WO2018077905A1 - Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug - Google Patents

Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug Download PDF

Info

Publication number
WO2018077905A1
WO2018077905A1 PCT/EP2017/077207 EP2017077207W WO2018077905A1 WO 2018077905 A1 WO2018077905 A1 WO 2018077905A1 EP 2017077207 W EP2017077207 W EP 2017077207W WO 2018077905 A1 WO2018077905 A1 WO 2018077905A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
hybrid
shaft
electric machine
switching element
Prior art date
Application number
PCT/EP2017/077207
Other languages
English (en)
French (fr)
Inventor
Steffen Hummel
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to US16/344,088 priority Critical patent/US10883574B2/en
Priority to EP17793911.3A priority patent/EP3532328A1/de
Priority to CN201780066099.7A priority patent/CN109863054B/zh
Publication of WO2018077905A1 publication Critical patent/WO2018077905A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4833Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range
    • B60K2006/4841Step up or reduction gearing driving generator, e.g. to operate generator in most efficient speed range the gear provides shifting between multiple ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H2003/0826Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts wherein at least one gear on the input shaft, or on a countershaft is used for two different forward gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/093Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts
    • F16H2003/0933Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears with two or more countershafts with coaxial countershafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid drive train for a hybrid-powered motor vehicle according to the preamble of claim 1.
  • Switching elements in different gear ratios switchable transmission, which via an engine shaft with a
  • Electric machine and via an output shaft with at least one vehicle axle is drivingly connected.
  • the internal combustion engine shaft can be connected to a drive shaft via spur gearsets that form wheel-plane gears. This drives in turn via a spur gear on the
  • the wheel planes of the hybrid transmission have a hybrid gear plane that is drivingly connected to the electric machine shaft.
  • the object of the invention is to provide a hybrid powertrain, which has greater degrees of freedom in functionality in a structurally favorable design that is structurally simple in comparison with the prior art.
  • the hybrid gear plane E1, E2 part of a subtransmission T, the switching elements SE -A, SE -B, SE -C has, by means of which the partial transmission T during the Transmission operation can be decoupled from the drive train or can be connected.
  • the hybrid gear plane E1, E2 of the partial transmission T can therefore be shut down in gear mode and decoupled from the remaining activated part of the transmission. Accordingly, the transmission can be operated purely electrically, while the internal combustion engine is shut down. Conversely, the electric machine can be completely decoupled from the drive train.
  • At least one switching element SE-A can be arranged on the electric machine shaft, by means of which the electric machine can be decoupled from or connected to the hybrid gear plane E1, E2. In this way, the electric machine can be completely decoupled from the drive train with switched internal combustion engine gears. This advantageously reduces the moment of inertia of the activated subtransmission.
  • the hybrid gear plane E1, E2 may be composed of a driven-side gear arranged on the output shaft, a drive-side gear arranged on the engine shaft, and a gear arranged on the electric machine shaft.
  • the arranged on the electric machine shaft gear can be rotatably mounted as a loose gear on the electric machine shaft and be decoupled from the electric machine shaft by means of the switching element SE-A or be coupled with it.
  • the transmission can be exactly two
  • Hybrid wheel planes E1, E2 have.
  • the arranged on the electric machine shaft switching element SE-A can be switched on both sides and be arranged in the axial direction between the idler gears of the two hybrid gear planes E1, E2.
  • the switching element SE-A can in a
  • Loose gear of the first hybrid wheel plane E1 couple with the electric machine shaft or couple in a second switching position, the idler gear of the second hybrid gear plane E2 with the electric machine shaft.
  • the electric machine shaft is completely free of rotationally fixed fixed gears of the spur gear sets, which form the wheel planes of the transmission.
  • the transmission is designed as a pure spur gear, in which the engine shaft, the
  • Electric machine shaft and the output shaft can be connected to one another exclusively via spur gear sets. In this way, a simply constructed transmission structure is achieved, which is much more efficient to operate compared to a planetary gear.
  • each of the hybrid gear planes E1, E2 may each have a drive shaft arranged on the output side gear, which is designed as a gear and by means of a switching element SE-B can be coupled to the output shaft.
  • Internal combustion engine shaft arranged drive-side gears of the two hybrid gear planes E1, E2 be designed as loose gears. These are preferably arranged together non-rotatably on a drive-side hollow shaft.
  • the hollow shaft is rotatably mounted coaxially on the engine shaft and via exactly one switching element, namely SE-C, coupled to the engine shaft.
  • switching element SE-B can be made switchable on both sides and in the axial direction between the output side
  • the arranged on the electric machine shaft switching element can be implemented arbitrarily, for example as a power shift double clutch or as a non-power shift double synchronization.
  • the electric machine can be connected on the drive side or output side in the transmission. In the case of a drive-side connection, this can be done on the
  • Electric machine shaft arranged gear of the hybrid gear plane E1, E2 with a rotatably mounted on the engine shaft
  • the above hybrid concept can be based on a conventional
  • Manual gear can be realized in a simple manner and used especially for the front wheel drive.
  • the rear axle may optionally be mechanically decoupled from the front axle, but can be driven by separate electric machines in order to realize a four-wheel drive.
  • the electric machine may preferably be positioned at the transmission end.
  • FIG. 2 shows a second view in a view corresponding to FIG
  • Embodiment of the hybrid transmission Embodiment of the hybrid transmission.
  • Translation stages switchable gear 1 is about a
  • the electric machine 1 1 may have a planetary countershaft 12 shown in the figure 1 for a torque conversion.
  • the transmission 1 is the output side via an output shaft 13 with a
  • the output shaft 13 is a pinion shaft with the bevel gear of a front differential 15 in operative connection.
  • Output shaft 17 arranged axially parallel to each other.
  • the output shaft 17, the electric machine shaft 9 and the output shaft 13 are over Spur gear sets can be connected to one another via the
  • the Stirnzahnrad accounts are switchable.
  • the Stirnzahnrad accounts form mutually parallel gear planes V1 to V4 and E1 and E2, which are all according to the figure 1 in the axial direction between the engine 7 and the electric machine 1 1.
  • gear planes V1 to V4 connected to each other, which are each constructed of meshing loose and fixed gears.
  • the loose gears of the wheel planes V1 to V4 can be coupled via switching elements SE-H and SE-G with the respective supporting shaft 3, 17.
  • the wheel planes V1 to V4 are connection-free with respect to the electric machine shaft 9.
  • Each hybrid gear plane E1, E2 has a arranged on the output shaft 17 output-side gear 19, 21, each with a on the
  • Electrode-side idler gears 27, 29 of the hybrid gear planes E1, E2 is a switching element SE-A switchable on both sides, with which either either the first hybrid gear plane E1 or the second hybrid gear plane E2 with the electric machine shaft 9 can be coupled.
  • the Output shaft 17 drives via a spur gear St to the output shaft 13 from.
  • the electric machine shaft 9 In the neutral position of the switching element SE-A shown in FIG. 1, the electric machine shaft 9 is decoupled from the drive train. In this way, the electric machine shaft 9 is shut down in the transmission mode, i. disabled. This advantageously reduces the moment of inertia of the remaining activated transmission.
  • the two hybrid gear planes E1, E2 are combined to form a common partial transmission T, which is completely torque-free switchable in gear operation, that is from the
  • Los leopardson rotatably mounted on the output shaft 17. Between the two output-side gears 19, 21 of the hybrid gear planes E1 and E2, a switching element SE-B is arranged.
  • both hybrid gear planes E1, E2 decoupled and axially switchable on both sides. That it may couple either the first or the second hybrid gear plane E1, E2 to the output shaft 17.
  • the two drive-side gears 23, 25 of the hybrid gear planes E1, E2 are arranged rotatably together on a drive-side hollow shaft 31, which is rotatably mounted coaxially on the engine shaft 3.
  • the drive-side hollow shaft 31 can be coupled in component-reduced manner via exactly one switching element SE-C with the engine shaft 3.
  • the transmission 1 shown in Figure 1 has a total of 16 gears and five synchronizers.
  • the transmission 1 are six internal combustion engine direct gears VM1 to VM6, which use only one wheel plane, switchable, but no internal combustion engine
  • Warp gears that use at least two wheel planes In the direct gears VM1 and VM2, the switching element SE-H is switched to the left or to the right, while the partial transmission T are shut down. In direct gear VM3 SE-C is left and SE-B is left. That is, the partial transmission T (with both hybrid wheel planes E1, E2) is activated. The same applies to the direct gear VM4, in which SE-C are switched to the left and SE-B to the right. In the direct gears VM5 and VM6, the partial transmission T is deactivated. In direct gear VM5 SE-G is switched to the left. In direct gear VM6, SE-G is shifted to the right.
  • the partial transmission T is always activated and it can be switched up to four electromotive gears, that is, the following two direct gears EM1, EM2 and two twisting gears EM3 to EM4:
  • the switching element SE-A is switched to the left and the switching element SE-B is switched to the left.
  • the switching element SE-A is switched to the right and the switching element SE-B is switched to the right.
  • the switching element SE-A is operated to the left and the switching element SE-B is operated to the right.
  • hybrid gears can be realized, in which electromotive and internal combustion engine gears are connected in combination.
  • a stand shop of the electric machine 1 1 allows, if the vehicle is in vehicle standstill, for example at a traffic light or in a traffic jam. In this case can
  • both the switching element SE-C and the switching element SE-A are actuated to the left in order to connect the engine shaft 3 to the electric machine 1 via the first hybrid gear plane E1.
  • the electric machine 1 1 can start the internal combustion engine 7 via a load path in which, for example, the switching element SE-A is actuated to the right and the switching element SE-C is actuated to the left. Furthermore, in FIG. 1, a switching operation between the internal combustion engine gears VM1, VM2, VM5 and VM6 with the aid of the electric machine 1 1 can take place with interruption of traction, with the aid of the electromotive gears EM1, EM2, which during the
  • Combustion engine switching act as support gears. Such a switching operation is started with an opening of the separating clutch 4 in order to decouple the internal combustion engine 7 from the transmission 1. An inserted electromotive support gear provides during the between the
  • electromotive second gear EM2 acts as a support gear:
  • Switching element SE-G switched to the left.
  • a load path of the internal combustion engine 7, the gear plane V3, the output shaft 17 extends to the output side spur gear St, while the partial transmission T is deactivated (shut down).
  • the separating clutch 4 is released and the switching element SE-G is switched to its neutral position.
  • acting as a support gear electromotive gear EM2 is inserted, that is, both the switching element SE-A and the
  • Switching element SE-B operated to the right, and the electric machine 1 1 started up. This results in a load transfer from the Elektronnasch ine 1 1 to the output side, in which the electric machine 1 1 generates an arbitrarily adjustable torque.
  • Switching element SE-G is switched from its neutral position to the right.
  • a load path of the internal combustion engine 7 via the switching element SE-G, the gear plane V4 and the output shaft 17 is prepared to the output side spur gear St.
  • Disconnect 4 closed again, that is, the internal combustion engine 7 is switched on, and the electric machine 1 1 shut down again, so that the target gear VM6 is switched and again a load transfer from the engine 7 takes place to the output side.
  • Internal combustion engine fourth gear VM4 that is, between the hybrid gear planes E1 and E2, can not be supported by means of an electromotive gear.
  • no support load path can be provided during the above switching operation of the electric machine 1 1, since both the internal combustion engine 7 and the electric machine 1 1 drive off on the output shaft 17 via the common switching element SE-B.
  • electromotive starting from the vehicle standstill or a boost operation allows in which for several internal combustion engine gears several electromotive gears are available for boosting.
  • an electric motor reverse gear is provided, in which the electric machine 1 1 is to be operated in the reverse direction.
  • the transmission 1 on an additional reverse gear plane R which is designed as a spur gear.
  • the reverse gear plane R is made up of a drive-side gearwheel 59 mounted on the engine shaft 3, an intermediate gearwheel 61 intermeshing therewith and an output-side rotationally fixed on the gearwheel
  • Output shaft 17 mounted gear 63 constructed, which meshes with the intermediate gear 61.
  • the basic structure of the transmission structure shown in Figure 6 is largely identical to the transmission structure shown in Figure 2, with the exception of the additional reverse gear plane R, which is arranged in the axial direction between the second hybrid gear plane E2 and the planetary gear 12.
  • the switching element SE-C in contrast to Figure 1, formed on both sides switchable in the figure 2 and in the axial direction between the drive-side hollow shaft 31 and the

Abstract

Die Erfindung betrifft einen Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug, mit einem mittels Schaltelemente in unterschiedliche Übersetzungsstufen umschaltbaren Getriebe (1), insbesondere Handschaltgetriebe, das über eine Brennkraftmaschinen-Welle (3) mit einer Brennkraftmaschine (7), über eine Elektromaschinen-Welle (9) mit einer Elektromaschine (11) sowie über eine Ausgangswelle (13) mit zumindest einer Fahrzeugachse (VA) trieblich verbindbar ist, wobei die Brennkraftmaschinen-Welle (3) und eine mit der Ausgangswelle (13) trieblich verbundene Abtriebswelle (17) über Stirnzahnradsätze verbindbar sind, die mittels der Schaltelemente schaltbar sind und jeweils Radebenen (V1 bis V4, E1, E2) bilden, von denen zumindest eine Hybrid-Radebene (E1, E2) zusätzlich mit der Elektromaschinen-Welle (9) verbindbar ist. Erfindungsgemäß ist die Hybrid-Radebene (E1, E2) Bestandteil eines Teilgetriebes (T), das Schaltelemente (SE-A, SE-B, SE-C) aufweist, mittels denen das Teilgetriebe (T) während des Getriebe-Betriebes vom Antriebsstrang abkoppelbar ist oder damit koppelbar ist.

Description

Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug
Die Erfindung betrifft einen Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug nach dem Oberbegriff des Patentanspruches 1 .
Aus der EP 2 792 523 A2 ist ein gattungsgemaßer Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug bekannt. Dieser weist ein mittels
Schaltelemente in unterschiedliche Übersetzungsstufen umschaltbares Getriebe auf, das über eine Brennkraftmaschinen-Welle mit einer
Brennkraftmaschine, über eine Elektromaschinen-Welle mit einer
Elektromaschine sowie über eine Ausgangswelle mit zumindest einer Fahrzeugachse trieblich verbindbar ist. Die Brennkraftmaschinen-Welle ist über, Radebenen bildende Stirnzahnradsätze mit einer Abtriebswelle verbindbar. Diese treibt wiederum über eine Stirnradstufe auf die
Ausgangswelle ab. Die Radebenen des Hybridgetriebes weisen eine Hybrid- Radebene auf, die trieblich mit der Elektromaschinen-Welle verbunden ist.
Die Aufgabe der Erfindung besteht darin, einen Hybridantriebsstrang bereitzustellen, der in einer im Vergleich zum Stand der Technik baulich einfachen, bauraumgünstigen Konstruktion größere Freiheitsgrade in der Funktionalität aufweist.
Die Aufgabe ist durch die Merkmale des Patentanspruches 1 gelöst.
Bevorzugte Weiterbildungen der Erfindung sind in den Unteransprüchen offenbart.
Gemäß dem kennzeichnenden Teil des Patentanspruches 1 ist die Hybrid- Radebene E1 , E2 Bestandteil eines Teilgetriebes T, das Schaltelemente SE- A, SE-B, SE-C aufweist, mittels denen das Teilgetriebe T während des Getriebe-Betriebes vom Antriebsstrang abkoppelbar ist oder damit verbindbar ist. Die Hybrid-Radebene E1 , E2 des Teilgetriebes T kann daher im Getriebe-Betrieb stillgelegt und vom verbleibenden aktivierten Teil des Getriebes abgekoppelt werden. Entsprechend kann das Getriebe rein elektrisch betrieben werden, während die Brennkraftmaschine stillgelegt ist. Umgekehrt kann auch die Elektromaschine vollständig vom Antriebsstrang entkoppelt werden.
Auf der Elektromaschinen-Welle kann zumindest ein Schaltelement SE-A angeordnet sein, mittels dem die Elektromaschine von der Hybrid-Radebene E1 , E2 abkoppelbar ist oder damit verbindbar ist. Auf diese Weise kann bei geschalteten verbrennungsmotorischen Gängen die Elektromaschine vollständig vom Antriebsstrang entkoppelt sein. Dadurch reduziert sich vorteilhaft das Trägheitsmoment des aktivierten Teilgetriebes.
In einer technischen Umsetzung kann die Hybrid-Radebene E1 , E2 aus einem auf der Abtriebswelle angeordneten abtriebsseitigen Zahnrad, einem auf der Brennkraftmaschinen-Welle angeordneten antriebsseitigen Zahnrad und einem auf der Elektromaschinen-Welle angeordneten Zahnrad aufgebaut sein. Das auf der Elektromaschinen-Welle angeordnete Zahnrad kann als ein Loszahnrad auf der Elektromaschinen-Welle drehgelagert sein und mittels dem Schaltelement SE-A von der Elektromaschinen-Welle abkoppelbar sein oder damit koppelbar sein. In einer bevorzugten Ausführungsform kann das Getriebe genau zwei
Hybrid-Radebenen E1 , E2 aufweisen. Das auf der Elektromaschinen-Welle angeordnete Schaltelement SE-A kann beidseitig schaltbar sein und in Axialrichtung zwischen den Loszahnrädern der beiden Hybrid-Radebenen E1 , E2 angeordnet sein. Das Schaltelement SE-A kann in einer
Neutralstellung von beiden Hybridradebenen entkoppelt sein. Zudem kann das Schaltelement SE-A entweder in einer ersten Schaltstellung das
Loszahnrad der ersten Hybrid-Radebene E1 mit der Elektromaschinen-Welle koppeln oder in einer zweiten Schaltstellung das Loszahnrad der zweiten Hybrid-Radebene E2 mit der Elektromaschinen-Welle koppeln.
Bevorzugt ist es, wenn die Elektromaschinen-Welle gänzlich frei von darauf drehfest angeordneten Festzahnrädern der Stirnzahnradsätze ist, die die Radebenen des Getriebes bilden. Zudem ist es bevorzugt, wenn das Getriebe als ein reines Stirnradgetriebe, ausgelegt ist, bei dem die Brennkraftmaschinen-Welle, die
Elektromaschinen-Welle und die Ausgangswelle ausschließlich über Stirnzahnradsätze miteinander trieblich verbindbar sind. Auf diese Weise wird eine einfach aufgebaute Getriebestruktur erzielt, die im Vergleich zu einem Planetengetriebe wesentlich effizienter betreibbar ist.
In einer weiteren bevorzugten Ausführungsform können die beiden Hybrid- Radebenen in der Axialrichtung unmittelbar benachbart sein und zusammen zu dem Teilgetriebe zusammengefasst sein, das im Getriebe-Betrieb stilllegbar ist, das heißt vom Antriebsstrang abkoppelbar ist. Zur Realisierung eines solchen Teilgetriebes kann jede der Hybrid-Radebenen E1 , E2 jeweils ein auf der Abtriebswelle angeordnetes abtriebsseitiges Zahnrad aufweisen, das als Loszahnrad ausgeführt ist und mittels eines Schaltelementes SE-B mit der Abtriebswelle koppelbar ist. Zudem können auch die auf der
Brennkraftmaschinen-Welle angeordneten antriebsseitigen Zahnräder der beiden Hybrid-Radebenen E1 , E2 als Loszahnräder ausgeführt sein. Diese sind bevorzugt gemeinsam drehfest auf einer antriebsseitigen Hohlwelle angeordnet. Die Hohlwelle ist koaxial auf der Brennkraftmaschinen-Welle drehgelagert und über genau ein Schaltelement, nämlich SE-C, mit der Brennkraftmaschinen-Welle koppelbar. Das oben erwähnte, auf der Abtriebswelle angeordnete Schaltelement SE-B kann beidseitig schaltbar ausgeführt sein und in Axialrichtung zwischen den abtriebsseitigen
Loszahnrädern der beiden Hybrid-Radebenen E1 , E2 angeordnet sein. Das auf der Elektromaschinen-Welle angeordnete Schaltelement kann beliebig realisiert sein, zum Beispiel als eine lastschaltbare Doppelkupplung oder als eine nicht lastschaltbare Doppelsynchronisierung. Zudem kann die Elektromaschine antriebsseitig oder abtriebsseitig im Getriebe angebunden sein. Bei einer antriebsseitigen Anbindung kann das auf der
Elektromaschinen-Welle angeordnete Zahnrad der Hybrid-Radebene E1 , E2 mit einem auf der Brennkraftmaschinen-Welle drehgelagerten
antriebsseitigen Loszahnrad kämmen. Bei einer abtriebsseitigen Anbindung kann das auf der Elektromaschinen-Welle angeordnete Zahnrad der Hybrid- Radebene E1 , E2 mit einem auf der Abtriebswelle drehgelagerten
abtriebsseitigen Loszahnrad kämmen.
Das obige Hybridkonzept kann aufbauend auf einem herkömmlichen
Handschaltgetriebe in einfacher Weise realisiert werden und speziell für den Frontantrieb genutzt werden. Die Hinterachse kann gegebenenfalls mechanisch entkoppelt von der Vorderachse sein, jedoch über separate Elektromaschinen antreibbar ist, um einen Vierradantrieb zu realisieren. Im obigen Hybridkonzept kann die Elektromaschine bevorzugt am Getriebeende positioniert sein. Die vorstehend erläuterten und/oder in den Unteransprüchen
wiedergegebenen vorteilhaften Aus- und/oder Weiterbildungen der Erfindung können - außer zum Beispiel in den Fällen eindeutiger Abhängigkeiten oder unvereinbarer Alternativen - einzeln oder aber auch in beliebiger
Kombination miteinander zur Anwendung kommen. Die Erfindung und ihre vorteilhaften Aus- und Weiterbildungen sowie deren Vorteile werden nachfolgend anhand von Zeichnungen näher erläutert.
Es zeigen:
Figur 1 eine Getriebestruktur eines als Stirnrad-Handschaltgetriebe
ausgeführten Hybridgetriebes gemäß einem ersten
Ausführungsbeispiel; und Figur 2 in einer Ansicht entsprechend der Figur 1 ein zweites
Ausführungsbeispiel des Hybridgetriebes.
In der Figur 1 ist ein Handschaltgetriebe 1 gezeigt, das Bestandteil eines Hybridantriebsstranges eines nicht dargestellten hybridgetriebenen
Kraftfahrzeugs ist. Das mittels Schaltelemente in unterschiedliche
Übersetzungsstufen umschaltbare Getriebe 1 ist über eine
Brennkraftmaschinen-Welle 3 mit zwischengeschalteter Trennkupplung 4 und Torsionsdämpfer 5 mit einer Brennkraftmaschine 7 verbunden sowie über eine Elektromaschinen-Welle 9 mit einer Elektromaschine 1 1 verbunden. Die Elektromaschine 1 1 kann für eine Drehmomentwandlung ein in der Figur 1 dargestelltes Planeten-Vorgelege 12 aufweisen. Zudem ist das Getriebe 1 ausgangsseitig über eine Ausgangswelle 13 mit einer
Vorderachse VA des Kraftfahrzeugs trieblich verbunden. Die Ausgangswelle 13 steht als Ritzelwelle mit dem Kegeltrieb eines Vorderachsdifferenzials 15 in Wirkverbindung.
Wie aus der Figur 1 weiter hervorgeht, sind die Brennkraftmaschinen-Welle 3, die Elektromaschinen-Welle 9 sowie eine zwischengeordnete
Abtriebswelle 17 zueinander achsparallel angeordnet. Die Abtriebswelle 17, die Elektromaschinen-Welle 9 sowie die Ausgangswelle 13 sind über Stirnzahnradsätze miteinander trieblich verbindbar, die über die
Schaltelemente schaltbar sind. Die Stirnzahnradsätze bilden zueinander parallel angeordnete Radebenen V1 bis V4 und E1 sowie E2, die sich gemäß der Figur 1 in der Axialrichtung allesamt zwischen der Brennkraftmaschine 7 und der Elektromaschine 1 1 befinden.
Nachfolgend ist die in der Figur 1 gezeigte Getriebestruktur des
Hybridgetriebes 1 beschrieben: So sind in der Figur 1 die
Brennkraftmaschinen-Welle 3 und die Abtriebswelle 17 über Radebenen V1 bis V4 miteinander verbunden, die jeweils aus miteinander kämmenden Los- und Festzahnrädern aufgebaut sind. Die Loszahnräder der Radebenen V1 bis V4 sind über Schaltelemente SE-H und SE-G mit der jeweils tragenden Welle 3, 17 koppelbar. Die Radebenen V1 bis V4 sind anbindungsfrei gegenüber der Elektromaschinen-Welle 9.
Zudem sind zwei Hybrid-Radebenen E1 , E2 vorgesehen. Jede Hybrid- Radebene E1 , E2 weist ein auf der Abtriebswelle 17 angeordnetes abtriebsseitiges Zahnrad 19, 21 auf, das jeweils mit einem auf der
Brennkraftmaschinen-Welle 3 angeordneten antriebsseitigen Zahnrad 23, 25 und mit jeweils einem koaxial zur Elektromaschinen-Welle 9 angeordneten (elektromaschinenseitigen) Loszahnrad 27, 29 kämmt. Die abtriebsseitigen Zahnräder 19, 21 der Hybrid-Radebenen E1 , E2 sind in der Figur 1 als Loszahnräder auf der Abtriebswelle 17 angeordnet. Entsprechend sind auch deren antriebsseitige Zahnräder 23, 25 als Loszahnräder auf der
Brennkraftmaschinen-Welle 3 drehgelagert. Zwischen den
elektromaschinenseitigen Loszahnrädern 27, 29 der Hybrid-Radebenen E1 , E2 ist ein beidseitig schaltbares Schaltelement SE-A angeordnet, mit dem ebenfalls entweder die erste Hybrid-Radebene E1 oder die zweite Hybrid- Radebene E2 mit der Elektromaschinen-Welle 9 koppelbar ist. Die Abtriebswelle 17 treibt über eine Stirnradstufe St auf die Ausgangswelle 13 ab.
In der in der Figur 1 gezeigten Neutralstellung des Schaltelements SE-A ist die Elektromaschinen-Welle 9 vom Antriebsstrang abgekoppelt. Auf diese Weise ist die Elektromaschinen-Welle 9 im Getriebe-Betrieb stillgelegt, d.h. deaktiviert. Dadurch reduziert sich vorteilhaft das Trägheitsmoment des verbleibenden aktivierten Getriebes. Wie aus der Figur 1 weiter hervorgeht, sind die beiden Hybrid-Radebenen E1 , E2 zu einem gemeinsamen Teilgetriebe T zusammengefasst, das im Getriebe-Betrieb komplett momentenfrei schaltbar ist, das heißt vom
Antriebsstrang komplett abkoppelbar ist, so dass das Teilgetriebe T vollständig stillgelegt ist. Im Teilgetriebe T sind in der Figur 1 die beiden abtriebsseitigen Zahnräder 19, 21 der Hybrid-Radebenen E1 , E2 als
Loszahnräder auf der Abtriebswelle 17 drehgelagert. Zwischen den beiden abtriebsseitigen Zahnrädern 19, 21 der Hybrid-Radebenen E1 und E2 ist ein Schaltelement SE-B angeordnet. Das Schaltelement SE-B in der
dargestellten Neutralstellung von beiden Hybrid-Radebenen E1 , E2 abgekoppelt und axial beidseitig schaltbar. D.h. es kann entweder die erste oder die zweite Hybrid-Radebene E1 , E2 mit der Abtriebswelle 17 koppeln. Zudem sind in der Figur 1 die beiden antriebsseitigen Zahnräder 23, 25 der Hybrid-Radebenen E1 , E2 gemeinsam auf einer antriebsseitigen Hohlwelle 31 drehfest angeordnet, die koaxial auf der Brennkraftmaschinen-Welle 3 drehgelagert ist. Die antriebsseitige Hohlwelle 31 ist in bauteilreduzierter Weise über genau ein Schaltelement SE-C mit der Brennkraftmaschinen- Welle 3 koppelbar.
Das in der Figur 1 gezeigte Getriebe 1 weist insgesamt 16 Zahnräder und fünf Synchronisierungen auf. In dem Getriebe 1 sind sechs verbrennungsmotorischen Direkt-Gänge VM1 bis VM6, die lediglich eine Radebene nutzen, schaltbar, jedoch keine verbrennungsmotorischen
Verwindungs-Gänge, die zumindest zwei Radebenen nutzen: In den Direkt-Gängen VM1 und VM2 ist das Schaltelement SE-H nach links bzw. nach rechts geschaltet, während das Teilgetriebe T stillgelegt sind. Im Direkt-Gang VM3 ist SE-C nach links und SE-B nach links geschaltet. Das heißt, das Teilgetriebe T (mit beiden Hybrid-Radebenen E1 , E2) ist aktiviert. Gleiches trifft auch für den Direkt-Gang VM4 zu, bei dem SE-C nach links und SE-B nach rechts geschaltet sind. In den Direkt-Gängen VM5 und VM6 ist das Teilgetriebe T deaktiviert. Beim Direkt-Gang VM5 ist SE-G nach links geschaltet. Beim Direkt-Gang VM6 ist SE-G nach rechts geschaltet.
Im rein elektromotorischen Betrieb ist das Teilgetriebe T stets aktiviert und es können bis zu vier elektromotorische Gänge geschaltet werden, das heißt die folgenden zwei Direkt-Gänge EM1 , EM2 sowie zwei Verwindungs-Gänge EM3 bis EM4:
So ist im Direkt-Gang EM1 das Schaltelement SE-A nach links geschaltet und das Schaltelement SE-B nach links geschaltet. Im Direkt-Gang EM2 ist das Schaltelement SE-A nach rechts geschaltet und das Schaltelement SE-B nach rechts geschaltet.
Im elektromotorischen Verwindungs-Gang EM3 ist das Schaltelement SE-A nach links betätigt und das Schaltelement SE-B nach rechts betätigt.
Dadurch ergibt sich ein Lastpfad, der von der Elektromaschine 1 1 über das Schaltelement SE-A, die erste Hybrid-Radebene E1 bis zur antriebsseitigen Hohlwelle 31 verläuft und von dort über die zweite Hybrid-Radebene E2 und das Schaltelement SE-B zur Abtriebswelle 17 verläuft. Inn elektromotorischen Verwindungs-Gang EM4 ist das Schaltelement SE-A nach rechts betätigt und das Schaltelement SE-B nach links betätigt.
Dadurch ergibt sich ein Lastpfad, der von der Elektromaschine 1 1 über das Schaltelement SE-A, die zweite Hybrid-Radebene E2 bis zur antriebsseitigen Hohlwelle 31 verläuft und von dort über die erste Hybrid-Radebene E1 und das Schaltelement SE-B zur Abtriebswelle 17 verläuft.
Aus den obigen verbrennungsmotorischen Gängen VM1 bis VM6 und den elektromotorischen Gängen EM1 bis EM4 können in Kombination
hybridische Gänge realisiert werden, in denen elektromotorische und verbrennungsmotorische Gänge in Kombination geschaltet sind.
Nachfolgend sind spezielle Fahrbetriebsarten hervorgehoben, die mittels des in der Figur 1 gezeigten Getriebes 1 realisierbar sind:
So ist mit der in der Figur 1 gezeigten Getriebestruktur ein Standladen der Elektromaschine 1 1 ermöglicht, sofern das Fahrzeug im Fahrzeugstillstand ist, zum Beispiel an einer Ampel oder im Stau. In diesem Fall kann
beispielhaft sowohl das Schaltelement SE-C als auch das Schaltelement SE- A nach links betätigt werden, um die Brennkraftmaschinen-Welle 3 über die erste Hybrid-Radebene E1 mit der Elektromaschine 1 zu verbinden. Dadurch kann ein Momentenfluss von der Brennkraftmaschine 7 über die
Brennkraftmaschinen-Welle 3 und die erste Hybrid-Radebene E1 bis zur Elektromaschine 1 1 erfolgen.
Zudem ist mit Hilfe der Elektromaschine 1 1 ein Brennkraftmaschinen-Start durchführbar. Die Elektromaschine 1 1 kann die Brenn kraftmasch ine 7 über einen Lastpfad starten, bei dem beispielhaft das Schaltelement SE-A nach rechts betätigt ist und das Schaltelement SE-C nach links betätigt ist. Ferner kann in der Figur 1 ein Schaltvorgang zwischen den verbrennungsmotorischen Gängen VM1 , VM2, VM5 und VM6 mit Hilfe der Elektromaschine 1 1 zugkraftunterbrechungsfrei erfolgen, und zwar mit Hilfe der elektromotorischen Gänge EM1 , EM2, die beim
verbrennungsmotorischen Schalten als Stützgänge wirken. Ein solcher Schaltvorgang wird mit einem Öffnen der Trennkupplung 4 gestartet, um die Brennkraftmaschine 7 vom Getriebe 1 zu entkoppeln. Ein eingelegter elektromotorischer Stützgang stellt während des zwischen den
verbrennungsmotorischen Gängen erfolgenden Schaltvorgangs einen Stützlastpfad bereit, der von der Elektromaschine 1 1 zur Antriebsseite verläuft. Während des Schaltvorgangs (das heißt die Brennkraftmaschine 7 ist mittels der Trennkupplung 4 vom Antriebsstrang abgekoppelt) kann somit die Elektromaschine 1 1 ein Antriebsmoment erzeugen, das über den Stütz- Lastpfad zur Abtriebsseite übertragen wird.
Der obige Sachverhalt ist nachfolgend anhand eines
Zugkraftunterbrechungsfreien Schaltvorgangs zwischen dem fünften und sechsten verbrennungsmotorischen Gang erläutert, bei dem der
elektromotorische zweite Gang EM2 als Stützgang wirkt: So ist im Getriebe 1 der Figur 1 im verbrennungsmotorischen fünften Gang VM5 das
Schaltelement SE-G nach links geschaltet. Dadurch verläuft ein Lastpfad von der Brennkraftmaschine 7, der Radebene V3, der Abtriebswelle 17 bis zum abtriebsseitigen Stirnradtrieb St, während das Teilgetriebe T deaktiviert (stillgelegt) ist. Zu Beginn des Schaltvorgangs wird die Trennkupplung 4 gelöst und das Schaltelement SE-G in seine Neutralstellung geschaltet. Zudem wird der als Stützgang wirkende elektromotorische Gang EM2 eingelegt, das heißt sowohl das Schaltelement SE-A als auch das
Schaltelement SE-B nach rechts betätigt, und die Elektromaschine 1 1 hochgefahren. Dadurch erfolgt eine Lastübertragung von der Elektronnasch ine 1 1 zur Abtriebsseite, bei der die Elektromaschine 1 1 ein beliebig einstellbares Moment erzeugt.
Der Schaltvorgang in den Zielgang VM6 wird fortgesetzt, indem das
Schaltelement SE-G von seiner Neutralstellung nach rechts geschaltet wird. Damit ist ein Lastpfad von der Brennkraftmaschine 7 über das Schaltelement SE-G, die Radebene V4 sowie die Abtriebswelle 17 bis zum abtriebsseitigen Stirnradtrieb St vorbereitet. Zum Ende des Schaltvorgangs wird die
Trennkupplung 4 wieder geschlossen, das heißt die Brennkraftmaschine 7 zugeschaltet, sowie die Elektromaschine 1 1 wieder heruntergefahren, so dass der Zielgang VM6 geschaltet ist und abermals eine Lastübertragung von der Brennkraftmaschine 7 zur Abtriebsseite erfolgt.
Im Unterschied zu Schaltvorgängen zwischen den verbrennungsmotorischen Gängen VM1 , VM2, VM5 und VM6 kann ein Schaltvorgang zwischen dem verbrennungsmotorischen dritten Gang VM3 und dem
verbrennungsmotorischen vierten Gang VM4, das heißt zwischen den Hybrid-Radebenen E1 und E2, nicht mittels eines elektromotorischen Gangs gestützt werden kann. In dem in der Figur 1 gezeigten Getriebe 1 kann während des obigen Schaltvorgangs von der Elektromaschine 1 1 kein Stütz- Lastpfad bereitgestellt werden, da sowohl die Brennkraftmaschine 7 als auch die Elektromaschine 1 1 über das gemeinsame Schaltelement SE-B auf die Abtriebswelle 17 abtreiben. Somit ist in der Figur 1 kein
Zugkraftunterbrechungsfreies Schalten zwischen dem dritten und vierten verbrennungsmotorischen Gang möglich.
Zudem ist mittels des in der Figur 1 gezeigten Getriebes 1 ein
elektromotorisches Anfahren aus dem Fahrzeugstillstand oder ein Boost- Betrieb ermöglicht, bei der für einzelne verbrennungsmotorische Gänge mehrere elektromotorische Gänge zum Boosten zur Verfügung stehen. In der Figur 1 ist ein elektromotorischer Rückwärtsgang bereitgestellt, bei dem die Elektromaschine 1 1 in umgekehrter Richtung zu betreiben ist. Im Unterschied dazu weist in der Figur 2 das Getriebe 1 eine zusätzliche Rückwärtsgang-Radebene R auf, die als ein Stirnradsatz ausgebildet ist. Die Rückwärtsgang-Radebene R ist aus einem auf der Brennkraftmaschinen- Welle 3 losgelagerten antriebsseitigen Zahnrad 59, einem damit kämmenden Zwischenzahnrad 61 sowie einem abtriebsseitigen drehfest auf der
Abtriebswelle 17 gelagerten Zahnrad 63 aufgebaut, das mit dem Zwischen- Zahnrad 61 kämmt. Der grundsätzliche Aufbau der in der Figur 6 gezeigten Getriebestruktur ist weitgehend baugleich mit der in der Figur 2 gezeigten Getriebestruktur, mit Ausnahme der zusätzlichen Rückwärtsgang-Radebene R, die in Axialrichtung zwischen der zweiten Hybrid-Radebene E2 und dem Planetenvorgelege 12 angeordnet ist. Zudem ist das Schaltelement SE-C, im Unterschied zur Figur 1 , in der Figur 2 beidseitig schaltbar ausgebildet und in Axialrichtung zwischen der antriebsseitigen Hohlwelle 31 und dem
antriebsseitigen Loszahnrad 59 positioniert. Bei einer Schaltbetätigung nach rechts ist die Brennkraftmaschinen-Welle 3 über das Schaltelement SE-C mit der Rückwärtsgang-Ebene R trieblich verbunden.

Claims

Patentansprüche
Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug, mit einem mittels Schaltelemente in unterschiedliche Übersetzungsstufen umschaltbaren Getriebe (1 ), insbesondere Handschaltgetriebe, das über eine Brennkraftmaschinen-Welle (3) mit einer
Brennkraftmaschine (7), über eine Elektromaschinen-Welle (9) mit einer Elektromaschine (1 1 ) sowie über eine Ausgangswelle (13) mit zumindest einer Fahrzeugachse (VA) trieblich verbindbar ist, wobei die Brennkraftmaschinen-Welle (3) und eine mit der Ausgangswelle (13) trieblich verbundene Abtriebswelle (17) über Stirnzahnradsätze verbindbar sind, die mittels der Schaltelemente schaltbar sind und jeweils Radebenen (V1 bis V4, E1 , E2) bilden, von denen zumindest eine Hybrid-Radebene (E1 , E2) zusätzlich mit der Elektromaschinen- Welle (9) verbindbar ist, dadurch gekennzeichnet, dass die Hybrid- Radebene (E1 , E2) Bestandteil eines Teilgetriebes (T) ist, das
Schaltelemente (SE-A, SE-B, SE-C) aufweist, mittels denen das Teilgetriebe (T) während des Getriebe-Betriebes vom Antriebsstrang abkoppelbar ist oder damit koppelbar ist.
Antriebsstrang nach Anspruch 1 , dadurch gekennzeichnet, dass die Hybrid-Radebene (E1 , E2) ein auf der Abtriebswelle (17)
angeordnetes abtriebsseitiges Zahnrad (19, 21 ), ein auf der
Brennkraftmaschinen-Welle (3) angeordnetes antriebsseitiges
Zahnrad (23, 25) und ein elektromaschinenseitiges Zahnrad (27, 29) aufweist, und dass insbesondere das elektromaschinenseitige
Zahnrad (27, 29) als Loszahnrad koaxial zur Elektromaschinen-Welle (9) drehgelagert ist und mittels dem Schaltelement (SE-A),
insbesondere eine nicht lastschaltbare Synchronisierung, von der Elektromaschinen-Welle (9) abkoppelbar ist oder damit koppelbar ist, und dass das auf der Abtriebswelle (17) angeordnete abtriebsseitige Zahnrad (19, 21 ) der zumindest einen Hybrid-Radebene (E1 , E2) ein Loszahnrad ist, das mittels eines Schaltelements (SE-B) mit der Abtriebswelle (17) koppelbar oder damit koppelbar ist, und/oder dass das auf der Brennkraftmaschinen-Welle (3) angeordnete
antriebsseitige Zahnrad (23, 25) der Hybrid-Radebene (E1 , E2) ein Loszahnrad ist, das mittels eines Schaltelements (SE-C) mit der Brennkraftmaschinen-Welle (3) koppelbar ist.
Antriebsstrang nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Teilgetriebe (T) genau zwei Hybrid-Radebenen (E1 , E2) aufweist, und dass insbesondere das auf der Elektromaschinen-Welle (9) angeordnete Schaltelement (SE-A) beidseitig schaltbar ist und in Axialrichtung zwischen den Loszahnrädern (27, 29) der beiden Hybrid- Radebenen (E1 , E2) angeordnet ist, wobei das Schaltelement (SE-A) in einer Neutralstellung von den beiden Hybrid-Radebenen (E1 , E2) abgekoppelt ist und das Schaltelement (SE-A) entweder in einer ersten Schaltstellung das Loszahnrad (27) der ersten Hybrid- Radebene (E1 ) mit der Elektromaschinen-Welle (9) koppelt oder in einer zweiten Schaltstellung das Loszahnrad (29) der zweiten Hybrid- Radebene (E2) mit der Elektromaschinen-Welle (9) koppelt.
Antriebsstrang nach Anspruch 3, dadurch gekennzeichnet, dass das auf der Abtriebswelle (17) angeordnete Schaltelement (SE-B) beidseitig schaltbar ist und in Axialrichtung zwischen den
abtriebsseitigen Loszahnrädern (19, 21 ) der beiden Hybrid- Radebenen (E1 , E2) angeordnet ist, wobei das Schaltelement (SE-B) entweder in einer ersten Schaltstellung das abtriebsseitige
Loszahnrad (19) der ersten Hybrid-Radebene (E1 ) mit der Abtriebswelle (17) koppelt oder in einer zweiten Schaltstellung das abtriebsseitige Loszahnrad (21 ) der zweiten Hybrid-Radebene (E2) mit der Abtriebswelle (17) koppelt.
Antriebsstrang nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die beiden Hybrid-Radebenen (E1 , E2) Bestandteile des
Teilgetriebes (T) sind, das während des Getriebe-Betriebs stilllegbar ist, das heißt vom Antriebsstrang abkoppelbar ist, und dass
insbesondere im Teilgetriebes (T) die auf der Brennkraftmaschinen- Welle (3) angeordneten antriebsseitigen Loszahnräder (23, 25) der beiden Hybridradebenen (E1 , E2) gemeinsam auf einer Hohlwelle (31 ) drehfest angeordnet sind, die koaxial auf der Brennkraftmaschinen- Welle (3) drehgelagert ist und über genau ein Schaltelement (SE-C) mit der Brennkraftmaschinen-Welle (3) koppelbar ist.
Antriebsstrang nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektromaschinen-Welle (9) frei von drehfest darauf angeordneten Festzahnräder der die Radebenen bildenden Stirnzahnradsätze ist.
Antriebsstrang nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Abtriebswelle (17) über eine Stirnradstufe (St) mit der Ausgangswelle (13) verbunden ist, und dass insbesondere sämtliche Radebenen (V1 bis V4, E1 , E2) in der Axialrichtung zwischen der Stirnradstufe (St) und der Elektromaschine (1 1 ) angeordnet sind, und/oder dass die zumindest eine Hybrid-Radebene (E1 , E2), insbesondere beide Hybridradebenen (E1 , E2), unmittelbar benachbart an der Elektromaschine (1 1 ) angeordnet sind. Antriebsstrang nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Elektromaschine (1 1 ) abtriebsseitig angebunden ist, und dass für die abtriebsseitige Anbindung der Elektromaschine (1 1 ) das elektromaschinenseitige Zahnrad (27, 29) der Hybrid-Radebene (E1 , E2) mit dem auf der Abtriebswelle (17) drehgelagerten abtriebsseitigen Loszahnrad (19, 21 ) kämmt.
Antriebsstrang nach einem der Ansprüche 1 bis 7, dadurch
gekennzeichnet, dass die Elektromaschine (1 1 ) antriebsseitig angebunden ist, und dass für die antriebsseitige Anbindung der Elektromaschine (1 1 ) das elektromaschinenseitige Zahnrad (27, 29) der Hybrid-Radebene (E1 , E2) mit dem auf der Brennkraftmaschinen- Welle (3) drehgelagerten antriebsseitigen Loszahnrad (23, 25) kämmt.
PCT/EP2017/077207 2016-10-26 2017-10-24 Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug WO2018077905A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/344,088 US10883574B2 (en) 2016-10-26 2017-10-24 Hybrid drive train for a hybrid-driven motor vehicle
EP17793911.3A EP3532328A1 (de) 2016-10-26 2017-10-24 Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug
CN201780066099.7A CN109863054B (zh) 2016-10-26 2017-10-24 用于混合动力机动车辆的混合动力动力传动系

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016221058.0 2016-10-26
DE102016221058.0A DE102016221058B4 (de) 2016-10-26 2016-10-26 Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug

Publications (1)

Publication Number Publication Date
WO2018077905A1 true WO2018077905A1 (de) 2018-05-03

Family

ID=60245075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/077207 WO2018077905A1 (de) 2016-10-26 2017-10-24 Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug

Country Status (5)

Country Link
US (1) US10883574B2 (de)
EP (1) EP3532328A1 (de)
CN (1) CN109863054B (de)
DE (1) DE102016221058B4 (de)
WO (1) WO2018077905A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016204586B4 (de) * 2016-03-18 2022-02-03 Audi Ag Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug
DE102016221057A1 (de) * 2016-10-26 2018-04-26 Audi Ag Hybridantriebsstrang für ein hybridgetriebenes Kraftfahrzeug
FR3109119B1 (fr) * 2020-04-10 2022-06-17 Renault Sas Groupe motopropulseur hybride comportant deux moteurs electriques, un moteur thermique non coaxiaux, et trois coupleurs, et son procede de commande
CN112224011B (zh) * 2020-10-23 2022-06-17 东风汽车集团有限公司 一种单电机混合动力变速系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745995A1 (de) * 1997-03-11 1998-09-17 Bosch Gmbh Robert Getriebeintegrierte Elektromaschine für Kraftfahrzeug-Brennkraftmaschinen und deren Steuerung
DE19945474A1 (de) * 1998-10-02 2000-04-06 Luk Getriebe Systeme Gmbh Kraftfahrzeug
WO2008138387A1 (de) * 2007-05-14 2008-11-20 Fev Motorentechnik Gmbh Verfahren zum betrieb eines hybridantriebssystems sowie hybridantriebssystem mit zwei teilgetrieben
EP2792523A2 (de) 2013-03-27 2014-10-22 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Hybrid-Antriebsstrang und Verfahren zum Steuern desselben
DE102013210013A1 (de) * 2013-05-29 2014-12-04 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Schalten eines Antriebsstrang für ein Fahrzeug sowie Antriebsstrang
CN104589994A (zh) * 2015-02-28 2015-05-06 吉林大学 一种三轴式混合动力驱动装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10165097B3 (de) * 2000-07-18 2015-07-23 Schaeffler Technologies AG & Co. KG Doppelkupplungsgetriebe
JP5170100B2 (ja) 2007-09-10 2013-03-27 トヨタ自動車株式会社 車両用充電装置および車両の充電方法
US8224514B2 (en) 2007-11-03 2012-07-17 GM Global Technology Operations LLC Creation and depletion of short term power capability in a hybrid electric vehicle
DE102008031456B4 (de) 2008-07-05 2021-05-27 EGS Entwicklungsgesellschaft für Getriebesysteme mbH Lastschaltgetriebe
JP5185065B2 (ja) 2008-10-23 2013-04-17 トヨタ自動車株式会社 制御装置及び制御方法
CN102596611A (zh) 2009-07-01 2012-07-18 江森自控帅福得先进能源动力系统有限责任公司 具有改进的热管理系统的电池系统
JP5461969B2 (ja) 2009-11-26 2014-04-02 アイシン・エーアイ株式会社 動力伝達装置
DE102011101151A1 (de) 2010-05-25 2011-12-01 Schaeffler Technologies Gmbh & Co. Kg Antriebsstrang mit einem Kupplungsaggregat nach Art einer Doppelkupplung und einem Freilauf
DE102010030567B4 (de) 2010-06-28 2024-02-29 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
JP5648428B2 (ja) * 2010-11-02 2015-01-07 アイシン精機株式会社 ハイブリッド車両の変速装置
CN104093594B (zh) 2012-01-23 2016-01-27 丰田自动车株式会社 车辆以及车辆用控制方法
DE102012016990A1 (de) * 2012-07-02 2014-01-02 Volkswagen Aktiengesellschaft Hybridantriebsstrang für ein Kraftfahrzeug, Hybridfahrzeug und Verwendung desselben
DE102013206176A1 (de) 2013-04-09 2014-10-09 Magna Powertrain Ag & Co. Kg Fahrzeugantrieb
DE102013215114B4 (de) * 2013-08-01 2024-04-25 Zf Friedrichshafen Ag Hybridantrieb eines Kraftfahrzeugs
JP5991336B2 (ja) 2014-03-18 2016-09-14 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
DE102014109169B4 (de) * 2014-07-01 2024-03-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Automatisiertes Schaltgetriebe, Antriebsstrang und -verfahren
DE102014013579A1 (de) * 2014-09-13 2015-03-19 Daimler Ag Antriebsstrangvorrichtung für ein Hybridfahrzeug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19745995A1 (de) * 1997-03-11 1998-09-17 Bosch Gmbh Robert Getriebeintegrierte Elektromaschine für Kraftfahrzeug-Brennkraftmaschinen und deren Steuerung
DE19945474A1 (de) * 1998-10-02 2000-04-06 Luk Getriebe Systeme Gmbh Kraftfahrzeug
WO2008138387A1 (de) * 2007-05-14 2008-11-20 Fev Motorentechnik Gmbh Verfahren zum betrieb eines hybridantriebssystems sowie hybridantriebssystem mit zwei teilgetrieben
EP2792523A2 (de) 2013-03-27 2014-10-22 GETRAG Getriebe- und Zahnradfabrik Hermann Hagenmeyer GmbH & Cie KG Hybrid-Antriebsstrang und Verfahren zum Steuern desselben
DE102013210013A1 (de) * 2013-05-29 2014-12-04 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Schalten eines Antriebsstrang für ein Fahrzeug sowie Antriebsstrang
CN104589994A (zh) * 2015-02-28 2015-05-06 吉林大学 一种三轴式混合动力驱动装置

Also Published As

Publication number Publication date
CN109863054B (zh) 2022-04-19
EP3532328A1 (de) 2019-09-04
CN109863054A (zh) 2019-06-07
US10883574B2 (en) 2021-01-05
DE102016221058A1 (de) 2018-04-26
US20190323579A1 (en) 2019-10-24
DE102016221058B4 (de) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2018077904A1 (de) Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug
AT519295B1 (de) Drehmomentübertragungsvorrichtung für Hybridantriebe
EP3532323A1 (de) Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug
EP3532325A1 (de) Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug
EP3174747A1 (de) Getriebeanordnung für ein hybrid-kraftfahrzeug und hybrid-kraftfahrzeug
EP3532328A1 (de) Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug
AT519486A1 (de) Drehmomentübertragungsvorrichtung
WO2018077907A1 (de) Hybridantriebsstrang für ein hybridgetriebenes kraftfahrzeug
WO2019091745A1 (de) Antriebsvorrichtung für eine fahrzeugachse eines zweispurigen fahrzeugs
AT520555B1 (de) Antriebsstrang für ein kraftfahrzeug
EP3615366B1 (de) Hybridantriebsstrang für ein kraftfahrzeug
DE102016100807A1 (de) Hybridantriebsstrang für ein Kraftfahrzeug
WO2018115227A1 (de) Drehmomentübertragungsvorrichtung, antriebssystem und kraftfahrzeug
WO2018115245A1 (de) Drehmomentübertragungsvorrichtung, antriebssystem und kraftfahrzeug
DE102020131915B4 (de) Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
DE102021211734B3 (de) Drei- oder Vierganggetriebe für einen elektrischen Antrieb
DE102021211820B4 (de) Hybrid-Getriebeanordnung und Hybrid-Antriebsstrang
DE102020005103B4 (de) Doppelkupplungsgetriebe
DE102021202250B4 (de) Hybrid-Getriebeanordnung und Fahrzeug mit einer Hybrid-Getriebeanordnung
DE102020131919A1 (de) Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
DE102022203840A1 (de) Kraftfahrzeuggetriebe für ein zumindest teilweise elektrisch angetriebenes Kraftfahrzeug
DE102015216495A1 (de) Antriebsanordnung und Verfahren zum Betrieb einer Antriebsanordnung
DE102020131911A1 (de) Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
DE102020131903A1 (de) Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug
DE102020131917A1 (de) Hybridantriebsstrang für ein hybridgetriebenes Fahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17793911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017793911

Country of ref document: EP

Effective date: 20190527