WO2018076349A1 - 一种材质检测方法、设备和存储介质 - Google Patents

一种材质检测方法、设备和存储介质 Download PDF

Info

Publication number
WO2018076349A1
WO2018076349A1 PCT/CN2016/104046 CN2016104046W WO2018076349A1 WO 2018076349 A1 WO2018076349 A1 WO 2018076349A1 CN 2016104046 W CN2016104046 W CN 2016104046W WO 2018076349 A1 WO2018076349 A1 WO 2018076349A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance data
information
material information
capacitance
processor
Prior art date
Application number
PCT/CN2016/104046
Other languages
English (en)
French (fr)
Inventor
康存军
许建军
张超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680055788.3A priority Critical patent/CN108271421A/zh
Priority to PCT/CN2016/104046 priority patent/WO2018076349A1/zh
Publication of WO2018076349A1 publication Critical patent/WO2018076349A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor

Definitions

  • the present invention relates to the field of smart device technologies, and in particular, to a material detecting method, device, and storage medium.
  • Embodiments of the present invention provide a material detecting method, device, and storage medium, which can implement materials corresponding to the detecting device.
  • a specific embodiment of the present invention provides a material detecting method.
  • the method is applied to a device having a capacitive sensor.
  • the method includes the device acquiring first capacitance data, the first capacitance data being capacitance data detected by the capacitance sensor. Determining first material information that matches the first capacitance data.
  • the identified material allows the device to adjust the working state of the device according to different materials.
  • the method further includes adjusting configuration parameters of the device based on the first material information. Adjust the device to determine the material to make the device work In a more appropriate state.
  • the radiation pattern of the antenna of the device is adjusted, and/or the radio frequency transmission power of the device is adjusted.
  • the method further includes outputting the first material information in a text or sound manner.
  • the result of the judgment is outputted by text or sound, so that the user can conveniently obtain the material that is currently placed.
  • the method further includes acquiring the first capacitance data when it is determined that the device is in a stationary state. Capacitance data is acquired when the device is stationary and the material on which the device is placed is determined, thereby enabling the device to be more power efficient.
  • the determining the first material information that matches the first capacitance data includes: determining, according to a preset correspondence between the capacitance data and the material, the first matching with the first capacitance data Material information. By presetting the correspondence between materials and capacitors in the device, the device can determine the material based on the acquired capacitance.
  • the method further includes: when the first material information that matches the first capacitance data does not exist in the correspondence between the preset capacitance data and the material, outputting the first prompt information
  • the first prompt information is used to prompt the user to input material information of the surface of the object currently placed by the device. Receiving the first prompt information input by the user. Obtaining material information of the surface of the object currently placed by the device according to the first prompt information. Establishing and storing a correspondence between the first capacitance data and material information of an object surface currently placed by the device. By adding a new capacitor to the material, the device can identify more materials according to the actual needs of the user.
  • the method further includes obtaining second information, the second information including information that the device is currently capable of acquiring.
  • the second information includes, but is not limited to, at least one or more of acquiring ambient sound, time information, and geographic location information. Adjusting a state of the device according to the second information and the first material information. For example, when determining that the first material information is woven The time information in the second information is determined to be 11:00 pm, the geographic location information determines the location at home, adjusts the configuration parameters of the device, instructs the device to enter a low power mode, mute, lowers the screen brightness, etc.; Different information determines the current state of the device, making the adjustment of the device more intelligent.
  • the device when the first material information is determined to be a human hand or a human skin, the device is automatically illuminated or automatically unlocked or activated.
  • a specific embodiment of the present invention provides a material detecting device, including a receiving unit and a processing unit.
  • the receiving unit is configured to acquire first capacitance data, where the first capacitance data is capacitance data detected by the capacitance sensor.
  • a processing unit configured to determine first material information that matches the first capacitance data.
  • the identified material allows the device to adjust the working state of the device according to different materials.
  • a specific embodiment of the present invention provides a material detecting device, including a capacitance sensor, a memory, and a processor, a capacitance sensor for detecting capacitance data, and a memory for storing computer executable program code, where the program code includes And executing, when the processor executes the instruction, acquiring capacitance data detected by the capacitance sensor, and determining first material information that matches the first capacitance data.
  • the processor invokes instructions stored in the memory to implement the solution in the method design of the first aspect above.
  • a specific embodiment of the present invention provides a storage medium, which is a non-transitory computer readable storage medium, where the non-volatile computer readable storage medium stores at least one program, each of which is The program includes the computer used in the method design of the first aspect above.
  • Software instructions that, when executed by an electronic device having a processor, a transceiver, and an output device, cause the electronic device to perform each of the possible audio data processing methods of the first aspect and the first aspect described above.
  • Embodiments of the present invention provide a material detecting method, device, and storage medium. By using the method described in the present invention, it is possible to detect the material corresponding to the device. Therefore, when the device is in an environment of different materials, the state of the device can be adjusted to make the device more intelligent.
  • FIG. 1 is a schematic diagram of a relative position of a material detecting device and an object according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a material detecting device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a capacitor assembly according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a material detecting method according to an embodiment of the present invention.
  • FIG. 5 is a material detecting device according to an embodiment of the present invention.
  • FIG. 6 is a material detecting device according to an embodiment of the present invention.
  • a material detecting device provided by an embodiment of the invention.
  • a capacitive sensor and a processor are included.
  • the processor acquires capacitance data for the electrode plates in the capacitive sensor.
  • the capacitance data of the electrode plates included in the capacitance sensor changes.
  • the processor adjusts configuration parameters of the device according to the acquired capacitance data, so that the device works in a more suitable working state.
  • FIG. 2 is a schematic structural diagram of a material detecting device according to an embodiment of the present invention.
  • the capacitive sensor includes a processing circuit and an electrode plate 204.
  • the processing circuit may be disposed on a circuit board 203 of the device, and the electrode plate 204 is fixedly disposed on an upper casing of the device Between 202 and lower housing 201, and support is provided by middle frame 205.
  • the processing circuit is connected to the electrode plate 204, and the electrode plate 204 is powered by the processing circuit and the charging and discharging time of the electrode plate 204 is obtained.
  • the processing circuit determines the capacitance data of the electrode plate 204 based on the charge and discharge time of the electrode plate 204.
  • the capacitance data of the electrode plate detected by the processing circuit of the capacitive sensor is different .
  • the processing circuit determines that the different capacitance data of the electrode plates are determined according to different times of charging and discharging of the obtained electrode plates.
  • the device further includes an association relationship between materials corresponding to different capacitance data. Users can set the device status changes when the device is in different materials. Therefore, when the device is placed on a surface of a material and the corresponding capacitance data is obtained, the current state of the device is adjusted according to the correspondence between the capacitance data and the material and the state of the device when the material is different.
  • the electrode plate can be a capacitive component composed of a plurality of capacitors.
  • FIG. 3 is a schematic structural diagram of a capacitor assembly according to an embodiment of the present invention. As shown in Figure 3, the device is disposed on a surface of the first material.
  • the electrode plate included in the device is composed of a first capacitor C1, a second capacitor C2, and a third capacitor C3.
  • C2 is a capacitor composed of an electrode plate in a capacitance sensor
  • C1 and C3 are equivalent capacitances.
  • the first capacitor C1 is an equivalent capacitance of the negative electrode plate to the ground.
  • the equivalent capacitance data of the first capacitor C1 is a fixed value.
  • the third capacitor C3 is an equivalent capacitance of the positive electrode plate to the ground. When the device is placed on a different material surface, the capacitance of the third capacitor C3 will change.
  • the capacitance of the third capacitor C3 is different.
  • the capacitance data C of the electrode plate of the capacitive sensor can be determined by the following formula 1:
  • C is used to indicate the capacitance of the electrode plates in the capacitive sensor. Since the capacitance of the third capacitor C3 is different when the device is placed on a different material surface, when the device is placed in different materials On the surface, the capacitance data C of the electrode plates of the capacitance sensor is different.
  • the apparatus in which the electrode plates are disposed is disposed of a material only as a specific embodiment of the present invention.
  • the device in which the electrode plate is disposed may be disposed on a material, and the device provided with the electrode plate may be disposed on the material or in contact with or around the material.
  • the capacitive sensor in the device may be provided with a plurality of electrode plates.
  • the processing circuit includes a plurality of channels, each of which is connected to at least one of the electrode plates. By acquiring the capacitance data of the multiple channels, the acquired capacitance data of the plurality of channels is processed, and according to the processing result, it is determined which material the device is set on. By using multiple electrode plates, the capacitance data detected by the capacitive sensor is more accurate. Make the device more accurate in identifying different materials.
  • the apparatus includes first to eighth electrode plates.
  • the device further includes a first processing circuit and a second processing circuit, the first processing circuit and the second processing circuit respectively comprising four channels. The first to fourth electrode plates are respectively connected to the four channels of the first processing circuit, and the fifth to eighth electrode plates are respectively connected to the four channels of the second processing circuit.
  • the processor further needs to perform clustering calculation on the acquired plurality of capacitance data to generate a data model of the material.
  • the provision of a plurality of electrode plates in the device is only a specific method adopted by the present invention in order to improve the accuracy of material detection.
  • the device in the present invention can employ any number of electrode plates according to actual needs.
  • the processing circuit provided in the device should have no less than the number of electrode plates.
  • the device is a cell phone that includes eight electrode plates.
  • the eight electrode plates may be respectively disposed on two sides of the middle frame of the mobile phone (specifically, as shown in FIG. 2).
  • the processing circuit is disposed on a SOC (System on Chip) of the mobile phone, and the electrode board and the processing circuit are connected by a Flexible Printed Circuit (FPC).
  • SOC System on Chip
  • the device further includes a storage standard material model, wherein the standard material model includes at least one The correspondence between the group capacitance data and the material.
  • the capacitance data can be interval data. For example, when the capacitance data falls in the interval A, the material that the current device contacts is the first material.
  • Capacitance data Material A First material B Second material C Third material
  • the processor determines the capacitance data corresponding to the acquired capacitance data from the standard material model.
  • determining the capacitance data that matches the acquired capacitance data is determining a capacitance data that is the same as the acquired capacitance data from the capacitance data included in the standard material model.
  • the material corresponding to the capacitor data is the material currently placed by the device.
  • the device when there is no capacitance data corresponding to the capacitance data in the standard material model of the device, the device may further add new capacitance data and corresponding materials to the standard material model.
  • the device In an example where capacitive data and corresponding materials are added to the device, the device is at rest and the device is placed on the first material that needs to be added.
  • the first prompt information is output, and the first prompt information is used to prompt the user to input material information of the surface of the object currently placed by the device; and receive the first prompt information input by the user; Obtaining, according to the first prompt information, material information of an object surface currently placed by the device; establishing and storing the first capacitance data and The correspondence between the material information of the surface of the object currently placed by the device.
  • the first prompt information is outputted in a text manner in the display interface, or the first prompt information is outputted in a voice manner; and the first prompt information input by the user may be received by the user by using a touch input or a key input manner.
  • the device can be placed on the first material multiple times and the capacitance data acquired each time is stored. Calculating capacitance data of the material according to the stored plurality of capacitance data. The user inputs a material to the calculated capacitance data so that the capacitance data corresponds to the material. Store the capacitance data and the corresponding material in the standard material model.
  • the capacitive sensor of the device includes a plurality of electrode plates, each of which is coupled to a channel in the processing circuit.
  • the processing circuit detects the capacitance data in each channel, performs cluster calculation on the plurality of capacitance data, determines capacitance data of the material, and forms a correspondence between the capacitance data and the material by inputting a material corresponding to the capacitance data by a user. .
  • the capacitance data and the corresponding material are stored.
  • the clustering calculation for the plurality of capacitance data may be performed by a K-means clustering operation or other clustering operations.
  • the specific algorithm of the obtained capacitance data is not limited in the present invention, but the algorithm used in the preset data is the same as the algorithm used in the newly detected data.
  • the device may further include a motion sensor for sensing a motion state of the device to generate a sensing signal.
  • the processor adjusts configuration parameters of the device according to the capacitance data acquired by the capacitance sensor and the sensing signal acquired by the motion sensor.
  • the motion sensor may be any sensor such as a gravity sensor or a gyroscope.
  • a gravity sensor or a gyroscope.
  • the motion sensor is uniformly described.
  • Sensing signals such as acceleration and angular acceleration parameters may be extracted by an accelerometer and a gyro module in the motion sensor, and the sensing signal may characterize the magnitude of motion of the device.
  • the processor receives the sensing signal acquired by the motion sensor, and determines the current state of the device according to the sensing signal acquired by the motion sensor.
  • the processor determines the current motion amplitude of the device according to the sensing signal acquired by the motion sensor.
  • the Gravity-sensor and/or gyroscope extracts sensing signals such as acceleration and angular acceleration parameters.
  • the sensing signal determines that the device is in a stationary or moving state.
  • the capacitive sensor is instructed to acquire capacitance data.
  • the capacitive sensor is instructed to enter a sleep mode.
  • the capacitive sensor is in a normally open state and the capacitive sensor can periodically detect capacitance data.
  • the processor acquires capacitance data acquired by the capacitance sensor.
  • the capacitive sensor is in a sleep state, and when it is determined that the device is at a standstill, the processor instructs the capacitive sensor to acquire capacitance data and communicate the acquired capacitance data to the processor.
  • the state of the current device may be determined according to the material determined by the processor and corresponding to the current device, and then the configuration parameters of the device may be adjusted.
  • the status of the current device may be determined according to the multiple information. Adjust the configuration parameters of the device according to the current state of the device.
  • the material currently determined by the processor is only one of a variety of information.
  • the plurality of pieces of information may be current voice information, time, geographical location information, or any other information. The present invention does not limit the various information.
  • the state of the current device is determined based on various information. For example, when the motion sensor acquires a state from a motion state to a stationary state. Re-start the capacitive sensor and make sure the device is currently placed on the fabric.
  • the device recognizes the ambient sound through the MIC (microphone), and imports current time information and GPS information. For example, the time information is 11:00 pm, and the current position is determined to be at home according to GPS (Global Position System) information.
  • the device judges the current time, location, current device status, and the material of the surface of the object currently placed on the device.
  • the current master may be sleeping and the device is placed on the pillow. According to the above judgment result, the configuration parameters of the device are adjusted, and the device is instructed to enter a low power mode, mute, and lower the screen brightness.
  • the processor after determining the corresponding material of the device, the processor prompts the user to contact the material of the object currently in contact with the device through a text or voice prompt.
  • the capacitive sensor acquires capacitance data of a current motion state. If it is determined according to the capacitance data to determine whether the material corresponding to the device is a human hand or a human skin, the device automatically lights up or automatically unlocks or activates the voice assistant through the processor.
  • the device determines the material of the current device
  • the device when the device is a mobile phone, it may also be determined whether the mobile phone is provided with a protective cover.
  • the motion sensor indicates that the material recognition processing module is activated when it is stationary and moving, and the obtained surface material information is consistent, it can be concluded that the machine is installed with a protective cover. You can temporarily turn off the surface material recognition system or increase the detection interval to reduce power consumption.
  • the current state of the device is determined according to the material corresponding to the current device.
  • a strategy for antenna performance compensation can be made.
  • the antenna performance compensation strategy may be: adjusting the radiation pattern of the antenna, allowing the radiation sphere to leave the metal as much as possible, adjusting the radio frequency transmission power, increasing the antenna performance, etc., or several schemes may be performed simultaneously.
  • a radio frequency amplifier circuit is used to amplify the transmitted radio frequency signal.
  • the RF amplifier circuit can be implemented using one or more gain stages in one or more integrated circuits.
  • the signal is amplified by a radio frequency power amplifier, and there may be multiple power amplifiers, such as amplifiers, each associated with a different communication band or group of communication bands.
  • a power amplifier circuit is used to amplify the RF signal prior to transmission through the antenna.
  • the gain of the power amplifier can be controlled by adjusting the magnitude of the analog control voltage or the analog supply voltage.
  • the gain of the power amplifier can also be adjusted by turning some of the gain stages in the power amplifier on or off.
  • the digital control signal can be processed by the power amplifier and used to control the gain setting Set. Alternatively, a combination of these methods or other suitable power amplifier gain adjustment techniques can also be used.
  • the gain of the power amplifier can be adjusted to ensure that the RF signal being transmitted through the antenna is strong enough to achieve satisfactory wireless communication.
  • the model data acquired by the device matches one of the model data included in the standard material model included in the device
  • the model data is further included according to the acquired capacitance data.
  • the capacitance data is modified. In order to make the capacitance data included in the model data closer to the materials commonly used in the user's life, the judgment of the user's use scene is more accurate.
  • the minimum value of the first model data included in the device is 1156, and the maximum value is 1233.
  • the minimum value of the first capacitance data acquired by the device is 1203, and the maximum value is 1230.
  • the device determines that the first model data corresponds to the acquired first capacitance data, and modifies the first model data to a minimum value of 1203 and a maximum value of 1230.
  • FIG. 4 is a schematic diagram of a material detecting method according to an embodiment of the present invention. As shown in FIG. 4, the method specifically includes:
  • the device acquires first capacitance data, where the first capacitance data is capacitance data detected by the capacitance sensor.
  • S402 Determine first material information that matches the first capacitance data.
  • An apparatus of an embodiment of the invention Includes capacitive sensors, memory, and processors. a capacitive sensor, a memory and a processor coupledly coupled; a capacitive sensor for detecting capacitive data; a memory for storing computer executable program code, the program code comprising instructions; and a processor executing instructions stored in the memory to implement the method of the present invention
  • the solution of the embodiment is, for example, acquiring capacitance data detected by the capacitance sensor, determining first material information that matches the first capacitance data, and adjusting configuration parameters of the device according to the first material information.
  • the capacitive sensor is a self-capacitance capacitive sensor.
  • the capacitive sensor includes a processing circuit And electrode plates. When the electrode plates are opposite to different materials, the capacitance data of the electrode plates are different, and the processing circuit detects different capacitance data of the electrode plates. The processing circuit acquires different capacitance data of the electrode plates to obtain the time for charging and discharging the electrode plates.
  • the processor determines capacitance data of the capacitance sensor according to an electrode plate charging and discharging time.
  • FIG. 5 is a material detecting device according to an embodiment of the present invention, and the material detecting device can implement the functions in the foregoing method embodiments. Therefore, the advantageous effects provided in the above method embodiments can also be achieved.
  • the material detecting device specifically includes:
  • the S501 receiving unit is configured to acquire first capacitance data, where the first capacitance data is capacitance data detected by the capacitance sensor.
  • the S502 processing unit is configured to determine first material information that matches the first capacitance data.
  • the processing unit 502 determines the first material information that matches the first capacitance data, and determines the first material information that matches the first capacitance data according to the correspondence between the preset capacitance data and the material.
  • the first prompt information is output.
  • the first prompt information is used to prompt the user to input material information of the surface of the object currently placed by the device; and receive the first prompt information input by the user.
  • the implementation manner of outputting the first prompt information may output the first prompt information in a text form, or output the first prompt information in a voice form.
  • the first prompt information input by the user may be received text information input by the user through a touch mode or a button mode, or the audio information input by the user may be received through a microphone.
  • the processing unit 501 determines that the device is in a static state
  • the receiving unit 501 acquires the first capacitance data.
  • the device also includes an output unit, The output unit is configured to output the first material information in a text or sound manner.
  • the processing unit 502 after determining the first material information, the processing unit 502 further adjusts configuration parameters of the device according to the first material information.
  • the processing unit 502 when the processing unit 502 determines that the first material information is metal, the processing unit 502 also adjusts a radiation pattern of the antenna of the device, and/or adjusts The radio frequency transmit power of the device.
  • the principle and the beneficial effects of the device can be referred to the foregoing method embodiments and the beneficial effects. Therefore, the implementation of the device can be referred to the implementation manner of the foregoing method, and the repeated description is not repeated.
  • FIG. 6 is a material detecting device according to an embodiment of the present invention.
  • the material detecting device includes a processor 601, a memory 602, a communication interface 603, a bus 604, and a capacitance sensor.
  • the capacitive sensor, the processor 601, the memory 602, and the communication interface 603 are coupled and connected to each other through the bus 604.
  • the processor 601 can be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for executing related programs.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 602 can be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • Memory 602 can store operating systems and other applications.
  • the program code for implementing any optional technical solution provided by the foregoing method embodiment of the present invention is saved in the memory 602 and executed by the processor 601. .
  • Communication interface 603 is used to communicate with other switches or control control devices.
  • Bus 604 can include a path for communicating information between various components of the device, such as processor 601, memory 602, capacitive sensor, and communication interface 603.
  • Capacitive sensor for detecting capacitance data.
  • the processor 601 executes the instructions stored in the memory 602, the method of the method 401 and the step 402 in the method embodiment of the present invention are performed.
  • the step 401 and the step 402 in the method embodiment of the present invention are performed.
  • Corresponding descriptions and beneficial effects will not be repeated here.
  • the device may further include a motion sensor.
  • the motion sensor is for sensing a motion state of the device to generate a sensing signal.
  • the processor adjusts configuration parameters of the device according to the capacitance data acquired by the capacitance sensor and the sensing signal acquired by the sensor.
  • the motion sensor may be any sensor such as a gravity sensor or a gyroscope. Sensing signals such as acceleration and angular acceleration parameters may be extracted by an accelerometer and a gyro module in the motion sensor, and the sensing signal may characterize the magnitude of motion of the device. For the convenience of the description, in the specific embodiment of the present invention, the motion sensor is uniformly described.
  • the processor receives the sensing signal acquired by the motion sensor, and determines the current state of the device according to the sensing signal acquired by the motion sensor.
  • the processor determines the current motion amplitude of the device based on the data detected by the motion sensor.
  • the Gravity-sensor and/or gyroscope extracts sensing signals such as acceleration and angular acceleration parameters.
  • the sensing signal determines that the device is in a stationary or moving state.
  • the capacitive sensor is instructed to acquire capacitance data.
  • the capacitive sensor is instructed to enter a sleep mode.
  • the device may further include a microphone and/or a speaker for picking up ambient sound or receiving audio input information input by the user, and the processor may be based on ambient sound, capacitance data, and/or Or the sensing signal comprehensively determines the current state of the device; the speaker is configured to prompt the user to contact the material of the object currently in contact with the device by using a voice prompt manner after the processor determines the corresponding material of the device.
  • An embodiment of the present invention further provides a non-transitory computer readable storage medium storing at least one program, each of the programs including an instruction, when the instruction is processed The device is executed when the device is executed The material detecting method in the above method embodiment is performed.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software module can be placed in random access memory (RAM), memory, read only memory (ROM), electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or technical field. Any other form of storage medium known.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Telephone Function (AREA)

Abstract

一种材质检测方法、设备和存储介质,在所述材质检测方法中,设备获取第一电容数据,所述第一电容数据为电容传感器检测的电容数据(401),确定与所述第一电容数据匹配的第一材质信息(402)。通过采用所述的方法,能够检测与设备相对应的材质。从而使设备处于不同材质的环境中时,调整设备的配置参数使设备更智能化。

Description

一种材质检测方法、设备和存储介质 技术领域
本发明涉及智能设备技术领域,尤其涉及一种材质检测方法、设备和存储介质。
背景技术
智能设备如何主动的感知外界的环境,通过不同环境的变化,改变智能设备的状态,是智能设备的一个突破点之一。目前大量传感器的使用和语音功能等信息收集设备,部分的实现了智能设备状态变化的功能。在智能设备根据所处的环境表面材质的识别对于智能设备自动调整所处的状态有着积极意义。通过对智能设备放置表面的材质的检测和识别,可以实现基于使用场景识别的多种应用。而现有技术中,还没有基于智能设备所处环境的材质调整智能设备本身状态的产品或技术出现。
发明内容
本发明实施例提供了一种材质检测方法、设备和存储介质,可以实现检测设备相对应的材质。
一方面,本发明具体实施例提供一种材质检测方法。所述方法应用于具有电容传感器的设备。所述方法包括设备获取第一电容数据,所述第一电容数据为所述电容传感器检测的电容数据。确定与所述第一电容数据匹配的第一材质信息。通过识别的材质,使设备根据不同的材质调节设备的工作状态。
在一种可能的设计中,所述方法还包括根据所述第一材质信息调整所述设备的配置参数。通过确定的材质,对设备进行调节,使设备能够工作 在更加适宜的状态。
在一种可能的设计中,当所述第一材质信息为金属时,调整所述设备的天线的辐射方向图,和/或调整所述设备的射频发射功率。通过确定被放置在金属上时调节设备的天线,避免放置在金属上时对设备信号的影响。
在一种可能的设计中,所述方法还包括,以文本或声音方式输出所述第一材质信息。通过文本或声音的方式输出判断的结果,使使用者方便的获取当被当前被放置的材质。
在一种可能的设计中,所述方法还包括,当确定所述设备处于静止状态时,获取所述第一电容数据。当设备静止时获取电容数据并确定设备被放置的材质,从而使设备能够更加省电。
在一种可能的设计中,所述确定与所述第一电容数据匹配的第一材质信息包括,根据预设的电容数据与材质的对应关系,确定与所述第一电容数据匹配的第一材质信息。通过在设备中预设材质与电容的对应关系,使设备能够根据获取的电容判断材质。
在一种可能的设计中,所述方法还包括,当所述预设的电容数据与材质的对应关系中不存在与所述第一电容数据匹配的第一材质信息时,输出第一提示信息,所述第一提示信息用于提示用户输入所述设备当前所放置的物体表面的材质信息。接收用户输入的第一提示信息。根据所述第一提示信息获取所述设备当前所放置的物体表面的材质信息。建立并存储所述第一电容数据与所述设备当前所放置的物体表面的材质信息的对应关系。通过向设备中增加新的电容与材质的对应关系,使设备能根据使用者的实际需要,识别更多的材质。
在一个可能的设计中,所述方法还包括获取第二信息,所述第二信息包括所述设备当前能够获取的信息。所述第二信息包括但不限于获取环境音、时间信息、地理位置信息中的至少一种或多种。根据所述第二信息和第一材质信息调整所述设备的状态。例如,当确定所述第一材质信息为织 物,通过所述第二信息中的时间信息确定为晚上11点,地理位置信息确定位置在家,调节设备的配置参数,指示设备进入低功耗模式、静音、调低屏幕亮度等;通过结合多种不同的信息,确定所述设备当前的状态,使所述设备的调节更加智能。
在一个可能的设计中,确定所述第一材质信息为人手或人体皮肤时,使所述设备自动亮屏或自动解锁或启动语音助手。
第二方面,本发明具体实施例提供了一种材质检测设备,包括接收单元和处理单元。所述接收单元,用于获取第一电容数据,所述第一电容数据为所述电容传感器检测的电容数据。处理单元,用于确定与所述第一电容数据匹配的第一材质信息。通过识别的材质,使设备根据不同的材质调节设备的工作状态。基于同一发明构思,由于该设备解决问题的原理以及有益效果可以参见上述第一方面和第一方面的各可能的方法实施方式以及所带来的有益效果,因此该设备的实施可以参见上述第一方面和第一方面的各可能的方法的实施方式,重复之处不再赘述。
第三方面,本发明具体实施例提供一种材质检测设备,包括电容传感器、存储器以及处理器;电容传感器,用于检测电容数据;存储器,用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,获取所述电容传感器检测的电容数据,确定与所述第一电容数据匹配的第一材质信息。所述处理器调用存储在所述存储器中的指令以实现上述第一方面的方法设计中的方案,由于该设备解决问题的实施方式以及有益效果可以参见上述第一方面和第一方面的各可能的方法的实施方式以及有益效果,因此该设备的实施可以参见上述第一方面和第一方面的各可能的方法的实施,重复之处不再赘述。
第四方面,本发明具体实施例提供一种存储介质,所述存储介质为非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有至少一个程序,每个所述程序包括上述第一方面方法设计方案所涉及所用的计算机 软件指令,所述指令当被具有处理器、收发器和输出设备的电子设备执行时使所述电子设备执行上述第一方面和第一方面的各可能的音频数据处理方法。本发明实施例提供了一种材质检测方法、设备和存储介质。通过采用本发明中所述的方法,能够检测与设备相对应的材质。从而使设备处于不同材质的环境中时,能够对设备的状态进行调整,使设备的使用更加的智能。
附图说明
图1为本发明具体实施例提供的一种材质检测设备与物体相对位置示意图;
图2为本发明具体实施例提供的一种材质检测设备结构示意图;
图3所示为本发明具体实施例提供的一种电容组件结构示意图;
图4为本发明具体实施例提供的一种材质检测方法示意图;
图5为本发明具体实施例提供的一种材质检测设备;
图6为本发明实施例提供的一种材质检测设备。
具体实施方式
下面通过附图和实施例,对本发明实施例的技术方案做进一步的详细描述。
本发明实施例提供的一种材质检测设备。如图1所示,包括电容传感器和处理器。在本发明的具体实施例中,处理器获取电容传感器中电极板的电容数据。当设备具有与物体接触的表面A面时,所述电容传感器中包括的电极板的电容数据发生变化。所述处理器根据获取的电容数据调整设备的配置参数,使设备工作在更加适宜的工作状态。
图2为本发明具体实施例提供的一种材质检测设备的结构示意图。如图2所示,所述电容传感器包括处理电路和电极板204。所述处理电路可以设置在设备的电路板203上,所述电极板204固定设置在设备的上壳体 202和下壳体201之间,并通过中框205提供支撑。所述处理电路和电极板204连接,通过所述处理电路对所述电极板204供电并获取电极板204的充放电时间。所述处理电路根据电极板204的充放电时间来确定电极板204的电容数据。
设备放置在不同材质表面时,电容传感器的处理电路所检测到电极板的电容数据不同所述处理电路判断电极板的不同电容数据是根据获取的电极板不同的充放电的时间来确定。所述设备还包括存储不同的电容数据所对应的材质的关联关系。用户可以设置设备处于不同材质时,设备状态的变化。于是,当设备放置在一种材质表面并获取相应的电容数据后,根据电容数据与材质的对应关系和不同材质时设备的状态来调整设备当前的状态。
在一个例子中,所述电极板可以是多个电容组成的电容组件。图3所示为本发明具体实施例提供的一种电容组件结构示意图。如图3所示,所述设备设置在第一材质表面。设备中包括的电极板是通过第一电容C1、第二电容C2和第三电容C3组成。其中,C2是由电容传感器中的电极板构成的电容,C1和C3为等效电容。所述第一电容C1是电极板负极到大地的等效电容。当设备所处的状态稳定,第一电容C1的等效电容数据为固定值。所述第三电容C3是电极板正极到大地的等效电容。当所述设备被放置在不同的材质表面时,第三电容C3的容值将发生改变。
例如,当设备放置在金属的材质上或当设备放置在木质的材质上时,第三电容C3的容值不同。
具体的,由于第一电容C1、第二电容C2和第三电容C3相互并联,所以电容传感器的电极板的电容数据C可以通过以下公式一确定:
C=C1+C2+C3                 公式一
其中,C用于表示电容传感器中电极板的电容。由于当设备放置在不同的材质表面时,第三电容C3的容值不同,因此,当设备放置在不同材质 表面时,电容传感器的电极板的电容数据C不同。
在本发明的具体实施例中,设置了电极板的设备被设置在一种材质上仅为本发明的一种具体实施例。所述设置了电极板的设备被设置在一种材质上也可以是,设置了电极板的设备设置在该材质上或与该材质相接触或周围存在该材质。
所述设备中的电容传感器可以设置多个电极板。所述处理电路上包括多个通道,每个通道分别至少与一个电极板连接。通过获取多个通道的电容数据,对所获取到的多个通道的电容数据进行处理,根据处理结果确定设备被设置在哪种材质上。通过采用多个电极板,使电容传感器检测的电容数据更加的精确。使设备对不同材质的识别更加的准确。例如,所述设备中包括第一至第八电极板。所述设备中还包括第一处理电路和第二处理电路,所述第一处理电路和第二处理电路分别包括四个通道。其中,第一至第四电极板分别与第一处理电路的四个通道连接,第五至第八电极板分别与第二处理电路的四个通道连接。
在电容传感器中包括多个电极板的实施例中,处理器还需要对获取的多个电容数据采用聚类计算,产生该材质的数据模型。在本发明的具体实施例中,设备中设置多个电极板仅为本发明为了提高材质检测的精度而采用的具体办法。本发明中的设备可以根据实际需要采用任意数量的电极板。相对应任意数量的电极板,设备中处理电路提供的通道应该不少于电极板的数量。
在一个例子中,所述设备为手机,所述手机中包括八个电极板。所述八个电极板可以分别设置在手机中框的两侧(具体可以如图2所示为例)。所述处理电路设置在所述手机的SOC(System on Chip,系统级芯片)上,所述电极板与处理电路通过柔性电路板(Flexible Printed Circuit,FPC)连接。
所述设备中还包括存储标准材质模型,所述标准材质模型包括至少一 组电容数据与材质的对应关系。如表一所示,电容数据可以为区间数据。例如,当电容数据落在区间A时,代表当前设备所接触的物体材质为第一材质。
电容数据 材质
A 第一材质
B 第二材质
C 第三材质
表一
处理器从标准材质模型中确定与所获取的电容数据对应的电容数据。可选的,确定与获取的电容数据相匹配的电容数据是,从标准材质模型中包括的电容数据中确定一个与获取的电容数据相同的电容数据。或确定一个标准材质模型中包括的电容数据的区间范围包括了获取的电容数据。在确定了一个电容数据后,该电容数据所对应的材质为设备当前被放置的材质。
在本发明的具体实施例中,当所述设备的标准材质模型中没有与电容数据相对应的电容数据时,所述设备还可以增加新的电容数据和相对应的材质至标准材质模型。
在一个向设备中增加电容数据和相对应的材质的例子中,所述设备处于静止状态并且将设备放置在需要增加的第一材质上。
当所述预设的电容数据与材质的对应关系中没有与所述第一电容数据匹配的第一材质信息,或当根据所述预设的电容数据与材质的对应关系无法确定与所述第一电容数据匹配的第一材质信息时,输出第一提示信息,所述第一提示信息用于提示用户输入所述设备当前所放置的物体表面的材质信息;接收用户输入的第一提示信息;根据所述第一提示信息获取所述设备当前所放置的物体表面的材质信息;建立并存储所述第一电容数据与 所述设备当前所放置的物体表面的材质信息的对应关系。
作为一种实施方式,在显示界面中以文本方式输出第一提示信息,或以声音方式输出第一提示信息;接收用户输入的第一提示信息的方式可以是接收用户以触摸输入或按键输入方式输入的第一提示信息,或以音频输入方式输入的第一提示信息。
在本发明的具体实施例中,可以多次将设备放置在第一材质上,并对每次获取的电容数据进行存储。根据存储的多个电容数据,计算所述材质的电容数据。通过用户对计算的电容数据输入一种材质,使电容数据和材质相对应。将电容数据和相对应的材质存储到标准材质模型中。
在一个例子中,所述设备的电容传感器包括多个电极板,所述每个电极板与处理电路中的一个通道连接。处理电路检测每个通道中的电容数据,对所述多个电容数据采用聚类计算,确定所述材质的电容数据,通过用户输入所述电容数据对应的材质,形成电容数据与材质的对应关系。将所述电容数据和相对应的材质进行存储。
在一个例子中,所述对多个电容数据采用聚类计算可以是采用K-means聚类运算或其他的聚类运算。本发明对获取的电容数据的具体算法并不作限定,但是预置的数据所采用的算法,与新检测的数据所采用的算法相同。
在本发明的具体实施例中,所述设备中还可以包括运动传感器,所述运动传感器用于感测设备的运动状态以产生感测信号。所述处理器根据电容传感器获取的电容数据和运动传感器获取的感测信号,调节设备的配置参数。
所述运动传感器可以是重力传感器(Gravity-sensor)、陀螺仪等任意传感器。为了表述的方便,在本发明的具体实施例中,统一以运动传感器进行表述。可以通过运动传感器中的加速度计和陀螺仪模块提取加速度和角加速度参数等感测信号,感测信号可表征设备的运动幅度。
处理器接收运动传感器获取的感测信号,根据所述运动传感器获取的感测信号判断设备当前的状态。所述处理器根据运动传感器获取的感测信号判断设备当前的运动幅度。
例如,所述重力传感器(Gravity-sensor)和/或陀螺仪提取加速度和角加速度参数等感测信号。通过感测信号确定设备处于静止或运动状态。当通过运动传感器检测到设备静止时,指示电容传感器获取电容数据。当通过运动传感器检测到设备运动时,指示电容传感器进入休眠模式。通过所述方法使所述电容传感器在不必要时停止工作,降低了设备的功耗。
在一个例子中,电容传感器处于常开状态,所述电容传感器可以周期性的检测电容数据。当确定设备处于静止状态时,处理器获取电容传感器获取的电容数据。或在另一个例子中,电容传感器处于休眠状态,当确定设备处于静止状态时,处理器指示电容传感器获取电容数据并将所获取的电容数据传递给处理器。
需要说明的是,在本发明的具体实施例中,可以根据处理器确定的与当前设备相对应的材质,确定当前设备的状态,进而调节设备的配置参数。
在本发明的具体实施例中,也可以是处理器获取多种信息后,根据多种信息来确定当前设备的状态。根据设备当前的状态,调节设备的配置参数。其中,处理器确定的设备当前相对应的材质仅为多种信息中的一种。所述多种信息可以是,当前的语音信息、时间、地理位置信息,也可以是其它任意信息。本发明对多种信息不作任何限定。
在一个智能场景应用中,根据多种信息确定当前设备的状态。例如,通过运动传感器获取设备由运动状态变为静止状态时。再启动电容传感器,并确定设备当前被放置在织物上。设备在通过MIC(microphone)识别到环境音,导入当前时间信息和GPS信息,例如时间信息为晚上11点,根据GPS(Global Position System)信息确定当前位置为在家。设备根据当前时间、地点、当前设备的状态、以及当前设备所放置物体表面的材质,判 断机主当前的可能在睡觉,且将设备放在了枕边。根据以上判断结果,调节设备的配置参数,指示设备进入低功耗模式、静音、调低屏幕亮度等。
在一个智能场景应用中,处理器确定所述设备相对应的材质后,通过文字或声音提示方式,提示用户当前与设备所接触的物体材质。
在一个智能场景应用中,所述运动传感器获取到设备由静止状态变化到运动状态时,电容传感器获取当前运动状态的电容数据。若根据电容数据进行判断,确定当前与设备相对应的材质为人手或人体皮肤时,通过所述处理器使设备自动亮屏或自动解锁或启动语音助手。
在本发明对设备确定当前设备所处的材质判断后的一个应用中,当所述设备为手机时,还可以判断所述手机是否设置了保护套。当运动传感器指示静止、运动时分别启动材质识别处理模块,得出的表面材质信息一致时,可以得出机器被安装了保护套的结论。可以暂时关闭表面材质识别系统或增长检测间隔时间以降低功耗。
在一个智能场景应用中,根据当前设备相对应的材质确定设备当前的状态。当确定设备被放置在金属表面时,可以做出天线性能补偿的策略。所述天线性能补偿的策略可以是,调整天线的辐射方向图,让辐射球面尽可能离开金属、还可以通过调整射频发射功率、增加天线性能等,或者几种方案同步进行都可以。
在一种通过调整天线的发射功率的方案中,使用射频放大器电路放大发射的射频信号。可以使用一个或多个集成电路中的一个或多个增益级来实现射频放大器电路。信号被射频功率放大器放大其中,可以有多个诸如放大器的功率放大器,每个功率放大器与一个不同通信频带或一组通信频带相关联。使用功率放大器电路在通过天线发射之前放大射频信号。例如可以通过调整模拟控制电压或模拟电源电压的大小,来控制功率放大器的增益。还可以通过打开或关闭功率放大器中的某些增益级,来调整功率放大器的增益。其中,数字控制信号可由功率放大器处理并用于控制增益设 置。或者,还可以使用这些方法或其它适当的功率放大器增益调整技术的组合。
可以调整功率放大器的增益,以确保正在通过天线发射的射频信号的强度足以实现令人满意的无线通信。
在本发明的一个具体的实施例中,所述设备获取的电容数据与设备中包括的标准材质模型中的一个模型数据相匹配时,还根据所述获取的电容数据对所述模型数据中包括的电容数据进行修改。以使所述模型数据中包括的电容数据更加贴近使用者的生活中常见的材质,从而对使用者使用场景的判断更加准确。
例如,所述设备中包括的第一模型数据的最小值为1156,最大值为1233。所述设备获取的第一电容数据的最小值为1203,最大值为1230。所述设备确定第一模型数据与获取的第一电容数据相对应,并且将第一模型数据修改为最小值为1203,最大值为1230。
图4为本发明具体实施例提供的一种材质检测方法示意图。如图4所示,所述方法具体包括:
S401:设备获取第一电容数据,所述第一电容数据为所述电容传感器检测的电容数据。
S402:确定与所述第一电容数据匹配的第一材质信息。
图4所示方法的各步骤的详细说明可以参见上述实施例的介绍。
本发明实施例的一种设备。包括电容传感器、存储器和处理器。电容传感器、存储器和处理器耦合连接;电容传感器用于检测电容数据;存储器,用于存储计算机可执行程序代码,所述程序代码包括指令;处理器执行存储在存储器中的指令,实现本发明方法实施例的方案,例如:获取电容传感器检测的电容数据,确定与所述第一电容数据匹配的第一材质信息;根据第一材质信息调整设备的配置参数。
所述电容传感器为自容式电容传感器。所述电容传感器包括处理电路 和电极板。当所述电极板与不同的材质相对时,电极板的电容数据不同,所述处理电路检测电极板的不同电容数据。所述处理电路获取电极板的不同电容数据是获取电极板充放电的时间。所述处理器根据电极板充放电时间确定电容传感器的电容数据。
图5为本发明具体实施例提供的一种材质检测设备,所述材质检测设备能够实现上述方法实施例中的功能。因此也能实现上述方法实施例中具备的有益效果。如图5所示,该材质检测设备具体包括:
S501接收单元,用于获取第一电容数据,所述第一电容数据为所述电容传感器检测的电容数据。
S502处理单元,用于确定与所述第一电容数据匹配的第一材质信息。
所述处理单元502确定与所述第一电容数据匹配的第一材质信息,是根据预设的电容数据与材质的对应关系,确定与所述第一电容数据匹配的第一材质信息。
所述当所述预设的电容数据与材质的对应关系中不存在与所述第一电容数据匹配的第一材质信息时,或当根据所述预设的电容数据与材质的对应关系不能确定与所述第一电容数据匹配的第一材质信息时,输出第一提示信息。所述第一提示信息用于提示用户输入所述设备当前所放置的物体表面的材质信息;接收用户输入的第一提示信息。根据所述第一提示信息获取所述设备当前所放置的物体表面的材质信息。建立并存储所述第一电容数据与所述设备当前所放置的物体表面的材质信息的对应关系。
输出第一提示信息的实现方式,可以以文本形式输出第一提示信息,也可以以声音形式输出第一提示信息。
接收用户输入的第一提示信息,可以是接收用户通过触摸方式或按键方式输入的文本信息,也可以是通过麦克风接收用户输入的音频信息。
在本发明实施例中,当所述处理单元501确定所述设备处于静止状态时,所述接收单元501获取所述第一电容数据。所述设备还包括输出单元, 所述输出单元用于以文本或声音方式输出所述第一材质信息。
在本发明的具体实施例中,所述处理单元502在确定所述第一材质信息后,还根据所述第一材质信息调整所述设备的配置参数。
在一种所述设备配置参数的例子中,当所述处理单元502确定所述第一材质信息为金属时,所述处理单元502还调整所述设备的天线的辐射方向图,和/或调整所述设备的射频发射功率。
基于同一发明构思,由于该设备解决问题的原理以及有益效果可以参见上述方法实施方式以及所带来的有益效果,因此该设备的实施可以参见上述方法的实施方式,重复之处不再赘述。
图6为本发明实施例提供的一种材质检测设备。如图6所示,所述材质检测设备包括:处理器601、存储器602、通信接口603、总线604和电容传感器。其中,电容传感器、处理器601、存储器602和通信接口603耦合连接,通过总线604实现彼此之间的通信连接。
处理器601可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者一个或多个集成电路,用于执行相关程序,以实现前述本发明方法实施例所提供的技术方案。
存储器602可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器602可以存储操作系统和其他应用程序。在通过软件或者固件来实现本发明实施例提供的技术方案时,用于实现本发明前述方法实施例提供的任一可选技术方案的程序代码保存在存储器602中,并由处理器601来执行。通信接口603用以与其他交换机或控制控制设备通信。
总线604可包括一通路,在设备各个部件(例如处理器601、存储器602、电容传感器和通信接口603)之间传送信息。
电容传感器,用于检测电容数据。
当所述处理器601执行所述存储器602存储的指令时,执行本发明方法实施例中步骤401以及步骤402的方法,具体实施方式以及有益效果可以参考本发明方法实施例中步骤401以及步骤402对应的描述以及有益效果,重复之处在此不再赘述。
在本发明的一种实施例中,所述设备中还可以包括运动传感器。所述运动传感器用于感测设备的运动状态以产生感测信号。所述处理器根据电容传感器获取的电容数据和传感器获取的感测信号,调节设备的配置参数。
所述运动传感器可以是重力传感器(Gravity-sensor)、陀螺仪等任意传感器。可以通过运动传感器中的加速度计和陀螺仪模块提取加速度和角加速度参数等感测信号,感测信号可表征设备的运动幅度。为了表述的方便,在本发明的具体实施例中,统一以运动传感器进行表述。
处理器接收运动传感器获取的感测信号,根据所述运动传感器获取的感测信号判断设备当前的状态。所述处理器根据运动传感器检测的数据判断设备当前的运动幅度。
例如,所述重力传感器(Gravity-sensor)和/或陀螺仪提取加速度和角加速度参数等感测信号。通过感测信号确定设备处于静止或运动状态。当通过运动传感器检测到设备静止时,指示电容传感器获取电容数据。当通过运动传感器检测到设备运动时,指示电容传感器进入休眠模式。通过所述方法使所述电容传感器在不必要时停止工作,降低了设备的功耗。
在本发明的一种实施例中,所述设备中还可以包括麦克风和/或扬声器,麦克风用于拾取环境音或接收用户输入的音频输入信息,处理器可以根据环境音、电容数据、和/或感测信号综合判断设备当前的状态;扬声器用于当处理器确定所述设备相对应的材质后,通过声音提示方式,提示用户当前与设备所接触的物体材质。本发明实施例还提供一种非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有至少一个程序,每个所述程序包括指令,所述指令当被具有处理器的设备执行时使所述设备执 行上述方法实施例中的材质检测方法。
专业人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种材质检测方法,应用于具有电容传感器的设备,其特征在于,所述方法包括:
    设备获取第一电容数据,所述第一电容数据为所述电容传感器检测的电容数据;
    确定与所述第一电容数据匹配的第一材质信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述第一材质信息调整所述设备的配置参数。
  3. 根据权利要求2所述的方法,其特征在于,当所述第一材质信息为金属时,调整所述设备的天线的辐射方向图,和/或调整所述设备的射频发射功率。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:以文本或声音方式输出所述第一材质信息。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    当确定所述设备处于静止状态时,获取所述第一电容数据。
  6. 根据权利要求1所述的方法,其特征在于,所述确定与所述第一电容数据匹配的第一材质信息,包括:根据预设的电容数据与材质的对应关系,确定与所述第一电容数据匹配的第一材质信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当所述预设的电容数据与材质的对应关系中不存在与所述第一电容数据匹配的第一材质信息时,
    输出第一提示信息,所述第一提示信息用于提示用户输入所述设备当前所放置的物体表面的材质信息;
    接收用户输入的第一提示信息;
    根据所述第一提示信息获取所述设备当前所放置的物体表面的材质信息;
    建立并存储所述第一电容数据与所述设备当前所放置的物体表面的材质信息的对应关系。
  8. 一种材质检测设备,其特征在于,包括:
    接收单元,用于获取第一电容数据,所述第一电容数据为所述电容传感器检测的电容数据;
    处理单元,用于确定与所述第一电容数据匹配的第一材质信息。
  9. 根据权利要求8所述的设备,其特征在于,处理单元还用于:
    根据所述第一材质信息调整所述设备的配置参数。
  10. 根据权利要求9所述的设备,其特征在于,当所述处理单元确定所述第一材质信息为金属时,所述处理单元还调整所述设备的天线的辐射方向图,和/或调整所述设备的射频发射功率。
  11. 根据权利要求8所述的设备,其特征在于,所述设备还包括输出单元,所述输出单元用于以文本或声音方式输出所述第一材质信息。
  12. 根据权利要求8所述的设备,其特征在于,当所述处理单元确定所述设备处于静止状态时,所述接收单元获取所述第一电容数据。
  13. 根据权利要求8所述的设备,其特征在于,所述处理单元确定与所述第一电容数据匹配的第一材质信息,包括:
    根据预设的电容数据与材质的对应关系,确定与所述第一电容数据匹配的第一材质信息。
  14. 根据权利要求13所述的设备,其特征在于,所述当所述预设的电容数据与材质的对应关系中不存在与所述第一电容数据匹配的第一材质信息时,
    输出第一提示信息,所述第一提示信息用于提示用户输入所述设备当前所放置的物体表面的材质信息;
    接收用户输入的第一提示信息;
    根据所述第一提示信息获取所述设备当前所放置的物体表面的材质信 息;
    建立并存储所述第一电容数据与所述设备当前所放置的物体表面的材质信息的对应关系。
  15. 一种材质检测设备,其特征在于,包括电容传感器、存储器以及处理器:
    电容传感器,用于检测电容数据;
    存储器,用于存储计算机可执行程序代码,所述程序代码包括指令;当所述处理器执行所述指令时,获取所述电容传感器检测的电容数据,确定与所述第一电容数据匹配的第一材质信息。
  16. 根据权利要求15所述的设备,其特征在于,所述处理器还用于:
    根据所述第一材质信息调整所述设备的配置参数。
  17. 根据权利要求16所述的设备,其特征在于,当所述处理器确定所述第一材质信息为金属时,所述处理器还调整所述设备的天线的辐射方向图,和/或调整所述设备的射频发射功率。
  18. 根据权利要求15所述的设备,其特征在于,所述处理器还用于以文本或声音方式输出所述第一材质信息。
  19. 根据权利要求15所述的设备,其特征在于,所述设备还包括运动传感器,所述运动传感器用于确定所述设备处于运动状态或静止状态;当确定所述设备处于静止状态时,所述处理器指示所述电容传感器检测电容数据。
  20. 根据权利要求15所述的设备,其特征在于,所述处理器确定与所述第一电容数据匹配的第一材质信息,包括:
    根据预设的电容数据与材质的对应关系,确定与所述第一电容数据匹配的第一材质信息。
  21. 根据权利要求20所述的设备,其特征在于,所述处理器还用于:当根据所述预设的电容数据与材质的对应关系不能确定与所述第一电容数 据匹配的第一材质信息时,
    输出第一提示信息,所述第一提示信息用于提示用户输入所述设备当前所放置的物体表面的材质信息;
    接收用户输入的第一提示信息;
    根据所述第一提示信息获取所述设备当前所放置的物体表面的材质信息;
    建立并存储所述第一电容数据与所述设备当前所放置的物体表面的材质信息的对应关系。
  22. 一种存储介质,其特征在于,所述存储介质为非易失性计算机可读存储介质,所述非易失性计算机可读存储介质存储有至少一个程序,每个所述程序包括指令,所述指令当被具有处理器的设备执行时使所述设备执行根据权利要求1-7任一项所述的材质检测方法。
PCT/CN2016/104046 2016-10-31 2016-10-31 一种材质检测方法、设备和存储介质 WO2018076349A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680055788.3A CN108271421A (zh) 2016-10-31 2016-10-31 一种材质检测方法、设备和存储介质
PCT/CN2016/104046 WO2018076349A1 (zh) 2016-10-31 2016-10-31 一种材质检测方法、设备和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/104046 WO2018076349A1 (zh) 2016-10-31 2016-10-31 一种材质检测方法、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2018076349A1 true WO2018076349A1 (zh) 2018-05-03

Family

ID=62024217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/104046 WO2018076349A1 (zh) 2016-10-31 2016-10-31 一种材质检测方法、设备和存储介质

Country Status (2)

Country Link
CN (1) CN108271421A (zh)
WO (1) WO2018076349A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060591A1 (en) * 2008-09-10 2010-03-11 Marduke Yousefpor Multiple Stimulation Phase Determination
CN103685721A (zh) * 2012-08-31 2014-03-26 美国亚德诺半导体公司 移动设备的环境检测
CN104793713A (zh) * 2015-04-07 2015-07-22 深圳市万普拉斯科技有限公司 自动匹配移动终端的用户界面的方法和移动终端
CN105977640A (zh) * 2016-04-29 2016-09-28 北京小米移动软件有限公司 天线调谐方法、装置、天线和终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015113395A1 (en) * 2014-01-30 2015-08-06 Zheng Shi System and method for directing a moving object on an interactive surface
US9599739B2 (en) * 2014-09-09 2017-03-21 Texas Instruments Incorporated Material-discerning sensing by measurement of different points of impedance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060591A1 (en) * 2008-09-10 2010-03-11 Marduke Yousefpor Multiple Stimulation Phase Determination
CN103685721A (zh) * 2012-08-31 2014-03-26 美国亚德诺半导体公司 移动设备的环境检测
CN104793713A (zh) * 2015-04-07 2015-07-22 深圳市万普拉斯科技有限公司 自动匹配移动终端的用户界面的方法和移动终端
CN105977640A (zh) * 2016-04-29 2016-09-28 北京小米移动软件有限公司 天线调谐方法、装置、天线和终端设备

Also Published As

Publication number Publication date
CN108271421A (zh) 2018-07-10

Similar Documents

Publication Publication Date Title
US10779427B2 (en) Method for measuring electromagnetic signal radiated from device and electronic device thereof
KR102659414B1 (ko) Em 센서 모듈을 포함하는 전자 장치 및 이의 제어 방법
JP5952486B2 (ja) 端末制御方法および装置、ならびに端末
US11016724B2 (en) Method for changing audio signal path according to external electronic device transmitting EM signal and electronic device therefor
KR102573727B1 (ko) 스타일러스 펜을 인식하기 위한 전자 장치 및 방법
US20110235817A1 (en) Earphone, electronic system and power-saving method
US20200218310A1 (en) Method for controlling power back off using grip sensor and electronic device for supporting the same
CN108418973A (zh) 跌落检测方法及相关装置
CN104376855A (zh) 一种智能信息处理方法、系统及智能耳机
CN106611596A (zh) 模拟信息特征提取的基于时间的频率调谐
KR20220145383A (ko) 회로 제어 장치 및 방법
US11481075B2 (en) Terminal, protective case, and sensing method
WO2018232695A1 (zh) 触摸屏当前基准值的更新方法、装置、触摸屏及电子终端
KR101721533B1 (ko) 휴대 단말기에서 터치 센서의 터치 감도 조절 방법 및 장치
US20240152313A1 (en) Wearing detection method, wearable device, and storage medium
US11910148B2 (en) Method for determining capacitance reference, apparatus for determining capacitance reference, and device
WO2018076349A1 (zh) 一种材质检测方法、设备和存储介质
CN107580098B (zh) 移动终端
WO2018098717A1 (zh) 一种调整定位周期的方法及装置
WO2014180358A1 (zh) 一种自动调整虚拟键盘位置的方法和装置
KR20150009612A (ko) 인간 두뇌에서 착안한 뉴런과 시냅틱스 기반이면서 소음센싱과 블루투스 연동형 스마트폰보청기 시스템
CN108680181B (zh) 无线耳机、基于耳机检测的计步方法及相关产品
US10136393B2 (en) Control method for real-time scene detection by a wireless communication apparatus
KR20200042156A (ko) 통신 모듈의 apc를 이용하여 안테나의 출력을 제어하는 전자 장치 및 전자 장치의 동작 방법
US11445282B2 (en) Capacitive on-body detection

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16920181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16920181

Country of ref document: EP

Kind code of ref document: A1