WO2018079597A1 - Additive for resins, and resin composition - Google Patents

Additive for resins, and resin composition Download PDF

Info

Publication number
WO2018079597A1
WO2018079597A1 PCT/JP2017/038500 JP2017038500W WO2018079597A1 WO 2018079597 A1 WO2018079597 A1 WO 2018079597A1 JP 2017038500 W JP2017038500 W JP 2017038500W WO 2018079597 A1 WO2018079597 A1 WO 2018079597A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
nanodiamond
additive
detonation
particles
Prior art date
Application number
PCT/JP2017/038500
Other languages
French (fr)
Japanese (ja)
Inventor
久米篤史
多田平八郎
伊藤久義
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2018079597A1 publication Critical patent/WO2018079597A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/26Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/25Diamond
    • C01B32/28After-treatment, e.g. purification, irradiation, separation or recovery

Definitions

  • the present invention relates to a resin additive used for, for example, a thermoplastic resin, and a resin composition containing the resin additive and a resin.
  • a resin having a function of trapping or stabilizing radicals may be added as an additive for a resin to a resin that undergoes a process involving heating for the purpose of preventing a decomposition reaction or a crosslinking reaction.
  • a resin additive a hindered phenol compound is generally used as described in Patent Documents 1 to 3 below.
  • resin materials having high heat resistance such as engineering plastics and super engineering plastics generally have a high melting point, and accordingly, a high processing temperature is required in the molding process.
  • a processing temperature as high as 280 ° C. or higher may be required.
  • additives for resins that are organic compounds such as the above-mentioned hindered phenol compounds
  • an object of the present invention is to provide a resin having a high heat resistance that can exhibit functions such as scavenging radicals even at a high processing temperature (for example, 280 ° C. or higher) while suppressing deterioration and thickening during heat processing of the resin.
  • a resin composition comprising the resin additive and a resin.
  • the metal content is 3000 ppm or less, and the maximum absorption peak at 1700 to 1850 cm ⁇ 1 is 2800 to 3000 cm in the infrared absorption spectrum by a Fourier transform infrared spectrophotometer (FT-IR).
  • FT-IR Fourier transform infrared spectrophotometer
  • the sodium content of the detonation nanodiamond particles is preferably 2000 ppm or less.
  • the resin additive of the present invention is preferably a heat stabilizer and / or an antioxidant.
  • the resin additive of the present invention is preferably one in which the detonation nanodiamond particles are pickled.
  • the resin additive of the present invention is preferably one obtained by vapor phase oxidation of the detonation nanodiamond particles.
  • the resin additive of the present invention preferably has a negative zeta potential of the detonation nanodiamond particles.
  • the additive for resin of the present invention has a maximum absorption peak of 1700 to 1850 cm ⁇ 1 in the infrared absorption spectrum of the detonation nanodiamond particles by Fourier transform infrared spectrophotometer (FT-IR). It is preferably present between 1740 and 1830 cm ⁇ 1 .
  • FT-IR Fourier transform infrared spectrophotometer
  • the present invention also provides a resin composition comprising the resin additive and a resin.
  • the resin is preferably a thermoplastic resin.
  • thermoplastic resin is preferably an aromatic polyether ketone.
  • the aromatic polyether ketone is at least one selected from the group consisting of polyether ketone, polyether ether ketone, polyether ketone ketone, and polyether ether ketone ketone. It is preferable.
  • the content of the resin additive is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the resin.
  • the additive for resin of the present invention has high heat resistance, can exhibit functions such as scavenging radicals even at a high processing temperature (for example, 280 ° C. or higher), and exhibits deterioration and thickening during heat processing of the resin. Can be suppressed.
  • ND1 nanodiamond
  • ND2 FT-IR spectrum of nanodiamond
  • ND3 FT-IR spectrum of nanodiamond
  • ND4 FT-IR spectrum of nanodiamond
  • ND5 FT-IR spectrum of nanodiamond
  • ND6 FT-IR spectrum of nanodiamond
  • the additive for resin of the present invention (hereinafter sometimes referred to as “the present invention”) has a metal content of 3000 ppm or less, and in the infrared absorption spectrum by a Fourier transform infrared spectrophotometer (FT-IR), maximum peak of the absorption peak of 1700 ⁇ 1850 cm -1 is characterized by using a detonation method nanodiamond particles being higher than the absorption peak of 2800 ⁇ 3000 cm -1.
  • FT-IR Fourier transform infrared spectrophotometer
  • the present invention is, for example, a thermal stabilizer, an antioxidant, an ultraviolet absorber, an ultraviolet stabilizer, a dispersion stabilizer, a flame retardant, a lubricant, and a (crystal) nucleating agent, preferably a thermal stabilizer, an antioxidant, more preferably Is a heat stabilizer.
  • the heat stabilizer is a compound having a function of capturing or stabilizing radicals.
  • detonation nanodiamond particles are nanodiamond particles obtained by the detonation method described later, and as detonation nanodiamonds, air-cooled detonation nanodiamond and water-cooled detonation are used. Any of the method nano diamonds may be used.
  • the detonation nanodiamond particles may be primary particles of nanodiamond or secondary particles of nanodiamond in which primary particles are assembled.
  • the nanodiamond primary particles particularly mean nanodiamond particles having a particle diameter of 10 nm or less.
  • the particle diameter D50 (median diameter) of the detonation nanodiamond particles is, for example, 10 ⁇ m or less, preferably 500 nm or less, more preferably 200 nm or less.
  • the particle size D50 is a particle size of primary particles of nanodiamond or secondary particles in which primary particles are assembled. When the particle size D50 of the detonation nanodiamond particles is 10 ⁇ m or less, a sufficient surface area per unit mass can be secured, and for example, functions as nanodiamonds such as a thermal stabilizer can be efficiently exhibited. .
  • Nano-diamond particles have a basic skeleton with a sp 3 structure of carbon atoms as in bulk diamond, but at least part of the surface of the nano-diamond primary particles is made of graphite by spontaneous transition from the sp 3 structure carbon forming the diamond body. It is assumed that a layer (graphite carbon layer) is generated. The presence of the sp 2 structure carbon in the graphite layer contributes to the capture and stabilization of radicals, and therefore, it is considered that the decomposition / crosslinking, that is, deterioration of the resin due to the action of radicals is suppressed.
  • the nanodiamond particles preferably have a hydroxyl group, a carboxyl group, a carbonyl group or the like as a group (surface functional group) bonded to the terminal carbon atom of the basic skeleton of nanodiamond.
  • These surface functional groups form a conjugated system in cooperation with the sp 2 structure carbon existing on the nanodiamond surface, contribute to the capture and stabilization of radicals, and suppress the decomposition and crosslinking of the resin due to the action of radicals, that is, deterioration. It is thought to work.
  • the ratio of hydroxyl-bonded carbon (C—OH) in the carbon contained in the detonation nanodiamond particles is, for example, 6.0% or more, preferably 7.0% or more, more preferably 8.0% or more, more preferably Is 10.0% or more, more preferably 12.0% or more.
  • the upper limit of the ratio of hydroxyl-bonded carbon is, for example, 40.0%.
  • the hydroxyl group-bonded carbon means carbon of the basic skeleton of nanodiamond, to which the surface functional group hydroxyl group (—OH) is bonded, in the basic skeleton of nanodiamond.
  • the ratio of the hydroxyl-bonded carbon can be measured, for example, by solid state 13 C-NMR analysis.
  • the upper limit of the ratio of carboxyl carbon is, for example, 5.0%.
  • the carboxyl carbon means carbon contained in a carboxyl group (—C ( ⁇ O) O including —COOH) which is a surface functional group.
  • the proportion of the carboxyl carbon can be measured, for example, by solid state 13 C-NMR analysis.
  • the proportion of carbonyl carbon (C ⁇ O) in the carbon contained in the detonation nanodiamond particles is, for example, 0.1% or more, preferably 0.2% or more, more preferably 0.3% or more, and more. Preferably it is 0.4% or more.
  • the upper limit of the carbonyl carbon ratio is, for example, 5.0%.
  • the carbonyl carbon means carbon contained in a carbonyl group (—C ⁇ O) which is a surface functional group. Note that carbon included in —C ( ⁇ O) O is not included in carbonyl carbon.
  • the proportion of the carbonyl carbon can be measured, for example, by solid state 13 C-NMR analysis.
  • the proportion of hydrogen-bonded carbon in the carbon contained in the detonation nanodiamond particles is, for example, 8.0% or more, preferably 9.0% or more, more preferably 10.0% or more, more preferably 12.0%. That's it.
  • the hydrogen-bonded carbon is a carbon that is bonded to a hydrogen atom present in the surface functional group. When the proportion of hydrogen-bonded carbon is 8.0% or more, it contributes to the stabilization of the surface carbon of the nanodiamond.
  • the proportion of the hydrogen-bonded carbon can be measured, for example, by solid state 13 C-NMR analysis.
  • the proportion of sp 3 carbon (carbon atom having sp 3 structure) in the carbon contained in the detonation nanodiamond particles is, for example, 50.0% or more, preferably 55.0% or more, more preferably 60.0%. As mentioned above, More preferably, it is 65.0% or more, More preferably, it is 70.0% or more. The upper limit of the proportion of sp 3 carbon is 90.0%.
  • the proportion of sp 3 carbon can be measured, for example, by solid state 13 C-NMR analysis.
  • the detonation nanodiamond particles are preferably pickled.
  • the acid used for the pickling treatment include hydrochloric acid, sulfuric acid, and nitric acid.
  • metal impurities in the nanodiamond particles can be effectively removed, and the metal content in the nanodiamond particles can be reduced.
  • the detonation nanodiamond particles may have been subjected to oxidation treatment such as solution oxidation treatment, oxygen oxidation (vapor phase oxidation) treatment in that the zeta potential of the nanodiamond particles can be negative. preferable.
  • the metal content in the detonation nanodiamond particles is 3000 ppm or less, for example, the total content (mass) of metal elements observed when detonation nanodiamond particles are analyzed by ICP emission spectroscopy. It means 3000 ppm or less.
  • the metal element include aluminum, chromium, copper, iron, sodium, titanium, calcium, potassium, silicon, and the like.
  • the metal content is 3000 ppm or less, preferably 2500 ppm or less, more preferably 2000 ppm or less, and more preferably 1500 ppm or less.
  • the metal impurities in the nanodiamond particles can be effectively removed, and the metal content in the nanodiamond particles can be reduced to 3000 ppm or less.
  • the metal content of the nanodiamond particles is 3000 ppm or less, for example, when a resin additive is used as a heat stabilizer, the function of trapping radicals can be exhibited more and the resin deteriorates during heat processing. And thickening can be suppressed.
  • the details of the ICP emission spectroscopic analysis are as described in the examples of the present application.
  • the metal content can be obtained by the method described in the examples of the present application.
  • content (mass) of sodium is 2000 ppm or less, for example, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less, More preferably, it is 100 ppm or less.
  • content of sodium is large, sodium acts as a catalyst during heat processing of the resin and promotes thermal decomposition of the nanodiamond itself, which may reduce the heat resistance of the nanodiamond particles.
  • content of sodium is 2000 ppm or less, a decrease in heat resistance of the nanodiamond particles during heat processing can be suppressed.
  • the sodium content can also be determined by ICP emission spectroscopic analysis, for example, by the method described in the examples of the present application.
  • FT-IR Fourier transform infrared spectrophotometer
  • the maximum peak of the absorption peak means the maximum peak in a downward curve in which the transmittance is low in the case of a transmission spectrum in which the vertical axis is the transmittance (% TRANSMITTANCE) as shown in FIGS. Shall. Further, a high absorption peak means that the transmittance at the maximum peak is low.
  • the maximum peak of the absorption peak of 1700 to 1850 cm ⁇ 1 exists between 1740 and 1830 cm ⁇ 1 in the FT-IR infrared absorption spectrum of the detonation nanodiamond particles.
  • the surface functional group tends to have a higher ratio of C ⁇ O in the lactone or anhydride group than C ⁇ O in the ketone group, and in this case, the nanodiamond particles were considerably oxidized. It can be said that it is in a state.
  • the surface functional groups of the detonation nanodiamond particles tend to have a higher proportion of ketone groups C ⁇ O or C ⁇ O in lactones or acid anhydride groups than C—H, and are in an oxidized state. In this case, the proton of the carboxyl group is released in the aqueous solution, and the surface of the nanodiamond particles is negatively charged. Therefore, it can be said that the zeta potential in the nanodiamond particles is negative (negative).
  • the zeta potential in the nanodiamond particles is negative, it means that the oxidation has progressed, and the surface of the nanodiamond that has undergone oxidation is stable without reaction in a high temperature / oxygen atmosphere, and the heating of the resin Deterioration and thickening during processing can be suppressed.
  • the negative zeta potential in the detonation nanodiamond particles means that the zeta potential at pH 7 at 25 ° C. measured by, for example, laser Doppler electrophoresis is negative.
  • the zeta potential is, for example, ⁇ 60 to ⁇ 5 mV, preferably ⁇ 50 to ⁇ 10 mV, and more preferably ⁇ 40 to ⁇ 15 mV.
  • the details of the laser Doppler electrophoresis method are as described in the examples of the present application.
  • the zeta potential can be obtained by the method described in the examples of the present application.
  • the detonation nanodiamond particles in the present invention can be produced by a method including at least the following production process and purification process. Depending on the nanodiamond particles to be used, the following alkaline perwater treatment, oxygen oxidation step (vapor phase oxidation), and hydrogenation step may be included as necessary.
  • nanodiamonds are produced by the detonation method. Specifically, first, a molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and in a state where a predetermined gas and a used explosive coexist in the container. To seal.
  • the container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 .
  • the explosive a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX), can be used.
  • the mass ratio of TNT to RDX is, for example, in the range of 40/60 to 60/40.
  • the amount of explosive used is, for example, 0.05 to 2.0 kg.
  • the above gas sealed in the container together with the explosive used may have an atmospheric composition or may be an inert gas.
  • the detonation method is preferably performed in an inert gas atmosphere from the viewpoint of producing nanodiamonds having a small amount of functional groups on the primary particle surface.
  • the inert gas for example, at least one selected from nitrogen, argon, carbon dioxide, and helium can be used.
  • the electric detonator is then detonated and the explosive is detonated in the container.
  • Detonation refers to an explosion associated with a chemical reaction in which the reaction flame surface moves at a speed exceeding the speed of sound.
  • the diamond used is generated by the action of the pressure and energy of the shock wave generated by the explosion, using the carbon that is liberated due to partial incomplete combustion of the explosive used.
  • the detonation method it is possible to appropriately generate nanodiamond having a primary particle size of 10 nm or less. Nanodiamond is a product obtained by the detonation method.
  • the adjacent primary particles or crystallites are very strong due to the coulomb interaction between crystal planes in addition to the action of van der Waals force. Gather and form a cohesive.
  • the temperature of the container and its interior is then lowered by leaving it at room temperature, for example, for 24 hours.
  • the nanodiamond coarse product (including the nanodiamond adherends and wrinkles produced as described above) adhering to the inner wall of the container is scraped off with a spatula, and the nanodiamond coarse product is scraped off.
  • the product is recovered.
  • a crude product of nanodiamond particles can be obtained by the detonation method as described above. Moreover, it is possible to acquire a desired amount of crude nanodiamond products by performing the above-described generation process as many times as necessary.
  • the purification step includes a pickling treatment in which a strong acid is allowed to act on the crude nanodiamond product as a raw material in, for example, an aqueous solvent.
  • the nano-diamond crude product obtained by the detonation method is likely to contain a metal oxide.
  • This metal oxide is an oxide such as Fe, Co, Ni, etc. derived from the container used for the detonation method. is there.
  • the metal oxide can be dissolved and removed from the nanodiamond crude product (pickling treatment).
  • the strong acid used for the pickling treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia.
  • one type of strong acid may be used, or two or more types of strong acid may be used.
  • the concentration of the strong acid used in the pickling treatment is, for example, 1 to 50% by mass.
  • the pickling temperature is, for example, 70 to 150 ° C.
  • the pickling time is, for example, 0.1 to 24 hours.
  • the pickling treatment can be performed under reduced pressure, normal pressure, or increased pressure. After such pickling treatment, the solid content (including the nanodiamond adherend) is washed with water, for example, by decantation.
  • the above pickling treatment may be omitted.
  • the purification step includes a solution oxidation treatment for removing non-diamond carbon such as graphite and amorphous carbon from a nanodiamond crude product (nanodiamond aggregate before purification is finished) using an oxidizing agent.
  • the nano-diamond crude product obtained by the detonation method contains non-diamond carbon such as graphite and amorphous carbon. This non-diamond carbon causes partial incomplete combustion of the explosive used. It originates from the carbon which did not form the nano diamond crystal among the free carbon.
  • non-diamond carbon can be removed from the nanodiamond crude product by applying a predetermined oxidizing agent in an aqueous solvent, for example (solution oxidation treatment).
  • a predetermined oxidizing agent used in the solution oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, and salts thereof, nitric acid, and mixed acid (a mixture of sulfuric acid and nitric acid).
  • a mixed acid treatment using a mixed acid is preferable.
  • the ratio of concentrated sulfuric acid to concentrated nitric acid for preparing the mixed acid is, for example, 1: 1 to 10: 1 (volume ratio).
  • the solution oxidation treatment one kind of oxidizing agent may be used, or two or more kinds of oxidizing agents may be used.
  • the concentration of the oxidizing agent used in the solution oxidation treatment is, for example, 3 to 50% by mass.
  • the amount of the oxidizing agent used in the solution oxidation treatment is, for example, 300 to 2000 parts by mass with respect to 100 parts by mass of the nanodiamond crude product subjected to the solution oxidation treatment.
  • the solution oxidation treatment temperature is, for example, 50 to 250 ° C.
  • the solution oxidation treatment time is, for example, 1 to 72 hours.
  • the solution oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • the solid content (including the nanodiamond adherend) is washed with water, for example, by decantation.
  • water for example, by decantation.
  • the supernatant liquid at the beginning of water washing is colored, it is preferable to repeat the washing of the solid content by decantation until the supernatant liquid becomes transparent visually.
  • detonation nanodiamond particles are obtained as a dry powder by subjecting the obtained slurry to a drying treatment.
  • a mixed acid treatment using a mixed acid is preferable from the viewpoint of increasing the degree of purification of nanodiamond when it is subjected to an oxygen oxidation step (gas phase oxidation) described later.
  • the ratio (volume ratio) of concentrated sulfuric acid and concentrated nitric acid for preparing the mixed acid is preferably 1: 1 to 10: 1, more preferably 2: 1 to 9: 1, more preferably 3: 1 to 8: 1.
  • the mixed acid treatment temperature is preferably 80 to 200 ° C., more preferably 100 to 190 ° C., more preferably 120 to 180 ° C.
  • the mixed acid treatment time is preferably 1 to It is 96 hours, more preferably 5 to 84 hours, and more preferably 10 to 72 hours.
  • At least one of the pickling treatment and the solution oxidation treatment may be performed, or both may be performed. Moreover, when performing both, a solution oxidation process may be performed after a pickling process, and a pickling process may be performed after a solution oxidation process.
  • the alkali used for the alkaline water treatment examples include sodium hydroxide, ammonia, potassium hydroxide and the like.
  • the alkali concentration is, for example, 0.1 to 10% by mass
  • the hydrogen peroxide concentration is, for example, 1 to 15% by mass
  • the treatment temperature is, for example, 40 to 100 ° C.
  • the treatment time is, for example, 0. .5-5 hours.
  • the alkaline overwater treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • the metal impurities remaining in the nanodiamond may be removed by applying a predetermined strong acid as necessary.
  • the acid used for this treatment include sulfuric acid and hydrochloric acid.
  • an oxygen oxidation step (gas phase oxidation) may be performed.
  • the nanodiamond powder that has undergone the purification step is heated in a gas atmosphere having a predetermined composition containing oxygen using a gas atmosphere furnace.
  • nano-diamond powder is disposed in a gas atmosphere furnace, oxygen-containing gas is supplied to or passed through the furnace, and the furnace is heated to a temperature condition set as a heating temperature.
  • Oxygen oxidation treatment gas phase oxidation
  • the temperature condition of this oxygen oxidation treatment is, for example, 250 to 500 ° C.
  • the lower limit of the temperature condition for the oxygen oxidation treatment is preferably 280 ° C, more preferably 320 ° C.
  • the upper limit of the temperature condition of the oxygen oxidation treatment is preferably 450 ° C., more preferably 400 ° C.
  • the oxygen-containing gas is a mixed gas containing an inert gas and oxygen.
  • the inert gas include nitrogen, argon, carbon dioxide, and helium.
  • the oxygen content of the mixed gas, that is, the oxygen concentration, is preferably 1 to 35% by volume, more preferably 1 to 10% by volume, and more preferably 2 to 5% by volume.
  • a hydrogenation step may be performed.
  • the nanodiamond powder that has undergone the oxygen oxidation step (vapor phase oxidation) is heated in a gas atmosphere of a predetermined composition containing hydrogen using a gas atmosphere furnace.
  • a hydrogen-containing gas is supplied to or passed through a gas atmosphere furnace in which nanodiamond powder is arranged, and the temperature in the furnace is increased to a temperature condition set as a heating temperature. Processing is performed.
  • the temperature condition for this hydrogenation treatment is 400 to 800 ° C., for example.
  • the lower limit of the temperature condition of the hydrotreatment is preferably 500 ° C, more preferably 550 ° C.
  • the upper limit of the temperature condition of the hydrogenation treatment is preferably 700 ° C, more preferably 650 ° C.
  • the hydrogen-containing gas is a mixed gas containing an inert gas and hydrogen.
  • the inert gas include nitrogen, argon, carbon dioxide, and helium.
  • the hydrogen content of the mixed gas, that is, the hydrogen concentration is, for example, 0.1 to 99.9% by volume, preferably 0.5 to 50% by volume, more preferably 1 to 10% by volume.
  • the metal content is 3000 ppm or less, and the maximum absorption peak at 1700 to 1850 cm ⁇ 1 is 2800 to 3000 cm ⁇ in the infrared absorption spectrum by a Fourier transform infrared spectrophotometer (FT-IR). Detonated nanodiamond particles characterized by being higher than the absorption peak of 1 can be produced.
  • FT-IR Fourier transform infrared spectrophotometer
  • the resin composition of the present invention includes the resin additive and a resin.
  • the resin include a thermoplastic resin and a thermosetting resin.
  • a thermoplastic resin is preferable.
  • the resin composition may contain one type of resin or two or more types of resins.
  • the resin composition of the present invention is in the form of a pellet that is a resin molding raw material, a form that is softened or melted from the form of the resin molding raw material, and a form of a resin molded body that is formed through a softened or molten state. It can take.
  • thermoplastic resin examples include aromatic polyether ketone, polyphenylene sulfide (melting point 280 ° C., glass transition temperature 90 ° C.), polyether sulfone (glass transition temperature 225 ° C.), polyarylate (glass transition temperature 275 ° C.), Polyamideimide (glass transition temperature 275 ° C.), thermoplastic polyimide (glass transition temperature 250 ° C.), polybenzimidazole (glass transition temperature 427 ° C.), polyamide 9T (melting point 306 ° C., glass transition temperature 125 ° C.) and the like.
  • the thermoplastic resin preferably contains an aromatic polyether ketone or polyphenylene sulfide.
  • aromatic polyether ketone examples include polyether ketone (melting point 373 ° C., glass transition temperature 140 ° C.), polyether ether ketone (melting point 334 ° C., glass transition temperature 143 ° C.), polyether ketone ketone (melting point 396 ° C., Glass transition temperature 165 ° C.), polyether ether ketone ketone (melting point 360 ° C., glass transition temperature 149 ° C.) and the like.
  • the glass transition temperature of the thermoplastic resin is, for example, 220 ° C. or higher, preferably 230 ° C. or higher, more preferably 240 ° C. or higher, more preferably 250 ° C. or higher.
  • the upper limit of the glass transition temperature is, for example, 400 ° C.
  • the glass transition temperature is a value measured by differential scanning calorimetry (DSC) in accordance with JIS standards (JIS K 7121: plastic transition temperature measurement method).
  • the resin content in the resin composition is, for example, 80 to 99.999% by mass, preferably 90 to 99.9% by mass, and more preferably 95 to 99.6% by mass.
  • the content of the resin additive in the resin composition is, for example, 0.1 to 20% by mass, preferably 0.2 to 10% by mass, and more preferably 0.3 to 5% by mass.
  • the content of the resin additive with respect to 100 parts by mass of the resin is, for example, 0.001 to 5 parts by mass.
  • the lower limit of the content of the resin additive is preferably 0.002 parts by mass, more preferably 0.01 parts by mass, and more preferably 0.1 parts by mass.
  • the upper limit of the content of the resin additive is preferably 3.0 parts by mass, more preferably 2.0 parts by mass, and more preferably 1.0 parts by mass. As the content of the resin additive is increased, for example, a greater effect as a radical stabilizer is obtained. However, when the content exceeds the upper limit of the content, no further effect is obtained.
  • the resin composition may contain other components in addition to the resin and the additive for resin.
  • other components include flame retardants, glass fibers, carbon fibers, antistatic agents, lubricants, and colorants.
  • the resin composition is prepared by mixing (mixing) pellets as a raw material of resin, detonation nanodiamond particles as a dry powder, and other components added as necessary, using a mixer. Step), and then kneaded with heat using a kneader (kneading step).
  • the mixer include a Henschel mixer, a tumbler, and a revolution mill.
  • the kneader include a batch type polymer mixer, a twin screw extruder, a single screw extruder, a Banbury mixer, and a roll mixer.
  • the kneaded material obtained by the above process may be molded into a predetermined shape, or the kneaded material may be pelletized, or the obtained pellets may be injection molded from the raw material.
  • Example 1 Production of nanodiamond (ND1)
  • purification process 1 oxidation treatment with chromic acid
  • alkaline perwater treatment process purification process 2 (acid treatment)
  • drying process dry nanodiamond powder (ND1) was produced.
  • a molded explosive with an electric detonator was installed inside a pressure-resistant container for detonation, and the container was sealed.
  • the container is made of iron and the volume of the container is 15 m 3 .
  • As the explosive 0.50 kg of a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine or hexogen (RDX) was used.
  • the mass ratio (TNT / RDX) of TNT and RDX in the explosive is 50/50.
  • the electric detonator was detonated, and the explosive was detonated in the container.
  • the container and its interior were cooled by being left at room temperature for 24 hours.
  • the nanodiamond crude product (including the nanodiamond particle aggregates and soot produced by the above detonation method) adhering to the inner wall of the container is scraped off with a spatula.
  • the crude product was recovered.
  • Alkaline overwater treatment process After adding 1 L of 10% by mass sodium hydroxide aqueous solution and 1 L of 30% by mass hydrogen peroxide aqueous solution to the precipitate after the decantation to form a slurry, the slurry is subjected to reflux under normal pressure conditions. Heat treatment for 1 hour was performed. The heating temperature in this alkaline overwater treatment is 50 to 105 ° C. Next, after cooling, the supernatant was removed by decantation.
  • the electrical conductivity was measured using an electrical conductivity measuring device (trade name “TWIN-COND B-771”, manufactured by Horiba, Ltd.). The measurement temperature is 25 ° C.
  • a drying process was performed. Specifically, the nanodiamond dispersion obtained as described above is spray-dried using a spray dryer (trade name “Spray Dryer B-290”, manufactured by Nihon Büch) to form a powder. did. As described above, a dry powder (ND1) of nanodiamond was produced.
  • the obtained nanodiamond dry powder (ND1) was subjected to solid state 13 C-NMR analysis, FT-IR measurement, and zeta potential measurement by the following measurement methods.
  • solid state 13 C-NMR analysis the proportion of each carbon atom is 9.4% of hydroxyl-bonded carbon (C—OH) and carboxyl carbon (C ( ⁇ O) O) with respect to the total carbon atoms contained in the nanodiamond. ) was 0.4%, hydrogen-bonded carbon was 13.1%, and sp 3 carbon was 77.0%.
  • FT-IR as shown in FIG.
  • Nanodiamond (ND2) was produced in the same manner as in Example 1 except that the purification step 2 (acid treatment) in Example 1 was not performed.
  • the obtained nanodiamond dry powder (ND2) was subjected to FT-IR measurement and zeta potential measurement by the following measurement methods.
  • Absorption peak of 1753 cm -1 was higher than the absorption peak of 2931cm -1.
  • the zeta potential was ⁇ 28 mV (25 ° C., pH 7).
  • Example 2 Production Example 2 of nanodiamond (ND3)
  • Nanodiamond (ND3) was prepared in the same manner as in Example 1 except that the following purification step 1 ′ (oxidation treatment with mixed acid) was performed instead of the purification step 1 (oxidation treatment with chromic acid) in Example 1 above.
  • the obtained nanodiamond dry powder (ND3) was subjected to FT-IR measurement and zeta potential measurement by the following measurement methods. In FT-IR, as shown in FIG.
  • Example 3 Production of nanodiamond (ND4)
  • the following gas phase oxidation 1 was performed to produce nanodiamond (ND4).
  • the obtained nanodiamond dry powder (ND4) was subjected to solid state 13 C-NMR analysis, FT-IR measurement, and zeta potential measurement by the following measurement methods.
  • solid state 13 C-NMR analysis the proportion of each carbon atom is 14.7% of hydroxyl-bonded carbon (C—OH) and carboxyl carbon (C ( ⁇ O) O) with respect to the total carbon atoms contained in the nanodiamond.
  • carbonyl carbon (C ⁇ O) was 0.4%
  • hydrogen-bonded carbon was 14.4%
  • sp 3 carbon was 70.0%.
  • the thermal oxidation process was performed using a gas atmosphere furnace (trade name “Gas Atmosphere Tube Furnace KTF045N1”, manufactured by Koyo Thermo Systems Co., Ltd.). Specifically, 4.5 g of the nanodiamond powder obtained as described above was placed in the core tube of a gas atmosphere furnace, and nitrogen gas was continuously passed through the core tube at a flow rate of 1 L / min for 30 minutes. Thereafter, the flow gas was switched from nitrogen to a mixed gas of oxygen and nitrogen, and the mixed gas was continuously passed through the reactor core tube at a flow rate of 1 L / min. The oxygen concentration in the mixed gas is 4% by volume.
  • the temperature in the furnace was raised to a heating set temperature of 400 ° C.
  • the heating rate was 10 ° C./min from 380 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 380 ° C. to the heating set temperature.
  • the oxygen oxidation process was performed about the nano diamond powder in a furnace, maintaining the temperature conditions in a furnace at 400 degreeC.
  • the processing time was 3 hours. As described above, the nanodiamond powder of Example 3 that had undergone the thermal oxidation process or oxygen oxidation treatment was obtained.
  • the ratio (yield) of the amount of nanodiamond powder after the thermal oxidation step or oxygen oxidation treatment to the amount of nanodiamond powder before being subjected to the thermal oxidation step or oxygen oxidation treatment was determined to be 95%. Met.
  • Example 4 Production Example 2 of Nano Diamond (ND5)
  • ND5 nanodiamond dry powder
  • FT-IR FT-IR
  • zeta potential measurement by the following measurement methods.
  • FT-IR as shown in FIG. 5, an absorption peak derived from C ⁇ O of the lactone or acid anhydride group in the surface functional group was observed near 1800 cm ⁇ 1 .
  • a conspicuous absorption peak was not observed at 2800 to 3000 cm ⁇ 1 .
  • the zeta potential was ⁇ 33 mV (25 ° C., pH 7).
  • Example 4 (Gas phase oxidation 2) A nanodiamond powder of Example 4 was obtained in the same manner as in Gas Phase Oxidation 1 except that the heating set temperature in Gas Phase Oxidation 1 of Example 3 was changed to 475 ° C. The rate of temperature increase was 10 ° C./min up to 455 ° C., 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 455 ° C. to the heating set temperature. The ratio (yield) of the amount of nanodiamond powder after the thermal oxidation step or oxygen oxidation treatment to the amount of nanodiamond powder before being subjected to the thermal oxidation step or oxygen oxidation treatment was found to be 69%. Met.
  • the gas to be ventilated was switched from hydrogen to nitrogen and vented overnight. The next morning, the aeration of nitrogen gas was stopped, the quartz boat was taken out from the tubular furnace, and the sample was collected. The weight after recovery was 1.35 g.
  • FT-IR measurement> A Fourier transform infrared spectrophotometer, a product name “FT-720” (manufactured by Horiba Seisakusho Co., Ltd.) with a heating vacuum stirring reflection Heat Chamber Type-1000 ° C. (manufactured by ST Japan Ltd.) It measured using. In order to remove the adsorbed water of the nanodiamond, FT-IR measurement was performed after heating at 150 ° C. for 1 minute under a degree of vacuum of 2 ⁇ 10 ⁇ 3 Pa.
  • Solid state 13 C-NMR analysis was performed by a solid state NMR method using a solid state NMR apparatus (trade name “CMX-300 Infinity”, manufactured by Chemicals).
  • the measurement method and other conditions related to the measurement are as follows.
  • Measurement method DD / MAS method Measurement nuclear frequency: 75.188829 MHz ( 13 C nucleus) Spectral width: 30.003 kHz Pulse width: 4.2 ⁇ sec (90 ° pulse) Pulse repetition time: ACQTM 68.26msec, PD 15sec Observation point: 2048 (data point: 8192) Reference substance: Polydimethylsiloxane (external standard: 1.56 ppm) Temperature: Room temperature (about 22 ° C) Sample rotation speed: 8.0 kHz
  • the zeta potential relating to the nanodiamond particles contained in the nanodiamond dispersion is a value measured by a laser Doppler electrophoresis method using an apparatus (trade name “Zetasizer Nano ZS”) manufactured by Spectris.
  • the nanodiamond dispersion liquid subjected to the measurement was diluted with ultrapure water to a nanodiamond concentration of 0.2% by mass and then subjected to ultrasonic irradiation with an ultrasonic cleaner.
  • the pH of the nanodiamond dispersion liquid subjected to the measurement is a value confirmed using a pH test paper (trade name “Three Band pH Test Paper”, manufactured by ASONE Corporation).
  • Example 1 shows the results of the measured content (mass) of each metal element.
  • the unit of content (mass) of each metal element in Table 1 is ppm ( ⁇ g / g).
  • ⁇ 50 means 50 ppm or less (maximum 50 ppm).
  • ⁇ Measurement of metal content 100 mg of dry matter (powder) remaining after evaporation of water from the nanodiamond dispersion or nanodiamond-containing solution by heating was subjected to dry decomposition in an electric furnace in a state of being placed in a magnetic crucible.
  • This dry decomposition was performed in three stages under the conditions of 450 ° C. for 1 hour, followed by 550 ° C. for 1 hour, and then 650 ° C. for 1 hour. After such dry decomposition, the residue in the magnetic crucible was evaporated to dryness by adding 0.5 ml of concentrated sulfuric acid to the magnetic crucible.
  • the obtained dried product was finally dissolved in 20 ml of ultrapure water.
  • an analytical sample was prepared.
  • This analysis sample was subjected to ICP emission spectroscopic analysis using an ICP emission spectroscopic analyzer (trade name “CIROS120”, manufactured by Rigaku Corporation).
  • the analysis sample was prepared so that the lower limit of detection of this analysis was 50 mass ppm.
  • SPEX mixed standard solution XSTC-22, Kanto Chemical Atomic Absorption Standard Solution K1000, and Na1000 are appropriately used in a sulfuric acid aqueous solution having the same concentration as the sulfuric acid concentration of the analysis sample. Diluted and used.
  • the measurement value obtained by operating and analyzing in the same manner with an empty crucible was subtracted from the measurement value of the nanodiamond dispersion liquid sample to be measured to obtain the metal concentration in the sample.
  • the metal (element) content in Example 1 is 547 ppm at the maximum and 397 ppm at the minimum from the total of each measured metal (element).
  • the metal (element) content in Comparative Example 1 is 4960 ppm at the maximum and 4910 ppm at the minimum from the total of the measured metals (elements).
  • the metal (element) content in Example 2 is 570 ppm from the total of the measured metals (elements).
  • the nanodiamond particles of Examples 3 and 4 are obtained by vapor-phase oxidation of the nanodiamond particles of Example 2, and it is considered that there is no change in the metal element content in the gas-phase oxidation.
  • the metal element content in 4 is considered to be comparable to that in Example 2.
  • Examples 5 to 8 and Comparative Examples 3 to 6 100 parts by mass of polyetheretherketone (PEEK) (trade name “Vesta Keep L4000G”, manufactured by Daicel Evonik Co., Ltd.) and 0.5 mass of the additive manufactured in Examples 1 to 4 and Comparative Examples 1 and 2 shown in Table 1 below
  • the mixture (total amount 30 g) was kneaded using a kneading / extrusion molding evaluation test apparatus (trade name “Laboplast Mill R-30”, kneading chamber volume 30 cc, manufactured by Toyo Seiki Seisakusho) to obtain a resin composition I got a thing.
  • the kneading temperature was 400 ° C.
  • the number of rotations of the rollers in the kneading chamber was 60 rpm
  • the kneading time was 15 minutes.
  • the complex viscosity measurement was performed by the method shown below.
  • IRANOX 1010 shown in Table 2 is a hindered phenol compound (trade name “IRGANOX 1010FF”, manufactured by BASF).
  • IRGANOX 1010FF hindered phenol compound
  • Comparative Example 3 30 g of PEEK was measured without adding anything.
  • metal content is not more than 3000 ppm, in the infrared absorption spectrum by Fourier transform infrared spectroscopy (FT-IR), the maximum peak of the absorption peak of 1700 ⁇ 1850 cm -1 it is of 2800 ⁇ 3000 cm -1
  • Additive for resin using detonation nano diamond particles which is higher than absorption peak.
  • the resin additive according to [1] wherein the sodium content of the detonation nanodiamond particles is 2000 ppm or less.
  • the additive for resin according to [1] or [2] which is a heat stabilizer and / or an antioxidant.
  • the additive for resin of the present invention has high heat resistance, can exhibit functions such as scavenging radicals even at a high processing temperature, and can suppress deterioration and thickening during heat processing of the resin. It is suitable as an additive (for example, heat stabilizer, antioxidant) for resins having a high melting point such as engineering plastics and super engineering plastics.

Abstract

The purpose of the present invention is to provide: an additive for resins, which can prevent the deterioration and thickening of a resin during a thermal processing, can exhibit functions including a function to scavenge radicals even at a high processing temperature (e.g., 280 °C or higher), and has high heat resistance; and a resin composition comprising the additive for resins and a resin. The additive for resins according to the present invention is characterized by utilizing detonation nanodiamond particles which have a metal content of 3000 ppm or less and of which the maximum peak among absorption peaks at 1700 to 1850 cm-1 is higher than absorption peaks at 2800 to 3000 cm-1 in infrared ray absorption spectra as measured by a Fourier transform infrared spectroscopy(FT-IR).

Description

樹脂用添加剤、及び樹脂組成物Additive for resin and resin composition
 本発明は、例えば熱可塑性樹脂に用いられる樹脂用添加剤、及び前記樹脂用添加剤と樹脂を含む樹脂組成物に関する。本願は、2016年10月28日に日本に出願した、特願2016-211845号の優先権を主張し、その内容をここに援用する。 The present invention relates to a resin additive used for, for example, a thermoplastic resin, and a resin composition containing the resin additive and a resin. This application claims the priority of Japanese Patent Application No. 2016-2111845 for which it applied to Japan on October 28, 2016, and uses the content here.
 樹脂成形体の製造では、原料である樹脂組成物を軟化・溶融して混練する工程や成形する工程等にて加熱を伴う工程がある。加熱を伴う工程では、加熱に起因して樹脂組成物中にラジカルが発生し、そのラジカルが樹脂組成物中で樹脂の分解反応や架橋反応を誘発することがある。これら分解反応や架橋反応は、一般に樹脂の化学構造の劣化や物性の劣化を招くことがある。また、架橋反応は、樹脂の増粘を招き、加工性や成形性を低下させる場合もある。よって、加熱を伴う工程を経る樹脂には、分解反応や架橋反応を防止する目的で、樹脂用添加剤としてラジカルを捕捉ないし安定化させる機能を有する化合物を添加する場合がある。このような樹脂用添加剤としては、一般的に下記特許文献1~3に記載のようにヒンダードフェノール系化合物が用いられている。 In the production of a resin molded body, there are processes involving heating in a process of softening / melting and kneading a resin composition as a raw material, a process of molding, and the like. In the process involving heating, radicals are generated in the resin composition due to the heating, and the radicals may induce a decomposition reaction or a crosslinking reaction of the resin in the resin composition. In general, these decomposition reactions and crosslinking reactions may cause deterioration of the chemical structure and physical properties of the resin. In addition, the cross-linking reaction may increase the viscosity of the resin and reduce processability and moldability. Therefore, a resin having a function of trapping or stabilizing radicals may be added as an additive for a resin to a resin that undergoes a process involving heating for the purpose of preventing a decomposition reaction or a crosslinking reaction. As such a resin additive, a hindered phenol compound is generally used as described in Patent Documents 1 to 3 below.
特開2002-332306号公報JP 2002-332306 A 特開2006-160809号公報JP 2006-160809 A 特開2011-208157号公報JP 2011-208157 A
 樹脂のなかでもエンジニアリングプラスチックやスーパーエンジニアリングプラスチックなど、高い耐熱性を有する樹脂材料は、一般的に高い融点を有するので、その成形加工においては相応の高い加工温度が求められる。特にスーパーエンジニアリングプラスチックの成形加工においては、例えば280℃以上もの高温の加工温度が求められる場合がある。しかし、上記のヒンダードフェノール系化合物等の有機化合物である一般的な樹脂用添加剤では、高耐熱性樹脂材料の成形加工に求められる高温に耐えられない場合が多く、例えば280℃以上の高温の加熱を伴う場合、化合物自体が分解して異物化してしまうことや、ラジカルを捕捉する機能が発現しないなど樹脂用添加剤としての機能に問題がある場合がある。 Among the resins, resin materials having high heat resistance such as engineering plastics and super engineering plastics generally have a high melting point, and accordingly, a high processing temperature is required in the molding process. In particular, in the processing of super engineering plastics, for example, a processing temperature as high as 280 ° C. or higher may be required. However, in general additives for resins that are organic compounds such as the above-mentioned hindered phenol compounds, there are many cases where they cannot withstand the high temperatures required for the molding of high heat-resistant resin materials. When heating is performed, there may be a problem in the function as a resin additive such that the compound itself decomposes to form a foreign substance, or the function of capturing radicals does not appear.
 従って本発明の目的は、樹脂の加熱加工時の劣化および増粘を抑制しつつ高い加工温度(例えば280℃以上)においても、ラジカルを捕捉する等の機能が発揮でき、高い耐熱性を有する樹脂用添加剤、及び前記樹脂用添加剤と樹脂を含む樹脂組成物を提供することである。 Accordingly, an object of the present invention is to provide a resin having a high heat resistance that can exhibit functions such as scavenging radicals even at a high processing temperature (for example, 280 ° C. or higher) while suppressing deterioration and thickening during heat processing of the resin. And a resin composition comprising the resin additive and a resin.
 本発明者らは、上記課題を解決するため鋭意検討した結果、特定の爆轟法ナノダイヤモンド粒子を樹脂用添加剤として用いることで上記課題を解決できることを見いだした。本発明は、これらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using specific detonation nanodiamond particles as an additive for resin. The present invention has been completed based on these findings.
 すなわち、本発明は、金属含有量が3000ppm以下であり、フーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが、2800~3000cm-1の吸収ピークよりも高い、爆轟法ナノダイヤモンド粒子を用いた樹脂用添加剤を提供する。 That is, according to the present invention, the metal content is 3000 ppm or less, and the maximum absorption peak at 1700 to 1850 cm −1 is 2800 to 3000 cm in the infrared absorption spectrum by a Fourier transform infrared spectrophotometer (FT-IR). An additive for resin using detonation nanodiamond particles having an absorption peak higher than -1 is provided.
 また、本発明の樹脂用添加剤は、前記爆轟法ナノダイヤモンド粒子のナトリウム含有量が2000ppm以下であることが好ましい。 In the additive for resin of the present invention, the sodium content of the detonation nanodiamond particles is preferably 2000 ppm or less.
 また、本発明の樹脂用添加剤は、熱安定剤及び/又は酸化防止剤であることが好ましい。 The resin additive of the present invention is preferably a heat stabilizer and / or an antioxidant.
 また、本発明の樹脂用添加剤は、前記爆轟法ナノダイヤモンド粒子が酸洗処理をしたものであることが好ましい。 In addition, the resin additive of the present invention is preferably one in which the detonation nanodiamond particles are pickled.
 また、本発明の樹脂用添加剤は、前記爆轟法ナノダイヤモンド粒子が気相酸化をしたものであることが好ましい。 In addition, the resin additive of the present invention is preferably one obtained by vapor phase oxidation of the detonation nanodiamond particles.
 また、本発明の樹脂用添加剤は、前記爆轟法ナノダイヤモンド粒子のゼータ電位がマイナスであることが好ましい。 The resin additive of the present invention preferably has a negative zeta potential of the detonation nanodiamond particles.
 また、本発明の樹脂用添加剤は、前記爆轟法ナノダイヤモンド粒子のフーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが1740~1830cm-1の間に存在することが好ましい。 The additive for resin of the present invention has a maximum absorption peak of 1700 to 1850 cm −1 in the infrared absorption spectrum of the detonation nanodiamond particles by Fourier transform infrared spectrophotometer (FT-IR). It is preferably present between 1740 and 1830 cm −1 .
 また、本発明は、前記樹脂用添加剤、及び樹脂を含む樹脂組成物を提供する。 The present invention also provides a resin composition comprising the resin additive and a resin.
 また、本発明の樹脂組成物は、前記樹脂が、熱可塑性樹脂であることが好ましい。 In the resin composition of the present invention, the resin is preferably a thermoplastic resin.
 また、本発明の樹脂組成物は、前記熱可塑性樹脂が、芳香族ポリエーテルケトンであることが好ましい。 In the resin composition of the present invention, the thermoplastic resin is preferably an aromatic polyether ketone.
 また、本発明の樹脂組成物は、前記芳香族ポリエーテルケトンが、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、及びポリエーテルエーテルケトンケトンからなる群より選択される少なくとも1つであることが好ましい。 In the resin composition of the present invention, the aromatic polyether ketone is at least one selected from the group consisting of polyether ketone, polyether ether ketone, polyether ketone ketone, and polyether ether ketone ketone. It is preferable.
 また、本発明の樹脂組成物は、前記樹脂用添加剤の含有量が、前記樹脂100質量部に対して0.001~5質量部であることが好ましい。 In the resin composition of the present invention, the content of the resin additive is preferably 0.001 to 5 parts by mass with respect to 100 parts by mass of the resin.
 本発明の樹脂用添加剤は、高い耐熱性を有し、高い加工温度(例えば280℃以上)においても、ラジカルを捕捉する等の機能が発揮でき、樹脂の加熱加工時の劣化および増粘を抑制することができる。 The additive for resin of the present invention has high heat resistance, can exhibit functions such as scavenging radicals even at a high processing temperature (for example, 280 ° C. or higher), and exhibits deterioration and thickening during heat processing of the resin. Can be suppressed.
実施例1で得られたナノダイヤモンド(ND1)のFT-IRスペクトルである。2 is an FT-IR spectrum of nanodiamond (ND1) obtained in Example 1. 比較例1で得られたナノダイヤモンド(ND2)のFT-IRスペクトルである。3 is an FT-IR spectrum of nanodiamond (ND2) obtained in Comparative Example 1. 実施例2で得られたナノダイヤモンド(ND3)のFT-IRスペクトルである。4 is an FT-IR spectrum of nanodiamond (ND3) obtained in Example 2. 実施例3で得られたナノダイヤモンド(ND4)のFT-IRスペクトルである。4 is an FT-IR spectrum of nanodiamond (ND4) obtained in Example 3. 実施例4で得られたナノダイヤモンド(ND5)のFT-IRスペクトルである。4 is an FT-IR spectrum of nanodiamond (ND5) obtained in Example 4. 比較例2で得られたナノダイヤモンド(ND6)のFT-IRスペクトルである。3 is an FT-IR spectrum of nanodiamond (ND6) obtained in Comparative Example 2.
[樹脂用添加剤]
 本発明の樹脂用添加剤(以下、「本発明」と称する場合がある)は、金属含有量が3000ppm以下であり、フーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが2800~3000cm-1の吸収ピークよりも高いことを特徴とする爆轟法ナノダイヤモンド粒子を用いることを特徴とする。本発明は、例えば熱安定剤、酸化防止剤、紫外線吸収剤、紫外線安定剤、分散安定剤、難燃剤、滑剤、(結晶)核剤であり、好ましくは熱安定剤、酸化防止剤、より好ましくは熱安定剤である。前記熱安定剤は、ラジカルを捕捉ないし安定化させる機能を有する化合物のことである。
[Additives for resins]
The additive for resin of the present invention (hereinafter sometimes referred to as “the present invention”) has a metal content of 3000 ppm or less, and in the infrared absorption spectrum by a Fourier transform infrared spectrophotometer (FT-IR), maximum peak of the absorption peak of 1700 ~ 1850 cm -1 is characterized by using a detonation method nanodiamond particles being higher than the absorption peak of 2800 ~ 3000 cm -1. The present invention is, for example, a thermal stabilizer, an antioxidant, an ultraviolet absorber, an ultraviolet stabilizer, a dispersion stabilizer, a flame retardant, a lubricant, and a (crystal) nucleating agent, preferably a thermal stabilizer, an antioxidant, more preferably Is a heat stabilizer. The heat stabilizer is a compound having a function of capturing or stabilizing radicals.
 本発明において、爆轟法ナノダイヤモンド粒子とは、後述する爆轟法にて得られたナノダイヤモンド粒子のことであり、爆轟法ナノダイヤモンドとしては、空冷式爆轟法ナノダイヤモンドと水冷式爆轟法ナノダイヤモンドの何れであってもよい。 In the present invention, detonation nanodiamond particles are nanodiamond particles obtained by the detonation method described later, and as detonation nanodiamonds, air-cooled detonation nanodiamond and water-cooled detonation are used. Any of the method nano diamonds may be used.
 前記爆轟法ナノダイヤモンド粒子は、ナノダイヤモンドの一次粒子であってもよく、一次粒子が集成したナノダイヤモンドの二次粒子であってもよい。本発明において、ナノダイヤモンド一次粒子とは、特に粒径10nm以下のナノダイヤモンド粒子をいうものとする。 The detonation nanodiamond particles may be primary particles of nanodiamond or secondary particles of nanodiamond in which primary particles are assembled. In the present invention, the nanodiamond primary particles particularly mean nanodiamond particles having a particle diameter of 10 nm or less.
 前記爆轟法ナノダイヤモンド粒子の粒径D50(メディアン径)は、例えば10μm以下、好ましくは500nm以下、より好ましくは200nm以下である。前記粒径D50は、ナノダイヤモンドの一次粒子または一次粒子が集成した二次粒子の粒径である。爆轟法ナノダイヤモンド粒子の粒径D50が10μm以下であると、単位質量あたりの表面積を充分に確保することができ、例えば熱安定剤などのナノダイヤモンドとしての機能を効率よく発揮することができる。 The particle diameter D50 (median diameter) of the detonation nanodiamond particles is, for example, 10 μm or less, preferably 500 nm or less, more preferably 200 nm or less. The particle size D50 is a particle size of primary particles of nanodiamond or secondary particles in which primary particles are assembled. When the particle size D50 of the detonation nanodiamond particles is 10 μm or less, a sufficient surface area per unit mass can be secured, and for example, functions as nanodiamonds such as a thermal stabilizer can be efficiently exhibited. .
 ナノダイヤモンド粒子は、バルクダイヤモンドと同様に炭素原子のsp3構造を基本骨格とするが、ナノダイヤモンド一次粒子の表面の少なくとも一部には、ダイヤモンド本体をなすsp3構造炭素からの自発転移によってグラファイト層(黒鉛型炭素層)が生じているものと想定される。このグラファイト層のsp2構造炭素の存在が、ラジカルの補足や安定化の一因として寄与し、従って、ラジカルの作用による樹脂の分解・架橋すなわち劣化が抑制されるものと考えられる。 Nano-diamond particles have a basic skeleton with a sp 3 structure of carbon atoms as in bulk diamond, but at least part of the surface of the nano-diamond primary particles is made of graphite by spontaneous transition from the sp 3 structure carbon forming the diamond body. It is assumed that a layer (graphite carbon layer) is generated. The presence of the sp 2 structure carbon in the graphite layer contributes to the capture and stabilization of radicals, and therefore, it is considered that the decomposition / crosslinking, that is, deterioration of the resin due to the action of radicals is suppressed.
 ナノダイヤモンド粒子は、ナノダイヤモンドの基本骨格の終端炭素原子と結合する基(表面官能基)として、水酸基、カルボキシル基、カルボニル基等を有することが好ましい。これら表面官能基は、ナノダイヤモンド表面に存在するsp2構造炭素と協働して共役系をなし、ラジカルの補足や安定化に寄与し、ラジカルの作用による樹脂の分解や架橋、すなわち劣化を抑制する働きをするものと考えられる。 The nanodiamond particles preferably have a hydroxyl group, a carboxyl group, a carbonyl group or the like as a group (surface functional group) bonded to the terminal carbon atom of the basic skeleton of nanodiamond. These surface functional groups form a conjugated system in cooperation with the sp 2 structure carbon existing on the nanodiamond surface, contribute to the capture and stabilization of radicals, and suppress the decomposition and crosslinking of the resin due to the action of radicals, that is, deterioration. It is thought to work.
 前記爆轟法ナノダイヤモンド粒子に含まれる炭素における水酸基結合炭素(C-OH)の割合は、例えば6.0%以上、好ましくは7.0%以上、より好ましくは8.0%以上、より好ましくは10.0%以上、より好ましくは12.0%以上である。水酸基結合炭素の割合の上限は、例えば40.0%である。前記水酸基結合炭素とは、ナノダイヤモンドの基本骨格において、表面官能基である水酸基(-OH)が結合するナノダイヤモンドの基本骨格の炭素を意味する。前記水酸基結合炭素の割合は、例えば固体13C-NMR分析によって測定することができる。 The ratio of hydroxyl-bonded carbon (C—OH) in the carbon contained in the detonation nanodiamond particles is, for example, 6.0% or more, preferably 7.0% or more, more preferably 8.0% or more, more preferably Is 10.0% or more, more preferably 12.0% or more. The upper limit of the ratio of hydroxyl-bonded carbon is, for example, 40.0%. The hydroxyl group-bonded carbon means carbon of the basic skeleton of nanodiamond, to which the surface functional group hydroxyl group (—OH) is bonded, in the basic skeleton of nanodiamond. The ratio of the hydroxyl-bonded carbon can be measured, for example, by solid state 13 C-NMR analysis.
 前記爆轟法ナノダイヤモンド粒子に含まれる炭素におけるカルボキシル炭素(C(=O)O)の割合は、例えば0.1%以上であり、好ましくは0.2%以上、より好ましくは0.3%以上、より好ましくは0.4%以上である。カルボキシル炭素の割合の上限は、例えば5.0%である。前記カルボキシル炭素とは、表面官能基であるカルボキシル基(-COOHを含む-C(=O)O)に含まれる炭素を意味するものとする。前記カルボキシル炭素の割合は、例えば固体13C-NMR分析によって測定することができる。 The proportion of carboxyl carbon (C (= O) O) in the carbon contained in the detonation nanodiamond particles is, for example, 0.1% or more, preferably 0.2% or more, more preferably 0.3%. Above, more preferably 0.4% or more. The upper limit of the ratio of carboxyl carbon is, for example, 5.0%. The carboxyl carbon means carbon contained in a carboxyl group (—C (═O) O including —COOH) which is a surface functional group. The proportion of the carboxyl carbon can be measured, for example, by solid state 13 C-NMR analysis.
 前記爆轟法ナノダイヤモンド粒子に含まれる炭素におけるカルボニル炭素(C=O)の割合は、例えば0.1%以上であり、好ましくは0.2%以上、より好ましくは0.3%以上、より好ましくは0.4%以上である。カルボニル炭素の割合の上限は、例えば5.0%である。前記カルボニル炭素とは、表面官能基であるカルボニル基(-C=O)に含まれる炭素を意味する。なお、-C(=O)Oに含まれる炭素はカルボニル炭素に含まれないものとする。前記カルボニル炭素の割合は、例えば固体13C-NMR分析によって測定することができる。 The proportion of carbonyl carbon (C═O) in the carbon contained in the detonation nanodiamond particles is, for example, 0.1% or more, preferably 0.2% or more, more preferably 0.3% or more, and more. Preferably it is 0.4% or more. The upper limit of the carbonyl carbon ratio is, for example, 5.0%. The carbonyl carbon means carbon contained in a carbonyl group (—C═O) which is a surface functional group. Note that carbon included in —C (═O) O is not included in carbonyl carbon. The proportion of the carbonyl carbon can be measured, for example, by solid state 13 C-NMR analysis.
 前記爆轟法ナノダイヤモンド粒子に含まれる炭素における水素結合炭素の割合は、例えば8.0%以上、好ましくは9.0%以上、より好ましくは10.0%以上、より好ましくは12.0%以上である。前記水素結合炭素とは、表面官能基に存在する水素原子と結合する炭素のことである。水素結合炭素の割合が8.0%以上であると、ナノダイヤモンドの表面炭素の安定化に寄与する。前記水素結合炭素の割合は、例えば固体13C-NMR分析によって測定することができる。 The proportion of hydrogen-bonded carbon in the carbon contained in the detonation nanodiamond particles is, for example, 8.0% or more, preferably 9.0% or more, more preferably 10.0% or more, more preferably 12.0%. That's it. The hydrogen-bonded carbon is a carbon that is bonded to a hydrogen atom present in the surface functional group. When the proportion of hydrogen-bonded carbon is 8.0% or more, it contributes to the stabilization of the surface carbon of the nanodiamond. The proportion of the hydrogen-bonded carbon can be measured, for example, by solid state 13 C-NMR analysis.
 前記爆轟法ナノダイヤモンド粒子に含まれる炭素におけるsp3炭素(sp3構造を有する炭素原子)の割合は、例えば50.0%以上、好ましくは55.0%以上、より好ましくは60.0%以上、より好ましくは65.0%以上、より好ましくは70.0%以上である。上記sp3炭素の割合の上限は90.0%である。前記sp3炭素の割合は、例えば固体13C-NMR分析によって測定することができる。 The proportion of sp 3 carbon (carbon atom having sp 3 structure) in the carbon contained in the detonation nanodiamond particles is, for example, 50.0% or more, preferably 55.0% or more, more preferably 60.0%. As mentioned above, More preferably, it is 65.0% or more, More preferably, it is 70.0% or more. The upper limit of the proportion of sp 3 carbon is 90.0%. The proportion of sp 3 carbon can be measured, for example, by solid state 13 C-NMR analysis.
 前記爆轟法ナノダイヤモンド粒子は、酸洗処理をしたものであることが好ましい。酸洗処理に用いる酸としては、塩酸、硫酸、硝酸等が挙げられる。酸洗処理をすることで、ナノダイヤモンド粒子中の金属不純物を効果的に除去することができ、ナノダイヤモンド粒子における金属含有量を低下させることができる。また、前記爆轟法ナノダイヤモンド粒子は、ナノダイヤモンド粒子のゼータ電位をマイナスとすることができる点で、溶液酸化処理、酸素酸化(気相酸化)処理などの酸化処理をしたものであることが好ましい。 The detonation nanodiamond particles are preferably pickled. Examples of the acid used for the pickling treatment include hydrochloric acid, sulfuric acid, and nitric acid. By performing the pickling treatment, metal impurities in the nanodiamond particles can be effectively removed, and the metal content in the nanodiamond particles can be reduced. In addition, the detonation nanodiamond particles may have been subjected to oxidation treatment such as solution oxidation treatment, oxygen oxidation (vapor phase oxidation) treatment in that the zeta potential of the nanodiamond particles can be negative. preferable.
 前記爆轟法ナノダイヤモンド粒子において金属含有量が3000ppm以下とは、例えば爆轟法ナノダイヤモンド粒子をICP発光分光分析法にて分析したときに観測される金属元素の含有量(質量)の合計が3000ppm以下という意味である。金属元素としては、例えばアルミニウム、クロム、銅、鉄、ナトリウム、チタン、カルシウム、カリウム、シリコン等が挙げられる。前記金属含有量は3000ppm以下であるが、好ましくは2500ppm以下、より好ましくは2000ppm以下、より好ましくは1500ppm以下である。特に本発明では、例えば酸洗処理を行うことでナノダイヤモンド粒子中の金属不純物を効果的に除去することができ、ナノダイヤモンド粒子における金属含有量を3000ppm以下まで低下させることができる。また、ナノダイヤモンド粒子の金属含有量が3000ppm以下であるため、例えば樹脂用添加剤を熱安定剤として用いたときに、ラジカルを捕捉する等の機能がより発揮でき、加熱加工時の樹脂の劣化や増粘を抑制することができる。ICP発光分光分析法の詳細は、本願実施例に記載のとおりであり、例えば本願実施例に記載の方法で当該金属含有量を求めることができる。 The metal content in the detonation nanodiamond particles is 3000 ppm or less, for example, the total content (mass) of metal elements observed when detonation nanodiamond particles are analyzed by ICP emission spectroscopy. It means 3000 ppm or less. Examples of the metal element include aluminum, chromium, copper, iron, sodium, titanium, calcium, potassium, silicon, and the like. The metal content is 3000 ppm or less, preferably 2500 ppm or less, more preferably 2000 ppm or less, and more preferably 1500 ppm or less. In particular, in the present invention, for example, by performing pickling treatment, metal impurities in the nanodiamond particles can be effectively removed, and the metal content in the nanodiamond particles can be reduced to 3000 ppm or less. In addition, since the metal content of the nanodiamond particles is 3000 ppm or less, for example, when a resin additive is used as a heat stabilizer, the function of trapping radicals can be exhibited more and the resin deteriorates during heat processing. And thickening can be suppressed. The details of the ICP emission spectroscopic analysis are as described in the examples of the present application. For example, the metal content can be obtained by the method described in the examples of the present application.
 なかでも、前記金属元素のうちナトリウムの含有量が少ないことが好ましく、ナトリウムの含有量(質量)は、例えば2000ppm以下、好ましくは1000ppm以下、より好ましくは500ppm以下、より好ましくは100ppm以下である。ナトリウムの含有量が多いと、樹脂の加熱加工時にナトリウムが触媒として作用し、ナノダイヤモンド自身の熱分解を促進するため、ナノダイヤモンド粒子の耐熱性を低下させる場合がある。ナトリウムの含有量が2000ppm以下であると、加熱加工時のナノダイヤモンド粒子の耐熱性の低下を抑えることができる。なお、当該ナトリウムの含有量もICP発光分光分析法にて、例えば本願実施例に記載の方法で求めることができる。 Especially, it is preferable that there is little content of sodium among the said metal elements, and content (mass) of sodium is 2000 ppm or less, for example, Preferably it is 1000 ppm or less, More preferably, it is 500 ppm or less, More preferably, it is 100 ppm or less. When the content of sodium is large, sodium acts as a catalyst during heat processing of the resin and promotes thermal decomposition of the nanodiamond itself, which may reduce the heat resistance of the nanodiamond particles. When the content of sodium is 2000 ppm or less, a decrease in heat resistance of the nanodiamond particles during heat processing can be suppressed. The sodium content can also be determined by ICP emission spectroscopic analysis, for example, by the method described in the examples of the present application.
 ナノダイヤモンド粒子の表面官能基の組成や比率を調べるための方法としては、例えばフーリエ変換赤外分光光度計(FT-IR)を用いた方法がある。FT-IRにより表面官能基、特に酸素原子含有官能基の組成や比率を求めることで、ナノダイヤモンド粒子における酸化・還元の状態を調べることができる。FT-IRにおいて、ナノダイヤモンド粒子の表面官能基におけるケトン基のC=Oは1712cm-1付近、ラクトンや酸無水物基におけるC=Oは1791cm-1付近、C-Hは2940cm-1付近に吸収ピークが観測される。これらの吸収ピークの高さが高い場合、ナノダイヤモンド粒子の表面官能基におけるその表面官能基の割合(比率)が多いと言える。 As a method for examining the composition and ratio of the surface functional groups of the nanodiamond particles, for example, there is a method using a Fourier transform infrared spectrophotometer (FT-IR). By determining the composition and ratio of surface functional groups, particularly oxygen atom-containing functional groups, by FT-IR, the state of oxidation / reduction in the nanodiamond particles can be examined. In FT-IR, C = O of the ketone group in the surface functional group of the nanodiamond particles is around 1712 cm -1 , C = O in the lactone or acid anhydride group is around 1791 cm -1 , and C-H is around 2940 cm -1 . An absorption peak is observed. When the height of these absorption peaks is high, it can be said that the ratio (ratio) of the surface functional groups in the surface functional groups of the nanodiamond particles is large.
 本発明は、前記爆轟法ナノダイヤモンド粒子のFT-IRによる赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが2800~3000cm-1の吸収ピークよりも高いことが特徴である。1700~1850cm-1の吸収ピークの最大ピークが2800~3000cm-1の吸収ピークよりも高いとは、ナノダイヤモンドの表面官能基において、C-Hよりもケトン基のC=O、又はラクトンや酸無水物基などのC=Oの割合が多いことを意味する。この場合のナノダイヤモンド粒子は、酸化された状態であると言える。なお、本発明では、吸収ピークの最大ピークとは、図1~6のような縦軸が透過率(%TRANSMITTANCE)である透過スペクトルの場合、透過率が低くなる下向きの曲線における最大ピークを言うものとする。また、吸収ピークが高いとは、当該最大ピークにおける透過率が低いことを言うものとする。 The present invention, in the infrared absorption spectrum by FT-IR of the detonation method nanodiamond particles, it is characteristic is higher than the absorption peak of 1700 ~ 1850 cm -1 of the absorption peak maximum peak 2800 ~ 3000 cm -1 of the . 1700 high as the maximum peak of the absorption peak of ~ 1850 cm -1 than the absorption peak of 2800 ~ 3000 cm -1, the surface functional groups of the nanodiamond, C = O, or a lactone or an acid ketone groups than C-H It means that the ratio of C═O such as an anhydride group is large. It can be said that the nanodiamond particles in this case are in an oxidized state. In the present invention, the maximum peak of the absorption peak means the maximum peak in a downward curve in which the transmittance is low in the case of a transmission spectrum in which the vertical axis is the transmittance (% TRANSMITTANCE) as shown in FIGS. Shall. Further, a high absorption peak means that the transmittance at the maximum peak is low.
 また、本発明では、前記爆轟法ナノダイヤモンド粒子のFT-IRによる赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが1740~1830cm-1の間に存在することが好ましい。この場合、表面官能基においてケトン基のC=Oよりもラクトンや酸無水物基におけるC=Oの割合が多い傾向であるということであり、この場合のナノダイヤモンド粒子は、かなり酸化が進んだ状態であると言える。 In the present invention, it is preferable that the maximum peak of the absorption peak of 1700 to 1850 cm −1 exists between 1740 and 1830 cm −1 in the FT-IR infrared absorption spectrum of the detonation nanodiamond particles. In this case, the surface functional group tends to have a higher ratio of C═O in the lactone or anhydride group than C═O in the ketone group, and in this case, the nanodiamond particles were considerably oxidized. It can be said that it is in a state.
 前記爆轟法ナノダイヤモンド粒子の表面官能基において、C-Hよりもケトン基のC=O、又はラクトンや酸無水物基におけるC=Oの割合が多い傾向であり、酸化された状態である場合、水溶液中でカルボキシル基のプロトンが放出され、ナノダイヤモンド粒子表面が負に帯電するため、ナノダイヤモンド粒子におけるゼータ電位がマイナス(ネガティブ)であると言える。ナノダイヤモンド粒子におけるゼータ電位がマイナスであると、酸化が進行した状態であることを意味し、酸化が進行したナノダイヤモンド表面は高温・酸素雰囲気下において反応が進むことなく安定であり、樹脂の加熱加工時の劣化および増粘を抑制することができる。 The surface functional groups of the detonation nanodiamond particles tend to have a higher proportion of ketone groups C═O or C═O in lactones or acid anhydride groups than C—H, and are in an oxidized state. In this case, the proton of the carboxyl group is released in the aqueous solution, and the surface of the nanodiamond particles is negatively charged. Therefore, it can be said that the zeta potential in the nanodiamond particles is negative (negative). If the zeta potential in the nanodiamond particles is negative, it means that the oxidation has progressed, and the surface of the nanodiamond that has undergone oxidation is stable without reaction in a high temperature / oxygen atmosphere, and the heating of the resin Deterioration and thickening during processing can be suppressed.
 爆轟法ナノダイヤモンド粒子においてゼータ電位がマイナスであるとは、例えばレーザードップラー式電気泳動法によって測定した、25℃でpH7におけるゼータ電位の値がマイナスという意味である。前記ゼータ電位は、例えば-60~-5mV、好ましくは-50~-10mV、より好ましくは-40~-15mVである。前記レーザードップラー式電気泳動法の詳細は、本願実施例に記載のとおりであり、例えば本願実施例に記載の方法でゼータ電位を求めることができる。 The negative zeta potential in the detonation nanodiamond particles means that the zeta potential at pH 7 at 25 ° C. measured by, for example, laser Doppler electrophoresis is negative. The zeta potential is, for example, −60 to −5 mV, preferably −50 to −10 mV, and more preferably −40 to −15 mV. The details of the laser Doppler electrophoresis method are as described in the examples of the present application. For example, the zeta potential can be obtained by the method described in the examples of the present application.
(爆轟法ナノダイヤモンド粒子の製造方法)
 本発明における爆轟法ナノダイヤモンド粒子は、以下の生成工程、及び精製工程を少なくとも含む方法によって製造することができる。使用するナノダイヤモンド粒子によっては、必要に応じて、さらに以下のアルカリ過水処理、酸素酸化工程(気相酸化)、水素化工程を含んでもよい。
(Method for producing detonation nano diamond particles)
The detonation nanodiamond particles in the present invention can be produced by a method including at least the following production process and purification process. Depending on the nanodiamond particles to be used, the following alkaline perwater treatment, oxygen oxidation step (vapor phase oxidation), and hydrogenation step may be included as necessary.
(生成工程)
 生成工程S1では、爆轟法によって、ナノダイヤモンドを生じさせる。具体的には、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置し、容器内において所定の気体と使用爆薬とが共存する状態で、容器を密閉する。容器は例えば鉄製で、容器の容積は、例えば0.5~40m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの質量比(TNT/RDX)は、例えば40/60~60/40の範囲とされる。爆薬の使用量は、例えば0.05~2.0kgである。使用爆薬とともに容器内に密閉される上記の気体は、大気組成を有してもよいし、不活性ガスであってもよい。一次粒子表面の官能基量の少ないナノダイヤモンドを生じさせるという観点からは、爆轟法は、好ましくは不活性ガス雰囲気下で行われる。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、およびヘリウムから選択される少なくとも一つを用いることができる。
(Generation process)
In the production step S1, nanodiamonds are produced by the detonation method. Specifically, first, a molded explosive equipped with an electric detonator is installed inside a pressure-resistant container for detonation, and in a state where a predetermined gas and a used explosive coexist in the container. To seal. The container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 . As the explosive, a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX), can be used. The mass ratio of TNT to RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40. The amount of explosive used is, for example, 0.05 to 2.0 kg. The above gas sealed in the container together with the explosive used may have an atmospheric composition or may be an inert gas. The detonation method is preferably performed in an inert gas atmosphere from the viewpoint of producing nanodiamonds having a small amount of functional groups on the primary particle surface. As the inert gas, for example, at least one selected from nitrogen, argon, carbon dioxide, and helium can be used.
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟とは、化学反応に伴う爆発のうち反応の生じる火炎面が音速を超えた高速で移動するものをいう。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってナノダイヤモンドが生成する。爆轟法によると、一次粒子の粒径が10nm以下のナノダイヤモンドを適切に生じさせることが可能である。ナノダイヤモンドは、爆轟法により得られる生成物にて先ずは、隣接する一次粒子ないし結晶子の間がファンデルワールス力の作用に加えて結晶面間クーロン相互作用が寄与して非常に強固に集成し、凝着体をなす。 In the generation process, the electric detonator is then detonated and the explosive is detonated in the container. Detonation refers to an explosion associated with a chemical reaction in which the reaction flame surface moves at a speed exceeding the speed of sound. At the time of detonation, the diamond used is generated by the action of the pressure and energy of the shock wave generated by the explosion, using the carbon that is liberated due to partial incomplete combustion of the explosive used. According to the detonation method, it is possible to appropriately generate nanodiamond having a primary particle size of 10 nm or less. Nanodiamond is a product obtained by the detonation method. First, the adjacent primary particles or crystallites are very strong due to the coulomb interaction between crystal planes in addition to the action of van der Waals force. Gather and form a cohesive.
 生成工程では、次に、室温での例えば24時間の放置により、容器およびその内部を降温させる。この放冷の後、容器の内壁に付着しているナノダイヤモンド粗生成物(上述のようにして生成したナノダイヤモンドの凝着体と煤を含む)をヘラで掻き取る作業を行い、ナノダイヤモンド粗生成物を回収する。以上のような爆轟法によって、ナノダイヤモンド粒子の粗生成物を得ることができる。また、以上のような生成工程を必要回数行うことによって、所望量のナノダイヤモンド粗生成物を取得することが可能である。 In the production step, the temperature of the container and its interior is then lowered by leaving it at room temperature, for example, for 24 hours. After this cooling, the nanodiamond coarse product (including the nanodiamond adherends and wrinkles produced as described above) adhering to the inner wall of the container is scraped off with a spatula, and the nanodiamond coarse product is scraped off. The product is recovered. A crude product of nanodiamond particles can be obtained by the detonation method as described above. Moreover, it is possible to acquire a desired amount of crude nanodiamond products by performing the above-described generation process as many times as necessary.
(精製工程)
 精製工程は、本実施形態では、原料たるナノダイヤモンド粗生成物に例えば水溶媒中で強酸を作用させる酸洗処理を含む。爆轟法で得られるナノダイヤモンド粗生成物には金属酸化物が含まれやすいところ、この金属酸化物は、爆轟法に使用される容器等に由来するFe,Co,Ni等の酸化物である。例えば水溶媒中で所定の強酸を作用させることにより、ナノダイヤモンド粗生成物から金属酸化物を溶解・除去することができる(酸洗処理)。この酸洗処理に用いられる強酸としては、鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、および王水が挙げられる。酸洗処理では、一種類の強酸を用いてもよいし、二種類以上の強酸を用いてもよい。酸洗処理で使用される強酸の濃度は例えば1~50質量%である。酸洗処理温度は例えば70~150℃である。酸洗処理時間は例えば0.1~24時間である。また、酸洗処理は、減圧下、常圧下、または加圧下で行うことが可能である。このような酸洗処理の後、例えばデカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行う。沈殿液のpHが例えば2~3に至るまで、デカンテーションによる当該固形分の水洗を反復して行うのが好ましい。爆轟法で得られるナノダイヤモンド粗生成物における金属酸化物の含有量が少ない場合には、以上のような酸洗処理を省略してもよい。
(Purification process)
In this embodiment, the purification step includes a pickling treatment in which a strong acid is allowed to act on the crude nanodiamond product as a raw material in, for example, an aqueous solvent. The nano-diamond crude product obtained by the detonation method is likely to contain a metal oxide. This metal oxide is an oxide such as Fe, Co, Ni, etc. derived from the container used for the detonation method. is there. For example, by applying a predetermined strong acid in an aqueous solvent, the metal oxide can be dissolved and removed from the nanodiamond crude product (pickling treatment). The strong acid used for the pickling treatment is preferably a mineral acid, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, and aqua regia. In the pickling treatment, one type of strong acid may be used, or two or more types of strong acid may be used. The concentration of the strong acid used in the pickling treatment is, for example, 1 to 50% by mass. The pickling temperature is, for example, 70 to 150 ° C. The pickling time is, for example, 0.1 to 24 hours. The pickling treatment can be performed under reduced pressure, normal pressure, or increased pressure. After such pickling treatment, the solid content (including the nanodiamond adherend) is washed with water, for example, by decantation. It is preferable to repeat the washing of the solid content by decantation until the pH of the precipitation solution reaches, for example, 2 to 3. When the content of metal oxide in the nanodiamond crude product obtained by the detonation method is small, the above pickling treatment may be omitted.
 精製工程は、本実施形態では、酸化剤を用いてナノダイヤモンド粗生成物(精製終了前のナノダイヤモンド凝着体)からグラファイトやアモルファス炭素等の非ダイヤモンド炭素を除去するための溶液酸化処理を含む。爆轟法で得られるナノダイヤモンド粗生成物にはグラファイト(黒鉛)やアモルファス炭素等の非ダイヤモンド炭素が含まれているところ、この非ダイヤモンド炭素は、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちナノダイヤモンド結晶を形成しなかった炭素に由来する。例えば上記の酸処理を経た後に、例えば水溶媒中で所定の酸化剤を作用させることにより、ナノダイヤモンド粗生成物から非ダイヤモンド炭素を除去することができる(溶液酸化処理)。この溶液酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、及びこれらの塩、硝酸、並びに混酸(硫酸と硝酸の混合物)が挙げられる。溶液酸化処理としては、混酸を用いて行う混酸処理が好ましい。混酸を調製するための濃硫酸と濃硝酸の比率は、例えば1:1~10:1(体積比)である。溶液酸化処理では、一種類の酸化剤を用いてもよいし、二種類以上の酸化剤を用いてもよい。溶液酸化処理で使用される酸化剤の濃度は例えば3~50質量%である。溶液酸化処理における酸化剤の使用量は、溶液酸化処理に付されるナノダイヤモンド粗生成物100質量部に対して例えば300~2000質量部である。溶液酸化処理温度は例えば50~250℃である。溶液酸化処理時間は例えば1~72時間である。溶液酸化処理は、減圧下、常圧下、または加圧下で行うことが可能である。このような溶液酸化処理の後、例えばデカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行う。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行うのが好ましい。その後、得られたスラリーを乾燥処理に付すことにより、乾燥粉体として爆轟ナノダイヤモンド粒子が得られる。 In this embodiment, the purification step includes a solution oxidation treatment for removing non-diamond carbon such as graphite and amorphous carbon from a nanodiamond crude product (nanodiamond aggregate before purification is finished) using an oxidizing agent. . The nano-diamond crude product obtained by the detonation method contains non-diamond carbon such as graphite and amorphous carbon. This non-diamond carbon causes partial incomplete combustion of the explosive used. It originates from the carbon which did not form the nano diamond crystal among the free carbon. For example, after the acid treatment described above, non-diamond carbon can be removed from the nanodiamond crude product by applying a predetermined oxidizing agent in an aqueous solvent, for example (solution oxidation treatment). Examples of the oxidizing agent used in the solution oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, and salts thereof, nitric acid, and mixed acid (a mixture of sulfuric acid and nitric acid). Can be mentioned. As the solution oxidation treatment, a mixed acid treatment using a mixed acid is preferable. The ratio of concentrated sulfuric acid to concentrated nitric acid for preparing the mixed acid is, for example, 1: 1 to 10: 1 (volume ratio). In the solution oxidation treatment, one kind of oxidizing agent may be used, or two or more kinds of oxidizing agents may be used. The concentration of the oxidizing agent used in the solution oxidation treatment is, for example, 3 to 50% by mass. The amount of the oxidizing agent used in the solution oxidation treatment is, for example, 300 to 2000 parts by mass with respect to 100 parts by mass of the nanodiamond crude product subjected to the solution oxidation treatment. The solution oxidation treatment temperature is, for example, 50 to 250 ° C. The solution oxidation treatment time is, for example, 1 to 72 hours. The solution oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure. After such solution oxidation treatment, the solid content (including the nanodiamond adherend) is washed with water, for example, by decantation. When the supernatant liquid at the beginning of water washing is colored, it is preferable to repeat the washing of the solid content by decantation until the supernatant liquid becomes transparent visually. Then, detonation nanodiamond particles are obtained as a dry powder by subjecting the obtained slurry to a drying treatment.
 このような溶液酸化処理としては、後述の酸素酸化工程(気相酸化)に供される場合のナノダイヤモンドの精製の度合いを高めるという観点からは、混酸を用いて行う混酸処理が好ましい。当該混酸を調製するための濃硫酸と濃硝酸の比率(体積比)は、好ましくは1:1~10:1、より好ましくは2:1~9:1、より好ましくは3:1~8:1である。溶液酸化処理として混酸処理を採用する場合、混酸処理温度は、好ましくは80~200℃、より好ましくは100~190℃、より好ましくは120~180℃であり、混酸処理時間は、好ましくは1~96時間、より好ましくは5~84時間、より好ましくは10~72時間である。 As such a solution oxidation treatment, a mixed acid treatment using a mixed acid is preferable from the viewpoint of increasing the degree of purification of nanodiamond when it is subjected to an oxygen oxidation step (gas phase oxidation) described later. The ratio (volume ratio) of concentrated sulfuric acid and concentrated nitric acid for preparing the mixed acid is preferably 1: 1 to 10: 1, more preferably 2: 1 to 9: 1, more preferably 3: 1 to 8: 1. When a mixed acid treatment is employed as the solution oxidation treatment, the mixed acid treatment temperature is preferably 80 to 200 ° C., more preferably 100 to 190 ° C., more preferably 120 to 180 ° C., and the mixed acid treatment time is preferably 1 to It is 96 hours, more preferably 5 to 84 hours, and more preferably 10 to 72 hours.
 精製工程としては、上記酸洗処理及び溶液酸化処理の少なくとも一方を行えばよく、両方を行ってもよい。また、両方を行う場合は、酸洗処理後に溶液酸化処理を行ってもよく、溶液酸化処理後に酸洗処理を行ってもよい。 As the purification step, at least one of the pickling treatment and the solution oxidation treatment may be performed, or both may be performed. Moreover, when performing both, a solution oxidation process may be performed after a pickling process, and a pickling process may be performed after a solution oxidation process.
(アルカリ過水処理)
 上記精製工程における酸洗処理や溶液酸化処理を経た後であっても、爆轟法ナノダイヤモンドは、一次粒子間が非常に強く相互作用して集成している凝着体(二次粒子)の形態をとる場合がある。この場合、上記凝着体からの一次粒子の分離を促すために、さらにナノダイヤモンドに対して水溶媒中で所定のアルカリおよび過酸化水素を作用させてもよい(アルカリ過水処理)。これにより、例えば、上述の酸洗処理によっても除去しきれなかった金属酸化物がナノダイヤモンドに残存する場合に当該金属酸化物を除去することができ、そして、ナノダイヤモンド凝着体からのナノダイヤモンド一次粒子の分離が促される。アルカリ過水処理に用いられるアルカリとしては、例えば、水酸化ナトリウム、アンモニア、水酸化カリウム等が挙げられる。本処理において、アルカリの濃度は例えば0.1~10質量%であり、過酸化水素の濃度は例えば1~15質量%であり、処理温度は例えば40~100℃であり、処理時間は例えば0.5~5時間である。また、アルカリ過水処理は、減圧下、常圧下、または加圧下で行うことが可能である。
(Alkaline overwater treatment)
Even after pickling and solution oxidation in the above purification process, detonation nanodiamonds are formed of aggregates (secondary particles) that are assembled by the interaction between primary particles very strongly. May take the form. In this case, in order to promote the separation of the primary particles from the above-mentioned adherend, a predetermined alkali and hydrogen peroxide may be further allowed to act on the nanodiamond in an aqueous solvent (alkaline overwater treatment). Thereby, for example, when the metal oxide that could not be removed by the pickling treatment described above remains in the nanodiamond, the metal oxide can be removed, and the nanodiamond from the nanodiamond adherend is removed. The separation of primary particles is promoted. Examples of the alkali used for the alkaline water treatment include sodium hydroxide, ammonia, potassium hydroxide and the like. In this treatment, the alkali concentration is, for example, 0.1 to 10% by mass, the hydrogen peroxide concentration is, for example, 1 to 15% by mass, the treatment temperature is, for example, 40 to 100 ° C., and the treatment time is, for example, 0. .5-5 hours. In addition, the alkaline overwater treatment can be performed under reduced pressure, normal pressure, or increased pressure.
 上記アルカリ過水処理を経たナノダイヤモンド含有溶液から例えばデカンテーションによって上澄みが除かれた後、必要に応じて、さらに所定の強酸を作用させて、ナノダイヤモンドに残存する金属不純物を除去してもよい。この処理に用いられる酸としては、例えば硫酸、塩酸等が挙げられる。本処理を経たナノダイヤモンド含有水溶液に超純水を加え、水洗を繰り返すことで遊離した金属不純物と加えた酸を取り除くことができる。このようにして得られたスラリーついて乾燥処理に付して乾燥粉体を得る。乾燥処理の手法としては、例えば、噴霧乾燥装置を使用して行う噴霧乾燥や、エバポレーターを使用して行う蒸発乾固が挙げられる。 After the supernatant is removed from the nanodiamond-containing solution that has undergone the alkali overwater treatment, for example, by decantation, the metal impurities remaining in the nanodiamond may be removed by applying a predetermined strong acid as necessary. . Examples of the acid used for this treatment include sulfuric acid and hydrochloric acid. By adding ultrapure water to the nanodiamond-containing aqueous solution that has undergone this treatment and repeating washing with water, the free metal impurities and the added acid can be removed. The slurry thus obtained is subjected to a drying treatment to obtain a dry powder. Examples of the drying treatment include spray drying performed using a spray drying apparatus and evaporation to dryness performed using an evaporator.
(酸素酸化工程(気相酸化))
 次に、酸素酸化工程(気相酸化)が行われてもよい。本工程では、精製工程を経たナノダイヤモンドの粉体について、ガス雰囲気炉を使用して、酸素を含有する所定組成のガス雰囲気下にて加熱する。具体的には、ガス雰囲気炉内にナノダイヤモンド粉体が配され、当該炉に対して酸素含有ガスが供給ないし通流され、加熱温度として設定された温度条件まで当該炉内が昇温されて酸素酸化処理(気相酸化)が実施される。この酸素酸化処理の温度条件は、例えば250~500℃である。酸素酸化処理の温度条件の下限は、好ましくは280℃、より好ましくは320℃である。酸素酸化処理の温度条件の上限は、好ましくは450℃、より好ましくは400℃である。また、本実施形態では、酸素含有ガスは、不活性ガスと酸素とを含有する混合ガスである。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、およびヘリウムが挙げられる。当該混合ガスの酸素含有率すなわち酸素濃度は、好ましくは1~35体積%、より好ましくは1~10体積%、より好ましくは2~5体積%である。
(Oxygen oxidation process (gas phase oxidation))
Next, an oxygen oxidation step (gas phase oxidation) may be performed. In this step, the nanodiamond powder that has undergone the purification step is heated in a gas atmosphere having a predetermined composition containing oxygen using a gas atmosphere furnace. Specifically, nano-diamond powder is disposed in a gas atmosphere furnace, oxygen-containing gas is supplied to or passed through the furnace, and the furnace is heated to a temperature condition set as a heating temperature. Oxygen oxidation treatment (gas phase oxidation) is performed. The temperature condition of this oxygen oxidation treatment is, for example, 250 to 500 ° C. The lower limit of the temperature condition for the oxygen oxidation treatment is preferably 280 ° C, more preferably 320 ° C. The upper limit of the temperature condition of the oxygen oxidation treatment is preferably 450 ° C., more preferably 400 ° C. In the present embodiment, the oxygen-containing gas is a mixed gas containing an inert gas and oxygen. Examples of the inert gas include nitrogen, argon, carbon dioxide, and helium. The oxygen content of the mixed gas, that is, the oxygen concentration, is preferably 1 to 35% by volume, more preferably 1 to 10% by volume, and more preferably 2 to 5% by volume.
(水素化工程)
 次に、水素化工程が行われてもよい。本工程では、酸素酸化工程(気相酸化)を経たナノダイヤモンドの粉体について、ガス雰囲気炉を使用して、水素を含有する所定組成のガス雰囲気下にて加熱する。具体的には、ナノダイヤモンド粉体が内部に配されているガス雰囲気炉に対して水素含有ガスが供給ないし通流され、加熱温度として設定された温度条件まで当該炉内が昇温されて水素化処理が実施される。この水素化処理の温度条件は、例えば400~800℃である。水素化処理の温度条件の下限は、好ましくは500℃、より好ましくは550℃である。水素化処理の温度条件の上限は、好ましくは700℃、より好ましくは650℃である。また、本実施形態では、水素含有ガスは、不活性ガスと水素とを含有する混合ガスである。不活性ガスとしては、例えば、窒素、アルゴン、二酸化炭素、およびヘリウムが挙げられる。当該混合ガスの水素含有率すなわち水素濃度は、例えば0.1~99.9体積%、好ましくは0.5~50体積%、より好ましくは1~10体積%である。
(Hydrogenation process)
Next, a hydrogenation step may be performed. In this step, the nanodiamond powder that has undergone the oxygen oxidation step (vapor phase oxidation) is heated in a gas atmosphere of a predetermined composition containing hydrogen using a gas atmosphere furnace. Specifically, a hydrogen-containing gas is supplied to or passed through a gas atmosphere furnace in which nanodiamond powder is arranged, and the temperature in the furnace is increased to a temperature condition set as a heating temperature. Processing is performed. The temperature condition for this hydrogenation treatment is 400 to 800 ° C., for example. The lower limit of the temperature condition of the hydrotreatment is preferably 500 ° C, more preferably 550 ° C. The upper limit of the temperature condition of the hydrogenation treatment is preferably 700 ° C, more preferably 650 ° C. In the present embodiment, the hydrogen-containing gas is a mixed gas containing an inert gas and hydrogen. Examples of the inert gas include nitrogen, argon, carbon dioxide, and helium. The hydrogen content of the mixed gas, that is, the hydrogen concentration is, for example, 0.1 to 99.9% by volume, preferably 0.5 to 50% by volume, more preferably 1 to 10% by volume.
 以上のようにして、金属含有量が3000ppm以下であり、フーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが2800~3000cm-1の吸収ピークよりも高いことを特徴とする爆轟ナノダイヤモンド粒子を製造することができる。 As described above, the metal content is 3000 ppm or less, and the maximum absorption peak at 1700 to 1850 cm −1 is 2800 to 3000 cm − in the infrared absorption spectrum by a Fourier transform infrared spectrophotometer (FT-IR). Detonated nanodiamond particles characterized by being higher than the absorption peak of 1 can be produced.
[樹脂組成物]
 本発明の樹脂組成物は、前記樹脂用添加剤、及び樹脂を含む。樹脂としては、例えば熱可塑性樹脂、熱硬化性樹脂が挙げられるが、本発明の樹脂組成物では、熱可塑性樹脂であることが好ましい。前記樹脂組成物は、一種類の樹脂を含有してもよいし、二種類以上の樹脂を含有してもよい。本発明の樹脂組成物は、樹脂成形原料となるペレットの形態、樹脂成形原料の形態から軟化又は溶融した状態である形態、及び軟化や溶融状態を経て形成された樹脂成形体の等の形態をとり得る。
[Resin composition]
The resin composition of the present invention includes the resin additive and a resin. Examples of the resin include a thermoplastic resin and a thermosetting resin. In the resin composition of the present invention, a thermoplastic resin is preferable. The resin composition may contain one type of resin or two or more types of resins. The resin composition of the present invention is in the form of a pellet that is a resin molding raw material, a form that is softened or melted from the form of the resin molding raw material, and a form of a resin molded body that is formed through a softened or molten state. It can take.
 前記熱可塑性樹脂としては、例えば芳香族ポリエーテルケトン、ポリフェニレンサルファイド(融点280℃,ガラス転移温度90℃)、ポリエーテルサルホン(ガラス転移温度225℃)、ポリアリレート(ガラス転移温度275℃)、ポリアミドイミド(ガラス転移温度275℃)、熱可塑性ポリイミド(ガラス転移温度250℃)、ポリベンゾイミダゾール(ガラス転移温度427℃)、ポリアミド9T(融点306℃,ガラス転移温度125℃)等が挙げられる。なかでも熱可塑性樹脂としては、芳香族ポリエーテルケトン、ポリフェニレンサルファイドを含有するのが好ましい。芳香族ポリエーテルケトンとしては、例えば、ポリエーテルケトン(融点373℃,ガラス転移温度140℃)、ポリエーテルエーテルケトン(融点334℃,ガラス転移温度143℃)、ポリエーテルケトンケトン(融点396℃,ガラス転移温度165℃)、ポリエーテルエーテルケトンケトン(融点360℃,ガラス転移温度149℃)等が挙げられる。 Examples of the thermoplastic resin include aromatic polyether ketone, polyphenylene sulfide (melting point 280 ° C., glass transition temperature 90 ° C.), polyether sulfone (glass transition temperature 225 ° C.), polyarylate (glass transition temperature 275 ° C.), Polyamideimide (glass transition temperature 275 ° C.), thermoplastic polyimide (glass transition temperature 250 ° C.), polybenzimidazole (glass transition temperature 427 ° C.), polyamide 9T (melting point 306 ° C., glass transition temperature 125 ° C.) and the like. Among them, the thermoplastic resin preferably contains an aromatic polyether ketone or polyphenylene sulfide. Examples of the aromatic polyether ketone include polyether ketone (melting point 373 ° C., glass transition temperature 140 ° C.), polyether ether ketone (melting point 334 ° C., glass transition temperature 143 ° C.), polyether ketone ketone (melting point 396 ° C., Glass transition temperature 165 ° C.), polyether ether ketone ketone (melting point 360 ° C., glass transition temperature 149 ° C.) and the like.
 前記熱可塑性樹脂のガラス転移温度は、例えば220℃以上、好ましくは230℃以上、より好ましくは240℃以上、より好ましくは250℃以上である。ガラス転移温度の上限は、例えば400℃である。なお、上記ガラス転移温度は、JIS規格(JIS K 7121:プラスチックの転移温度測定方法)に準拠して示差走査熱量測定(DSC)によって測定される値とする。 The glass transition temperature of the thermoplastic resin is, for example, 220 ° C. or higher, preferably 230 ° C. or higher, more preferably 240 ° C. or higher, more preferably 250 ° C. or higher. The upper limit of the glass transition temperature is, for example, 400 ° C. The glass transition temperature is a value measured by differential scanning calorimetry (DSC) in accordance with JIS standards (JIS K 7121: plastic transition temperature measurement method).
 前記樹脂組成物における樹脂の含有量は、例えば80~99.999質量%、好ましくは90~99.9質量%、より好ましくは95~99.6質量%である。前記樹脂組成物における樹脂用添加剤の含有量は、例えば0.1~20質量%、好ましくは0.2~10質量%、より好ましくは0.3~5質量%である。また、前記樹脂100質量部に対する前記樹脂用添加剤の含有量は、例えば0.001~5質量部である。樹脂用添加剤の含有量の下限は、好ましくは0.002質量部、より好ましくは0.01質量部、より好ましくは0.1質量部である。樹脂用添加剤の含有量の上限は、好ましくは3.0質量部、より好ましくは2.0質量部、より好ましくは1.0質量部である。樹脂用添加剤の含有量が多いほど、例えばラジカル安定剤としての大きな効果が得られるが、上記含有量の上限を超えるとそれ以上の効果は得られない。 The resin content in the resin composition is, for example, 80 to 99.999% by mass, preferably 90 to 99.9% by mass, and more preferably 95 to 99.6% by mass. The content of the resin additive in the resin composition is, for example, 0.1 to 20% by mass, preferably 0.2 to 10% by mass, and more preferably 0.3 to 5% by mass. Further, the content of the resin additive with respect to 100 parts by mass of the resin is, for example, 0.001 to 5 parts by mass. The lower limit of the content of the resin additive is preferably 0.002 parts by mass, more preferably 0.01 parts by mass, and more preferably 0.1 parts by mass. The upper limit of the content of the resin additive is preferably 3.0 parts by mass, more preferably 2.0 parts by mass, and more preferably 1.0 parts by mass. As the content of the resin additive is increased, for example, a greater effect as a radical stabilizer is obtained. However, when the content exceeds the upper limit of the content, no further effect is obtained.
 前記樹脂組成物は、樹脂及び樹脂用添加剤に加えて他の成分を含有してもよい。他の成分としては、例えば、難燃剤、ガラス繊維、炭素繊維、帯電防止剤、滑剤、着色剤などが挙げられる。 The resin composition may contain other components in addition to the resin and the additive for resin. Examples of other components include flame retardants, glass fibers, carbon fibers, antistatic agents, lubricants, and colorants.
 前記樹脂組成物は、例えば樹脂の原料となるペレットと乾燥粉体である爆轟法ナノダイヤモンド粒子と、必要に応じて添加される他の成分とを、混合機を使用して混合し(混合工程)、その後、混練機を使用して加熱混練する(混練工程)ことにより得られる。混合機としては、例えば、ヘンシェルミキサー、タンブラー、自公転ミル等が挙げられる。混練機としては、例えば、バッチ式ポリマーミキサー、二軸押出機、一軸押出機、バンバリーミキサー、ロールミキサー等が挙げられる。さらに、上記工程により得られた混練物を所定形状に成形、或は、混練物をペレット化してもよく、得られたペレットを原料として射出成形してもよい。 The resin composition is prepared by mixing (mixing) pellets as a raw material of resin, detonation nanodiamond particles as a dry powder, and other components added as necessary, using a mixer. Step), and then kneaded with heat using a kneader (kneading step). Examples of the mixer include a Henschel mixer, a tumbler, and a revolution mill. Examples of the kneader include a batch type polymer mixer, a twin screw extruder, a single screw extruder, a Banbury mixer, and a roll mixer. Furthermore, the kneaded material obtained by the above process may be molded into a predetermined shape, or the kneaded material may be pelletized, or the obtained pellets may be injection molded from the raw material.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
〔実施例1:ナノダイヤモンド(ND1)の製造〕
 以下の生成工程、精製工程1(クロム酸による酸化処理)、アルカリ過水処理工程、精製工程2(酸処理)、および乾燥工程を経て、ナノダイヤモンドの乾燥粉体(ND1)を製造した。
[Example 1: Production of nanodiamond (ND1)]
Through the following production process, purification process 1 (oxidation treatment with chromic acid), alkaline perwater treatment process, purification process 2 (acid treatment), and drying process, dry nanodiamond powder (ND1) was produced.
(生成工程)
 生成工程では、まず、成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置して容器を密閉した。容器は鉄製で、容器の容積は15m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物0.50kgを使用した。当該爆薬におけるTNTとRDXの質量比(TNT/RDX)は、50/50である。次に、電気雷管を起爆させ、容器内で爆薬を爆轟させた。次に、室温での24時間の放置により、容器およびその内部を降温させた。この放冷の後、容器の内壁に付着しているナノダイヤモンド粗生成物(上記爆轟法で生成したナノダイヤモンド粒子の凝着体と煤を含む)をヘラで掻き取る作業を行い、ナノダイヤモンド粗生成物を回収した。
(Generation process)
In the production process, first, a molded explosive with an electric detonator was installed inside a pressure-resistant container for detonation, and the container was sealed. The container is made of iron and the volume of the container is 15 m 3 . As the explosive, 0.50 kg of a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine or hexogen (RDX) was used. The mass ratio (TNT / RDX) of TNT and RDX in the explosive is 50/50. Next, the electric detonator was detonated, and the explosive was detonated in the container. Next, the container and its interior were cooled by being left at room temperature for 24 hours. After this cooling, the nanodiamond crude product (including the nanodiamond particle aggregates and soot produced by the above detonation method) adhering to the inner wall of the container is scraped off with a spatula. The crude product was recovered.
(精製工程1(クロム酸による酸化処理))
 上記ナノダイヤモンド粗生成物に、5Lの60質量%硫酸水溶液と2Lの60質量%クロム酸水溶液とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で5時間の加熱処理(溶液酸化処理)を行った。この加熱処理(溶液酸化処理)における加熱温度は120~140℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。
(Purification step 1 (oxidation treatment with chromic acid))
After adding 5 L of 60 mass% sulfuric acid aqueous solution and 2 L of 60 mass% chromic acid aqueous solution to the crude nanodiamond product, the slurry is heated for 5 hours under reflux under normal pressure conditions. Treatment (solution oxidation treatment) was performed. The heating temperature in this heat treatment (solution oxidation treatment) is 120 to 140 ° C. Next, after cooling, the solid content (including the nanodiamond adherend) was washed with water by decantation. The supernatant liquid at the beginning of water washing was colored, and the solid contents were washed repeatedly by decantation until the supernatant liquid became transparent visually.
(アルカリ過水処理工程)
 上記デカンテーション後の沈殿液に、1Lの10質量%水酸化ナトリウム水溶液と1Lの30質量%過酸化水素水溶液とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で1時間の加熱処理を行った。このアルカリ過水処理における加熱温度は、50~105℃である。次に、冷却後、デカンテーションによって上澄みを除いた。
(Alkaline overwater treatment process)
After adding 1 L of 10% by mass sodium hydroxide aqueous solution and 1 L of 30% by mass hydrogen peroxide aqueous solution to the precipitate after the decantation to form a slurry, the slurry is subjected to reflux under normal pressure conditions. Heat treatment for 1 hour was performed. The heating temperature in this alkaline overwater treatment is 50 to 105 ° C. Next, after cooling, the supernatant was removed by decantation.
(精製工程2(酸処理))
 次に、酸洗処理を行った。具体的には、上記アルカリ過水後の沈殿に20質量%塩酸を加えてpHを2.5に調整した。続いて、遠心分離によって上澄みを取り除いた後、超純水を加え、振とう機で60分攪拌した。振とう後スラリーの下記測定方法で測定した電気伝導度が10(μS/cm)/固形分%以下になるまで同工程を繰り返し実施した。続いて超純水を加え、固形分濃度6%のスラリーを得た。なお、(μS/cm)/固形分%とは、電気伝導度(μS/cm)を固形分%で割った値という意味である。
(Purification step 2 (acid treatment))
Next, pickling treatment was performed. Specifically, 20% by mass hydrochloric acid was added to the precipitate after the alkaline overwater to adjust the pH to 2.5. Subsequently, after removing the supernatant by centrifugation, ultrapure water was added, and the mixture was stirred for 60 minutes with a shaker. The same process was repeated until the electrical conductivity measured by the following measuring method of the slurry after shaking was 10 (μS / cm) / solid content% or less. Subsequently, ultrapure water was added to obtain a slurry with a solid content concentration of 6%. In addition, (μS / cm) / solid content% means a value obtained by dividing electric conductivity (μS / cm) by solid content%.
<電気伝導度測定>
 上記電気伝導度の測定は、電気伝導度測定装置(商品名「TWIN-COND B-771」,株式会社堀場製作所製)を使用して行った。測定温度は25℃である。
<Electrical conductivity measurement>
The electrical conductivity was measured using an electrical conductivity measuring device (trade name “TWIN-COND B-771”, manufactured by Horiba, Ltd.). The measurement temperature is 25 ° C.
 次に、乾燥工程を行った。具体的には、上述のようにして得られたナノダイヤモンド分散液を、スプレードライヤー(商品名「スプレードライヤー B-290」、日本ビュッヒ社製)を使用して噴霧乾燥に付し、粉体化した。以上のようにして、ナノダイヤモンドの乾燥粉体(ND1)を製造した。 Next, a drying process was performed. Specifically, the nanodiamond dispersion obtained as described above is spray-dried using a spray dryer (trade name “Spray Dryer B-290”, manufactured by Nihon Büch) to form a powder. did. As described above, a dry powder (ND1) of nanodiamond was produced.
 得られたナノダイヤモンドの乾燥粉体(ND1)について、下記測定方法にて固体13C-NMR分析、FT-IR測定、及びゼータ電位測定をした。固体13C-NMR分析では、各炭素原子の割合は、ナノダイヤモンドに含まれる炭素原子全体に対して、水酸基結合炭素(C-OH)が9.4%、カルボキシル炭素(C(=O)O)が0.4%、水素結合炭素13.1%、sp3炭素が77.0%であった。FT-IRでは、図1に示すとおり、1753cm-1に表面官能基におけるラクトンや酸無水物基のC=Oに由来する吸収ピーク、2931cm-1に表面官能基におけるC-Hに由来する吸収ピークが見られた。1753cm-1の吸収ピークは、2931cm-1の吸収ピークよりも高かった。ゼータ電位は、-33mV(25℃,pH7)であった。 The obtained nanodiamond dry powder (ND1) was subjected to solid state 13 C-NMR analysis, FT-IR measurement, and zeta potential measurement by the following measurement methods. In solid state 13 C-NMR analysis, the proportion of each carbon atom is 9.4% of hydroxyl-bonded carbon (C—OH) and carboxyl carbon (C (═O) O) with respect to the total carbon atoms contained in the nanodiamond. ) Was 0.4%, hydrogen-bonded carbon was 13.1%, and sp 3 carbon was 77.0%. In FT-IR, as shown in FIG. 1, from the absorption peak derived from C = O lactone and an acid anhydride group in the surface functional groups to 1753 cm -1, the C-H in the surface functional groups 2931Cm -1 absorption A peak was seen. Absorption peak of 1753 cm -1 was higher than the absorption peak of 2931cm -1. The zeta potential was −33 mV (25 ° C., pH 7).
〔比較例1:ナノダイヤモンド(ND2)の製造〕
 上記実施例1における精製工程2(酸処理)を行わなかったこと以外は、実施例1と同様にしてナノダイヤモンド(ND2)を製造した。得られたナノダイヤモンドの乾燥粉体(ND2)について、下記測定方法にてFT-IR測定、ゼータ電位測定をした。FT-IRでは、図2に示すとおり、1753cm-1に表面官能基におけるラクトンや酸無水物基のC=Oに由来する吸収ピーク、2931cm-1に表面官能基におけるC-Hに由来する吸収ピークが見られた。1753cm-1の吸収ピークは、2931cm-1の吸収ピークよりも高かった。ゼータ電位は、-28mV(25℃,pH7)であった。
[Comparative Example 1: Production of nanodiamond (ND2)]
Nanodiamond (ND2) was produced in the same manner as in Example 1 except that the purification step 2 (acid treatment) in Example 1 was not performed. The obtained nanodiamond dry powder (ND2) was subjected to FT-IR measurement and zeta potential measurement by the following measurement methods. In FT-IR, as shown in FIG. 2, from the absorption peak derived from C = O lactone and an acid anhydride group in the surface functional groups to 1753 cm -1, the C-H in the surface functional groups 2931Cm -1 absorption A peak was seen. Absorption peak of 1753 cm -1 was higher than the absorption peak of 2931cm -1. The zeta potential was −28 mV (25 ° C., pH 7).
〔実施例2:ナノダイヤモンド(ND3)の製造例2〕
 上記実施例1における精製工程1(クロム酸による酸化処理)の代わりに以下の精製工程1’(混酸による酸化処理)を行ったこと以外は、実施例1と同様にしてナノダイヤモンド(ND3)を製造した。得られたナノダイヤモンドの乾燥粉体(ND3)について、下記測定方法にてFT-IR測定、及びゼータ電位測定をした。FT-IRでは、図3に示すとおり、1700~1850cm-1の範囲では1712cm-1に表面官能基におけるケトン基のC=Oに由来する吸収ピーク、また2915cm-1付近に表面官能基におけるC-Hに由来する吸収が見られた。1712cm-1の吸収ピークは、2915cm-1の吸収ピークよりも高かった。ゼータ電位は、-10mV(25℃,pH7)であった。
[Example 2: Production Example 2 of nanodiamond (ND3)]
Nanodiamond (ND3) was prepared in the same manner as in Example 1 except that the following purification step 1 ′ (oxidation treatment with mixed acid) was performed instead of the purification step 1 (oxidation treatment with chromic acid) in Example 1 above. Manufactured. The obtained nanodiamond dry powder (ND3) was subjected to FT-IR measurement and zeta potential measurement by the following measurement methods. In FT-IR, as shown in FIG. 3, C in 1700 to the absorption peak, and the surface functional group near 2915 cm -1 in the range of 1850 cm -1 derived from C = O of a ketone group in the surface functional groups to 1712 cm -1 Absorption due to -H was observed. Absorption peak of 1712 cm -1 was higher than the absorption peak of 2915 cm -1. The zeta potential was −10 mV (25 ° C., pH 7).
(精製工程1’(混酸による酸化処理))
 デカンテーション後の沈殿液に、3Lの60質量%硫酸水溶液と1Lの60質量%硝酸水溶液とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下で5時間の加熱処理(溶液酸化処理)を行った。この加熱処理(溶液酸化処理)における加熱温度は120~140℃である。次に、冷却後、デカンテーションにより、固形分(ナノダイヤモンド凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。
(Purification step 1 '(oxidation treatment with mixed acid))
After adding 3 L of 60 mass% sulfuric acid aqueous solution and 1 L of 60 mass% nitric acid aqueous solution to the precipitate after decantation, this slurry is heated for 5 hours under reflux under normal pressure conditions. (Solution oxidation treatment) was performed. The heating temperature in this heat treatment (solution oxidation treatment) is 120 to 140 ° C. Next, after cooling, the solid content (including the nanodiamond adherend) was washed with water by decantation. The supernatant liquid at the beginning of water washing was colored, and the solid contents were washed repeatedly by decantation until the supernatant liquid became transparent visually.
〔実施例3:ナノダイヤモンド(ND4)の製造〕
 上記実施例2の乾燥工程後に以下の気相酸化1を行い、ナノダイヤモンド(ND4)を製造した。得られたナノダイヤモンドの乾燥粉体(ND4)について、下記測定方法にて固体13C-NMR分析、FT-IR測定、及びゼータ電位測定をした。固体13C-NMR分析では、各炭素原子の割合は、ナノダイヤモンドに含まれる炭素原子全体に対して、水酸基結合炭素(C-OH)が14.7%、カルボキシル炭素(C(=O)O)が0.5%、カルボニル炭素(C=O)が0.4%、水素結合炭素14.4%、sp3炭素が70.0%であった。FT-IRでは、図4に示すとおり、1791cm-1に表面官能基におけるラクトンや酸無水物基のC=Oに由来する吸収ピークが見られた。なお、2800~3000cm-1には目立った吸収ピークは見られなかった。ゼータ電位は、-36mV(25℃,pH7)であった。
[Example 3: Production of nanodiamond (ND4)]
After the drying step in Example 2, the following gas phase oxidation 1 was performed to produce nanodiamond (ND4). The obtained nanodiamond dry powder (ND4) was subjected to solid state 13 C-NMR analysis, FT-IR measurement, and zeta potential measurement by the following measurement methods. In solid state 13 C-NMR analysis, the proportion of each carbon atom is 14.7% of hydroxyl-bonded carbon (C—OH) and carboxyl carbon (C (═O) O) with respect to the total carbon atoms contained in the nanodiamond. ) Was 0.5%, carbonyl carbon (C═O) was 0.4%, hydrogen-bonded carbon was 14.4%, and sp 3 carbon was 70.0%. In FT-IR, as shown in FIG. 4, an absorption peak derived from C═O of the lactone or acid anhydride group in the surface functional group was observed at 1791 cm −1 . In addition, a conspicuous absorption peak was not observed at 2800 to 3000 cm −1 . The zeta potential was −36 mV (25 ° C., pH 7).
(気相酸化1)
 ガス雰囲気炉(商品名「ガス雰囲気チューブ炉 KTF045N1」,光洋サーモシステム株式会社製)を使用して熱酸化工程を行った。具体的には、上述のようにして得られたナノダイヤモンド粉体4.5gをガス雰囲気炉の炉心管内に静置し、炉心管に窒素ガスを流速1L/分で30分間通流させ続けた後、通流ガスを窒素から酸素と窒素との混合ガスへと切り替えて当該混合ガスを流速1L/分で炉心管に通流させ続けた。混合ガス中の酸素濃度は4体積%である。混合ガスへの切り替えの後、炉内を加熱設定温度400℃まで昇温させた。昇温速度については、加熱設定温度より20℃低い380℃までは10℃/分とし、その後、380℃からは加熱設定温度までは1℃/分とした。そして、炉内の温度条件を400℃に維持しつつ、炉内のナノダイヤモンド粉体について酸素酸化処理を行った。処理時間は3時間とした。以上のようにして、熱酸化工程ないし酸素酸化処理を経た実施例3のナノダイヤモンド粉体を得た。熱酸化工程ないし酸素酸化処理に付される前のナノダイヤモンド粉体の量に対する熱酸化工程ないし酸素酸化処理を経た後のナノダイヤモンド粉体の量の割合(収率)を求めたところ、95%であった。
(Gas phase oxidation 1)
The thermal oxidation process was performed using a gas atmosphere furnace (trade name “Gas Atmosphere Tube Furnace KTF045N1”, manufactured by Koyo Thermo Systems Co., Ltd.). Specifically, 4.5 g of the nanodiamond powder obtained as described above was placed in the core tube of a gas atmosphere furnace, and nitrogen gas was continuously passed through the core tube at a flow rate of 1 L / min for 30 minutes. Thereafter, the flow gas was switched from nitrogen to a mixed gas of oxygen and nitrogen, and the mixed gas was continuously passed through the reactor core tube at a flow rate of 1 L / min. The oxygen concentration in the mixed gas is 4% by volume. After switching to the mixed gas, the temperature in the furnace was raised to a heating set temperature of 400 ° C. The heating rate was 10 ° C./min from 380 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 380 ° C. to the heating set temperature. And the oxygen oxidation process was performed about the nano diamond powder in a furnace, maintaining the temperature conditions in a furnace at 400 degreeC. The processing time was 3 hours. As described above, the nanodiamond powder of Example 3 that had undergone the thermal oxidation process or oxygen oxidation treatment was obtained. The ratio (yield) of the amount of nanodiamond powder after the thermal oxidation step or oxygen oxidation treatment to the amount of nanodiamond powder before being subjected to the thermal oxidation step or oxygen oxidation treatment was determined to be 95%. Met.
〔実施例4:ナノダイヤモンド(ND5)の製造例2〕
 上記実施例2の乾燥工程後に以下の気相酸化2を行い、ナノダイヤモンド(ND5)を製造した。得られたナノダイヤモンドの乾燥粉体(ND5)について、下記測定方法にてFT-IR測定、及びゼータ電位測定をした。FT-IRでは、図5に示すとおり、1800cm-1付近に表面官能基におけるラクトンや酸無水物基のC=Oに由来する吸収ピークが見られた。なお、2800~3000cm-1には目立った吸収ピークは見られなかった。ゼータ電位は、-33mV(25℃,pH7)であった。
[Example 4: Production Example 2 of Nano Diamond (ND5)]
After the drying step of Example 2 above, the following gas phase oxidation 2 was performed to produce nanodiamond (ND5). The obtained nanodiamond dry powder (ND5) was subjected to FT-IR measurement and zeta potential measurement by the following measurement methods. In FT-IR, as shown in FIG. 5, an absorption peak derived from C═O of the lactone or acid anhydride group in the surface functional group was observed near 1800 cm −1 . In addition, a conspicuous absorption peak was not observed at 2800 to 3000 cm −1 . The zeta potential was −33 mV (25 ° C., pH 7).
(気相酸化2)
 実施例3の気相酸化1における加熱設定温度を475℃にしたこと以外は、気相酸化1と同様にして実施例4のナノダイヤモンド粉体を得た。なお、昇温速度については、加熱設定温度より20℃低い455℃までは10℃/分とし、その後、455℃からは加熱設定温度までは1℃/分とした。熱酸化工程ないし酸素酸化処理に付される前のナノダイヤモンド粉体の量に対する熱酸化工程ないし酸素酸化処理を経た後のナノダイヤモンド粉体の量の割合(収率)を求めたところ、69%であった。
(Gas phase oxidation 2)
A nanodiamond powder of Example 4 was obtained in the same manner as in Gas Phase Oxidation 1 except that the heating set temperature in Gas Phase Oxidation 1 of Example 3 was changed to 475 ° C. The rate of temperature increase was 10 ° C./min up to 455 ° C., 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 455 ° C. to the heating set temperature. The ratio (yield) of the amount of nanodiamond powder after the thermal oxidation step or oxygen oxidation treatment to the amount of nanodiamond powder before being subjected to the thermal oxidation step or oxygen oxidation treatment was found to be 69%. Met.
〔比較例2:ナノダイヤモンド(ND6)の製造例2〕
 上記ナノダイヤモンド(ND3)の製造例3の乾燥工程後に以下の気相還元を行い、ナノダイヤモンド(ND6)を製造した。得られたナノダイヤモンドの乾燥粉体(ND6)について、下記測定方法にてFT-IR測定、及びゼータ電位測定をした。FT-IRでは、図6に示すとおり、2940cm-1に表面官能基におけるC-Hに由来する吸収ピークが見られ、1710cm-1付近の表面官能基におけるケトンのC=Oに由来する吸収ピークはほとんど見られなかった。ゼータ電位は、+30mV(25℃,pH7)であった。
[Comparative Example 2: Production Example 2 of Nano Diamond (ND6)]
The following vapor phase reduction was performed after the drying step of Production Example 3 of Nanodiamond (ND3) to produce Nanodiamond (ND6). The obtained nanodiamond dry powder (ND6) was subjected to FT-IR measurement and zeta potential measurement by the following measurement methods. In FT-IR, as shown in FIG. 6, the absorption was observed peak derived from C-H in the surface functional groups 2940 cm -1, absorption peaks derived from C = O of a ketone in the surface functional group in the vicinity of 1710 cm -1 Was hardly seen. The zeta potential was +30 mV (25 ° C., pH 7).
(気相還元)
 ダイヤモンド粉体 1.51gを、石英ボートに全量投入し、管状炉内に設置した。管状炉内を30分間窒素ガスでパージした。その後、通気するガスを水素(4体積%)へ切り替え、水素流量を1 L/minに設定し、1時間かけて室温から630℃まで20℃/minの速度で昇温し、その後、1℃/minの速度で650℃まで昇温し、5時間保持した。5時間後、加熱を停止し、水素を通気の状態で自然冷却させた。炉内の温度が室温に戻ったら、通気するガスを水素から窒素に切り替え、一晩通気させた。翌朝、窒素ガスの通気を停止し、管状炉から石英ボートを取り出し、サンプルを回収した。回収後の重量は 1.35gだった。
(Gas phase reduction)
A total amount of 1.51 g of diamond powder was put into a quartz boat and placed in a tubular furnace. The inside of the tubular furnace was purged with nitrogen gas for 30 minutes. Thereafter, the gas to be ventilated is switched to hydrogen (4% by volume), the hydrogen flow rate is set to 1 L / min, and the temperature is raised from room temperature to 630 ° C. over 1 hour at a rate of 20 ° C./min. The temperature was raised to 650 ° C. at a rate of / min and held for 5 hours. After 5 hours, the heating was stopped and the hydrogen was allowed to cool naturally in an aerated state. When the temperature in the furnace returned to room temperature, the gas to be ventilated was switched from hydrogen to nitrogen and vented overnight. The next morning, the aeration of nitrogen gas was stopped, the quartz boat was taken out from the tubular furnace, and the sample was collected. The weight after recovery was 1.35 g.
<FT-IR測定>
 フーリエ変換赤外分光光度計、商品名「FT-720」(株式会社堀場製作所社製)に、加熱真空撹拌反射 Heat Chamber Type-1000℃(株式会社エス・ティ・ジャパン社製)を取り付けた装置を用いて測定した。ナノダイヤモンドの吸着水を除去するために、真空度2×10-3Pa下で150℃、1分間加熱後にFT-IR測定を実施した。
<FT-IR measurement>
A Fourier transform infrared spectrophotometer, a product name “FT-720” (manufactured by Horiba Seisakusho Co., Ltd.) with a heating vacuum stirring reflection Heat Chamber Type-1000 ° C. (manufactured by ST Japan Ltd.) It measured using. In order to remove the adsorbed water of the nanodiamond, FT-IR measurement was performed after heating at 150 ° C. for 1 minute under a degree of vacuum of 2 × 10 −3 Pa.
<固体13C-NMR分析>
 固体13C-NMR分析は、固体NMR装置(商品名「CMX-300 Infinity」,Chemagnetics社製)を使用して行う固体NMR法によって行った。測定法その他、測定に係る条件は、以下のとおりである。
測定法:DD/MAS法
測定核周波数:75.188829 MHz(13C核)
スペクトル幅:30.003 kHz
パルス幅:4.2μsec(90°パルス)
パルス繰り返し時間:ACQTM 68.26msec,PD 15sec
観測ポイント:2048(データポイント:8192)
基準物質:ポリジメチルシロキサン(外部基準:1.56ppm)
温度:室温(約22℃)
試料回転数:8.0 kHz
<Solid 13 C-NMR analysis>
Solid state 13 C-NMR analysis was performed by a solid state NMR method using a solid state NMR apparatus (trade name “CMX-300 Infinity”, manufactured by Chemicals). The measurement method and other conditions related to the measurement are as follows.
Measurement method: DD / MAS method Measurement nuclear frequency: 75.188829 MHz ( 13 C nucleus)
Spectral width: 30.003 kHz
Pulse width: 4.2 μsec (90 ° pulse)
Pulse repetition time: ACQTM 68.26msec, PD 15sec
Observation point: 2048 (data point: 8192)
Reference substance: Polydimethylsiloxane (external standard: 1.56 ppm)
Temperature: Room temperature (about 22 ° C)
Sample rotation speed: 8.0 kHz
<ゼータ電位測定>
 ナノダイヤモンド分散液に含まれるナノダイヤモンド粒子に関する上記のゼータ電位は、スペクトリス社製の装置(商品名「ゼータサイザー ナノZS」)を使用して、レーザードップラー式電気泳動法によって測定した値である。測定に付されたナノダイヤモンド分散液は、ナノダイヤモンド濃度0.2質量%への超純水による希釈を行った後に超音波洗浄機による超音波照射を経たものである。また、測定に付されたナノダイヤモンド分散液のpHは、pH試験紙(商品名「スリーバンドpH試験紙」,アズワン株式会社製)を使用して確認した値である。
<Zeta potential measurement>
The zeta potential relating to the nanodiamond particles contained in the nanodiamond dispersion is a value measured by a laser Doppler electrophoresis method using an apparatus (trade name “Zetasizer Nano ZS”) manufactured by Spectris. The nanodiamond dispersion liquid subjected to the measurement was diluted with ultrapure water to a nanodiamond concentration of 0.2% by mass and then subjected to ultrasonic irradiation with an ultrasonic cleaner. Further, the pH of the nanodiamond dispersion liquid subjected to the measurement is a value confirmed using a pH test paper (trade name “Three Band pH Test Paper”, manufactured by ASONE Corporation).
 次に、実施例1、2及び比較例1のナノダイヤモンド粒子について、下記の金属含有量測定(ICP発光分光分析法)を行った。測定された各金属元素の含有量(質量)の結果を表1に示す。なお、表1における各金属元素の含有量(質量)の単位は、ppm(μg/g)である。表1における≦50とは、50ppm以下(最大50ppm)という意味である。 Next, for the nanodiamond particles of Examples 1 and 2 and Comparative Example 1, the following metal content measurement (ICP emission spectroscopic analysis) was performed. Table 1 shows the results of the measured content (mass) of each metal element. In addition, the unit of content (mass) of each metal element in Table 1 is ppm (μg / g). In Table 1, ≦ 50 means 50 ppm or less (maximum 50 ppm).
<金属含有量測定(ICP発光分光分析法)>
 ナノダイヤモンド分散液またはナノダイヤモンド含有溶液から加熱によって水分を蒸発させた後に残留する乾燥物(粉体)100mgについて、磁性るつぼに入れた状態で電気炉内にて乾式分解を行った。この乾式分解は、450℃で1時間の条件、これに続く550℃で1時間の条件、及びこれに続く650℃で1時間の条件にて、3段階で行った。このような乾式分解の後、磁性るつぼ内の残留物について、磁性るつぼに濃硫酸0.5mlを加えて蒸発乾固させた。そして、得られた乾固物を最終的に20mlの超純水に溶解させた。このようにして分析サンプルを調製した。この分析サンプルを、ICP発光分光分析装置(商品名「CIROS120」,リガク社製)によるICP発光分光分析に供した。本分析の検出下限値が50質量ppmとなるように前記分析サンプルを調製した。また、本分析では、検量線用標準溶液として、SPEX社製の混合標準溶液XSTC-22、及び関東化学原子吸光用標準液K1000、Na1000を分析サンプルの硫酸濃度と同濃度の硫酸水溶液にて適宜希釈調製して用いた。そして、本分析では、空のるつぼで同様に操作および分析して得られた測定値を、測定対象であるナノダイヤモンド分散液試料についての測定値から差し引き、試料中の金属濃度を求めた。
<Measurement of metal content (ICP emission spectroscopy)>
100 mg of dry matter (powder) remaining after evaporation of water from the nanodiamond dispersion or nanodiamond-containing solution by heating was subjected to dry decomposition in an electric furnace in a state of being placed in a magnetic crucible. This dry decomposition was performed in three stages under the conditions of 450 ° C. for 1 hour, followed by 550 ° C. for 1 hour, and then 650 ° C. for 1 hour. After such dry decomposition, the residue in the magnetic crucible was evaporated to dryness by adding 0.5 ml of concentrated sulfuric acid to the magnetic crucible. The obtained dried product was finally dissolved in 20 ml of ultrapure water. In this way, an analytical sample was prepared. This analysis sample was subjected to ICP emission spectroscopic analysis using an ICP emission spectroscopic analyzer (trade name “CIROS120”, manufactured by Rigaku Corporation). The analysis sample was prepared so that the lower limit of detection of this analysis was 50 mass ppm. In this analysis, SPEX mixed standard solution XSTC-22, Kanto Chemical Atomic Absorption Standard Solution K1000, and Na1000 are appropriately used in a sulfuric acid aqueous solution having the same concentration as the sulfuric acid concentration of the analysis sample. Diluted and used. In this analysis, the measurement value obtained by operating and analyzing in the same manner with an empty crucible was subtracted from the measurement value of the nanodiamond dispersion liquid sample to be measured to obtain the metal concentration in the sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1における金属(元素)含有量は、測定された各金属(元素)の合計より最大で547ppm、最小で397ppmである。比較例1における金属(元素)含有量は、測定された各金属(元素)の合計より最大で4960ppm、最小で4910ppmである。実施例2における金属(元素)含有量は、測定された各金属(元素)の合計より570ppmである。なお、実施例3及び4のナノダイヤモンド粒子は、実施例2のナノダイヤモンド粒子を気相酸化したものであり、気相酸化では金属元素含有量に変化はないと考えられるため、実施例3及び4における金属元素含有量は、実施例2と同程度であると考えられる。 From Table 1, the metal (element) content in Example 1 is 547 ppm at the maximum and 397 ppm at the minimum from the total of each measured metal (element). The metal (element) content in Comparative Example 1 is 4960 ppm at the maximum and 4910 ppm at the minimum from the total of the measured metals (elements). The metal (element) content in Example 2 is 570 ppm from the total of the measured metals (elements). The nanodiamond particles of Examples 3 and 4 are obtained by vapor-phase oxidation of the nanodiamond particles of Example 2, and it is considered that there is no change in the metal element content in the gas-phase oxidation. The metal element content in 4 is considered to be comparable to that in Example 2.
〔実施例5~8、及び比較例3~6〕
 ポリエーテルエーテルケトン(PEEK)(商品名「ベスタキープ L4000G」,ダイセル・エボニック社製)100質量部と下記表1に示す実施例1~4及び比較例1及び2で製造した添加品0.5質量部の混合物(総量30g)を、それぞれ混練・押出成形評価試験装置(商品名「ラボプラストミルR-30」,混練チャンバーの容積30cc,東洋精機製作所製)を使用して混練して、樹脂組成物を得た。この混練においては、混練温度を400℃とし、混練チャンバー内のローラーの回転数を60rpmとし、混練時間を15分とした。これらの樹脂組成物について、下記に示す方法で複素粘度測定を行った。表2に示すIRANOX 1010は、ヒンダードフェノール系化合物(商品名「IRGANOX 1010FF」,BASF社製)である。なお、比較例3においては何も添加せずに30gのPEEKについて測定を行った。
[Examples 5 to 8 and Comparative Examples 3 to 6]
100 parts by mass of polyetheretherketone (PEEK) (trade name “Vesta Keep L4000G”, manufactured by Daicel Evonik Co., Ltd.) and 0.5 mass of the additive manufactured in Examples 1 to 4 and Comparative Examples 1 and 2 shown in Table 1 below The mixture (total amount 30 g) was kneaded using a kneading / extrusion molding evaluation test apparatus (trade name “Laboplast Mill R-30”, kneading chamber volume 30 cc, manufactured by Toyo Seiki Seisakusho) to obtain a resin composition I got a thing. In this kneading, the kneading temperature was 400 ° C., the number of rotations of the rollers in the kneading chamber was 60 rpm, and the kneading time was 15 minutes. About these resin compositions, the complex viscosity measurement was performed by the method shown below. IRANOX 1010 shown in Table 2 is a hindered phenol compound (trade name “IRGANOX 1010FF”, manufactured by BASF). In Comparative Example 3, 30 g of PEEK was measured without adding anything.
<複素粘度測定>
 回転式レオメーター(商品名「MCR302」,Anton Paar社製)を使用して動的粘弾性測定を行い、その測定によって得られる複素粘度η*(Pa・s)の値をモニターした。この測定においては、直径8mmのパラレルプレートを用い、測定温度を390℃とし、周波数を1Hzとし、試料に作用させる歪を3%とした。測定開始から10分後の複素粘度測定値、60分後の複素粘度測定値、及び60分後の複素粘度測定値を10分後の複素粘度測定値で除した値(粘度上昇倍率)を表2に示す。なお、表2における複素粘度の単位は、Pa・sである。
<Complex viscosity measurement>
Using a rotary rheometer (trade name “MCR302”, manufactured by Anton Paar), dynamic viscoelasticity measurement was performed, and the value of complex viscosity η * (Pa · s) obtained by the measurement was monitored. In this measurement, an 8 mm diameter parallel plate was used, the measurement temperature was 390 ° C., the frequency was 1 Hz, and the strain applied to the sample was 3%. Table 10 shows the complex viscosity measurement value after 10 minutes from the start of measurement, the complex viscosity measurement value after 60 minutes, and the value obtained by dividing the complex viscosity measurement value after 60 minutes by the complex viscosity measurement value after 10 minutes. It is shown in 2. The unit of complex viscosity in Table 2 is Pa · s.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、実施例5~8では比較例3~6に比べて粘度上昇率倍率が低く、本発明の樹脂用添加剤は、高い加工温度においても、増粘を抑制することができることが分かる。 From Table 2, it can be seen that Examples 5 to 8 have a lower rate of increase in viscosity than Comparative Examples 3 to 6, and that the additive for resin of the present invention can suppress thickening even at a high processing temperature. .
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1]金属含有量が3000ppm以下であり、フーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが、2800~3000cm-1の吸収ピークよりも高い、爆轟法ナノダイヤモンド粒子を用いた樹脂用添加剤。
[2]前記爆轟法ナノダイヤモンド粒子のナトリウム含有量が2000ppm以下である[1]に記載の樹脂用添加剤。
[3]熱安定剤及び/又は酸化防止剤である[1]又は[2]に記載の樹脂用添加剤。
[4]前記爆轟法ナノダイヤモンド粒子が酸洗処理をしたものである[1]~[3]の何れか1つに記載の樹脂用添加剤。
[5]前記爆轟法ナノダイヤモンド粒子が気相酸化(酸素酸化)をしたものである[1]~[4]の何れか1つに記載の樹脂用添加剤。
[6]前記爆轟法ナノダイヤモンド粒子のゼータ電位がマイナス(例えば、-60~-5mV)である[1]~[5]の何れか1つに記載の樹脂用添加剤。
[7]前記爆轟法ナノダイヤモンド粒子のフーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが1740~1830cm-1の間に存在する[1]~[6]の何れか1つに記載の樹脂用添加剤。
[8]前記爆轟法ナノダイヤモンド粒子の粒径D50(メディアン径)が10μm以下である[1]~[7]の何れか1つに記載の樹脂用添加剤。
[9]前記爆轟法ナノダイヤモンド粒子に含まれる炭素における水酸基結合炭素(C-OH)の割合が6.0%以上である[1]~[8]の何れか1つに記載の樹脂用添加剤。
[10]前記爆轟法ナノダイヤモンド粒子に含まれる炭素におけるカルボキシル炭素(C(=O)O)の割合が0.1%以上である[1]~[9]の何れか1つに記載の樹脂用添加剤。
[11]前記爆轟法ナノダイヤモンド粒子に含まれる炭素におけるカルボニル炭素(C=O)の割合が0.1%以上である[1]~[10]の何れか1つに記載の樹脂用添加剤。
[12]前記爆轟法ナノダイヤモンド粒子に含まれる炭素における水素結合炭素の割合が8.0%以上である[1]~[11]の何れか1つに記載の樹脂用添加剤。
[13]前記爆轟法ナノダイヤモンド粒子に含まれる炭素におけるsp3炭素の割合が50.0%以上である[1]~[12]の何れか1つに記載の樹脂用添加剤。
[14][1]~[13]の何れか1つに記載の樹脂用添加剤、及び樹脂を含む樹脂組成物。
[15]前記樹脂が、熱可塑性樹脂である[14]に記載の樹脂組成物。
[16]前記熱可塑性樹脂が、芳香族ポリエーテルケトンである[15]に記載の樹脂組成物。
[17]前記芳香族ポリエーテルケトンが、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、及びポリエーテルエーテルケトンケトンからなる群より選択される少なくとも1つである[16]に記載の樹脂組成物。
[18]前記樹脂用添加剤の含有量が、前記樹脂100質量部に対して0.001~5質量部である[14]~[17]の何れか1つに記載の樹脂組成物。
[19]前記熱可塑性樹脂のガラス転移温度が220℃以上である[15]~[18]の何れか1つに記載の樹脂組成物。
[20]前記樹脂の含有量が80~99.9質量%である[14]~[19]の何れか1つに記載の樹脂組成物。
[21]前記樹脂用添加剤の含有量が0.1~20質量%である[14]~[20]の何れか1つに記載の樹脂組成物。
As a summary of the above, the configuration of the present invention and its variations are appended below.
[1] metal content is not more than 3000 ppm, in the infrared absorption spectrum by Fourier transform infrared spectroscopy (FT-IR), the maximum peak of the absorption peak of 1700 ~ 1850 cm -1 it is of 2800 ~ 3000 cm -1 Additive for resin using detonation nano diamond particles, which is higher than absorption peak.
[2] The resin additive according to [1], wherein the sodium content of the detonation nanodiamond particles is 2000 ppm or less.
[3] The additive for resin according to [1] or [2], which is a heat stabilizer and / or an antioxidant.
[4] The resin additive as described in any one of [1] to [3], wherein the detonation nanodiamond particles are pickled.
[5] The additive for resin according to any one of [1] to [4], wherein the detonation nanodiamond particles are subjected to gas phase oxidation (oxygen oxidation).
[6] The resin additive as described in any one of [1] to [5], wherein the detonation nanodiamond particles have a negative zeta potential (eg, −60 to −5 mV).
[7] In the infrared absorption spectrum by Fourier transform infrared spectrophotometer (FT-IR) of the detonation method nanodiamond particles, the maximum peak of the absorption peak of 1700 ~ 1850 cm -1 is between 1740 ~ 1830 cm -1 The additive for resin as described in any one of [1] to [6].
[8] The additive for resin as described in any one of [1] to [7], wherein a particle size D50 (median diameter) of the detonation nanodiamond particles is 10 μm or less.
[9] The resin for a resin according to any one of [1] to [8], wherein a ratio of hydroxyl-bonded carbon (C—OH) in carbon contained in the detonation nanodiamond particles is 6.0% or more. Additive.
[10] The ratio according to any one of [1] to [9], wherein a ratio of carboxyl carbon (C (= O) O) in carbon contained in the detonation nanodiamond particles is 0.1% or more. Additive for resin.
[11] The resin addition as described in any one of [1] to [10], wherein a ratio of carbonyl carbon (C═O) in carbon contained in the detonation nanodiamond particles is 0.1% or more Agent.
[12] The resin additive according to any one of [1] to [11], wherein a ratio of hydrogen-bonded carbon to carbon contained in the detonation nanodiamond particles is 8.0% or more.
[13] The additive for resin as described in any one of [1] to [12], wherein a ratio of sp 3 carbon to carbon contained in the detonation nanodiamond particles is 50.0% or more.
[14] A resin composition comprising the resin additive according to any one of [1] to [13] and a resin.
[15] The resin composition according to [14], wherein the resin is a thermoplastic resin.
[16] The resin composition according to [15], wherein the thermoplastic resin is an aromatic polyether ketone.
[17] The resin according to [16], wherein the aromatic polyether ketone is at least one selected from the group consisting of polyether ketone, polyether ether ketone, polyether ketone ketone, and polyether ether ketone ketone. Composition.
[18] The resin composition according to any one of [14] to [17], wherein the content of the resin additive is 0.001 to 5 parts by mass with respect to 100 parts by mass of the resin.
[19] The resin composition according to any one of [15] to [18], wherein the thermoplastic resin has a glass transition temperature of 220 ° C. or higher.
[20] The resin composition according to any one of [14] to [19], wherein the content of the resin is 80 to 99.9% by mass.
[21] The resin composition according to any one of [14] to [20], wherein the content of the resin additive is 0.1 to 20% by mass.
 本発明の樹脂用添加剤は、高い耐熱性を有し、高い加工温度においても、ラジカルを捕捉する等の機能が発揮でき、樹脂の加熱加工時の劣化および増粘を抑制することができるため、エンジニアリングプラスチックやスーパーエンジニアリングプラスチックなどの融点が高い樹脂のための添加剤(例えば、熱安定剤、酸化防止剤)として好適である。 The additive for resin of the present invention has high heat resistance, can exhibit functions such as scavenging radicals even at a high processing temperature, and can suppress deterioration and thickening during heat processing of the resin. It is suitable as an additive (for example, heat stabilizer, antioxidant) for resins having a high melting point such as engineering plastics and super engineering plastics.

Claims (12)

  1.  金属含有量が3000ppm以下であり、フーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが、2800~3000cm-1の吸収ピークよりも高い、爆轟法ナノダイヤモンド粒子を用いた樹脂用添加剤。 And the metal content 3000ppm or less, in the infrared absorption spectrum by Fourier transform infrared spectroscopy (FT-IR), the maximum peak of the absorption peak of 1700 ~ 1850 cm -1 is the absorption peak of 2800 ~ 3000 cm -1 Additive for resin using detonated nano diamond particles.
  2.  前記爆轟法ナノダイヤモンド粒子のナトリウム含有量が2000ppm以下である請求項1に記載の樹脂用添加剤。 The additive for resin according to claim 1, wherein the sodium content of the detonation nanodiamond particles is 2000 ppm or less.
  3.  熱安定剤及び/又は酸化防止剤である請求項1又は2に記載の樹脂用添加剤。 The additive for resin according to claim 1, which is a heat stabilizer and / or an antioxidant.
  4.  前記爆轟法ナノダイヤモンド粒子が酸洗処理をしたものである請求項1~3の何れか1項に記載の樹脂用添加剤。 The resin additive according to any one of claims 1 to 3, wherein the detonation nanodiamond particles are pickled.
  5.  前記爆轟法ナノダイヤモンド粒子が気相酸化をしたものである請求項1~4の何れか1項に記載の樹脂用添加剤。 The resin additive according to any one of claims 1 to 4, wherein the detonation nanodiamond particles are subjected to gas phase oxidation.
  6.  前記爆轟法ナノダイヤモンド粒子のゼータ電位がマイナスである請求項1~5の何れか1項に記載の樹脂用添加剤。 The resin additive according to any one of claims 1 to 5, wherein the detonation nanodiamond particles have a negative zeta potential.
  7.  前記爆轟法ナノダイヤモンド粒子のフーリエ変換赤外分光光度計(FT-IR)による赤外吸収スペクトルにおいて、1700~1850cm-1の吸収ピークの最大ピークが1740~1830cm-1の間に存在する請求項1~6の何れか1項に記載の樹脂用添加剤。 In the infrared absorption spectrum of the detonation nanodiamond particles by a Fourier transform infrared spectrophotometer (FT-IR), the maximum peak of the absorption peak of 1700 to 1850 cm −1 is present between 1740 and 1830 cm −1. Item 7. The additive for resin according to any one of Items 1 to 6.
  8.  請求項1~7の何れか1項に記載の樹脂用添加剤、及び樹脂を含む樹脂組成物。 A resin composition comprising the resin additive according to any one of claims 1 to 7, and a resin.
  9.  前記樹脂が、熱可塑性樹脂である請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the resin is a thermoplastic resin.
  10.  前記熱可塑性樹脂が、芳香族ポリエーテルケトンである請求項9に記載の樹脂組成物。 The resin composition according to claim 9, wherein the thermoplastic resin is an aromatic polyether ketone.
  11.  前記芳香族ポリエーテルケトンが、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトン、及びポリエーテルエーテルケトンケトンからなる群より選択される少なくとも1つである請求項10に記載の樹脂組成物。 The resin composition according to claim 10, wherein the aromatic polyether ketone is at least one selected from the group consisting of polyether ketone, polyether ether ketone, polyether ketone ketone, and polyether ether ketone ketone.
  12.  前記樹脂用添加剤の含有量が、前記樹脂100質量部に対して0.001~5質量部である請求項8~11の何れか1項に記載の樹脂組成物。 The resin composition according to any one of claims 8 to 11, wherein a content of the additive for resin is 0.001 to 5 parts by mass with respect to 100 parts by mass of the resin.
PCT/JP2017/038500 2016-10-28 2017-10-25 Additive for resins, and resin composition WO2018079597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-211845 2016-10-28
JP2016211845 2016-10-28

Publications (1)

Publication Number Publication Date
WO2018079597A1 true WO2018079597A1 (en) 2018-05-03

Family

ID=62025083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/038500 WO2018079597A1 (en) 2016-10-28 2017-10-25 Additive for resins, and resin composition

Country Status (1)

Country Link
WO (1) WO2018079597A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240013A1 (en) * 2018-06-13 2019-12-19 株式会社ダイセル Composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051937A (en) * 2002-05-31 2004-02-19 Univ Nihon Polymer composite material and method for producing the same
JP2012161965A (en) * 2011-02-04 2012-08-30 Vision Development Co Ltd Method for manufacturing diamond-resin composite material that includes diamond microparticles
JP2012170913A (en) * 2011-02-23 2012-09-10 Nippon Kayaku Co Ltd Method for producing single crystal nanodiamond granulated powder
CN102757635A (en) * 2011-04-27 2012-10-31 合肥杰事杰新材料股份有限公司 Polyether ether ketone composite material and preparation method thereof
WO2014049212A1 (en) * 2012-09-28 2014-04-03 Carbodeon Ltd Oy Nanodiamonds containing thermoplastic thermal composites
JP2015127364A (en) * 2013-12-27 2015-07-09 カルボデオン リミティド オサケユイチア Nanodiamond containing composite and method for producing the same
JP2016155889A (en) * 2015-02-23 2016-09-01 株式会社ダイセル Complex of nano-diamond and polyvinylpyrrolidone
JP2016160394A (en) * 2015-03-04 2016-09-05 株式会社ダイセル Emulsion composition and light diffusion film obtained therefrom

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051937A (en) * 2002-05-31 2004-02-19 Univ Nihon Polymer composite material and method for producing the same
JP2012161965A (en) * 2011-02-04 2012-08-30 Vision Development Co Ltd Method for manufacturing diamond-resin composite material that includes diamond microparticles
JP2012170913A (en) * 2011-02-23 2012-09-10 Nippon Kayaku Co Ltd Method for producing single crystal nanodiamond granulated powder
CN102757635A (en) * 2011-04-27 2012-10-31 合肥杰事杰新材料股份有限公司 Polyether ether ketone composite material and preparation method thereof
WO2014049212A1 (en) * 2012-09-28 2014-04-03 Carbodeon Ltd Oy Nanodiamonds containing thermoplastic thermal composites
JP2015127364A (en) * 2013-12-27 2015-07-09 カルボデオン リミティド オサケユイチア Nanodiamond containing composite and method for producing the same
JP2016155889A (en) * 2015-02-23 2016-09-01 株式会社ダイセル Complex of nano-diamond and polyvinylpyrrolidone
JP2016160394A (en) * 2015-03-04 2016-09-05 株式会社ダイセル Emulsion composition and light diffusion film obtained therefrom

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ITO, HISAYOSHI, CONVERTECH, CHARACTERISTICS AND APPLICATIONS OF NANODIAMONDS, vol. 43, no. 5, 2015, pages 84 - 86 *
ITO, HISAYOSHI: "Development of Detonation Nanodiamonds", CHEMICAL ECONOMY, vol. 62, no. 12, 2015, pages 67 - 70 *
NISHIKAWA, MASAHIRO ET AL.: "Development of Detonation Nanodiamonds as Functional Materials", MOLTEN SALTS, vol. 59, no. 2, 2016, pages 55 - 62 *
SHULING, DENG ET AL.: "Nanodiamond as an efficient nucleating agent for polyphenylene sulfide", THERMOCHIMICA ACTA, vol. 584, 2014, pages 51 - 57, XP028650723 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019240013A1 (en) * 2018-06-13 2019-12-19 株式会社ダイセル Composition
JPWO2019240013A1 (en) * 2018-06-13 2021-06-24 株式会社ダイセル Composition
JP7304853B2 (en) 2018-06-13 2023-07-07 株式会社ダイセル Composition

Similar Documents

Publication Publication Date Title
US9884767B2 (en) Zeta positive hydrogenated nanodiamond powder, zetapositive single digit hydrogenated nanodiamond dispersion, and methods for producing the same
JP6770469B2 (en) Surface-modified nanodiamond and its organic solvent dispersion
TWI705041B (en) Surface modified nano diamond, organic solvent dispersion thereof, and method for manufactureing the same
KR20150135090A (en) Preparation method of carbon nanotube and dispersed composition of carbon nanotube
JP6762850B2 (en) Method for producing graphite oxide derivative
JP2017501955A (en) Zeta positive amino functionalized nanodiamond powder, zeta positive amino functionalized nanodiamond dispersion, and methods for their production
WO2018079597A1 (en) Additive for resins, and resin composition
JP2009179879A (en) Silver micropowder having excellent affinity for polar medium, and silver ink
JP6927687B2 (en) Nanodiamond dispersion liquid manufacturing method and nanodiamond dispersion liquid
JP2010024127A (en) Nitrated carbon nanotube and method for producing surface-modified carbon nanotube
JPWO2017141689A1 (en) Nanodiamond dispersion and method for producing the same
JP2017202940A (en) Nano diamond production method
JP6812349B2 (en) Resin composition
JP2017214244A (en) Manufacturing method of surface modified nanodiamond and surface modified nanodiamond
JP2017048294A (en) Curable resin composition and cured resin body
JP6848882B2 (en) A container containing a nanostructured dispersion, a method for storing and transporting the nanostructured dispersion, and a method for producing a composition and an aggregate for a composite material using the nanostructured dispersion.
JP2022090385A (en) Additive for resin, additive for resin-dispersed composition, and resin composition
JP2016094327A (en) Method for manufacturing nanodiamond
Shulitskii et al. Effect of the multistage chemical treatment of carbon nanotubes on their purity and quality of walls
JP6484146B2 (en) Nanodiamond dispersion and nanodiamond
EP3747830A1 (en) Nanodiamond particle dispersion
JP2020172406A (en) Method for producing surface-modified nanodiamond
JP2016113333A (en) Method for producing nanodiamond having oxygen atom-containing functional group
IL262369B (en) Process for producing graphene oxide products and uses thereof
Ferreira et al. Dodecylamine Functionalization of Cnt: Thermal Stability And Dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17864042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP