WO2018076900A1 - 显示装置 - Google Patents

显示装置 Download PDF

Info

Publication number
WO2018076900A1
WO2018076900A1 PCT/CN2017/097749 CN2017097749W WO2018076900A1 WO 2018076900 A1 WO2018076900 A1 WO 2018076900A1 CN 2017097749 W CN2017097749 W CN 2017097749W WO 2018076900 A1 WO2018076900 A1 WO 2018076900A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
layer
refractive index
grating
Prior art date
Application number
PCT/CN2017/097749
Other languages
English (en)
French (fr)
Inventor
王维
杨亚锋
陈小川
孟宪芹
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/752,629 priority Critical patent/US10663639B2/en
Publication of WO2018076900A1 publication Critical patent/WO2018076900A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/00362-D arrangement of prisms, protrusions, indentations or roughened surfaces
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133615Edge-illuminating devices, i.e. illuminating from the side
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • Embodiments of the present disclosure relate to a display device.
  • the existing virtual/augmented reality display and transparent display are usually implemented by using a conventional liquid crystal display panel (LCD) and an organic electroluminescent display panel (OLED), and it is difficult to achieve high transparency of the display panel, thereby affecting the panel.
  • LCD liquid crystal display panel
  • OLED organic electroluminescent display panel
  • the outgoing light of the conventionally structured liquid crystal display panel (LCD) and the organic electroluminescent display panel (OLED) is generally divergent light, and it is difficult to achieve near-eye display that can achieve single-eye focusing.
  • At least one embodiment of the present disclosure provides a display device including opposing upper and lower substrates, a liquid crystal layer, a waveguide layer, a plurality of electrode structures, and a collimated light source.
  • a liquid crystal layer disposed between the upper substrate and the lower substrate; a waveguide layer disposed on a side of the lower substrate facing the upper substrate, the waveguide layer having a refractive index at least greater than that of the waveguide layer a refractive index of the contacted film layer; a plurality of electrode structures disposed on a side of the upper substrate facing the lower substrate, wherein the plurality of electrode structures are arranged in an array and are in one-to-one correspondence with the plurality of sub-pixels;
  • the collimated light source is disposed at least on one side of the waveguide layer.
  • a plurality of grating coupling structures are further disposed on a surface of the waveguide layer facing the side of the upper substrate and The electrode structures are in one-to-one correspondence.
  • each of the grating coupling structures includes a plurality of spaced apart grating strips, and a slit between adjacent two of the grating strips, each of which The refractive index of the grating coupling structure is n o , n e or any value between n o and n e .
  • is the angle between the coupled light outgoing direction and the surface normal of the waveguide layer
  • N m is the effective refractive index of the waveguide layer propagation guided mode
  • n c is the refractive index of the liquid crystal layer
  • the grating period of the grating coupling structure is The sum of the width of the grating strip and the width of the slit.
  • the thickness of the grating coupling structure is not greater than the width of one of the grating strips in the grating coupling structure.
  • the grating coupling structure has a thickness of 100 nm to 1.5 ⁇ m.
  • each of the electrode strips in the electrode structure has a one-to-one correspondence with each of the grating strips in the grating coupling structure; and the width of the electrode strip is not greater than The width of the raster strip.
  • each of the electrode structures includes a first electrode strip and a second electrode strip which are alternately disposed and insulated from each other, the first electrode strip and the second electrode The strips are used to load positive electrical signals and negative electrical signals, respectively.
  • each of the electrode structures in each of the electrode structures, the spacing between adjacent ones of the first electrode strips and the second electrode strips are equal; each The electrode structure further includes a first connection electrode strip for connecting the first electrode strip, and a second connection electrode strip for connecting the second electrode strip.
  • a spacing between adjacent ones of the first electrode strips and the second electrode strips is smaller than a distance between the electrode structure and the grating coupling structure The spacing in the direction of the substrate is described.
  • the method further includes: a buffer layer disposed between the waveguide layer and the lower substrate.
  • the buffer layer is in contact with the waveguide layer and the buffer layer has a refractive index smaller than a refractive index of the waveguide layer.
  • the buffer layer is in contact with the lower substrate and the buffer layer has a refractive index greater than a refractive index of the lower substrate.
  • the collimated light source is at least Mixing light of monochromatic light emitted by three monochromatic laser diodes; or, the collimated light source is a mixed light of monochromatic light emitted by at least three monochromatic light emitting diodes after passing through a collimating structure; or, the collimating light
  • the light source is white light after the collimated structure of the white light emitting diode; or the light emitted by the strip-shaped cold cathode fluorescent tube passes through the collimated light after the collimated structure.
  • the light of the collimated light source is incident on the waveguide layer perpendicular to a side of the waveguide layer, or to satisfy total reflection in the waveguide layer.
  • An oblique angle of the condition is incident on the waveguide layer.
  • each of the grating coupling structures has a refractive index of n o ; the display device further includes: a surface disposed on a side surface of the upper substrate facing the liquid crystal layer And/or an alignment layer disposed on a surface of the lower substrate facing the liquid crystal layer; an initial direction of the liquid crystal molecules in the liquid crystal layer is perpendicular to a plane of the upper substrate.
  • each of the grating coupling structures has a refractive index of n e or any value between n o and n e ;
  • the display device further includes: The upper substrate faces an inner surface of the liquid crystal layer and/or an alignment layer disposed on a surface of the electrode structure facing the liquid crystal layer; and a polarizer disposed on a side of the upper substrate facing away from the liquid crystal layer Or a polarizing element disposed on a light exiting side of the collimated light source, the polarizing element being configured such that the collimated light source is a collimated polarized light source; and an initial direction of liquid crystal molecules in the liquid crystal layer is perpendicular to the upper substrate The plane.
  • the method further includes: disposed on a surface of the upper substrate facing the liquid crystal layer and/or disposed on a surface of the lower substrate facing a side of the liquid crystal layer An alignment layer; and a polarizer disposed on a side of the upper substrate facing away from the liquid crystal layer, or a polarizing element disposed on a light exiting side of the collimated light source, the polarizing element being configured such that the collimated light source And collimating the polarized light source; the initial direction of the liquid crystal molecules in the liquid crystal layer is parallel to a plane where the upper substrate is located.
  • each of the grating coupling structures has a refractive index of any value between n o and n e ; the liquid crystal molecules in the liquid crystal layer are blue phase liquid crystal materials. .
  • each of the grating coupling structures has a refractive index n o or n e ; the liquid crystal molecules in the liquid crystal layer are blue phase liquid crystal materials; And a polarizing plate disposed on a surface of the upper substrate facing away from the liquid crystal layer, or a polarizing element disposed on a light emitting side of the collimated light source, wherein the polarizing element is configured such that the collimated light source is A collimated polarized light source.
  • FIG. 1a is a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 1b is a second schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 1 is a third schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram showing the principle of optical waveguide coupling in the prior art
  • FIG. 3 is a schematic diagram of a light exit direction control of a display device according to an embodiment of the present disclosure
  • 4a and 4b are schematic structural views of the first example
  • 5a and 5b are schematic structural views of the second embodiment
  • 6a and 6b are schematic structural views of the third embodiment, respectively.
  • At least one embodiment of the present disclosure provides a display device including opposing upper and lower substrates, a liquid crystal layer, a waveguide layer, a plurality of electrode structures, and a collimated light source.
  • the liquid crystal layer is disposed between the upper substrate and the lower substrate;
  • the waveguide layer is disposed on a side of the lower substrate facing the upper substrate, and the refractive index of the waveguide layer is at least greater than a refractive index of the film layer in contact with the waveguide layer;
  • the plurality of electrode structures are arranged in an array and are in one-to-one correspondence with the plurality of sub-pixels;
  • the collimated light source is disposed at least on one side of the waveguide layer.
  • the liquid crystal molecules of the liquid crystal layer for o-polarized light refractive index n o of the liquid crystal molecules may be less than or greater than the refractive index for polarized e n e.
  • the embodiments of the present disclosure will specifically describe the embodiments of the present disclosure by taking n o less than n e as an example, but the embodiments of the present disclosure are not limited thereto.
  • a collimated backlight emitted by a collimated light source may be incident on the waveguide layer perpendicular to a side of the waveguide layer; for example, a collimated backlight exiting the collimated light source may also satisfy the waveguide layer
  • the oblique angle of the total reflection condition is incident on the waveguide layer.
  • the embodiment of the present disclosure will specifically describe the embodiment of the present disclosure by taking the case of normal incidence as an example, but the embodiment of the present disclosure is not limited thereto.
  • a collimated backlight emitted by a collimated light source may be incident only into the waveguide layer; and, for example, a collimated backlight emerging from the collimated light source may also be incident into the waveguide layer and the buffer layer, and At least a portion of the backlight transmitted in the buffer layer may be provided to the waveguide layer via an interface of the waveguide layer and the buffer layer; for example, the collimated backlight emitted by the collimated light source may also be incident into the waveguide layer, the buffer layer, and the lower substrate, under At least a portion of the collimated backlight transmitted in the substrate may be provided to the buffer layer via an interface of the lower substrate and the buffer layer, and at least a portion of the backlight transmitted in the buffer layer may be provided to the waveguide layer via an interface of the waveguide layer and the buffer layer.
  • a cross-sectional view of a display device includes: an upper substrate 001 and a lower substrate 002 opposite to each other; and is disposed on the upper substrate 001 and the lower substrate 002 a liquid crystal layer 003; a waveguide layer 004 disposed on a surface of the lower substrate 002 facing the side of the upper substrate 001, the waveguide layer 004 having a refractive index at least greater than a fold of the film layer contacting the waveguide layer 004 a plurality of sub-pixel-aligned electrode structures 005 arranged on the upper substrate 001 facing the lower substrate 002 side surface and arranged in an array; and a collimated light source 006 disposed at least on one side of the waveguide layer 004 .
  • each electrode structure 005 may have a plurality of electrode strips (not shown) arranged at equal intervals, but embodiments of the present disclosure are not limited thereto. It can be understood that the collimated light source 006 is disposed on the side of the waveguide layer 004 in the thickness direction.
  • birefringence occurs to produce two kinds of polarized light that vibrate perpendicularly to each other, one being ordinary light and the other being extraordinary light.
  • the direction of vibration of the extraordinary light is perpendicular to the direction of the ordinary light vibration, and the angle with the optical axis of the uniaxial crystal is not equal to 90°.
  • the refractive index of the ordinary light of the liquid crystal is fixed, and the refractive index value of the extraordinary light varies with the angle between the vibration direction and the optical axis (ie, the direction of the long axis of the liquid crystal molecule).
  • the deflection of the liquid crystal molecules in the corresponding liquid crystal layer 003 can be controlled by the electrode structure 005 such that the angle between the long-axis direction of the liquid crystal molecules with respect to the vibration direction of the extraordinary light changes, thereby changing the refractive index of the liquid crystal to the extraordinary light.
  • the display device controls the deflection of the liquid crystal molecules in the corresponding liquid crystal layer 003 by the electrode structure 005 to form a grating-like distribution, so that coupling of a specific mode in the waveguide layer 004 can be realized, and the light output can be realized.
  • the direction and color are selected, and the control of the gray scale is realized by adjusting the refractive index of the liquid crystal layer 003.
  • the electrode structure 005 is separated from the waveguide layer 004 by a certain distance, the interference of the electrode structure 005 to the waveguide mode of the waveguide layer 004 can be effectively reduced, the dark state light is reduced, and the contrast of the device is improved.
  • the light in the waveguide layer 004 may be separately provided to be coupled to the emitting device, as shown in FIG. 1c, for example, in the above display device provided by the embodiment of the present disclosure.
  • the grating coupling structure 007 is disposed on the surface of the waveguide layer 004 facing the upper substrate 001 and corresponding to the electrode structure 005.
  • the refractive index of each grating coupling structure 007 is n o , n e or n o .
  • n e is a refractive index of liquid crystal molecules in the liquid crystal layer 003 for ordinary light (ie, o polarized light), and n e is liquid crystal molecules in the liquid crystal layer 003 for extraordinary light (ie, The refractive index of e-polarized light.
  • the function of the grating coupling structure 007 is masked, and no light is coupled out from the waveguide layer 005, at this time, L0.
  • the state that is, the state with the lowest gray scale (or black state); when the refractive index of the liquid crystal layer 003 and the refractive index of the grating coupling structure 007 are the largest, the grating coupling structure 007 has the most obvious effect, and the light is coupled from the waveguide layer 004.
  • the coupling efficiency is the highest, at this time, the L255 state, that is, the state with the highest gray scale (or bright state); when the refractive index of the liquid crystal layer 003 is between the above two conditions, the intermediate grayscale state is displayed.
  • the display device provided by the embodiment of the present disclosure can selectively converge the light for display to the vicinity of the pupil due to the selection effect of the light-coupled output device multiplexed by the grating coupling structure 007 or the electrode structure 005 on the light-emitting direction. It is advantageous to achieve near-eye display that can be focused by one eye.
  • the light-coupled exit device multiplexed by the grating coupling structure 007 or the electrode structure 005 since the light-coupled exit device multiplexed by the grating coupling structure 007 or the electrode structure 005 only needs several grating periods, the light can be effectively coupled out from the waveguide layer 004, and the grating period is generally small, in a few micrometers or A few hundred nanometers, so the pixel size can be small, which is conducive to high resolution (PPI) display.
  • the light-coupled emission device multiplexed by the grating coupling structure 007 or the electrode structure 005 has a function of selecting the color of the light, the setting of the color film can be omitted, and all the components in the display device can be made of a transparent material, Transparent display and virtual/augmented reality display with high transparency.
  • optical waveguides are a relatively common basic component.
  • a more common method is to use a grating coupler.
  • the incident light can be excited in the waveguide.
  • the order guide mode, or the m-th order guide can be coupled out in a given direction.
  • N m the effective refractive index of the m-th order guided mode
  • K is the grating vector
  • K 2 ⁇ / ⁇
  • is the grating period.
  • the plurality of grating coupling structures 007 or electrode structures 005 disposed on the surface of the waveguide layer 004 facing the upper substrate 001 and arranged in an array are multiplexed with light.
  • the coupling exit device functions to select an exit of a given color ray (light wavelength ⁇ ) in a given direction (angle ⁇ with respect to the surface normal of the waveguide layer 004) from the light propagating in the waveguide layer 004. Therefore, one grating coupling structure 007 and one electrode structure 005 correspond to one sub-pixel structure in the display device.
  • the grating coupling structure 007 in the above display device provided by the embodiment of the present disclosure has a light wavelength ⁇ that is coupled from the waveguide layer 004 and a grating period ⁇ of the grating coupling structure 007 satisfy the following formula:
  • is the angle between the coupled light exiting direction and the surface normal of the waveguide layer 004;
  • N m is the effective refractive index of the waveguide layer 004 propagating guided mode;
  • n c is the refractive index of the liquid crystal layer.
  • the pixel light emitting direction of a certain position in the display device provided by the embodiment of the present disclosure is often fixed, as shown in FIG. 3, determined by the position of the pixel relative to the human eye, that is, the ⁇ angle is fixed. of. Therefore, it is possible to select the exit of a given color ray (light wavelength ⁇ ) in a given direction (angle ⁇ with respect to the surface normal of the waveguide layer 004) by adjusting the grating period ⁇ of each grating coupling structure 007.
  • the grating coupling structure 007 in the above display device includes: a plurality of spaced apart grating strips, and slits existing between adjacent two grating strips.
  • the material of each of the grating strips is a transparent dielectric material such as SiO 2 , a resin material or the like.
  • the refractive index of each grating coupling structure in the grating coupling structure 007 is n o , n e or any value between n o and n e .
  • the value of n is preferably n o ; in the case where n o is greater than n e , the value of n is preferably n e .
  • the sum of the width of a grating strip and the width of an adjacent slit is the grating period ⁇ of the grating coupling structure 007.
  • the grating period ⁇ is determined by the desired light outgoing direction. And the color of the light is decided.
  • the duty ratio in the grating coupling structure 007 may be 0.5 (ratio of the grating strip width to the grating period )), but in actual product design, according to the required light output intensity, the difference in brightness of different positions of the display panel, process conditions, etc. are balanced. Factor considerations, the duty cycle can deviate from this value.
  • the refractive index of the grating coupling structure refers to the refractive index of the material of the grating strip of the grating coupling structure.
  • the refractive index of the grating coupling structure is the refractive index of the resin material.
  • the thickness of the grating coupling structure 007 is not more than one grating.
  • the width of the bar is not limited to this. It can be understood that, for example, all the grating strips in the grating coupling structure 007 have the same thickness, that is, the thickness of the grating coupling structure 007, and all the grating strips in the grating coupling structure 007 have the same width.
  • each grating coupling structure 007 in the above display device provided by the embodiment of the present disclosure may be set to be 100 nm to 1.5 ⁇ m.
  • the thickness of the grating coupling structure 007 corresponding to different color (RGB) sub-pixels may be the same or different.
  • the thickness of each of the grating coupling structures 007 may be selected to be about 300 nm, but the embodiment of the present disclosure is not limited thereto.
  • the thickness of each grating coupling structure 007 may also be 200 nm, 400 nm, 600 nm, or 800 nm.
  • each grating coupling structure 007 can include 2-8 strips (eg, 6 strips).
  • each electrode strip may have a one-to-one correspondence with each grating strip in the grating coupling structure 007; and the width of the electrode strip is not greater than the width of the grating strip, and the electrode strip The width can be, for example, equal to the width of the grating strip.
  • the electrode strips included in each electrode structure may be alternately arranged and insulated from each other by the first electrode strip and the second electrode strip.
  • the electrode strip, the first electrode strip and the second electrode strip are respectively used for loading a positive electrical signal and a negative electrical signal.
  • the spacing between adjacent first electrode strips and second electrode strips may be equal, thereby increasing the uniformity of light.
  • each electrode structure may further include a first connection electrode strip for connecting the first electrode strip, and a second connection electrode strip for connecting the second electrode strip.
  • first connecting electrode strips may connect all of the first electrode strips in each electrode structure
  • second connecting electrode strips may connect all of the second electrode strips in each electrode structure.
  • the spacing between adjacent first electrode strips and second electrode strips may
  • the spacing between the electrode structure and the grating coupling structure in a direction perpendicular to the upper substrate, and thus the electrode spacing provided between the positive and negative electrodes in the same plane is more than that of the electrode structure disposed on the upper and lower electrodes. Small, the electric field between the electrodes is stronger, the liquid crystal molecules are more controllable, and a faster response speed and a smaller driving voltage can be obtained.
  • the electrode structure 005 is disposed on the upper substrate, it is not necessary to consider the refractive index matching problem between the electrode material and the liquid crystal material, so that the electrode material and the liquid crystal material can be effectively reduced. Black light leakage caused by mismatch in refractive index.
  • the thickness of the electrode structure 005 is not more than the width of one electrode strip. (ie, the width of the grating strip in a direction perpendicular to its extending direction and parallel to the upper substrate, that is, the direction parallel to the paper surface in FIG. 1 and parallel to the upper substrate).
  • the electrode structure 005 may select a transparent conductive material, such as ITO or the like.
  • the thickness of the electrode structure 005 may be controlled between 50 nm and 1000 nm, and may be about 100 nm.
  • the electrode structure 005 may also be selected from a thin metal material such as Au or an Ag-Mg alloy. In this case, the thickness of the electrode structure 005 may be controlled between 30 nm and 200 nm. Since the metal material is thin, the electrode structure is 005 also has good transmittance.
  • the upper substrate 001 and the lower substrate 002 in the above display device provided by the embodiments of the present disclosure may be selected according to actual application requirements, which is not specifically limited in the embodiments of the present disclosure.
  • the upper substrate 001 and the lower substrate 002 may be composed of a base substrate of a usual liquid crystal display panel (LCD) or an organic electroluminescence display panel (OLED), or some special optical glass or resin material or the like may be used.
  • the thickness of the upper substrate 001 and the lower substrate 002 may be set to about 0.1 mm to 2 mm, and the parameters thereof are determined by specific product design or process conditions.
  • upper and lower surfaces of the upper substrate 001 and the lower substrate 002 may have better Flatness and parallelism.
  • the refractive index of the waveguide layer 004 is required to be larger than that of the waveguide layer 004.
  • the refractive index of the other layer structures it is preferable to be larger than the refractive index of the other layer structures, that is, the refractive index of the waveguide layer 004 is the largest in the display device.
  • the waveguide layer 004 can be made of a material such as Si 3 N 4 , and is not limited thereto.
  • the thickness of the waveguide layer 004 (ie, the thickness of the waveguide layer 004 in the direction perpendicular to the upper substrate) may be set to 100 nm-100 ⁇ m.
  • the thickness of the waveguide layer 004 can be appropriately thickened to increase the light entering efficiency, such as between 500 nm and 100 ⁇ m (for example, 700 nm).
  • the thickness of the waveguide layer 004 needs to be sufficiently thin, preferably a single mode waveguide, for example, the thickness of the waveguide layer 004 is 100 nm or 200 nm, but is not limited thereto.
  • the method further includes: disposed between the waveguide layer 004 and the lower substrate 002.
  • the buffer layer 008 may be formed on the lower substrate 002, and then the waveguide layer 004 may be grown on the buffer layer 008, thereby contributing to obtaining a better film quality of the waveguide layer 004.
  • the thickness of the buffer layer 008 may be set to be between 50 nm and 10 ⁇ m.
  • the buffer layer 008 may be a transparent dielectric material such as SiO 2 , a resin material, or the like.
  • the buffer layer 008 can be in direct contact with the waveguide layer 004, and the refractive index of the buffer layer 008 can be less than the refractive index of the waveguide layer 004.
  • the collimated backlight emitted by the collimated light source may be simultaneously incident into the waveguide layer and the buffer layer, and at least a portion of the backlight transmitted in the buffer layer may be supplied to the waveguide layer via the interface of the waveguide layer and the buffer layer.
  • the intensity of the collimated backlight coupled into the waveguide layer 004 can be improved and the requirement of aligning the quality of the straight backlight beam can be reduced, thereby improving the efficiency of the display device provided by the embodiment of the present disclosure.
  • the buffer layer 008 may be in contact with the lower substrate 002 and the refractive index of the buffer layer 008 may be greater than the refractive index of the lower substrate 002.
  • the collimated backlight emitted by the collimated light source may be incident into the waveguide layer, the buffer layer, and the lower substrate, and at least a portion of the collimated backlight transmitted in the lower substrate may be provided to the buffer layer via an interface between the lower substrate and the buffer layer, and At least a portion of the backlight transmitted in the buffer layer may be provided to the waveguide layer via an interface of the waveguide layer and the buffer layer.
  • the type of the collimated light source may be selected according to actual application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the collimated backlight of the collimated light source may be monochromatic light.
  • the collimated backlight emitted by the collimated light source may be a complex color light (ie, mixed light), for example, may be obtained by mixing a plurality of monochromatic lights, or It can be obtained by a light source that emits complex light (for example, a cold cathode fluorescent tube or a white LED).
  • the collimated light source 006 can be a mixture of monochromatic light emitted by at least three monochromatic laser diodes. Light, for example, red (R), green (G), and blue (B) semiconductor laser diodes are mixed to form the collimated light source 006.
  • the collimated light source 006 may also be a mixed light of a monochromatic light emitted by at least three monochromatic light-emitting diodes after being collimated, for example, LEDs of three colors of R, G, and B are collimated and mixed.
  • the collimated light source 006 is formed.
  • the collimated light source 006 may also be a collimated white light emitted by the white light emitting diode.
  • the white light emitting diode is collimated to form the collimated light source 006.
  • the collimated light source 006 may be collimated light made by a light emitted from a strip-shaped cold cathode fluorescent tube (CCFL tube) through a collimating structure, and the collimated light source 006 is not limited to the above type.
  • CCFL tube strip-shaped cold cathode fluorescent tube
  • the collimated light source 006 may be a linear light source, and the extending direction of the linear light source may coincide with the extending direction of the side of the waveguide layer 004 (for example, both may extend in a direction perpendicular to the plane of the paper in the drawing), This can improve the matching degree between the collimated backlight emitted by the collimated light source 006 and the waveguide layer 004, thereby improving the coupling efficiency of the waveguide layer 004 for the collimated backlight.
  • the size of the collimated backlight in the direction perpendicular to the upper substrate may be selected according to actual application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the width of the collimated backlight in the direction perpendicular to the direction of the paper in the drawing may be selected according to the actual application requirements, which is not specifically limited in the embodiment of the present disclosure.
  • the collimated light source 006 in the above display device provided by the embodiment of the present disclosure is generally wider than the side width of the waveguide layer 004.
  • the width of the waveguide layer 004 in the direction perpendicular to the plane of the drawing in the drawing is matched, for example, a laser diode array or an array of light emitting diodes having a width consistent with the waveguide layer 004 may be used as the collimated backlight structure, or may be used.
  • a structure of a laser diode (LD) array or a light emitting diode (LED) array and a beam expander structure disposed on the light exit side of the LD/LED array serves as a collimated backlight structure.
  • the illumination of the collimated light source 006 in the above display device provided by the embodiment of the present disclosure is generally disposed at a side perpendicular to the waveguide layer 004 to be incident on the waveguide.
  • Layer 004 eg, a collimated backlight may be parallel to the upper and lower substrates when incident; for example, the collimated backlight may also be parallel to the upper and lower substrates and the paper in FIG. 1 when incident).
  • the collimated backlight can be incident on the waveguide layer 004 as much as possible.
  • the collimated light source 006 can also be incident on the waveguide layer 004 at an oblique angle satisfying the total reflection condition in the waveguide layer 004, that is, the collimated light source 006 is incident at a set tilt angle to Waveguide layer 004 to increase the intensity of light coupled from the waveguide layer 004 and display The light extraction efficiency of the device waveguide grating.
  • the light emitted by the collimated backlight 006 may not be absolutely collimated, and there will always be a small divergence angle.
  • the component of the collimated backlight 006 that is directed toward the upper layer of the waveguide layer 004, such as the liquid crystal layer 003, is absorbed by the outermost frame sealant 009 of the liquid crystal layer 003 as shown in FIG. 1, so that the collimated backlight does not actually appear.
  • 006 is incident on the liquid crystal layer 003.
  • the buffer layer 008 and the lower substrate 002 are greater than the thickness of the waveguide layer 004, if the emitted light of the collimated backlight 006 is coupled into the buffer layer 008 and the lower substrate 002, the buffer layer 008 and the lower substrate 002 also serve as The role of the auxiliary waveguide.
  • the collimated backlight 006 emits a component of the lower substrate 002 and/or the buffer layer 008 without being affected by the lower substrate 002 and/or the buffer layer 008. It is well bound, but is introduced into the waveguide layer 004, supplementing the attenuation of the waveguide mode in the waveguide layer 004 due to propagation or grating coupling.
  • the liquid crystal layer 003 may be filled at the slit of the electrode structure 005 and the grating coupling structure 007, and the thickness of the liquid crystal layer 003 may be, for example, several hundred nanometers to several micrometers, for example, Can be set to about 1 ⁇ m.
  • the liquid crystal material of the liquid crystal layer 003 can be selected according to the desired display mode and the implementation of the gray scale.
  • the initial direction of the liquid crystal molecules means the direction in which the long axes of the liquid crystal molecules extend without applying a voltage to the liquid crystal molecules via the electrode structure.
  • Example 1 A display mode in which the optical axis of the liquid crystal molecules is rotated in a plane perpendicular to the display panel.
  • the display device provided by the embodiment of the present disclosure further includes: disposed on a surface of the upper substrate 001 facing the liquid crystal layer 003 and/or disposed on the lower substrate 002 facing the liquid crystal layer 003.
  • the alignment layer 010 of one side surface (which may be PI, the thickness is 30 nm to 80 nm) may or may not include the alignment layer, and the alignment layer 010 is shown in FIG. 4a only when the upper substrate 001 faces the surface of the liquid crystal layer 003. .
  • the initial orientation of the liquid crystal molecules in the liquid crystal layer 003 can be controlled by the disposed alignment layer 010 such that the initial direction of the liquid crystal molecules in the liquid crystal layer 003 is perpendicular to the plane of the upper substrate 001, and the refractive index of the liquid crystal layer 003 (e in the waveguide layer 004)
  • the refractive index of the liquid crystal layer 003 sensed by the polarized light and the refractive index of the grating coupling structure are the largest, and the grating coupling structure 007 has the most obvious effect.
  • the coupling efficiency of the light coupled from the waveguide layer 004 is the highest, which is L255 gray scale.
  • the liquid crystal molecules can be rotated in a plane perpendicular to the display surface (ie, the plane of the paper surface in the drawing) to realize the liquid crystal.
  • the refractive index of layer 003 is adjusted between n o and n e to achieve different gray levels. As shown in FIG.
  • the polarized light having a polarization direction parallel to the lower substrate 002 and perpendicular to the length direction of the grating coupling structure 007 can sense the refractive index change of the liquid crystal layer 003, and the polarization direction is parallel to the lower substrate 002 and
  • the polarized light (the ordinary light, that is, the o-light) parallel to the longitudinal direction of the grating coupling structure 007 does not feel the refractive index change of the liquid crystal layer 003, and thus the display light of the display mode is polarized.
  • the index grating coupling structure 007 is equal to n o, for example, when the refractive index of the liquid crystal layer and a grating coupler 003 is equal to 007, i.e., when both n o, the coupling effect of the grating structure 007 is masked, there is no
  • the light is coupled out from the waveguide layer 004, and the gray scale is the smallest, which is the L0 state; when the refractive index (n e ) of the liquid crystal layer 003 and the refractive index (n o ) of the grating coupling structure 007 are the largest, the grating coupling structure 007
  • the most obvious effect is that the coupling efficiency of the light from the waveguide layer 004 is the highest, and the gray scale is the largest, which is the L255 state; when the refractive index of the liquid crystal layer 003 is between the above two conditions, it is the other gray-scale state.
  • the change of the refractive index and the light of other polarization directions can be felt.
  • the change in the refractive index described above is not felt, so that it is not necessary to provide a polarizer.
  • the nematic liquid crystal it is generally required to add an alignment layer on the upper surface of the liquid crystal layer 003 or an alignment layer on both the upper and lower surfaces to control the initial direction of the liquid crystal layer 003 to ensure that the liquid crystal molecules can be controlled at the applied voltage.
  • the rotation is performed in the above manner, for example, some liquid crystal materials do not need to be provided with an alignment layer.
  • the display mode of the display panel in this example is the normally white display mode.
  • the display mode of the display panel is the normally black display mode. Therefore, it can be based on reality
  • the application requirements set the alignment layer, which is not specifically limited in the embodiment of the present disclosure.
  • the display device does not need to add a polarizer on the light exiting side or requires the side-entry collimated light source to be polarized light to realize normal display. .
  • the display device needs to add a polarizer on the light emitting side, that is, a polarizer is disposed on the surface of the upper substrate 001 facing away from the liquid crystal layer 003.
  • the collimated light source may be required to be a collimated polarized light source or a polarizing element may be disposed on the light exit side of the collimated light source), thereby enabling collimation
  • the backlight is collimated polarized light, which can eliminate the interference of the polarized light controlled by the liquid crystal orientation deflection.
  • the display mode generally requires the liquid crystal to be a positive liquid crystal.
  • Example 2 Display mode in which the optical axis of the liquid crystal molecules is rotated in parallel with the plane of the display surface.
  • the display device provided by the embodiment of the present disclosure further includes: disposed on a surface of the upper substrate 001 facing the liquid crystal layer 003 and/or disposed on the lower substrate 002 facing the liquid crystal layer 003.
  • An alignment layer 010 (which may be PI, thickness of 30 nm to 80 nm) of one surface, and FIG. 5a shows a case where the alignment layer 010 is disposed only on the surface of the upper substrate 001 facing the liquid crystal layer 003; and is disposed on the upper substrate.
  • 001 is away from the polarizer 011 on the surface of one side of the liquid crystal layer 003, or the collimated light source is a collimated polarized light source.
  • the initial orientation of the liquid crystal molecules in the liquid crystal layer 003 can be controlled by the alignment layer 010, so that the initial direction of the liquid crystal molecules in the liquid crystal layer 003 is parallel to the plane of the upper substrate 001, for example, the initial direction of the liquid crystal molecules is parallel to the upper substrate 001 and perpendicular to The state of the paper surface in the drawing, and the polarization direction of the polarizing plate is perpendicular to the polarized light transmitted through the paper surface in the drawing or the incident light is the polarized light whose polarization direction is perpendicular to the paper surface in the drawing, and is L255 gray scale at this time. .
  • the liquid crystal molecules can be rotated in a plane parallel to the display surface (ie, perpendicular to the plane of the paper surface in the drawing).
  • the adjustment of the refractive index of the liquid crystal layer 003 between no and ne is achieved to achieve different gray scales. For example, as shown in FIG.
  • Refractive index grating coupling structure 007 is equal to n o, for example, shown in Figure 5b, when the refractive index of the liquid crystal layer and a grating coupler 003 is equal to 007, i.e., when both n o, the role of the grating coupling configuration 007 It is masked that no light is coupled out from the waveguide layer 004, and the gray scale is the smallest, which is the L0 state; as shown in Fig.
  • the change in the refractive index can be felt in both the first direction and the second direction due to the polarization direction of the light.
  • the first direction is that the polarization direction is parallel to the lower substrate 002 and perpendicular to the length of the grating strip
  • the second direction is polarization.
  • the direction is parallel to the lower substrate 002 and parallel to the length direction of the grating strip, so it is necessary to add a polarizer on the upper substrate 001 or on the side-entry light source to select a polarized light (first direction or second direction). .
  • the liquid crystal molecules may be either a positive liquid crystal or a negative liquid crystal.
  • the display mode of the display panel in this example is the normally white display mode, but the present disclosure The embodiment is not limited to this.
  • the display mode of the display panel is the normally black display mode. Therefore, the alignment layer can be set according to actual application requirements, and the embodiment of the present disclosure does not specifically limit this.
  • Example 3 Display mode using blue phase liquid crystal.
  • the display device provided by the embodiment of the present disclosure selects the liquid crystal molecules in the liquid crystal layer 003 as a blue phase liquid crystal material, and does not need to provide an alignment film.
  • the liquid crystal molecules are in an isotropic state, as shown in FIG. 6b, when an applied voltage is an anisotropic state, and the anisotropic state is two kinds of polarized light. It can be felt, so it has higher light extraction efficiency than the previous embodiments.
  • the blue phase liquid crystal is isotropic in the non-powered state, the refractive index is the same in all directions, and the refractive indices of the two polarized light passing through the liquid crystal are all n; in the power-on state, the blue phase liquid crystal is The anisotropic, ordinary light (o light) has a refractive index n o , and the extraordinary light (e light) has a refractive index n e , n o ⁇ n ⁇ n e .
  • the isotropic state can be selected as the L0 state (the refractive index of the grating coupling structure 007 is n), and no optical coupling is emitted; the anisotropic state is the L255 state, and both polarized lights can be coupled out at a high level. Light output efficiency.
  • the anisotropic state may be selected as the L0 state (the refractive index of the grating coupling structure 007 is n o or n e ), and the isotropic state is the L255 state.
  • the incident light is required to be polarized light, that is, the collimated backlight is collimated.
  • a polarizing light source is added, or a polarizer is added on the light-emitting side, that is, a polarizer is disposed on a surface of the upper substrate 001 facing away from the liquid crystal layer 003.
  • the above display device may be: a virtual reality/enhanced display device, a near-eye display device, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like, and any display function product. Or parts.
  • the display device controls the deflection of the liquid crystal molecules in the corresponding liquid crystal layer by the electrode structure to form a grating-like distribution, so that coupling of a specific mode in the waveguide layer can be realized, and the direction of light output and color can be selected. And control of displaying the gray scale by adjusting the refractive index of the liquid crystal layer. Since the electrode structure is separated from the waveguide layer by a certain distance, the interference of the electrode structure to the waveguide layer waveguide mode can be effectively reduced, the dark state light is reduced, and the contrast of the device is improved.
  • the above-mentioned display device provided by the embodiment of the present disclosure can selectively converge the light for display to the vicinity of the pupil, which is advantageous for achieving near-eye focusing by one eye, because the light multiplexed by the electrode structure couples the selection effect of the light-emitting device on the light-emitting direction. display.
  • the light multiplexed by the electrode structure is coupled to the emitting device, only a few grating periods are required to effectively couple the light from the waveguide layer, and the grating period is generally small, in a few micrometers or hundreds of nanometers, and thus the pixel size Can be small, which is conducive to high resolution (PPI) display.
  • the color film can be omitted, and all the components in the display device can be made of a transparent material to realize transparent display with high transparency. And virtual/augmented reality display.

Abstract

一种显示装置,该显示装置包括相对而置的上基板(001)和下基板(002)、液晶层(003)、波导层(004)、多个电极结构(005)和准直光源(006)。液晶层(003)设置于上基板(001)与下基板(002)之间;波导层(004)设置于下基板(002)的面向上基板(001)的一侧,波导层(004)的折射率至少大于与波导层(004)相接触的膜层的折射率;多个电极结构(005)设置于上基板(001)的面向下基板(002)的一侧,多个电极结构(005)呈阵列排布且与多个与亚像素一一对应;准直光源(006)至少设置于波导层(004)的一个侧边。该显示装置实现了显示灰阶的控制。

Description

显示装置 技术领域
本公开的实施例涉及一种显示装置。
背景技术
目前,现有的虚拟/增强现实显示和透明显示,通常使用传统结构的液晶显示面板(LCD)和有机电致发光显示面板(OLED)实现,均难以做到显示面板的高度透明,从而影响面板后方光线的透过率以及透射的光谱。
并且,随着对于显示清晰度的要求越来越高,对于高分辨率(PPI)的显示器件的需求也越来越大。而高PPI的显示器件受限于制作工艺,难于发展。
并且,传统结构的液晶显示面板(LCD)和有机电致发光显示面板(OLED)的出射光线一般为发散光线,难于实现可实现单眼聚焦的近眼显示。
发明内容
本公开的至少一个实施例提供了一种显示装置,该显示装置包括相对而置的上基板和下基板、液晶层、波导层、多个电极结构和准直光源。液晶层设置于所述上基板与所述下基板之间;波导层,设置于所述下基板的面向所述上基板的一侧,所述波导层的折射率至少大于与所述波导层相接触的膜层的折射率;多个电极结构,设置于所述上基板的面向所述下基板的一侧,所述多个电极结构呈阵列排布且与多个与亚像素一一对应;准直光源至少设置于所述波导层的一个侧边。
例如,在本公开的一个实施例提供的显示装置中,还包括多个光栅耦合结构,所述多个光栅耦合结构设置于所述波导层的面向所述上基板一侧的表面上且与所述电极结构一一对应。
例如,在本公开的一个实施例提供的显示装置中,每个所述光栅耦合结构包括多个间隔设置的光栅条,以及位于相邻两个所述光栅条之间的狭缝,各所述光栅耦合结构的折射率为no,ne或者no和ne之间的任一值。
例如,在本公开的一个实施例提供的显示装置中,所述光栅耦合结构从所述波导层耦合出的光方向可控的光波长λ与所述光栅耦合结构的光栅周期Λ满足如下公式:2π/λ·Nm=2π/λ·ncsinθ+q2π/Λ(q=0,±1,±2,…)。θ为耦合出光方向与所述波导层表面法线的夹角,Nm为所述波导层传播导模的有效折射率,nc为液晶层折射率;所述光栅耦合结构的光栅周期Λ为所述光栅条的宽度与所述狭缝的宽度之和。
例如,在本公开的一个实施例提供的显示装置中,所述光栅耦合结构的厚度不大于所述光栅耦合结构中一个光栅条的宽度。
例如,在本公开的一个实施例提供的显示装置中,所述光栅耦合结构的厚度为100nm-1.5μm。
例如,在本公开的一个实施例提供的显示装置中,所述电极结构中的各所述电极条与所述光栅耦合结构中各光栅条一一对应;且所述电极条的宽度不大于所述光栅条的宽度。
例如,在本公开的一个实施例提供的显示装置中,每个所述电极结构包括交替设置且相互绝缘的第一电极条和第二电极条,所述第一电极条和所述第二电极条分别用于加载正性电信号和负性电信号。
例如,在本公开的一个实施例提供的显示装置中,在每个所述电极结构中,相邻的所述第一电极条和所述第二电极条之间的间距均相等;每个所述电极结构还包括用于连接所述第一电极条的第一连接电极条,以及用于连接所述第二电极条的第二连接电极条。
例如,在本公开的一个实施例提供的显示装置中,相邻的所述第一电极条和所述第二电极条之间的间距小于所述电极结构与所述光栅耦合结构在垂直于所述上基板的方向上的间距。
例如,在本公开的一个实施例提供的显示装置中,还包括:设置于所述波导层与所述下基板之间的缓冲层。
例如,在本公开的一个实施例提供的显示装置中,所述缓冲层与所述波导层相接触且所述缓冲层的折射率小于所述波导层的折射率。
例如,在本公开的一个实施例提供的显示装置中,所述缓冲层与所述下基板相接触且所述缓冲层的折射率大于所述下基板的折射率。
例如,在本公开的一个实施例提供的显示装置中,所述准直光源为至少 三种单色激光二极管发出的单色光的混光;或者,所述准直光源为至少三种单色发光二极管发出的单色光经过准直结构后的混光;或者,所述准直光源为白光发光二极管经过准直结构后的白光;或者,条状的冷阴极荧光灯管发出的光经过准直结构后的准直光。
例如,在本公开的一个实施例提供的显示装置中,所述准直光源的发光垂直于所述波导层的侧边入射至所述波导层,或者,以满足在所述波导层中全反射条件的倾斜角度入射至所述波导层。
例如,在本公开的一个实施例提供的显示装置中,各所述光栅耦合结构的折射率为no;所述显示装置,还包括:设置于所述上基板面向所述液晶层一侧表面和/或设置于所述下基板面向所述液晶层一侧表面的配向层;所述液晶层中液晶分子初始方向垂直于所述上基板所在平面。
例如,在本公开的一个实施例提供的显示装置中,各所述光栅耦合结构的折射率为ne或者no和ne之间的任一值;所述显示装置,还包括:设置于所述上基板面向所述液晶层一侧表面和/或设置于所述电极结构面向所述液晶层一侧表面的配向层;设置于所述上基板背离所述液晶层一侧表面的偏光片,或者,设置在准直光源的出光侧的起偏元件,所述起偏元件配置为使得所述准直光源为准直偏振光源;所述液晶层中液晶分子初始方向垂直于所述上基板所在平面。
例如,在本公开的一个实施例提供的显示装置中,还包括:设置于所述上基板面向所述液晶层一侧表面和/或设置于所述下基板面向所述液晶层一侧表面的配向层;以及设置于所述上基板背离所述液晶层一侧表面的偏光片,或者,设置在准直光源的出光侧的起偏元件,所述起偏元件配置为使得所述准直光源为准直偏振光源;所述液晶层中液晶分子初始方向平行于所述上基板所在平面。
例如,在本公开的一个实施例提供的显示装置中,各所述光栅耦合结构的折射率为no和ne之间的任一值;所述液晶层中的液晶分子为蓝相液晶材料。
例如,在本公开的一个实施例提供的显示装置中,各所述光栅耦合结构的折射率为no或ne;所述液晶层中的液晶分子为蓝相液晶材料;所述显示装置,还包括:设置于所述上基板背离所述液晶层一侧表面的偏光片,或者, 设置在准直光源的出光侧的起偏元件,所述起偏元件配置为使得所述准直光源为准直偏振光源。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1a为本公开实施例提供的显示装置的结构示意图之一;
图1b为本公开实施例提供的显示装置的结构示意图之二;
图1c为本公开实施例提供的显示装置的结构示意图之三;
图2为现有技术中光波导耦合的原理示意图;
图3为本公开实施例提供的显示装置的出光方向控制的示意图;
图4a和图4b分别为实例一的结构示意图;
图5a和图5b分别为实例二的结构示意图;
图6a和图6b分别为实例三的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、 “下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
附图中各部件的形状和大小不反映显示装置的真实比例,目的只是示意说明本公开内容。
本公开的至少一个实施例提供了一种显示装置,该显示装置包括相对而置的上基板和下基板、液晶层、波导层、多个电极结构和准直光源。液晶层设置于上基板与下基板之间;波导层,设置于下基板的面向上基板的一侧,波导层的折射率至少大于与波导层相接触的膜层的折射率;多个电极结构,设置于上基板的面向下基板的一侧,多个电极结构呈阵列排布且与多个与亚像素一一对应;准直光源至少设置于波导层的一个侧边。
例如,在不同的实施例中,液晶层中的液晶分子对于o偏振光的折射率为no可以小于或大于液晶分子对于e偏振光的折射率为ne。本公开的实施例将以no小于ne为例对本公开的实施例做具体阐述,但本公开的实施例不限于此。
例如,在不同的实施例中,例如,准直光源出射的准直背光可以垂直于波导层的侧边入射至波导层;又例如,准直光源出射的准直背光还可以以满足在波导层中全反射条件的倾斜角度入射至波导层。例如,本公开的实施例将以垂直入射的情况为例对本公开的实施例做具体阐述,但本公开的实施例不限于此。
例如,在不同的实施例中,例如,准直光源出射的准直背光可以仅入射至波导层中;又例如,准直光源出射的准直背光还可以入射至波导层和缓冲层中,且在缓冲层中传输的背光的至少部分可以经由波导层和缓冲层的界面提供给波导层;再例如,准直光源出射的准直背光还可以入射至波导层、缓冲层和下基板中,在下基板中传输的准直背光的至少部分可以经由下基板和缓冲层的界面提供给缓冲层,并且在缓冲层中传输的背光的至少部分可以经由波导层和缓冲层的界面提供给波导层。
例如,本公开的实施例提供的一种显示装置的截面图,如图1a所示,该示装置包括:相对而置的上基板001和下基板002;设置于上基板001与下基板002之间的液晶层003;设置于下基板002面向上基板001一侧表面的波导层004,该波导层004的折射率至少大于与波导层004相接触膜层的折 射率;设置于上基板001面向下基板002一侧表面且呈阵列排布的多个与亚像素一一对应的电极结构005;以及至少设置于波导层004的一个侧边的准直光源006。
例如,各电极结构005可以具有等间距排列的多个电极条(图中未示出),但本公开的实施例不限于此。可以理解的是,准直光源006设置在波导层004在厚度方向上的侧边。
光射入单轴晶体(液晶)时,会发生双折射而产生两种互相垂直振动的偏振光,其一为寻常光,另一为非常光。非常光的振动方向垂直于寻常光振动方向,且与单轴晶体的光轴的夹角不等于90°。液晶对寻常光的折射率固定,而非常光的折射率值随着其振动方向与光轴(即液晶分子长轴的方向)的夹角而变化。当夹角为0°时,折射率为特定值,用ne表示;当夹角介于0°到90°之间时,为变化值,用ne'表示;夹角为90°时,ne=no。夹角越小,ne'值越接近ne;夹角越大,no'值越接近no值。即可以通过电极结构005控制对应的液晶层003中液晶分子的偏转,使得液晶分子的长轴方向相对于非常光的振动方向的夹角发生变化,从而改变液晶对非常光的折射率。
基于此,本公开实施例提供的上述显示装置,通过电极结构005控制对应的液晶层003中液晶分子偏转,使之形成光栅状分布,可以实现对波导层004中特定模式的耦合,实现对出光方向和颜色的选择,并通过对液晶层003折射率的调节从而实现显示灰阶的控制。并且由于电极结构005与波导层004隔开了一定的距离,可以有效地减小电极结构005对波导层004波导模式的干扰,减少暗态出光,提高器件的对比度。
或者,在本公开实施例提供的上述显示装置中,也可以单独设置用于将波导层004中的光线耦合出射器件,如图1c所示,例如,在本公开实施例提供的上述显示装置中,还可以包括:设置于波导层004面向上基板001一侧表面且与所述电极结构005一一对应的光栅耦合结构007,各光栅耦合结构007的折射率为no,ne或者no和ne之间的任一值;其中,no为液晶层003中液晶分子对于寻常光(即,o偏振光)的折射率,ne为液晶层003中液晶分子对于非常光(即,e偏振光)的折射率。
例如,当液晶层003的折射率和光栅耦合结构007的折射率相等时,光栅耦合结构007的作用被掩盖,没有光从波导层005耦合出来,此时为L0 状态,即灰阶最低的状态(或黑态);当液晶层003的折射率和光栅耦合结构007的折射率相差最大时,光栅耦合结构007的作用最明显,光线从波导层004耦合出来的耦合效率最高,此时为L255状态,即灰阶最高的状态(或亮态);当液晶层003的折射率处在以上两种情况之间时,为显示中间灰阶状态。
例如,由于光栅耦合结构007或电极结构005复用的光线耦合出射器件对出光方向的选择作用,因此本公开实施例提供的上述显示装置可以选择性地将用于显示的光线汇聚到瞳孔附近,有利于实现可单眼聚焦的近眼显示。并且,由于光栅耦合结构007或电极结构005复用的光线耦合出射器件仅需几个光栅周期即可将光线从波导层004中有效耦合出来,且光栅周期一般都比较小,在几个微米或几百纳米,因此像素尺寸可以很小,有利于实现高分辨率(PPI)显示。此外,由于光栅耦合结构007或电极结构005复用的光线耦合出射器件对于出光颜色的选择作用,因此,可以省去彩膜的设置,且显示装置内的全部部件均可采用透明材料构成,以实现高透明度的透明显示和虚拟/增强现实显示。
在光通信以及集成光学中,光波导是一种比较常用的基本元器件。为了将光束有效地耦合进光波导或将光从光波导中耦合出来,一种比较常用的方法就是使用光栅耦合器。如图2所示,当入射光束或出射光束满足公式:βq=βm–qK(q=0,±1,±2,…)的位相匹配关系时,入射光即可在波导中激发m阶导模,或者m阶导模即可在给定方向上耦合出去。上式中,βm为m阶导模的传播常数βm=k0Nm,Nm为m阶导模的有效折射率,K为光栅矢量,K=2π/Λ,Λ为光栅周期。
设入射光(或出射光)波矢方向与竖直方向夹角为θi,则以上位相匹配关系可进一步表示为:k0ncsinθi=k0Nm–q2π/Λ(q=0,±1,±2,…)。
基于此,在具体实施时,本公开实施例提供的上述显示装置中,设置于波导层004面向上基板001一侧表面且呈阵列排布的多个光栅耦合结构007或电极结构005复用光线耦合出射器件的作用为:从波导层004中传播的光线中,选择给定颜色光线(光波长λ)在给定方向(与波导层004表面法线的夹角θ)上的出射。因此,一个光栅耦合结构007和一个电极结构005对应于显示装置中的一个亚像素结构。
在具体实施时,在本公开实施例提供的上述显示装置中的光栅耦合结构007从波导层004耦合出的光方向可控的光波长λ与光栅耦合结构007的光栅周期Λ满足如下公式:
2π/λ·Nm=2π/λ·ncsinθ+q2π/Λ(q=0,±1,±2,…)
其中,θ为耦合出光方向与波导层004表面法线的夹角;Nm为波导层004传播导模的有效折射率;nc为液晶层折射率。
在具体实施时,本公开实施例提供的上述显示装置中的某一位置的像素出光方向往往是固定的,如图3所示,由该像素相对于人眼的位置决定,即θ角是固定的。因此,可以通过调节各光栅耦合结构007的光栅周期Λ,实现选择给定颜色光线(光波长λ)在给定方向(与波导层004表面法线的夹角θ)上的出射。
例如,在本公开实施例提供的上述显示装置中的光栅耦合结构007包括:多个间隔设置的光栅条,以及存在于相邻两个光栅条之间的狭缝。并且,各光栅条的材料为透明介质材料,如SiO2,树脂材料等。并且为了确保设定波长的光线可以从波导层004出射,光栅耦合结构007中各光栅耦合结构的折射率为no,ne或者no和ne之间的任一值。例如,在no小于ne的情况下,n的取值优选为no;在no大于ne的情况下,n的取值优选为ne。在一个光栅耦合结构007中,一光栅条的宽度和相邻的一狭缝的宽度之和为该光栅耦合结构007的光栅周期Λ,如前所述,该光栅周期Λ由所需的出光方向以及出光颜色决定。例如,光栅耦合结构007中的占空比可以是0.5(光栅条宽度与光栅周期Λ的比值),但在实际产品设计中根据所需出光强度,平衡显示面板不同位置亮度的差异、工艺条件等因素的考虑,占空比可以偏离该数值。
需要说明的是,在本公开的实施例中,光栅耦合结构的折射率是指制作光栅耦合结构的光栅条的材料的折射率。例如,在光栅耦合结构的光栅条的材料为树脂材料的情况下,光栅耦合结构的折射率为树脂材料的折射率。
例如,为了便于采用刻蚀的方式制作出光栅耦合结构007,在具体实施时,一般要求光栅耦合结构007的厚度(即,光栅耦合结构007在垂直于上基板方向上的厚度)不大于一个光栅条的宽度,但也不限于此。可以理解的是,例如,光栅耦合结构007中的所有光栅条的厚度相同,即为光栅耦合结构007的厚度,光栅耦合结构007中的所有光栅条的宽度都相同。
例如,在本公开实施例提供的上述显示装置中的各光栅耦合结构007的厚度可以设置为100nm-1.5μm。并且,对应于不同颜色(RGB)子像素的光栅耦合结构007的厚度可以相同也可以不同。例如,可以选择各光栅耦合结构007的厚度统一为300nm左右,但本公开的实施例不限于此,例如,各光栅耦合结构007的厚度还可以为200nm、400nm、600nm或800nm。
例如,每个光栅耦合结构007包括的光栅条的个数可以根据实际应用需求进行设定,本公开的实施例对此不做具体限定。例如,每个光栅耦合结构007可以包括2-8个光栅条(例如,6个光栅条)。
例如,在本公开实施例提供的上述显示装置中的电极结构005中,各电极条可以与光栅耦合结构007中各光栅条一一对应;且电极条的宽度不大于光栅条的宽度,电极条的宽度例如可以等于光栅条的宽度。
例如,为了便于电极结构005中的电极条产生电场控制液晶旋转,在本公开实施例提供的上述显示装置中,各电极结构包含的电极条可以交替设置且相互绝缘的第一电极条和第二电极条,第一电极条和第二电极条分别用于加载正性电信号和负性电信号。例如,在每个电极结构中,相邻的第一电极条和第二电极条之间的间距可以均相等,由此可以提升出光的均匀度。
例如,每个电极结构还可以包括用于连接第一电极条的第一连接电极条,以及用于连接第二电极条的第二连接电极条。例如,第一连接电极条可以将每个电极结构中所有的第一电极条相连接,第二连接电极条可以将每个电极结构中所有的第二电极条相连接。由此可以向每个电极结构中所有的第一电极条同时施加相同的正性电信号,且可以向每个电极结构中所有的第二电极条同时施加相同的负性电信号。
例如,相邻的第一电极条和第二电极条之间的间距(在垂直于电极条延伸方向且平行于上基板的方向上的间距,也即垂直于附图中的纸面方向)可以小于电极结构与光栅耦合结构在垂直于上基板的方向上的间距,由此,相比上下面电极设置的电极结构,本公开实施例提供的在同一平面内正负电极相间设置的电极间距更小,电极间电场更强,对液晶分子的控制能力更强,可以获得更快的响应速度以及更小的驱动电压。
例如,由于电极结构005设置在上基板上,因此可以无需考虑电极材料与液晶材料之间的折射率匹配问题,因此可以有效的减小电极材料与液晶材 料折射率不匹配所引起的黑态漏光问题。
例如,为了便于采用刻蚀的方式制作出电极结构005,在具体实施时,一般要求电极结构005的厚度(即,电极结构005在垂直于上基板方向上的厚度)不大于一个电极条的宽度(即,光栅条在垂直于其延伸方向且平行于上基板的方向上的宽度,也即,图1中平行于纸面且平行于上基板的方向)。
例如,在本公开实施例提供的上述显示装置中,电极结构005可以选择透明导电材料,例如ITO等,此时,电极结构005的厚度可以控制在50nm-1000nm之间,可以是100nm左右。或者,电极结构005也可以选择较薄的金属材料,如Au或Ag-Mg合金等,此时,电极结构005的厚度可以控制在30nm-200nm之间,由于金属材料较薄,因此,电极结构005也具有良好的透过率。
在具体实施时,在本公开实施例提供的上述显示装置中的上基板001和下基板002可以根据实际应用需求进行选择,本公开的实施例对此不做具体限定。例如,上基板001和下基板002可以由常用的液晶显示面板(LCD)或有机电致发光显示面板(OLED)的衬底基板构成,或者也可以使用一些特殊的光学玻璃或树脂材料等。例如,上基板001和下基板002的厚度可以设置为0.1mm-2mm左右,其参数由具体的产品设计或工艺条件决定确定,例如,上基板001和下基板002的上下表面可以具有较好的平整度及平行度。
在具体实施时,在本公开实施例提供的上述显示装置中,为了使波导层004可以将光线尽可能多的导入液晶层003中,例如,需要波导层004的折射率除了大于与波导层004相接触膜层的折射率之外,最好可以大于其他各层结构的折射率,即在显示装置中波导层004的折射率最大。例如,在某些结构设计中需要波导层004的折射率越高越好,且一般要求波导层004透明,但不限于此。例如,可以选择Si3N4等材料制作波导层004,也不限于此。
例如,在具体实施时,在本公开实施例提供的上述显示装置中,波导层004的厚度(即,波导层004的在垂直于上基板方向上的厚度)可以设置为100nm-100μm,当准直光源006的准直性比较好或可以对耦合入波导层004中模式进行有效控制时,波导层004的厚度可以适当增厚,以增加入光效率,比如500nm-100μm之间(例如,700nm或10μm)即可;当准直光源006的准直性比较差时,为了便于光栅耦合结构007对出光方向和颜色的控制, 波导层004的厚度需要足够薄,最好为单模波导,例如波导层004的厚度为100nm或200nm,但不限于此。
例如,为了提高波导层004薄膜生长的均匀性,在本公开实施例提供的上述显示装置中,如图1b和图1c所示,还可以包括:设置于波导层004与下基板002之间的缓冲层008。例如,可以在下基板002上先制作缓冲层008,然后在缓冲层008上生长波导层004,由此有助于获得较好的波导层004的薄膜质量。
例如,在本公开实施例提供的上述显示装置中,缓冲层008的厚度可以设置为50nm-10μm之间。例如,缓冲层008可以是透明介质材料,如SiO2、树脂材料等。
例如,缓冲层008可以与波导层004直接接触,且缓冲层008的折射率可以小于波导层004折射率。此时,准直光源出射的准直背光可以同时入射至波导层和缓冲层中,并且在缓冲层中传输的背光的至少部分可以经由波导层和缓冲层的界面提供给波导层。由此,可以提升耦合进入波导层004中的准直背光的强度以及可以降低对准直背光光束质量的要求,进而可以提升本公开的实施例提供的显示装置的效率。
例如,缓冲层008可以与下基板002相接触且缓冲层008的折射率可以大于下基板002的折射率。此时,准直光源出射的准直背光可以入射至波导层、缓冲层和下基板中,在下基板中传输的准直背光的至少部分可以经由下基板和缓冲层的界面提供给缓冲层,并且在缓冲层中传输的背光的至少部分可以经由波导层和缓冲层的界面提供给波导层。由此,可以进一步提升耦合进入波导层004中的准直背光的强度以及可以降低对准直背光光束质量的要求,进而可以进一步的提升本公开的实施例提供的显示装置的效率。
例如,在本公开实施例提供的上述显示装置中,准直光源的类型可以根据实际应用需求进行选择,本公开的实施例对此不做具体限定。例如,在显示装置为单色显示装置的情况下,准直光源的出射的准直背光可以为单色光。又例如,在显示装置为彩色显示装置的情况下,准直光源的出射的准直背光可以为复色光,该复色光(即,混光)例如可以通过混合多个单色光获取,或者还可以由出射复色光的光源获取(例如,冷阴极荧光管或白光LED)。
例如,准直光源006可以为至少三种单色激光二极管发出的单色光的混 光,例如:红(R)、绿(G)、蓝(B)三色的半导体激光二极管经过混光后制成该准直光源006。或者,准直光源006也可以为至少三种单色发光二极管发出的单色光经过准直结构后的混光,例如:R、G、B三色的发光二极管经过准直、混光后制成该准直光源006。或者,准直光源006还可以为白色发光二极管发出的经过准直结构后的白光,例如:白光发光二极管经过准直后制成该准直光源006。或者,该准直光源006也可以为由条状的冷阴极荧光管(CCFL灯管)发出的光线经过准直结构后制成的准直光,准直光源006不限于上述类型。
例如,准直光源006可以是一种线状光源,线状光源的延伸方向可以与波导层004侧边的延伸方向一致(例如,均可以沿垂直于附图中纸面的方向延伸),由此可以提升准直光源006出射的准直背光与波导层004的匹配度,进而可以提升波导层004对于准直背光的耦合效率。例如,准直背光在垂直于上基板方向的尺寸可以根据实际应用需求进行选择,本公开的实施例对此不做具体限定。
例如,准直背光在垂直于附图中纸面方向上的宽度可以根据实际应用需求进行选择,本公开的实施例对此不做具体限定。例如,为了使准直光源006可以有效从波导层004的侧边入射至波导层004中传播,在本公开实施例提供的上述显示装置中的准直光源006一般与波导层004的侧边宽度(例如,波导层004的在垂直于附图中纸面方向上的宽度)相匹配,例如,可以使用和波导层004宽度一致的激光二极管阵列或发光二极管阵列作为准直背光结构,或者可以使用激光器二极管(LD)阵列或发光二极管(LED)阵列与设置在LD/LED阵列的出光侧的扩束结构构成的结构作为准直背光结构。
例如,为了使准直光源006可以有效的在波导层004中传播,在本公开实施例提供的上述显示装置中的准直光源006的发光一般设置于垂直于波导层004的侧边入射至波导层004(例如,准直背光在入射时可以平行于上基板和下基板;又例如,准直背光在入射时还可以同时平行于上基板和下基板以及图1中的纸面)。例如,可以尽量对准波导层004入射该准直背光。又例如,当波导层004的厚度较厚时,准直光源006也可以采用以满足在波导层004中全反射条件的倾斜角度入射至波导层004,即准直光源006以设定倾角入射至波导层004,以增加从波导层004中耦合出的光线强度以及显示 装置波导光栅的出光效率。
例如,准直背光006所发射的光线不可能绝对准直,总会有较小的发散角。其中,准直背光006射向波导层004之上膜层例如液晶层003的分量会被如图1所示的液晶层003最外面的封框胶009吸收,因此,实际不会出现准直背光006射入液晶层003的情况。此外,由于缓冲层008和下基板002的厚度大于波导层004的厚度,若准直背光006的所发射光线被耦合进缓冲层008和下基板002时,缓冲层008和下基板002也会充当辅助波导的作用。例如,由于波导层的折射率大于与其相邻膜层的折射率,因此,准直背光006射向下基板002和/或缓冲层008的分量,不会被下基板002和/或缓冲层008很好的束缚,而是被导入到波导层004中,补充波导层004中的波导模式因传播或光栅耦合所引起的衰减。
例如,在本公开实施例提供的上述显示装置中,液晶层003会填充在电极结构005和光栅耦合结构007的狭缝处,液晶层003的厚度例如可以为几百纳米至几微米,例如,可以设置为1μm左右。
例如,在本公开实施例提供的上述显示装置中,可以根据所需的显示模式以及灰阶的实现方式,来选择液晶层003的液晶材料。
下面通过几个实例来具体说明本公开实施例提供的上述显示装置可实现的显示模式。需要说明的是,在下述的示例中,液晶分子初始方向是指在未经由电极结构向液晶分子施加电压的情况下,液晶分子长轴的延伸方向。
实例一:液晶分子的光轴在垂直于显示面板的平面内旋转的显示模式。
在此种显示模式下,本公开实施例提供的上述显示装置,如图4a所示,还包括:设置于上基板001面向液晶层003一侧表面和/或设置于下基板002面向液晶层003一侧表面的配向层010(可以是PI,厚度在30nm-80nm),也可以不包含配向层,图4a中示出了配向层010仅设置在上基板001面向液晶层003一侧表面的情况。通过设置的配向层010可以控制液晶层003中液晶分子的初始取向,使液晶层003中液晶分子初始方向垂直于上基板001所在平面,此时液晶层003的折射率(波导层004中的e偏振光感受到的液晶层003的折射率)和光栅耦合结构的折射率相差最大,光栅耦合结构007的作用最明显,光线从波导层004耦合出来的耦合效率最高,为L255灰阶。
例如,通过调节各电极结构005施加的电压作用于液晶层003的电场, 即可实现液晶分子在垂直于显示面的平面内(即,附图中的纸面所在的平面)旋转,以实现液晶层003的折射率在no和ne之间的调节,从而实现不同的灰阶。如图4b所示,当液晶分子的取向平行于上基板001时,液晶层003的折射率(波导层004中的e偏振光感受到的液晶层003的折射率)和光栅耦合结构的折射率相等,光栅耦合结构007的作用被掩盖,没有光从波导层004耦合出来,为L0灰阶。
由于仅有偏振方向平行于下基板002且垂直于光栅耦合结构007的长度方向的偏振光(非常光即e光)才能感受到液晶层003的折射率变化,而偏振方向平行于下基板002且平行于光栅耦合结构007的长度方向的偏振光(寻常光即o光)感受不到液晶层003的折射率变化,因此该显示模式的显示光e偏振光。
例如,以光栅耦合结构007的折射率等于no为例,当液晶层003的折射率和光栅耦合结构007的折射率相等,即均为no时,光栅耦合结构007的作用被掩盖,没有光从波导层004耦合出来,此时灰阶最小,为L0状态;当液晶层003的折射率(ne)和光栅耦合结构007的折射率(no)相差最大时,光栅耦合结构007的作用最明显,光线从波导层004耦合出来的耦合效率最高,此时灰阶最大,为L255状态;当液晶层003的折射率处在以上两种情况之间时,为其他灰阶状态。
例如,在该实现方式中,光栅耦合结构007耦合出来的光的偏振方向为平行于下基板且垂直于光栅耦合结构007的长度方向时,才能感受到上述折射率的变化,其他偏振方向的光不会感受到上述折射率的变化,因而无需设置偏光片。
另外,对于向列相液晶而言,一般需要在液晶层003的上表面增加一层配向层或上下两面均增加配向层,以控制液晶层003的初始方向,确保液晶分子可以在施加电压的控制下按照上述方式进行旋转,例如,某些液晶材料不需要设置配向层。
例如,在本示例中,由于液晶层003中液晶分子初始方向垂直于上基板001和下基板002,因此该示例中的显示面板的显示模式为常白显示模式。又例如,在配向层使得液晶分子的初始取向平行于上基板001且平行于附图中纸面的情况下,显示面板的显示模式为常黑显示模式。因此,可以根据实际 应用需求设置配向层,本公开的实施例对此不做具体限定。
以上所描述均为光栅耦合结构007的折射率等于或接近于no的情况,此时显示器件不需要在出光侧添加偏光片或要求侧入式准直光源为偏振光,即可实现正常显示。
当光栅耦合结构007的折射率等于ne或介于no和ne之间时,此时显示器件需要在出光侧添加偏光片,即在上基板001背离液晶层003一侧表面设置偏光片;或者要求入射至波导层中的准直背光为偏振光(例如,可以要求准直光源为准直偏振光源或者可以在准直光源的出光侧的设置起偏元件),由此可以使得准直背光为准直偏振光,进而可以消除出光情况不受液晶取向偏转所控制的偏振光的干扰,例如,该显示模式一般要求液晶为正性液晶。
实例二:液晶分子的光轴平行于显示面的平面内旋转的显示模式。
在此种显示模式下,本公开实施例提供的上述显示装置,如图5a所示,还包括:设置于上基板001面向液晶层003一侧表面和/或设置于下基板002面向液晶层003一侧表面的配向层010(可以是PI,厚度在30nm-80nm),图5a中示出了配向层010仅设置在上基板001面向液晶层003一侧表面的情况;以及,设置于上基板001背离液晶层003一侧表面的偏光片011,或者,准直光源为准直偏振光源。通过设置的配向层010可以控制液晶层003中液晶分子的初始取向,使液晶层003中液晶分子初始方向平行于上基板001所在平面,例如使液晶分子初始方向处于平行于上基板001且垂直于附图中纸面的状态,且偏振片选择偏振方向垂直于附图中纸面的偏振光透过或入射光即为偏振方向垂直于附图中纸面的偏振光,此时为L255灰阶。
例如,通过调节各电极结构005施加的电压作用于液晶层003的电场,即可实现液晶分子在平行于显示面的平面(即,垂直于附图中的纸面所在的平面)内旋转,以实现液晶层003的折射率在no和ne之间的调节,从而实现不同的灰阶。例如,如图5b所示,当液晶分子的取向同时平行于上基板001和附图中的纸面时,液晶层003的折射率和光栅耦合结构的折射率相等,光栅耦合结构007的作用被掩盖,没有光从波导层004耦合出来,为L0灰阶。
以光栅耦合结构007的折射率等于no为例,如图5b所示,当液晶层003的折射率和光栅耦合结构007的折射率相等,即均为no时,光栅耦合结构007 的作用被掩盖,没有光从波导层004耦合出来,此时灰阶最小,为L0状态;如图5a所示,当液晶层003的折射率(ne)和光栅耦合结构007的折射率(no)相差最大时,光栅耦合结构007的作用最明显,光线从波导层004耦合出来的耦合效率最高,此时灰阶最大,为L255状态;当液晶层003的折射率处在以上两种情况之间时,为其他灰阶状态。
由于光的偏振方向在第一方向和第二方向内均能感受到上述折射率的变化,第一方向为偏振方向在平行于下基板002且垂直于光栅条的长度方向,第二方向为偏振方向在平行于下基板002且平行于光栅条的长度方向,所以需要在上基板001上或者在侧入式光源上添加一层偏光片来选择一种偏振光(第一方向或第二方向)。
另外,对于向列相液晶而言,一般需要在液晶层003的上表面增加一层配向层或上下两均增加配向层,以控制液晶层003的初始方向,确保液晶分子可以在施加电压的控制下按照上述方式进行旋转,另外通过控制液晶分子的初始方向和偏光片的检偏方向的相对关系确定显示面板为常白模式(液晶分子的初始方向和偏光片的检偏方向一致)或常黑模式(液晶分子的初始方向和偏光片的检偏方向垂直)。而某些液晶材料不需要设置配向层。该显示模式下液晶分子为正性液晶和负性液晶均可。
例如,在本示例中,由于液晶层003中的液晶分子初始方向处于平行于上基板001且垂直于纸面的状态,因此该示例中的显示面板的显示模式为常白显示模式,但本公开的实施例不限于此。又例如,在配向层使得液晶分子的初始取向同时平行于上基板001和附图中的纸面时的情况下,显示面板的显示模式为常黑显示模式。因此,可以根据实际应用需求设置配向层,本公开的实施例对此不做具体限定。
实例三:使用蓝相液晶的显示模式。
在此种显示模式下,本公开实施例提供的上述显示装置,如图6a所示,液晶层003中的液晶分子选择为蓝相液晶材料,且不用设置配向膜。在各电极结构005未施加电压时,如图6a所示,液晶分子为各向同性状态,如图6b所示,在施加电压时为各向异性状态,这种各向异性状态两种偏振光都可以感受到,因此相比前几种实施例,具有更高的出光效率。例如,由于在非加电状态下,蓝相液晶为各向同性的,在各个方向上折射率相同,两种偏振 光通过液晶的折射率均为n;在加电状态下,蓝相液晶为各向异性的,寻常光(o光)的折射率为no,非常光(e光)的折射率为ne,no<n<ne
因此,可以选择各向同性状态为L0状态(光栅耦合结构007的折射率为n),没有光耦合出射;各向异性状态为L255状态,此时两种偏振光均可以耦合出来,具有较高的出光效率。也可以选择各向异性状态为L0状态(光栅耦合结构007的折射率为no或ne),各向同性状态为L255状态,此时需要入射光为偏振光即准直背光源为准直偏振光源,或在出光侧添加偏光片,即在上基板001背离液晶层003一侧表面设置偏光片。
例如,本公开实施例提供的上述显示装置可以为:虚拟现实/增强显示设备、近眼显示设备、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本公开实施例提供的上述显示装置,通过电极结构控制对应的液晶层中液晶分子偏转,使之形成光栅状分布,可以实现对波导层中特定模式的耦合,可以实现对出光方向和颜色的选择,并通过对液晶层折射率的调节从而实现显示灰阶的控制。由于电极结构与波导层隔开了一定的距离,可以有效地减小电极结构对波导层波导模式的干扰,减少暗态出光,提高器件的对比度。由于电极结构复用的光线耦合出射器件对出光方向的选择作用,因此本公开实施例提供的上述显示装置可以选择性地将用于显示的光线汇聚到瞳孔附近,有利于实现可单眼聚焦的近眼显示。并且,由于电极结构复用的光线耦合出射器件仅需几个光栅周期即可将光线从波导层中有效耦合出来,且光栅周期一般都比较小,在几个微米或几百纳米,因此像素尺寸可以很小,有利于实现高分辨率(PPI)显示。此外,由于电极结构复用的光线耦合出射器件对于出光颜色的选择作用,因此,可以省去彩膜的设置,且显示装置内的全部部件均可采用透明材料构成,以实现高透明度的透明显示和虚拟/增强现实显示。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。
本申请要求于2016年10月24日递交的中国专利申请第201610935862.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (20)

  1. 一种显示装置,包括:
    相对而置的上基板和下基板;
    液晶层,设置于所述上基板与所述下基板之间;
    波导层,设置于所述下基板的面向所述上基板的一侧,其中,所述波导层的折射率至少大于与所述波导层相接触的膜层的折射率;
    多个电极结构,设置于所述上基板的面向所述下基板的一侧,其中,所述多个电极结构呈阵列排布且与多个与亚像素一一对应;以及,
    准直光源,至少设置于所述波导层的一个侧边。
  2. 如权利要求1所述的显示装置,还包括多个光栅耦合结构,其中,所述多个光栅耦合结构设置于所述波导层的面向所述上基板一侧的表面上且与所述电极结构一一对应。
  3. 如权利要求2所述的显示装置,其中,
    每个所述光栅耦合结构包括多个间隔设置的光栅条,以及位于相邻两个所述光栅条之间的狭缝,各所述光栅耦合结构的折射率为no,ne或者no和ne之间的任一值,no为所述液晶层中液晶分子对于o偏振光的折射率,ne为所述液晶层中液晶分子对于e偏振光的折射率。
  4. 如权利要求3所述的显示装置,其中,所述光栅耦合结构从所述波导层耦合出的光方向可控的光波长λ与所述光栅耦合结构的光栅周期Λ满足如下公式:
    2π/λ·Nm=2π/λ·ncsinθ+q2π/Λ(q=0,±1,±2,…)
    其中,θ为耦合出光方向与所述波导层表面法线的夹角,Nm为所述波导层传播导模的有效折射率,nc为液晶层折射率;所述光栅耦合结构的光栅周期Λ为所述光栅条的宽度与所述狭缝的宽度之和。
  5. 如权利要求3所述的显示装置,其中,所述光栅耦合结构的厚度不大于所述光栅耦合结构中一个光栅条的宽度。
  6. 如权利要求5所述的显示装置,其中,所述光栅耦合结构的厚度为100nm-1.5μm。
  7. 如权利要求3所述的显示装置,其中,所述电极结构中的各所述电极 条与所述光栅耦合结构中各光栅条一一对应;且所述电极条的宽度不大于所述光栅条的宽度。
  8. 如权利要求7所述的显示装置,其中,每个所述电极结构包括交替设置且相互绝缘的第一电极条和第二电极条,所述第一电极条和所述第二电极条分别用于加载正性电信号和负性电信号。
  9. 如权利要求8所述的显示装置,其中,
    在每个所述电极结构中,相邻的所述第一电极条和所述第二电极条之间的间距均相等;
    每个所述电极结构还包括用于连接所述第一电极条的第一连接电极条,以及用于连接所述第二电极条的第二连接电极条。
  10. 如权利要求8所述的显示装置,其中,相邻的所述第一电极条和所述第二电极条之间的间距小于所述电极结构与所述光栅耦合结构在垂直于所述上基板的方向上的间距。
  11. 如权利要求1-10任一所述的显示装置,还包括:设置于所述波导层与所述下基板之间的缓冲层。
  12. 如权利要求11所述的显示装置,其中,所述缓冲层与所述波导层相接触且所述缓冲层的折射率小于所述波导层的折射率。
  13. 如权利要求11或12所述的显示装置,其中,所述缓冲层与所述下基板相接触且所述缓冲层的折射率大于所述下基板的折射率。
  14. 如权利要求1-13任一项所述的显示装置,其中,所述准直光源为至少三种单色激光二极管发出的单色光的混光;或者,所述准直光源为至少三种单色发光二极管发出的单色光经过准直结构后的混光;或者,所述准直光源为白光发光二极管经过准直结构后的白光;或者,条状的冷阴极荧光灯管发出的光经过准直结构后的准直光。
  15. 如权利要求1-14任一项所述的显示装置,其中,所述准直光源的发光垂直于所述波导层的侧边入射至所述波导层,或者,以满足在所述波导层中全反射条件的倾斜角度入射至所述波导层。
  16. 如权利要求2-10任一项所述的显示装置,其中,各所述光栅耦合结构的折射率为no
    所述显示装置,还包括:设置于所述上基板面向所述液晶层一侧表面和/ 或设置于所述下基板面向所述液晶层一侧表面的配向层;
    所述液晶层中液晶分子初始方向垂直于所述上基板所在平面。
  17. 如权利要求2-10任一项所述的显示装置,其中,各所述光栅耦合结构的折射率为ne或者no和ne之间的任一值;
    所述显示装置,还包括:设置于所述上基板面向所述液晶层一侧表面和/或设置于所述电极结构面向所述液晶层一侧表面的配向层;
    设置于所述上基板背离所述液晶层一侧表面的偏光片,或者,设置在准直光源的出光侧的起偏元件,其中,所述起偏元件配置为使得所述准直光源为准直偏振光源;
    所述液晶层中液晶分子初始方向垂直于所述上基板所在平面。
  18. 如权利要求1-10任一项所述的显示装置,还包括:设置于所述上基板面向所述液晶层一侧表面和/或设置于所述下基板面向所述液晶层一侧表面的配向层;以及,
    设置于所述上基板背离所述液晶层一侧表面的偏光片,或者,设置在准直光源的出光侧的起偏元件,其中,所述起偏元件配置为使得所述准直光源为准直偏振光源;
    所述液晶层中液晶分子初始方向平行于所述上基板所在平面。
  19. 如权利要求2-10任一项所述的显示装置,其中,各所述光栅耦合结构的折射率为no和ne之间的任一值;
    所述液晶层中的液晶分子为蓝相液晶材料。
  20. 如权利要求2-10任一项所述的显示装置,其中,各所述光栅耦合结构的折射率为no或ne
    所述液晶层中的液晶分子为蓝相液晶材料;
    所述显示装置,还包括:设置于所述上基板背离所述液晶层一侧表面的偏光片,或者,设置在准直光源的出光侧的起偏元件,其中,所述起偏元件配置为使得所述准直光源为准直偏振光源。
PCT/CN2017/097749 2016-10-24 2017-08-17 显示装置 WO2018076900A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/752,629 US10663639B2 (en) 2016-10-24 2017-08-17 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610935862.2A CN107918233B (zh) 2016-10-24 2016-10-24 一种显示装置
CN201610935862.2 2016-10-24

Publications (1)

Publication Number Publication Date
WO2018076900A1 true WO2018076900A1 (zh) 2018-05-03

Family

ID=61892766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097749 WO2018076900A1 (zh) 2016-10-24 2017-08-17 显示装置

Country Status (3)

Country Link
US (1) US10663639B2 (zh)
CN (1) CN107918233B (zh)
WO (1) WO2018076900A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487710A (zh) * 2020-05-27 2020-08-04 京东方科技集团股份有限公司 显示面板及透明显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106291943B (zh) * 2016-10-24 2017-10-27 京东方科技集团股份有限公司 一种显示面板及显示装置
US10838133B2 (en) * 2017-06-30 2020-11-17 Sioptica Gmbh Screen for a free and a restricted viewing mode
CN107479253A (zh) 2017-08-31 2017-12-15 京东方科技集团股份有限公司 一种透明显示装置
CN107577093B (zh) * 2017-09-20 2020-12-01 京东方科技集团股份有限公司 一种显示模组及光波导显示装置
CN108734134A (zh) 2018-05-22 2018-11-02 京东方科技集团股份有限公司 指纹识别装置
CN108957830B (zh) * 2018-07-06 2020-06-09 京东方科技集团股份有限公司 显示装置和显示装置的控制方法、显示设备
US11344882B2 (en) 2018-07-26 2022-05-31 Boe Technology Group Co., Ltd. Microfluidic apparatus, and method of detecting substance in microfluidic apparatus
CN109061932B (zh) * 2018-08-30 2021-11-02 京东方科技集团股份有限公司 一种透明显示面板和透明显示装置
CN109856854A (zh) * 2019-04-17 2019-06-07 京东方科技集团股份有限公司 一种显示装置及其显示方法
CN110441936B (zh) * 2019-08-14 2022-05-13 京东方科技集团股份有限公司 一种滤波器、滤波装置、滤波器的驱动方法及其制备方法
CN111221183A (zh) * 2020-03-19 2020-06-02 深圳市华星光电半导体显示技术有限公司 一种显示面板、显示面板制程方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356691B2 (en) * 1998-12-01 2002-03-12 Iljin Corp. Optical waveguide display having embedded light source
CN101329463A (zh) * 2007-06-18 2008-12-24 奇美电子股份有限公司 显示装置和液晶显示面板
US20120092590A1 (en) * 2010-10-13 2012-04-19 Samsung Electronics Co., Ltd. Backlight unit and display apparatus employing the same
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL118209A0 (en) * 1996-05-09 1998-02-08 Yeda Res & Dev Active electro-optical wavelength-selective mirrors and active electro-optic wavelength-selective filters
JPH1026765A (ja) * 1996-07-10 1998-01-27 Toshiba Corp 液晶表示素子、投影型液晶表示装置及び基板
KR100431052B1 (ko) * 2001-10-08 2004-05-12 주식회사 네오텍리서치 표면 굴곡에 의하여 형성된 다중 영역 효과를 가지는 액정표시 장치
EP2158518B1 (en) * 2007-06-14 2015-01-14 Nokia Corporation Displays with integrated backlighting
TW201120516A (en) * 2009-12-03 2011-06-16 Chunghwa Picture Tubes Ltd Multistable liquid crystal display device and the driving method thereof
CN102243402B (zh) * 2011-07-13 2014-09-24 深圳超多维光电子有限公司 一种液晶透镜光栅及其立体显示装置
CN102436101B (zh) * 2011-12-26 2015-05-27 天马微电子股份有限公司 液晶透镜光栅和立体显示装置
CN102789103A (zh) * 2012-08-10 2012-11-21 京东方科技集团股份有限公司 液晶光栅及显示装置
US20160091775A1 (en) * 2013-06-20 2016-03-31 Hewlett-Packard Development Company, L.P. Grating-based light modulation employing a liquid crystal
US20170293151A1 (en) * 2016-04-08 2017-10-12 Wuhan China Star Optoelectronics Technology Co.Ltd 3d display device
CN105842862B (zh) * 2016-06-02 2019-05-28 宁波万维显示科技有限公司 一种超薄2d/3d切换显示器的制作方法
CN105866965B (zh) * 2016-06-07 2019-09-10 昆山龙腾光电有限公司 立体显示装置及立体显示方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356691B2 (en) * 1998-12-01 2002-03-12 Iljin Corp. Optical waveguide display having embedded light source
CN101329463A (zh) * 2007-06-18 2008-12-24 奇美电子股份有限公司 显示装置和液晶显示面板
US20120092590A1 (en) * 2010-10-13 2012-04-19 Samsung Electronics Co., Ltd. Backlight unit and display apparatus employing the same
WO2014081415A1 (en) * 2012-11-20 2014-05-30 Hewlett-Packard Development Company, Lp Directional waveguide-based pixel for use in a multiview display screen
CN103278958A (zh) * 2013-05-31 2013-09-04 易志根 一种液晶光栅及具有该液晶光栅的显示系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487710A (zh) * 2020-05-27 2020-08-04 京东方科技集团股份有限公司 显示面板及透明显示装置

Also Published As

Publication number Publication date
US20190033507A1 (en) 2019-01-31
CN107918233A (zh) 2018-04-17
US10663639B2 (en) 2020-05-26
CN107918233B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2018076961A1 (zh) 显示面板及显示装置
WO2018076900A1 (zh) 显示装置
US11126022B2 (en) Display device and display method thereof
WO2018076948A1 (zh) 显示面板和显示装置
WO2018157612A1 (zh) 一种液晶显示面板、液晶显示装置及其显示方法
WO2018059083A1 (zh) 显示面板和显示装置
US10754186B2 (en) Display device and display method
US9581858B2 (en) Mirror display device
WO2018161650A1 (zh) 显示面板和显示装置
US7221418B2 (en) Liquid crystal display device
EP1326129A1 (en) Transreflective liquid crystal display
WO2019218984A1 (zh) 透明显示面板和透明显示装置
JP4303906B2 (ja) 半透過型液晶表示装置
US10571735B2 (en) Display device
EP3370111A1 (en) Optical assembly and liquid crystal display device using optical assembly
WO2017148048A1 (zh) 液晶面板、显示装置以及显示方法
CN206096710U (zh) 一种显示装置
US10935852B2 (en) Display panel and display device
KR20160085399A (ko) 액정 표시 장치
CN206096638U (zh) 一种显示面板及显示装置
KR20010001567A (ko) 반사형 액정표시소자.
TW202338437A (zh) 擴增實境電子裝置
JP2011191387A (ja) 液晶表示装置
KR20090036467A (ko) 액정표시장치 및 그 설계 방법
KR20080020840A (ko) 광원 장치 및 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17863659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17863659

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.09.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17863659

Country of ref document: EP

Kind code of ref document: A1