WO2019240013A1 - Composition - Google Patents

Composition Download PDF

Info

Publication number
WO2019240013A1
WO2019240013A1 PCT/JP2019/022585 JP2019022585W WO2019240013A1 WO 2019240013 A1 WO2019240013 A1 WO 2019240013A1 JP 2019022585 W JP2019022585 W JP 2019022585W WO 2019240013 A1 WO2019240013 A1 WO 2019240013A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal polymer
weight
antioxidant
particles
Prior art date
Application number
PCT/JP2019/022585
Other languages
French (fr)
Japanese (ja)
Inventor
梅本浩一
劉明
伊藤久義
久米篤史
田口吉昭
池田聡
Original Assignee
株式会社ダイセル
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, ポリプラスチックス株式会社 filed Critical 株式会社ダイセル
Priority to JP2020525506A priority Critical patent/JP7304853B2/en
Publication of WO2019240013A1 publication Critical patent/WO2019240013A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides

Definitions

  • the present invention relates to a composition comprising a liquid crystal polymer and nanodiamond particles.
  • Patent Document 1 describes a heat-resistant thermoplastic composition containing a thermoplastic elastomer and an antioxidant.
  • an aromatic amine-based antioxidant As the antioxidant, an aromatic amine-based antioxidant, a hindered phenol-based antioxidant, a sulfur It describes that a system antioxidant, a phosphorus antioxidant, etc. can be used.
  • the liquid crystal polymer has a high melting point of 300 ° C. or higher, and can stably maintain its shape even in a high temperature environment (for example, a high temperature environment of 150 ° C. or higher and lower than 300 ° C.) It is possible to suppress the occurrence and maintain the shape with high accuracy). That is, it is excellent in heat resistance.
  • the liquid crystal polymer in order to mold the liquid crystal polymer, it is necessary to heat at a temperature higher than the melting point of the liquid crystal polymer.
  • the liquid crystal polymer is easily oxidized and deteriorated by heating at a temperature higher than the melting point. This is because even if an antioxidant is added to the liquid crystal polymer, the antioxidant is volatilized or thermally decomposed by high-temperature heating during molding, and the desired effect cannot be obtained.
  • an object of the present invention is to provide a composition comprising a liquid crystal polymer and an antioxidant having excellent heat resistance.
  • Another object of the present invention is to provide an antioxidant having heat resistance at a temperature equal to or higher than the molding temperature of the liquid crystal polymer.
  • the inventors of the present invention have excellent heat resistance and do not volatilize or decompose even when heated to 400 ° C. in an oxygen atmosphere. It has been found that when nanodiamond particles are added to a liquid crystal polymer, the nanodiamond particles trap peroxy radicals, thereby preventing oxidative degradation of the liquid crystal polymer in a high temperature environment.
  • the present invention has been completed based on these findings.
  • liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide and nanodiamond particles are added in an amount of 0.001 to 5 parts by weight of nanodiamond particles with respect to 100 parts by weight of the liquid crystal polymer.
  • Compositions containing in proportions are provided.
  • the present invention also provides the composition, wherein the liquid crystal polymer has the following constitution.
  • the content of the structural unit represented by the following formula (I) is 50 to 100 mol%
  • the content of the structural unit represented by the following formula (II) is 0 to 25 mol%
  • the content of the structural unit represented by the following formula (III) is 0 to 25 mol% (Wherein Ar 1 to Ar 3 are the same or different and may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene)
  • X and Y are the same or different and represent —O— or —NH—.
  • the present invention also provides the composition, wherein the nanodiamond particles are detonation nanodiamond particles.
  • the present invention is also in the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ⁇ 1850 cm -1 is provided a higher than the maximum peak of 2800 ⁇ 3000 cm -1 wherein the composition To do.
  • the present invention also provides the composition, wherein the amount of radicals generated at 320 ° C. measured by electron spin resonance is 2 ⁇ 10 16 to 2 ⁇ 10 18 spins / g.
  • the present invention also provides the composition, wherein the radical generation amount at 400 ° C. measured by an electron spin resonance method is not more than 3.0 times the radical generation amount at 25 ° C.
  • the present invention also provides a molded body comprising a solidified product of the composition.
  • the present invention also provides an antioxidant for thermoplastic resin containing nanodiamond particles.
  • the present invention also provides the antioxidant for a thermoplastic resin, wherein the 5% weight reduction temperature measured at a heating rate of 10 ° C./min (in air) is 450 ° C. or higher.
  • the composition of the present invention contains nanodiamond particles together with a liquid crystal polymer, and the nanodiamond particles exhibit an action of capturing peroxy radicals that cause oxidative deterioration of the liquid crystal polymer. Therefore, even when the composition of the present invention is heated at a high temperature, the liquid crystal polymer can be prevented from being oxidatively deteriorated, and the toughness of the liquid crystal polymer can be reduced due to the oxidative deterioration and can be prevented from becoming brittle. In addition, yellowing due to oxidative degradation can be suppressed, and the hue can be maintained well. In addition, the melt of the composition of the present invention is excellent in fluidity, has little shrinkage due to solidification, and can suppress the occurrence of warpage.
  • the molded article of the composition of the present invention suppresses deterioration of physical properties (for example, toughness, embrittlement, etc.) over a long period of time even in a high temperature environment (for example, a high temperature environment of 150 ° C. or higher and lower than 400 ° C.). be able to. Therefore, it withstands long-term use at high temperatures.
  • a high temperature environment for example, a high temperature environment of 150 ° C. or higher and lower than 400 ° C.
  • the composition of the present invention has the above-mentioned characteristics, for example, printed circuit board mounting parts, connectors / bobbins / optical pickup parts cases, micromotor parts and other electric / electronic parts materials; compressor parts, shock absorber parts and other automobiles It can be suitably used as a component material.
  • the antioxidant of the present invention contains, as a main component, nanodiamond particles having both an antioxidant effect (or peroxy radical scavenging effect) and heat resistance. Therefore, it can be suitably used as an antioxidant (or a peroxy radical scavenger) for a high melting point thermoplastic resin having a molding temperature of 300 ° C. or higher.
  • FIG. 4 is a diagram showing FT-IR data of ND1 obtained in Example 1.
  • FIG. 6 is a diagram showing FT-IR data of ND2 obtained in Example 2.
  • FIG. 6 is a diagram showing FT-IR data of ND3 obtained in Example 3.
  • FIG. 6 is a diagram showing FT-IR data of ND4 obtained in Example 4.
  • FIG. It is a correlation diagram of temperature and the amount of radical generation of the composition obtained in Example 8 and Comparative Example 1 obtained by ESR measurement.
  • composition of the present invention comprises at least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide, and nanodiamond particles (hereinafter sometimes referred to as “ND particles”) in 100 parts by weight of the liquid crystal polymer.
  • ND particles nanodiamond particles
  • the nanodiamond particles are contained at a ratio of 0.001 to 5 parts by weight with respect to the above.
  • the liquid crystal polymer in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic melt phase.
  • the property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times.
  • the liquid crystal polymer of the present invention is inspected between crossed polarizers, the polarized light is usually transmitted and optically anisotropic even if it is in a molten stationary state.
  • the liquid crystal polymer in the present invention is at least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide.
  • liquid crystal polymer examples include at least a structural unit represented by the following formula (I) and may include a structural unit represented by the following formula (II) and / or a structural unit represented by the following formula (III).
  • a good liquid crystal polymer is mentioned.
  • Ar 1 to Ar 3 are the same or different and may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene
  • X and Y are the same or different and represent —O— or —NH—.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the content of the structural unit represented by the formula (I) is, for example, 50 to 100 mol%.
  • the content of the structural unit represented by the formula (II) is, for example, 0 to 25 mol%.
  • the content of the structural unit represented by the formula (III) is, for example, 0 to 25 mol%.
  • the total content is, for example, 70 mol% or more, preferably 80 mol% or more, particularly preferably 90 mol% or more.
  • the content of the structural unit represented by the following formula (VI) is preferably, for example, 30 mol% or less, more preferably 20 mol% or less, based on all the structural units constituting the liquid crystal polymer. Especially preferably, it is 10 mol% or less, Most preferably, it is 5 mol% or less, Most preferably, it is 1 mol% or less.
  • content of the structural unit shown by following formula (VI) exceeds the said range, there exists a tendency for the antioxidant effect by ND particle
  • Ar 4 to Ar 6 are the same or different and each may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene) Group
  • examples of the liquid crystal polymer include the following embodiments (1) to (5). Furthermore, you may use a molecular weight modifier together with the following structural component as needed.
  • the monomer constituting the liquid crystal polymer include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4 Aromatic diols such as, 4'-dihydroxybiphenyl, hydroquinone, resorcin; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid; p-aminophenol, and aromatic amines such as p-phenylenediamine.
  • aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid
  • 2,6-dihydroxynaphthalene 1,4-dihydroxynaphthalene
  • 4 Aromatic diols such as, 4'-dihydroxybi
  • the liquid crystal polymer is not particularly limited and can be prepared by a known method, and examples thereof include a direct polymerization method and a transesterification method.
  • the monomer or monomer mixture
  • the direct polymerization method the monomer (or monomer mixture) is melt-polymerized, solution-polymerized, slurry-polymerized, solid-phase polymerized, or a combination of two or more of these (preferably, melt-polymerized or melt-polymerized In combination with a solid phase polymerization method).
  • the monomer when the monomer is a compound having ester forming ability, it can be used for polymerization as it is, but when the monomer is a compound having no ester forming ability, an acylating agent (for example, It is preferable to use a derivative modified with a derivative having ester-forming ability using carboxylic anhydride such as acetic anhydride).
  • an acylating agent for example, It is preferable to use a derivative modified with a derivative having ester-forming ability using carboxylic anhydride such as acetic anhydride).
  • the polymerization of the monomer is preferably performed in the presence of a catalyst.
  • the catalyst include metal salt catalysts and organic compound catalysts. These can be used alone or in combination of two or more.
  • metal salt catalyst examples include potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, tris (2,4-pentanedionato) cobalt (III), etc. Is mentioned.
  • organic compound catalyst examples include N-methylimidazole and 4-dimethylaminopyridine.
  • the amount of the catalyst used is, for example, about 0.0001 to 0.01 parts by weight with respect to 100 parts by weight of the monomer.
  • the polymerization temperature of the monomer is, for example, 200 to 400 ° C.
  • the atmosphere during the polymerization reaction of the monomer is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like.
  • the polymerization reaction of the monomer can be performed under reduced pressure, normal pressure, or increased pressure.
  • the liquid crystal polymer obtained by the above method can be further increased in molecular weight by solid phase polymerization heated in an inert gas.
  • the heating temperature is, for example, 230 to 350 ° C., preferably 260 to 330 ° C.
  • the final ultimate pressure is, for example, 10 to 760 Torr (that is, 1330 to 101080 Pa).
  • the melting point or softening point of the liquid crystal polymer is, for example, 250 ° C. or higher, preferably 270 ° C. or higher.
  • the upper limit of the melting point or softening point of the liquid crystal polymer is 400 ° C., for example.
  • the melt viscosity measured under conditions of a shear rate of 1000 sec ⁇ 1 at a cylinder temperature 10 to 30 ° C. higher than the melting point or softening point of the liquid crystal polymer is, for example, 5 to 100 Pa ⁇ s, preferably 10 to 60 Pa ⁇ s, particularly preferably 15 to 50 Pa ⁇ s.
  • the “cylinder temperature 10-30 ° C. higher than the melting point or softening point of the liquid crystal polymer” means a cylinder temperature at which the liquid crystal polymer can be melted to such an extent that the melt viscosity can be measured.
  • the number of degrees C higher than the melting point or softening point can be appropriately selected depending on the type of the liquid crystal polymer within the temperature range (that is, within the range of 10 to 30 ° C.).
  • the primary particle diameter (D50, median diameter) of ND particles is 10 nm or less, preferably 8 nm or less, particularly preferably 7 nm or less, and most preferably 6 nm or less.
  • the lower limit of the particle size of the ND particles is, for example, 2 nm.
  • the ND particles have a carbonyl group (C ⁇ O group) on the surface in terms of being excellent in an antioxidant effect (particularly, an antioxidant effect of a liquid crystal polymer).
  • the ND particles in the present invention may have other functional groups (for example, C—H groups) in addition to carbonyl groups on the surface, but may have more carbonyl groups than other functional groups. preferable.
  • the surface functional group of the ND particle can be confirmed by an infrared absorption spectrum.
  • 1700 tallest peak at ⁇ 1850 cm -1 e.g., P1 in Fig. 1
  • the maximum peak of 2800 ⁇ 3000 cm -1 e.g., P2 in Fig. 1 is higher than
  • (details the absorption peak derived from C O near 1712 cm -1, absorption peaks were observed originating from C-H in the vicinity of 2915 cm -1
  • absorption peaks of 1712 cm -1 is than the absorption peak of 2915 cm -1
  • the infrared absorption spectrum can be measured using FTIR [Fourier transform infrared spectrophotometer; FT / IR-4200 type A (manufactured by JASCO Corporation)].
  • the ND particles can be produced, for example, by the detonation method described in detail below, but the ND particles in the present invention are not limited to those produced by this method.
  • a molded explosive with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is sealed in a state where atmospheric pressure gas and atmospheric explosive coexist in the container.
  • the container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 .
  • As the explosive a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX), can be used.
  • TNT / RDX The weight ratio of TNT to RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
  • the electric detonator is then detonated and the explosive is detonated in the container.
  • Detonation refers to an explosion associated with a chemical reaction in which the reaction flame surface moves at a speed exceeding the speed of sound.
  • ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion, using as a raw material carbon that has been partially incompletely burned by the explosive used.
  • the produced ND particles are aggregated very strongly as a result of coulomb interaction between crystal planes in addition to the action of van der Waals force between adjacent primary particles or crystallites to form an aggregate.
  • the container and the interior thereof are then allowed to cool by allowing to stand at room temperature for about 24 hours and allowing to cool.
  • the ND particle crude product adhering to the inner wall of the container (including the ND particle aggregates and soot generated as described above) is scraped off with a spatula and collected.
  • a crude product of ND particles can be obtained by the method as described above.
  • the acid treatment step is a step of removing metallic impurities mixed in the crude product of ND particles obtained through the production step, and the crude product of ND particles obtained by dispersing the crude product of ND particles in water.
  • an acid to the product dispersion to elute the metallic impurities into the acid, and then separating and removing the acid from which the metallic impurities are eluted, the metallic impurities can be removed.
  • a mineral acid is preferable, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, aqua regia and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the concentration of the acid used for the acid treatment is, for example, 1 to 50% by weight.
  • the acid treatment temperature is, for example, 70 to 150 ° C.
  • the acid treatment time is, for example, 0.1 to 24 hours.
  • the acid treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • decantation it is preferable to wash the solids (including ND particles) with water, and it is particularly preferable to repeat the water washing until the pH of the precipitate reaches, for example, 2 to 3.
  • the oxidation treatment step is a step of removing graphite from the ND particle crude product using an oxidizing agent.
  • the crude product of ND particles obtained by the detonation method includes graphite (graphite), but this graphite does not form ND particle crystals out of the carbon released by partial incomplete combustion of the explosive used. Derived from carbon.
  • graphite can be removed from the ND particle crude product by applying a predetermined oxidizing agent in an aqueous solvent.
  • an oxygen-containing group such as a carboxyl group or a hydroxyl group can be introduced to the surface of the ND particle by causing an oxidant to act.
  • Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, and mixtures thereof, and at least one acid selected from these. And mixed acids of these with other acids (for example, sulfuric acid), and salts thereof.
  • a mixed acid particularly, a mixed acid of sulfuric acid and nitric acid because it is environmentally friendly and excellent in oxidizing and removing graphite.
  • the mixing ratio of sulfuric acid and nitric acid in the mixed acid is, for example, 60/40 to 95/5, even under a pressure around normal pressure (for example, 0.5 to 2 atm).
  • graphite can be efficiently oxidized and removed at a temperature of 130 ° C. or higher (particularly preferably 150 ° C. or higher, and the upper limit is, for example, 200 ° C.).
  • the lower limit of the mixing ratio is preferably 65/35, particularly preferably 70/30.
  • the upper limit of the mixing ratio is preferably 90/10, particularly preferably 85/15, and most preferably 80/20.
  • the ratio of nitric acid in the mixed acid exceeds the above range, the content of sulfuric acid having a high boiling point is decreased. Therefore, the reaction temperature becomes, for example, 120 ° C. or less under a pressure near normal pressure, and the graphite removal efficiency tends to decrease. There is.
  • the ratio of nitric acid in the mixed acid is less than the above range, the content of nitric acid that greatly contributes to the oxidation of graphite is reduced, so that the graphite removal efficiency tends to decrease.
  • the amount of the oxidizing agent (especially the mixed acid) used is, for example, 10 to 50 parts by weight, preferably 15 to 40 parts by weight, and particularly preferably 20 to 40 parts by weight with respect to 1 part by weight of the ND particle crude product.
  • the amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by weight, preferably 10 to 35 parts by weight, particularly preferably 15 to 30 parts by weight, based on 1 part by weight of the ND particle crude product.
  • the amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by weight, preferably 4 to 10 parts by weight, particularly preferably 5 to 8 parts by weight, based on 1 part by weight of the ND particle crude product.
  • a catalyst may be used together with the mixed acid.
  • the graphite removal efficiency can be further improved.
  • the catalyst include copper (II) carbonate.
  • the amount of the catalyst used is, for example, about 0.01 to 10 parts by weight with respect to 100 parts by weight of the ND particle crude product.
  • the oxidation treatment temperature is 100 to 200 ° C., for example.
  • the oxidation treatment time is, for example, 1 to 24 hours.
  • the oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
  • decantation it is preferable to wash the solids with water. Although the supernatant liquid at the beginning of water washing is colored, it is preferable to repeat the water washing of the solid content until the supernatant liquid becomes transparent visually.
  • drying process it is preferable to provide a drying step next. For example, after the liquid content is evaporated from the ND particle-containing solution obtained through the above steps using a spray drying device, an evaporator, or the like, the resulting solid content is dried by heating and drying in a drying oven. A method is mentioned. The heating and drying temperature is, for example, 40 to 150 ° C. Through such a drying process, ND particles are obtained.
  • the heating oxidation step is a step of obtaining ND particles having C ⁇ O groups on the surface thereof by heating and oxidizing the ND particles obtained through the above steps in an atmosphere containing oxygen.
  • the reaction atmosphere in the heating oxidation step is not particularly limited as long as it is a gas containing oxygen.
  • oxygen diluted with an inert gas such as nitrogen from the viewpoint of safety, and the concentration of oxygen is, for example, 0.01 to 30 v / v%, preferably 0. .1 to 25 v / v%, particularly preferably 0.5 to 10 v / v%.
  • the heating temperature in the heating oxidation step can be appropriately set in consideration of the heat resistance of the ND particles, and is preferably 200 to 800 ° C., more preferably 350 to 700 ° C., further preferably 400 to 600 ° C., and particularly preferably. 430-500 ° C.
  • the heating temperature is within the above range, oxidation of ND particles is suppressed, non-diamond carbon is selectively oxidized, ND particles having a large amount of C ⁇ O groups on the surface and excellent in the antioxidant effect are obtained. It is done.
  • the heating time in the heating and oxidizing step is not particularly limited, but is preferably 0.1 to 15 hours, more preferably 0.5 to 12 hours, and still more preferably 1 to 10 hours.
  • the heating time is within the above range, oxidation of ND particles is suppressed, non-diamond carbon is selectively oxidized, ND particles having a large amount of C ⁇ O groups on the surface and excellent in the antioxidant effect are obtained. It is done.
  • the pressure in the heating oxidation step is not particularly limited, but is preferably 0.01 to 5.0 atm, more preferably 0.1 to 1.5 atm, and further preferably 0.2 to 1.2 atm.
  • composition of the present invention can be produced, for example, by melt-kneading a liquid crystal polymer and ND particles at a temperature equal to or higher than the melting point (or softening temperature) of the liquid crystal polymer.
  • the content of ND particles in the composition of the present invention is 0.001 to 5 parts by weight, preferably 0.01 to 3 parts by weight, particularly preferably 0.1 to 1 part by weight, based on 100 parts by weight of the liquid crystal polymer. Part.
  • the composition of the present invention contains a liquid crystal polymer and ND particles as nonvolatile components.
  • the composition of the present invention includes other components (for example, fillers, stabilizers, lubricants, pigments, crystal nucleating agents, antifoaming agents, silane coupling agents, leveling agents, surfactants, flame retardants, 1 type or 2 types or more of ultraviolet absorbers, decolorizers, colorants, adhesion-imparting agents, etc.) may be contained, but the total content of the ND particles and the liquid crystal polymer in the total amount of nonvolatile content contained in the composition The amount is, for example, 10% by weight or more, preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, still more preferably 50% by weight or more, still more preferably 60% by weight or more, particularly preferably. Is 70% by weight or more.
  • the filler includes a fibrous, powdery, or plate-like inorganic or organic filler.
  • the fibrous filler examples include glass fiber, milled glass fiber, carbon fiber, asbestos fiber, silica fiber, silica-alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, titanic acid.
  • Silica fiber such as potassium fiber, wollastonite, magnesium sulfate fiber, aluminum borate fiber, inorganic fibrous material such as metal (for example, stainless steel, aluminum, titanium, copper, brass, etc.); polyamide resin , High melting point organic fibrous materials such as fluororesin, polyester resin, and acrylic resin.
  • a particularly typical fibrous filler is glass fiber.
  • the particulate filler examples include metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony trioxide, and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metals such as calcium sulfate and barium sulfate Sulfates of carbon black, graphite, silica, quartz powder, glass beads, glass balloons, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite, etc., ferrite, Examples thereof include silicon carbide, silicon nitride, boron nitride, and various metal powders.
  • metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony trioxide, and alumina
  • metal carbonates such as calcium carbonate and magnesium carbonate
  • metals such as calcium sulfate and barium sulfate Sulfates of carbon black, graphite, silica, quartz powder, glass beads, glass balloons, glass powder, calcium ox
  • Examples of the plate-like filler include mica, glass flakes, talc, and various metal foils.
  • ND particles exhibit the effect of capturing peroxy radicals generated in the liquid crystal polymer. Since the composition of the present invention contains ND particles having the above-mentioned characteristics, an increase in radical generation amount (or peroxy radical generation amount) is suppressed by capturing peroxy radicals in ND particles even in a high temperature environment. In addition, the toughness of the liquid crystal polymer is reduced due to oxidative degradation due to the generated peroxy radicals, and embrittlement can be prevented, and yellowing due to oxidative degradation can be suppressed and the hue can be maintained well.
  • the radical generation amount at 25 ° C. of the composition of the present invention measured by electron spin resonance (ESR) is, for example, 2 ⁇ 10 16 to 2 ⁇ 10 18 spins / g, preferably 1 ⁇ 10 17 to 10 ⁇ . 10 17 spins / g, particularly preferably 2 ⁇ 10 17 to 5 ⁇ 10 17 spins / g.
  • the radical generation amount at 320 ° C. of the composition of the present invention measured by electron spin resonance (ESR) is, for example, 2 ⁇ 10 16 to 2 ⁇ 10 18 spins / g, preferably 5 ⁇ 10 16 to 10 ⁇ . 10 17 spins / g, particularly preferably 1 ⁇ 10 17 to 5 ⁇ 10 17 spins / g.
  • the radical generation amount at 400 ° C. of the composition of the present invention measured by electron spin resonance (ESR) is, for example, 2 ⁇ 10 16 to 2 ⁇ 10 18 spins / g, preferably 1 ⁇ 10 17 to 10 ⁇ . 10 17 spins / g, particularly preferably 2 ⁇ 10 17 to 10 ⁇ 10 17 spins / g.
  • the radical generation amount of the composition of the present invention exceeds the above range, it is difficult to prevent oxidative deterioration of the liquid crystal polymer due to peroxy radicals, so that it does not adversely affect melt moldability and polymer mechanical properties.
  • a peroxy radical scavenger may be added.
  • the radical generation amount is below the above range, the lifetime of the peroxy radical is short, and the oxidation reaction derived from oxygen becomes active, so that the physical properties of the obtained solidified product are deteriorated (for example, toughness is reduced and embrittled) Etc.).
  • the composition of the present invention exhibits the effect of capturing peroxy radicals generated in the liquid crystal polymer by the ND particles. Therefore, even when exposed to a high temperature environment, an increase in the amount of radicals that cause oxidative degradation of the liquid crystal polymer is suppressed.
  • the radical generation amount at 400 ° C. measured by electron spin resonance (ESR) is, for example, 3.0 times or less, preferably 2.5 times or less, particularly preferably 2.2 times the radical generation amount at 25 ° C. It is as follows. If the increase in the amount of radical generation exceeds the above range, the radical scavenging effect by the ND particles is insufficient (peroxy radical stabilization is insufficient), and the effect of preventing oxidative degradation of the liquid crystal polymer is difficult to obtain. Tend.
  • the composition of the present invention contains ND particles having an effect of scavenging peroxy radicals, it has excellent heat resistance, can be prevented from oxidative deterioration even when exposed to a high temperature environment, and has a temperature rising rate of 10 ° C./min.
  • the weight reduction rate when the temperature is raised from 50 ° C. to 370 ° C. (in air) is, for example, 2.5% by weight or less, preferably less than 2.0% by weight, particularly preferably 1.8% by weight or less. .
  • the composition of the present invention contains ND particles having excellent heat resistance and antioxidation effect together with the liquid crystal polymer, the composition is heated at a temperature at which the liquid crystal polymer contained in the composition melts.
  • the ND particles can exhibit an excellent antioxidant effect (or radical scavenging effect) without being decomposed, and exhibit the effect of scavenging radicals generated in the liquid crystal polymer. Thereby, the oxidative deterioration of the liquid crystal polymer due to radicals can be prevented, and yellowing of the liquid crystal polymer can be suppressed.
  • composition of the present invention can be used, for example, as a printed circuit board mounting component, a connector / bobbin / optical pickup component case, a micromotor component or other electric / electronic component material; a compressor component, a shock absorber component or other automotive component material. It can be preferably used.
  • the molded product of the present invention comprises a solidified product of the above composition.
  • the molded body of the present invention can be produced, for example, by filling the melt of the above composition into a mold having a concave portion having a reverse shape of a desired shape, and then cooling to solidify the above composition. it can.
  • the above composition is melted by heating at a temperature equal to or higher than the melting point or softening point of the liquid crystal polymer contained therein.
  • the composition is solidified by cooling to a temperature lower than the melting point or softening point of the liquid crystal polymer contained therein to form a solidified product.
  • the above composition can be molded by, for example, a melt molding method such as an injection molding method or an extrusion injection molding method.
  • the molded product thus obtained has a good hue and excellent appearance. Moreover, it is excellent in heat resistance, and it can suppress the fall of mechanical characteristics (toughness etc.) over a long period of time at the temperature lower than melting
  • the molded article of the present invention is suitable as, for example, printed circuit board mounting parts, connector / bobbin / optical pickup parts cases, electric / electronic parts such as micro motor parts, automobile parts such as compressor parts, shock absorber parts, etc. Can be used.
  • the antioxidant of the present invention is characterized by containing ND particles (preferably, the above-mentioned ND particles).
  • the antioxidant of the present invention can be suitably used as an antioxidant for thermoplastic resins.
  • the antioxidant of the present invention is excellent in heat resistance, and the 5% weight loss temperature measured at a heating rate of 10 ° C./min (in air) is, for example, 450 ° C. or higher (eg, 450 to 600 ° C.), preferably 500 ° C. That's it.
  • the 5% weight loss temperature can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
  • the antioxidant of the present invention is excellent in heat resistance, it has a high melting point (or softening temperature) of 250 ° C. or higher (eg 250 to 550 ° C.), preferably 300 ° C. or higher, particularly preferably 320 ° C. or higher. It can be used as an antioxidant for resins.
  • an antioxidant for a liquid crystal polymer (particularly preferably a liquid crystal polyester and / or a liquid crystal polyester amide) among thermoplastic resins. It can be suitably used as an agent.
  • the liquid crystal polymer undergoes oxidative degradation due to the decomposition of the ester bond or amide bond site by radicals.
  • the ND particles capture peroxy radicals, thereby allowing the ester bond and the liquid crystal polymer to bond with each other. This is because oxidative degradation of the amide bond site is suppressed and stabilized.
  • the antioxidant of the present invention may contain other components in addition to the ND particles, but the proportion of the ND particles in the total amount of the antioxidant is, for example, 60% by weight or more, preferably 70% by weight or more. Particularly preferably, it is 80% by weight or more, and most preferably 90% by weight or more. The upper limit is 100% by weight. When content of ND particle
  • Preparation Example 1 (Preparation of liquid crystal polymer (LCP1)) After the following raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at that temperature for 1 hour. Thereafter, the temperature is further raised to 325 ° C. over 3.5 hours, and then reduced to 5 Torr (ie, 667 Pa) over 20 minutes while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Melt polymerization was performed.
  • LiCP1 liquid crystal polymer
  • the obtained liquid crystal polymer had a melting point of 280 ° C. and a melt viscosity at 300 ° C. of 44.0 Pa ⁇ s.
  • HBA 4-hydroxybenzoic acid
  • HNA 2-Hydroxy-6-naphthoic acid
  • Metal catalyst (potassium acetate catalyst); 165 mg Acylating agent (acetic anhydride); 1714 g
  • Preparation Example 2 (Preparation of liquid crystal polymer (LCP2)) After the following raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at that temperature for 1 hour. Thereafter, the temperature is further increased to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 15 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed.
  • LCP2 liquid crystal polymer
  • the stirring torque reaches a predetermined value, nitrogen is introduced to change from the reduced pressure state to the normal pressure state, the liquid crystal polymer is discharged from the lower part of the polymerization vessel, the strand is pelletized, and the pellet-like liquid crystal polymer is removed. Obtained.
  • the obtained pellet-like liquid crystal polymer was further heat-treated at 300 ° C. for 2 hours under a nitrogen stream.
  • the obtained liquid crystal polymer had a melting point of 336 ° C. and a melt viscosity at 350 ° C. of 19.0 Pa ⁇ s.
  • HBA 4-hydroxybenzoic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • TA Terephthalic acid
  • BP 4,4′-dihydroxybiphenyl
  • APAP 4-acetoxyaminophenol
  • 126 g 5 mol%) 110 mg of metal catalyst (potassium acetate catalyst)
  • Acylating agent acetic anhydride
  • Preparation Example 3 (Preparation of liquid crystal polymer (LCP3)) After the following raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at that temperature for 1 hour. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 30 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed.
  • LCP3 liquid crystal polymer
  • the stirring torque reaches a predetermined value, nitrogen is introduced to change from the reduced pressure state to the normal pressure state, the liquid crystal polymer is discharged from the lower part of the polymerization vessel, the strand is pelletized, and the pellet-like liquid crystal polymer is removed. Obtained.
  • the obtained pellet-like liquid crystal polymer was further heat-treated at 300 ° C. for 8 hours under a nitrogen stream.
  • the obtained liquid crystal polymer had a melting point of 352 ° C. and a melt viscosity at 380 ° C. of 23.0 Pa ⁇ s.
  • HBA 4-hydroxybenzoic acid
  • HNA 2-hydroxy-6-naphthoic acid
  • TA Terephthalic acid
  • BP 4,4′-dihydroxybiphenyl
  • BP 4,4′-dihydroxybiphenyl
  • Metal catalyst potassium acetate catalyst
  • Acylating agent acetic anhydride
  • melt viscosity The melt viscosity of the liquid crystal polymer was measured in accordance with ISO11443 under the following conditions using an orifice having an inner diameter of 1 mm and a length of 20 mm using a capillograph (piston diameter: 10 mm) manufactured by Toyo Seiki Seisakusho. Cylinder temperature: When the liquid crystal polymer is LCP1: 300 ° C When the liquid crystal polymer is LCP2: 350 ° C. When the liquid crystal polymer is LCP3: 380 ° C. Shear rate: 1000 sec -1
  • Example 1 Synthesis of antioxidant (ND1)
  • a molded explosive with an electric detonator attached was placed inside a pressure-resistant container (made of iron, volume: 15 m 3 ) for detonation, and the container was sealed.
  • the electric detonator was detonated, and the explosive was detonated in the container.
  • the container and its interior were cooled by being left at room temperature for 24 hours. After this cooling, the ND particle coarse product adhering to the inner wall of the container (including the ND particle aggregate and soot produced by the above detonation method) is scraped off with a spatula, The product was recovered.
  • the acid treatment was performed on the crude ND particle product obtained by performing the production process as described above a plurality of times. Specifically, a slurry obtained by adding 6 L of 10 wt% hydrochloric acid to 200 g of the ND particle crude product was heated at 85 to 100 ° C. for 1 hour under reflux under normal pressure conditions. It was. After cooling, the solid content (including ND particle aggregates and soot) was washed with water by decantation. The solid content was washed repeatedly with decantation until the pH of the precipitate reached 2 from the low pH side.
  • oxidation treatment was performed. Specifically, 12 L of 98% by weight sulfuric acid aqueous solution and 1 L of 97% by weight nitric acid aqueous solution were added to the precipitate obtained through decantation after acid treatment (including ND particle aggregates) to form a slurry. Thereafter, the slurry was subjected to a heat treatment at 140 to 160 ° C. for 48 hours under reflux under normal pressure conditions. After cooling, the solid content (including ND particle aggregates) was washed with water by decantation. The supernatant liquid at the beginning of water washing was colored, and the solid contents were washed repeatedly by decantation until the supernatant liquid became transparent visually.
  • the 5% weight loss temperature of the ND particle powder (ND1) measured by TG / DTA (simultaneous measurement of differential heat and thermogravimetry) measured at a heating rate of 10 ° C./min (in air) was 523 ° C. It was.
  • Example 2 Synthesis of antioxidant (ND2)
  • ND1 (4.5 g) obtained as described above is left in the core tube of the gas atmosphere furnace and nitrogen gas is continuously passed through the core tube at a flow rate of 1 L / min for 30 minutes.
  • the flow gas was switched from nitrogen to a mixed gas of oxygen and nitrogen (oxygen concentration: 4% by volume), and the mixed gas was continuously passed through the core tube at a flow rate of 1 L / min.
  • the temperature in the furnace was raised to a heating set temperature of 400 ° C.
  • the heating rate was 10 ° C./min from 380 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 380 ° C. to the heating set temperature.
  • the oxygen oxidation process was performed about ND particle powder in a furnace, maintaining the temperature conditions in a furnace at 400 degreeC.
  • the processing time was 3 hours.
  • ND particle powder (ND2) was obtained.
  • the ratio (yield) of the amount of the ND particle powder after the heating oxidation step to the amount of the ND particle powder before being subjected to the heating oxidation step was 96%.
  • FT-IR as shown in FIG. 2, an absorption peak derived from the ketone group (C ⁇ O) in the surface functional group was observed at 1776.44 cm ⁇ 1 . No noticeable absorption peak was observed at 2800 to 3000 cm ⁇ 1 .
  • Example 3 Synthesis of antioxidant (ND3)
  • An ND particle powder (ND3) was obtained in the same manner as in Example 2 except that the heating set temperature in the heating oxidation step was changed to 475 ° C.
  • the rate of temperature increase was 10 ° C./min from 455 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 455 ° C. to the heating set temperature.
  • the ratio (yield) of the amount of the ND particle powder after the heating oxidation step to the amount of the ND particle powder before being subjected to the heating oxidation step was 70%.
  • FT-IR as shown in FIG. 3, an absorption peak derived from a ketone group (C ⁇ O) in the surface functional group was observed in the vicinity of 1800 cm ⁇ 1 . No noticeable absorption peak was observed at 2800 to 3000 cm ⁇ 1 .
  • Example 4 Synthesis of antioxidant (ND4)
  • ND1 (4.5 g) obtained in the same manner as in Example 1 was left in the core tube of the gas atmosphere furnace, and nitrogen gas was continuously passed through the core tube at a flow rate of 1 L / min for 30 minutes.
  • the flowing gas was switched from nitrogen to a mixed gas of hydrogen and nitrogen, and the mixed gas was continuously passed through the core tube at a flow rate of 1 L / min.
  • the hydrogen concentration in the mixed gas is 2% by volume.
  • the temperature in the furnace was raised to a heating set temperature of 800 ° C.
  • the heating rate was 10 ° C./min from 780 ° C., which is 20 ° C.
  • ND particle powder (ND4) was obtained.
  • the ratio (yield) of the amount of the ND particle powder after the heat reduction treatment to the amount of the ND particle powder before being subjected to the heat reduction treatment was 93%.
  • FT-IR measurement> A Fourier transform infrared spectrophotometer (trade name “FT-720”, manufactured by HORIBA, Ltd.) and heated vacuum stirring reflection (trade name “Heat Chamber Type—1000 ° C.”, manufactured by ST Japan Co., Ltd.) ) was used to measure. In order to remove adsorbed water of ND particles, FT-IR measurement was performed after heating at 150 ° C. for 1 minute under a vacuum degree of 2 ⁇ 10 ⁇ 3 Pa.
  • Measuring device JES-FE3T (manufactured by JEOL Ltd.) Attached device: High temperature cavity (manufactured by JEOL Ltd.) Measurement conditions Measurement temperature: Room temperature to set temperature Central magnetic field: Near 3278G Magnetic field sweep range: 500G Modulation: 100kHz, 1G Microwave: 9.21 GHz, 1 mW Sweep time: 120s x 1time Time constant: 100 ms Number of data points: 4095 points Cavity: TE011, cylindrical type
  • the signal intensity of the localized spin is proportional to the inverse of absolute temperature (1 / T)
  • the signal intensity at each temperature is converted to the signal intensity at room temperature and compared with the signal intensity of the standard sample measured at room temperature. The number of unpaired electrons was calculated.
  • composition of the present invention suppresses an increase in the amount of radical generation due to heat and suppresses oxidative degradation of the liquid crystal polymer.
  • the obtained composition was molded under the following molding conditions using a molding machine (trade name “TR-100EH”, manufactured by Sodick Co., Ltd.) to obtain a molded body of 50 mm ⁇ 5 mm ⁇ 0.8 mm.
  • a molding machine trade name “TR-100EH”, manufactured by Sodick Co., Ltd.
  • the molded body before and after the heat aging test is subjected to a three-point bending test under the following test conditions using a Tensilon universal testing machine (trade name “RTC-1325A”, manufactured by Orientec Co., Ltd.).
  • the bending strain (%) until the molded body broke was calculated from the following formula (1), and the toughness retention was calculated from the following formula (2).
  • Breaking bending strain (%) 600 ⁇ [deflection (mm)] ⁇ [test specimen thickness (mm)] / [distance between fulcrums (mm)] (1)
  • Toughness retention (%) [Bending bending strain at 2000 hours of heat aging (%)] / [Bending bending strain at 0 hours of heat aging (%)] ⁇ 100 (2)
  • Test speed 1mm / min Distance between fulcrums: 12.8mm Indenter radius: 0.5 mm Support base radius: 2mm
  • the maximum peak of 1700 ⁇ 1850 cm -1 is greater than the maximum peak of 2800 ⁇ 3000cm -1, [1] ⁇ [9] The composition as described in any one of these.
  • a radical generation amount at 25 ° C. measured by an electron spin resonance method is 2 ⁇ 10 16 to 2 ⁇ 10 18 spins / g. object.
  • the radical generation amount at 400 ° C. measured by an electron spin resonance method is 3.0 times or less the radical generation amount at 25 ° C., according to any one of [1] to [12] Composition.
  • Any of [1] to [13], wherein the weight loss rate when heated from 50 ° C. to 370 ° C. at a temperature rising rate of 10 ° C./min in air is 2.5% by weight or less.
  • a molded article comprising a solidified product of the composition according to any one of [1] to [14].
  • An antioxidant for thermoplastic resin comprising nanodiamond particles.
  • thermoplastic resins as described in any one of these.
  • the antioxidant for thermoplastic resins according to any one of [16] to [20] which is an antioxidant for thermoplastic resins having a melting point or softening temperature of 250 ° C. or higher.
  • thermoplastic resin according to any one of [16] to [21], wherein a 5% weight loss temperature measured at a heating rate of 10 ° C./min (in air) is 450 ° C. or higher. Inhibitor.
  • the maximum peak of 1700 ⁇ 1850 cm -1 it is greater than the maximum peak of 2800 ⁇ 3000cm -1, [24] ⁇
  • thermoplastic resins according to any one of [24] to [28] wherein the nanodiamond particles are detonated nanodiamond particles.
  • the median diameter of the nanodiamond particles is 10 nm or less.
  • the nanodiamond particles are nanodiamond particles having a carbonyl group on the surface.
  • thermoplastic resins In the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ⁇ 1850 cm -1 it is greater than the maximum peak of 2800 ⁇ 3000cm -1, [24] ⁇ [31] Use as an antioxidant for thermoplastic resins according to any one of the above. [33] A method for producing an antioxidant for thermoplastic resin, comprising producing an antioxidant for thermoplastic resin using nanodiamond particles.

Abstract

Provided is a composition containing a liquid crystal polymer and an antioxidant having excellent heat resistance. This composition contains: at least one type of liquid crystal polymer selected from between a liquid crystal polyester and a liquid crystal polyesteramide; and diamond nanoparticles at quantities whereby the proportion of the diamond nanoparticles is 0.001-5 parts by weight relative to 100 parts by weight of the liquid crystal polymer. The liquid crystal polymer preferably has the constitution shown below. Relative to all constituent units that constitute the liquid crystal polymer, the content of constituent units represented by formula (I) is 50-100 mol%, the content of constituent units represented by formula (II) is 0-25 mol%, and the content of constituent units represented by formula (III) is 0-25 mol%.

Description

組成物Composition
 本発明は、液晶ポリマーとナノダイヤモンド粒子を含む組成物に関する。本願は、2018年6月13日に日本に出願した、特願2018-113023号の優先権を主張し、その内容をここに援用する。 The present invention relates to a composition comprising a liquid crystal polymer and nanodiamond particles. This application claims the priority of Japanese Patent Application No. 2018-1113023 for which it applied to Japan on June 13, 2018, and uses the content here.
 樹脂は熱や光に曝されることにより酸化劣化して、脆化したり、黄変したりすることが問題である。それを防止するため、樹脂に酸化防止剤を添加することが行われている。例えば、特許文献1には、熱可塑性エラストマーと酸化防止剤とを含む耐熱熱可塑性組成物が記載され、前記酸化防止剤として、芳香族アミン系酸化防止剤、ヒンダートフェノール系酸化防止剤、イオウ系酸化防止剤、リン系酸化防止剤等を使用できることが記載されている。 The problem is that the resin is oxidized and deteriorated by exposure to heat and light, and it becomes brittle or yellowed. In order to prevent this, an antioxidant is added to the resin. For example, Patent Document 1 describes a heat-resistant thermoplastic composition containing a thermoplastic elastomer and an antioxidant. As the antioxidant, an aromatic amine-based antioxidant, a hindered phenol-based antioxidant, a sulfur It describes that a system antioxidant, a phosphorus antioxidant, etc. can be used.
 一方、液晶ポリマーは融点が300℃以上と高く、高温環境下(例えば150℃以上、300℃未満の高温環境下)でも形状を安定的に維持することができる(例えば、高温環境下でも歪みの発生を抑制して、形状を精度良く維持することができる)。すなわち、耐熱性に優れる。 On the other hand, the liquid crystal polymer has a high melting point of 300 ° C. or higher, and can stably maintain its shape even in a high temperature environment (for example, a high temperature environment of 150 ° C. or higher and lower than 300 ° C.) It is possible to suppress the occurrence and maintain the shape with high accuracy). That is, it is excellent in heat resistance.
 そして、液晶ポリマーを成形するには、液晶ポリマーの融点以上の温度で加熱することが必要であるが、融点以上の温度で加熱することによって液晶ポリマーが酸化劣化し易いことが問題であった。これは、液晶ポリマーに酸化防止剤を添加しても、成形の際の高温加熱によって酸化防止剤が揮発若しくは熱分解してしまい、所期効果が得られないためである。 Further, in order to mold the liquid crystal polymer, it is necessary to heat at a temperature higher than the melting point of the liquid crystal polymer. However, there is a problem that the liquid crystal polymer is easily oxidized and deteriorated by heating at a temperature higher than the melting point. This is because even if an antioxidant is added to the liquid crystal polymer, the antioxidant is volatilized or thermally decomposed by high-temperature heating during molding, and the desired effect cannot be obtained.
特開2011-116856号公報JP 2011-116856 A
 従って、本発明の目的は、液晶ポリマーと耐熱性に優れた酸化防止剤とを含む組成物を提供することにある。
 本発明の他の目的は、液晶ポリマーの成形温度以上の温度に耐熱性を有する酸化防止剤を提供することにある。
Accordingly, an object of the present invention is to provide a composition comprising a liquid crystal polymer and an antioxidant having excellent heat resistance.
Another object of the present invention is to provide an antioxidant having heat resistance at a temperature equal to or higher than the molding temperature of the liquid crystal polymer.
 本発明者等は上記課題を解決するため鋭意検討した結果、ナノダイヤモンド粒子は耐熱性に優れ、酸素雰囲気下において400℃まで加熱しても揮発したり分解したりすることがないこと、及び、ナノダイヤモンド粒子を液晶ポリマーに添加すると、ナノダイヤモンド粒子がパーオキシラジカルをトラップすることにより、高温環境下における液晶ポリマーの酸化劣化を防止する効果が得られることを見いだした。本発明はこれらの知見に基づいて完成させたものである。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have excellent heat resistance and do not volatilize or decompose even when heated to 400 ° C. in an oxygen atmosphere. It has been found that when nanodiamond particles are added to a liquid crystal polymer, the nanodiamond particles trap peroxy radicals, thereby preventing oxidative degradation of the liquid crystal polymer in a high temperature environment. The present invention has been completed based on these findings.
 すなわち、本発明は液晶ポリエステル及び液晶ポリエステルアミドから選択される少なくとも1種の液晶ポリマーと、ナノダイヤモンド粒子とを、前記液晶ポリマー100重量部に対してナノダイヤモンド粒子を0.001~5重量部の割合で含有する組成物を提供する。 That is, in the present invention, at least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide and nanodiamond particles are added in an amount of 0.001 to 5 parts by weight of nanodiamond particles with respect to 100 parts by weight of the liquid crystal polymer. Compositions containing in proportions are provided.
 本発明は、また、前記液晶ポリマーが下記構成を有する前記組成物を提供する。
液晶ポリマーを構成する全構成単位における、
下記式(I)で示される構成単位の含有量が50~100モル%、
下記式(II)で示される構成単位の含有量が0~25モル%、
下記式(III)で示される構成単位の含有量が0~25モル%である
Figure JPOXMLDOC01-appb-C000002
(式中、Ar1~Ar3は同一又は異なって、ハロゲン原子、アルキル基、及びアリール基から選択される少なくとも1種の置換基を有していてもよい、フェニレン基、ナフチレン基、又はビフェニリレン基を示す。X、Yは、同一又は異なって、-O-、又は-NH-を示す)
The present invention also provides the composition, wherein the liquid crystal polymer has the following constitution.
In all structural units constituting the liquid crystal polymer,
The content of the structural unit represented by the following formula (I) is 50 to 100 mol%,
The content of the structural unit represented by the following formula (II) is 0 to 25 mol%,
The content of the structural unit represented by the following formula (III) is 0 to 25 mol%
Figure JPOXMLDOC01-appb-C000002
(Wherein Ar 1 to Ar 3 are the same or different and may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene) And X and Y are the same or different and represent —O— or —NH—.
 本発明は、また、ナノダイヤモンド粒子が爆轟法ナノダイヤモンド粒子である前記組成物を提供する。 The present invention also provides the composition, wherein the nanodiamond particles are detonation nanodiamond particles.
 本発明は、また、ナノダイヤモンド粒子のフーリエ変換赤外分光光度計による赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピークが、2800~3000cm-1の最大ピークよりも高い前記組成物を提供する。 The present invention is also in the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ~ 1850 cm -1 is provided a higher than the maximum peak of 2800 ~ 3000 cm -1 wherein the composition To do.
 本発明は、また、電子スピン共鳴法により測定される、320℃におけるラジカル発生量が2×1016~2×1018spins/gである前記組成物を提供する。 The present invention also provides the composition, wherein the amount of radicals generated at 320 ° C. measured by electron spin resonance is 2 × 10 16 to 2 × 10 18 spins / g.
 本発明は、また、電子スピン共鳴法により測定される、400℃におけるラジカル発生量が、25℃におけるラジカル発生量の3.0倍以下である前記組成物を提供する。 The present invention also provides the composition, wherein the radical generation amount at 400 ° C. measured by an electron spin resonance method is not more than 3.0 times the radical generation amount at 25 ° C.
 本発明は、また、前記組成物の固化物から成る成形体を提供する。 The present invention also provides a molded body comprising a solidified product of the composition.
 本発明は、また、ナノダイヤモンド粒子を含む熱可塑性樹脂用酸化防止剤を提供する。 The present invention also provides an antioxidant for thermoplastic resin containing nanodiamond particles.
 本発明は、また、昇温速度10℃/分(空気中)で測定される5%重量減少温度が450℃以上である前記熱可塑性樹脂用酸化防止剤を提供する。 The present invention also provides the antioxidant for a thermoplastic resin, wherein the 5% weight reduction temperature measured at a heating rate of 10 ° C./min (in air) is 450 ° C. or higher.
 本発明の組成物は液晶ポリマーと共にナノダイヤモンド粒子とを含み、ナノダイヤモンド粒子が液晶ポリマーの酸化劣化の原因となるパーオキシラジカルを捕捉する作用を発揮する。そのため、本発明の組成物を高温で加熱しても、液晶ポリマーが酸化劣化するのを抑制することができ、酸化劣化により液晶ポリマーの靱性が低下し、脆化するのを防止することができ、酸化劣化による黄変を抑制して色相を良好に保持することができる。
 また、本発明の組成物の溶融物は流動性に優れると共に、固化に伴う収縮が小さく、反りの発生を抑制することができる。そのため、所望の形状の成形体を精度良く製造することができる。
 さらに、本発明の組成物の成形体は、高温環境下(例えば150℃以上、400℃未満の高温環境下)でも物性の低下(例えば、靱性低下、脆化等)を長期に亘って抑制することができる。従って、高温での長期使用に耐える。
 本発明の組成物は上記特性を備えるため、例えば、プリント基板実装用部品、コネクタ・ボビン・光ピックアップ部品のケース、マイクロモーター部品などの電気・電子部品材料;コンプレッサー部品、ショックアブソーバー部品等の自動車部品材料として好適に使用することができる。
The composition of the present invention contains nanodiamond particles together with a liquid crystal polymer, and the nanodiamond particles exhibit an action of capturing peroxy radicals that cause oxidative deterioration of the liquid crystal polymer. Therefore, even when the composition of the present invention is heated at a high temperature, the liquid crystal polymer can be prevented from being oxidatively deteriorated, and the toughness of the liquid crystal polymer can be reduced due to the oxidative deterioration and can be prevented from becoming brittle. In addition, yellowing due to oxidative degradation can be suppressed, and the hue can be maintained well.
In addition, the melt of the composition of the present invention is excellent in fluidity, has little shrinkage due to solidification, and can suppress the occurrence of warpage. Therefore, a molded body having a desired shape can be manufactured with high accuracy.
Furthermore, the molded article of the composition of the present invention suppresses deterioration of physical properties (for example, toughness, embrittlement, etc.) over a long period of time even in a high temperature environment (for example, a high temperature environment of 150 ° C. or higher and lower than 400 ° C.). be able to. Therefore, it withstands long-term use at high temperatures.
Since the composition of the present invention has the above-mentioned characteristics, for example, printed circuit board mounting parts, connectors / bobbins / optical pickup parts cases, micromotor parts and other electric / electronic parts materials; compressor parts, shock absorber parts and other automobiles It can be suitably used as a component material.
 また、本発明の酸化防止剤は、酸化防止効果(若しくは、パーオキシラジカル捕捉効果)と耐熱性とを兼ね備えるナノダイヤモンド粒子を主成分として含有する。そのため、成形温度が300℃以上となるような高融点熱可塑性樹脂の酸化防止剤(若しくは、パーオキシラジカル捕捉剤)として好適に使用することができる。 Further, the antioxidant of the present invention contains, as a main component, nanodiamond particles having both an antioxidant effect (or peroxy radical scavenging effect) and heat resistance. Therefore, it can be suitably used as an antioxidant (or a peroxy radical scavenger) for a high melting point thermoplastic resin having a molding temperature of 300 ° C. or higher.
実施例1で得られたND1のFT-IRデータを示す図である。4 is a diagram showing FT-IR data of ND1 obtained in Example 1. FIG. 実施例2で得られたND2のFT-IRデータを示す図である。6 is a diagram showing FT-IR data of ND2 obtained in Example 2. FIG. 実施例3で得られたND3のFT-IRデータを示す図である。6 is a diagram showing FT-IR data of ND3 obtained in Example 3. FIG. 実施例4で得られたND4のFT-IRデータを示す図である。6 is a diagram showing FT-IR data of ND4 obtained in Example 4. FIG. ESR測定により求めた、実施例8及び比較例1で得られた組成物の、温度とラジカル発生量の相関図である。It is a correlation diagram of temperature and the amount of radical generation of the composition obtained in Example 8 and Comparative Example 1 obtained by ESR measurement.
 [組成物]
 本発明の組成物は、液晶ポリエステル及び液晶ポリエステルアミドから選択される少なくとも1種の液晶ポリマーと、ナノダイヤモンド粒子(以後、「ND粒子」と称する場合がある)とを、前記液晶ポリマー100重量部に対してナノダイヤモンド粒子を0.001~5重量部の割合で含有する。
[Composition]
The composition of the present invention comprises at least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide, and nanodiamond particles (hereinafter sometimes referred to as “ND particles”) in 100 parts by weight of the liquid crystal polymer. The nanodiamond particles are contained at a ratio of 0.001 to 5 parts by weight with respect to the above.
 (液晶ポリマー)
 本発明における液晶ポリマーは、光学異方性溶融相を形成し得る性質を有する溶融加工性ポリマーを指す。異方性溶融相の性質は、直交偏光子を利用した慣用の偏光検査法により確認することができる。より具体的には、異方性溶融相の確認は、Leitz偏光顕微鏡を使用し、Leitzホットステージに載せた溶融試料を窒素雰囲気下で40倍の倍率で観察することにより実施できる。本発明の液晶ポリマーは直交偏光子の間で検査したときに、たとえ溶融静止状態であっても偏光は通常透過し、光学的に異方性を示す。
(Liquid crystal polymer)
The liquid crystal polymer in the present invention refers to a melt processable polymer having a property capable of forming an optically anisotropic melt phase. The property of the anisotropic molten phase can be confirmed by a conventional polarization inspection method using an orthogonal polarizer. More specifically, the anisotropic molten phase can be confirmed by using a Leitz polarizing microscope and observing a molten sample placed on a Leitz hot stage under a nitrogen atmosphere at a magnification of 40 times. When the liquid crystal polymer of the present invention is inspected between crossed polarizers, the polarized light is usually transmitted and optically anisotropic even if it is in a molten stationary state.
 本発明における液晶ポリマーは、液晶ポリエステル及び液晶ポリエステルアミドから選択される少なくとも1種の液晶ポリマーである。 The liquid crystal polymer in the present invention is at least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide.
 前記液晶ポリマーとしては、例えば、下記式(I)示される構成単位を少なくとも含有し、下記式(II)で示される構成単位及び/又は下記式(III)で示される構成単位を含んでいてもよい液晶ポリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、Ar1~Ar3は同一又は異なって、ハロゲン原子、アルキル基、及びアリール基から選択される少なくとも1種の置換基を有していてもよい、フェニレン基、ナフチレン基、又はビフェニリレン基を示す。X、Yは、同一又は異なって、-O-、又は-NH-を示す)
Examples of the liquid crystal polymer include at least a structural unit represented by the following formula (I) and may include a structural unit represented by the following formula (II) and / or a structural unit represented by the following formula (III). A good liquid crystal polymer is mentioned.
Figure JPOXMLDOC01-appb-C000003
(Wherein Ar 1 to Ar 3 are the same or different and may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene) And X and Y are the same or different and represent —O— or —NH—.
 前記式中のAr1~Ar3が置換基として有していてもよいハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 Examples of the halogen atom that Ar 1 to Ar 3 in the above formula may have as a substituent include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 置換基として有していてもよいアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基等の炭素数1~3のアルキル基が挙げられる。 Examples of the alkyl group that may have as a substituent include alkyl groups having 1 to 3 carbon atoms such as a methyl group, an ethyl group, a propyl group, and an isopropyl group.
 置換基として有していてもよいアリール基としては、例えば、フェニル基、ナフチル基等の炭素数6~14(とりわけ、炭素数6~10)のアリール基が挙げられる。 Examples of the aryl group that may be present as a substituent include aryl groups having 6 to 14 carbon atoms (particularly 6 to 10 carbon atoms) such as a phenyl group and a naphthyl group.
 液晶ポリマーを構成する全構成単位における、
式(I)で示される構成単位の含有量は、例えば50~100モル%である。
式(II)で示される構成単位の含有量は、例えば0~25モル%である。
式(III)で示される構成単位の含有量は、例えば0~25モル%である。
In all structural units constituting the liquid crystal polymer,
The content of the structural unit represented by the formula (I) is, for example, 50 to 100 mol%.
The content of the structural unit represented by the formula (II) is, for example, 0 to 25 mol%.
The content of the structural unit represented by the formula (III) is, for example, 0 to 25 mol%.
 液晶ポリマーを構成する全構成単位に対して上記式(I)で表される構成単位と上記式(II)で表される構成単位と上記式(III)で表される構成単位の含有量(合計含有量)は、例えば70モル%以上であり、好ましくは80モル%以上、特に好ましくは90モル%以上である。 Content of the structural unit represented by the above formula (I), the structural unit represented by the above formula (II), and the structural unit represented by the above formula (III) with respect to all the structural units constituting the liquid crystal polymer ( The total content) is, for example, 70 mol% or more, preferably 80 mol% or more, particularly preferably 90 mol% or more.
 また、前記液晶ポリマーは、下記式(VI)で示される構成単位の含有量が、液晶ポリマーを構成する全構成単位の例えば30モル%以下であることが好ましく、より好ましくは20モル%以下、特に好ましくは10モル%以下、最も好ましくは5モル%以下、とりわけ好ましくは1モル%以下である。下記式(VI)で示される構成単位の含有量が上記範囲を上回ると、ND粒子による酸化防止効果が得られにくくなる傾向がある。
Figure JPOXMLDOC01-appb-C000004
(式中、Ar4~Ar6は同一又は異なって、ハロゲン原子、アルキル基、及びアリール基から選択される少なくとも1種の置換基を有していてもよい、フェニレン基、ナフチレン基、又はビフェニリレン基を示す)
Further, in the liquid crystal polymer, the content of the structural unit represented by the following formula (VI) is preferably, for example, 30 mol% or less, more preferably 20 mol% or less, based on all the structural units constituting the liquid crystal polymer. Especially preferably, it is 10 mol% or less, Most preferably, it is 5 mol% or less, Most preferably, it is 1 mol% or less. When content of the structural unit shown by following formula (VI) exceeds the said range, there exists a tendency for the antioxidant effect by ND particle | grains to become difficult to be acquired.
Figure JPOXMLDOC01-appb-C000004
(Wherein Ar 4 to Ar 6 are the same or different and each may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene) Group)
 液晶ポリマーとしては、より具体的には、下記(1)~(5)の態様が挙げられる。さらに下記構成成分に必要に応じ分子量調整剤を併用してもよい。
(1)主として芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上からなるポリエステル;
(2)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸及びその誘導体の1種又は2種以上と、からなるポリエステル;
(3)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ジカルボン酸及びその誘導体の1種又は2種以上と、
(c)芳香族ジオール及びその誘導体の1種又は2種以上と、からなるポリエステル;
(4)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸及びその誘導体の1種又は2種以上と、からなるポリエステルアミド;
(5)主として
(a)芳香族ヒドロキシカルボン酸及びその誘導体の1種又は2種以上と、
(b)芳香族ヒドロキシアミン、芳香族ジアミン、及びそれらの誘導体の1種又は2種以上と、
(c)芳香族ジカルボン酸及びその誘導体の1種又は2種以上と、
(d)芳香族ジオール及びその誘導体の1種又は2種以上と、からなるポリエステルアミド
More specifically, examples of the liquid crystal polymer include the following embodiments (1) to (5). Furthermore, you may use a molecular weight modifier together with the following structural component as needed.
(1) A polyester mainly composed of one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(2) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(B) a polyester comprising one or more aromatic dicarboxylic acids and derivatives thereof;
(3) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(B) one or more of aromatic dicarboxylic acids and derivatives thereof;
(C) a polyester comprising one or more aromatic diols and derivatives thereof;
(4) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(B) one or more of aromatic hydroxyamine, aromatic diamine, and derivatives thereof;
(C) a polyesteramide comprising an aromatic dicarboxylic acid and one or more of its derivatives;
(5) mainly (a) one or more aromatic hydroxycarboxylic acids and derivatives thereof;
(B) one or more of aromatic hydroxyamine, aromatic diamine, and derivatives thereof;
(C) one or more aromatic dicarboxylic acids and derivatives thereof;
(D) Polyesteramide comprising one or more aromatic diols and derivatives thereof
 液晶ポリマーを構成するモノマーの好ましい具体例としては、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸等の芳香族ヒドロキシカルボン酸;2,6-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、4,4’-ジヒドロキシビフェニル、ハイドロキノン、レゾルシン等の芳香族ジオール;テレフタル酸、イソフタル酸、4,4’-ジフェニルジカルボン酸、2,6-ナフタレンジカルボン酸等の芳香族ジカルボン酸;p-アミノフェノール、p-フェニレンジアミン等の芳香族アミン類が挙げられる。 Preferable specific examples of the monomer constituting the liquid crystal polymer include aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and 6-hydroxy-2-naphthoic acid; 2,6-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 4 Aromatic diols such as, 4'-dihydroxybiphenyl, hydroquinone, resorcin; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, 4,4'-diphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid; p-aminophenol, and aromatic amines such as p-phenylenediamine.
 液晶ポリマーは、特に限定されず公知の方法で調製することができ、例えば、直接重合法やエステル交換法が挙げられる。前記直接重合法では、上記モノマー(又はモノマー混合物)を、溶融重合、溶液重合、スラリー重合、固相重合法、又はこれらの2種以上の組み合わせ(好ましくは、溶融重合法、又は溶融重合法と固相重合法との組み合わせ)に付すことによって製造することができる。 The liquid crystal polymer is not particularly limited and can be prepared by a known method, and examples thereof include a direct polymerization method and a transesterification method. In the direct polymerization method, the monomer (or monomer mixture) is melt-polymerized, solution-polymerized, slurry-polymerized, solid-phase polymerized, or a combination of two or more of these (preferably, melt-polymerized or melt-polymerized In combination with a solid phase polymerization method).
 直接重合法では、上記モノマーがエステル形成能を有する化合物である場合は、そのまま重合に用いることができるが、上記モノマーがエステル形成能を有さない化合物である場合は、予めアシル化剤(例えば、無水酢酸等の無水カルボン酸)等を用いてエステル形成能を有する誘導体に変性されたものを用いることが好ましい。 In the direct polymerization method, when the monomer is a compound having ester forming ability, it can be used for polymerization as it is, but when the monomer is a compound having no ester forming ability, an acylating agent (for example, It is preferable to use a derivative modified with a derivative having ester-forming ability using carboxylic anhydride such as acetic anhydride).
 上記モノマーの重合は触媒の存在下で行うことが好ましい。前記触媒としては、例えば、金属塩系触媒、有機化合物系触媒等が挙げられる。これらは1種を単独で、又は2種以上を組み合わせて使用することができる。 The polymerization of the monomer is preferably performed in the presence of a catalyst. Examples of the catalyst include metal salt catalysts and organic compound catalysts. These can be used alone or in combination of two or more.
 前記金属塩系触媒としては、例えば、酢酸カリウム、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、三酸化アンチモン、トリス(2,4-ペンタンジオナト)コバルト(III)等が挙げられる。 Examples of the metal salt catalyst include potassium acetate, magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, antimony trioxide, tris (2,4-pentanedionato) cobalt (III), etc. Is mentioned.
 前記有機化合物系触媒としては、例えば、N-メチルイミダゾール、4-ジメチルアミノピリジン等が挙げられる。 Examples of the organic compound catalyst include N-methylimidazole and 4-dimethylaminopyridine.
 前記触媒の使用量は、モノマー100重量部に対して、例えば0.0001~0.01重量部程度である。 The amount of the catalyst used is, for example, about 0.0001 to 0.01 parts by weight with respect to 100 parts by weight of the monomer.
 上記モノマーの重合温度は、例えば200~400℃である。 The polymerization temperature of the monomer is, for example, 200 to 400 ° C.
 上記モノマーの重合反応時の雰囲気としては反応を阻害しない限り特に限定されず、例えば、空気雰囲気、窒素雰囲気、アルゴン雰囲気等の何れであってもよい。また、上記モノマーの重合反応は、減圧下、常圧下、または加圧下で行うことができる。 The atmosphere during the polymerization reaction of the monomer is not particularly limited as long as the reaction is not inhibited, and may be any of an air atmosphere, a nitrogen atmosphere, an argon atmosphere, and the like. The polymerization reaction of the monomer can be performed under reduced pressure, normal pressure, or increased pressure.
 上記方法で得られた液晶ポリマーは、更に、不活性ガス中で加熱する固相重合により分子量の増加を図ることができる。加熱温度は、例えば230~350℃、好ましくは260~330℃であり、最終到達圧力は例えば10~760Torr(即ち、1330~101080Pa)である。 The liquid crystal polymer obtained by the above method can be further increased in molecular weight by solid phase polymerization heated in an inert gas. The heating temperature is, for example, 230 to 350 ° C., preferably 260 to 330 ° C., and the final ultimate pressure is, for example, 10 to 760 Torr (that is, 1330 to 101080 Pa).
 前記液晶ポリマーの融点若しくは軟化点は、例えば250℃以上、好ましくは270℃以上である。尚、前記液晶ポリマーの融点若しくは軟化点の上限は、例えば400℃である。 The melting point or softening point of the liquid crystal polymer is, for example, 250 ° C. or higher, preferably 270 ° C. or higher. The upper limit of the melting point or softening point of the liquid crystal polymer is 400 ° C., for example.
 前記液晶ポリマーの溶融粘度として、液晶ポリマーの融点若しくは軟化点よりも10~30℃高いシリンダー温度において、せん断速度1000sec-1の条件下で測定した溶融粘度は、例えば5~100Pa・s、好ましくは10~60Pa・s、特に好ましくは15~50Pa・sである。尚、「液晶ポリマーの融点若しくは軟化点よりも10~30℃高いシリンダー温度」とは、液晶ポリマーを、溶融粘度の測定が可能な程度にまで溶融することができるシリンダー温度を意味しており、融点若しくは軟化点よりも何℃高いシリンダー温度とするかは、前記温度範囲内(すなわち、10~30℃の範囲内)において、液晶ポリマーの種類に応じて適宜選択することができる。 As the melt viscosity of the liquid crystal polymer, the melt viscosity measured under conditions of a shear rate of 1000 sec −1 at a cylinder temperature 10 to 30 ° C. higher than the melting point or softening point of the liquid crystal polymer is, for example, 5 to 100 Pa · s, preferably 10 to 60 Pa · s, particularly preferably 15 to 50 Pa · s. The “cylinder temperature 10-30 ° C. higher than the melting point or softening point of the liquid crystal polymer” means a cylinder temperature at which the liquid crystal polymer can be melted to such an extent that the melt viscosity can be measured. The number of degrees C higher than the melting point or softening point can be appropriately selected depending on the type of the liquid crystal polymer within the temperature range (that is, within the range of 10 to 30 ° C.).
 (ナノダイヤモンド粒子)
 ND粒子の一次粒子径(D50、メディアン径)は10nm以下であり、好ましくは8nm以下、特に好ましくは7nm以下、最も好ましくは6nm以下である。ND粒子の粒子径の下限は、例えば2nmである。
(Nanodiamond particles)
The primary particle diameter (D50, median diameter) of ND particles is 10 nm or less, preferably 8 nm or less, particularly preferably 7 nm or less, and most preferably 6 nm or less. The lower limit of the particle size of the ND particles is, for example, 2 nm.
 前記ND粒子は、その表面にカルボニル基(C=O基)を有することが、酸化防止効果(特に、液晶ポリマーの酸化防止効果)に優れる点で好ましい。本発明におけるND粒子は、その表面にカルボニル基以外にも他の官能基(例えば、C-H基等)を有していてもよいが、他の官能基よりもカルボニル基を多く有することが好ましい。 It is preferable that the ND particles have a carbonyl group (C═O group) on the surface in terms of being excellent in an antioxidant effect (particularly, an antioxidant effect of a liquid crystal polymer). The ND particles in the present invention may have other functional groups (for example, C—H groups) in addition to carbonyl groups on the surface, but may have more carbonyl groups than other functional groups. preferable.
 前記ND粒子の表面官能基は、赤外吸収スペクトルによって確認することができる。例えば、赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピーク(例えば、図1中のP1)が、2800~3000cm-1の最大ピーク(例えば、図1中のP2)よりも高い場合(詳細には、1712cm-1付近にC=Oに由来する吸収ピーク、2915cm-1付近にC-Hに由来する吸収ピークが見られ、1712cm-1の吸収ピークが、2915cm-1の吸収ピークよりも高い場合)、そのND粒子は表面官能基としてカルボニル基を他の官能基よりも多く有することが分かる。尚、赤外吸収スペクトルは、FTIR[フーリエ変換赤外分光光度計;FT/IR-4200typeA(日本分光(株)製)]を使用して測定することができる。 The surface functional group of the ND particle can be confirmed by an infrared absorption spectrum. For example, in the infrared absorption spectrum, 1700 tallest peak at ~ 1850 cm -1 (e.g., P1 in Fig. 1), the maximum peak of 2800 ~ 3000 cm -1 (e.g., P2 in Fig. 1) is higher than (details the absorption peak derived from C = O near 1712 cm -1, absorption peaks were observed originating from C-H in the vicinity of 2915 cm -1, absorption peaks of 1712 cm -1 is than the absorption peak of 2915 cm -1 When it is high), it can be seen that the ND particles have more carbonyl groups as surface functional groups than other functional groups. The infrared absorption spectrum can be measured using FTIR [Fourier transform infrared spectrophotometer; FT / IR-4200 type A (manufactured by JASCO Corporation)].
 前記ND粒子は、例えば以下に詳述する爆轟法で製造することができるが、本発明におけるND粒子はこの方法で製造されるものに限定されない。 The ND particles can be produced, for example, by the detonation method described in detail below, but the ND particles in the present invention are not limited to those produced by this method.
 (生成工程)
 成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器の内部に設置し、容器内において大気組成の常圧の気体と使用爆薬とが共存する状態で、容器を密閉する。容器は例えば鉄製で、容器の容積は例えば0.5~40m3である。爆薬としては、トリニトロトルエン(TNT)とシクロトリメチレントリニトロアミンすなわちヘキソーゲン(RDX)との混合物を使用することができる。TNTとRDXの重量比(TNT/RDX)は、例えば40/60~60/40の範囲である。
(Generation process)
A molded explosive with an electric detonator is installed inside a pressure-resistant container for detonation, and the container is sealed in a state where atmospheric pressure gas and atmospheric explosive coexist in the container. . The container is made of, for example, iron, and the volume of the container is, for example, 0.5 to 40 m 3 . As the explosive, a mixture of trinitrotoluene (TNT) and cyclotrimethylenetrinitroamine, ie hexogen (RDX), can be used. The weight ratio of TNT to RDX (TNT / RDX) is, for example, in the range of 40/60 to 60/40.
 生成工程では、次に、電気雷管を起爆させ、容器内で爆薬を爆轟させる。爆轟とは、化学反応に伴う爆発のうち反応の生じる火炎面が音速を超えた高速で移動するものをいう。爆轟の際、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素を原料として、爆発で生じた衝撃波の圧力とエネルギーの作用によってND粒子が生成する。生成したND粒子は、隣接する一次粒子ないし結晶子の間がファンデルワールス力の作用に加えて結晶面間クーロン相互作用が寄与して非常に強固に集成し、凝着体を成す。 In the generation process, the electric detonator is then detonated and the explosive is detonated in the container. Detonation refers to an explosion associated with a chemical reaction in which the reaction flame surface moves at a speed exceeding the speed of sound. At the time of detonation, ND particles are generated by the action of the pressure and energy of the shock wave generated by the explosion, using as a raw material carbon that has been partially incompletely burned by the explosive used. The produced ND particles are aggregated very strongly as a result of coulomb interaction between crystal planes in addition to the action of van der Waals force between adjacent primary particles or crystallites to form an aggregate.
 生成工程では、次に、室温において24時間程度放置して放冷し、容器およびその内部を降温させる。この放冷の後、容器の内壁に付着しているND粒子粗生成物(上述のようにして生成したND粒子の凝着体および煤を含む)をヘラで掻き取り、回収する。以上のような方法によって、ND粒子の粗生成物を得ることができる。 In the production step, the container and the interior thereof are then allowed to cool by allowing to stand at room temperature for about 24 hours and allowing to cool. After this cooling, the ND particle crude product adhering to the inner wall of the container (including the ND particle aggregates and soot generated as described above) is scraped off with a spatula and collected. A crude product of ND particles can be obtained by the method as described above.
 (酸処理工程)
 酸処理工程は、生成工程を経て得られたND粒子の粗生成物に混入する金属性不純物を除去する工程であり、前記ND粒子の粗生成物を水中に分散して得られるND粒子の粗生成物分散液に、酸を添加して前記金属性不純物を酸に溶出させ、その後、金属性不純物が溶出した酸を分離・除去することで、金属性不純物を除去することができる。この酸処理に用いられる酸(特に、強酸)としては鉱酸が好ましく、例えば、塩酸、フッ化水素酸、硫酸、硝酸、王水等が挙げられる。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。酸処理に使用される酸の濃度は例えば1~50重量%である。酸処理温度は例えば70~150℃である。酸処理時間は例えば0.1~24時間である。また、酸処理は、減圧下、常圧下、または加圧下で行うことが可能である。金属性不純物が溶出した酸を分離・除去する方法としては、例えばデカンテーションにより行うことが好ましい。また、デカンテーションの際には、固形分(ND粒子を含む)の水洗を行うことが好ましく、特に、沈殿液のpHが例えば2~3に至るまで、水洗を反復して行うことが好ましい。
(Acid treatment process)
The acid treatment step is a step of removing metallic impurities mixed in the crude product of ND particles obtained through the production step, and the crude product of ND particles obtained by dispersing the crude product of ND particles in water. By adding an acid to the product dispersion to elute the metallic impurities into the acid, and then separating and removing the acid from which the metallic impurities are eluted, the metallic impurities can be removed. As the acid (particularly strong acid) used in the acid treatment, a mineral acid is preferable, and examples thereof include hydrochloric acid, hydrofluoric acid, sulfuric acid, nitric acid, aqua regia and the like. These can be used individually by 1 type or in combination of 2 or more types. The concentration of the acid used for the acid treatment is, for example, 1 to 50% by weight. The acid treatment temperature is, for example, 70 to 150 ° C. The acid treatment time is, for example, 0.1 to 24 hours. The acid treatment can be performed under reduced pressure, normal pressure, or increased pressure. As a method for separating and removing the acid from which the metallic impurities are eluted, it is preferable to carry out, for example, decantation. In decantation, it is preferable to wash the solids (including ND particles) with water, and it is particularly preferable to repeat the water washing until the pH of the precipitate reaches, for example, 2 to 3.
 (酸化処理工程)
 酸化処理工程は、酸化剤を用いてND粒子粗生成物からグラファイトを除去する工程である。爆轟法で得られるND粒子粗生成物にはグラファイト(黒鉛)が含まれるが、このグラファイトは、使用爆薬が部分的に不完全燃焼を起こして遊離した炭素のうちND粒子結晶を形成しなかった炭素に由来する。例えば上記の酸処理を経た後に、水溶媒中で所定の酸化剤を作用させることにより、ND粒子粗生成物からグラファイトを除去することができる。また、酸化剤を作用させることにより、ND粒子表面にカルボキシル基や水酸基などの酸素含有基を導入することができる。
(Oxidation process)
The oxidation treatment step is a step of removing graphite from the ND particle crude product using an oxidizing agent. The crude product of ND particles obtained by the detonation method includes graphite (graphite), but this graphite does not form ND particle crystals out of the carbon released by partial incomplete combustion of the explosive used. Derived from carbon. For example, after passing through the above acid treatment, graphite can be removed from the ND particle crude product by applying a predetermined oxidizing agent in an aqueous solvent. In addition, an oxygen-containing group such as a carboxyl group or a hydroxyl group can be introduced to the surface of the ND particle by causing an oxidant to act.
 この酸化処理に用いられる酸化剤としては、例えば、クロム酸、無水クロム酸、二クロム酸、過マンガン酸、過塩素酸、硝酸、及びこれらの混合物や、これらから選択される少なくとも1種の酸と他の酸(例えば硫酸等)との混酸、及びこれらの塩が挙げられる。本発明においては、なかでも、混酸(特に、硫酸と硝酸との混酸)を使用することが、環境に優しく、且つグラファイトを酸化・除去する作用に優れる点で好ましい。 Examples of the oxidizing agent used in this oxidation treatment include chromic acid, chromic anhydride, dichromic acid, permanganic acid, perchloric acid, nitric acid, and mixtures thereof, and at least one acid selected from these. And mixed acids of these with other acids (for example, sulfuric acid), and salts thereof. In the present invention, it is particularly preferable to use a mixed acid (particularly, a mixed acid of sulfuric acid and nitric acid) because it is environmentally friendly and excellent in oxidizing and removing graphite.
 前記混酸における硫酸と硝酸との混合割合(前者/後者;重量比)は、例えば60/40~95/5であることが、常圧付近の圧力(例えば、0.5~2atm)の下でも、例えば130℃以上(特に好ましくは150℃以上。尚、上限は、例えば200℃)の温度で、効率よくグラファイトを酸化して除去することができる点で好ましい。混合割合の下限値は、好ましくは65/35、特に好ましくは70/30である。また、混合割合の上限値は、好ましくは90/10、特に好ましくは85/15、最も好ましくは80/20である。 The mixing ratio of sulfuric acid and nitric acid in the mixed acid (the former / the latter; weight ratio) is, for example, 60/40 to 95/5, even under a pressure around normal pressure (for example, 0.5 to 2 atm). For example, it is preferable in that graphite can be efficiently oxidized and removed at a temperature of 130 ° C. or higher (particularly preferably 150 ° C. or higher, and the upper limit is, for example, 200 ° C.). The lower limit of the mixing ratio is preferably 65/35, particularly preferably 70/30. The upper limit of the mixing ratio is preferably 90/10, particularly preferably 85/15, and most preferably 80/20.
 混酸における硝酸の割合が上記範囲を上回ると、高沸点を有する硫酸の含有量が少なくなるため、常圧付近の圧力下では、反応温度が例えば120℃以下となり、グラファイトの除去効率が低下する傾向がある。一方、混酸における硝酸の割合が上記範囲を下回ると、グラファイトの酸化に大きく貢献する硝酸の含有量が少なくなるため、グラファイトの除去効率が低下する傾向がある。 When the ratio of nitric acid in the mixed acid exceeds the above range, the content of sulfuric acid having a high boiling point is decreased. Therefore, the reaction temperature becomes, for example, 120 ° C. or less under a pressure near normal pressure, and the graphite removal efficiency tends to decrease. There is. On the other hand, when the ratio of nitric acid in the mixed acid is less than the above range, the content of nitric acid that greatly contributes to the oxidation of graphite is reduced, so that the graphite removal efficiency tends to decrease.
 酸化剤(特に、前記混酸)の使用量は、ND粒子粗生成物1重量部に対して例えば10~50重量部、好ましくは15~40重量部、特に好ましくは20~40重量部である。また、前記混酸中の硫酸の使用量は、ND粒子粗生成物1重量部に対して例えば5~48重量部、好ましくは10~35重量部、特に好ましくは15~30重量部であり、前記混酸中の硝酸の使用量は、ND粒子粗生成物1重量部に対して例えば2~20重量部、好ましくは4~10重量部、特に好ましくは5~8重量部である。 The amount of the oxidizing agent (especially the mixed acid) used is, for example, 10 to 50 parts by weight, preferably 15 to 40 parts by weight, and particularly preferably 20 to 40 parts by weight with respect to 1 part by weight of the ND particle crude product. The amount of sulfuric acid used in the mixed acid is, for example, 5 to 48 parts by weight, preferably 10 to 35 parts by weight, particularly preferably 15 to 30 parts by weight, based on 1 part by weight of the ND particle crude product. The amount of nitric acid used in the mixed acid is, for example, 2 to 20 parts by weight, preferably 4 to 10 parts by weight, particularly preferably 5 to 8 parts by weight, based on 1 part by weight of the ND particle crude product.
 また、酸化剤として前記混酸を使用する場合、混酸と共に触媒を使用しても良い。触媒を使用することにより、グラファイトの除去効率を一層向上することができる。前記触媒としては、例えば、炭酸銅(II)等を挙げることができる。触媒の使用量は、ND粒子粗生成物100重量部に対して例えば0.01~10重量部程度である。 Further, when the mixed acid is used as the oxidizing agent, a catalyst may be used together with the mixed acid. By using a catalyst, the graphite removal efficiency can be further improved. Examples of the catalyst include copper (II) carbonate. The amount of the catalyst used is, for example, about 0.01 to 10 parts by weight with respect to 100 parts by weight of the ND particle crude product.
 酸化処理温度は、例えば100~200℃である。酸化処理時間は、例えば1~24時間である。酸化処理は、減圧下、常圧下、または加圧下で行うことが可能である。 The oxidation treatment temperature is 100 to 200 ° C., for example. The oxidation treatment time is, for example, 1 to 24 hours. The oxidation treatment can be performed under reduced pressure, normal pressure, or increased pressure.
 このような酸化処理の後、例えばデカンテーションにより上澄みを除去することが好ましい。また、デカンテーションの際には、固形分の水洗を行うことが好ましい。水洗当初の上澄み液は着色しているが、上澄み液が目視で透明になるまで、当該固形分の水洗を反復して行うことが好ましい。 After such an oxidation treatment, it is preferable to remove the supernatant by, for example, decantation. In decantation, it is preferable to wash the solids with water. Although the supernatant liquid at the beginning of water washing is colored, it is preferable to repeat the water washing of the solid content until the supernatant liquid becomes transparent visually.
 (乾燥工程)
 本方法では、次に、乾燥工程を設けることが好ましい。例えば、上記工程を経て得られたND粒子含有溶液から噴霧乾燥装置やエバポレーター等を使用して液分を蒸発させた後、これによって生じる残留固形分を乾燥用オーブン内での加熱乾燥によって乾燥させる方法が挙げられる。加熱乾燥温度は、例えば40~150℃である。このような乾燥工程を経ることにより、ND粒子が得られる。
(Drying process)
In this method, it is preferable to provide a drying step next. For example, after the liquid content is evaporated from the ND particle-containing solution obtained through the above steps using a spray drying device, an evaporator, or the like, the resulting solid content is dried by heating and drying in a drying oven. A method is mentioned. The heating and drying temperature is, for example, 40 to 150 ° C. Through such a drying process, ND particles are obtained.
 (加熱酸化工程)
 本方法では、次に、加熱酸化工程を設けることが好ましい。加熱酸化工程は、上記工程を経て得られたND粒子を、酸素を含有する気体の雰囲気下で加熱して酸化することにより、その表面にC=O基を有するND粒子を得る工程である。
(Heat oxidation process)
In this method, it is preferable to provide a heat oxidation step next. The heating oxidation step is a step of obtaining ND particles having C═O groups on the surface thereof by heating and oxidizing the ND particles obtained through the above steps in an atmosphere containing oxygen.
 加熱酸化工程の反応雰囲気は、酸素を含む気体であれば特に限定されない。本発明においては、なかでも、酸素を窒素などの不活性ガスで希釈したものを使用することが安全性の面で好ましく、酸素の濃度は、例えば0.01~30v/v%、好ましくは0.1~25v/v%、とりわけ好ましくは0.5~10v/v%である。 The reaction atmosphere in the heating oxidation step is not particularly limited as long as it is a gas containing oxygen. In the present invention, it is preferable to use oxygen diluted with an inert gas such as nitrogen from the viewpoint of safety, and the concentration of oxygen is, for example, 0.01 to 30 v / v%, preferably 0. .1 to 25 v / v%, particularly preferably 0.5 to 10 v / v%.
 加熱酸化工程における加熱温度は、ND粒子の耐熱性を考慮して適宜設定することができ、200~800℃が好ましく、より好ましくは350~700℃、さらに好ましくは400~600℃、とりわけ好ましくは430~500℃である。加熱温度が上記範囲内である場合、ND粒子の酸化が抑制されるとともに、非ダイヤモンド炭素が選択的に酸化され、表面にC=O基を多く有し、酸化防止効果に優れるND粒子が得られる。 The heating temperature in the heating oxidation step can be appropriately set in consideration of the heat resistance of the ND particles, and is preferably 200 to 800 ° C., more preferably 350 to 700 ° C., further preferably 400 to 600 ° C., and particularly preferably. 430-500 ° C. When the heating temperature is within the above range, oxidation of ND particles is suppressed, non-diamond carbon is selectively oxidized, ND particles having a large amount of C═O groups on the surface and excellent in the antioxidant effect are obtained. It is done.
 加熱酸化工程における加熱時間は、特に限定されないが、例えば0.1~15時間が好ましく、より好ましくは0.5~12時間、さらに好ましくは1~10時間である。加熱時間が上記範囲内である場合、ND粒子の酸化が抑制されるとともに、非ダイヤモンド炭素が選択的に酸化され、表面にC=O基を多く有し、酸化防止効果に優れるND粒子が得られる。 The heating time in the heating and oxidizing step is not particularly limited, but is preferably 0.1 to 15 hours, more preferably 0.5 to 12 hours, and still more preferably 1 to 10 hours. When the heating time is within the above range, oxidation of ND particles is suppressed, non-diamond carbon is selectively oxidized, ND particles having a large amount of C═O groups on the surface and excellent in the antioxidant effect are obtained. It is done.
 尚、前記加熱酸化工程における圧力は、特に限定されないが、0.01~5.0atmが好ましく、より好ましくは0.1~1.5atm、さらに好ましくは0.2~1.2atmである。 The pressure in the heating oxidation step is not particularly limited, but is preferably 0.01 to 5.0 atm, more preferably 0.1 to 1.5 atm, and further preferably 0.2 to 1.2 atm.
 (組成物の製造方法)
 本発明の組成物は、例えば、液晶ポリマーとND粒子とを、前記液晶ポリマーの融点(若しくは、軟化温度)以上の温度で溶融混練することにより製造することができる。
(Method for producing composition)
The composition of the present invention can be produced, for example, by melt-kneading a liquid crystal polymer and ND particles at a temperature equal to or higher than the melting point (or softening temperature) of the liquid crystal polymer.
 本発明の組成物におけるND粒子の含有量は、液晶ポリマー100重量部に対して0.001~5重量部であり、好ましくは0.01~3重量部、特に好ましくは0.1~1重量部である。 The content of ND particles in the composition of the present invention is 0.001 to 5 parts by weight, preferably 0.01 to 3 parts by weight, particularly preferably 0.1 to 1 part by weight, based on 100 parts by weight of the liquid crystal polymer. Part.
 本発明の組成物は不揮発分として液晶ポリマーとND粒子とを含有する。本発明の組成物は前記成分以外にも他の成分(例えば、充填剤、安定剤、滑剤、顔料、結晶核剤、消泡剤、シランカップリング剤、レベリング剤、界面活性剤、難燃剤、紫外線吸収剤、消色剤、着色剤、密着性付与剤等)を1種又は2種以上含有しても良いが、組成物に含まれる不揮発分全量に占める上記ND粒子と液晶ポリマーの合計含有量は、例えば10重量%以上、好ましくは20重量%以上、より好ましくは30重量%以上、更に好ましくは40重量%以上、更に好ましくは50重量%以上、更に好ましくは60重量%以上、特に好ましくは70重量%以上である。 The composition of the present invention contains a liquid crystal polymer and ND particles as nonvolatile components. In addition to the above components, the composition of the present invention includes other components (for example, fillers, stabilizers, lubricants, pigments, crystal nucleating agents, antifoaming agents, silane coupling agents, leveling agents, surfactants, flame retardants, 1 type or 2 types or more of ultraviolet absorbers, decolorizers, colorants, adhesion-imparting agents, etc.) may be contained, but the total content of the ND particles and the liquid crystal polymer in the total amount of nonvolatile content contained in the composition The amount is, for example, 10% by weight or more, preferably 20% by weight or more, more preferably 30% by weight or more, still more preferably 40% by weight or more, still more preferably 50% by weight or more, still more preferably 60% by weight or more, particularly preferably. Is 70% by weight or more.
 前記充填剤には、繊維状、粉粒状、若しくは板状の、無機又は有機充填剤が含まれる。 The filler includes a fibrous, powdery, or plate-like inorganic or organic filler.
 前記繊維状充填剤としては、例えば、ガラス繊維、ミルドガラスファイバー、カーボン繊維、アスベスト繊維、シリカ繊維、シリカ・アルミナ繊維、アルミナ繊維、ジルコニア繊維、窒化硼素繊維、窒化珪素繊維、硼素繊維、チタン酸カリウム繊維、ウォラストナイト等の珪酸塩の繊維、硫酸マグネシウム繊維、ホウ酸アルミニウム繊維、金属(例えば、ステンレス、アルミニウム、チタン、銅、真鍮等)の繊維状物等の無機質繊維状物質;ポリアミド樹脂、フッ素樹脂、ポリエステル樹脂、アクリル樹脂などの高融点有機質繊維状物質等が挙げられる。特に代表的な繊維状充填剤はガラス繊維である。 Examples of the fibrous filler include glass fiber, milled glass fiber, carbon fiber, asbestos fiber, silica fiber, silica-alumina fiber, alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, titanic acid. Silica fiber such as potassium fiber, wollastonite, magnesium sulfate fiber, aluminum borate fiber, inorganic fibrous material such as metal (for example, stainless steel, aluminum, titanium, copper, brass, etc.); polyamide resin , High melting point organic fibrous materials such as fluororesin, polyester resin, and acrylic resin. A particularly typical fibrous filler is glass fiber.
 粉粒状充填剤としては、例えば、酸化鉄、酸化チタン、酸化亜鉛、三酸化アンチモン、アルミナ等の金属の酸化物;炭酸カルシウム、炭酸マグネシウム等の金属の炭酸塩;硫酸カルシウム、硫酸バリウム等の金属の硫酸塩;カーボンブラック、黒鉛、シリカ、石英粉末、ガラスビーズ、ガラスバルーン、ガラス粉、硅酸カルシウム、硅酸アルミニウム、カオリン、クレー、硅藻土、ウォラストナイト等の硅酸塩、フェライト、炭化硅素、窒化硅素、窒化硼素、各種金属粉末等が挙げられる。 Examples of the particulate filler include metal oxides such as iron oxide, titanium oxide, zinc oxide, antimony trioxide, and alumina; metal carbonates such as calcium carbonate and magnesium carbonate; metals such as calcium sulfate and barium sulfate Sulfates of carbon black, graphite, silica, quartz powder, glass beads, glass balloons, glass powder, calcium oxalate, aluminum oxalate, kaolin, clay, diatomaceous earth, wollastonite, etc., ferrite, Examples thereof include silicon carbide, silicon nitride, boron nitride, and various metal powders.
 板状充填剤としては、例えば、マイカ、ガラスフレーク、タルク、各種金属箔等が挙げられる。 Examples of the plate-like filler include mica, glass flakes, talc, and various metal foils.
 ND粒子は、液晶ポリマー中に生成したパーオキシラジカルを捕捉する効果を発揮する。本発明の組成物は、前記特性を有するND粒子を含有するため、高温環境下でもパーオキシラジカルがND粒子に捕捉されることによりラジカル発生量(若しくは、パーオキシラジカル発生量)の増加が抑制され、発生したパーオキシラジカルによる酸化劣化によって液晶ポリマーの靱性が低下し、脆化するのを防止することができ、酸化劣化による黄変を抑制して色相を良好に保持することができる。 ND particles exhibit the effect of capturing peroxy radicals generated in the liquid crystal polymer. Since the composition of the present invention contains ND particles having the above-mentioned characteristics, an increase in radical generation amount (or peroxy radical generation amount) is suppressed by capturing peroxy radicals in ND particles even in a high temperature environment. In addition, the toughness of the liquid crystal polymer is reduced due to oxidative degradation due to the generated peroxy radicals, and embrittlement can be prevented, and yellowing due to oxidative degradation can be suppressed and the hue can be maintained well.
 本発明の組成物の、電子スピン共鳴法(ESR)により測定される、25℃におけるラジカル発生量は、例えば2×1016~2×1018spins/g、好ましくは1×1017~10×1017spins/g、特に好ましくは2×1017~5×1017spins/gである。 The radical generation amount at 25 ° C. of the composition of the present invention measured by electron spin resonance (ESR) is, for example, 2 × 10 16 to 2 × 10 18 spins / g, preferably 1 × 10 17 to 10 ×. 10 17 spins / g, particularly preferably 2 × 10 17 to 5 × 10 17 spins / g.
 本発明の組成物の、電子スピン共鳴法(ESR)により測定される、320℃におけるラジカル発生量は、例えば2×1016~2×1018spins/g、好ましくは5×1016~10×1017spins/g、特に好ましくは1×1017~5×1017spins/gである。 The radical generation amount at 320 ° C. of the composition of the present invention measured by electron spin resonance (ESR) is, for example, 2 × 10 16 to 2 × 10 18 spins / g, preferably 5 × 10 16 to 10 ×. 10 17 spins / g, particularly preferably 1 × 10 17 to 5 × 10 17 spins / g.
 本発明の組成物の、電子スピン共鳴法(ESR)により測定される、400℃におけるラジカル発生量は、例えば2×1016~2×1018spins/g、好ましくは1×1017~10×1017spins/g、特に好ましくは2×1017~10×1017spins/gである。 The radical generation amount at 400 ° C. of the composition of the present invention measured by electron spin resonance (ESR) is, for example, 2 × 10 16 to 2 × 10 18 spins / g, preferably 1 × 10 17 to 10 ×. 10 17 spins / g, particularly preferably 2 × 10 17 to 10 × 10 17 spins / g.
 本発明の組成物のラジカル発生量が上記範囲を上回る場合は、パーオキシラジカルによる液晶ポリマーの酸化劣化を防止することが困難となるため、溶融成形性やポリマー機械物性に悪影響を与えない範囲でパーオキシラジカル捕捉剤を添加してもよい。一方、ラジカル発生量が上記範囲を下回る場合は、パーオキシラジカルの寿命は短く、酸素由来の酸化反応が活発となるため、得られる固化物の物性が低下(例えば、靱性が低下して脆化する等)する傾向がある。 When the radical generation amount of the composition of the present invention exceeds the above range, it is difficult to prevent oxidative deterioration of the liquid crystal polymer due to peroxy radicals, so that it does not adversely affect melt moldability and polymer mechanical properties. A peroxy radical scavenger may be added. On the other hand, when the radical generation amount is below the above range, the lifetime of the peroxy radical is short, and the oxidation reaction derived from oxygen becomes active, so that the physical properties of the obtained solidified product are deteriorated (for example, toughness is reduced and embrittled) Etc.).
 本発明の組成物は、ND粒子が液晶ポリマー中に生成したパーオキシラジカルを捕捉する効果を発揮するため、高温環境に曝しても、液晶ポリマーの酸化劣化を引き起こすラジカル発生量の増加が抑制され、電子スピン共鳴法(ESR)により測定される、400℃におけるラジカル発生量は、25℃におけるラジカル発生量の例えば3.0倍以下、好ましくは2.5倍以下、特に好ましくは2.2倍以下である。ラジカル発生量の増加が上記範囲を上回る場合は、ND粒子によるラジカル捕捉効果が不十分(パーオキシラジカルの安定化が不十分)であり、液晶ポリマーの酸化劣化を防止する効果は得られにくくなる傾向がある。 The composition of the present invention exhibits the effect of capturing peroxy radicals generated in the liquid crystal polymer by the ND particles. Therefore, even when exposed to a high temperature environment, an increase in the amount of radicals that cause oxidative degradation of the liquid crystal polymer is suppressed. The radical generation amount at 400 ° C. measured by electron spin resonance (ESR) is, for example, 3.0 times or less, preferably 2.5 times or less, particularly preferably 2.2 times the radical generation amount at 25 ° C. It is as follows. If the increase in the amount of radical generation exceeds the above range, the radical scavenging effect by the ND particles is insufficient (peroxy radical stabilization is insufficient), and the effect of preventing oxidative degradation of the liquid crystal polymer is difficult to obtain. Tend.
 本発明の組成物は、パーオキシラジカルを捕捉する効果を備えたND粒子を含有するため耐熱性に優れ、高温環境に曝しても酸化劣化を防止することができ、昇温速度10℃/分(空気中)で、50℃から370℃まで昇温した場合の重量減少率は、例えば2.5重量%以下、好ましくは2.0重量%未満、特に好ましくは1.8重量%以下である。 Since the composition of the present invention contains ND particles having an effect of scavenging peroxy radicals, it has excellent heat resistance, can be prevented from oxidative deterioration even when exposed to a high temperature environment, and has a temperature rising rate of 10 ° C./min. The weight reduction rate when the temperature is raised from 50 ° C. to 370 ° C. (in air) is, for example, 2.5% by weight or less, preferably less than 2.0% by weight, particularly preferably 1.8% by weight or less. .
 本発明の組成物は、液晶ポリマーと共に、耐熱性に優れ、且つ酸化防止効果に優れたND粒子を含有するため、当該組成物を、組成物中に含まれる液晶ポリマーが溶融する温度で加熱しても、ND粒子は分解することなく、優れた酸化防止効果(若しくは、ラジカル捕捉効果)を発揮することができ、液晶ポリマー中に生成したラジカルを捕捉する効果を発揮する。これにより、ラジカルによる液晶ポリマーの酸化劣化を防止して、液晶ポリマーの黄変を抑制することができる。 Since the composition of the present invention contains ND particles having excellent heat resistance and antioxidation effect together with the liquid crystal polymer, the composition is heated at a temperature at which the liquid crystal polymer contained in the composition melts. However, the ND particles can exhibit an excellent antioxidant effect (or radical scavenging effect) without being decomposed, and exhibit the effect of scavenging radicals generated in the liquid crystal polymer. Thereby, the oxidative deterioration of the liquid crystal polymer due to radicals can be prevented, and yellowing of the liquid crystal polymer can be suppressed.
 従って、本発明の組成物は、例えば、プリント基板実装用部品、コネクタ・ボビン・光ピックアップ部品のケース、マイクロモーター部品などの電気・電子部品材料;コンプレッサー部品、ショックアブソーバー部品等の自動車部品材料として好適に使用することができる。 Accordingly, the composition of the present invention can be used, for example, as a printed circuit board mounting component, a connector / bobbin / optical pickup component case, a micromotor component or other electric / electronic component material; a compressor component, a shock absorber component or other automotive component material. It can be preferably used.
 [成形体]
 本発明の成形体は、上記組成物の固化物から成る。本発明の成形体は、例えば、上記組成物の溶融物を、所望の形状の反転形状の凹部を有する金型に充填し、その後、冷却して上記組成物を固化させることにより製造することができる。
[Molded body]
The molded product of the present invention comprises a solidified product of the above composition. The molded body of the present invention can be produced, for example, by filling the melt of the above composition into a mold having a concave portion having a reverse shape of a desired shape, and then cooling to solidify the above composition. it can.
 上記組成物の溶融は、これに含まれる液晶ポリマーの融点若しくは軟化点以上の温度で加熱することにより行われる。また、上記組成物は、これに含まれる液晶ポリマーの融点若しくは軟化点より低い温度まで冷却することにより固化し、固化物を形成する。 The above composition is melted by heating at a temperature equal to or higher than the melting point or softening point of the liquid crystal polymer contained therein. The composition is solidified by cooling to a temperature lower than the melting point or softening point of the liquid crystal polymer contained therein to form a solidified product.
 上記組成物の成形は、例えば、射出成形法、押出射出成形法等の溶融成形法により行うことができる。 The above composition can be molded by, for example, a melt molding method such as an injection molding method or an extrusion injection molding method.
 このようにして得られる成形体は色相が良好であり、外観に優れる。また、耐熱性に優れ、成形体を構成する液晶ポリマーの融点若しくは軟化点より低い温度では、長期に亘って機械特性(靱性等)の低下を抑制することができる。すなわち、高温での長期使用に耐える。そのため、耐熱性が求められる車載用途に好適に使用することができる。 The molded product thus obtained has a good hue and excellent appearance. Moreover, it is excellent in heat resistance, and it can suppress the fall of mechanical characteristics (toughness etc.) over a long period of time at the temperature lower than melting | fusing point or softening point of the liquid crystal polymer which comprises a molded object. That is, it withstands long-term use at high temperatures. Therefore, it can be suitably used for in-vehicle applications that require heat resistance.
 従って、本発明の成形体は、例えば、プリント基板実装用部品、コネクタ・ボビン・光ピックアップ部品のケース、マイクロモーター部品などの電気・電子部品;コンプレッサー部品、ショックアブソーバー部品等の自動車部品として好適に使用することができる。 Therefore, the molded article of the present invention is suitable as, for example, printed circuit board mounting parts, connector / bobbin / optical pickup parts cases, electric / electronic parts such as micro motor parts, automobile parts such as compressor parts, shock absorber parts, etc. Can be used.
 [酸化防止剤]
 本発明の酸化防止剤は、ND粒子(好ましくは、上述のND粒子)を含むことを特徴とする。本発明の酸化防止剤は、熱可塑性樹脂用の酸化防止剤として好適に使用することができる。
[Antioxidant]
The antioxidant of the present invention is characterized by containing ND particles (preferably, the above-mentioned ND particles). The antioxidant of the present invention can be suitably used as an antioxidant for thermoplastic resins.
 本発明の酸化防止剤は耐熱性に優れ、昇温速度10℃/分(空気中)で測定される5%重量減少温度は、例えば450℃以上(例えば450~600℃)、好ましくは500℃以上である。尚、5%重量減少温度は、例えば、TG/DTA(示差熱・熱重量同時測定)により測定できる。 The antioxidant of the present invention is excellent in heat resistance, and the 5% weight loss temperature measured at a heating rate of 10 ° C./min (in air) is, for example, 450 ° C. or higher (eg, 450 to 600 ° C.), preferably 500 ° C. That's it. The 5% weight loss temperature can be measured by, for example, TG / DTA (simultaneous measurement of differential heat and thermogravimetry).
 本発明の酸化防止剤は耐熱性に優れるため、例えば250℃以上(例えば250~550℃)、好ましくは300℃以上、特に好ましくは320℃以上の高い融点(若しくは、軟化温度)を有する熱可塑性樹脂用の酸化防止剤として使用することができる。 Since the antioxidant of the present invention is excellent in heat resistance, it has a high melting point (or softening temperature) of 250 ° C. or higher (eg 250 to 550 ° C.), preferably 300 ° C. or higher, particularly preferably 320 ° C. or higher. It can be used as an antioxidant for resins.
 本発明の酸化防止剤が、表面官能基としてカルボニル基を含有するND粒子を含む場合は、熱可塑性樹脂の中でも特に液晶ポリマー(とりわけ好ましくは、液晶ポリエステル及び/又は液晶ポリエステルアミド)用の酸化防止剤として好適に使用することができる。高温環境下において、液晶ポリマーは、そのエステル結合又はアミド結合部位がラジカルによって分解されることで酸化劣化が進行するが、前記ND粒子がパーオキシラジカルを捕捉することにより、液晶ポリマーのエステル結合及びアミド結合部位の酸化劣化が抑制されて安定化されるためである。 When the antioxidant of the present invention contains ND particles containing a carbonyl group as a surface functional group, an antioxidant for a liquid crystal polymer (particularly preferably a liquid crystal polyester and / or a liquid crystal polyester amide) among thermoplastic resins. It can be suitably used as an agent. Under a high temperature environment, the liquid crystal polymer undergoes oxidative degradation due to the decomposition of the ester bond or amide bond site by radicals. However, the ND particles capture peroxy radicals, thereby allowing the ester bond and the liquid crystal polymer to bond with each other. This is because oxidative degradation of the amide bond site is suppressed and stabilized.
 本発明の酸化防止剤は、ND粒子以外にも他の成分を含有していても良いが、酸化防止剤全量における上記ND粒子の占める割合は、例えば60重量%以上、好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。尚、上限は100重量%である。ND粒子の含有量が前記範囲を下回ると、本発明の効果が得られにくくなる傾向がある。 The antioxidant of the present invention may contain other components in addition to the ND particles, but the proportion of the ND particles in the total amount of the antioxidant is, for example, 60% by weight or more, preferably 70% by weight or more. Particularly preferably, it is 80% by weight or more, and most preferably 90% by weight or more. The upper limit is 100% by weight. When content of ND particle | grains is less than the said range, there exists a tendency for the effect of this invention to become difficult to be acquired.
 以下、実施例により本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
 調製例1(液晶ポリマー(LCP1)の調製)
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃まで上昇させて、その温度で1時間反応させた。その後、更に325℃まで3.5時間かけて昇温し、そこから20分かけて5Torr(即ち667Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部から液晶ポリマーを排出し、ストランドをペレタイズしてペレット状液晶ポリマーを得た。
 得られた液晶ポリマーの融点は280℃、300℃における溶融粘度は44.0Pa・sであった。
 4-ヒドロキシ安息香酸(HBA);1660g(73モル%)
 2-ヒドロキシ-6-ナフトエ酸(HNA);837g(27モル%)
 金属触媒(酢酸カリウム触媒);165mg
 アシル化剤(無水酢酸);1714g
Preparation Example 1 (Preparation of liquid crystal polymer (LCP1))
After the following raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at that temperature for 1 hour. Thereafter, the temperature is further raised to 325 ° C. over 3.5 hours, and then reduced to 5 Torr (ie, 667 Pa) over 20 minutes while distilling acetic acid, excess acetic anhydride, and other low-boiling components. Melt polymerization was performed. After the stirring torque reaches a predetermined value, nitrogen is introduced to change from the reduced pressure state to the normal pressure state, the liquid crystal polymer is discharged from the lower part of the polymerization vessel, the strand is pelletized, and the pellet-like liquid crystal polymer is removed. Obtained.
The obtained liquid crystal polymer had a melting point of 280 ° C. and a melt viscosity at 300 ° C. of 44.0 Pa · s.
4-hydroxybenzoic acid (HBA); 1660 g (73 mol%)
2-Hydroxy-6-naphthoic acid (HNA); 837 g (27 mol%)
Metal catalyst (potassium acetate catalyst); 165 mg
Acylating agent (acetic anhydride); 1714 g
 調製例2(液晶ポリマー(LCP2)の調製)
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃まで上昇させて、その温度で1時間反応させた。その後、更に340℃まで4.5時間かけて昇温し、そこから15分かけて10Torr(即ち1330Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部から液晶ポリマーを排出し、ストランドをペレタイズしてペレット状液晶ポリマーを得た。得られたペレット状液晶ポリマーには、更に、窒素気流下、300℃で2時間の熱処理を行った。
 得られた液晶ポリマーの融点は336℃、350℃における溶融粘度は19.0Pa・sであった。
 4-ヒドロキシ安息香酸(HBA);1380g(60モル%)
 2-ヒドロキシ-6-ナフトエ酸(HNA);157g(5モル%)
 テレフタル酸(TA);484g(17.5モル%)
 4,4’-ジヒドロキシビフェニル(BP);388g(12.5モル%)
 4-アセトキシアミノフェノール(APAP);126g(5モル%)
 金属触媒(酢酸カリウム触媒);110mg
 アシル化剤(無水酢酸);1659g
Preparation Example 2 (Preparation of liquid crystal polymer (LCP2))
After the following raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at that temperature for 1 hour. Thereafter, the temperature is further increased to 340 ° C. over 4.5 hours, and then the pressure is reduced to 10 Torr (ie, 1330 Pa) over 15 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reaches a predetermined value, nitrogen is introduced to change from the reduced pressure state to the normal pressure state, the liquid crystal polymer is discharged from the lower part of the polymerization vessel, the strand is pelletized, and the pellet-like liquid crystal polymer is removed. Obtained. The obtained pellet-like liquid crystal polymer was further heat-treated at 300 ° C. for 2 hours under a nitrogen stream.
The obtained liquid crystal polymer had a melting point of 336 ° C. and a melt viscosity at 350 ° C. of 19.0 Pa · s.
4-hydroxybenzoic acid (HBA); 1380 g (60 mol%)
2-hydroxy-6-naphthoic acid (HNA); 157 g (5 mol%)
Terephthalic acid (TA); 484 g (17.5 mol%)
4,4′-dihydroxybiphenyl (BP); 388 g (12.5 mol%)
4-acetoxyaminophenol (APAP); 126 g (5 mol%)
110 mg of metal catalyst (potassium acetate catalyst)
Acylating agent (acetic anhydride); 1659 g
 調製例3(液晶ポリマー(LCP3)の調製)
 重合容器に下記の原料を仕込んだ後、反応系の温度を140℃まで上昇させて、その温度で1時間反応させた。その後、更に360℃まで5.5時間かけて昇温し、そこから30分かけて5Torr(即ち667Pa)まで減圧して、酢酸、過剰の無水酢酸、及びその他の低沸分を留出させながら溶融重合を行った。撹拌トルクが所定の値に達した後、窒素を導入して減圧状態から常圧を経て加圧状態にして、重合容器の下部から液晶ポリマーを排出し、ストランドをペレタイズしてペレット状液晶ポリマーを得た。得られたペレット状液晶ポリマーには、更に、窒素気流下、300℃で8時間の熱処理を行った。
 得られた液晶ポリマーの融点は352℃、380℃における溶融粘度は23.0Pa・sであった。
 4-ヒドロキシ安息香酸(HBA);37g(2モル%)
 2-ヒドロキシ-6-ナフトエ酸(HNA);1218g(48モル%)
 テレフタル酸(TA);560g(25モル%)
 4,4’-ジヒドロキシビフェニル(BP);628g(25モル%)
 金属触媒(酢酸カリウム触媒);165mg
 アシル化剤(無水酢酸);1432g
Preparation Example 3 (Preparation of liquid crystal polymer (LCP3))
After the following raw materials were charged into the polymerization vessel, the temperature of the reaction system was raised to 140 ° C. and reacted at that temperature for 1 hour. Thereafter, the temperature is further raised to 360 ° C. over 5.5 hours, and then the pressure is reduced to 5 Torr (ie, 667 Pa) over 30 minutes, while acetic acid, excess acetic anhydride, and other low boiling points are distilled off. Melt polymerization was performed. After the stirring torque reaches a predetermined value, nitrogen is introduced to change from the reduced pressure state to the normal pressure state, the liquid crystal polymer is discharged from the lower part of the polymerization vessel, the strand is pelletized, and the pellet-like liquid crystal polymer is removed. Obtained. The obtained pellet-like liquid crystal polymer was further heat-treated at 300 ° C. for 8 hours under a nitrogen stream.
The obtained liquid crystal polymer had a melting point of 352 ° C. and a melt viscosity at 380 ° C. of 23.0 Pa · s.
4-hydroxybenzoic acid (HBA); 37 g (2 mol%)
2-hydroxy-6-naphthoic acid (HNA); 1218 g (48 mol%)
Terephthalic acid (TA); 560 g (25 mol%)
4,4′-dihydroxybiphenyl (BP); 628 g (25 mol%)
Metal catalyst (potassium acetate catalyst); 165 mg
Acylating agent (acetic anhydride); 1432 g
 [融点]
 TAインスツルメント社製DSCにて、液晶ポリマーを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、(Tm1+40)℃の温度で2分間保持した後、20℃/分の降温条件で室温まで一旦冷却した後、再度、20℃/分の昇温条件で測定した際に観測される吸熱ピークの温度を測定した。
[Melting point]
After observing the endothermic peak temperature (Tm1) observed when the liquid crystal polymer was measured at room temperature from 20 ° C / min with a DSC manufactured by TA Instruments, the temperature was (Tm1 + 40) ° C for 2 minutes. After being held, it was once cooled to room temperature under a temperature drop condition of 20 ° C./min, and then the temperature of an endothermic peak observed when measured under a temperature rise condition of 20 ° C./min was measured again.
 [溶融粘度測定]
 液晶ポリマーの溶融粘度は、(株)東洋精機製作所製キャピログラフ(ピストン径:10mm)を使用し、内径1mm、長さ20mmのオリフィスを用いて以下の条件で、ISO11443に準拠して測定した。
シリンダー温度:
液晶ポリマーがLCP1の場合:300℃
液晶ポリマーがLCP2の場合:350℃
液晶ポリマーがLCP3の場合:380℃
せん断速度:1000sec-1
[Measurement of melt viscosity]
The melt viscosity of the liquid crystal polymer was measured in accordance with ISO11443 under the following conditions using an orifice having an inner diameter of 1 mm and a length of 20 mm using a capillograph (piston diameter: 10 mm) manufactured by Toyo Seiki Seisakusho.
Cylinder temperature:
When the liquid crystal polymer is LCP1: 300 ° C
When the liquid crystal polymer is LCP2: 350 ° C.
When the liquid crystal polymer is LCP3: 380 ° C.
Shear rate: 1000 sec -1
 実施例1(酸化防止剤(ND1)の合成)
 成形された爆薬に電気雷管が装着されたものを爆轟用の耐圧性容器(鉄製、容積は15m3)の内部に設置して容器を密閉した。爆薬としては、TNTとRDXとの混合物(TNT/RDX=50/50)0.50kgを使用した。次に、電気雷管を起爆させ、容器内で爆薬を爆轟させた。次に、室温での24時間の放置により、容器およびその内部を降温させた。この放冷の後、容器の内壁に付着しているND粒子粗生成物(上記爆轟法で生成したND粒子の凝着体と煤を含む)をヘラで掻き取る作業を行い、ND粒子粗生成物を回収した。
Example 1 (Synthesis of antioxidant (ND1))
A molded explosive with an electric detonator attached was placed inside a pressure-resistant container (made of iron, volume: 15 m 3 ) for detonation, and the container was sealed. As the explosive, 0.50 kg of a mixture of TNT and RDX (TNT / RDX = 50/50) was used. Next, the electric detonator was detonated, and the explosive was detonated in the container. Next, the container and its interior were cooled by being left at room temperature for 24 hours. After this cooling, the ND particle coarse product adhering to the inner wall of the container (including the ND particle aggregate and soot produced by the above detonation method) is scraped off with a spatula, The product was recovered.
 上述のような生成工程を複数回行うことによって取得されたND粒子粗生成物に対して酸処理を行った。具体的には、当該ND粒子粗生成物200gに6Lの10重量%塩酸を加えて得られたスラリーに対し、常圧条件での還流下で、85~100℃で1時間の加熱処理を行った。冷却後、デカンテーションにより、固形分(ND粒子凝着体と煤を含む)の水洗を行った。沈殿液のpHが低pH側から2に至るまで、デカンテーションによる当該固形分の水洗を反復して行った。 The acid treatment was performed on the crude ND particle product obtained by performing the production process as described above a plurality of times. Specifically, a slurry obtained by adding 6 L of 10 wt% hydrochloric acid to 200 g of the ND particle crude product was heated at 85 to 100 ° C. for 1 hour under reflux under normal pressure conditions. It was. After cooling, the solid content (including ND particle aggregates and soot) was washed with water by decantation. The solid content was washed repeatedly with decantation until the pH of the precipitate reached 2 from the low pH side.
 次に、酸化処理を行った。具体的には、酸処理後のデカンテーションを経て得た沈殿液(ND粒子凝着体を含む)に、12Lの98重量%硫酸水溶液と1Lの97重量%硝酸水溶液とを加えてスラリーとした後、このスラリーに対し、常圧条件での還流下、140~160℃で48時間の加熱処理を行った。冷却後、デカンテーションにより、固形分(ND粒子凝着体を含む)の水洗を行った。水洗当初の上澄み液は着色しているところ、上澄み液が目視で透明になるまで、デカンテーションによる当該固形分の水洗を反復して行った。 Next, oxidation treatment was performed. Specifically, 12 L of 98% by weight sulfuric acid aqueous solution and 1 L of 97% by weight nitric acid aqueous solution were added to the precipitate obtained through decantation after acid treatment (including ND particle aggregates) to form a slurry. Thereafter, the slurry was subjected to a heat treatment at 140 to 160 ° C. for 48 hours under reflux under normal pressure conditions. After cooling, the solid content (including ND particle aggregates) was washed with water by decantation. The supernatant liquid at the beginning of water washing was colored, and the solid contents were washed repeatedly by decantation until the supernatant liquid became transparent visually.
 酸化処理後のデカンテーションを経て得た沈殿液(ND粒子凝着体を含む)をエバポレーターを用い蒸発乾固して、ND粒子粉体(ND1、D50=4.2nm)を得た。FT-IRでは、図1に示すとおり、1700~1850cm-1の範囲では1730.15cm-1に表面官能基におけるケトン基(C=O)に由来する吸収ピーク、また2915cm-1付近に表面官能基におけるC-Hに由来する吸収が見られた。1730.15cm-1の吸収ピークは、2915cm-1付近の吸収ピークよりも高かった。 The precipitation liquid (including ND particle aggregates) obtained through decantation after the oxidation treatment was evaporated to dryness using an evaporator to obtain ND particle powder (ND1, D50 = 4.2 nm). In FT-IR, as shown in Figure 1, absorption peaks derived from a ketone group (C = O) in the surface functional groups 1730.15Cm -1 in the range of 1700 ~ 1850 cm -1, and the surface functional near 2915 cm -1 Absorption due to C—H in the group was seen. Absorption peak 1730.15Cm -1 was higher than the absorption peak around 2915 cm -1.
 ND粒子粉体(ND1)の、TG/DTA(示差熱・熱重量同時測定)により測定した、昇温速度10℃/分(空気中)で測定される5%重量減少温度は523℃であった。 The 5% weight loss temperature of the ND particle powder (ND1) measured by TG / DTA (simultaneous measurement of differential heat and thermogravimetry) measured at a heating rate of 10 ° C./min (in air) was 523 ° C. It was.
 実施例2(酸化防止剤(ND2)の合成)
 ガス雰囲気炉(商品名「ガス雰囲気チューブ炉 KTF045N1」,光洋サーモシステム(株)製)を使用して加熱酸化工程を行った。
 具体的には、上述のようにして得られたND1(4.5g)をガス雰囲気炉の炉心管内に静置し、炉心管に窒素ガスを流速1L/分で30分間通流させ続けた後、通流ガスを窒素から酸素と窒素との混合ガス(酸素濃度:4体積%)へと切り替えて当該混合ガスを流速1L/分で炉心管に通流させ続けた。混合ガスへの切り替えの後、炉内を加熱設定温度400℃まで昇温させた。昇温速度については、加熱設定温度より20℃低い380℃までは10℃/分とし、その後、380℃から加熱設定温度までは1℃/分とした。そして、炉内の温度条件を400℃に維持しつつ、炉内のND粒子粉体について酸素酸化処理を行った。処理時間は3時間とした。以上のようにして、ND粒子粉体(ND2)を得た。加熱酸化工程に付される前のND粒子粉体の量に対する加熱酸化工程を経た後のND粒子粉体の量の割合(収率)は96%であった。FT-IRでは、図2に示すとおり、1776.44cm-1に表面官能基におけるケトン基(C=O)に由来する吸収ピークが見られた。尚、2800~3000cm-1には目立った吸収ピークは見られなかった。
Example 2 (Synthesis of antioxidant (ND2))
A heating oxidation process was performed using a gas atmosphere furnace (trade name “Gas Atmosphere Tube Furnace KTF045N1”, manufactured by Koyo Thermo System Co., Ltd.).
Specifically, after ND1 (4.5 g) obtained as described above is left in the core tube of the gas atmosphere furnace and nitrogen gas is continuously passed through the core tube at a flow rate of 1 L / min for 30 minutes. The flow gas was switched from nitrogen to a mixed gas of oxygen and nitrogen (oxygen concentration: 4% by volume), and the mixed gas was continuously passed through the core tube at a flow rate of 1 L / min. After switching to the mixed gas, the temperature in the furnace was raised to a heating set temperature of 400 ° C. The heating rate was 10 ° C./min from 380 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 380 ° C. to the heating set temperature. And the oxygen oxidation process was performed about ND particle powder in a furnace, maintaining the temperature conditions in a furnace at 400 degreeC. The processing time was 3 hours. As described above, ND particle powder (ND2) was obtained. The ratio (yield) of the amount of the ND particle powder after the heating oxidation step to the amount of the ND particle powder before being subjected to the heating oxidation step was 96%. In FT-IR, as shown in FIG. 2, an absorption peak derived from the ketone group (C═O) in the surface functional group was observed at 1776.44 cm −1 . No noticeable absorption peak was observed at 2800 to 3000 cm −1 .
 実施例3(酸化防止剤(ND3)の合成)
 加熱酸化工程の加熱設定温度を475℃に変更した以外は実施例2と同様にしてND粒子粉体(ND3)を得た。尚、昇温速度については、加熱設定温度より20℃低い455℃までは10℃/分とし、その後、455℃から加熱設定温度までは1℃/分とした。
 加熱酸化工程に付される前のND粒子粉体の量に対する加熱酸化工程を経た後のND粒子粉体の量の割合(収率)は70%であった。FT-IRでは、図3に示すとおり、1800cm-1付近に表面官能基におけるケトン基(C=O)に由来する吸収ピークが見られた。尚、2800~3000cm-1には目立った吸収ピークは見られなかった。
Example 3 (Synthesis of antioxidant (ND3))
An ND particle powder (ND3) was obtained in the same manner as in Example 2 except that the heating set temperature in the heating oxidation step was changed to 475 ° C. The rate of temperature increase was 10 ° C./min from 455 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 455 ° C. to the heating set temperature.
The ratio (yield) of the amount of the ND particle powder after the heating oxidation step to the amount of the ND particle powder before being subjected to the heating oxidation step was 70%. In FT-IR, as shown in FIG. 3, an absorption peak derived from a ketone group (C═O) in the surface functional group was observed in the vicinity of 1800 cm −1 . No noticeable absorption peak was observed at 2800 to 3000 cm −1 .
 実施例4(酸化防止剤(ND4)の合成)
 実施例1と同様の方法で得られたND1(4.5g)をガス雰囲気炉の炉心管内に静置し、炉心管に窒素ガスを流速1L/分で30分間通流させ続けた後、通流ガスを窒素から水素と窒素との混合ガスへと切り替えて当該混合ガスを流速1L/分で炉心管に通流させ続けた。混合ガス中の水素濃度は2体積%である。混合ガスへの切り替えの後、炉内を加熱設定温度800℃まで昇温させた。昇温速度については、加熱設定温度より20℃低い780℃までは10℃/分とし、その後、780℃から加熱設定温度までは1℃/分とした。そして、炉内の温度条件を800℃に維持しつつ、炉内のND粒子粉体について水素還元処理を行った。処理時間は5時間とした。このようにして、ND粒子粉体(ND4)を得た。
 加熱還元処理に付される前のND粒子粉体の量に対する加熱還元処理を経た後のND粒子粉体の量の割合(収率)は93%であった。FT-IRでは、図4に示すとおり、2940cm-1付近に表面官能基におけるC-Hに由来する吸収ピークが見られ、1710cm-1付近の表面官能基におけるケトン基(C=O)に由来する吸収ピークはほとんど見られなかった。
Example 4 (Synthesis of antioxidant (ND4))
ND1 (4.5 g) obtained in the same manner as in Example 1 was left in the core tube of the gas atmosphere furnace, and nitrogen gas was continuously passed through the core tube at a flow rate of 1 L / min for 30 minutes. The flowing gas was switched from nitrogen to a mixed gas of hydrogen and nitrogen, and the mixed gas was continuously passed through the core tube at a flow rate of 1 L / min. The hydrogen concentration in the mixed gas is 2% by volume. After switching to the mixed gas, the temperature in the furnace was raised to a heating set temperature of 800 ° C. The heating rate was 10 ° C./min from 780 ° C., which is 20 ° C. lower than the heating set temperature, and then 1 ° C./min from 780 ° C. to the heating set temperature. And the hydrogen reduction process was performed about ND particle powder in a furnace, maintaining the temperature conditions in a furnace at 800 degreeC. The processing time was 5 hours. In this way, ND particle powder (ND4) was obtained.
The ratio (yield) of the amount of the ND particle powder after the heat reduction treatment to the amount of the ND particle powder before being subjected to the heat reduction treatment was 93%. In FT-IR, as shown in Figure 4, the absorption peak derived from C-H was observed at the surface functional group near 2940 cm -1, from a ketone group (C = O) in the surface functional group in the vicinity of 1710 cm -1 The absorption peak to be observed was hardly seen.
 <FT-IR測定>
 フーリエ変換赤外分光光度計(商品名「FT-720」、(株)堀場製作所製)に、加熱真空撹拌反射(商品名「Heat Chamber Type-1000℃」、(株)エス・ティ・ジャパン製)を取り付けた装置を用いて測定した。ND粒子の吸着水を除去するために、真空度2×10-3Pa条件下、150℃で1分間加熱後にFT-IR測定を実施した。
<FT-IR measurement>
A Fourier transform infrared spectrophotometer (trade name “FT-720”, manufactured by HORIBA, Ltd.) and heated vacuum stirring reflection (trade name “Heat Chamber Type—1000 ° C.”, manufactured by ST Japan Co., Ltd.) ) Was used to measure. In order to remove adsorbed water of ND particles, FT-IR measurement was performed after heating at 150 ° C. for 1 minute under a vacuum degree of 2 × 10 −3 Pa.
 実施例5~10、比較例1~3
 下記表1に示す処方にて各成分を混合し、(株)東洋精機製作所製プラストミルを用いて、下記のシリンダー温度で30分間溶融混練して組成物を得、得られた組成物の耐熱性を下記方法で評価した。
シリンダー温度:
液晶ポリマーとしてLCP1を含有する場合:300℃
液晶ポリマーとしてLCP2を含有する場合:350℃
液晶ポリマーとしてLCP3を含有する場合:370℃
Examples 5 to 10, Comparative Examples 1 to 3
Each component was mixed in the formulation shown in Table 1 below, and a composition was obtained by melting and kneading for 30 minutes at the following cylinder temperature using a plastmill manufactured by Toyo Seiki Seisakusho Co., Ltd., and the heat resistance of the resulting composition Was evaluated by the following method.
Cylinder temperature:
When LCP1 is contained as a liquid crystal polymer: 300 ° C.
When LCP2 is contained as a liquid crystal polymer: 350 ° C.
When LCP3 is contained as a liquid crystal polymer: 370 ° C.
 <重量減少率>
 得られた組成物を、TAインスツルメント製熱重量測定装置を用いて、乾燥空気毎分60mLフロー下、室温から370℃まで毎分10℃で昇温し、370℃到達後、2時間保持して、室温及び370℃における組成物の重量を測定し、下記式から重量減少率を算出した。
   重量減少率=370℃における重量/室温における重量×100(%)
<Weight reduction rate>
The obtained composition was heated from room temperature to 370 ° C. at 10 ° C. per minute under a flow of 60 mL / min dry air using a TA instrument thermogravimetric measuring device, and held for 2 hours after reaching 370 ° C. Then, the weight of the composition at room temperature and 370 ° C. was measured, and the weight reduction rate was calculated from the following formula.
Weight reduction rate = weight at 370 ° C./weight at room temperature × 100 (%)
 <ESRによるラジカル発生量の測定>
 実施例8及び比較例1で得られた組成物を各50mgはかり取り、ESR試料管(内径約3.5mmφの石英管)に入れ、昇温ESR測定を下記条件下、下記解析方法で実施した。結果を図5に示す。
<Measurement of radical generation by ESR>
50 mg of each of the compositions obtained in Example 8 and Comparative Example 1 was weighed out and placed in an ESR sample tube (quartz tube having an inner diameter of about 3.5 mmφ), and temperature rising ESR measurement was carried out by the following analysis method under the following conditions. . The results are shown in FIG.
測定装置:JES-FE3T(日本電子(株)製)
付属装置:高温キャビティ(日本電子(株)製)
測定条件
測定温度:室温~設定温度
中心磁場:3278G付近
磁場掃引範囲:500G
変調:100kHz,1G
マイクロ波:9.21GHz,1mW
掃引時間:120s×1time
時定数:100ms
データポイント数:4095points
キャビティ:TE011,円筒型
Measuring device: JES-FE3T (manufactured by JEOL Ltd.)
Attached device: High temperature cavity (manufactured by JEOL Ltd.)
Measurement conditions Measurement temperature: Room temperature to set temperature Central magnetic field: Near 3278G Magnetic field sweep range: 500G
Modulation: 100kHz, 1G
Microwave: 9.21 GHz, 1 mW
Sweep time: 120s x 1time
Time constant: 100 ms
Number of data points: 4095 points
Cavity: TE011, cylindrical type
 解析方法:
 高温測定用の装置を使用し、昇温に伴うラジカル量の変化、g値、線幅の変化を調べた。本装置では、Mnマーカーを同時測定し、マーカーの信号を基準にてg値の算出及び検出感度の補正を行った。
 合成空気[21%O2(N2バランス)]を30mL/minで流通させた雰囲気で昇温ESR測定(昇温速度:10℃/min)を行った。ラジカルの定量は、炭素上の不対電子がすべて局在電子(常磁性体)であることを仮定して行った。すなわち、局在スピンの信号強度は絶対温度の逆数(1/T)に比例するため、各温度における信号強度を室温での信号強度に換算し、室温で測定した標準試料の信号強度と比較して不対電子数を算出した。
analysis method:
Using a device for high temperature measurement, changes in radical amount, g value, and line width with increasing temperature were examined. In this apparatus, the Mn marker was measured at the same time, and the g value was calculated and the detection sensitivity was corrected based on the marker signal.
Temperature rise ESR measurement (temperature rise rate: 10 ° C./min) was performed in an atmosphere in which synthetic air [21% O 2 (N 2 balance)] was circulated at 30 mL / min. The quantification of radicals was performed assuming that all unpaired electrons on carbon were localized electrons (paramagnetic substance). That is, since the signal intensity of the localized spin is proportional to the inverse of absolute temperature (1 / T), the signal intensity at each temperature is converted to the signal intensity at room temperature and compared with the signal intensity of the standard sample measured at room temperature. The number of unpaired electrons was calculated.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1より、本発明の組成物は、熱によるラジカル発生量の増加が抑制され、液晶ポリマーの酸化劣化が抑制されることが分かった。 From Table 1, it was found that the composition of the present invention suppresses an increase in the amount of radical generation due to heat and suppresses oxidative degradation of the liquid crystal polymer.
 実施例11~13、比較例4~5(成形体の作製)
 下記表2に示す処方で各成分を混合し、二軸押出機(商品名「TEX30α」、(株)日本製鋼所製)を用い、下記のシリンダー温度にて溶融混練して組成物を得た。尚、ミルドガラスファイバーとしては、日東紡(株)製のPF70E001を使用した。
シリンダー温度:
液晶ポリマーとしてLCP1を含有する場合、300℃
液晶ポリマーとしてLCP2を含有する場合、350℃
Examples 11 to 13, Comparative Examples 4 to 5 (Preparation of molded bodies)
Each component was mixed with the formulation shown in the following Table 2, and melt-kneaded at the following cylinder temperature using a twin-screw extruder (trade name “TEX30α”, manufactured by Nippon Steel Works, Ltd.) to obtain a composition. . As milled glass fiber, PF70E001 manufactured by Nittobo Co., Ltd. was used.
Cylinder temperature:
When LCP1 is contained as a liquid crystal polymer, 300 ° C.
350 ° C when LCP2 is contained as the liquid crystal polymer
 得られた組成物を、成形機(商品名「TR-100EH」、(株)ソディック製)を用いて、以下の成形条件で成形し、50mm×5mm×0.8mmの成形体を得た。
〔成形条件〕
金型温度:80℃
射出速度:200mm/sec
保圧:50MPa
The obtained composition was molded under the following molding conditions using a molding machine (trade name “TR-100EH”, manufactured by Sodick Co., Ltd.) to obtain a molded body of 50 mm × 5 mm × 0.8 mm.
〔Molding condition〕
Mold temperature: 80 ℃
Injection speed: 200mm / sec
Holding pressure: 50 MPa
 <ヒートエージング試験>
 得られた成形体を熱風恒温槽(商品名「EPEC-18」、(株)いすゞ製作所製)内に空気雰囲気下、2000時間、260℃で静置した。その後、槽内から取り出して、ヒートエージング試験後の成形体を得た。
<Heat aging test>
The obtained molded body was allowed to stand at 260 ° C. for 2000 hours in an air atmosphere in a hot air thermostat (trade name “EPEC-18”, manufactured by Isuzu Seisakusho Co., Ltd.). Then, it took out from the tank and obtained the molded object after the heat aging test.
 ヒートエージング試験前、及びヒートエージング試験後の成形体について、テンシロン万能試験機(商品名「RTC-1325A」、(株)オリエンテック製)を用いて、以下の試験条件にて三点曲げ試験を行って、成形体が破断するまでの曲げ歪(%)を下記式(1)から算出し、靱性の保持率を下記式(2)から算出した。
 破断曲げ歪(%)=600×[たわみ(mm)]×[試験片厚み(mm)]/[支点間距離(mm)]   (1)
 靱性保持率(%)=[ヒートエージング2000時間の破断曲げ歪(%)]/[ヒートエージング0時間における破断曲げ歪(%)]×100   (2)
The molded body before and after the heat aging test is subjected to a three-point bending test under the following test conditions using a Tensilon universal testing machine (trade name “RTC-1325A”, manufactured by Orientec Co., Ltd.). The bending strain (%) until the molded body broke was calculated from the following formula (1), and the toughness retention was calculated from the following formula (2).
Breaking bending strain (%) = 600 × [deflection (mm)] × [test specimen thickness (mm)] / [distance between fulcrums (mm)] (1)
Toughness retention (%) = [Bending bending strain at 2000 hours of heat aging (%)] / [Bending bending strain at 0 hours of heat aging (%)] × 100 (2)
〔三点曲げ試験条件〕
試験速度:1mm/min
支点間距離:12.8mm
圧子半径:0.5mm
支持台半径:2mm
[Three-point bending test conditions]
Test speed: 1mm / min
Distance between fulcrums: 12.8mm
Indenter radius: 0.5 mm
Support base radius: 2mm
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表2より、実施例で得られた成形体は、酸化による樹脂の劣化が抑制され、高温環境下に長時間曝しても樹脂の靱性が保持されていることがわかる。 From Table 2, it can be seen that the molded products obtained in the examples are suppressed in deterioration of the resin due to oxidation, and the toughness of the resin is maintained even when exposed to a high temperature environment for a long time.
 以上のまとめとして、本発明の構成及びそのバリエーションを以下に付記する。
[1] 液晶ポリエステル及び液晶ポリエステルアミドから選択される少なくとも1種の液晶ポリマーと、ナノダイヤモンド粒子とを、前記液晶ポリマー100重量部に対してナノダイヤモンド粒子を0.001~5重量部の割合で含有する組成物。
[2] 前記液晶ポリマーが下記構成を有する、[1]に記載の組成物。
液晶ポリマーを構成する全構成単位における、
式(I)で示される構成単位の含有量が50~100モル%、
式(II)で示される構成単位の含有量が0~25モル%、
式(III)で示される構成単位の含有量が0~25モル%である
[3] 液晶ポリマーを構成する全構成単位に対する、式(I)で表される構成単位と式(II)で表される構成単位と式(III)で表される構成単位の合計含有量が占める割合が70モル%以上である、[1]又は[2]に記載の組成物。
[4] 液晶ポリマーを構成する全構成単位に対する、式(VI)で示される構成単位の含有量が占める割合が30モル%以下である、[1]~[3]の何れか1つに記載の組成物。
[5] 液晶ポリマーの融点若しくは軟化点が250~400℃である、[1]~[4]の何れか1つに記載の組成物。
[6] 下記液晶ポリマーの溶融粘度が5~100Pa・sである、[1]~[5]の何れか1つに記載の組成物。
液晶ポリマーの溶融粘度:液晶ポリマーの融点若しくは軟化点よりも10~30℃高いシリンダー温度において、せん断速度1000sec-1で測定した溶融粘度である。
[7] ナノダイヤモンド粒子が爆轟法ナノダイヤモンド粒子である、[1]~[6]の何れか1つに記載の組成物。
[8] ナノダイヤモンド粒子のメディアン径が10nm以下である、[1]~[7]の何れか1つに記載の組成物。
[9] ナノダイヤモンド粒子が、表面にカルボニル基を有するナノダイヤモンド粒子である、[1]~[8]の何れか1つに記載の組成物。
[10] ナノダイヤモンド粒子のフーリエ変換赤外分光光度計による赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピークが、2800~3000cm-1の最大ピークよりも高い、[1]~[9]の何れか1つに記載の組成物。
[11] 電子スピン共鳴法により測定される、25℃におけるラジカル発生量が2×1016~2×1018spins/gである、[1]~[10]の何れか1つに記載の組成物。
[12] 電子スピン共鳴法により測定される、320℃におけるラジカル発生量が2×1016~2×1018spins/gである、[1]~[11]の何れか1つに記載の組成物。
[13] 電子スピン共鳴法により測定される、400℃におけるラジカル発生量が、25℃におけるラジカル発生量の3.0倍以下である、[1]~[12]の何れか1つに記載の組成物。
[14] 空気中にて、昇温速度10℃/分で、50℃から370℃まで昇温した場合の重量減少率が2.5重量%以下である、[1]~[13]の何れか1つに記載の組成物。
[15] [1]~[14]の何れか1つに記載の組成物の固化物から成る成形体。
[16] ナノダイヤモンド粒子を含む、熱可塑性樹脂用酸化防止剤。
[17] ナノダイヤモンド粒子が爆轟法ナノダイヤモンド粒子である、[16]に記載の熱可塑性樹脂用酸化防止剤。
[18] ナノダイヤモンド粒子のメディアン径が10nm以下である、[16]又は[17]に記載の熱可塑性樹脂用酸化防止剤。
[19] ナノダイヤモンド粒子が、表面にカルボニル基を有するナノダイヤモンド粒子である、[16]~[18]の何れか1つに記載の熱可塑性樹脂用酸化防止剤。
[20] ナノダイヤモンド粒子のフーリエ変換赤外分光光度計による赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピークが、2800~3000cm-1の最大ピークよりも高い、[16]~[19]の何れか1つに記載の熱可塑性樹脂用酸化防止剤。
[21] 融点若しくは軟化温度が250℃以上である熱可塑性樹脂用酸化防止剤である、[16]~[20]の何れか1つに記載の熱可塑性樹脂用酸化防止剤。
[22] 昇温速度10℃/分(空気中)で測定される5%重量減少温度が450℃以上である、[16]~[21]の何れか1つに記載の熱可塑性樹脂用酸化防止剤。
[23] ナノダイヤモンド粒子の含有量が酸化防止剤全量の60重量%以上である、[16]~[22]の何れか1つに記載の熱可塑性樹脂用酸化防止剤。
[24] ナノダイヤモンド粒子の、熱可塑性樹脂用酸化防止剤としての使用。
[25] ナノダイヤモンド粒子が爆轟法ナノダイヤモンド粒子である、[24]に記載の熱可塑性樹脂用酸化防止剤としての使用。
[26] ナノダイヤモンド粒子のメディアン径が10nm以下である、[24]又は[25]に記載の熱可塑性樹脂用酸化防止剤としての使用。
[27] ナノダイヤモンド粒子が、表面にカルボニル基を有するナノダイヤモンド粒子である、[24]~[26]の何れか1つに記載の熱可塑性樹脂用酸化防止剤としての使用。
[28] ナノダイヤモンド粒子のフーリエ変換赤外分光光度計による赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピークが、2800~3000cm-1の最大ピークよりも高い、[24]~[27]の何れか1つに記載の熱可塑性樹脂用酸化防止剤としての使用。
[29] ナノダイヤモンド粒子が爆轟法ナノダイヤモンド粒子である、[24]~[28]の何れか1つに記載の熱可塑性樹脂用酸化防止剤としての使用。
[30] ナノダイヤモンド粒子のメディアン径が10nm以下である、[24]~[29]の何れか1つに記載の熱可塑性樹脂用酸化防止剤としての使用。
[31] ナノダイヤモンド粒子が、表面にカルボニル基を有するナノダイヤモンド粒子である、[24]~[30]の何れか1つに記載の熱可塑性樹脂用酸化防止剤としての使用。
[32] ナノダイヤモンド粒子のフーリエ変換赤外分光光度計による赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピークが、2800~3000cm-1の最大ピークよりも高い、[24]~[31]の何れか1つに記載の熱可塑性樹脂用酸化防止剤としての使用。
[33] ナノダイヤモンド粒子を用いて熱可塑性樹脂用酸化防止剤を製造する、熱可塑性樹脂用酸化防止剤の製造方法。
As a summary of the above, the configuration of the present invention and its variations are appended below.
[1] At least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide, and nanodiamond particles in a ratio of 0.001 to 5 parts by weight of nanodiamond particles to 100 parts by weight of the liquid crystal polymer. Containing composition.
[2] The composition according to [1], wherein the liquid crystal polymer has the following configuration.
In all structural units constituting the liquid crystal polymer,
The content of the structural unit represented by the formula (I) is 50 to 100 mol%,
The content of the structural unit represented by the formula (II) is 0 to 25 mol%,
The content of the structural unit represented by the formula (III) is 0 to 25 mol%. [3] The structural unit represented by the formula (I) and the formula (II) with respect to all the structural units constituting the liquid crystal polymer. The composition according to [1] or [2], wherein a proportion of the total content of the structural unit represented by formula (III) and the structural unit represented by formula (III) is 70 mol% or more.
[4] The composition according to any one of [1] to [3], wherein the proportion of the content of the structural unit represented by the formula (VI) with respect to all the structural units constituting the liquid crystal polymer is 30 mol% or less. Composition.
[5] The composition according to any one of [1] to [4], wherein the liquid crystal polymer has a melting point or softening point of 250 to 400 ° C.
[6] The composition according to any one of [1] to [5], wherein the following liquid crystal polymer has a melt viscosity of 5 to 100 Pa · s.
Melt viscosity of liquid crystal polymer: Melt viscosity measured at a shear rate of 1000 sec -1 at a cylinder temperature 10 to 30 ° C higher than the melting point or softening point of the liquid crystal polymer.
[7] The composition according to any one of [1] to [6], wherein the nanodiamond particles are detonated nanodiamond particles.
[8] The composition according to any one of [1] to [7], wherein the median diameter of the nanodiamond particles is 10 nm or less.
[9] The composition according to any one of [1] to [8], wherein the nanodiamond particles are nanodiamond particles having a carbonyl group on the surface.
[10] In the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ~ 1850 cm -1 is greater than the maximum peak of 2800 ~ 3000cm -1, [1] ~ [9] The composition as described in any one of these.
[11] The composition according to any one of [1] to [10], wherein a radical generation amount at 25 ° C. measured by an electron spin resonance method is 2 × 10 16 to 2 × 10 18 spins / g. object.
[12] The composition according to any one of [1] to [11], wherein a radical generation amount at 320 ° C. measured by an electron spin resonance method is 2 × 10 16 to 2 × 10 18 spins / g. object.
[13] The radical generation amount at 400 ° C. measured by an electron spin resonance method is 3.0 times or less the radical generation amount at 25 ° C., according to any one of [1] to [12] Composition.
[14] Any of [1] to [13], wherein the weight loss rate when heated from 50 ° C. to 370 ° C. at a temperature rising rate of 10 ° C./min in air is 2.5% by weight or less. The composition according to any one of the above.
[15] A molded article comprising a solidified product of the composition according to any one of [1] to [14].
[16] An antioxidant for thermoplastic resin, comprising nanodiamond particles.
[17] The antioxidant for thermoplastic resin according to [16], wherein the nanodiamond particles are detonated nanodiamond particles.
[18] The antioxidant for thermoplastic resins according to [16] or [17], wherein the median diameter of the nanodiamond particles is 10 nm or less.
[19] The antioxidant for thermoplastic resins according to any one of [16] to [18], wherein the nanodiamond particles are nanodiamond particles having a carbonyl group on the surface.
[20] In the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ~ 1850 cm -1 it is greater than the maximum peak of 2800 ~ 3000cm -1, [16] ~ [19] The antioxidant for thermoplastic resins as described in any one of these.
[21] The antioxidant for thermoplastic resins according to any one of [16] to [20], which is an antioxidant for thermoplastic resins having a melting point or softening temperature of 250 ° C. or higher.
[22] The oxidation for a thermoplastic resin according to any one of [16] to [21], wherein a 5% weight loss temperature measured at a heating rate of 10 ° C./min (in air) is 450 ° C. or higher. Inhibitor.
[23] The antioxidant for thermoplastic resins according to any one of [16] to [22], wherein the content of nanodiamond particles is 60% by weight or more of the total amount of the antioxidant.
[24] Use of nanodiamond particles as an antioxidant for thermoplastic resins.
[25] Use as an antioxidant for a thermoplastic resin according to [24], wherein the nanodiamond particles are detonated nanodiamond particles.
[26] Use as an antioxidant for thermoplastic resins according to [24] or [25], wherein the median diameter of the nanodiamond particles is 10 nm or less.
[27] The use as an antioxidant for thermoplastic resins according to any one of [24] to [26], wherein the nanodiamond particles are nanodiamond particles having a carbonyl group on the surface.
[28] In the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ~ 1850 cm -1 it is greater than the maximum peak of 2800 ~ 3000cm -1, [24] ~ [27] Use as an antioxidant for thermoplastic resins according to any one of the above.
[29] The use as an antioxidant for thermoplastic resins according to any one of [24] to [28], wherein the nanodiamond particles are detonated nanodiamond particles.
[30] Use as an antioxidant for thermoplastic resins according to any one of [24] to [29], wherein the median diameter of the nanodiamond particles is 10 nm or less.
[31] Use as an antioxidant for thermoplastic resins according to any one of [24] to [30], wherein the nanodiamond particles are nanodiamond particles having a carbonyl group on the surface.
[32] In the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ~ 1850 cm -1 it is greater than the maximum peak of 2800 ~ 3000cm -1, [24] ~ [31] Use as an antioxidant for thermoplastic resins according to any one of the above.
[33] A method for producing an antioxidant for thermoplastic resin, comprising producing an antioxidant for thermoplastic resin using nanodiamond particles.

Claims (9)

  1.  液晶ポリエステル及び液晶ポリエステルアミドから選択される少なくとも1種の液晶ポリマーと、ナノダイヤモンド粒子とを、前記液晶ポリマー100重量部に対してナノダイヤモンド粒子を0.001~5重量部の割合で含有する組成物。 A composition comprising at least one liquid crystal polymer selected from liquid crystal polyester and liquid crystal polyester amide, and nanodiamond particles in a proportion of 0.001 to 5 parts by weight of nanodiamond particles with respect to 100 parts by weight of the liquid crystal polymer. object.
  2.  前記液晶ポリマーが下記構成を有する、請求項1に記載の組成物。
    液晶ポリマーを構成する全構成単位における、
    下記式(I)で示される構成単位の含有量が50~100モル%、
    下記式(II)で示される構成単位の含有量が0~25モル%、
    下記式(III)で示される構成単位の含有量が0~25モル%である
    Figure JPOXMLDOC01-appb-C000001
    (式中、Ar1~Ar3は同一又は異なって、ハロゲン原子、アルキル基、及びアリール基から選択される少なくとも1種の置換基を有していてもよい、フェニレン基、ナフチレン基、又はビフェニリレン基を示す。X、Yは、同一又は異なって、-O-、又は-NH-を示す)
    The composition according to claim 1, wherein the liquid crystal polymer has the following constitution.
    In all structural units constituting the liquid crystal polymer,
    The content of the structural unit represented by the following formula (I) is 50 to 100 mol%,
    The content of the structural unit represented by the following formula (II) is 0 to 25 mol%,
    The content of the structural unit represented by the following formula (III) is 0 to 25 mol%
    Figure JPOXMLDOC01-appb-C000001
    (Wherein Ar 1 to Ar 3 are the same or different and may have at least one substituent selected from a halogen atom, an alkyl group, and an aryl group, a phenylene group, a naphthylene group, or biphenylylene) And X and Y are the same or different and represent —O— or —NH—.
  3.  ナノダイヤモンド粒子が爆轟法ナノダイヤモンド粒子である、請求項1又は2に記載の組成物。 The composition according to claim 1 or 2, wherein the nanodiamond particles are detonation nanodiamond particles.
  4.  ナノダイヤモンド粒子のフーリエ変換赤外分光光度計による赤外吸収スペクトルにおいて、1700~1850cm-1の最大ピークが、2800~3000cm-1の最大ピークよりも高い、請求項1~3の何れか1項に記載の組成物。 In the infrared absorption spectrum by Fourier transform infrared spectrophotometer of nanodiamond particles, the maximum peak of 1700 ~ 1850 cm -1 is greater than the maximum peak of 2800 ~ 3000 cm -1, any one of claims 1 to 3, A composition according to 1.
  5.  電子スピン共鳴法により測定される、320℃におけるラジカル発生量が2×1016~2×1018spins/gである、請求項1~4の何れか1項に記載の組成物。 The composition according to any one of claims 1 to 4, wherein a radical generation amount at 320 ° C measured by an electron spin resonance method is 2 × 10 16 to 2 × 10 18 spins / g.
  6.  電子スピン共鳴法により測定される、400℃におけるラジカル発生量が、25℃におけるラジカル発生量の3.0倍以下である、請求項1~5の何れか1項に記載の組成物。 6. The composition according to claim 1, wherein a radical generation amount at 400 ° C. measured by an electron spin resonance method is 3.0 times or less of a radical generation amount at 25 ° C.
  7.  請求項1~6の何れか1項に記載の組成物の固化物から成る成形体。 A molded body comprising a solidified product of the composition according to any one of claims 1 to 6.
  8.  ナノダイヤモンド粒子を含む、熱可塑性樹脂用酸化防止剤。 An antioxidant for thermoplastic resin containing nanodiamond particles.
  9.  昇温速度10℃/分(空気中)で測定される5%重量減少温度が450℃以上である、請求項8に記載の熱可塑性樹脂用酸化防止剤。 The antioxidant for thermoplastic resins according to claim 8, wherein a 5% weight reduction temperature measured at a temperature rising rate of 10 ° C / min (in air) is 450 ° C or higher.
PCT/JP2019/022585 2018-06-13 2019-06-06 Composition WO2019240013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020525506A JP7304853B2 (en) 2018-06-13 2019-06-06 Composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018113023 2018-06-13
JP2018-113023 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019240013A1 true WO2019240013A1 (en) 2019-12-19

Family

ID=68843338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022585 WO2019240013A1 (en) 2018-06-13 2019-06-06 Composition

Country Status (2)

Country Link
JP (1) JP7304853B2 (en)
WO (1) WO2019240013A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033578A1 (en) * 2019-08-22 2021-02-25 Eneos株式会社 Liquid-crystal polymer particles, thermally curable resin composition, and molded object

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051937A (en) * 2002-05-31 2004-02-19 Univ Nihon Polymer composite material and method for producing the same
JP2005144628A (en) * 2003-11-18 2005-06-09 Kazariichi:Kk Abrasive
JP2006057005A (en) * 2004-08-20 2006-03-02 Sumitomo Chemical Co Ltd Resin molded product having high thermal conductivity
JP2006274486A (en) * 2005-03-29 2006-10-12 Teijin Ltd Aromatic polyamide composite fiber and method for producing the same
JP2008169265A (en) * 2007-01-10 2008-07-24 Kaneka Corp Electrically insulating and highly thermally conductive thermoplastic resin composition and highly thermally conductive molded article
JP2008297401A (en) * 2007-05-30 2008-12-11 Kaneka Corp High thermal conductivity thermoplastic resin composition
WO2010050202A1 (en) * 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
JP2012025930A (en) * 2010-06-25 2012-02-09 Vision Development Co Ltd Method for producing polyester resin containing diamond fine particle and/or carbon nanotube
JP2012201878A (en) * 2011-03-28 2012-10-22 Vision Development Co Ltd Diamond-containing composite resin composition and method of manufacturing the same
JP2017213539A (en) * 2016-06-02 2017-12-07 株式会社ダイセル Cured resin film production method and cured resin film
WO2018079597A1 (en) * 2016-10-28 2018-05-03 株式会社ダイセル Additive for resins, and resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083636B2 (en) 2017-12-26 2022-06-13 ポリプラスチックス株式会社 Liquid crystal resin manufacturing method
JP7084133B2 (en) 2017-12-26 2022-06-14 ポリプラスチックス株式会社 Liquid crystal resin manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004051937A (en) * 2002-05-31 2004-02-19 Univ Nihon Polymer composite material and method for producing the same
JP2005144628A (en) * 2003-11-18 2005-06-09 Kazariichi:Kk Abrasive
JP2006057005A (en) * 2004-08-20 2006-03-02 Sumitomo Chemical Co Ltd Resin molded product having high thermal conductivity
JP2006274486A (en) * 2005-03-29 2006-10-12 Teijin Ltd Aromatic polyamide composite fiber and method for producing the same
JP2008169265A (en) * 2007-01-10 2008-07-24 Kaneka Corp Electrically insulating and highly thermally conductive thermoplastic resin composition and highly thermally conductive molded article
JP2008297401A (en) * 2007-05-30 2008-12-11 Kaneka Corp High thermal conductivity thermoplastic resin composition
WO2010050202A1 (en) * 2008-10-30 2010-05-06 株式会社カネカ High thermal conductivity thermoplastic resin composition and thermoplastic resin
JP2012025930A (en) * 2010-06-25 2012-02-09 Vision Development Co Ltd Method for producing polyester resin containing diamond fine particle and/or carbon nanotube
JP2012201878A (en) * 2011-03-28 2012-10-22 Vision Development Co Ltd Diamond-containing composite resin composition and method of manufacturing the same
JP2017213539A (en) * 2016-06-02 2017-12-07 株式会社ダイセル Cured resin film production method and cured resin film
WO2018079597A1 (en) * 2016-10-28 2018-05-03 株式会社ダイセル Additive for resins, and resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021033578A1 (en) * 2019-08-22 2021-02-25 Eneos株式会社 Liquid-crystal polymer particles, thermally curable resin composition, and molded object

Also Published As

Publication number Publication date
JP7304853B2 (en) 2023-07-07
JPWO2019240013A1 (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP6439027B1 (en) Liquid crystal polyester resin composition and molded body
WO2019103036A1 (en) Liquid-crystal polyester resin composition and molded body
JP6852233B2 (en) Total aromatic polyester and polyester resin compositions
JP2019094489A (en) Liquid crystal polyester resin composition, and molded article
JP2019094497A (en) Liquid-crystal polyester resin composition and molded body
CN112334516B (en) Method for producing liquid crystalline resin fine particles
JP2001139674A (en) Preparation process of liquid crystal polyester
WO2019240013A1 (en) Composition
CN109689795A (en) Liquid crystalline resin composition
CN110603278B (en) Wholly aromatic polyester and polyester resin composition
JP6388749B1 (en) Totally aromatic polyester amide and method for producing the same
KR20030019953A (en) High Tracking Index Liquid Crystalline Polymers and Related Applications
JP6837580B2 (en) Powdered liquid crystal resin for hot press molded products and hot press molded products
JP2020041006A (en) Wholly aromatic polyester
JP7084133B2 (en) Liquid crystal resin manufacturing method
JP7169869B2 (en) Wholly aromatic polyesteramide, polyesteramide resin composition, and polyesteramide molded article
JP6345373B1 (en) Totally aromatic polyester amide and method for producing the same
JP2021105105A (en) Wholly aromatic polyester amide, polyester amide resin composition, and molding
JP2021105107A (en) Wholly aromatic polyester, polyester resin composition, and molding
JPS63290723A (en) Modifying method for liquid-crystal polyester resin molded product
TW202313843A (en) Electromagnetic wave shielding member
JPWO2018207774A1 (en) Fully aromatic polyester and polyester resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19819714

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020525506

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19819714

Country of ref document: EP

Kind code of ref document: A1