WO2018079171A1 - 熱電発電システム - Google Patents

熱電発電システム Download PDF

Info

Publication number
WO2018079171A1
WO2018079171A1 PCT/JP2017/034918 JP2017034918W WO2018079171A1 WO 2018079171 A1 WO2018079171 A1 WO 2018079171A1 JP 2017034918 W JP2017034918 W JP 2017034918W WO 2018079171 A1 WO2018079171 A1 WO 2018079171A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat medium
flow path
thermoelectric
power generation
heat
Prior art date
Application number
PCT/JP2017/034918
Other languages
English (en)
French (fr)
Inventor
芳佳 畑迫
福留 二朗
田中 雄一郎
中川 修一
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CN201780064465.5A priority Critical patent/CN109891732B/zh
Priority to US16/344,745 priority patent/US11031535B2/en
Priority to EP17866013.0A priority patent/EP3534527A4/en
Publication of WO2018079171A1 publication Critical patent/WO2018079171A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/12Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a thermal reactor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • F01N5/025Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat the device being thermoelectric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect

Definitions

  • the present invention relates to a thermoelectric power generation system including a plurality of thermoelectric power generation devices that generate power according to a temperature difference.
  • Patent Document 1 discloses a thermoelectric power generation system configured such that a plurality of thermoelectric power generation devices are arranged around a heat source, and the distance between the heat source and each thermoelectric power generation device is changed according to a change with time of the temperature of the heat source. Has been.
  • thermoelectric power generation system disclosed in Patent Document 1 still has room for improvement in terms of suppressing variations in the amount of power generated by each thermoelectric power generation device.
  • thermoelectric power generation system which can suppress the variation in the electric power generation amount of each thermoelectric power generation apparatus.
  • thermoelectric power generation system is a thermoelectric power generation system including a plurality of thermoelectric power generation devices, Each thermoelectric generator is A heating unit including a heat medium flow path through which the heat medium flows; A cooling unit comprising a coolant flow path through which the coolant flows; The heating unit is provided on one surface, and the cooling unit is provided on the other surface, and the temperature difference between the condensation temperature of the heat medium that changes latent heat in the heat medium flow path and the temperature of the cooling liquid.
  • thermoelectric element for generating electricity
  • a heat transfer tube that communicates with the heat medium flow path and forms a circulation path through which the heat medium circulates;
  • the heat transfer tubes of each of the thermoelectric generators are arranged in the same flow path through which the high temperature fluid flows,
  • the heat medium passages of the thermoelectric generators are configured to communicate with each other.
  • thermoelectric power generation system is a thermoelectric power generation system including a plurality of thermoelectric power generation devices, Each thermoelectric generator is A heating unit including a heat medium flow path through which the heat medium flows; A cooling unit comprising a coolant flow path through which the coolant flows; The heating unit is provided on one surface, and the cooling unit is provided on the other surface, and the temperature difference between the condensation temperature of the heat medium that changes latent heat in the heat medium flow path and the temperature of the cooling liquid.
  • thermoelectric element for generating electricity A heat transfer tube that communicates with the heat medium flow path and forms a circulation path through which the heat medium circulates; With The heat transfer tubes of each of the thermoelectric generators are arranged in the same flow path through which the high temperature fluid flows, The circulation channels of the thermoelectric generators have the same volume.
  • Thermoelectric power generation apparatus in which the heat transfer tube is disposed at a position where the heat medium filling amount in the circulation path of the thermoelectric power generation apparatus in which the heat transfer tube is disposed at a position where the amount of heat received from the high temperature fluid is high is low. It is comprised so that it may become smaller than the filling amount of the heat medium in this circulation path.
  • thermoelectric power generation system of the present invention it is possible to suppress variations in the power generation amount of each thermoelectric power generation device.
  • thermoelectric power generation apparatus with which the thermoelectric power generation system which concerns on Embodiment 1 of this invention is provided. It is a figure which shows schematic structure at the time of seeing the thermoelectric power generation apparatus with which the thermoelectric power generation system which concerns on Embodiment 1 of this invention is provided from the back surface. It is a figure which shows schematic structure of the heating part of the thermoelectric power generation apparatus with which the thermoelectric power generation system which concerns on Embodiment 1 of this invention is provided. It is a figure which shows schematic structure of the cooling part of the thermoelectric power generation apparatus with which the thermoelectric power generation system which concerns on Embodiment 1 of this invention is provided.
  • thermoelectric power generation system which concerns on Embodiment 1 of this invention from the height direction. It is the schematic of the electric system of the thermoelectric power generation system which concerns on Embodiment 1 of this invention. It is the schematic of the heat carrier system
  • thermoelectric power generating apparatus which connected the heat exchanger tube and the heat-medium flow path through the attaching part from the height direction.
  • thermoelectric generator which connected the heat exchanger tube and the heat-medium flow path with the connection pipe which can be attached or detached.
  • thermoelectric generator which connected the heat exchanger tube and the heat-medium flow path with the connection pipe which can be attached or detached.
  • thermoelectric generator which has a bending part in which the attaching part was bent so that a heating part, a cooling part, and a thermoelectric element might extend in the direction along the wall surface of a flow path.
  • thermoelectric generator thermoelectric generator
  • thermoelectric generator is provided with a heating unit having a heat medium channel on one surface of the thermoelectric element, and a cooling unit having a refrigerant channel on the other surface of the thermoelectric element, and a heat medium flowing through the heat medium channel, Electricity is generated by a temperature difference from the refrigerant body flowing through the refrigerant flow path.
  • a plurality of thermoelectric power generation devices are arranged around a heat source, so that the heat source becomes a common heating unit for each thermoelectric power generation device. Further, a space between the heat source and each thermoelectric generator is a heat medium flow path, and air in the space is a heat medium.
  • thermoelectric power generation system of Patent Document 1 the amount of heat received by the thermoelectric element of the thermoelectric power generation device from the heat source is made uniform by approaching or separating each thermoelectric power generation device from the heat source. In this configuration, the heat from the heat source needs to be evenly radiated to the thermoelectric elements of each thermoelectric generator. However, depending on the environmental conditions, the heat from the heat source may not be radiated evenly around. In this case, the amount of heat received by each thermoelectric power generation device varies, and the amount of power generated by each thermoelectric power generation device varies.
  • thermoelectric power generation system of Patent Document 1 air becomes a heat medium, and the air flowing through the heat medium flow path changes in sensible heat because the phases are the same. That is, the temperature of the heat medium changes in the process of flowing through the heat medium flow path.
  • the present inventors make the temperature of the heat medium constant by changing the phase of the heat medium (for example, changing from gas to liquid) in the process of flowing the heat medium through the heat medium flow path. And found that variations in the amount of power generated by each thermoelectric generator can be suppressed. That is, when the heat medium changes in latent heat, the condensation temperature of the heat medium is constant. By utilizing this, even when there is a variation in the amount of heat received by each thermoelectric generator from the heat source, the temperature of the heat medium of each thermoelectric generator can be made constant. As a result, variation in the amount of power generated by each thermoelectric generator can be suppressed.
  • each thermoelectric power generation device with a heat transfer tube communicating with the heat medium flow channel, and arrange each heat transfer tube in the same flow channel through which the high-temperature fluid flows, so that each thermoelectric power generation device It was found that variation in the amount of heat received can be suppressed, and variation in the amount of power generated by each thermoelectric generator can be suppressed.
  • thermoelectric power generation system is a thermoelectric power generation system including a plurality of thermoelectric power generation devices, Each thermoelectric generator is A heating unit including a heat medium flow path through which the heat medium flows; A cooling unit comprising a coolant flow path through which the coolant flows; The heating unit is provided on one surface, and the cooling unit is provided on the other surface, and the temperature difference between the condensation temperature of the heat medium that changes latent heat in the heat medium flow path and the temperature of the cooling liquid.
  • thermoelectric element for generating electricity
  • a heat transfer tube that communicates with the heat medium flow path and forms a circulation path through which the heat medium circulates;
  • the heat transfer tubes of each of the thermoelectric generators are arranged in the same flow path through which the high temperature fluid flows,
  • the heat medium passages of the thermoelectric generators are configured to communicate with each other.
  • each thermoelectric generator generates power using the condensation temperature of the heat medium whose latent heat changes in the heat medium flow path, so that variation in the power generation amount of each thermoelectric generator can be suppressed. it can.
  • each thermoelectric generator is provided with a heat transfer pipe communicating with the heat medium flow path, and the heat transfer pipe is disposed in the same flow path through which the high-temperature fluid flows. It can suppress and the variation in the electric power generation amount of each thermoelectric generator can be suppressed. Furthermore, since the heat medium flow paths of the thermoelectric power generation devices are configured to communicate with each other, variations in the amount of power generated by the thermoelectric power generation devices can be further suppressed.
  • thermoelectric generators may be connected to each other by a pressure equalizing pipe so that the pressure in the heat medium flow path is made uniform.
  • the pressure equalizing pipe equalizes the pressure in the heat medium flow path of each thermoelectric generator, and does not need to be configured so that the heat medium flows. For this reason, the maximum cross section orthogonal to the extending direction of the pressure equalizing pipe may be configured to be smaller than the minimum cross section orthogonal to the extending direction of the heat medium flow path.
  • thermoelectric power generation system is a thermoelectric power generation system including a plurality of thermoelectric power generation devices, Each thermoelectric generator is A heating unit including a heat medium flow path through which the heat medium flows; A cooling unit comprising a coolant flow path through which the coolant flows; The heating unit is provided on one surface, and the cooling unit is provided on the other surface, and the temperature difference between the condensation temperature of the heat medium that changes latent heat in the heat medium flow path and the temperature of the cooling liquid.
  • thermoelectric element for generating electricity A heat transfer tube that communicates with the heat medium flow path and forms a circulation path through which the heat medium circulates; With The heat transfer tubes of each of the thermoelectric generators are arranged in the same flow path through which the high temperature fluid flows, The circulation channels of the thermoelectric generators have the same volume.
  • Thermoelectric power generation apparatus in which the heat transfer tube is disposed at a position where the heat medium filling amount in the circulation path of the thermoelectric power generation apparatus in which the heat transfer tube is disposed at a position where the amount of heat received from the high temperature fluid is high is low. It is comprised so that it may become smaller than the filling amount of the heat medium in this circulation path.
  • each thermoelectric generator generates power using the condensation temperature of the heat medium whose latent heat changes in the heat medium flow path, so that variation in the power generation amount of each thermoelectric generator can be suppressed. it can.
  • each thermoelectric generator is provided with a heat transfer pipe communicating with the heat medium flow path, and the heat transfer pipe is disposed in the same flow path through which the high-temperature fluid flows. It can suppress and the variation in the electric power generation amount of each thermoelectric generator can be suppressed.
  • thermoelectric power generation device since the heat medium filling amount of each thermoelectric power generation device is changed according to the amount of heat received from the high temperature fluid, the pressure in the heat medium flow path of each thermoelectric power generation device is made uniform so that each thermoelectric power generation Variations in the power generation amount of the device can be further suppressed.
  • the heat transfer tube and the heat medium flow path are connected via an attachment portion,
  • the attachment portion may include a bent portion that is bent so that the heating portion, the cooling portion, and the thermoelectric element extend in a direction along the wall surface of the flow path.
  • This configuration can save space in the thermoelectric power generation system.
  • thermoelectric power generation device includes: A heating unit including a heat medium flow path through which the heat medium flows; A cooling unit comprising a coolant flow path through which the coolant flows; The heating unit is provided on one surface, and the cooling unit is provided on the other surface, and the temperature difference between the condensation temperature of the heat medium that changes latent heat in the heat medium flow path and the temperature of the cooling liquid.
  • a thermoelectric element for generating electricity A heat transfer tube that communicates with the heat medium flow path and forms a circulation path through which the heat medium circulates; With The heat transfer tube is disposed in a flow path through which a high-temperature fluid flows, The heat transfer tube and the heat medium flow path are configured to be connected via an attachment portion.
  • the degree of freedom of connection between the heat transfer tube and the heat medium flow path can be improved.
  • the attachment portion may include a flange portion provided on the wall surface of the flow path and attached so as to close an opening through which the heat transfer tube can pass.
  • the heat transfer tube by inserting the heat transfer tube into the opening provided in the wall surface of the flow path, the heat transfer tube can be easily arranged in the flow path, and the opening is formed by the flange portion. Can be closed. Therefore, the thermoelectric generator can be easily attached to the wall surface of the flow path.
  • the attachment portion may include a detachable connecting pipe that communicates the heat transfer pipe and the heat medium flow path.
  • the connecting pipe is detachable, for example, a connecting pipe having an appropriate length is used according to the wall thickness of the flow path or the thickness of the heat insulating material formed on the wall surface of the flow path. It becomes possible. Therefore, the freedom degree of the installation place of a thermoelectric generator can be improved.
  • the mounting portion may have a bent portion that is bent so that the heating portion, the cooling portion, and the thermoelectric element extend in a direction along the wall surface of the flow path.
  • thermoelectric generator space saving of the thermoelectric generator can be achieved.
  • thermoelectric power generation system includes a plurality of thermoelectric power generation devices. First, a thermoelectric generator will be described.
  • FIG. 1A shows a schematic configuration of a thermoelectric generator 1 according to Embodiment 1.
  • the X, Y, and Z directions in FIG. 1A indicate the vertical direction, the horizontal direction, and the height direction of the thermoelectric generator 1 respectively.
  • the vertical direction, the horizontal direction, and the height direction mean the longitudinal direction, the short direction, and the vertical direction of the thermoelectric generator 1, respectively.
  • FIG. 1B shows a schematic configuration when the thermoelectric generator 1 is viewed from the back (X direction).
  • the thermoelectric generator 1 includes a thermoelectric element 2 provided with a heating unit 3 on one surface and a cooling unit 4 on the other surface.
  • the thermoelectric elements 2 are provided on both surfaces of the heating unit 3, and the cooling units 4 are provided on both surfaces of the heating unit 3 through the thermoelectric elements 2, respectively.
  • the heating unit 3 is connected to a heat transfer tube 6 disposed in a flow path 5 through which a high-temperature fluid flows.
  • thermoelectric element 2 is an element having two surfaces, one surface (high temperature side) where the heating unit 3 is provided and the other surface (low temperature side) where the cooling unit 4 is provided. One surface of the thermoelectric element 2 is heated by the heating unit 3, and the other surface is cooled by the cooling unit 4, thereby generating power using the temperature difference.
  • the thickness of the thermoelectric element 2 is designed to be smaller than the size (width) of one surface and the other surface of the thermoelectric element 2.
  • the thermoelectric element 2 is formed in a plate shape.
  • thermoelectric modules 20 a and 20 b in which a plurality of thermoelectric elements 2 are connected in series are attached to both surfaces of the heating unit 3.
  • thermoelectric modules 20 a and 20 b having 20 thermoelectric elements 2 of 4 columns ⁇ 5 rows are attached to both surfaces of the heating unit 3.
  • the number of thermoelectric elements 2 is not limited to this.
  • the thermoelectric generator 1 may have a configuration in which one thermoelectric element 2 is attached to each side of the heating unit 3.
  • the heating unit 3 is made of a metal material having excellent thermal conductivity.
  • the heating unit 3 is formed in a plate shape that contacts one surface of the thermoelectric element 2.
  • the heating unit 3 is connected to the heat transfer tube 6.
  • the heating unit 3 and the heat transfer tube 6 have internal spaces 7a and 7b that communicate with each other.
  • a heat medium is sealed in the internal space 7 a of the heating unit 3 and the internal space 7 b of the heat transfer tube 6.
  • the internal space 7a of the heating unit 3 and the internal space 7b of the heat transfer tube 6 form a circulation path 7 through which the heat medium circulates. That is, the heat transfer tube 6 forms a circulation path 7 through which the heat medium circulates in communication with the heat medium flow path.
  • the heat transfer tube 6 is disposed in the flow path 5, and evaporates the heat medium flowing in the internal space 7 b that is a part of the circulation path 7 using the heat of the high-temperature fluid flowing in the flow path 5. That is, the heat transfer tube 6 functions as an evaporation unit that evaporates the heat medium.
  • the heating unit 3 condenses the heat medium evaporated in the internal space 7 b of the heat transfer tube 6. That is, the heating unit 3 functions as a condensing unit that condenses the heat medium. In the first embodiment, water is used as the heat medium.
  • the flow path 5 is, for example, an exhaust gas duct of an engine through which high-temperature exhaust gas flows. In the flow path 5, the high-temperature fluid flows in the paper surface direction of FIG. 1A, that is, the Y direction.
  • FIG. 2 shows a schematic configuration of the heating unit 3 and the heat transfer tube 6 of the thermoelectric generator 1.
  • the heat transfer tube 6 is configured to have a large contact area with the high temperature fluid flowing through the flow path 5 when viewed from the direction in which the high temperature fluid flows, that is, the Y direction.
  • the heat transfer tube 6 includes a plurality of tubular members 61 extending in the X direction when viewed from the Y direction, and a plurality of bent portions 62 that connect the plurality of tubular members 61 to each other.
  • the plurality of tubular members 61 are arranged with a predetermined interval in the Z direction when viewed from the Y direction, and their ends are connected by a bending portion 62.
  • the heat transfer tube 6 constitutes a continuous pipe having a plurality of bent portions by connecting the plurality of tubular members 61 with the bent portions 62.
  • a heat medium flow path through which the heat medium flows is formed in the internal space 7a of the heating unit 3.
  • the heat medium flow path is formed so that the heat medium spreads over the entire heating surface in contact with the thermoelectric element 2.
  • a plurality of heat medium passages extending in the Z direction are formed in the internal space 7 a of the heating unit 3. Note that the heat medium flow path in the internal space 7a of the heating unit 3 only needs to flow in the direction of gravity, and may be inclined in the X direction, for example.
  • the circulation path 7 is formed by communicating the internal space 7 a of the heating unit 3 and the internal space 7 b of the heat transfer tube 6.
  • the heat medium circulates through the internal space 7 a of the heating unit 3 and the internal space 7 b of the heat transfer tube 6. Specifically, when the heat transfer tube 6 is heated by a high-temperature fluid flowing through the flow path 5, the heat medium flowing through the heat transfer tube 6 changes from liquid to vapor. That is, in the internal space 7b of the heat transfer tube 6, the heat medium evaporates and changes in phase from liquid to gas.
  • the steam is discharged from the open end 63 located at the higher side of the heat transfer tube 6 to the heat medium flow path in the internal space 7 a of the heating unit 3.
  • the steam discharged to the heat medium flow path in the internal space 7a of the heating unit 3 falls in the direction of gravity while being poured onto the heating surface of the heating unit 3, and dissipates heat from the heating surface to heat the thermoelectric element 2.
  • the condensed heat medium flows into the heat medium flow path in the internal space 7 b of the heat transfer tube 6 from the opening end portion 64 on the lower side of the heat transfer tube 6.
  • the heat medium that has flowed into the internal space 7b of the heat transfer tube 6 is again heated by the high-temperature fluid flowing through the flow path 5, and changes in phase from liquid to vapor.
  • the heat medium naturally circulates through the circulation path 7 formed by the internal space 7 a of the heating unit 3 and the internal space 7 b of the heat transfer tube 6.
  • the circulation path 7 formed by the internal space 7a of the heating unit 3 and the internal space 7b of the heat transfer tube 6 it is possible to utilize the phase change of the heat medium without using power such as a pump.
  • the medium is circulated repeatedly.
  • the cooling unit 4 is formed of a metal material having excellent thermal conductivity.
  • the cooling unit 4 is formed in a plate shape that contacts the other surface of the thermoelectric element 2.
  • a cooling fluid flow path through which the cooling fluid flows is formed inside the cooling unit 4.
  • FIG. 3 shows a schematic configuration of the cooling unit 4 of the thermoelectric generator 1.
  • a plate-like coolant channel 40 is formed inside the cooling unit 4 so that the coolant spreads over the entire cooling surface of the cooling unit 4 in contact with the thermoelectric element 2.
  • the coolant channel 40 has a plurality of channels extending in the X direction, and these channels are connected to each other.
  • the coolant flow path 40 is provided with a coolant inflow pipe 41 on the lower side and a coolant discharge pipe 42 on the higher side. The coolant flowing into the coolant flow path 40 from the coolant inflow pipe 41 cools the cooling surface in contact with the other surface of the thermoelectric element 2 and is then discharged from the coolant discharge pipe 42.
  • the coolant channel 40 is formed in a plate shape so that the coolant spreads over the entire cooling surface in contact with the thermoelectric element 2, but the other surface of the thermoelectric element 2 is The shape is not limited as long as it can be uniformly cooled as a whole. Further, the plurality of flow paths of the coolant flow path 40 inside the cooling unit 4 may extend in the Z direction as well as the X direction. In Embodiment 1, water is used as the coolant.
  • thermoelectric power generation system Next, the thermoelectric power generation system according to Embodiment 1 will be described.
  • FIG. 4 shows a schematic configuration of the thermoelectric power generation system 10A according to Embodiment 1 viewed from the height direction.
  • the thermoelectric power generation system 10 ⁇ / b> A includes four thermoelectric power generation apparatuses 1.
  • the heat transfer tubes 6 of each thermoelectric generator 1 are arranged in the same flow path 5 through which a high-temperature fluid flows.
  • the heat medium passages of the thermoelectric generators 1 are configured to communicate with each other. Specifically, the heat medium passages of the respective thermoelectric generators 1 are communicated with each other by a pressure equalizing pipe 8 so that the pressure in the heat medium passage is made uniform.
  • FIG. 5 shows a schematic diagram of the electrical system of the thermoelectric power generation system 10A.
  • the thermoelectric power generation system 10 ⁇ / b> A includes four thermoelectric power generation apparatuses 1, an inverter 11, and an electric load 12.
  • the four thermoelectric power generation devices 1 are connected in parallel.
  • Four thermoelectric generators 1 connected in parallel are connected to an inverter 11.
  • the inverter 11 is connected to the electric load 12.
  • the electric power generated by the four thermoelectric power generation apparatuses 1 is supplied to the electric load 12 through the inverter 11.
  • FIG. 6 shows a schematic diagram of a heat medium system of the thermoelectric power generation system 10A.
  • a dotted line and an alternate long and short dash line indicate a heat medium line
  • a solid line indicates a coolant line.
  • the heat medium line L1 is a line for filling water serving as a heat medium.
  • the valve of the heat medium line L1 is opened, and the heat medium is supplied from the tank 13 to the inside of the heating unit 3 through the heat medium line L1.
  • the heat medium line L ⁇ b> 2 is a line for evacuating using the vacuum pump 14. In a state where no heat medium is contained in the heating unit 3, vacuuming is performed by the vacuum pump 14 through the heat medium line L2. After evacuation, the heat medium in the tank 13 passes through the heat medium line L ⁇ b> 1 and is supplied into the heating unit 3.
  • the heat medium line L3 is a line for discharging the heat medium in the heating unit 3 to the tank 13.
  • the pressure valve opens and the vapor inside the heating unit 3 is discharged to the heat medium line L3.
  • the heat medium discharged from the heating unit 3 passes through the heat medium line L3 and is discharged to the tank 13 via the heat exchanger 15.
  • the cooling liquid and the heat medium can be stored in the tank 13.
  • the coolant flows from the tank 13 to the cooling unit 4 through the coolant line L4 by a pump or the like.
  • the coolant that has flowed through the cooling unit 4 flows to the cooling facility 16 through the coolant line L5.
  • the cooling facility 16 is, for example, a cooling tower that cools the coolant.
  • the coolant cooled in the cooling facility 16 is stored in the tank 13.
  • thermoelectric power generation system 10A According to the thermoelectric power generation system 10A according to Embodiment 1, the following effects can be obtained.
  • each thermoelectric power generation device 1 generates power using the condensation temperature of the heat medium whose latent heat changes in the heat medium flow path, so that variation in the power generation amount of each thermoelectric power generation device 1 is suppressed. be able to. Moreover, since each thermoelectric power generation device 1 is provided with a heat transfer tube 6 communicating with the heat medium flow channel, and the heat transfer tube 6 is disposed in the same flow channel 5 through which the high-temperature fluid flows, each thermoelectric power generation device 1 Variations in the amount of heat received can be suppressed, and variations in the amount of power generated by each thermoelectric generator 1 can be suppressed.
  • the high-temperature fluid is caused to flow in the flow path 5 in the direction of the broken line arrow.
  • the temperature of the high-temperature fluid decreases as the heat transfer tubes 6 are deprived of heat as it goes from the upstream side to the downstream side in the flow direction.
  • the amount of heat received by the heat transfer tube 6 disposed on the downstream side in the flow direction of the high-temperature fluid is smaller than the amount of heat received by the heat transfer tube 6 disposed on the upstream side in the flow direction of the high-temperature fluid.
  • thermoelectric power generation system 10A since the heat medium flow paths of the thermoelectric power generation devices 1 are configured to communicate with each other, variations in the power generation amount of the thermoelectric power generation devices 1 can be further suppressed. Further, in the thermoelectric power generation system 10A, the heat medium flow paths of the respective thermoelectric power generation apparatuses 1 are communicated with each other by the pressure equalizing pipe 8 so that the pressure in the heat medium flow path is made uniform. According to this configuration, it is possible to equalize the pressure in the heat medium flow path of each thermoelectric generator 1 and further suppress variation in the amount of power generated by each thermoelectric generator 1.
  • each thermoelectric power generation device 1 can have the same configuration, and the devices can be modularized to improve mass productivity.
  • the pressure equalizing pipe 8 is for equalizing the pressure in the heat medium flow path of each thermoelectric generator 1, and is not a path for circulating the heat medium. For this reason, you may comprise the largest cross section orthogonal to the extension direction of the pressure equalizing pipe 8 smaller than the minimum cross section orthogonal to the extension direction of a heat-medium flow path.
  • the connection position of the pressure equalizing tube 8 to each thermoelectric generator 1 is not particularly limited, but is preferably a position where a heat medium that has been condensed in the heat medium flow path and changed into a liquid does not flow. .
  • thermoelectric power generation system 10A using the four thermoelectric power generation apparatuses 1 has been described, but the present invention is not limited to this.
  • the thermoelectric power generation system 10 ⁇ / b> A only needs to include one or more thermoelectric power generation apparatuses 1.
  • water is used as the heat medium and the coolant, but the present invention is not limited to this.
  • the heat medium and the coolant may be different. Any heat medium may be used as long as it can change phase between gas and liquid in the circulation path 7.
  • the cooling liquid may be any liquid that can be cooled.
  • thermoelectric element 2 is provided on both surfaces of the heating unit 3
  • the present invention is not limited to this.
  • the thermoelectric element 2 may be provided only on one surface of the heating unit 3.
  • thermoelectric power generation system according to Embodiment 2 of the present invention will be described.
  • differences from the first embodiment will be mainly described.
  • the same or equivalent components as those in the first embodiment will be described with the same reference numerals.
  • descriptions overlapping with those in the first embodiment are omitted.
  • FIG. 7 shows a schematic configuration of a thermoelectric power generation system 10B according to the second embodiment.
  • thermoelectric power generation system 10B includes three thermoelectric power generation devices 1 and is configured to change the filling amount of the heat medium of each thermoelectric power generation device 1 according to the amount of heat received from the high temperature fluid. Different from the first embodiment.
  • thermoelectric generator 1 in which the heat transfer tube 6 is disposed at a position where the amount of heat received from the high-temperature fluid is high is the thermoelectric where the heat transfer tube 6 is disposed at a position where the amount of heat received from the high-temperature fluid is low. It is comprised so that it may become smaller than the filling amount of the heat medium of the electric power generating apparatus 1.
  • FIG. That is, in the thermoelectric generator 1 in which the heat transfer tube 6 is located on the upstream side in the flow direction of the high-temperature fluid, the heat medium filling amount in the circulation channel 7 (see FIG. 2) is the smallest.
  • thermoelectric generator 1 in which the heat transfer tube 6 is located downstream in the flow direction of the high-temperature fluid has the largest filling amount of the heat medium in the circulation flow path 7 (see FIG. 2).
  • the volume of the circulation channel of each thermoelectric generator 1 is the same.
  • the heat medium filling amount of each thermoelectric generator 1 is, for example, 10%, 15%, and 20% of the total filling amount in order from the upstream side in the flow direction of the high-temperature fluid.
  • thermoelectric power generation system 10B According to the thermoelectric power generation system 10B according to Embodiment 2, the following effects can be achieved.
  • each thermoelectric power generation device 1 generates power using the condensation temperature of the heat medium whose latent heat changes in the heat medium flow path, so that variation in the power generation amount of each thermoelectric power generation device is suppressed. Can do. Moreover, since each thermoelectric power generation device 1 is provided with a heat transfer tube 6 communicating with the heat medium flow channel, and the heat transfer tube 6 is disposed in the same flow channel 5 through which the high-temperature fluid flows, each thermoelectric power generation device 1 Variations in the amount of heat received can be suppressed, and variations in the amount of power generated by each thermoelectric generator 1 can be suppressed.
  • thermoelectric generator 1 since the heat medium filling amount of each thermoelectric generator 1 is changed according to the amount of heat received from the high-temperature fluid, the pressure in the heat medium flow path of each thermoelectric generator 1 is made uniform, Variations in the amount of power generated by the thermoelectric generator 1 can be further suppressed.
  • each thermoelectric power generation apparatus 1 can have the same configuration, and the apparatus can be modularized to improve mass productivity.
  • the present invention is not limited to the above-described embodiment, and can be implemented in various other modes.
  • the heat transfer tube 6 and the heat medium flow path in the internal space 7a of the heating unit 3 are directly connected, but the present invention is not limited to this.
  • the heat transfer tube 6 and the heat medium flow path may be connected via an attachment portion 9. According to this structure, the freedom degree of the connection of the heat exchanger tube 6 and a heat-medium flow path can be improved.
  • the attachment portion 9 may include a flange portion 91 provided on the wall surface of the flow path 5 and attached so as to close the opening portion 5 a through which the heat transfer tube 6 can pass.
  • the heat transfer tube 6 can be easily disposed in the flow path 5, and the opening 5a. Can be closed by the flange portion 91. Therefore, the thermoelectric generator 1 can be easily attached to the wall surface of the flow path 5.
  • the opening 5a only needs to allow the heat transfer tube 6 to be inserted into the flow path 5, and may be, for example, a slit.
  • the wall surface of the flow path 5 is a wall surface of the cylindrical exhaust gas duct which forms the flow path 5, for example.
  • the attachment portion 9 may include detachable connecting pipes 92 ⁇ / b> A and 92 ⁇ / b> B that connect the heat transfer pipe 6 and the heat medium flow path.
  • the connecting pipes 92A and 92B are detachable, for example, depending on the wall thickness of the flow path 5, the thickness of the heat insulating materials 101 and 102 formed on the wall surface of the flow path 5, and the like. It becomes possible to use connecting pipes 92A and 92B having a sufficient length. Therefore, the freedom degree of the installation place of the thermoelectric generator 1 can be improved.
  • the attachment portion 9 has a bent portion 93 that is bent so that the heating portion 3, the cooling portion 4, and the thermoelectric element 2 extend in the direction along the wall surface of the flow path 5. May be. According to this configuration, space saving of the thermoelectric generator 1 can be achieved.
  • the present invention can suppress variations in the amount of power generated by each thermoelectric power generation device, and therefore includes a plurality of thermoelectric power generation devices that generate power using the heat of a high-temperature fluid flowing through a flow path such as an exhaust gas duct of an engine. Useful for systems.

Abstract

各熱電発電装置の発電量のバラツキを抑えることができる熱電発電システムを提供する。本発明の熱電発電システムは、複数の熱電発電装置を備える熱電発電システムであって、各熱電発電装置は、熱媒体が流れる熱媒流路を備える加熱部と、冷却液が流れる冷却液流路を備える冷却部と、一方の面に加熱部が設けられるとともに、他方の面に冷却部が設けられ、熱媒流路内で潜熱変化する熱媒体の凝縮温度と冷却液の温度との温度差によって発電する熱電素子と、熱媒流路に連通して熱媒体が循環する循環経路を形成する伝熱管とを備え、各熱電発電装置の伝熱管は高温流体が流れる同一の流路内に配置され、各熱電発電装置の熱媒流路は互いに連通するように構成されている。

Description

熱電発電システム
 本発明は、温度差により発電する複数の熱電発電装置を備える熱電発電システムに関する。
 従来、この種の熱電発電システムとしては、例えば、特許文献1に開示されたものが知られている。特許文献1には、複数の熱電発電装置を熱源の周囲に配置し、熱源の温度の経時変化に応じて熱源と各熱電発電装置との距離を変化させるように構成された熱電発電システムが開示されている。
特開2011-176131号公報
 しかしながら、特許文献1の熱電発電システムでは、各熱電発電装置の発電量のバラツキを抑えるという観点において未だ改善の余地がある。
 本発明は、前記課題を解決するもので、各熱電発電装置の発電量のバラツキを抑えることができる熱電発電システムを提供する。
 本発明の一態様に係る熱電発電システムは、複数の熱電発電装置を備える熱電発電システムであって、
 各熱電発電装置は、
 熱媒体が流れる熱媒流路を備える加熱部と、
 冷却液が流れる冷却液流路を備える冷却部と、
 一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
 前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
 を備え、
 前記各熱電発電装置の伝熱管は、高温流体が流れる同一の流路内に配置され、
 前記各熱電発電装置の熱媒流路は、互いに連通するように構成されている。
 また、本発明の他の態様に係る熱電発電システムは、複数の熱電発電装置を備える熱電発電システムであって、
 各熱電発電装置は、
 熱媒体が流れる熱媒流路を備える加熱部と、
 冷却液が流れる冷却液流路を備える冷却部と、
 一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
 前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
 を備え、
 前記各熱電発電装置の伝熱管は、高温流体が流れる同一の流路内に配置され、
 前記各熱電発電装置の循環流路は、容積が同一であり、
 前記高温流体から受ける熱量が高い位置に伝熱管が配置される熱電発電装置の循環経路内の熱媒体の充填量が、前記高温流体から受ける熱量が低い位置に伝熱管が配置される熱電発電装置の循環経路内の熱媒体の充填量よりも小さくなるように構成されている。
 以上のように、本発明に係る熱電発電システムによれば、各熱電発電装置の発電量のバラツキを抑えることができる。
本発明の実施の形態1に係る熱電発電システムが備える熱電発電装置の概略構成を示す図である。 本発明の実施の形態1に係る熱電発電システムが備える熱電発電装置を背面から見た場合の概略構成を示す図である。 本発明の実施の形態1に係る熱電発電システムが備える熱電発電装置の加熱部の概略構成を示す図である。 本発明の実施の形態1に係る熱電発電システムが備える熱電発電装置の冷却部の概略構成を示す図である。 本発明の実施の形態1に係る熱電発電システムを高さ方向から見た概略構成を示す図である。 本発明の実施の形態1に係る熱電発電システムの電気系統の概略図である。 本発明の実施の形態1に係る熱電発電システムの熱媒体系統の概略図である。 本発明の実施の形態2に係る熱電発電装置を高さ方向から見た概略構成を示す図である。 伝熱管と熱媒流路とを取付部を介して接続した熱電発電装置の変形例の概略構成を示す図である。 伝熱管と熱媒流路とを取付部を介して接続した熱電発電装置の変形例を高さ方向から見た概略構成を示す図である。 伝熱管と熱媒流路とを着脱可能な連結管で連通させた熱電発電装置の変形例の概略構成を示す図である。 伝熱管と熱媒流路とを着脱可能な連結管で連通させた熱電発電装置の変形例の概略構成を示す図である。 取付部が加熱部と冷却部と熱電素子とが流路の壁面に沿う方向に延在するように曲げられた曲げ部を有する熱電発電装置の変形例の概略構成を示す図である。
 (本発明の基礎となった知見)
 本発明者らは、各熱電発電装置の発電量のバラツキを抑えるために鋭意検討した結果、以下の知見を得た。
 熱電発電装置は、熱電素子の一方の面に熱媒流路を備える加熱部を設けるとともに、熱電素子の他方の面に冷媒流路を備える冷却部を設け、熱媒流路を流れる熱媒体と冷媒流路を流れる冷媒体との温度差によって発電するものである。特許文献1の熱電発電システムでは、複数の熱電発電装置を熱源の周囲に配置することで、当該熱源が各熱電発電装置に共通の加熱部になる。また、熱源と各熱電発電装置との間の空間が熱媒流路となり、当該空間内の空気が熱媒体となる。
 特許文献1の熱電発電システムでは、熱源に対して各熱電発電装置を接近又は離間することにより、熱電発電装置の熱電素子が熱源から受ける熱量を均一化するようにしている。この構成では、熱源からの熱が各熱電発電装置の熱電素子へ均等に放射される必要がある。しかしながら、環境条件等によっては、熱源からの熱は周囲に均等に放射されない場合がある。この場合、各熱電発電装置が受ける熱量にバラツキが生じ、各熱電発電装置の発電量にバラツキが生じることになる。
 また、特許文献1の熱電発電システムでは、空気が熱媒体となり、熱媒流路を流れる空気は、相が同一であるため、顕熱変化する。即ち、熱媒体は、熱媒流路を流れる過程で温度変化する。
 これに対して、本発明者らは、熱媒体が熱媒流路を流れる過程において、熱媒体を相変化(例えば、気体から液体に変化)させることで、熱媒体の温度を一定にすることができ、各熱電発電装置の発電量のバラツキを抑えられることを見出した。即ち、熱媒体が潜熱変化するとき、熱媒体の凝縮温度は一定である。これを利用することで、各熱電発電装置が熱源から受ける熱量にバラツキが生じた場合であっても、各熱電発電装置の熱媒体の温度を一定にすることが可能になる。その結果、各熱電発電装置の発電量のバラツキを抑えることができる。
 また、本発明者らは、各熱電発電装置に、熱媒流路に連通する伝熱管を設け、当該伝熱管を高温流体が流れる同一の流路内に配置することで、各熱電発電装置が受ける熱量のバラツキを抑えて、各熱電発電装置の発電量のバラツキを抑えられることを見出した。
 これらの知見に基づき、本発明者らは、以下の発明に至った。
 本発明の一態様に係る熱電発電システムは、複数の熱電発電装置を備える熱電発電システムであって、
 各熱電発電装置は、
 熱媒体が流れる熱媒流路を備える加熱部と、
 冷却液が流れる冷却液流路を備える冷却部と、
 一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
 前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
 を備え、
 前記各熱電発電装置の伝熱管は、高温流体が流れる同一の流路内に配置され、
 前記各熱電発電装置の熱媒流路は、互いに連通するように構成されている。
 この構成によれば、各熱電発電装置が熱媒流路内で潜熱変化する熱媒体の凝縮温度を利用して発電するようにしているので、各熱電発電装置の発電量のバラツキを抑えることができる。また、各熱電発電装置に、熱媒流路に連通する伝熱管を設け、当該伝熱管を高温流体が流れる同一の流路内に配置しているので、各熱電発電装置が受ける熱量のバラツキを抑えて、各熱電発電装置の発電量のバラツキを抑えることができる。更に、各熱電発電装置の熱媒流路が互いに連通するように構成しているので、各熱電発電装置の発電量のバラツキを一層抑えることができる。
 なお、前記各熱電発電装置の熱媒流路は、当該熱媒流路内の圧力が均一化されるように互いに均圧管によって連通されてもよい。
 この構成によれば、各熱電発電装置の熱媒流路内の圧力を均圧化して、各熱電発電装置の発電量のバラツキを一層抑えることができる。
 なお、均圧管は、各熱電発電装置の熱媒流路内の圧力を均圧化するものであって、熱媒体が流れるように構成する必要はない。このため、前記均圧管の延在方向に対して直交する最大断面は、前記熱媒流路の延在方向に対して直交する最小断面よりも小さく構成してもよい。
 また、本発明の他の態様に係る熱電発電システムは、複数の熱電発電装置を備える熱電発電システムであって、
 各熱電発電装置は、
 熱媒体が流れる熱媒流路を備える加熱部と、
 冷却液が流れる冷却液流路を備える冷却部と、
 一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
 前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
 を備え、
 前記各熱電発電装置の伝熱管は、高温流体が流れる同一の流路内に配置され、
 前記各熱電発電装置の循環流路は、容積が同一であり、
 前記高温流体から受ける熱量が高い位置に伝熱管が配置される熱電発電装置の循環経路内の熱媒体の充填量が、前記高温流体から受ける熱量が低い位置に伝熱管が配置される熱電発電装置の循環経路内の熱媒体の充填量よりも小さくなるように構成されている。
 この構成によれば、各熱電発電装置が熱媒流路内で潜熱変化する熱媒体の凝縮温度を利用して発電するようにしているので、各熱電発電装置の発電量のバラツキを抑えることができる。また、各熱電発電装置に、熱媒流路に連通する伝熱管を設け、当該伝熱管を高温流体が流れる同一の流路内に配置しているので、各熱電発電装置が受ける熱量のバラツキを抑えて、各熱電発電装置の発電量のバラツキを抑えることができる。更に、高温流体から受ける熱量に応じて各熱電発電装置の熱媒体の充填量を変えるように構成しているので、各熱電発電装置の熱媒流路内の圧力を均一化して、各熱電発電装置の発電量のバラツキを一層抑えることができる。
 なお、前記伝熱管と前記熱媒流路とは、取付部を介して接続され、
 前記取付部は、前記加熱部と前記冷却部と前記熱電素子とが前記流路の壁面に沿う方向に延在するように曲げられた曲げ部を有してもよい。
 この構成によれば、熱電発電システムの省スペース化を図ることができる。
 また、本発明の一態様に係る熱電発電装置は、
 熱媒体が流れる熱媒流路を備える加熱部と、
 冷却液が流れる冷却液流路を備える冷却部と、
 一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
 前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
 を備え、
 前記伝熱管は、高温流体が流れる流路内に配置され、
 前記伝熱管と前記熱媒流路とは、取付部を介して接続されるように構成されている。
 この構成によれば、前記伝熱管と前記熱媒流路との接続の自由度を向上させることができる。
 なお、前記取付部は、前記流路の壁面に設けられ且つ前記伝熱管が通過可能な開口部を塞ぐように取り付けられるフランジ部を備えてもよい。
 この構成によれば、例えば、流路の壁面に設けられた開口部に伝熱管を挿入することで、流路内に伝熱管を容易に配置することができるとともに、前記開口部をフランジ部で塞ぐことができる。従って、熱電発電装置を容易に流路の壁面に取り付けることができる。
 また、前記取付部は、前記伝熱管と前記熱媒流路とを連通する着脱可能な連結管を備えてもよい。
 この構成によれば、連結管が着脱可能であることにより、例えば、流路の壁厚や流路の壁面に形成された断熱材の厚さ等に応じて適当な長さの連結管を用いることが可能になる。従って、熱電発電装置の設置場所の自由度を向上させることができる。
 また、前記取付部は、前記加熱部と前記冷却部と前記熱電素子とが前記流路の壁面に沿う方向に延在するように曲げられた曲げ部を有してもよい。
 この構成によれば、熱電発電装置の省スペース化を図ることができる。
 以下、実施形態について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。
(実施の形態1)
 実施の形態1に係る熱電発電システムは、複数の熱電発電装置を備えている。まず、熱電発電装置について説明する。
[熱電発電装置]
 図1Aは、実施の形態1に係る熱電発電装置1の概略構成を示す。なお、図1A中のX、Y、Z方向は、それぞれ熱電発電装置1の縦方向、横方向、高さ方向を示す。縦方向、横方向、高さ方向は、それぞれ熱電発電装置1の長手方向、短手方向、上下方向を意味する。図1Bは、熱電発電装置1を背面(X方向)から見た場合の概略構成を示す。
 図1A及び図1Bに示すように、熱電発電装置1は、一方の面に加熱部3が設けるとともに、他方の面に冷却部4が設けられる熱電素子2を備えている。実施の形態1において、熱電素子2は、加熱部3の両面に設けられており、それぞれの熱電素子2を介して加熱部3の両面に、冷却部4がそれぞれ対向して設けられている。実施の形態1では、加熱部3は、高温流体が流れる流路5に配置される伝熱管6に接続されている。
<熱電素子>
 熱電素子2は、加熱部3が設けられる一方の面(高温側)と、冷却部4が設けられる他方の面(低温側)の2つの面を有する素子である。熱電素子2は、加熱部3により一方の面が加熱されるとともに、冷却部4により他方の面が冷却されることによって、その温度差を利用して発電を行う。熱電素子2の厚さは、熱電素子2の一方の面及び他方の面の大きさ(幅)よりも小さく設計されている。具体的には、熱電素子2は、板状に形成されている。実施の形態1では、複数の熱電素子2を直列に接続した熱電モジュール20a,20bが、加熱部3の両面に貼り付けられている。具体的には、4列×5行の20個の熱電素子2を有する熱電モジュール20a,20bが、加熱部3の両面に貼り付けられている。なお、熱電素子2の数は、これに限定されない。例えば、熱電発電装置1は、加熱部3の両面にそれぞれ1つの熱電素子2を貼り付ける構成であってもよい。
<加熱部>
 加熱部3は、熱伝導性に優れた金属材料によって形成されている。加熱部3は、熱電素子2の一方の面に接触する板状に形成されている。加熱部3は、伝熱管6と接続されている。加熱部3と伝熱管6とは、それぞれ互いに連通する内部空間7a,7bを有している。加熱部3の内部空間7aと伝熱管6の内部空間7bには、熱媒体が封入されている。また、加熱部3の内部空間7aと伝熱管6の内部空間7bとは、熱媒体が循環する循環経路7を形成している。即ち、伝熱管6は、熱媒流路に連通して熱媒体が循環する循環経路7を形成する。
 伝熱管6は、流路5に配置されており、流路5を流れる高温流体の熱を利用して、循環経路7の一部である内部空間7bを流れる熱媒体を蒸発させる。即ち、伝熱管6は、熱媒体を蒸発させる蒸発部として機能する。加熱部3は、伝熱管6の内部空間7bで蒸発した熱媒体を凝縮する。即ち、加熱部3は、熱媒体を凝縮する凝縮部として機能する。実施の形態1では、熱媒体として水を用いている。また、流路5は、例えば、高温の排ガスが流れるエンジンの排ガスダクトである。流路5において、高温流体は、図1Aの紙面方向、即ちY方向へ流れる。
 図2は、熱電発電装置1の加熱部3及び伝熱管6の概略構成を示す。図2に示すように、伝熱管6は、高温流体が流れる方向、即ちY方向から見て、流路5を流れる高温流体との接触面積が大きく取れるように構成されている。具体的には、伝熱管6は、Y方向から見て、X方向に延在する複数の管状部材61と、複数の管状部材61を互いに連結する複数の曲げ部62とを有する。複数の管状部材61は、Y方向から見て、Z方向に所定の間隔を有して配列されると共に、端部を曲げ部62によって連結されている。このように、伝熱管6は、複数の管状部材61を曲げ部62で連結することによって、複数の屈曲部を有する連続した配管を構成している。
 加熱部3の内部空間7aには、熱媒体が流れる熱媒流路が形成されている。実施の形態1において、熱媒流路は、熱電素子2と接する加熱面の全体に熱媒体が行き渡るように形成されている。具体的には、図2に示すように、加熱部3の内部空間7aには、Z方向に延在する複数の熱媒流路が形成されている。なお、加熱部3の内部空間7aの熱媒流路は、熱媒体が重力方向に流れればよく、例えば、X方向などへ傾斜していてもよい。
<循環経路>
 循環経路7は、加熱部3の内部空間7aと伝熱管6の内部空間7bとを連通して形成されている。熱媒体は、加熱部3の内部空間7aと伝熱管6の内部空間7bとを循環する。具体的には、伝熱管6が流路5を流れる高温流体によって加熱されると、伝熱管6内を流れる熱媒体が液体から蒸気になる。即ち、伝熱管6の内部空間7bにおいて、熱媒体が蒸発し、液体から気体へと相変化する。蒸気は、伝熱管6の高い側の位置にある開口端部63から加熱部3の内部空間7aの熱媒流路へ排出される。加熱部3の内部空間7aの熱媒流路に排出された蒸気は、加熱部3の加熱面に注がれながら重力方向へ落下し、当該加熱面から放熱して熱電素子2を加熱することによって凝縮される。即ち、加熱部3の内部空間7aにおいて、熱媒体は、気体から液体へと相変化する。即ち、熱媒体は、潜熱変化し、熱媒体の凝縮温度は一定である。凝縮された熱媒体は、伝熱管6の低い側にある開口端部64から伝熱管6の内部空間7bの熱媒流路へ流入する。伝熱管6の内部空間7bに流入した熱媒体は、再び、流路5を流れる高温流体によって加熱され、液体から蒸気へと相変化する。このように、加熱部3の内部空間7aと伝熱管6の内部空間7bとで形成された循環経路7を熱媒体が自然循環する。言い換えると、加熱部3の内部空間7aと伝熱管6の内部空間7bとで形成される循環経路7においては、ポンプ等の動力を使用せずとも、熱媒体の相変化を利用して、熱媒体を繰り返し循環させている。
<冷却部>
 冷却部4は、熱伝導性に優れた金属材料によって形成されている。冷却部4は、熱電素子2の他方の面に接触する板状に形成されている。冷却部4の内部には、冷却液が流れる冷却液流路が形成されている。
 図3は、熱電発電装置1の冷却部4の概略構成を示す。図3に示すように、冷却部4の内部には、熱電素子2と接触する冷却部4の冷却面の全体に冷却液が行き渡るように板状の冷却液流路40が形成されている。具体的には、冷却液流路40は、X方向に延在する複数の流路を有し、これらの流路が互いに接続されている。冷却液流路40には、低い側にある冷却液流入管41と、高い側にある冷却液排出管42とが設けられている。冷却液流入管41から冷却液流路40に流入した冷却液は、熱電素子2の他方の面と接触する冷却面を冷却した後、冷却液排出管42から排出される。なお、実施の形態1では、冷却液流路40は、熱電素子2と接触する冷却面の全体に冷却液が行き渡るような板状形状に形成されているが、熱電素子2の他方の面を全体的に均一に冷却することができればよく、形状は限定されない。また、冷却部4の内部の冷却液流路40の複数の流路は、X方向だけでなくZ方向に延在していてもよい。実施の形態1では、冷却液として、水を用いている。
[熱電発電システム]
 次に、実施の形態1に係る熱電発電システムについて説明する。
 図4は、実施の形態1に係る熱電発電システム10Aを高さ方向から見た概略構成を示す。図4に示すように、熱電発電システム10Aは、4つの熱電発電装置1を備えている。各熱電発電装置1の伝熱管6は、高温流体が流れる同一の流路5内に配置されている。各熱電発電装置1の熱媒流路は、互いに連通するように構成されている。具体的には、各熱電発電装置1の熱媒流路は、当該熱媒流路内の圧力が均一化されるように互いに均圧管8によって連通されている。
<電気系統>
 図5は、熱電発電システム10Aの電気系統の概略図を示す。図5に示すように、熱電発電システム10Aは、4つの熱電発電装置1と、インバータ11と、電気負荷12とを備えている。熱電発電システム10Aにおいて、4つの熱電発電装置1は、並列に接続されている。並列に接続された4つの熱電発電装置1は、インバータ11に接続されている。インバータ11は、電気負荷12に接続されている。熱電発電システム10Aにおいて、4つの熱電発電装置1で発電された電力は、インバータ11を介して電気負荷12へ供給される。
<熱媒体系統>
 図6は、熱電発電システム10Aの熱媒体系統の概略図を示す。図6において、点線及び一点鎖線は熱媒体のライン、実線は冷却液のラインを示す。まず、熱媒体の流れについて説明する。図6に示すように、熱媒体ラインL1,L2,L3が熱電発電装置1の加熱部3に接続されている。熱媒体ラインL1,L2,L3にはそれぞれ弁が設けられている。加熱部3の内部において、熱媒体が自然循環している間、熱媒体ラインL1,L2,L3の弁は閉じている。なお、熱媒体ラインL3に設けられている弁は、圧力弁である。
 熱媒体ラインL1は、熱媒体となる水を充填するラインである。加熱部3の内部に熱媒体を入れたい場合、熱媒体ラインL1の弁を開き、タンク13から熱媒体ラインL1を通って加熱部3の内部へ熱媒体を供給する。
 熱媒体ラインL2は、真空ポンプ14を用いて真空引きするためのラインである。加熱部3の内部に熱媒体が入っていない状態で、熱媒体ラインL2を介して真空ポンプ14により真空引きを行う。真空引き後、タンク13内の熱媒体が熱媒体ラインL1を通り、加熱部3の内部へ供給される。
 熱媒体ラインL3は、加熱部3内の熱媒体をタンク13へ排出するラインである。加熱部3の内部の蒸気圧が熱媒体ラインL3の圧力弁の許容値よりも大きくなると、圧力弁が開き、加熱部3の内部の蒸気が熱媒体ラインL3へ排出される。加熱部3から排出された熱媒体は、熱媒体ラインL3を通り、熱交換器15を介してタンク13に排出される。実施の形態1では、熱媒体及び冷却液ともに水を用いているため、冷却液と熱媒体とをタンク13に貯留することができる。
 次に、冷却液の流れについて説明する。図6に示すように、冷却液は、ポンプ等によって、タンク13から冷却液ラインL4を通って冷却部4へ流れる。冷却部4を流れた冷却液は、冷却液ラインL5を通って冷却設備16へ流れる。冷却設備16は、例えば、冷却液を冷却するクーリングタワーである。冷却設備16において冷却された冷却液は、タンク13で貯留される。
[効果]
 実施の形態1に係る熱電発電システム10Aによれば、以下の効果を奏することができる。
 熱電発電システム10Aでは、各熱電発電装置1が熱媒流路内で潜熱変化する熱媒体の凝縮温度を利用して発電するようにしているので、各熱電発電装置1の発電量のバラツキを抑えることができる。また、各熱電発電装置1に、熱媒流路に連通する伝熱管6を設け、当該伝熱管6を高温流体が流れる同一の流路5内に配置しているので、各熱電発電装置1が受ける熱量のバラツキを抑えて、各熱電発電装置1の発電量のバラツキを抑えることができる。
 なお、実施の形態1では、高温流体は、流路5内を破線矢印の方向に流れるようにしている。この場合、高温流体は、流れ方向の上流側から下流側に向かうに従い、各伝熱管6に熱を奪われるなどして温度が低下する。このため、高温流体の流れ方向の下流側に配置される伝熱管6が受ける熱量は、高温流体の流れ方向の上流側に配置される伝熱管6が受ける熱量よりも小さくなる。
 これに対して、熱電発電システム10Aでは、各熱電発電装置1の熱媒流路が互いに連通するように構成しているので、各熱電発電装置1の発電量のバラツキを一層抑えることができる。また、熱電発電システム10Aでは、各熱電発電装置1の熱媒流路が、当該熱媒流路内の圧力が均一化されるように互いに均圧管8によって連通されている。この構成によれば、各熱電発電装置1の熱媒流路内の圧力を均圧化して、各熱電発電装置1の発電量のバラツキを一層抑えることができる。
 また、熱電発電システム10Aでは、各熱電発電装置1を同一構成とすることができ、装置をモジュール化して、量産性を向上させることができる。
 なお、均圧管8は、各熱電発電装置1の熱媒流路内の圧力を均圧化するものであって、熱媒体を循環させるための経路ではない。このため、均圧管8の延在方向に対して直交する最大断面は、熱媒流路の延在方向に対して直交する最小断面よりも小さく構成してもよい。また、各熱電発電装置1に対する均圧管8の接続位置は、特に限定されるものではないが、熱媒流路で凝縮されて相が液体に変化した熱媒体が流入しない位置であることが望ましい。
 なお、実施の形態1では、4つの熱電発電装置1を用いた熱電発電システム10Aを説明したが、本発明はこれに限定されない。熱電発電システム10Aは、1つ以上の熱電発電装置1を備えていればよい。
 また、実施の形態1では、熱媒体及び冷却液として水を用いたが、本発明はこれに限定されない。熱媒体と冷却液とは、異なっていてもよい。熱媒体としては、循環経路7内で気体と液体とに相変化することができるものであればよい。冷却液としては、冷却できる液体であればよい。
 また、実施の形態1では、熱電素子2を加熱部3の両方の面に設ける例について説明したが、本発明はこれに限定されない。例えば、熱電素子2は、加熱部3の一方の面にのみ設けてもよい。
(実施の形態2)
[全体構成]
 本発明の実施の形態2に係る熱電発電システムについて説明する。なお、実施の形態2では、主に実施の形態1と異なる点について説明する。実施の形態2においては、実施の形態1と同一又は同等の構成については同じ符号を付して説明する。また、実施の形態2では、実施の形態1と重複する記載は省略する。
 図7は、実施の形態2に係る熱電発電システム10Bの概略構成を示す。
 実施の形態2では、熱電発電システム10Bが3つの熱電発電装置1を備え、高温流体から受ける熱量に応じて各熱電発電装置1の熱媒体の充填量を変えるように構成されている点が、実施の形態1と異なる。
 具体的には、高温流体から受ける熱量が高い位置に伝熱管6が配置される熱電発電装置1の熱媒体の充填量が、高温流体から受ける熱量が低い位置に伝熱管6が配置される熱電発電装置1の熱媒体の充填量よりも小さくなるように構成されている。即ち、高温流体の流れ方向の上流側に伝熱管6が位置する熱電発電装置1は、循環流路7(図2参照)内の熱媒体の充填量が最も小さくなっている。また、高温流体の流れ方向の下流側に伝熱管6が位置する熱電発電装置1は、循環流路7(図2参照)内の熱媒体の充填量が最も大きくなっている。なお、各熱電発電装置1の循環流路は、容積が同一である。各熱電発電装置1の熱媒体の充填量は、例えば、高温流体の流れ方向の上流側に配置されるものから順に、充填総量の10%、15%、20%である。
[効果]
 実施の形態2に係る熱電発電システム10Bによれば、以下の効果を奏することができる。
 熱電発電システム10Bでは、各熱電発電装置1が熱媒流路内で潜熱変化する熱媒体の凝縮温度を利用して発電するようにしているので、各熱電発電装置の発電量のバラツキを抑えることができる。また、各熱電発電装置1に、熱媒流路に連通する伝熱管6を設け、当該伝熱管6を高温流体が流れる同一の流路5内に配置しているので、各熱電発電装置1が受ける熱量のバラツキを抑えて、各熱電発電装置1の発電量のバラツキを抑えることができる。更に、高温流体から受ける熱量に応じて各熱電発電装置1の熱媒体の充填量を変えるように構成しているので、各熱電発電装置1の熱媒流路内の圧力を均一化して、各熱電発電装置1の発電量のバラツキを一層抑えることができる。
 また、熱電発電システム10Bでは、各熱電発電装置1を同一構成とすることができ、装置をモジュール化して、量産性を向上させることができる。
 なお、本発明は前記実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、伝熱管6と加熱部3の内部空間7aの熱媒流路とを直接的に接続するようにしたが、本発明はこれに限定されない。例えば、図8及び図9に示すように、伝熱管6と熱媒流路とを取付部9を介して接続するように構成してもよい。この構成によれば、伝熱管6と熱媒流路との接続の自由度を向上させることができる。
 また、取付部9は、図8及び図9に示すように、流路5の壁面に設けられ且つ伝熱管6が通過可能な開口部5aを塞ぐように取り付けられるフランジ部91を備えてもよい。この構成によれば、例えば、流路5の壁面に設けられる開口部5aに伝熱管6を挿入することで、流路5内に伝熱管6を容易に配置することができるとともに、開口部5aをフランジ部91で塞ぐことができる。従って、熱電発電装置1を容易に流路5の壁面に取り付けることができる。なお、開口部5aは、流路5内に伝熱管6を挿入可能であればよく、例えば、スリットであってもよい。なお、流路5の壁面は、例えば、流路5を形成する筒状の排ガスダクトの壁面である。
 また、取付部9は、図10及び図11に示すように、伝熱管6と熱媒流路とを連通する着脱可能な連結管92A,92Bを備えてもよい。この構成によれば、連結管92A,92Bが着脱可能であることにより、例えば、流路5の壁厚や流路5の壁面に形成された断熱材101,102の厚さ等に応じて適当な長さの連結管92A,92Bを用いることが可能になる。従って、熱電発電装置1の設置場所の自由度を向上させることができる。
 また、取付部9は、図12に示すように、加熱部3と冷却部4と熱電素子2とが流路5の壁面に沿う方向に延在するように曲げられた曲げ部93を有してもよい。この構成によれば、熱電発電装置1の省スペース化を図ることができる。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 本発明をある程度の詳細さをもって各実施形態において説明したが、これらの実施形態の開示内容は構成の細部において変化してしかるべきものである。また、各実施形態における要素の組合せや順序の変化は、本開示の範囲及び思想を逸脱することなく実現し得るものである。
 本発明は、各熱電発電装置の発電量のバラツキを抑えることができるので、エンジンの排ガスダクトなどの流路を流れる高温流体の熱を利用して発電を行う複数の熱電発電装置を備える熱電発電システムに有用である。
 1 熱電発電装置
 10A,10B 熱電発電システム
 11 インバータ
 12 電気負荷
 13 タンク
 14 真空ポンプ
 15 熱交換器
 16 冷却設備
 2 熱電素子
 20a,20b 熱電モジュール
 3  加熱部
 4  冷却部
 40 冷却液流路
 41 冷却液流入管
 42 冷却液排出管
 5 流路
 5a 開口部
 6 伝熱管
 61 管状部材
 62 曲げ部
 63,64 開口端部
 7 循環経路
 7a,7b 内部空間
 8 均圧管
 9 取付部
 91 
 92A,92B 連結管
 93 曲げ部
 101,102 断熱材
 L1,L2,L3 熱媒体ライン
 L4,L5 冷却液ライン

Claims (9)

  1.  複数の熱電発電装置を備える熱電発電システムであって、
     各熱電発電装置は、
     熱媒体が流れる熱媒流路を備える加熱部と、
     冷却液が流れる冷却液流路を備える冷却部と、
     一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
     前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
     を備え、
     前記各熱電発電装置の伝熱管は、高温流体が流れる同一の流路内に配置され、
     前記各熱電発電装置の熱媒流路は、互いに連通するように構成されている、
     熱電発電システム。
  2.  前記各熱電発電装置の熱媒流路は、当該熱媒流路内の圧力が均一化されるように互いに均圧管によって連通されている、請求項1に記載の熱電発電システム。
  3.  前記均圧管の延在方向に対して直交する最大断面は、前記熱媒流路の延在方向に対して直交する最小断面よりも小さい、請求項2に記載の熱電発電システム。
  4.  複数の熱電発電装置を備える熱電発電システムであって、
     各熱電発電装置は、
     熱媒体が流れる熱媒流路を備える加熱部と、
     冷却液が流れる冷却液流路を備える冷却部と、
     一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
     前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
     を備え、
     前記各熱電発電装置の伝熱管は、高温流体が流れる同一の流路内に配置され、
     前記各熱電発電装置の循環流路は、容積が同一であり、
     前記高温流体から受ける熱量が高い位置に伝熱管が配置される熱電発電装置の循環経路内の熱媒体の充填量が、前記高温流体から受ける熱量が低い位置に伝熱管が配置される熱電発電装置の循環経路内の熱媒体の充填量よりも小さくなるように構成されている、
     熱電発電システム。
  5.  前記伝熱管と前記熱媒流路とは、取付部を介して接続され、
     前記取付部は、前記加熱部と前記冷却部と前記熱電素子とが前記流路の壁面に沿う方向に延在するように曲げられた曲げ部を有する、請求項1~4のいずれか1つに記載の熱電発電システム。
  6.  熱媒体が流れる熱媒流路を備える加熱部と、
     冷却液が流れる冷却液流路を備える冷却部と、
     一方の面に前記加熱部が設けられるとともに、他方の面に前記冷却部が設けられ、前記熱媒流路内で潜熱変化する前記熱媒体の凝縮温度と前記冷却液の温度との温度差によって発電する熱電素子と、
     前記熱媒流路に連通して前記熱媒体が循環する循環経路を形成する伝熱管と、
     を備え、
     前記伝熱管は、高温流体が流れる流路内に配置され、
     前記伝熱管と前記熱媒流路とは、取付部を介して接続されている、
     熱電発電装置。
  7.  前記取付部は、前記流路の壁面に設けられ且つ前記伝熱管が通過可能な開口部を塞ぐように取り付けられるフランジ部を備える、請求項6に記載の熱電発電装置。
  8.  前記取付部は、前記伝熱管と前記熱媒流路とを連通する着脱可能な連結管を備えている、請求項6又は7に記載の熱電発電装置。
  9.  前記取付部は、前記加熱部と前記冷却部と前記熱電素子とが前記流路の壁面に沿う方向に延在するように曲げられた曲げ部を有する、請求項6~8のいずれか1つに記載の熱電発電装置。
PCT/JP2017/034918 2016-10-25 2017-09-27 熱電発電システム WO2018079171A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780064465.5A CN109891732B (zh) 2016-10-25 2017-09-27 热电发电系统
US16/344,745 US11031535B2 (en) 2016-10-25 2017-09-27 Thermoelectric power generation system
EP17866013.0A EP3534527A4 (en) 2016-10-25 2017-09-27 THERMOELECTRIC GENERATOR SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-208955 2016-10-25
JP2016208955A JP6747937B2 (ja) 2016-10-25 2016-10-25 熱電発電システム

Publications (1)

Publication Number Publication Date
WO2018079171A1 true WO2018079171A1 (ja) 2018-05-03

Family

ID=62024709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034918 WO2018079171A1 (ja) 2016-10-25 2017-09-27 熱電発電システム

Country Status (5)

Country Link
US (1) US11031535B2 (ja)
EP (1) EP3534527A4 (ja)
JP (1) JP6747937B2 (ja)
CN (1) CN109891732B (ja)
WO (1) WO2018079171A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11249522B2 (en) * 2016-06-30 2022-02-15 Intel Corporation Heat transfer apparatus for a computer environment
KR102015917B1 (ko) * 2018-01-02 2019-08-29 엘지전자 주식회사 열전 모듈을 이용하는 냉각 장치
US11193698B1 (en) * 2020-05-13 2021-12-07 Quattro Dynamics Company Limited Waste heat re-cycle cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343898A (ja) * 2003-05-15 2004-12-02 Komatsu Ltd 熱電発電装置
JP2011530270A (ja) * 2008-07-29 2011-12-15 ビーエスエスティー エルエルシー 可変熱出力源用の熱電発電機
WO2013114428A1 (ja) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 熱電発電装置
WO2016098679A1 (ja) * 2014-12-16 2016-06-23 ヤンマー株式会社 熱電発電ユニット、それを用いた熱電発電装置およびその取付構造、その取付構造を有する排気ダクトならびにエンジン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125122A (en) * 1975-08-11 1978-11-14 Stachurski John Z O Direct energy conversion device
US4065936A (en) * 1976-06-16 1978-01-03 Borg-Warner Corporation Counter-flow thermoelectric heat pump with discrete sections
US6959555B2 (en) * 2001-02-09 2005-11-01 Bsst Llc High power density thermoelectric systems
US7856949B2 (en) * 2007-12-18 2010-12-28 Ppg Industries Ohio, Inc. Heat pipes and use of heat pipes in furnace exhaust
CN101527532B (zh) * 2009-02-25 2011-02-09 南京航空航天大学 大管径高温烟道烟气余热半导体温差发电系统
JP2011176131A (ja) 2010-02-24 2011-09-08 Toshiba Corp 熱電発電装置および熱電発電システム
WO2011120676A2 (en) * 2010-03-30 2011-10-06 Tata Steel Uk Limited Arrangement for generating electricity with thermoelectric generators and solar energy collector means
JP2013128333A (ja) * 2010-03-31 2013-06-27 Tokyo Institute Of Technology 蒸気発生装置及びこれを用いたエネルギ供給システム
CN104412402A (zh) * 2012-06-25 2015-03-11 Gmz能源公司 使用梯度热交换器的热电发电系统
CN203800842U (zh) * 2014-03-18 2014-08-27 华北电力大学(保定) 一种可将汽车尾气管热能转化为电能的装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004343898A (ja) * 2003-05-15 2004-12-02 Komatsu Ltd 熱電発電装置
JP2011530270A (ja) * 2008-07-29 2011-12-15 ビーエスエスティー エルエルシー 可変熱出力源用の熱電発電機
WO2013114428A1 (ja) * 2012-01-31 2013-08-08 トヨタ自動車株式会社 熱電発電装置
WO2016098679A1 (ja) * 2014-12-16 2016-06-23 ヤンマー株式会社 熱電発電ユニット、それを用いた熱電発電装置およびその取付構造、その取付構造を有する排気ダクトならびにエンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3534527A4 *

Also Published As

Publication number Publication date
US20190331425A1 (en) 2019-10-31
US11031535B2 (en) 2021-06-08
JP2018074658A (ja) 2018-05-10
CN109891732A (zh) 2019-06-14
JP6747937B2 (ja) 2020-08-26
EP3534527A4 (en) 2020-05-06
CN109891732B (zh) 2020-09-01
EP3534527A1 (en) 2019-09-04

Similar Documents

Publication Publication Date Title
JP6217746B2 (ja) 冷却システム及び電子機器
JP4289412B2 (ja) 外燃機関
WO2018079171A1 (ja) 熱電発電システム
KR20130110178A (ko) 전기 기계의 냉각
CN107466194A (zh) 用于大容量svg的风冷热管散热器
RU2719392C1 (ru) Термоэлектрическое устройство генерирования мощности и термоэлектрическая система генерирования мощности
WO2018079172A1 (ja) 熱電発電システム
TWI651875B (zh) 廢熱回收發電的熱電模組
CA2844866A1 (en) Thermoelectric power generation condenser
WO2012124469A1 (ja) 電池温調装置
US20230314094A1 (en) Electric arrangement, panel and heat exchanger
CN113716011B (zh) 一种船舶用泵辅助冷却系统
WO2017203973A1 (ja) 熱電発電装置
JP2017112189A (ja) サーモサイフォン冷却装置
JP4930472B2 (ja) 冷却装置
JPS61110881A (ja) 熱交換器
EP2338018A2 (en) Heat exchanger
JP2017133828A (ja) 冷却システム及び電子機器
JP2018162702A (ja) 熱遷移流ポンプ
JP2018204824A (ja) 排熱回収装置
NZ620250B (en) Thermoelectric power generation condenser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017866013

Country of ref document: EP

Effective date: 20190527