WO2018078669A1 - 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 - Google Patents

高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 Download PDF

Info

Publication number
WO2018078669A1
WO2018078669A1 PCT/JP2016/004693 JP2016004693W WO2018078669A1 WO 2018078669 A1 WO2018078669 A1 WO 2018078669A1 JP 2016004693 W JP2016004693 W JP 2016004693W WO 2018078669 A1 WO2018078669 A1 WO 2018078669A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
base
solar cell
emitter
layer
Prior art date
Application number
PCT/JP2016/004693
Other languages
English (en)
French (fr)
Inventor
渡部 武紀
隼 森山
洋 橋上
大塚 寛之
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to PCT/JP2016/004693 priority Critical patent/WO2018078669A1/ja
Priority to US16/342,557 priority patent/US11038070B2/en
Priority to CN201680090321.2A priority patent/CN109891599B/zh
Priority to KR1020197011754A priority patent/KR102626554B1/ko
Priority to EP16897480.6A priority patent/EP3340314A4/en
Priority to JP2017519718A priority patent/JPWO2018078669A1/ja
Priority to TW106106847A priority patent/TWI649884B/zh
Publication of WO2018078669A1 publication Critical patent/WO2018078669A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/022458Electrode arrangements specially adapted for back-contact solar cells for emitter wrap-through [EWT] type solar cells, e.g. interdigitated emitter-base back-contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0516Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module specially adapted for interconnection of back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a high photoelectric conversion efficiency solar cell and a method for producing the high photoelectric conversion efficiency solar cell.
  • FIG. 11 Emitter layers 1112 and base layers 1113 are alternately arranged on the back surface of the substrate 1110, and electrodes (collecting electrodes) (emitter electrodes 1124 and base electrodes 1125) are provided along the respective layers. Further, bus bar electrodes (emitter bus bar electrode 1134 and base bus bar electrode 1135) for further collecting current obtained from these electrodes are provided.
  • the bus bar electrode is often orthogonal to the current collecting electrode.
  • the width of the emitter layer 1112 is several mm to several hundred ⁇ m, and the width of the base layer 1113 is several hundred ⁇ m to several tens ⁇ m. Further, the width of the current collecting electrodes (emitter electrode 1124, base electrode 1125) is generally several hundred to several tens of ⁇ m, and the electrodes are often called finger electrodes.
  • FIG. 12 shows a schematic diagram of a cross-sectional structure of the back electrode type solar cell 1100.
  • An emitter layer 1112 and a base layer 1113 are formed near the outermost layer on the back surface of the substrate. Each layer thickness of the emitter layer 1112 and the base layer 1113 is about 1 ⁇ m at most.
  • Finger electrodes 1124 and 1125 are provided on each layer, and the surface of a non-electrode region (a region where no electrode is formed) is covered with a dielectric film (back surface protective film 1141) such as a silicon nitride film or a silicon oxide film.
  • An antireflection film 1151 is provided on the light receiving surface side of the solar cell 1100 for the purpose of reducing reflection loss.
  • Patent Document 1 In order to reduce the wiring resistance of the collecting electrode in the back electrode type solar cell, a method of providing a plurality of bus bars is known in Patent Document 1 (particularly FIG. 9). This is to separate the opposite collector electrode and bus bar with an insulating film, and “the bus bar electrode is in direct contact with the substrate, which makes it easy to shunt” (paragraph [0040] in Patent Document 1). Has been. Further, as a means for solving this problem, in Patent Document 1, an “arm” is provided on the bus bar, and an insulating film is provided on the entire area directly below the bus bar (particularly FIG. 1).
  • Patent Document 1 can avoid the direct contact between the bus bar electrode and the substrate, there is a problem that the insulating material and the bus bar electrode material are consumed correspondingly.
  • the known method affects the photoelectric conversion efficiency in the method of providing a plurality of bus bars. It wasn't.
  • the present invention has been made in view of such circumstances, and by suppressing the consumption of an insulating material and maintaining good electrical contact between the base busbar electrode and the base electrode, the contact between the base busbar electrode and the emitter region is achieved. It is an object of the present invention to provide a solar cell that can reduce a decrease in parallel resistance and improve solar cell characteristics.
  • the present invention has been made in order to solve the above-mentioned problem, on the first main surface of the semiconductor substrate having the first conductivity type, adjacent to the base layer having the first conductivity type, and the base layer, A base electrode electrically connected to the base layer, and an emitter electrode electrically connected to the emitter layer, the emitter layer having a second conductivity type opposite to the first conductivity type; A dielectric film in contact with the base layer and the emitter layer on the first main surface, covering the emitter electrode and positioned on the dielectric film, A first insulating film disposed on the base layer so as to have a gap; at least a base bus bar electrode positioned on the first insulating film; and a gap between the first insulating films.
  • the base electrode and the base bus bar electrode are electrically connected.
  • the base electrode and the bus bar electrode for the base are electrically connected, current can be collected more efficiently, and the solar cell can be made more efficient.
  • the shape of the base layer appearing on the first main surface of the semiconductor substrate is elongated, and the width thereof is 50 ⁇ m or more and 200 ⁇ m or less.
  • Such a solar cell can also efficiently collect current from the emitter layer.
  • the present invention provides a solar cell module characterized in that the above-described solar cell is incorporated.
  • the solar cell of the present invention can be built in the solar cell module.
  • the present invention also provides a solar power generation system characterized by having the above solar cell module.
  • the solar cell module incorporating the solar cell of the present invention can be used in a solar power generation system.
  • the present invention also provides a first main surface of a semiconductor substrate having a first conductivity type, a base layer having the first conductivity type, and a conductivity type adjacent to the base layer and opposite to the first conductivity type.
  • a step of forming an emitter layer having the second conductivity type, a step of forming a dielectric film in contact with the base layer and the emitter layer on the first main surface, and an electrical connection with the base layer A method of manufacturing a solar cell, comprising: forming a base electrode to be formed; and forming an emitter electrode electrically connected to the emitter layer, and covering the emitter electrode and the dielectric film And forming a first insulating film so as to have a gap on at least the base layer, and forming a base bus bar electrode on at least the first insulating film, in front
  • the insulating film is formed by setting the gap distance of the first insulating film to 40 ⁇ m or more (W + 110) ⁇ m or less (W is the width of
  • the reduction in parallel resistance due to contact between the base busbar electrode and the emitter region can be minimized while maintaining good electrical contact between the base busbar electrode and the base electrode.
  • a solar cell can be manufactured and the solar cell characteristics can be improved. Moreover, it is a method which does not need to consume the material for an insulator more than necessary.
  • the base electrode and the bus bar electrode for base are electrically connected.
  • the shape of the base layer appearing on the first main surface of the semiconductor substrate is elongated and the width thereof is 50 ⁇ m or more and 200 ⁇ m or less.
  • a step of forming a second insulating film covering the base electrode, and forming an emitter bus bar electrode located at least on the second insulating film and electrically connected to the emitter electrode are formed.
  • the reduction in parallel resistance due to the contact between the base busbar electrode and the emitter region can be minimized while maintaining good electrical contact between the base busbar electrode and the base electrode.
  • the solar cell characteristics can be improved. Further, it is not necessary to consume more material for the insulator than necessary.
  • the contact resistance between the bus bar electrode for the base and the emitter layer can be improved and the conversion efficiency can be improved while maintaining the electrical contact between the bus bar electrode and the base electrode only by a slight pattern change of the insulating film printing plate making.
  • the manufacturing method of the solar cell of this invention such a high photoelectric conversion efficiency solar cell can be manufactured.
  • FIG. 1 is a schematic top view illustrating an example of a back surface structure of a solar cell (back electrode type solar cell) according to the present invention.
  • FIG. 2 shows a schematic cross-sectional view of the A-A ′ portion in FIG.
  • the solar cell 100 includes a base layer 13 having a first conductivity type and a base layer on a first main surface (back surface, non-light-receiving surface) of a semiconductor substrate 10 having a first conductivity type. 13 has an emitter layer 12 having a second conductivity type, which is a conductivity type opposite to the first conductivity type.
  • the solar cell 100 includes a base electrode 25 that is electrically connected to the base layer 13 and an emitter electrode 24 that is electrically connected to the emitter layer 12.
  • the solar cell 100 of the present invention further includes a dielectric film 42 in contact with the base layer 13 and the emitter layer 12 on the first main surface of the semiconductor substrate 10 (see FIG. 2).
  • the solar cell 100 further includes a first insulating film 43 that covers the emitter electrode 24 and is positioned on the dielectric film 42 and disposed so as to have a gap on at least the base layer 13.
  • the solar cell 100 has a base bus bar electrode 35 positioned on at least the first insulating film 43.
  • the gap distance 44 of the first insulating film 43 is 40 ⁇ m or more and (W + 110) ⁇ m or less (W is the width of the base layer 13 in the gap direction).
  • the solar cell 100 further includes a second insulating film 47 that covers the base electrode 25, and has an emitter bus bar electrode 34 that is located on at least the second insulating film 47 and is electrically connected to the emitter electrode 24. It is preferable.
  • the base electrode 25 is preferably connected to a base bus bar electrode 35.
  • the shape which appears on the 1st main surface of the semiconductor substrate 10 of the base layer 13 is elongate, and the width
  • the base bus bar electrode 35 does not require electrical contact with the semiconductor substrate 10 in terms of its function, and the presence of the back surface protective film 42 that is often a dielectric film and an insulator makes the base bus bar electrode 35 The magnitude of the influence of electrical contact between the electrode 35 and the emitter layer 12 has not been investigated so far.
  • the distance 44 between the first insulating films 43 that is, the distance between the adjacent insulating films at the base electrode-bus bar connecting portion is 40 ⁇ m or more (W + 110) ⁇ m or less. It has been found that the battery characteristics are not greatly affected, and further, if it is 40 ⁇ m or more and W ⁇ m or less, the solar battery characteristics are not affected. If the gap is less than W ⁇ m, that is, if the gap distance 44 of the first insulating film 43 is the same as or smaller than the width of the base layer 13, the contact resistance between the base bus bar electrode 35 and the emitter layer 12 is complete. Can be ignored.
  • the gap distance 44 is less than 40 ⁇ m, there is a possibility that the base electrode 25 and the base bus bar electrode 35 cannot be contacted.
  • the distance between the adjacent insulating films exceeds W ⁇ m, an overlapping portion is necessarily generated in the relationship between the base bus bar electrode 35 and the emitter layer 12.
  • W + 110 the distance between the adjacent insulating films
  • it does not significantly affect the solar cell characteristics within the range of (W + 110) ⁇ m or less. If it exceeds (W + 110) ⁇ m, the contact resistance between the bus bar and the emitter region cannot be ignored, and the solar cell characteristics deteriorate.
  • a solar cell with high photoelectric conversion efficiency can be obtained by setting the distance 44 between the adjacent insulating films in the base electrode connecting portion to 40 ⁇ m or more (W + 110) ⁇ m, more preferably 40 ⁇ m to W ⁇ m.
  • a semiconductor substrate 110 having a first conductivity type (N-type in this example) is prepared.
  • the semiconductor substrate 110 can be prepared as follows, for example. First, an as-cut single crystal ⁇ 100 ⁇ N-type silicon substrate (semiconductor substrate) 110 having a specific resistance of 0.1 to 5 ⁇ ⁇ cm is prepared by doping high-purity silicon with a pentavalent element such as phosphorus, arsenic, or antimony. To do. Next, the slice damage on the surface of the semiconductor substrate 110 is etched using a high concentration alkali such as sodium hydroxide or potassium hydroxide having a concentration of 5 to 60%, or a mixed acid of hydrofluoric acid and nitric acid.
  • a high concentration alkali such as sodium hydroxide or potassium hydroxide having a concentration of 5 to 60%, or a mixed acid of hydrofluoric acid and nitric acid.
  • the single crystal silicon substrate may be manufactured by either the CZ method or the FZ method.
  • the substrate is not necessarily made of single crystal silicon, but may be polycrystalline silicon.
  • minute unevenness called texture is formed on the surface of the semiconductor substrate 110. Texture is an effective way to reduce solar cell reflectivity.
  • the texture is immersed for about 10 to 30 minutes in an alkali solution (concentration 1 to 10%, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogencarbonate, etc. Produced.
  • a predetermined amount of 2-propanol may be dissolved in the solution to accelerate the reaction.
  • a base layer having the first conductivity type (N-type in this example), and adjacent to the base layer and opposite to the first conductivity type
  • An emitter layer having the second conductivity type (P type in this example) is formed (see FIGS. 4B to 4F). Specifically, this step can be performed as follows.
  • the semiconductor substrate 110 on which the texture is formed as described above is washed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, or the like, or a mixture thereof. Hydrogen peroxide may be mixed to improve cleanliness.
  • the emitter layer 112 is formed on the first main surface of the semiconductor substrate 110.
  • the emitter layer 112 has a conductivity type opposite to that of the semiconductor substrate 110 (in this case, P type) and a thickness of about 0.05 to 1 ⁇ m.
  • the emitter layer 112 can be formed by vapor phase diffusion using BBr 3 or the like.
  • the semiconductor substrates 110 are stacked in a set and placed in a heat treatment furnace, and a heat treatment is performed at 950 to 1050 ° C. by introducing a mixed gas of BBr 3 and oxygen. Nitrogen and argon are suitable as the carrier gas.
  • a coating agent containing a boron source is applied to the entire first main surface and heat-treated at 950 to 1050 ° C.
  • a coating agent for example, an aqueous solution containing 1 to 4% boric acid as a boron source and 0.1 to 4% polyvinyl alcohol as a thickener can be used.
  • a silicon oxide film, a silicon nitride film, or the like can be used. If the CVD method is used, any film can be formed by appropriately selecting the type of gas to be introduced.
  • the semiconductor substrate 110 can also be formed by thermal oxidation. By thermally treating the semiconductor substrate 110 in an oxygen atmosphere at 950 to 1100 ° C. for 30 minutes to 4 hours, a silicon thermal oxide film of about 100 nm is formed.
  • This heat treatment may be performed in the same batch following the heat treatment for forming the emitter layer 112.
  • a portion of the mask that becomes the base region is opened (mask opening 152).
  • the openings are opened in parallel lines at intervals of about 50 to 200 ⁇ m and 0.6 to 2.0 mm.
  • the opening may be a chemical method such as photolithography or etching paste, or a physical method such as laser or dicer.
  • the semiconductor substrate 110 is immersed in an alkaline aqueous solution such as KOH or NaOH heated to 50 to 90 ° C.
  • the emitter layer 112 is removed (etched) (mask opening 153 from which unnecessary emitter layers have been removed).
  • the base layer 113 is formed.
  • a vapor phase diffusion method using phosphorus oxychloride can be used.
  • a phosphorus diffusion layer (N + layer) serving as the base layer 113 is formed.
  • the vapor phase diffusion method it can be formed by a method in which a phosphorus-containing material is spin-coated or printed and then heat-treated.
  • the shape of the base layer 113 appearing on the first main surface of the semiconductor substrate is elongated and the width is 50 ⁇ m or more and 200 ⁇ m or less.
  • the shape and size of the base layer can be easily adjusted by adjusting the shape and size when forming the mask opening 152.
  • the mask 151 and the glass formed on the surface of the substrate are removed with hydrofluoric acid or the like (see FIG. 4F).
  • a dielectric film in contact with the base layer 113 and the emitter layer 112 is formed on the first main surface of the semiconductor substrate 110.
  • an antireflection film may be formed on the second main surface at the same time or before and after.
  • a silicon nitride film, a silicon oxide film, or the like can be used as the antireflection film 141 on the second main surface.
  • a silicon nitride film a film of about 100 nm is formed using a plasma CVD apparatus.
  • the reaction gas monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used. However, nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and the reaction gas diluted.
  • hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.
  • a silicon oxide film it can be formed by a CVD method, but a film obtained by a thermal oxidation method can obtain higher characteristics.
  • a silicon nitride film, a silicon oxide film, or the like may be formed after an aluminum oxide film is formed on the substrate surface in advance.
  • a dielectric film 142 such as a silicon nitride film or a silicon oxide film can be used as a surface protective film.
  • the film thickness of the dielectric film 142 is preferably 50 to 250 nm.
  • the silicon nitride film can be formed by the CVD method, and the silicon oxide film can be formed by the thermal oxidation method or the CVD method.
  • an aluminum oxide film may be formed on the substrate surface in advance, and then a silicon nitride film, a silicon oxide film, or the like may be formed.
  • a base electrode 125 electrically connected to the base layer 113 is formed by, for example, a screen printing method.
  • a plate making having an opening width of 30 to 100 ⁇ m and a parallel line pattern with an interval of 0.6 to 2.0 mm is prepared, and an Ag paste obtained by mixing Ag powder and glass frit with an organic binder is printed along the base layer 113. To do.
  • Ag paste is printed as the emitter electrode 124 that is electrically connected to the emitter layer 112.
  • the base electrode Ag paste and the emitter electrode Ag paste may be the same or different.
  • Ag powder is passed through the silicon nitride film or the like by heat treatment (fire through), and the electrode and silicon are made conductive.
  • the base layer electrode and the emitter layer electrode can be fired separately. Firing is usually performed by treating at 700 to 850 ° C. for 1 to 5 minutes.
  • FIG. 5A is a top view of the semiconductor substrate 110 after the process of FIG.
  • An emitter electrode 124 is formed on the emitter region (emitter layer 112), and a base electrode 125 is formed on the base region (base layer 113).
  • An insulating material (which becomes the first insulating film 143 when cured) is applied to the semiconductor substrate 110 in a pattern.
  • the first insulating film 143 is formed so as to cover the emitter electrode 124 and to be positioned on the dielectric film 142.
  • the first insulating film 143 is formed so as to have a gap on at least the base layer 113.
  • the N bus bar in this case, the base bus bar electrode connected to the base electrode
  • the P bus bar in this case, the emitter bus bar electrode connected to the emitter electrode
  • it may be applied in a pattern as shown in FIG.
  • a screen printing method or the like can be used.
  • the distance between the first insulating films in the base electrode-N bus bar connecting portion (distance between the adjacent insulating films) 144 is 40 ⁇ m. Above (W + 110) ⁇ m or less.
  • Insulating material contains at least one resin selected from silicone resin, polyimide resin, polyamideimide resin, fluororesin, phenol resin, melamine resin, urea resin, polyurethane, epoxy resin, acrylic resin, polyester resin and poval resin Can be used.
  • the insulating material as described above is applied using, for example, a screen printing method, and then cured at 100 to 400 ° C. for about 1 to 60 minutes.
  • the second insulating film 147 covering the base electrode can be formed simultaneously or before and after.
  • a base bus bar electrode is formed on at least the first insulating film. At this time, it is preferable to electrically connect the base electrode and the base bus bar electrode. In addition, it is preferable to form an emitter bus bar electrode 134 that is located on at least the second insulating film 147 and is electrically connected to the emitter electrode 124. As shown in FIG. 5C, the N bus bar (base bus bar electrode) 135 is connected to the base electrode 125, and the P bus bar (emitter bus bar electrode connected to the emitter electrode) 134 is connected to the emitter electrode 124. The emitter electrode 124, the P bus bar 134, and the base electrode 125 are configured via an insulating layer.
  • a low-temperature curable conductive paste can be used as the bus bar material.
  • one or more kinds of conductive substances selected from Ag, Cu, Au, Al, Zn, In, Sn, Bi, and Pb, and epoxy resin, acrylic resin, polyester resin, phenol resin, and silicone resin What consists of the material containing 1 or more types of resin selected from can be used.
  • the above materials are applied in a pattern using, for example, a screen printing method or a dispenser, and then cured at 100 to 400 ° C. for about 1 to 60 minutes.
  • the distance between the gaps of the first insulating film is set to 40 ⁇ m or more (W + 110) ⁇ m or less (where W is the width of the base layer in the gap direction). Form. Specifically, when applying the insulating material, the distance between the gaps of the first insulating film may be adjusted to be so.
  • FIG. 3 shows a schematic cross-sectional view of the vicinity of the base layer end of the solar cell 100 manufactured by the above method.
  • the base layer end 114 corresponds to the boundary between the emitter layer 112 and the base layer 113.
  • the positional relationship of the insulating film 143 with respect to the base layer end 114 and the base electrode 113 is the positional relationship of the insulating film 143 with respect to the base layer end 114 and the base electrode 113. If the emitter layer 112 is completely covered with the insulating film 143 as shown in FIG. 3B, high solar cell characteristics can be exhibited. Further, according to the present invention, as shown in FIG.
  • the emitter layer 112 is exposed to some extent (that is, there is a region where the emitter layer 112 does not pass through the insulating film 143, and only the base bus bar electrode 135 and the dielectric film 142 are present. Even if they are adjacent to each other, the conduction between the emitter layer 112 and the base bus bar electrode 135 is avoided to some extent due to the presence of the dielectric film 142, and the deterioration of the solar cell characteristics can be negligible.
  • the case of the N-type substrate has been described as an example, but in the case of the P-type substrate, phosphorus, arsenic, antimony, etc. may be diffused to form the emitter layer, and boron, Al, etc. may be diffused to form the base layer.
  • the method of the present invention is available.
  • the solar cell manufactured by the above method can be used for manufacturing a solar cell module.
  • FIG. 6 shows an overview of an example of a solar cell module in which a solar cell manufactured by the above method is incorporated.
  • the solar cell 400 manufactured by the above method has a structure in which the solar cell module 460 is tiled.
  • FIG. 7 corresponds to a schematic diagram of the back side of the inside of the module which is not normally touched by human eyes. Also, finger electrodes and bus bar electrodes are not shown.
  • the P bus bar of the adjacent solar cell 400 (the bus bar electrode connected to the finger electrode joined to the P type layer of the substrate) and the N bus bar (the N type layer of the substrate) are connected by a lead wire 461 or the like.
  • FIG. 4 A schematic cross-sectional view of the solar cell module 460 is shown in FIG.
  • the string is configured by connecting a plurality of solar cells 400 to the bus bar electrode 422 and the lead wires 461.
  • the string is usually sealed with a light-transmitting filler 472 such as EVA (ethylene vinyl acetate), the non-light-receiving surface side is a weather-resistant resin film 473 such as PET (polyethylene terephthalate), and the light-receiving surface is soda lime glass.
  • the light-receiving surface protective material 471 having high translucency and high mechanical strength is used.
  • the filler 472 polyolefin, silicone, or the like can be used in addition to the EVA.
  • FIG. 9 shows a basic configuration of a photovoltaic power generation system in which modules of the present invention are connected.
  • a plurality of solar cell modules 16 are connected in series by wiring 15 and supply generated power to an external load circuit 18 via an inverter 17.
  • the system may further include a secondary battery that stores the generated power.
  • 10 phosphorous-doped ⁇ 100 ⁇ N-type as-cut silicon substrates having a thickness of 200 ⁇ m and a specific resistance of 1 ⁇ ⁇ cm were prepared (see FIG. 4A).
  • the silicon substrate was removed from the damaged layer with a hot concentrated potassium hydroxide aqueous solution, immersed in a 72 ° C. potassium hydroxide / 2-propanol aqueous solution to form a texture, and subsequently heated to 75 ° C. hydrochloric acid / hydrogen peroxide. Washing was performed in the mixed solution.
  • the mask on the back side was opened with a laser (see FIG. 4D).
  • the laser source was Nd: YVO 4 second harmonic.
  • the opening pattern was a parallel line with an interval of 1.2 mm.
  • a silicon nitride film was formed on both sides using a plasma CVD apparatus (see FIG. 4G).
  • the film thickness was 100 nm on both sides.
  • the base layer width was measured with a microscope and found to be approximately 190 ⁇ m.
  • the Ag paste was printed on the base layer and the emitter layer, respectively, and dried (see FIG. 4 (h)). This was fired in an air atmosphere at 780 ° C.
  • an insulating material was printed in a pattern using a screen printer. Silicone manufactured by Shin-Etsu Chemical Co., Ltd. was used as the insulating material.
  • printing plates were prepared in which the opening widths of the insulating film sandwiching the base electrode were 30, 40, 100, 150, 200, 300, and 400 ⁇ m, respectively, and printing was performed with each plate. Since the width of the base layer was 190 ⁇ m, it was observed with a microscope that the emitter region directly below the N bus bar was completely covered with an insulating film when the opening width was 30, 40, 100, 150, and 200 ⁇ m. In addition, 30 and 40 ⁇ m were found to have a portion where the base electrode was completely covered with the insulating film. On the other hand, in 300 and 400 ⁇ m, the emitter region was exposed directly under the N bus bar. These were cured in a belt furnace at 200 ° C. for 5 minutes.
  • the obtained results are shown in FIG. 10 as the relationship between the distance between the nearest insulating films and the conversion efficiency. If it is 40 to 200 ⁇ m, no reduction in conversion efficiency is observed. This is because the N bus bar is completely isolated from the emitter region by the insulating film.
  • the base layer width W is about 190 ⁇ m as described above, and therefore the distance 200 ⁇ m between the nearest insulating films corresponds to (W + 10) ⁇ m.
  • the distance between the adjacent insulating films is 300 ⁇ m (that is, (W + 110) ⁇ m)
  • a decrease is observed, but the decrease is slight.
  • a drastic reduction is seen at 400 ⁇ m. This is because the influence of the contact resistance of the N bus bar-emitter region cannot be ignored.
  • the large decrease at 30 ⁇ m is due to the fact that the base electrode is completely covered with the insulating film and the series resistance is increased.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、ベース層(13)、エミッタ層(12)、ベース電極(25)及びエミッタ電極を有する太陽電池(100)であって、前記ベース層(13)及び前記エミッタ層(12)に接する誘電体膜(42)を有し、前記エミッタ電極を覆うとともに、前記誘電体膜(42)上に位置し、少なくとも前記ベース層(13)上において間隙を有するように配置された第一の絶縁膜(43)を有し、少なくとも前記第一の絶縁膜(43)の上に位置するベース用バスバー電極(35)を有し、前記第一の絶縁膜(43)の間隙の距離(44)が40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)であることを特徴とする太陽電池である。これにより、絶縁材料の消費を抑えるとともに、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる。

Description

高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
 本発明は高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法に関する。
 単結晶や多結晶半導体基板を用いた比較的高い光電変換効率を有する太陽電池構造の一つとして、正負の電極をすべて非受光面(裏面)に設けた裏面電極型太陽電池がある。裏面電極型太陽電池1100の裏面の概観を図11に示す。基板1110の裏面には、エミッタ層1112およびベース層1113が交互に配列され、それぞれの層上に沿って電極(集電電極)(エミッタ電極1124、ベース電極1125)が設けられている。さらに、これらの電極から得られる電流をさらに集電するためのバスバー電極(エミッタ用バスバー電極1134、ベース用バスバー電極1135)が設けられている。機能上、バスバー電極は集電電極と直交していることが多い。エミッタ層1112の幅は数mm~数百μm、ベース層1113の幅は数百μm~数十μmである。また、集電電極(エミッタ電極1124、ベース電極1125)の幅は数百~数十μm程度が一般的であり、該電極はフィンガー電極と呼ばれることが多い。
 裏面電極型太陽電池1100の断面構造の模式図を図12に示す。基板の裏面の最表層近傍にエミッタ層1112およびベース層1113が形成されている。エミッタ層1112およびベース層1113の各層厚はせいぜい1μm程度である。各層上にはフィンガー電極1124、1125が設けられ、非電極領域(電極が形成されていない領域)の表面は窒化シリコン膜や酸化シリコン膜等の誘電体膜(裏面保護膜1141)で覆われる。太陽電池1100の受光面側には反射損失を低減する目的で、反射防止膜1151が設けられる。
 裏面電極型太陽電池における集電電極の配線抵抗を低減するため、複数のバスバーを設ける方法が特許文献1(特に図9)で公知となっている。これは、相反する集電電極とバスバーを絶縁膜で隔離するものであり、「バスバー電極が基板と直接接する領域が多く、シャントしやすくなってしまう」(特許文献1の[0040]段落)とされている。さらにこれの解決手段として特許文献1では、バスバーに「腕」を設け、バスバー直下全域に絶縁膜を設けるものである(特に図1)。
特開2016-072467号公報
 特許文献1の方法はバスバー電極と基板の直接接触は回避できるが、その分絶縁材料やバスバー電極材料を多く消費するという問題があった。その一方で、裏面電極型太陽電池における集電電極の配線抵抗を低減するため、複数のバスバーを設ける方法において、公知の方法がどの程度光電変換効率に影響を及ぼすのかは、これまで明らかになっていなかった。
 本発明は、このような事情に鑑みなされたもので、絶縁材料の消費を抑えるとともに、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる太陽電池を提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、第一導電型を有する半導体基板の第一主表面に、前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を有し、前記ベース層と電気的に接続されるベース電極と、前記エミッタ層と電気的に接続されるエミッタ電極とを有する太陽電池であって、前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を有し、前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように配置された第一の絶縁膜を有し、少なくとも前記第一の絶縁膜の上に位置するベース用バスバー電極を有し、前記第一の絶縁膜の間隙の距離が40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)であることを特徴とする太陽電池を提供する。
 このような太陽電池であれば、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながらも、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる。また、必要以上に絶縁体のための材料を消費しなくてよい。
 このとき、前記ベース電極と前記ベース用バスバー電極は電気的に接続していることが好ましい。
 このように、ベース電極とベース用バスバー電極が電気的に接続していることにより、より効率的に集電することができ、太陽電池をより高効率とすることができる。
 また、前記ベース層の前記半導体基板の第一主表面に表れる形状が細長であり、その幅が50μm以上200μm以下であることが好ましい。
 このようなベース層を有することにより、効率的にベース層からの集電を行うことができる。
 また、前記ベース電極を覆う第二の絶縁膜をさらに有し、少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を有することが好ましい。
 このような太陽電池であれば、エミッタ層からの集電も効率よく行うことができる。
 また、本発明は、上記の太陽電池が内蔵されていることを特徴とする太陽電池モジュールを提供する。
 このように、本発明の太陽電池は太陽電池モジュールに内蔵することができる。
 また、本発明は、上記の太陽電池モジュールを有することを特徴とする太陽光発電システムを提供する。
 このように、本発明の太陽電池を内蔵した太陽電池モジュールは、太陽光発電システムに用いることができる。
 また、本発明は、第一導電型を有する半導体基板の第一主表面に、前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を形成する工程と、前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を形成する工程と、前記ベース層と電気的に接続されるベース電極を形成する工程と、前記エミッタ層と電気的に接続されるエミッタ電極を形成する工程と、を有する太陽電池の製造方法であって、前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように第一の絶縁膜を形成する工程と、少なくとも前記第一の絶縁膜の上にベース用バスバー電極を形成する工程とを有し、前記第一の絶縁膜を形成する工程において、前記第一の絶縁膜の間隙の距離を40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)として前記絶縁膜を形成することを特徴とする太陽電池の製造方法を提供する。
 このような太陽電池の製造方法であれば、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にすることができる太陽電池を製造することができ、太陽電池特性を向上させることができる。また、必要以上に絶縁体のための材料を消費しなくてよい方法である。
 このとき、前記ベース電極と、前記ベース用バスバー電極を、電気的に接続させることが好ましい。
 このように、ベース電極とベース用バスバー電極を電気的に接続させることにより、より効率的に集電することができる太陽電池を製造することができる。
 また、前記ベース層の前記半導体基板の第一主表面に表れる形状を細長とし、その幅を50μm以上200μm以下とすることが好ましい。
 このようなベース層を形成することにより、効率的にベース層からの集電を行うことができる。
 また、前記ベース電極を覆う第二の絶縁膜を形成する工程と、少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を形成することが好ましい。
 このようなエミッタ用バスバー電極を形成すれば、エミッタ層からの集電も効率よく行うことができる。
 本発明の太陽電池及び太陽電池の製造方法であれば、ベース用バスバー電極とベース電極の電気的接触を良好に保ちながら、ベース用バスバー電極とエミッタ領域の接触による並列抵抗の低下を軽微にでき、太陽電池特性を向上させることができる。また、必要以上に絶縁体のための材料を消費しなくてよい。また、絶縁膜印刷用製版の軽微なパターン変更のみで、バスバー電極―ベース電極間の電気的接触は維持しながら、ベース用バスバー電極―エミッタ層間のコンタクト抵抗を向上させ、変換効率を向上できる。また、最隣接絶縁膜間距離を大きくすれば、絶縁膜形成時の位置精度を荒くすることができ、位置合わせに要する時間を短縮できるため生産性も向上する。また、本発明の太陽電池の製造方法であれば、そのような高光電変換効率太陽電池を製造することができる。
本発明に係る、裏面電極型太陽電池の一例の概観図である。 本発明に係る、裏面電極型太陽電池の一例におけるベース電極―ベース用バスバー電極近傍の断面模式図である。 本発明に係る、裏面電極型太陽電池のベース電極端近傍の一例を示す断面模式図である。 本発明に係る、裏面電極型太陽電池の製造方法の一例を示す断面模式図である。 本発明に係る、裏面電極型太陽電池の製造方法の一例を示す模式図である。 本発明に係る、太陽電池モジュールの概観図である。 本発明に係る、太陽電池モジュールの裏面内部模式図である。 本発明に係る、太陽電池モジュールの断面模式図である。 本発明に係る、太陽光発電システムの模式図である。 本発明に係る、裏面電極型太陽電池の最隣接絶縁膜間距離と変換効率の関係を示した図である。 一般的な裏面電極型太陽電池の概観図である。 一般的な裏面電極型太陽電池の断面模式図である。
 以下の詳細な説明では、本発明の全体の理解、および特定の具体例でどのように実施するかを提供するために、多くの特定の細部が説明される。しかしながら、本発明は、それらの特定の細部無しに実施できることが理解されるであろう。以下では、公知の方法、手順、および技術は、本発明を不明瞭にしないために、詳細には示されない。本発明は、特定の具体例について特定の図面を参照しながら説明されるが、本発明はこれに限定されるものでは無い。ここに含まれ記載された図面は模式的であり、本発明の範囲を限定しない。また図面において、図示目的で幾つかの要素の大きさは誇張され、それゆえに縮尺通りではない。
 本発明の太陽電池の構造を、図1及び図2を参照して説明する。図1は、本発明に係る、太陽電池(裏面電極型太陽電池)の裏面構造の一例を示す上面模式図である。図1中のA-A’部分の断面模式図を図2に示す。
 図1に示したように、太陽電池100は、第一導電型を有する半導体基板10の第一主表面(裏面、非受光面)に、第一導電型を有するベース層13、及び、ベース層13に隣接し、第一導電型と反対の導電型である第二導電型を有するエミッタ層12を有する。また、太陽電池100は、ベース層13と電気的に接続されるベース電極25と、エミッタ層12と電気的に接続されるエミッタ電極24とを有する。本発明の太陽電池100は、さらに、半導体基板10の第一主表面上において、ベース層13及び前記エミッタ層12に接する誘電体膜42を有している(図2参照)。
 太陽電池100は、さらに、エミッタ電極24を覆うとともに、誘電体膜42上に位置し、少なくともベース層13上において間隙を有するように配置された第一の絶縁膜43を有する。太陽電池100は、少なくとも第一の絶縁膜43の上に位置するベース用バスバー電極35を有する。本発明の太陽電池100では、第一の絶縁膜43の間隙の距離44が40μm以上であり、(W+110)μm以下(但し、Wは間隙方向のベース層13の幅)である。
 太陽電池100は、ベース電極25を覆う第二の絶縁膜47をさらに有し、少なくとも第二の絶縁膜47の上に位置し、エミッタ電極24と電気的に接続するエミッタ用バスバー電極34を有することが好ましい。
 図1、2に示しているように、ベース電極25はベース用バスバー電極35と接続されていることが好ましい。また、ベース層13の半導体基板10の第一主表面に表れる形状が細長であり、その幅(すなわち、ベース領域幅W)が50μm以上200μm以下であることが好ましい。該ベース用バスバー電極35は、その機能上、半導体基板10との電気的接触は必要ないこと、および、誘電体膜であり絶縁体であることが多い裏面保護膜42の存在により、ベース用バスバー電極35と、エミッタ層12との電気的接触の影響の大きさに関してはこれまで調べられてこなかった。本発明者らの鋭意研究の結果、第一の絶縁膜43の間隙の距離44、すなわち、ベース電極-バスバー接続部における最隣接絶縁膜間距離は、40μm以上(W+110)μm以下であれば太陽電池特性に大きな影響を及ぼさず、さらに、40μm以上Wμm以下であれば太陽電池特性に影響を及ぼさないことが判明した。間隙がWμm以下、すなわち、第一の絶縁膜43の間隙の距離44がベース層13の幅と同じかそれよりも狭ければ、ベース用バスバー電極35とエミッタ層12の領域の接触抵抗が完全に無視できる。しかしながら、この間隙の距離44が40μm未満だと、ベース電極25とベース用バスバー電極35が接触できなくなる可能性が生じる。一方、最隣接絶縁膜間距離がWμmを超えるとベース用バスバー電極35とエミッタ層12の領域の関係において必ず重複する部分が生じてしまう。しかしながら、間隙の距離44がWμmを超えても(W+110)μm以下の範囲であれば太陽電池特性に大きな影響を及ぼさないことが判明した。(W+110)μmを超えると、バスバーとエミッタ領域の接触抵抗が無視できなくなり、太陽電池特性が低下する。以上のように、ベース電極接続部の最隣接絶縁膜間距離44が40μm以上(W+110)μm、より好ましくは40μm以上Wμmとすることで、高い光電変換効率の太陽電池を得ることができる。
 以下に、具体的な本発明の太陽電池製造方法を、N型基板の場合を例に、図4を用いて説明する。
 まず、図4(a)に示したように、第一導電型(この例ではN型)を有する半導体基板110を準備する。この半導体基板110は、例えば、以下のようにして準備することができる。まず、高純度シリコンにリン、ヒ素、又はアンチモンのような5価元素をドープし、比抵抗0.1~5Ω・cmとしたアズカット単結晶{100}N型シリコン基板(半導体基板)110を準備する。次に、半導体基板110の表面のスライスダメージを、濃度5~60%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、ふっ酸と硝酸の混酸などを用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法いずれの方法によって作製されてもよい。基板は必ずしも単結晶シリコンである必要はなく、多結晶シリコンでもかまわない。引き続き、半導体基板110の表面にテクスチャと呼ばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウムなどのアルカリ溶液(濃度1~10%、温度60~100℃)中に10分から30分程度浸漬することで作製される。上記溶液中に、所定量の2-プロパノールを溶解させ、反応を促進させてもよい。
 次に、上記のようにして準備した半導体基板110の第一主表面に、第一導電型(この例ではN型)を有するベース層、及び、ベース層に隣接し、第一導電型と反対の導電型である第二導電型(この例ではP型)を有するエミッタ層を形成する(図4(b)~(f)参照)。この工程は、具体的には、以下のようにして行うことができる。
 まず、上記のようにテクスチャを形成した半導体基板110を、塩酸、硫酸、硝酸、ふっ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。過酸化水素を混合し清浄度を向上させてもよい。
 この半導体基板110の第一主表面に、図4(b)に示すように、エミッタ層112を形成する。エミッタ層112は半導体基板110と逆の導電型(この場合P型)で厚みが0.05~1μm程度である。エミッタ層112はBBr等を用いた気相拡散によって形成できる。半導体基板110を2枚一組として重ね合わせた状態で熱処理炉に戴置し、BBrと酸素の混合ガスを導入して950~1050℃で熱処理する。キャリアガスとしては窒素やアルゴンが好適である。また、ホウ素源を含有させた塗布剤を第一主表面全面に塗布し、950~1050℃で熱処理する方法で形成が可能である。塗布剤としては例えば、ホウ素源としてホウ酸1~4%、増粘剤としてポリビニルアルコール0.1~4%、を含有させた水溶液が使用できる。
 エミッタ層112を形成したら、図4(c)に示すように、次工程であるベース層形成のためのマスク(バリア膜)151を両主表面上に形成する。マスク151としては酸化シリコン膜もしくは窒化シリコン膜等を用いることができる。CVD法を用いれば、導入するガス種を適宜選択することにより、いずれの膜も形成可能である。酸化シリコン膜の場合は、半導体基板110を熱酸化しても形成できる。半導体基板110を酸素雰囲気中950~1100℃、30分~4時間熱処理することで100nm程度のシリコン熱酸化膜が形成される。この熱処理は上記エミッタ層112の形成のための熱処理に引き続いて同一バッチ内で実施してもかまわない。次いで、図4(d)に示すように、ベース領域となる部分のマスクを開口する(マスク開口部152)。具体的には、開口幅が50~200μm、0.6~2.0mm程度の間隔で平行線状に開口する。開口にはフォトリソ法やエッチングペーストのような化学的な方法でもよいし、レーザーやダイサーのような物理的な方法いずれを用いてもかまわない。
 マスクを開口した後、次に、図4(e)に示すように、50~90℃に加熱したKOH、NaOH等のアルカリ水溶液中に半導体基板110を浸漬し、開口部152に位置する不要なエミッタ層112を除去(エッチング)する(不要なエミッタ層が除去されたマスク開口部153)。
 次に、図4(f)に示すように、ベース層113を形成する。ベース層113の形成にはオキシ塩化リンを用いた気相拡散法が使用できる。830~950℃、オキシ塩化リンと窒素および酸素混合ガス雰囲気下で半導体基板110を熱処理することで、ベース層113となるリン拡散層(N層)が形成される。気相拡散法の他、リンを含有する材料をスピン塗布したり、印刷したりしてから熱処理する方法でも形成可能である。
 ベース層113の形成では、ベース層113の半導体基板の第一主表面に表れる形状を細長とし、その幅を50μm以上200μm以下とすることが好ましい。具体的には、マスク開口部152を形成する際にその形状及び大きさを調整することによって容易にベース層の形状及び大きさの調整を行うことができる。
 拡散層形成の後、マスク151および基板の表面に形成されるガラスをふっ酸などで除去する(図4(f)参照)。
 次に、図4(g)に示すように、半導体基板110の第一主表面上において、ベース層113及びエミッタ層112に接する誘電体膜を形成する。このとき、同時に、又は前後いずれかの工程として、第二主表面に反射防止膜を形成してもよい。
 第二主表面の反射防止膜141としては、窒化シリコン膜や酸化シリコン膜等が利用できる。窒化シリコン膜の場合はプラズマCVD装置を用い約100nm製膜する。反応ガスとして、モノシラン(SiH)およびアンモニア(NH)を混合して用いることが多いが、NHの代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、さらには、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。酸化シリコン膜の場合は、CVD法でも形成できるが、熱酸化法により得られる膜の方が高い特性が得られる。表面の保護効果を高めるため、あらかじめ基板表面に酸化アルミニウム膜を形成してから窒化シリコン膜や酸化シリコン膜等を形成してもよい。
 第一主表面にも、表面保護膜として窒化シリコン膜や酸化シリコン膜等の誘電体膜142が利用できる。誘電体膜142の膜厚は50~250nmとするのが好適である。第二主表面(受光面)側と同様、窒化シリコン膜の場合はCVD法で、酸化シリコン膜の場合は熱酸化法やCVD法で形成が可能である。また、表面の保護効果を高めるため、あらかじめ基板表面に酸化アルミニウム膜を形成してから、窒化シリコン膜、酸化シリコン膜等を形成してもよい。
 次いで、図4(h)に示すように、ベース層113と電気的に接続されるベース電極125を、例えばスクリーン印刷法で形成する。例えば、開口幅30~100μm、0.6~2.0mm間隔の平行線パターンを有する製版を用意しておき、Ag粉末とガラスフリットを有機物バインダと混合したAgペーストをベース層113に沿って印刷する。同様にして、エミッタ層112と電気的に接続されるエミッタ電極124としてAgペーストを印刷する。ベース電極用Agペーストとエミッタ電極用Agペーストは同じでもよいし違うものを使用してもよい。以上の電極印刷の後、熱処理により窒化シリコン膜等にAg粉末を貫通させ(ファイアースルー)、電極とシリコンを導通させる。なお、ベース層用電極およびエミッタ層用電極の焼成は別々に行うことも可能である。焼成は、通常700~850℃の温度で1~5分間処理することで行われる。
 次に絶縁膜及びバスバー電極を形成する工程について、図5を参照して説明する。図5(a)は上記図4(h)の工程後の半導体基板110の上面図である。エミッタ領域(エミッタ層112)上にエミッタ電極124が、ベース領域(ベース層113)上にベース電極125が、それぞれ形成されている。この半導体基板110に絶縁材料(硬化させると第一の絶縁膜143となる)をパターン状に塗布する。このとき、第一の絶縁膜143は、エミッタ電極124を覆うとともに、誘電体膜142上に位置するように形成する。また、第一の絶縁膜143は、少なくともベース層113上において間隙を有するように形成する。このとき、Nバスバー(この場合ベース電極と接続するベース用バスバー電極)がエミッタ電極と導通しないように、さらに、Pバスバー(この場合エミッタ電極と接続するエミッタ用バスバー電極)がベース電極と導通しないように、例えば図5(b)のようなパターンで塗布すればよい。塗布にはスクリーン印刷法等を用いることができる。この第一の絶縁膜を形成する工程において、ベース領域幅をWとしたとき、ベース電極-Nバスバー接続部の第一の絶縁膜の間隙の距離(最隣接絶縁膜間距離)144は、40μm以上(W+110)μm以下とする。この最隣接絶縁膜間距離はより好ましくは40~Wμmである。これにより、高い光電変換効率の太陽電池を得ることができる。絶縁材料としては、シリコーン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ポリウレタン、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂及びポバール樹脂から一つ以上選択された樹脂を含有する材料からなるものが使用できる。以上のような絶縁材料を例えばスクリーン印刷法等を用いて塗布した後、100~400℃で1~60分程度硬化させる。
 このとき、同時に、又は前後して、ベース電極を覆う第二の絶縁膜147を形成することができる。
 最後に、少なくとも第一の絶縁膜の上にベース用バスバー電極を形成する。このとき、ベース電極と、ベース用バスバー電極を、電気的に接続させることが好ましい。また、少なくとも第二の絶縁膜147の上に位置し、エミッタ電極124と電気的に接続するエミッタ用バスバー電極134を形成することが好ましい。図5(c)のように、Nバスバー(ベース用バスバー電極)135がベース電極125と、Pバスバー(エミッタ電極と接続するエミッタ用バスバー電極)134がエミッタ電極124と接続され、Nバスバー135とエミッタ電極124ならびにPバスバー134とベース電極125は絶縁層を介した構成となる。バスバー材料としては、低温硬化型の導電性ペーストが使用できる。具体的には、Ag、Cu、Au、Al、Zn、In、Sn、Bi、Pbから選択される1種類以上の導電性物質と、さらにエポキシ樹脂、アクリル樹脂、ポリエステル樹脂、フェノール樹脂、シリコーン樹脂から選択される1種類以上の樹脂を含有する材料からなるものが使用できる。以上のような材料を例えばスクリーン印刷法やディスペンサー等を用いてパターン状に塗布した後、100~400℃で1~60分程度硬化させる。
 本発明では、上記の第一の絶縁膜を形成する工程において、第一の絶縁膜の間隙の距離を40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)として絶縁膜を形成する。具体的には、絶縁材料の塗布の際に、第一の絶縁膜の間隙の距離がそのようになるように調整すればよい。
 以上の方法で作製した太陽電池100のベース層端近傍の断面模式図を図3に示す。以上の方法で作製した場合は、ベース層端114はエミッタ層112とベース層113の境界に相当する。注目すべきはベース層端114およびベース電極113に対する絶縁膜143の位置関係である。図3(b)のように、エミッタ層112が絶縁膜143で完全に覆われていれば高い太陽電池特性を示すことができる。さらに本発明によれば、図3(a)のようにエミッタ層112がある程度露出(すなわち、エミッタ層112が、絶縁膜143を介さない領域があり、ベース用バスバー電極135と誘電体膜142のみを介して隣接する状態)していても、誘電体膜142の存在により、エミッタ層112とベース用バスバー電極135の導通はある程度回避され、太陽電池特性の低下は軽微なものとできる。
 以上、N型基板の場合を例に述べたが、P型基板の場合はエミッタ層形成にリン、ヒ素、アンチモン等を拡散させ、ベース層形成にはホウ素、Al等を拡散させればよく、本発明の方法は利用可能である。
 上記方法により製造された太陽電池は、太陽電池モジュールの製造に用いることができる。上記方法により製造された太陽電池が内蔵された太陽電池モジュールの一例の概観を図6に示す。上記の方法により作製された太陽電池400は、太陽電池モジュール460内ではタイル状に敷き詰められた構造をなす。
 太陽電池モジュール460内では、隣接する太陽電池400どうしが数枚~数10枚電気的に直列に接続され、ストリングと呼ばれる直列回路を構成している。ストリングの概観を図7に示す。図7は、通常人目に触れることのないモジュール内部裏面側の模式図に相当する。また、フィンガー電極やバスバー電極は図示されていない。直列接続にするため、図7に示したように、隣接する太陽電池400のPバスバー(基板のP型層に接合したフィンガー電極に接続されているバスバー電極)とNバスバー(基板のN型層に接合したフィンガー電極に接続されているバスバー電極)同士がリード線461などで接続されている。
 太陽電池モジュール460の断面模式図を図8に示す。上述のようにストリングは、複数の太陽電池400を、バスバー電極422にリード線461を接続することで構成される。該ストリングは、通常EVA(エチレンビニルアセテート)などの透光性の充填剤472で封止され、非受光面側はPET(ポリエチレンテレフタラート)などの耐候性樹脂フィルム473、受光面はソーダライムガラスなどの透光性で機械的強度が強い受光面保護材料471で覆われている。充填剤472としては、上記EVAの他、ポリオレフィン、シリコーンなどが使用できる。
 さらにこの太陽電池モジュールを用いて太陽光発電システムを製造、構成することもできる。図9は本発明のモジュールを連結した太陽光発電システムの基本構成を示したものである。複数の太陽電池モジュール16が配線15で直列に連結され、インバータ17を経由して外部負荷回路18に発電電力を供給する。図9には示していないが、当該システムは発電した電力を蓄電する2次電池をさらに備えていて良い。
 以下に、本発明の実施例及び比較例をあげてさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例)
 本発明の方法を用いて、太陽電池の作製を行った。
 まず、厚さ200μm、比抵抗1Ω・cmの、リンドープ{100}N型アズカットシリコン基板10枚を準備した(図4(a)参照)。このシリコン基板に対し、熱濃水酸化カリウム水溶液によりダメージ層を除去後、72℃の水酸化カリウム/2-プロパノール水溶液中に浸漬しテクスチャ形成を行い、引き続き75℃に加熱した塩酸/過酸化水素混合溶液中で洗浄を行った。
 次いで、基板を2枚一組として重ね合わせた状態で熱処理炉に戴置し、BBrと酸素とアルゴンの混合ガスを導入して1000℃で10分熱処理を行った。これにより、エミッタ層を形成した(図4(b)参照)。四探針法で測定した結果、シート抵抗は50Ωとなった。
 これを1000℃3時間酸素雰囲気中で熱酸化してマスク形成した(図4(c)参照)。
 裏面のマスクをレーザーで開口した(図4(d)参照)。レーザー源はNd:YVOの第二次高調波を用いた。開口パターンは、間隔1.2mm平行線状とした。
 これを80℃KOHに浸漬して開口部のエミッタ層を除去した(図4(e)参照)。
 次に、オキシ塩化リン雰囲気下、870℃で受光面同士を重ね合わせた状態で40分間熱処理し、開口部にリン拡散層(ベース層)を形成した(図4(f)参照)。この後、濃度12%のふっ酸に浸漬することで表面ガラスを除去した。
 以上の処理の後、プラズマCVD装置を用いて窒化シリコン膜を両面に形成した(図4(g)参照)。膜厚は表裏とも100nmとした。この段階でベース層幅を顕微鏡で測定したところ、概ね190μmであった。
 次に、スクリーン印刷機を用いて、Agペーストをベース層上およびエミッタ層上にそれぞれ印刷して乾燥した(図4(h)参照)。これを780℃の空気雰囲気下で焼成した。
 この基板に、スクリーン印刷機を用い、絶縁材料をパターン状に印刷した。絶縁材料としては、信越化学工業株式会社製のシリコーンを用いた。この際、ベース電極を挟む絶縁膜の開口幅をそれぞれ30、40、100、150、200、300、400μmとした印刷製版を用意しておき、それぞれの製版で印刷した。ベース層幅は190μmであるため、開口幅30、40、100、150、200μmはNバスバー直下のエミッタ領域が絶縁膜で完全に塞がっているのが顕微鏡にて観察された。また、30、40μmはベース電極が絶縁膜に完全に覆われてしまっている箇所も散見された。一方、300、400μmはNバスバー直下にエミッタ領域が露出した。これらを200℃のベルト炉にて5分間硬化させた。
 最後に低温硬化型のAgペーストを直線状に6本スクリーン印刷機で印刷し、300℃のベルト炉にて30分間硬化させ、バスバーとした。
 以上のようにして得られた太陽電池のサンプルについて、山下電装社製ソーラーシミュレータを用いてAM1.5スペクトル、照射強度100mW/cm、25℃の条件下で、電流電圧特性を測定し光電変換効率を求めた。また、得られた太陽電池のベース電極を挟む最隣接絶縁膜間距離を、顕微鏡を用い実測した。
 得られた結果を、最隣接絶縁膜間距離と変換効率の関係として図10に示す。40~200μmであれば変換効率の低下は認められない。Nバスバーがエミッタ領域と絶縁膜によって完全に隔離されたためである。なお、本実施例の場合、ベース層幅Wは上記のように約190μmであるので、最隣接絶縁膜間距離200μmは(W+10)μmに相当する。最隣接絶縁膜間距離を300μm(すなわち、(W+110)μm)とすると低下がみられるが低下量はわずかである。Nバスバー―エミッタ領域の接触抵抗が変換効率に及ぼす影響が小さいためである。400μmでは大幅に低下がみられる。Nバスバー―エミッタ領域の接触抵抗の影響が無視できなくなるためである。また、30μmでの大幅な低下は、ベース電極が絶縁膜に完全に覆われてしまい直列抵抗が上昇してしまったためである。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (10)

  1.  第一導電型を有する半導体基板の第一主表面に、前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を有し、
     前記ベース層と電気的に接続されるベース電極と、
     前記エミッタ層と電気的に接続されるエミッタ電極と
     を有する太陽電池であって、
     前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を有し、
     前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように配置された第一の絶縁膜を有し、
     少なくとも前記第一の絶縁膜の上に位置するベース用バスバー電極を有し、
     前記第一の絶縁膜の間隙の距離が40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)であることを特徴とする太陽電池。
  2.  前記ベース電極と前記ベース用バスバー電極は電気的に接続していることを特徴とする請求項1に記載の太陽電池。
  3.  前記ベース層の前記半導体基板の第一主表面に表れる形状が細長であり、その幅が50μm以上200μm以下であることを特徴とする請求項1又は請求項2に記載の太陽電池。
  4.  前記ベース電極を覆う第二の絶縁膜をさらに有し、少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を有することを特徴とする請求項1から請求項3のいずれか1項に記載の太陽電池。
  5.  請求項1から請求項4のいずれか1項に記載の太陽電池が内蔵されていることを特徴とする太陽電池モジュール。
  6.  請求項5に記載の太陽電池モジュールを有することを特徴とする太陽光発電システム。
  7.  第一導電型を有する半導体基板の第一主表面に、前記第一導電型を有するベース層、及び、前記ベース層に隣接し、前記第一導電型と反対の導電型である第二導電型を有するエミッタ層を形成する工程と、
     前記第一主表面上において、前記ベース層及び前記エミッタ層に接する誘電体膜を形成する工程と、
     前記ベース層と電気的に接続されるベース電極を形成する工程と、
     前記エミッタ層と電気的に接続されるエミッタ電極を形成する工程と、
     を有する太陽電池の製造方法であって、
     前記エミッタ電極を覆うとともに、前記誘電体膜上に位置し、少なくとも前記ベース層上において間隙を有するように第一の絶縁膜を形成する工程と、
     少なくとも前記第一の絶縁膜の上にベース用バスバー電極を形成する工程と
     を有し、前記第一の絶縁膜を形成する工程において、前記第一の絶縁膜の間隙の距離を40μm以上(W+110)μm以下(但し、Wは間隙方向のベース層の幅)として前記絶縁膜を形成することを特徴とする太陽電池の製造方法。
  8.  前記ベース電極と、前記ベース用バスバー電極を、電気的に接続させることを特徴とする請求項7に記載の太陽電池の製造方法。
  9.  前記ベース層の前記半導体基板の第一主表面に表れる形状を細長とし、その幅を50μm以上200μm以下とすることを特徴とする請求項7又は請求項8に記載の太陽電池の製造方法。
  10.  前記ベース電極を覆う第二の絶縁膜を形成する工程と、
     少なくとも前記第二の絶縁膜の上に位置し、前記エミッタ電極と電気的に接続するエミッタ用バスバー電極を形成することを特徴とする請求項7から請求項9のいずれか1項に記載の太陽電池。
PCT/JP2016/004693 2016-10-25 2016-10-25 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法 WO2018078669A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2016/004693 WO2018078669A1 (ja) 2016-10-25 2016-10-25 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
US16/342,557 US11038070B2 (en) 2016-10-25 2016-10-25 High photoelectric conversion efficiency solar cell and method for manufacturing high photoelectric conversion efficiency solar cell
CN201680090321.2A CN109891599B (zh) 2016-10-25 2016-10-25 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法
KR1020197011754A KR102626554B1 (ko) 2016-10-25 2016-10-25 고광전변환효율 태양전지 및 고광전변환효율 태양전지의 제조방법
EP16897480.6A EP3340314A4 (en) 2016-10-25 2016-10-25 Solar cell having high photoelectric conversion efficiency, and method for manufacturing solar cell having high photoelectric conversion efficiency
JP2017519718A JPWO2018078669A1 (ja) 2016-10-25 2016-10-25 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
TW106106847A TWI649884B (zh) 2016-10-25 2017-03-02 高光電變換效率太陽電池及高光電變換效率太陽電池之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/004693 WO2018078669A1 (ja) 2016-10-25 2016-10-25 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Publications (1)

Publication Number Publication Date
WO2018078669A1 true WO2018078669A1 (ja) 2018-05-03

Family

ID=62024589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004693 WO2018078669A1 (ja) 2016-10-25 2016-10-25 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法

Country Status (7)

Country Link
US (1) US11038070B2 (ja)
EP (1) EP3340314A4 (ja)
JP (1) JPWO2018078669A1 (ja)
KR (1) KR102626554B1 (ja)
CN (1) CN109891599B (ja)
TW (1) TWI649884B (ja)
WO (1) WO2018078669A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700223B2 (en) 2016-12-01 2020-06-30 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
WO2021171953A1 (ja) * 2020-02-26 2021-09-02 株式会社カネカ 太陽電池および太陽電池製造方法
CN117438482A (zh) * 2023-12-07 2024-01-23 浙江爱旭太阳能科技有限公司 背接触电池片、电池串、电池组件和光伏系统
JP7449152B2 (ja) 2020-04-23 2024-03-13 株式会社カネカ 太陽電池の製造方法および太陽電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017517A1 (ja) * 2010-08-03 2012-02-09 シャープ株式会社 太陽電池セル
WO2015190024A1 (ja) * 2014-06-11 2015-12-17 信越化学工業株式会社 太陽電池及び太陽電池の製造方法
JP2016072467A (ja) 2014-09-30 2016-05-09 信越化学工業株式会社 太陽電池及びその製造方法
WO2016125430A1 (ja) * 2015-02-05 2016-08-11 信越化学工業株式会社 裏面接合型太陽電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006027898A1 (ja) * 2004-09-03 2006-03-16 Shin-Etsu Chemical Co., Ltd. 太陽光発電用モジュール及びこれを用いた太陽光発電システム
US8008575B2 (en) * 2006-07-24 2011-08-30 Sunpower Corporation Solar cell with reduced base diffusion area
US20110120530A1 (en) 2007-08-23 2011-05-26 Takayuki Isaka Back surface contact type solar cell, back surface contact type solar cell with wiring board, solar cell string, and solar cell module
US7578702B1 (en) * 2008-06-30 2009-08-25 Lg Chem, Ltd. Battery cell interconnect system
US20100229928A1 (en) * 2009-03-12 2010-09-16 Twin Creeks Technologies, Inc. Back-contact photovoltaic cell comprising a thin lamina having a superstrate receiver element
US8749053B2 (en) * 2009-06-23 2014-06-10 Intevac, Inc. Plasma grid implant system for use in solar cell fabrications
WO2012081813A1 (ko) * 2010-12-17 2012-06-21 현대중공업 주식회사 후면전극형 태양전지 및 그 제조방법
JP5851284B2 (ja) 2012-03-01 2016-02-03 三菱電機株式会社 太陽電池の製造方法
WO2014137283A1 (en) 2013-03-05 2014-09-12 Trina Solar Energy Development Pte Ltd Method of fabricating a solar cell
JP6199727B2 (ja) 2013-12-17 2017-09-20 信越化学工業株式会社 太陽電池の製造方法
KR102175893B1 (ko) * 2014-02-24 2020-11-06 엘지전자 주식회사 태양 전지 모듈의 제조 방법
CN103811591B (zh) * 2014-02-27 2016-10-05 友达光电股份有限公司 背接触式太阳能电池的制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017517A1 (ja) * 2010-08-03 2012-02-09 シャープ株式会社 太陽電池セル
WO2015190024A1 (ja) * 2014-06-11 2015-12-17 信越化学工業株式会社 太陽電池及び太陽電池の製造方法
JP2016072467A (ja) 2014-09-30 2016-05-09 信越化学工業株式会社 太陽電池及びその製造方法
WO2016125430A1 (ja) * 2015-02-05 2016-08-11 信越化学工業株式会社 裏面接合型太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3340314A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10700223B2 (en) 2016-12-01 2020-06-30 Shin-Etsu Chemical Co., Ltd. High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
EP3355361B1 (en) * 2016-12-01 2023-05-31 Shin-Etsu Chemical Co., Ltd. Solar cell having high photoelectric conversion efficiency and method for producing solar cell having high photoelectric conversion efficiency
WO2021171953A1 (ja) * 2020-02-26 2021-09-02 株式会社カネカ 太陽電池および太陽電池製造方法
JP7449152B2 (ja) 2020-04-23 2024-03-13 株式会社カネカ 太陽電池の製造方法および太陽電池
CN117438482A (zh) * 2023-12-07 2024-01-23 浙江爱旭太阳能科技有限公司 背接触电池片、电池串、电池组件和光伏系统

Also Published As

Publication number Publication date
TW201826553A (zh) 2018-07-16
CN109891599B (zh) 2022-09-23
EP3340314A1 (en) 2018-06-27
JPWO2018078669A1 (ja) 2018-10-25
TWI649884B (zh) 2019-02-01
US20200052136A1 (en) 2020-02-13
KR20190073387A (ko) 2019-06-26
KR102626554B1 (ko) 2024-01-18
US11038070B2 (en) 2021-06-15
CN109891599A (zh) 2019-06-14
EP3340314A4 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
WO2018078669A1 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
JP6246982B1 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
JP6220483B1 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
JP6564081B2 (ja) 高光電変換効率太陽電池及び高光電変換効率太陽電池の製造方法
US10700223B2 (en) High photoelectric conversion efficiency solar battery cell and method for manufacturing high photoelectric conversion solar battery cell
JP6792465B2 (ja) 高光電変換効率太陽電池の製造方法
CN110121787B (zh) 高光电变换效率太阳能电池及高光电变换效率太阳能电池的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017519718

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20197011754

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE