WO2018076790A1 - 中子捕获治疗系统 - Google Patents

中子捕获治疗系统 Download PDF

Info

Publication number
WO2018076790A1
WO2018076790A1 PCT/CN2017/092702 CN2017092702W WO2018076790A1 WO 2018076790 A1 WO2018076790 A1 WO 2018076790A1 CN 2017092702 W CN2017092702 W CN 2017092702W WO 2018076790 A1 WO2018076790 A1 WO 2018076790A1
Authority
WO
WIPO (PCT)
Prior art keywords
neutron
energy
charged particle
generating portion
particle beam
Prior art date
Application number
PCT/CN2017/092702
Other languages
English (en)
French (fr)
Inventor
刘渊豪
Original Assignee
南京中硼联康医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201621154870.5U external-priority patent/CN206535011U/zh
Priority claimed from CN201610930008.7A external-priority patent/CN107998517B/zh
Application filed by 南京中硼联康医疗科技有限公司 filed Critical 南京中硼联康医疗科技有限公司
Priority to JP2019541838A priority Critical patent/JP6831921B2/ja
Priority to EP17864029.8A priority patent/EP3517172B1/en
Publication of WO2018076790A1 publication Critical patent/WO2018076790A1/zh
Priority to US16/373,775 priority patent/US10773104B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1045X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head using a multi-leaf collimator, e.g. for intensity modulated radiation therapy or IMRT
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H6/00Targets for producing nuclear reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy

Definitions

  • the present invention relates to a radioactive radiation treatment system, and more particularly to a neutron capture treatment system.
  • neutron capture therapy combines the above two concepts, such as boron neutron capture therapy, by the specific agglomeration of boron-containing drugs in tumor cells, combined with precise neutron beam regulation, providing better radiation than traditional radiation. Cancer treatment options.
  • BNCT Boron Neutron Capture Therapy
  • 10 B boron-containing
  • 10 B(n, ⁇ ) 7 Li neutron capture and nuclear splitting reactions Two heavy charged particles of 4 He and 7 Li are produced.
  • Figure 1 there is shown a schematic diagram of a boron neutron capture reaction. The average energy of the two charged particles is about 2.33 MeV, with high linear transfer (LET), short range characteristics, and linear energy transfer of alpha particles. The range is 150 keV/ ⁇ m and 8 ⁇ m, respectively, while the 7 Li heavy particles are 175 keV/ ⁇ m and 5 ⁇ m.
  • LET linear transfer
  • the total range of the two particles is about one cell size, so the radiation damage caused to the organism can be limited to the cell level.
  • the boron-containing drug selectively accumulates in the tumor cells, and with the appropriate neutron source, the purpose of locally killing the tumor cells can be achieved without causing too much damage to the normal tissue.
  • boron neutron capture therapy depends on the concentration of boron-containing drugs and the number of thermal neutrons in the tumor cell position, it is also called binary cancer therapy; thus, in addition to the development of boron-containing drugs, Neutron source quality plays an important role in the study of boron neutron capture therapy.
  • one aspect of the present invention provides a neutron capture therapy system, including Generating charged particle beam
  • the neutron generating portion generates neutrons after being irradiated by the charged ion beam, and the retarding body decelerates the neutron generated from the neutron generating portion to a preset energy spectrum, and the reflector returns the deviated neutrons.
  • the collimator illuminates the neutrons generated by the neutron production unit, and the neutron capture treatment system changes the charged particle beam during the neutron capture treatment process.
  • the energy changes the energy of the neutron beam generated by the irradiation to the neutron generating portion.
  • the present application mainly changes the energy of the neutron beam indirectly by changing the energy of the charged particle beam, thereby changing the depth dose distribution of the neutron capture treatment system.
  • the ion source in the accelerator is accelerated by a microwave generator capable of generating different pulses, thereby causing the accelerator to generate charged particles of different energies.
  • the neutron capture treatment system is provided with a microwave generator capable of injecting microwaves into the accelerator, the accelerator changing the energy of the output charged particle beam according to the injected microwaves of different frequencies, when the generated energy of the charged particle beam is the first value.
  • the charged particles react with the neutron generating portion to generate a first neutron beam energy value, and when the generated charged particle beam energy has a second value, the charged particles react with the neutron generating portion to generate a second a sub-beam energy value, wherein the first value is lower than the second value, the first neutron beam energy being lower than the second neutron beam energy.
  • the energy of the charged particle beam generated by the neutron capture treatment system is changed by a change in the electric field strength at the accelerator end.
  • the structure before the charged particles and the neutron generating portion undergo a nuclear reaction are all understood as the accelerator end.
  • the vacuum tube or/and the neutron generating portion are provided with an electric field supply device capable of generating an electric field and accelerating or decelerating the charged particle beam transmitted to the vacuum tube or irradiated to the charged particle beam before the neutron generating portion
  • the electric field supply device is a peripheral device capable of generating an electric field on the outer circumference of the vacuum tube or the outer periphery of the neutron generating portion and capable of accelerating or decelerating the charged particles before being irradiated to the neutron generating portion by the generated electric field, for example, a current-carrying electrode.
  • the neutron capture treatment system further has a beam energy spectrum adjustment member capable of adjusting energy of the charged particle beam, wherein the beam energy spectrum adjustment member is located in the vacuum tube and is located in the neutron When the front portion is in front of the portion, the charged particle beam is irradiated to the beam energy spectrum adjusting member to perform energy adjustment, and then irradiated to the neutron generating portion to generate a neutron beam.
  • the vacuum tube is provided with a receiving portion, and the beam energy spectrum adjusting member is received in the receiving portion and is connected with a driving mechanism capable of moving the beam energy spectrum adjusting member, when the driving mechanism controls When the beam energy spectrum adjusting member moves to the front of the neutron generating portion, the charged particles are irradiated to the beam energy spectrum adjusting member, and then energy-adjusted and then irradiated to the neutron generating portion; when the driving mechanism controls the beam When the energy spectrum adjusting member is housed in the accommodating portion and not in front of the neutron generating portion, the charged particle beam is directly irradiated to the neutron generating portion.
  • the receiving portion is located below the neutron generating portion, and when the driving mechanism controls the beam energy spectrum adjusting member to move upward, the beam energy spectrum adjusting member moves to neutron generation.
  • the charged particles are irradiated to the beam energy spectrum adjusting member, and then energy-adjusted and then irradiated to the neutron generating portion; when the driving mechanism controls the beam energy spectrum adjusting member to move downward, the shot
  • the beam spectrum adjusting member is housed in the accommodating portion, and the charged particle beam is directly irradiated to the neutron generating portion.
  • the beam energy spectrum adjusting member has a plurality of different amount of beam energy spectrum adjusting members, and the energy adjusting effect of the charged particle beam is different, and the driving mechanism can drive each beam energy spectrum adjusting member to be respectively up and down. Moving to charged particles The energy of the beam is adjusted.
  • the neutron energy spectrum adjusting member may be made of a material capable of generating neutrons, such as ruthenium or lithium.
  • each of the beam energy spectrum adjusting members is made of different materials, and the beam energy spectrum adjusting members of different materials have different energy adjustment effects on the charged particle beam.
  • the neutron generating unit is connected to a power supply device, and the neutron generating unit is energized by the power feeding device, and a beam energy spectrum of the charged particle beam is irradiated to a neutron generating unit that is energized by charged particles. After the change.
  • the neutron capture treatment system of the present application indirectly changes the energy of the generated neutron beam by adjusting the energy of the charged particle beam to meet the energy of different pairs of neutron beams under different treatment conditions. Different requirements, simple structure and easy to implement.
  • Figure 1 is a schematic diagram of a boron neutron capture reaction
  • FIG. 2 is a schematic illustration of the neutron capture therapy system of the present application
  • FIG. 3 is a schematic illustration of a neutron capture therapy system provided with a microwave generator
  • Figure 4 is a schematic illustration of a neutron capture treatment system provided with an electric field providing device
  • Figure 5 is a schematic illustration of a neutron capture treatment system provided with a beam energy spectrum adjustment member
  • Fig. 6 is a schematic view showing energization of a plating layer of a neutron generating portion.
  • Neutron capture therapy has been increasingly used as an effective means of treating cancer in recent years, with boron neutron capture therapy being the most common, and neutrons supplying boron neutron capture therapy can be supplied by nuclear reactors or accelerators.
  • Embodiments of the present application take the accelerator boron neutron capture treatment as an example.
  • the basic components of the accelerator boron neutron capture treatment generally include an accelerator, a neutron generator, and a heat for accelerating charged particles (such as protons, helium nuclei, etc.).
  • the nuclear reactions often discussed are 7 Li (p, n) 7 Be and 9 Be (p, n) 9 B, both of which are endothermic reactions.
  • the energy thresholds of the two nuclear reactions are 1.881 MeV and 2.055 MeV, respectively. Since the ideal neutron source for boron neutron capture therapy is the superheated neutron of the keV energy level, theoretically, if proton bombardment with energy only slightly higher than the threshold is used.
  • Metal lithium target which can produce relatively low-energy neutrons, can be used in clinical without too much slow processing, but the neutron production and threshold energy of lithium metal (Li) and base metal (Be) materials
  • the proton interaction has a low cross section.
  • a higher energy proton is usually used to initiate the nuclear reaction.
  • the nuclear reaction of the charged particles from the nuclear reactor or the accelerator produces a mixed radiation field, that is, the beam contains low-energy to high-energy neutrons and photons; for deep tumors in boron
  • Sub-capture treatment in addition to super-thermal neutrons, the more radiation content, the greater the proportion of non-selective dose deposition in normal tissue, so these will cause unnecessary doses of radiation should be minimized.
  • the human head tissue prosthesis is used in the embodiment of the present application for dose calculation, and the prosthetic beam quality factor is used as a design reference for the neutron beam, which will be described in detail below.
  • the International Atomic Energy Agency has given five air beam quality factor recommendations for clinical neutron sources for clinical boron neutron capture therapy. These five recommendations can be used to compare the pros and cons of different neutron sources and provide The reference basis for selecting the neutron generation route and designing the beam shaping body.
  • the five recommendations are as follows:
  • Epithermal neutron beam flux Epithermal neutron flux>1x 10 9 n/cm 2 s
  • the superheated neutron energy region is between 0.5eV and 40keV, the thermal neutron energy region is less than 0.5eV, and the fast neutron energy region is greater than 40keV.
  • the neutron beam flux and the concentration of boron-containing drugs in the tumor determine the clinical treatment time. If the concentration of the boron-containing drug in the tumor is high enough, the requirement for the flux of the neutron beam can be reduced; conversely, if the concentration of the boron-containing drug in the tumor is low, a high-flux superheated neutron is required to give the tumor a sufficient dose.
  • the IAEA's requirement for the epithermal neutron beam flux is that the number of epithermal neutrons per square centimeter per second is greater than 10 9 .
  • the neutron beam at this flux can roughly control the treatment of current boron-containing drugs. In one hour, short treatment time, in addition to the advantages of patient positioning and comfort, can also make more effective use of boron-containing drugs in the tumor for a limited residence time.
  • fast neutron contamination is defined as the fast neutron dose accompanying the unit's superheated neutron flux.
  • the IAEA's recommendation for fast neutron contamination is less than 2x 10 -13 Gy-cm 2 /n.
  • ⁇ -rays are strong radiation, which will non-selectively cause dose deposition of all tissues in the beam path. Therefore, reducing ⁇ -ray content is also a necessary requirement for neutron beam design.
  • ⁇ -ray pollution is defined as the unit of superheated neutron flux.
  • the gamma dose is recommended by IAEA for gamma ray contamination to be less than 2 x 10 -13 Gy-cm 2 /n.
  • thermal neutrons Due to the fast decay rate and poor penetrability of thermal neutrons, most of the energy is deposited on the skin tissue after entering the human body. In addition to melanoma and other epidermal tumors, thermal neutrons are needed as the neutron source for boron neutron capture therapy. Deep layer of tumor Tumors should reduce the thermal neutron content.
  • the IAEA's ratio of thermal neutron to superheated neutron flux is recommended to be less than 0.05.
  • the ratio of neutron current to flux represents the directionality of the beam. The larger the ratio, the better the forward neutron beam, and the high forward neutron beam can reduce the surrounding normal tissue dose caused by neutron divergence. It also increases the elasticity of the treatment depth and posture.
  • the IAEA's ratio of neutron current to flux is recommended to be greater than 0.7.
  • the prosthesis was used to obtain the dose distribution in the tissue, and the prosthetic beam quality factor was derived according to the dose-depth curve of normal tissues and tumors. The following three parameters can be used to compare the benefits of different neutron beam treatments.
  • the tumor dose is equal to the depth of the maximum dose of normal tissue. At this post-depth, the tumor cells receive a dose that is less than the maximum dose of normal tissue, ie, the advantage of boron neutron capture is lost. This parameter represents the penetrating ability of the neutron beam. The greater the effective treatment depth, the deeper the tumor depth that can be treated, in cm.
  • the effective dose rate of the tumor is also equal to the maximum dose rate of normal tissues. Because the total dose received by normal tissues is a factor that affects the total dose of tumor, the parameters affect the length of treatment. The greater the effective dose rate, the shorter the irradiation time required to give a tumor dose, the unit is cGy/mA. -min.
  • the effective therapeutic dose ratio received by the tumor and normal tissue is called the effective therapeutic dose ratio; the calculation of the average dose can be obtained by integrating the dose-depth curve.
  • the beam shaping body In order to make the beam shaping body have a design basis, in addition to the five IAEA recommended airborne beam quality factors and the above three parameters, the following examples are also used in the present application for evaluating the neutron beam dose performance. Good and bad parameters:
  • Irradiation time ⁇ 30min (the proton current used by the accelerator is 10mA)
  • RBE Relative Biological Effectiveness
  • the present application changes the energy of the charged particle beam before irradiation to the neutron generating portion because the energy of the charged particle beam changes, while the neutron beam is illuminated by charged particles.
  • the reaction occurs after the neutron production unit, so the energy change of the charged particle beam directly affects the energy of the neutron beam.
  • the neutron capture therapy system described herein alters the energy of the neutron beam by altering the energy of the charged particle beam, including but not limited to boron neutron capture therapy, and the neutron capture therapy system of the present application is specifically described below.
  • the present application provides a neutron capture treatment system 100 that includes an accelerator 200 for generating a charged particle beam P, which is irradiated by a charged particle beam P to produce a neutron beam.
  • the neutron generating unit 10 the beam shaping body 11, and the collimator 12.
  • the beam shaping body 11 includes a retarding body 13 and a reflector 14 that is coated on the outer periphery of the retarding body 13.
  • the neutron generating portion 10 generates a neutron beam N after being irradiated by the charged particle beam P, and the retarding body 13 decelerates the neutron beam N generated from the neutron generating portion 10 to a preset energy spectrum,
  • the reflector 14 conducts the deviated neutrons to increase the neutron intensity within the preset energy spectrum, and the collimator 12 illuminates the neutrons generated by the neutron generating portion 10 intensively.
  • the energy of the charged particles can be varied, the neutron capture treatment system 100 indirectly changing the energy of the neutron beam generated by the neutron generator by changing the energy of the charged particle beam, since the neutron beam N is a charged particle Since the beam P is irradiated to the neutron generating portion 10, the change in the energy of the charged particle beam P affects the energy of the neutron beam N. That is, the present application indirectly changes the energy of the neutron beam N by the energy change of the charged particle beam P, thereby enabling the neutron capture treatment system to provide a better neutron depth dose distribution.
  • the neutron capture therapy system 100 further includes a microwave generator 300 disposed at the accelerator end.
  • the microwave generator 300 is capable of generating microwaves of different frequencies, and the accelerator 200 accelerates the ion source in the accelerator according to the injected microwaves of different frequencies to change the energy of the output charged particle beam.
  • the frequency at which the microwave generator 300 is injected into the accelerator 200 is higher, the faster the accelerator 200 accelerates the ion source, the higher the energy of the generated charged particle beam P is, and the charged particle beam P is irradiated.
  • the energy of the neutron beam N generated by the post neutron generating portion 10 is also higher; when the frequency at which the microwave generator 300 is injected into the accelerator 200 is low, the acceleration of the ion source by the accelerator 200 is slower, resulting in The energy of the charged particle beam P is lower, and the energy of the neutron beam N generated by the neutron generating portion 10 irradiated by the charged particle beam P is lower.
  • the energy of the generated charged particle beam When the energy of the generated charged particle beam is low (at a first value), the energy of the neutron beam generated by the reaction of the charged particle with the neutron generating portion is lower (the energy value of the first neutron beam); When the energy of the generated charged particle beam is high (which is the second value), the energy of the neutron beam generated by the reaction of the charged particle with the neutron generating portion is higher (the energy value of the second neutron beam), Wherein the first value is lower than the second value, and the energy value of the first neutron beam is lower than the energy value of the second neutron beam.
  • the present application can also be changed by changing the electric field strength at the accelerator end.
  • the energy of the charged particle beam P Since the electric field intensity at the accelerator end greatly affects the acceleration speed of the charged particle beam P, and the acceleration speed of the charged particle beam P directly affects the energy of the charged particle beam P, the charged particle beam P is irradiated to the neutron generating portion 10 to generate The energy of the neutron beam N is affected.
  • the present application provides an electric field supply device 16 outside the vacuum tube 15 or outside the neutron generating portion 10 to generate an acceleration of the charged particle beam P before being irradiated to the neutron generating portion 10. Or a decelerating electric field.
  • the electric field supply device 16 refers to a current-carrying electrode, and adjusts the electric field intensity difference generated by controlling the voltage difference across the energized electrode to accelerate or decelerate the charged particle beam P, and no longer Give specific instructions.
  • such an electric field supply device 16 is disposed outside the vacuum tube 15 or outside the neutron generating portion 10 for the purpose of secondary adjustment of the energy of the charged particle beam P accelerated by the accelerator 200 to facilitate the irradiation of the charged particle beam P.
  • the neutron production section 10 it is possible to generate an energy level neutron beam N that is required in accordance with the neutron capture treatment process. That is, the energy of the charged particle beam P is changed by controlling the electric field at the accelerator end to indirectly change the energy of the neutron beam N.
  • such an electric field supply device 16 may be separately disposed outside the vacuum tube 15 and outside the neutron generating portion 10 to adjust the energy of the charged particle beam P a plurality of times, thereby facilitating such energy adjustment, and finally obtaining a treatment process.
  • the energy level of the neutron beam N may be separately disposed outside the vacuum tube 15 and outside the neutron generating portion 10 to adjust the energy of the charged particle beam P a plurality of times, thereby facilitating such energy adjustment, and finally obtaining a treatment process.
  • the energy level of the neutron beam N may be separately disposed outside the vacuum tube 15 and outside the neutron generating portion 10 to adjust the energy of the charged particle beam P a plurality of times, thereby facilitating such energy adjustment, and finally obtaining a treatment process.
  • Fig. 5 is a third embodiment of the present invention for changing the energy of the charged particle beam P.
  • a beam spectrum adjusting member 17 located in front of the neutron generating portion 10 is provided in the vacuum tube 15, and the charged particle beam P is irradiated to the beam spectrum adjusting member 17 for energy adjustment and then irradiated to the neutron.
  • the generating part 10 in turn generates a neutron beam N, which ultimately effects energy adjustment of the neutron beam N.
  • the beam energy spectrum adjusting member 17 is disposed in the vacuum tube 15 and located below the neutron generating portion 10.
  • the vacuum tube 15 is provided with a receiving portion 151 under the neutron generating portion 10, and the beam energy spectrum is adjusted.
  • the member 17 is received in the accommodating portion 151. Since the adjustment effect of the energy of the charged particle beam P by the different number of beam energy spectrum adjusting members 17 is different, a plurality of beam energy spectrum adjusting members 17 are provided in the vacuum tube 15, each of which can
  • the spectral adjustment members 17 are respectively coupled to a drive mechanism 18 that controls each of the beam energy spectrum adjustment members 17 to move upward or downward, respectively, that is, the drive mechanism 18 can simultaneously be one or more beam energy spectra.
  • the adjustment member 17 moves up or down.
  • the drive mechanism 18 is operated in accordance with the energy requirements of the neutron beam N, and the motion of each beam energy spectrum adjustment member 17 is controlled by the drive mechanism 18.
  • the driving mechanism 18 controls the beam energy spectrum adjusting member 17 to move upward, the beam energy spectrum adjusting member 17 moves to the front of the neutron generating portion 10, and the charged particle beam P is irradiated to the beam energy spectrum.
  • the adjusting member 17 performs energy adjustment and then irradiates the neutron generating portion 10; when the driving mechanism controls the beam energy spectrum adjusting member 17 to move downward, the beam energy spectrum adjusting member 17 is received in the accommodating portion. 151.
  • the charged particle beam P is directly irradiated to the neutron generating unit 10.
  • the energy of the charged particle beam P is adjusted by the beam energy spectrum adjusting member 17, thereby indirectly adjusting the energy spectrum of the neutron beam N.
  • the beam energy spectrum adjusting member may be disposed at other positions in the vacuum tube in addition to the lower portion of the neutron generating portion, as long as it can be located in front of the neutron generating portion when the energy of the charged particle beam needs to be adjusted. It is not necessary to be in front of the neutron generating unit when it is not necessary to adjust the energy of the charged particle beam.
  • each of the beam energy spectrum adjusting members 17 is designed to have the same structure and each beam energy spectrum adjusting member 17 is sequentially arranged in the accommodating portion 15.
  • the cross section of the beam energy spectrum adjusting member 17 and the neutron generating portion 10 perpendicular to the irradiation direction of the charged particle beam P is circular, and the radius of the beam spectrum adjusting member 17 is smaller than the neutron generating portion.
  • the radius of 10. In order to alleviate the heat generation of the beam energy spectrum adjusting member 17 after being irradiated by the charged particle beam P, a cooling device (not shown) is provided on the outer periphery of the beam spectrum adjusting member 17, and the beam spectrum adjusting member 17 is provided.
  • the arrangement of the cooling device can refer to the cooling method of the neutron generating portion 10 in the prior art, which will not be specifically described herein.
  • the beam spectrum adjusting member 17 adjusts the energy of the charged particle beam P, and the cooling device cools the beam spectrum adjusting member 17.
  • each of the beam energy spectrum adjusting members 17 may be the same or different.
  • the materials of the beam energy spectrum adjusting members 17 may be the same or different.
  • the beam spectrum adjusting member 17 may be made of a material capable of generating a neutron beam N, such as lithium or tantalum. It is to be noted that when the beam energy spectrum adjusting member 17 is manufactured using a material capable of generating the neutron beam N, the beam spectrum adjusting member 17 should be placed as close as possible to the neutron generating portion 10, so that The neutron beam generated when the charged particle beam P is irradiated to the beam energy spectrum adjusting member 17 and the neutron beam generated by the neutron generating portion are effectively utilized.
  • the beam spectrum adjusting member 17 is made of a material that does not generate a neutron beam, as long as the beam spectrum adjusting member 17 is provided in the vacuum tube 15 and can be moved downward under the control of the driving mechanism to be located in the neutron.
  • the charged particle beam P irradiated to the neutron generating unit 10 may be energy-adjusted in front of the generating portion 10.
  • the neutron generating unit 10 of the neutron capture treatment system 100 is coupled to an energizing device 20.
  • the neutron generating unit 10 is energized by the power supply device 20 to generate an electric field inside the neutron generating portion, and the beam energy spectrum of the charged particle beam P is irradiated to the neutron generating portion after energization by the charged particle beam P. Changed after 10 years.
  • the beam shaping body for neutron capture treatment disclosed herein is not limited to the contents described in the above embodiments and the structures represented in the drawings. Obvious modifications, substitutions, or alterations of the materials, shapes, and positions of the components in the present application are within the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

一种中子捕获治疗系统(100),包括用于产生带电粒子束P的加速器(200)、经带电粒子束P照射后产生中子射束的中子产生部(10)、射束整形体(11)以及准直器(12),射束整形体(11)包括缓速体(13)及包覆于缓速体(13)外周的反射体(14),中子产生部(10)经带电粒子束P照射后产生中子,缓速体(13)将自中子产生部(10)产生的中子减速至预设能谱,反射体(14)将偏离的中子导回以提高预设能谱内的中子强度,准直器(12)将中子产生部(10)产生的中子进行集中照射,在中子捕获治疗过程中,中子捕获治疗系统(100)通过改变带电粒子束P的能量使照射至中子产生部(10)而产生的中子射束N的能量发生改变。

Description

中子捕获治疗系统 技术领域
本发明涉及一种放射性射线辐照治疗系统,尤其涉及一种中子捕获治疗系统。
背景技术
随着原子科学的发展,例如钴六十、直线加速器、电子射束等放射线治疗已成为癌症治疗的主要手段之一。然而传统光子或电子治疗受到放射线本身物理条件的限制,在杀死肿瘤细胞的同时,也会对射束途径上大量的正常组织造成伤害;另外由于肿瘤细胞对放射线敏感程度的不同,传统放射治疗对于较具抗辐射性的恶性肿瘤(如:多行性胶质母细胞瘤(glioblastoma multiforme)、黑色素细胞瘤(melanoma))的治疗成效往往不佳。
为了减少肿瘤周边正常组织的辐射伤害,化学治疗(chemotherapy)中的标靶治疗概念便被应用于放射线治疗中;而针对高抗辐射性的肿瘤细胞,目前也积极发展具有高相对生物效应(relative biological effectiveness,RBE)的辐射源,如质子治疗、重粒子治疗、中子捕获治疗等。其中,中子捕获治疗便是结合上述两种概念,如硼中子捕获治疗,借由含硼药物在肿瘤细胞的特异性集聚,配合精准的中子射束调控,提供比传统放射线更好的癌症治疗选择。
硼中子捕获治疗(Boron Neutron Capture Therapy,BNCT)是利用含硼(10B)药物对热中子具有高捕获截面的特性,借由10B(n,α)7Li中子捕获及核分裂反应产生4He和7Li两个重荷电粒子。参照图1,其示出了硼中子捕获反应的示意图,两荷电粒子的平均能量约为2.33MeV,具有高线性转移(Linear Energy Transfer,LET)、短射程特征,α粒子的线性能量转移与射程分别为150keV/μm、8μm,而7Li重荷粒子则为175keV/μm、5μm,两粒子的总射程约相当于一个细胞大小,因此对于生物体造成的辐射伤害能局限在细胞层级,当含硼药物选择性地聚集在肿瘤细胞中,搭配适当的中子射源,便能在不对正常组织造成太大伤害的前提下,达到局部杀死肿瘤细胞的目的。
因硼中子捕获治疗的成效取决于肿瘤细胞位置含硼药物浓度和热中子数量,故又被称为二元放射线癌症治疗(binary cancer therapy);由此可知,除了含硼药物的开发,中子射源品质在硼中子捕获治疗的研究中占有重要角色。
发明内容
为了在中子捕获治疗过程中获得多种能量范围的中子射束以满足在实际治疗过程中需要的中子射束能谱,本发明的一个方面提供一种中子捕获治疗系统,包括用于产生带电粒子束 的加速器、经带电粒子束照射后产生中子射束的中子产生部、射束整形体以及准直器,所述射束整形体包括缓速体及包覆于缓速体外周的反射体,所述中子产生部经带电离子束照射后产生中子,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射体将偏离的中子导回以提高预设能谱内的中子强度,所述准直器将中子产生部产生的中子进行集中照射,在中子捕获治疗过程中,所述中子捕获治疗系统通过改变带电粒子束的能量使照射至中子产生部而产生的中子射束的能量发生改变。本申请主要是通过改变带电粒子束的能量间接改变中子射束的能量,进而改变中子捕获治疗系统的深度剂量分布。
进一步地,本申请中,通过能够产生不同脉冲的微波产生器对加速器中的离子源进行加速,从而使得加速器产生不同能量的带电粒子射。所述中子捕获治疗系统设有能够向加速器注入微波的微波产生器,所述加速器根据注入的不同频率的微波改变输出的带电粒子束的能量,当产生的带电粒子束的能量为第一值时,所述带电粒子与中子产生部反应产生第一中子射束能量值,当产生的带电粒子束的能量为第二值时,所述带电粒子与中子产生部反应产生第二中子射束能量值,其中所述第一值低于第二值,第一中子射束能量低于第二中子射束能量。
进一步地,所述中子捕获治疗系统产生的带电粒子束的能量通过加速器端电场强度的改变而改变。本申请中子捕获治疗系统中,所述带电粒子与中子产生部发生核反应之前的结构均应理解为加速器端。
进一步地,所述真空管或/和中子产生部外设有能够产生电场并且对真空管中传输的带电粒子束/照射至中子产生部前的带电粒子束加速或者减速的电场供应装置,所述电场供应装置是指能够在真空管外周或中子产生部的外周产生电场并且借助产生的电场使照射至中子产生部之前的带电粒子能够加速或者减速的外设装置,例如通电电极。
进一步地,所述中子捕获治疗系统还具有能够对所述带电粒子束的能量进行调节的射束能谱调节件,当所述射束能谱调节件位于真空管中并且位于所述中子产生部前方时,所述带电粒子束照射至射束能谱调节件进行能量调节后再照射至中子产生部而产生中子射束。
进一步地,所述真空管内设有容置部,所述射束能谱调节件收容于所述容置部并且连接有能够使射束能谱调节件运动的驱动机构,当所述驱动机构控制射束能谱调节件运动至中子产生部前方时,所述带电粒子照射至射束能谱调节件后进行能量调节后再照射至中子产生部;当所述驱动机构控制所述射束能谱调节件收容于容置部而不位于中子产生部前方时,所述带电粒子束直接照射于所述中子产生部。作为一种优选地,所述容置部位于所述中子产生部的下方,当所述驱动机构控制射束能谱调节件向上运动时,所述射束能谱调节件运动至中子产生部前方,所述带电粒子照射至射束能谱调节件后进行能量调节后再照射至中子产生部;当所述驱动机构控制所述射束能谱调节件向下运动时,所述射束能谱调节件收容于容置部,所述带电粒子束直接照射于所述中子产生部。
进一步地,所述射束能谱调节件具有多个,不同数量的射束能谱调节件对带电粒子束的能量调节作用不同,所述驱动机构能够驱动每个射束能谱调节件分别上下运动以对带电粒子 束的能量进行调节。并且,所述中子能谱调节件可以采用能够产生中子的材料制造,比如铍、锂。
进一步地,所述每个射束能谱调节件采用不同的材料制造,不同材料的射束能谱调节件对带电粒子束的能量调节效果不同。
进一步地,所述中子产生部连接于一供电装置,通过所述供电装置对所述中子产生部通电,所述带电粒子束的射束能谱在带电粒子照射至通电的中子产生部后发生改变。
与现有技术相比,本申请中子捕获治疗系统通过对带电粒子束的能量进行调节,间接改变产生的中子射束的能量,以满足在不同治疗情况下不同对中子射束的能量的不同要求,结构简单,易于实现。
附图说明
图1是硼中子捕获反应示意图;
图2是本申请中子捕获治疗系统的示意图;
图3是设有微波产生器的中子捕获治疗系统的示意图;
图4是设有电场提供装置的中子捕获治疗系统的示意图;
图5是设有射束能谱调节件的中子捕获治疗系统的示意图;
图6是对中子产生部的镀层进行通电的示意图。
具体实施方式
中子捕获治疗作为一种有效的治疗癌症的手段近年来的应用逐渐增加,其中以硼中子捕获治疗最为常见,供应硼中子捕获治疗的中子可以由核反应堆或加速器供应。本申请的实施例以加速器硼中子捕获治疗为例,加速器硼中子捕获治疗的基本组件通常包括用于对带电粒子(如质子、氘核等)进行加速的加速器、中子产生部、热移除系统以及射束整形体,其中加速带电粒子与中子产生部作用产生中子,依据所需的中子产率与能量、可提供的加速带电粒子能量与电流大小、中子产生部的物化性等特性来挑选合适的核反应,常被讨论的核反应有7Li(p,n)7Be及9Be(p,n)9B,这两种反应皆为吸热反应。两种核反应的能量阀值分别为1.881MeV和2.055MeV,由于硼中子捕获治疗的理想中子源为keV能量等级的超热中子,理论上若使用能量仅稍高于阀值的质子轰击金属锂靶材,可产生相对低能的中子,不须太多的缓速处理便可用于临床,然而锂金属(Li)和铍金属(Be)两种材料的中子产生部与阀值能量的质子作用截面不高,为产生足够大的中子通量,通常选用较高能量的质子来引发核反应。
无论硼中子捕获治疗的中子源来自核反应堆或加速器带电粒子与靶材的核反应,产生的皆为混合辐射场,即射束包含了低能至高能的中子、光子;对于深部肿瘤的硼中子捕获治疗,除了超热中子外,其余的辐射线含量越多,造成正常组织非选择性剂量沉积的比例越大,因此这些会造成不必要剂量的辐射应尽量降低。除了空气射束品质因素,为更了解中子在人体 中造成的剂量分布,本申请的实施例中使用人体头部组织假体进行剂量计算,并以假体射束品质因素来作为中子射束的设计参考,将在下文详细描述。
国际原子能机构(IAEA)针对临床硼中子捕获治疗用的中子源,给定了五项空气射束品质因素建议,此五项建议可用于比较不同中子源的优劣,并供以作为挑选中子产生途径、设计射束整形体时的参考依据。这五项建议分别如下:
超热中子射束通量Epithermal neutron flux>1x 109n/cm2s
快中子污染Fast neutron contamination<2x 10-13Gy-cm2/n
光子污染Photon contamination<2x 10-13Gy-cm2/n
热中子与超热中子通量比值thermal to epithermal neutron flux ratio<0.05
中子电流与通量比值epithermal neutron current to flux ratio>0.7
注:超热中子能区在0.5eV到40keV之间,热中子能区小于0.5eV,快中子能区大于40keV。
1、超热中子射束通量:
中子射束通量和肿瘤中含硼药物浓度共同决定了临床治疗时间。若肿瘤含硼药物浓度够高,对于中子射束通量的要求便可降低;反之,若肿瘤中含硼药物浓度低,则需高通量超热中子来给予肿瘤足够的剂量。IAEA对于超热中子射束通量的要求为每秒每平方厘米的超热中子个数大于109,此通量下的中子射束对于目前的含硼药物而言可大致控制治疗时间在一小时内,短治疗时间除了对病人定位和舒适度有优势外,也可较有效利用含硼药物在肿瘤内有限的滞留时间。
2、快中子污染:
由于快中子会造成不必要的正常组织剂量,因此视之为污染,此剂量大小和中子能量呈正相关,因此在中子射束设计上应尽量减少快中子的含量。快中子污染定义为单位超热中子通量伴随的快中子剂量,IAEA对快中子污染的建议为小于2x 10-13Gy-cm2/n。
3、光子污染(γ射线污染):
γ射线属于强穿辐射,会非选择性地造成射束路径上所有组织的剂量沉积,因此降低γ射线含量也是中子束设计的必要要求,γ射线污染定义为单位超热中子通量伴随的γ射线剂量,IAEA对γ射线污染的建议为小于2x 10-13Gy-cm2/n。
4、热中子与超热中子通量比值:
由于热中子衰减速度快、穿透能力差,进入人体后大部分能量沉积在皮肤组织,除黑色素细胞瘤等表皮肿瘤需用热中子作为硼中子捕获治疗的中子源外,针对脑瘤等深层 肿瘤应降低热中子含量。IAEA对热中子与超热中子通量比值建议为小于0.05。
5、中子电流与通量比值:
中子电流与通量比值代表了射束的方向性,比值越大表示中子射束前向性佳,高前向性的中子束可减少因中子发散造成的周围正常组织剂量,另外也提高了可治疗深度及摆位姿势弹性。IAEA对中子电流与通量比值建议为大于0.7。
利用假体得到组织内的剂量分布,根据正常组织及肿瘤的剂量-深度曲线,推得假体射束品质因素。如下三个参数可用于进行不同中子射束治疗效益的比较。
1、有效治疗深度:
肿瘤剂量等于正常组织最大剂量的深度,在此深度之后的位置,肿瘤细胞得到的剂量小于正常组织最大剂量,即失去了硼中子捕获的优势。此参数代表中子射束的穿透能力,有效治疗深度越大表示可治疗的肿瘤深度越深,单位为cm。
2、有效治疗深度剂量率:
即有效治疗深度的肿瘤剂量率,亦等于正常组织的最大剂量率。因正常组织接收总剂量为影响可给予肿瘤总剂量大小的因素,因此参数影响治疗时间的长短,有效治疗深度剂量率越大表示给予肿瘤一定剂量所需的照射时间越短,单位为cGy/mA-min。
3、有效治疗剂量比:
从大脑表面到有效治疗深度,肿瘤和正常组织接收的平均剂量比值,称之为有效治疗剂量比;平均剂量的计算,可由剂量-深度曲线积分得到。有效治疗剂量比值越大,代表该中子射束的治疗效益越好。
为了使射束整形体在设计上有比较依据,除了五项IAEA建议的空气中射束品质因素和上述的三个参数,本申请实施例中也利用如下的用于评估中子射束剂量表现优劣的参数:
1、照射时间≤30min(加速器使用的质子电流为10mA)
2、30.0RBE-Gy可治疗深度≥7cm
3、肿瘤最大剂量≥60.0RBE-Gy
4、正常脑组织最大剂量≤12.5RBE-Gy
5、皮肤最大剂量≤11.0RBE-Gy
注:RBE(Relative Biological Effectiveness)为相对生物效应,由于光子、中子会造成的生物效应不同,所以如上的剂量项均分别乘上不同组织的相对生物效应以求得等效剂量。
在实际的中子捕获治疗过程中,不同情形下的病人及肿瘤情况往往需要采用不同能量的中子射束进行照射治疗,而如何根据具体情况得到所需能量的中子射束去进行治疗就成了需要解决的问题。本申请为了提供多种能量的中子射束,通过对照射至中子产生部之前的带电粒子束的能量进行改变,因为带电粒子束的能量改变了,而中子射束是由带电粒子照射至中子产生部后发生反应产生的,因此带电粒子束的能量改变会直接影响中子射束的能量。本申请所述中子捕获治疗系统通过改变带电粒子束的能量来改变中子射束的能量包括但是不限于硼中子捕获治疗过程中,以下具体介绍本申请中子捕获治疗系统。
如图2所示,本申请提供一种中子捕获治疗系统100,所述中子捕获治疗系统100包括用于产生带电粒子束P的加速器200、经带电粒子束P照射后产生中子射束的中子产生部10、射束整形体11以及准直器12。所述射束整形体11包括缓速体13及包覆于缓速体13外周的反射体14。所述中子产生部10经带电粒子束P照射后产生中子射束N,所述缓速体13将自中子产生部10产生的中子射束N减速至预设能谱,所述反射体14将偏离的中子导回以提高预设能谱内的中子强度,所述准直器12将中子产生部10产生的中子进行集中照射。所述带电粒子的能量能够改变,所述中子捕获治疗系统100通过改变带电粒子束的能量间接改变中子产生部产生的中子射束的能量,因为中子射束N是由经过带电粒子束P照射至中子产生部10后产生的,所以带电粒子束P的能量的改变会中子射束N的能量产生影响。即本申请通过带电粒子束P的能量变化间接改变中子射束N的能量,进而使得所述中子捕获治疗系统能够提供更好的中子深度剂量分布。
作为第一种实施方式,如图3所示,所述中子捕获治疗系统100还包括设置在加速器端的微波产生器300。所述微波产生器300能够产生不同频率的微波,所述加速器200根据注入的不同频率的微波对加速器中的离子源进行加速从而改变输出的带电粒子束的能量。当微波产生器300注入至加速器200中的频率较高时,所述加速器200对离子源的加速就越快,产生的带电粒子束P的能量也就越高,经所述带电粒子束P照射后中子产生部10产生的中子射束N的能量也就越高;当微波产生器300注入至加速器200中的频率较低时,所述加速器200对离子源的加速就较慢,产生的带电粒子束P的能量就较低,经所述带电粒子束P照射后的中子产生部10产生的中子射束N的能量就越低。当产生的带电粒子束的能量较低(为第一值)时,所述带电粒子与中子产生部反应产生的中子射束的能量较低(第一中子射束的能量值);当产生的带电粒子束的能量较高(为第二值)时,所述带电粒子与中子产生部反应产生的中子射束的能量较高(第二中子射束的能量值),其中所述第一值低于第二值,第一中子射束的能量值低于第二中子射束的能量值。
如图4所示,作为第二种实施方式,本申请还可以通过改变加速器端的电场强度来改变 带电粒子束P的能量。因为加速器端的电场强度对带电粒子束P的加速速度有很大影响,而带电粒子束P的加速速度又直接影响带电粒子束P的能量,因此带电粒子束P照射至中子产生部10而产生的中子射束N的能量会受到影响。
作为改变加速器端电场强度的一个具体实施方式,本申请在真空管15外或者在中子产生部10外设置电场供应装置16以产生能够对照射至中子产生部10前的带电粒子束P进行加速或者减速的电场。作为一种优选地,所述电场供应装置16是指通电电极,通过控制通电电极两端的电压差对产生的电场强度差进行调整,从而对带电粒子束P进行加速或者减速,此处就不再作具体说明。
其实无论在真空管15外还是在中子产生部10外设置这样的电场供应装置16目的都是为了对经过加速器200加速后的带电粒子束P的能量进行二次调整,以利于带电粒子束P照射至中子产生部10时能够产生符合中子捕获治疗过程中需要的能量级中子射束N。即,通过控制加速器端的电场改变带电粒子束P的能量,间接改变中子射束N的能量。当然,也可以在真空管15外以及中子产生部10外分别设置这样的电场供应装置16,对带电粒子束P的能量进行多次调整,从而更易实现这样的能量调整,最后得到治疗过程中需要的能量级的中子射束N。
图5为本申请改变带电粒子束P的能量的第三种实施方式。本实施方式中,在真空管15中设置位于中子产生部10前方的射束能谱调节件17,所述带电粒子束P照射至射束能谱调节件17进行能量调节后再照射至中子产生部10进而产生中子射束N,最终实现对中子射束N的能量调节。
所述射束能谱调节件17设于真空管15内并位于中子产生部10下方,所述真空管15内设有位于中子产生部10下方的容置部151,所述射束能谱调节件17收容于所述容置部151中。因为不同数量的射束能谱调节件17对带电粒子束P的能量的调整效果会有所不同,因此,在真空管15中设置多个射束能谱调节件17,所述每个射束能谱调节件17分别连接于驱动机构18,所述驱动机构18控制每个射束能谱调节件17分别向上或者向下运动,即所述驱动机构18可以同时是一个或者多个射束能谱调节件17向上或者向下运动。在实际的中子捕获治疗过程中,根据对中子射束N的能量需求使驱动机构18工作,由驱动机构18控制每个射束能谱调节件17的运动情况。当所述驱动机构18控制射束能谱调节件17向上运动时,所述射束能谱调节件17运动至中子产生部10前方,所述带电粒子束P照射至所述射束能谱调节件17进行能量调节后再照射至中子产生部10;当所述驱动机构控制所述射束能谱调节件17向下运动时,所述射束能谱调节件17收容于容置部151,所述带电粒子束P直接照射于所述中子产生部10。通过射束能谱调节件17对带电粒子束P的能量进行调节,从而间接调整中子射束N的能谱。另外,所述射束能谱调节件除了设于中子产生部的下方外,也可以设置在真空管内的其他位置,只要能够在需要对带电粒子束的能量进行调节时位于中子产生部前方,在不需要对带电粒子束的能量进行调节时不位于中子产生部前方即可。
为了便于射束能谱调节件17的制造与安装,将所述每个射束能谱调节件17设计成相同的结构并且每个射束能谱调节件17有序排列在容置部15中,所述射束能谱调节件17和中子产生部10与带电粒子束P的照射方向垂直的截面均呈圆形,所述射束能谱调节件17的半径小于所述中子产生部10的半径。为了缓解射束能谱调节件17在经带电粒子束P照射后的发热情况,在射束能谱调节件17的外周设置冷却装置(未图示),所述射束能谱调节件17的冷却装置的设置可以参考现有技术中对中子产生部10的冷却方式,此处就不再具体介绍。当带电粒子束P照射至射束能谱调节件17时,所述射束能谱调节件17对带电粒子束P的能量进行调节,所述冷却装置对射束能谱调节件17进行冷却。
所述每个射束能谱调节件17的厚度可以相同也可以不同,另外,所述射束能谱调节件17的材料可以相同也可以不同。当所述射束能谱调节件17均采用相同的材料制造时,中子捕获治疗过程中对中子射束N能量的不同要求可以通过驱动机构控制不同数量的射束能谱调节件17向下运动至中子产生部10的前方来实现;当所述射束能谱调节件17采用不同材料制成时,中子捕获治疗过程中对中子射束N能量的不同要求既可以通过驱动机构控制不同数量的射束能谱调节件17向下运动实现,也可以通过驱动机构控制不同材料的射束能谱调节件17向下运动实现。另外,所述射束能谱调节件17也可以采用能够产生中子射束N的材料制成,比如锂或者铍。需要指出的是,当采用能够产生中子射束N的材料制造射束能谱调节件17时,应当将所述射束能谱调节件17设置的尽量靠近中子产生部10,如此以使带电粒子束P照射至射束能谱调节件17时产生的中子射束与中子产生部产生的中子射束得到有效利用。当然,如果射束能谱调节件17采用不产生中子射束的材料制成,只要射束能谱调节件17设于真空管15中并且在驱动机构的控制下能够向下运动而位于中子产生部10的前方,对照射至中子产生部10的带电粒子束P进行能量调节即可。
结合图6,作为第四种实施方式,所述中子捕获治疗系统100的中子产生部10连接于一通电装置20。通过所述供电装置20对所述中子产生部10通电使得中子产生部的内部产生电场,所述带电粒子束P的射束能谱因带电粒子束P照射至通电后的中子产生部10后发生改变。
当然,为了得到更好的中子射束N品质,也可以同时设置微波产生器、电场供应装置、射束能谱调节件以及连接于通电装置的中子产生部,以此对中子捕获治疗过程中产生的带电粒子束P进行多次能量的调整,从而更容易获得需要的能量级的中子射束,此处就不再具体说明。
本申请揭示的用于中子捕获治疗的射束整形体并不局限于以上实施例所述的内容以及附图所表示的结构。在本申请的基础上对其中构件的材料、形状及位置所做的显而易见地改变、替代或者修改,都在本申请要求保护的范围之内。

Claims (10)

  1. 一种中子捕获治疗系统,其特征在于:包括用于产生带电粒子束的加速器、经带电粒子束照射后产生中子射束的中子产生部、用于将经加速器加速后的带电粒子传输至中子产生部的真空管、射束整形体以及准直器,所述射束整形体包括缓速体及包覆于缓速体外周的反射体,所述缓速体将自中子产生部产生的中子减速至预设能谱,所述反射体将偏离的中子导回以提高预设能谱内的中子强度,所述准直器将中子产生部产生的中子进行集中,所述中子捕获治疗系统通过改变带电粒子束的能量使照射至中子产生部而产生的中子射束的能量发生改变。
  2. 根据权利要求1所述的中子捕获治疗系统,其特征在于:所述中子捕获治疗系统设有能够向加速器注入微波的微波产生器,所述加速器根据注入的不同频率的微波改变输出的带电粒子束的能量,当产生的带电粒子束的能量为第一值时,所述带电粒子与中子产生部反应产生第一中子射束能量值,当产生的带电粒子束的能量为第二值时,所述带电粒子与中子产生部反应产生第二中子射束能量值,其中所述第一值低于第二值,第一中子射束能量值低于第二中子射束能量值。
  3. 根据权利要求1所述的中子捕获治疗系统,其特征在于:所述中子捕获治疗系统产生的带电粒子束的能量通过加速器端电场强度的改变而改变。
  4. 根据权利要求3所述的中子捕获治疗系统,其特征在于:所述真空管或/和中子产生部外设有能够产生电场并且通过产生的电场使带电粒子束在照射至中子产生部前加速或者减速的电场供应装置。
  5. 根据权利要求1所述的中子捕获治疗系统,其特征在于:所述中子捕获治疗系统还具有能够对所述带电粒子束的能量进行调节的射束能谱调节件,当所述射束能谱调节件位于真空管中并且位于所述中子产生部前方时,所述带电粒子束照射至射束能谱调节件进行能量调节后再照射至中子产生部而产生中子射束。
  6. 根据权利要求5所述的中子捕获治疗系统,其特征在于:所述真空管内设有容置部,所述射束能谱调节件收容于所述容置部并且连接有能够使射束能谱调节件运动的驱动机构,当所述驱动机构控制射束能谱调节件运动至中子产生部前方时,所述带电粒子照射至射束能谱调节件后进行能量调节后再照射至中子产生部;当所述驱动机构控制所述射束能谱调节件收容于容置部而不位于中子产生部前方时,所述带电粒子束直接照射于所述中子产生部。
  7. 根据权利要求6所述的中子捕获治疗系统,其特征在于:所述射束能谱调节件具有多个,不同数量的射束能谱调节件对带电粒子束的能量调节作用不同,所述驱动机构驱动每个射束能谱调节件分别运动以对带电粒子束的能量进行调节。
  8. 根据权利要求6所述的中子捕获治疗系统,其特征在于:所述每个射束能谱调节件采用不同的材料制造,不同材料的射束能谱调节件对带电粒子束的能量调节效果不同。
  9. 根据权利要求1所述的中子捕获治疗系统,其特征在于:所述中子产生部连接于一供电装置,通过所述供电装置对所述中子产生部通电,所述带电粒子束的射束能谱在带电粒子照射至通电的中子产生部后发生改变。
  10. 根据权利要求1所述的中子捕获治疗系统,其特征在于:所述中子捕获治疗系统通过改变带电粒子束的射束能谱间接改变中子射束的能谱,进而改变中子捕获治疗系统的中子深度剂量分布。
PCT/CN2017/092702 2016-10-31 2017-07-13 中子捕获治疗系统 WO2018076790A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019541838A JP6831921B2 (ja) 2016-10-31 2017-07-13 中性子捕獲治療システム
EP17864029.8A EP3517172B1 (en) 2016-10-31 2017-07-13 Neutron capture therapy system
US16/373,775 US10773104B2 (en) 2016-10-31 2019-04-03 Neutron capture therapy system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201621154870.5U CN206535011U (zh) 2016-10-31 2016-10-31 中子捕获治疗系统
CN201610930008.7 2016-10-31
CN201621154870.5 2016-10-31
CN201610930008.7A CN107998517B (zh) 2016-10-31 2016-10-31 中子捕获治疗系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/373,775 Continuation US10773104B2 (en) 2016-10-31 2019-04-03 Neutron capture therapy system

Publications (1)

Publication Number Publication Date
WO2018076790A1 true WO2018076790A1 (zh) 2018-05-03

Family

ID=62023195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/092702 WO2018076790A1 (zh) 2016-10-31 2017-07-13 中子捕获治疗系统

Country Status (5)

Country Link
US (1) US10773104B2 (zh)
EP (1) EP3517172B1 (zh)
JP (1) JP6831921B2 (zh)
TW (1) TWI632932B (zh)
WO (1) WO2018076790A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10462893B2 (en) 2017-06-05 2019-10-29 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
US11024437B2 (en) 2015-05-06 2021-06-01 Neutron Therapeutics Inc. Neutron target for boron neutron capture therapy

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3517172B1 (en) * 2016-10-31 2021-04-14 Neuboron Medtech Ltd. Neutron capture therapy system
EP3895760B1 (en) * 2017-08-24 2024-02-28 Neuboron Medtech Ltd. Neutron capture therapy system
CN109496051A (zh) * 2018-12-21 2019-03-19 北京中百源国际科技创新研究有限公司 一种用于增加低中子数量的慢化装置
CN111821580A (zh) * 2019-04-17 2020-10-27 中硼(厦门)医疗器械有限公司 中子捕获治疗系统及用于中子捕获治疗系统的射束整形体
US11517769B2 (en) * 2019-07-10 2022-12-06 Ricoh Company, Ltd. Neutron beam transmission adjusting device comprising a neutron beam transmission unit including a neutron reactant, method for producing neutron beam transmission adjusting device, and neutron beam adjusting method
JP7470859B2 (ja) * 2020-07-20 2024-04-18 中硼(厦▲門▼)医▲療▼器械有限公司 放射線療法システム及びその安全インターロック制御方法
CN114522353A (zh) * 2020-11-23 2022-05-24 南京中硼联康医疗科技有限公司 动物辐照系统及其辐照固定装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047115A (ja) * 2004-08-04 2006-02-16 Mitsubishi Heavy Ind Ltd 中性子発生装置及びターゲット、並びに中性子照射システム
CN102194635A (zh) * 2010-03-18 2011-09-21 上海凯世通半导体有限公司 离子注入系统及方法
CN102971802A (zh) * 2010-06-23 2013-03-13 Gsi亥姆霍兹重离子研究中心有限责任公司 粒子束生成设备
CN104429168A (zh) * 2012-07-13 2015-03-18 株式会社八神制作所 中子产生装置用的靶及其制造方法
CN104470193A (zh) * 2013-09-22 2015-03-25 同方威视技术股份有限公司 控制驻波加速器的方法及其系统
CN205460520U (zh) * 2016-01-08 2016-08-17 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4252607A (en) * 1979-02-05 1981-02-24 The United States Of America As Represented By The United States Department Of Energy Radiation source
FR2679727B1 (fr) * 1991-07-23 1997-01-03 Cgr Mev Accelerateur de protons a l'aide d'une onde progressive a couplage magnetique.
DE102007020599A1 (de) * 2007-05-02 2008-11-06 Siemens Ag Partikeltherapieanlage
EP2263237B1 (en) * 2008-02-27 2017-08-23 Starfire Industries LLC Method and system for in situ depositon and regeneration of high efficiency target materials for long life nuclear reaction devices
DE102009032275A1 (de) * 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Beschleunigeranlage und Verfahren zur Einstellung einer Partikelenergie
US8269197B2 (en) * 2009-07-22 2012-09-18 Intraop Medical Corporation Method and system for electron beam applications
JP5619462B2 (ja) * 2010-04-02 2014-11-05 三菱電機株式会社 治療計画装置及び治療計画装置の治療計画を用いた粒子線治療装置
JP5645159B2 (ja) * 2010-10-08 2014-12-24 独立行政法人放射線医学総合研究所 ビーム測定装置およびその測定方法、ビーム輸送システム
US8541756B1 (en) * 2012-05-08 2013-09-24 Accuray Incorporated Systems and methods for generating X-rays and neutrons using a single linear accelerator
EP3043863B1 (en) * 2013-09-11 2019-12-04 The Board of Trustees of the Leland Stanford Junior University Arrays of accelerating structures and rapid imaging for facilitating rapid radiation therapies
JP6257994B2 (ja) * 2013-10-22 2018-01-10 株式会社東芝 中性子発生装置及び医療用加速器システム
JP6692115B2 (ja) * 2014-02-25 2020-05-13 株式会社日立製作所 ビーム位置監視装置及び荷電粒子ビーム照射システム
PL3032927T3 (pl) * 2014-12-08 2017-07-31 Neuboron Medtech Ltd. Zespół kształtowania wiązki do terapii wychwytu neutronów
JP6565113B2 (ja) * 2015-03-05 2019-08-28 住友重機械工業株式会社 中性子捕捉療法装置
CN205073541U (zh) * 2015-09-28 2016-03-09 南京中硼联康医疗科技有限公司 用于中子捕获治疗系统的射束诊断系统
RU2720707C2 (ru) * 2016-01-08 2020-05-12 Неуборон Медтек Лтд. Элемент для формирования пучка, предназначенный для применения в нейтронозахватной терапии
WO2017162093A1 (zh) * 2016-03-25 2017-09-28 南京中硼联康医疗科技有限公司 硼中子捕获治疗系统及类α-氨基酸三氟化硼化物在制备肿瘤治疗药物中的应用
CN108778420A (zh) * 2016-03-31 2018-11-09 住友重机械工业株式会社 中子捕获治疗法用治疗计划系统
WO2018006550A1 (zh) * 2016-07-04 2018-01-11 南京中硼联康医疗科技有限公司 中子治疗装置
WO2018006551A1 (zh) * 2016-07-04 2018-01-11 南京中硼联康医疗科技有限公司 中子治疗装置
EP3517172B1 (en) * 2016-10-31 2021-04-14 Neuboron Medtech Ltd. Neutron capture therapy system
TWI614042B (zh) * 2016-12-02 2018-02-11 財團法人工業技術研究院 中子束源產生器及其濾屏
JP6742259B2 (ja) * 2017-03-02 2020-08-19 住友重機械工業株式会社 中性子線検出システム、及び中性子線検出システムの設定方法
EP3527261B1 (en) * 2017-03-29 2021-06-16 Neuboron Medtech Ltd. Radiation irradiation system and positioning component for radiation irradiation system
EP3583981B1 (en) * 2017-05-12 2020-12-23 Neuboron Medtech Ltd. Photon emission detection device and boron neutron capture therapy system having same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047115A (ja) * 2004-08-04 2006-02-16 Mitsubishi Heavy Ind Ltd 中性子発生装置及びターゲット、並びに中性子照射システム
CN102194635A (zh) * 2010-03-18 2011-09-21 上海凯世通半导体有限公司 离子注入系统及方法
CN102971802A (zh) * 2010-06-23 2013-03-13 Gsi亥姆霍兹重离子研究中心有限责任公司 粒子束生成设备
CN104429168A (zh) * 2012-07-13 2015-03-18 株式会社八神制作所 中子产生装置用的靶及其制造方法
CN104470193A (zh) * 2013-09-22 2015-03-25 同方威视技术股份有限公司 控制驻波加速器的方法及其系统
CN205460520U (zh) * 2016-01-08 2016-08-17 南京中硼联康医疗科技有限公司 用于中子捕获治疗的射束整形体

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024437B2 (en) 2015-05-06 2021-06-01 Neutron Therapeutics Inc. Neutron target for boron neutron capture therapy
US10462893B2 (en) 2017-06-05 2019-10-29 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target
US11553584B2 (en) 2017-06-05 2023-01-10 Neutron Therapeutics, Inc. Method and system for surface modification of substrate for ion beam target

Also Published As

Publication number Publication date
TW201817457A (zh) 2018-05-16
EP3517172B1 (en) 2021-04-14
EP3517172A4 (en) 2019-10-09
JP6831921B2 (ja) 2021-02-17
US20190224499A1 (en) 2019-07-25
EP3517172A1 (en) 2019-07-31
US10773104B2 (en) 2020-09-15
JP2019531856A (ja) 2019-11-07
TWI632932B (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
WO2018076790A1 (zh) 中子捕获治疗系统
US10603516B2 (en) Neutron source for neutron capture therapy
TWI581821B (zh) 用於中子捕獲治療的射束整形體
CN108325092B (zh) 用于中子捕获治疗的射束整形体
RU2707651C1 (ru) Аппарат для нейтронной терапии
CN206535011U (zh) 中子捕获治疗系统
WO2018223487A1 (zh) 用于中子捕获治疗的射束整形体
WO2018006550A1 (zh) 中子治疗装置
EP3026673B1 (en) Neutron regulation apparatus and neutron irradiation apparatus
EP3795214B1 (en) Neutron capture therapy system and placement table
CN107998517B (zh) 中子捕获治疗系统
CN107569779B (zh) 中子治疗装置
Alonso Review of ion beam therapy: present and future
CN108236760B (zh) 中子捕获治疗系统
TWM549081U (zh) 中子治療裝置
CN107569778B (zh) 中子治疗装置
Ghal-Eh et al. A variable-geometry beam-shaping assembly for accelerator-based BNCT
Gu et al. Advance Particle Radiotherapy Technology–BNCT & PT from Ray System Corporation
Alonso Technical design of hadron therapy facilities
ALONSO Lawrence Berkeley Laboratory, MS 64-121, 1 Cyclotron Road Berkeley, CA 94720, USA Abstract Radiation therapy with hadron beams now has a 40-year track record at many accelerator laboratories around the world, essentially all of
ALONSO TECHNICAL DESIGN OF HADRON TIIERAPY FACH.. ITIES
Chu Radiation treatment using hadrons (Negative Pions, Neutrons, Proton, and Heavier Ions)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17864029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017864029

Country of ref document: EP

Effective date: 20190423