサイザーNano ZS」を用いて、以下の条件でゼータ電位の測定を行った。
試料: 屈折率:1.450 吸収率:0.010
分散媒: 粘度:0.8872cP、屈折率:1.330、誘電率:78.5
温度:25℃
1. Measuring method of various parameters (1) Measuring method of zeta potential of aqueous dispersion S 0 , S, s 0 , s The aqueous dispersion was put into capillary cell DTS1070, and “Zeta Sizer Nano ZS” manufactured by Malvern was used. The zeta potential was measured under the following conditions.
Sample: Refractive index: 1.450 Absorption rate: 0.010
Dispersion medium: viscosity: 0.8872 cP, refractive index: 1.330, dielectric constant: 78.5
Temperature: 25 ° C
(1-1)シリカ水分散液(水分散液S0)の調製
 シリカ粒子原液(扶桑化学社製「PL-3」)にイオン交換水を添加し、次いで、これに、25℃におけるpHが7.0になるように、塩酸水溶液又はアンモニア水溶液を添加して、シリカ粒子濃度が0.1質量%の水分散液S0を得た。
(1-1) Preparation of Silica Aqueous Dispersion (Aqueous Dispersion S 0 ) Ion exchange water was added to a silica particle stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.). An aqueous hydrochloric acid solution or an aqueous ammonia solution was added so as to be 7.0, and thus an aqueous dispersion S 0 having a silica particle concentration of 0.1% by mass was obtained.
(1-2)水溶性高分子含有シリカ水分散液(水分散液S)の調製
 イオン交換水に、各水溶性高分子A、次いでシリカ粒子原液(扶桑化学社製「PL-3」)を添加した。その後、これに、25℃におけるpHが7.0になるように、塩酸水溶液又はアンモニア水溶液を添加して、水溶性高分子の濃度が0.1質量%、シリカ粒子の濃度が0.1質量%の水分散液Sを得た。
(1-2) Preparation of Water-Soluble Polymer-Containing Silica Water Dispersion (Water Dispersion S) In ion-exchanged water, each water-soluble polymer A and then a silica particle stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.) Added. Thereafter, an aqueous hydrochloric acid solution or an aqueous ammonia solution is added thereto so that the pH at 25 ° C. is 7.0, the concentration of the water-soluble polymer is 0.1% by mass, and the concentration of the silica particles is 0.1% by mass. % Aqueous dispersion S was obtained.
(2-1)シリカ水分散液(水分散液s0)の調製
 シリカ粒子原液(扶桑化学社製「PL-3」)にイオン交換水を添加し、次いで、これに、25℃におけるpHが10.0になるように、塩酸水溶液又はアンモニア水溶液を添加して、シリカ粒子濃度が0.1質量%の水分散液s0を得た。
(2-1) Preparation of Silica Water Dispersion (Water Dispersion s 0 ) Ion exchange water was added to the silica particle stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.), and then the pH at 25 ° C. was increased. An aqueous hydrochloric acid solution or an aqueous ammonia solution was added so that the concentration was 10.0 to obtain an aqueous dispersion s 0 having a silica particle concentration of 0.1% by mass.
(2-2)水溶性高分子含有シリカ水分散液(水分散液s)の調製
 イオン交換水に、各水溶性高分子B、次いでシリカ粒子原液(扶桑化学社製「PL-3」)を添加した。その後、これに、25℃におけるpHが10.0になるように、塩酸水溶液又はアンモニア水溶液を添加して、水溶性高分子の濃度が0.01質量%、シリカ粒子の濃度が0.1質量%の水分散液Sを得た。
(2-2) Preparation of Water-Soluble Polymer-Containing Silica Water Dispersion (Water Dispersion s) In ion-exchanged water, each water-soluble polymer B and then a silica particle stock solution (“PL-3” manufactured by Fuso Chemical Co., Ltd.) Added. Thereafter, an aqueous hydrochloric acid solution or an aqueous ammonia solution is added thereto so that the pH at 25 ° C. is 10.0, the concentration of the water-soluble polymer is 0.01% by mass, and the concentration of the silica particles is 0.1% by mass. % Aqueous dispersion S was obtained.
(2)シリカ粒子の二次粒径の測定方法
 シリカ水分散液S0,S,s0,sをDisposable Sizing Cuvette(ポリスチレン製 10mmセル)に下底からの高さ10mmまで入れ、Malvern社製「ゼータサイザーNano ZS」を用いて動的光散乱法にて測定し、Z平均粒子径の値をシリカ水分散液S0,S,s0,sの二次粒径d0,d,D0,Dとした。測定条件は以下に記す。
試料: 屈折率:1.450、吸収率:0.010
分散媒: 粘度:0.8872cP、屈折率:1.330
温度:25℃
(2) Method for Measuring Secondary Particle Size of Silica Particles Silica aqueous dispersions S 0 , S, s 0 , and s are placed in Disposable Sizing Cuvette (polystyrene 10 mm cell) to a height of 10 mm from the bottom and made by Malvern. Measured by a dynamic light scattering method using “Zetasizer Nano ZS”, and the value of the Z average particle size is determined as the secondary particle size d 0 , d, D of the silica water dispersion S 0 , S, s 0 , s 0 and D. The measurement conditions are described below.
Sample: Refractive index: 1.450, Absorption rate: 0.010
Dispersion medium: Viscosity: 0.8872 cP, Refractive index: 1.330
Temperature: 25 ° C
(3)水溶性高分子の重量平均分子量の測定
 リンス剤組成物の調製に用いた水溶性高分子A及び研磨液組成物の調製に用いた水溶性高分子Bの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を下記の条件で適用して得たクロマトグラム中のピークに基づき算出した。
装置:HLC-8320 GPC(東ソー株式会社、検出器一体型)
カラム:GMPWXL+GMPWXL(アニオン)
溶離液:0.2Mリン酸バッファー/CH3CN=9/1
流量:0.5mL/min
カラム温度:40℃
検出器:RI 検出器
標準物質:重量平均分子量が既知の単分散ポリエチレングリコール
(3) Measurement of weight average molecular weight of water-soluble polymer The weight average molecular weight of the water-soluble polymer A used for the preparation of the rinse agent composition and the water-soluble polymer B used for the preparation of the polishing composition was determined by gel permeation. It calculated based on the peak in the chromatogram obtained by applying the anation chromatography (GPC) method on the following conditions.
Equipment: HLC-8320 GPC (Tosoh Corporation, detector integrated type)
Column: GMPWXL + GMPWXL (anion)
Eluent: 0.2M phosphate buffer / CH 3 CN = 9/1
Flow rate: 0.5mL / min
Column temperature: 40 ° C
Detector: RI Detector Standard: Monodispersed polyethylene glycol with known weight average molecular weight
2.リンス剤組成物の調製
 表1及び表2に記載の水溶性高分子A、イオン交換水を攪拌混合し、必要に応じて、塩酸水溶液又は28質量%アンモニア水(キシダ化学(株)試薬特級)を用いて、25℃におけるpHを7.0に調整し、実施例1~17、及び比較例1~5のリンス剤組成物(いずれも濃縮液)を得た。ただし、実施例9はpHが4.0となるように、実施例10はpHが10.0となるように調整し、比較例5はアンモニア濃度が5ppmとなるよう調製した。水溶性高分子、塩酸又はアンモニアを除いた残余はイオン交換水である。尚、表1における各成分の含有量は、濃縮液を20倍に希釈して得たリンス剤組成物についての値である。実施例18~27、比較例6のリンス剤組成物(いずれも濃縮液)は、いずれも25℃におけるpHを7.0であり、20倍に希釈したときに、水溶性高分子Aの含有量が0.05質量%となるように調整した。ただし、実施例25~27はポリグリセリンアルキルエーテル0.049質量%、ベタイン構造を有する水溶性高分子0.001質量%となるよう調製した。
2. Preparation of rinse agent composition Water-soluble polymer A listed in Tables 1 and 2 and ion-exchanged water are mixed with stirring, and if necessary, aqueous hydrochloric acid or 28% by mass ammonia water (Kishida Chemical Co., Ltd. reagent special grade) Was used to adjust the pH at 25 ° C. to 7.0, and the rinse agent compositions of Examples 1 to 17 and Comparative Examples 1 to 5 (both concentrated solutions) were obtained. However, Example 9 was adjusted such that the pH was 4.0, Example 10 was adjusted so that the pH was 10.0, and Comparative Example 5 was prepared so that the ammonia concentration was 5 ppm. The remainder excluding the water-soluble polymer, hydrochloric acid or ammonia is ion-exchanged water. In addition, content of each component in Table 1 is a value about the rinse agent composition obtained by diluting the concentrate 20 times. The rinse agent compositions of Examples 18 to 27 and Comparative Example 6 (both concentrated solutions) each had a pH of 7.0 at 25 ° C., and when diluted 20-fold, contained the water-soluble polymer A The amount was adjusted to be 0.05% by mass. However, Examples 25 to 27 were prepared so that the polyglycerin alkyl ether was 0.049% by mass and the water-soluble polymer having a betaine structure was 0.001% by mass.
 実施例1~27、及び比較例1~6のリンス剤組成物、及び下記実施例18~27、及び比較例6の研磨剤組成物の調製に用いた水溶性高分子の詳細は下記の通りである。
A1:PGL 20PW(ポリグリセリン20量体):ダイセル社製
A2:PGL XPW(ポリグリセリン40量体):ダイセル社製
A3:PGL 100PW(ポリグリセリン100量体):ダイセル社製
A4:セルモリスB044(ポリグリセリン20量体ラウリルエーテル):ダイセル社製
A5:ポリアクリルアミド(Mw10,000):Polysciences社製
A6:ポリアクリルアミド(Mw600,000~1,000,000):Polysciences社製
A7:ゴーセランL-3266(Mw 23,000):日本合成化学工業社製
A8:コリコートIR(Mw 26,500):BASF社製
A9:Lipidure-HM(Mw100,000):日油社製
A10:Lipidure-PMB(Mw600,000、モル比(MPC/BMA)=
80:20):日油社製
A11:MPC/LMA(Mw100,000):花王社製
A51:Poly(N-isopropylacrylamide)(Mn20,000~40,000):ALDRICH社製
A52:SE400(Mw 250000):ダイセル社製
A53:PVA-117(Mw 75000):クラレ社製
A54:Poly(ethylene oxide) (Mw 200000):Polysciences社製
A55:n-Decylpentaoxyethylene:Bachem AG社製
A56:ポリヒドロキシエチルアクリルアミド(Mw700000)
Details of the water-soluble polymers used in the preparation of the rinse agent compositions of Examples 1-27 and Comparative Examples 1-6 and the abrasive compositions of Examples 18-27 and Comparative Example 6 below are as follows. It is.
A1: PGL 20PW (polyglycerin 20-mer): Daicel A2: PGL XPW (polyglycerin 40-mer): Daicel A3: PGL 100PW (polyglycerin 100-mer): Daicel A4: Cell Morris B044 ( Polyglycerin 20-mer lauryl ether): Daicel A5: Polyacrylamide (Mw 10,000): Polysciences A6: Polyacrylamide (Mw 600,000 to 1,000,000): Polysciences A7: Goceran L-3266 (Mw 23,000): Nippon Synthetic Chemical Industry A8: Kollicoat IR (Mw 26,500): BASF A9: Lipidure-HM (Mw100,000): NOF A10: Lipidure-PMB (Mw600, 00, the molar ratio (MPC / BMA) =
80:20): NOF Corporation A11: MPC / LMA (Mw 100,000): Kao A51: Poly (N-isopropylamide) (Mn 20,000 to 40,000): ALDRICH A52: SE400 (Mw 250,000) ): Daicel A53: PVA-117 (Mw 75000): Kuraray A54: Poly (ethylene oxide) (Mw 200000): Polysciences A55: n-Decypentoxyethylene: Bachem AG, Aacrylamide: Polyacrylamide Mw 700000)
 前記水溶性高分子A9~A11の各構成単位の詳細は下記表3に記載の通りであり、水溶性高分子A11の合成方法は下記の通りである。 Details of each structural unit of the water-soluble polymers A9 to A11 are as shown in Table 3 below, and a method for synthesizing the water-soluble polymer A11 is as follows.
 [水溶性高分子A11]
 内容量300mLの4つ口フラスコにエタノールを10.0g入れ、70℃まで昇温させた。そこにMPC(東京化成工業(株)製)5.0g、LMA(和光純薬工業(株)製)1.1g、エタノール10.0gを混合して得た溶液と、2,2'-アゾビス(イソブチロニトリル)(和光純薬工業(株)製)0.021g、エタノール4.4gを混合して得た溶液を別々に2時間かけて滴下して重合した。6時間熟成させた後に溶媒を減圧留去し水に置換することで、水溶性高分子A11(MPCとLMAの共重合体)を含有するポリマー水溶液を得た。水溶性高分子A11における構成単位のモル比(MPC/LMA)は80/20であり、水溶性高分子A11の重量平均分子量は100,000であった。
[Water-soluble polymer A11]
10.0 g of ethanol was put into a four-necked flask having an internal volume of 300 mL, and the temperature was raised to 70 ° C. A solution obtained by mixing 5.0 g of MPC (manufactured by Tokyo Chemical Industry Co., Ltd.), 1.1 g of LMA (manufactured by Wako Pure Chemical Industries, Ltd.) and 10.0 g of ethanol, and 2,2′-azobis A solution obtained by mixing 0.021 g of (isobutyronitrile) (manufactured by Wako Pure Chemical Industries, Ltd.) and 4.4 g of ethanol was separately dropped over 2 hours for polymerization. After aging for 6 hours, the solvent was distilled off under reduced pressure and replaced with water to obtain an aqueous polymer solution containing a water-soluble polymer A11 (a copolymer of MPC and LMA). The molar ratio (MPC / LMA) of the structural units in the water-soluble polymer A11 was 80/20, and the weight average molecular weight of the water-soluble polymer A11 was 100,000.
3.リンス方法
 リンス剤組成物(濃縮液)をイオン交換水で20倍に希釈して得たリンス剤組成物を、リンス処理の開始直前にフィルター(アドバンテック株式会社製コンパクトカートリッジフィルター「MCP-LX-C10S」)にてろ過を行い、下記のリンス条件で下記のシリコンウェーハ(直径200mmのシリコン片面鏡面ウェーハ(伝導型:P、結晶方位:100、抵抗率0.1Ω・cm以上100Ω・cm未満))に対してリンス処理を行った。当該リンス処理に先立って、シリコンウェーハに対して市販の研磨剤組成物を用いてあらかじめ粗研磨を実施した。粗研磨を終了し仕上げ研磨に供したシリコンウェーハのHazeは、2.680(ppm)であった。Hazeは、KLA Tencor社製「Surfscan SP1-DLS」を用いて測定される暗視野ワイド斜入射チャンネル(DWO)での値である。その後、下記の条件で仕上げ研磨を行い、その直後に各リンス剤組成物を用いて下記の条件でリンス処理をした。
3. Rinsing Method A rinse agent composition obtained by diluting a rinse agent composition (concentrated solution) 20 times with ion-exchanged water was filtered with a filter (advancetech's compact cartridge filter “MCP-LX-C10S” immediately before the start of the rinse treatment). )), And the following silicon wafer (silicon single-sided mirror wafer with a diameter of 200 mm (conductivity type: P, crystal orientation: 100, resistivity 0.1 Ω · cm or more and less than 100 Ω · cm)) A rinsing treatment was performed. Prior to the rinse treatment, rough polishing was performed on the silicon wafer in advance using a commercially available abrasive composition. The haze of the silicon wafer subjected to the final polishing after finishing the rough polishing was 2.680 (ppm). Haze is a value in a dark field wide oblique incidence channel (DWO) measured using “Surfscan SP1-DLS” manufactured by KLA Tencor. Thereafter, finish polishing was performed under the following conditions, and immediately after that, rinse treatment was performed under the following conditions using each rinse agent composition.
 [仕上げ研磨に使用した研磨剤組成物]
 実施例1~17及び比較例1~5のリンス剤組成物を用いたリンス工程の前に行われる仕上げ研磨において使用した研磨剤組成物は、SE-400(ダイセル(株)社製、HEC、分子量25万)、PEG6000(和光純薬工業(株)、和光一級)、アンモニア水(キシダ化学(株)、試薬特級)、PL-3(扶桑化学工業(株)社製)、イオン交換水を攪拌混合して濃縮液を得、その後、濃縮液を使用直前にイオン交換水で40倍に希釈して得た。前記仕上げ研磨において使用した研磨剤組成物の組成は以下の通りである。
 シリカ粒子(PL-3、平均一次粒子径35nm、平均二次粒子径69nm、会合度2.0):0.17質量%
 HEC(SE-400):0.01質量%
 アンモニア:0.01質量%
 PEG(重量平均分子量6000);0.0008質量%
[Abrasive composition used for finish polishing]
The abrasive composition used in the final polishing performed before the rinsing process using the rinse agent compositions of Examples 1 to 17 and Comparative Examples 1 to 5 was SE-400 (manufactured by Daicel Corporation, HEC, Molecular weight 250,000), PEG 6000 (Wako Pure Chemical Industries, Ltd., Wako First Grade), ammonia water (Kishida Chemical Co., Ltd., reagent special grade), PL-3 (manufactured by Fuso Chemical Industry Co., Ltd.), ion-exchanged water A concentrated solution was obtained by stirring and mixing, and then the concentrated solution was diluted 40 times with ion-exchanged water just before use. The composition of the abrasive composition used in the final polishing is as follows.
Silica particles (PL-3, average primary particle size 35 nm, average secondary particle size 69 nm, association degree 2.0): 0.17% by mass
HEC (SE-400): 0.01% by mass
Ammonia: 0.01% by mass
PEG (weight average molecular weight 6000); 0.0008% by mass
 表2に示された実施例18~27及び比較例6の研磨液組成物の組成は、以下の通りである。
 シリカ粒子(PL-3、平均一次粒子径35nm、平均二次粒子径69nm、会合度2.0):0.17質量%
 水溶性高分子B:0.01質量%
 アンモニア:0.01質量%
 PEG(重量平均分子量6000);0.0008質量%
The compositions of the polishing liquid compositions of Examples 18 to 27 and Comparative Example 6 shown in Table 2 are as follows.
Silica particles (PL-3, average primary particle size 35 nm, average secondary particle size 69 nm, association degree 2.0): 0.17% by mass
Water-soluble polymer B: 0.01% by mass
Ammonia: 0.01% by mass
PEG (weight average molecular weight 6000); 0.0008% by mass
 [仕上げ研磨条件]
研磨機:岡本工作製片面8インチ研磨機「GRIND-X SPP600s」
研磨パッド:東レコーテックス社製スエードパッド(アスカー硬度:64,厚さ:1.37mm,ナップ長:450μm,開口径:60μm)
シリコンウェーハ研磨圧力:100g/cm2
定盤回転速度:60rpm
研磨時間:5分
研磨剤組成物の供給速度:150g/分
研磨剤組成物の温度:23℃
キャリア回転速度:60rpm
[Finishing polishing conditions]
Polishing machine: Single-sided 8-inch polishing machine "GRIND-X SPP600s" manufactured by Okamoto
Polishing pad: Suede pad manufactured by Toray Cortex Co., Ltd. (Asker hardness: 64, thickness: 1.37 mm, nap length: 450 μm, opening diameter: 60 μm)
Silicon wafer polishing pressure: 100 g / cm 2
Surface plate rotation speed: 60 rpm
Polishing time: 5 minutes Supply rate of the abrasive composition: 150 g / min Temperature of the abrasive composition: 23 ° C.
Carrier rotation speed: 60rpm
 [リンス条件]
研磨機:岡本工作製片面8インチ研磨機「GRIND-X SPP600s」
研磨パッド:東レコーテックス社製スエードパッド(アスカー硬度:64,厚さ:1.37mm,ナップ長:450um,開口径:60um)
シリコンウェーハリンス圧力:60g/cm2
定盤回転速度:30rpm
リンス時間:10秒
リンス剤組成物の供給速度:1000 mL/分
リンス剤組成物の温度:23℃
キャリア回転速度:30rpm
[Rinse condition]
Polishing machine: Single-sided 8-inch polishing machine "GRIND-X SPP600s" manufactured by Okamoto
Polishing pad: Suede pad manufactured by Toray Cortex Co., Ltd. (Asker hardness: 64, thickness: 1.37 mm, nap length: 450 um, opening diameter: 60 um)
Silicon wafer rinse pressure: 60 g / cm 2
Surface plate rotation speed: 30 rpm
Rinse time: 10 seconds Feed rate of rinse agent composition: 1000 mL / min Temperature of rinse agent composition: 23 ° C.
Carrier rotation speed: 30rpm
4.洗浄方法
 リンス処理後、シリコンウェーハに対して、オゾン洗浄と希フッ酸洗浄を下記のとおり行った。オゾン洗浄では、20ppmのオゾンを含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって3分間噴射した。このときオゾン水の温度は常温とした。次に希フッ酸洗浄を行った。希フッ酸洗浄では、0.5質量%のフッ化水素アンモニウム(特級:ナカライテクス株式会社)を含んだ水溶液をノズルから流速1L/minで600rpmで回転するシリコンウェーハの中央に向かって5秒間噴射した。上記オゾン洗浄と希フッ酸洗浄を1セットとして計2セット行い、最後にスピン乾燥を行った。スピン乾燥では1500rpmでシリコンウェーハを回転させた。
4). Cleaning method After rinsing, the silicon wafer was subjected to ozone cleaning and dilute hydrofluoric acid cleaning as follows. In ozone cleaning, an aqueous solution containing 20 ppm of ozone was sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 3 minutes. At this time, the temperature of the ozone water was normal temperature. Next, dilute hydrofluoric acid cleaning was performed. In dilute hydrofluoric acid cleaning, an aqueous solution containing 0.5% by mass of ammonium hydrogen fluoride (special grade: Nakarai Tex Co., Ltd.) is sprayed from a nozzle toward the center of a silicon wafer rotating at 600 rpm at a flow rate of 1 L / min for 5 seconds. did. The above ozone cleaning and dilute hydrofluoric acid cleaning were performed as a set, for a total of 2 sets, and finally spin drying was performed. In spin drying, the silicon wafer was rotated at 1500 rpm.
5.シリコンウェーハのLPDの評価
 洗浄後のシリコンウェーハ表面のLPDの評価には、表面粗さ測定装置「Surfscan SP1-DLS」(KLA Tencor社製)を用いて、シリコンウェーハ表面上の粒径が45nm以上のパーティクル数を測定することによって評価した。LPDの評価結果は、数値が小さいほど表面欠陥が少ないことを示す。LPDの測定は、各々2枚のシリコンウェーハに対して行い、各々平均値を表1及び表2に示した。
5). Evaluation of LPD on silicon wafer For evaluation of LPD on the surface of silicon wafer after cleaning, surface roughness measuring device “Surfscan SP1-DLS” (manufactured by KLA Tencor) is used. It was evaluated by measuring the number of particles. The LPD evaluation results indicate that the smaller the numerical value, the fewer surface defects. The LPD measurements were performed on two silicon wafers, and the average values are shown in Tables 1 and 2, respectively.
6.研磨速度の評価
 研磨速度は以下の方法で評価した。研磨前後の各シリコンウェーハの重さを精密天秤(Sartorius社製「BP-210S」)を用いて測定し、得られた重量差をシリコンウェーハの密度、面積及び研磨時間で除して、単位時間当たりの片面研磨速度を求めた。その結果は、比較例6の研磨速度を1.00とした相対値で、表2に示した。
6). Evaluation of polishing rate The polishing rate was evaluated by the following method. The weight of each silicon wafer before and after polishing was measured using a precision balance (“BP-210S” manufactured by Sartorius), and the obtained weight difference was divided by the density, area and polishing time of the silicon wafer, and unit time The single-side polishing rate per hit was determined. The results are shown in Table 2 as relative values with the polishing rate of Comparative Example 6 set to 1.00.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1に示されるように、実施例1~17のリンス剤組成物を用いることで、比較例1~5のリンス剤組成物を用いた場合に比べて、LPDの低減が良好に行えた。従って、実施例1~17のリンス剤組成物を用いれば、比較例1~5のリンス剤組成物を用いた場合よりも、洗浄時間の短縮化が可能となる。 As shown in Table 1, by using the rinse agent compositions of Examples 1 to 17, LPD was reduced more favorably than when the rinse agent compositions of Comparative Examples 1 to 5 were used. Therefore, when the rinse agent compositions of Examples 1 to 17 are used, the cleaning time can be shortened as compared with the case where the rinse agent compositions of Comparative Examples 1 to 5 are used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2に示されるように、電位差(Z-Z0)が、25mV以下となる水溶性高分子Aを用いた実施例18~27では、比較例6と比較して、研磨速度の向上とLPDの低減の両立が可能となる。 As shown in Table 2, in Examples 18 to 27 using the water-soluble polymer A having a potential difference (Z−Z 0 ) of 25 mV or less, the polishing rate was improved and LPD was compared with Comparative Example 6. It is possible to achieve both reductions.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明のリンス剤組成物の使用は、シリコンウェーハの洗浄時間の短縮化が可能であるので、半導体基板の製造において、生産性の向上及びコスト低減に寄与し、有用である。 The use of the rinse agent composition of the present invention can shorten the cleaning time of the silicon wafer, and thus contributes to improvement of productivity and cost reduction in the production of a semiconductor substrate.

Claims (16)

  1.  水溶性高分子及び水系媒体を含むシリコンウェーハ用リンス剤組成物であって、
     前記水溶性高分子は、
     前記水溶性高分子とシリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記水溶性高分子の濃度が0.1質量%、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0の水溶性高分子含有シリカ水分散液(水分散液S)のゼータ電位Zと、シリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが7.0のシリカ水分散液(水分散液S0)のゼータ電位Z0との差(Z-Z0)が、25mV以下となる水溶性高分子である、シリコンウェーハ用リンス剤組成物。
    A rinse composition for a silicon wafer, comprising a water-soluble polymer and an aqueous medium,
    The water-soluble polymer is
    It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the water-soluble polymer is 0.1% by mass, the concentration of the silica particles is 0.1% by mass, 25 A zeta potential Z of a water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion S) having a pH of 7.0 at 0 ° C., silica particles, water, and optionally hydrochloric acid or ammonia. Water solubility in which the difference (Z−Z 0 ) from the zeta potential Z 0 of the silica aqueous dispersion (aqueous dispersion S 0 ) having a concentration of 0.1% by mass and a pH of 7.0 at 25 ° C. is 25 mV or less A rinse composition for silicon wafers, which is a polymer.
  2.  水溶性高分子及び水系媒体を含むシリコンウェーハ用リンス剤組成物であって、
     前記水溶性高分子が、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体、及びポリアクリルアミドからなる群から選ばれる少なくとも1種を含む、シリコンウェーハ用リンス剤組成物。
    A rinse composition for a silicon wafer, comprising a water-soluble polymer and an aqueous medium,
    The rinse composition for silicon wafers, wherein the water-soluble polymer contains at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide.
  3.  前記水溶性高分子が、
     前記水分散液S中のシリカ粒子の二次粒径dと、前記水分散液S0中のシリカ粒子の二次粒径d0との比(d/d0)が、1.35以下となる水溶性高分子である、請求項1に記載のシリコンウェーハ用リンス剤組成物。
    The water-soluble polymer is
    The ratio (d / d 0 ) between the secondary particle diameter d of the silica particles in the aqueous dispersion S and the secondary particle diameter d 0 of the silica particles in the aqueous dispersion S 0 is 1.35 or less. The rinse agent composition for silicon wafers according to claim 1, which is a water-soluble polymer.
  4.  前記水溶性高分子が、ポリグリセリン、ポリグリセリン誘導体、ポリグリシドール、ポリグリシドール誘導体、ポリビニルアルコール誘導体、及びポリアクリルアミドからなる群から選ばれる少なくとも1種である、請求項1又は3に記載のシリコンウェーハ用リンス剤組成物。 The silicon wafer according to claim 1 or 3, wherein the water-soluble polymer is at least one selected from the group consisting of polyglycerin, polyglycerin derivatives, polyglycidol, polyglycidol derivatives, polyvinyl alcohol derivatives, and polyacrylamide. Rinsing agent composition.
  5.  ポリグリセリン誘導体が、ポリグリセリンのアルキルエーテルである、請求項4に記載のシリコンウェーハ用リンス剤組成物。 The rinse composition for silicon wafers according to claim 4, wherein the polyglycerol derivative is an alkyl ether of polyglycerol.
  6.  塩基性化合物をさらに含む、請求項1から5のいずれかの項に記載のシリコンウェーハ用リンス剤組成物。 The rinse agent composition for silicon wafers according to any one of claims 1 to 5, further comprising a basic compound.
  7.  研磨されたシリコンウェーハを、請求項1から6のいずれかの項に記載のリンス剤組成物を用いてリンスする工程を含む、シリコンウェーハのリンス方法。 A method for rinsing a silicon wafer, comprising a step of rinsing a polished silicon wafer using the rinse agent composition according to any one of claims 1 to 6.
  8.  研磨されたシリコンウェーハを、請求項1から6のいずれかの項に記載のリンス剤組成物を用いてリンスする工程を含む、半導体基板の製造方法。 A method for producing a semiconductor substrate, comprising a step of rinsing a polished silicon wafer using the rinse agent composition according to any one of claims 1 to 6.
  9.  請求項1から6のいずれかの項に記載のリンス剤組成物に含まれる前記水溶性高分子を水溶性高分子Aと称することとすると、
     シリカ粒子と水溶性高分子Bと含窒素塩基性化合物と水系媒体を含む研磨液組成物を用いて被研磨シリコンウェーハを研磨する研磨工程と、
     研磨されたシリコンウェーハを請求項1から6のいずれかの項に記載のリンス剤組成物を用いてリンス処理をするリンス工程と、
     リンスされたシリコンウェーハを洗浄する洗浄工程と、を含む、シリコンウェーハの製造方法。
    When the water-soluble polymer contained in the rinse agent composition according to any one of claims 1 to 6 is referred to as a water-soluble polymer A,
    A polishing step of polishing a silicon wafer to be polished using a polishing liquid composition containing silica particles, a water-soluble polymer B, a nitrogen-containing basic compound, and an aqueous medium;
    A rinsing step of rinsing the polished silicon wafer using the rinsing agent composition according to any one of claims 1 to 6;
    And a cleaning process for cleaning the rinsed silicon wafer.
  10.  前記水溶性高分子Bが、
     前記水溶性高分子とシリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記水溶性高分子の濃度が0.01質量%、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが10.0の水溶性高分子含有シリカ水分散液(水分散液s)のゼータ電位zと、シリカ粒子と水と必要に応じて塩酸又はアンモニアと、からなり、前記シリカ粒子の濃度が0.1質量%、25℃におけるpHが10.0のシリカ水分散液(水分散液s0)のゼータ電位z0との差(z-z0)が、15mV以上となる水溶性高分子Bである、請求項9に記載のシリコンウェーハの製造方法。
    The water-soluble polymer B is
    It consists of the water-soluble polymer, silica particles, water, and hydrochloric acid or ammonia as necessary. The concentration of the water-soluble polymer is 0.01% by mass, the concentration of the silica particles is 0.1% by mass, 25 A zeta potential z of a water-soluble polymer-containing silica aqueous dispersion (aqueous dispersion s) having a pH of 10.0 at 0 ° C., silica particles, water, and optionally hydrochloric acid or ammonia, Water solubility in which the difference (z−z 0 ) from the zeta potential z 0 of a silica aqueous dispersion (aqueous dispersion s 0 ) having a concentration of 0.1% by mass and a pH of 10.0 at 25 ° C. is 15 mV or more The method for producing a silicon wafer according to claim 9, which is a polymer B.
  11.  前記水溶性高分子Bが、
     前記水分散液s中のシリカ粒子の二次粒径Dと、前記水分散液s0中のシリカ粒子の二次粒径D0との比(D/D0)が、1.10以上となる水溶性高分子である、請求項10に記載のシリコンウェーハの製造方法。
    The water-soluble polymer B is
    The ratio (D / D 0 ) between the secondary particle diameter D of the silica particles in the aqueous dispersion s and the secondary particle diameter D 0 of the silica particles in the aqueous dispersion s 0 is 1.10 or more. The method for producing a silicon wafer according to claim 10, which is a water-soluble polymer.
  12.  前記水溶性高分子Bが、多糖類、アルキルアクリルアミド系ポリマー、ポリビニルアルコール、及びポリビニルアルコール誘導体(ただし、アニオン変性ポリビニルアルコールを除く。)からなる群から選ばれる少なくとも1種である、請求項9から11のいずれかの項に記載のシリコンウェーハの製造方法。 The water-soluble polymer B is at least one selected from the group consisting of polysaccharides, alkylacrylamide polymers, polyvinyl alcohol, and polyvinyl alcohol derivatives (excluding anion-modified polyvinyl alcohol). 11. A method for producing a silicon wafer according to any one of items 11.
  13.  前記水溶性高分子Bがヒドロキシエチルセルロースであり、
     前記水溶性高分子Aがポリグリセリン誘導体である、請求項9から12のいずれかの項に記載のシリコンウェーハの製造方法。
    The water-soluble polymer B is hydroxyethyl cellulose;
    The method for producing a silicon wafer according to claim 9, wherein the water-soluble polymer A is a polyglycerin derivative.
  14.  前記リンス工程において、前記リンス処理の前に、リンス液として水を用いる水リンス処理を行う、請求項9から13のいずれかの項に記載のシリコンウェーハの製造方法。 The method for manufacturing a silicon wafer according to any one of claims 9 to 13, wherein, in the rinsing step, a water rinsing process using water as a rinsing liquid is performed before the rinsing process.
  15.  前記リンス工程におけるリンス処理を、研磨工程で用いられる研磨装置を用いて行う、請求項9から14のいずれかの項に記載のシリコンウェーハの製造方法。 The method for manufacturing a silicon wafer according to any one of claims 9 to 14, wherein the rinsing process in the rinsing process is performed using a polishing apparatus used in the polishing process.
  16.  請求項9から15のいずれかの項に記載のシリコンウェーハの製造方法でシリコンウェーハを製造する工程を含む半導体基板の製造方法。 A method for producing a semiconductor substrate, comprising a step of producing a silicon wafer by the method for producing a silicon wafer according to any one of claims 9 to 15.
PCT/JP2017/038767 2016-10-28 2017-10-26 Rinsing agent composition for silicon wafers WO2018079675A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/345,444 US20190249122A1 (en) 2016-10-28 2017-10-26 Rinsing agent composition for silicon wafers
DE112017005434.6T DE112017005434T5 (en) 2016-10-28 2017-10-26 Rinse aid composition for silicon wafers
CN201780063904.0A CN109844908B (en) 2016-10-28 2017-10-26 Rinse agent composition for silicon wafer
KR1020197005601A KR102370806B1 (en) 2016-10-28 2017-10-26 Rinse composition for silicon wafer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-211924 2016-10-28
JP2016211924 2016-10-28
JP2017-206437 2017-10-25
JP2017206437A JP7061862B2 (en) 2016-10-28 2017-10-25 Rinse agent composition for silicon wafer

Publications (1)

Publication Number Publication Date
WO2018079675A1 true WO2018079675A1 (en) 2018-05-03

Family

ID=62023702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038767 WO2018079675A1 (en) 2016-10-28 2017-10-26 Rinsing agent composition for silicon wafers

Country Status (2)

Country Link
KR (1) KR102370806B1 (en)
WO (1) WO2018079675A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111748284A (en) * 2019-03-27 2020-10-09 福吉米株式会社 Polishing composition
JP7430571B2 (en) 2020-05-08 2024-02-13 花王株式会社 polishing liquid composition
US12060498B2 (en) * 2019-03-22 2024-08-13 Daicel Corporation Hydrophilization treatment liquid for semiconductor wafer surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109931A (en) * 2001-09-28 2003-04-11 Sumitomo Mitsubishi Silicon Corp Cleaning drying method of semiconductor wafer
WO2012039390A1 (en) * 2010-09-24 2012-03-29 株式会社 フジミインコーポレーテッド Composition for polishing and composition for rinsing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4212861B2 (en) 2002-09-30 2009-01-21 株式会社フジミインコーポレーテッド Polishing composition and silicon wafer polishing method using the same, and rinsing composition and silicon wafer rinsing method using the same
KR101846597B1 (en) 2010-10-01 2018-04-06 미쯔비시 케미컬 주식회사 Cleaning solution and cleaning method for semiconductor-device substrate
JP5822356B2 (en) * 2012-04-17 2015-11-24 花王株式会社 Polishing liquid composition for silicon wafer
CN104798181B (en) 2012-11-30 2016-08-24 霓达哈斯股份有限公司 Abrasive composition
JP2014154707A (en) 2013-02-08 2014-08-25 Hitachi Chemical Co Ltd Polishing solution, polishing method and method of manufacturing silicon wafer
JP5893706B2 (en) 2013-10-25 2016-03-23 花王株式会社 Polishing liquid composition for silicon wafer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109931A (en) * 2001-09-28 2003-04-11 Sumitomo Mitsubishi Silicon Corp Cleaning drying method of semiconductor wafer
WO2012039390A1 (en) * 2010-09-24 2012-03-29 株式会社 フジミインコーポレーテッド Composition for polishing and composition for rinsing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12060498B2 (en) * 2019-03-22 2024-08-13 Daicel Corporation Hydrophilization treatment liquid for semiconductor wafer surface
CN111748284A (en) * 2019-03-27 2020-10-09 福吉米株式会社 Polishing composition
CN111748284B (en) * 2019-03-27 2023-01-06 福吉米株式会社 Polishing composition
JP7430571B2 (en) 2020-05-08 2024-02-13 花王株式会社 polishing liquid composition

Also Published As

Publication number Publication date
KR102370806B1 (en) 2022-03-04
KR20190075897A (en) 2019-07-01

Similar Documents

Publication Publication Date Title
JP7061862B2 (en) Rinse agent composition for silicon wafer
KR102327245B1 (en) Rinse composition for silicon wafer
TWI555831B (en) Silicon wafer polishing composition
JP6836671B2 (en) Polishing liquid composition for silicon wafer or polishing liquid composition kit for silicon wafer
JP7105089B2 (en) Silicon wafer manufacturing method
JP2016213216A (en) Polishing liquid composition for silicon wafers
WO2018079675A1 (en) Rinsing agent composition for silicon wafers
JP6489690B2 (en) Polishing liquid composition for silicon wafer
JP6893835B2 (en) Finish polishing liquid composition for silicon wafer
JP6245939B2 (en) Polishing liquid composition for silicon wafer
JPWO2019116833A1 (en) Polishing composition and polishing method
JP6403324B2 (en) Polishing liquid composition for silicon wafer
JP5995659B2 (en) Polishing liquid composition for silicon wafer
JP6831667B2 (en) Wetting agent
TW202104525A (en) Polishing liquid composition for silicon oxide film
TWI572703B (en) Silicon wafer grinding composition
JP6366139B2 (en) Method for producing polishing composition for silicon wafer
JP2018074049A (en) Polishing liquid composition for silicon wafer
JP2016119418A (en) Polishing liquid composition for silicon wafer
JP6418941B2 (en) Polishing liquid composition for silicon wafer
JP6367113B2 (en) Polishing liquid composition for silicon wafer
JP2023063021A (en) Method for manufacturing silicon substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17865755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005601

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17865755

Country of ref document: EP

Kind code of ref document: A1