WO2018076206A1 - 飞行器及其飞行控制方法和装置 - Google Patents

飞行器及其飞行控制方法和装置 Download PDF

Info

Publication number
WO2018076206A1
WO2018076206A1 PCT/CN2016/103402 CN2016103402W WO2018076206A1 WO 2018076206 A1 WO2018076206 A1 WO 2018076206A1 CN 2016103402 W CN2016103402 W CN 2016103402W WO 2018076206 A1 WO2018076206 A1 WO 2018076206A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
rotational speed
blade
output
average
Prior art date
Application number
PCT/CN2016/103402
Other languages
English (en)
French (fr)
Inventor
戚乘至
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to PCT/CN2016/103402 priority Critical patent/WO2018076206A1/zh
Publication of WO2018076206A1 publication Critical patent/WO2018076206A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/17Helicopters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw

Definitions

  • the present application relates to the field of flight technology, and in particular, to an aircraft and a flight control method and apparatus thereof.
  • the helicopter is operated by an automatic tilter to realize lifting, front and rear, and left and right movements, thereby controlling the helicopter to move up and down, front and rear, and left and right.
  • the automatic recliner is generally composed of a bearing-like rotating (outer) ring and a non-rotating (inner) ring, which is sleeved on the rotor shaft through a universal joint or a ball joint, and the non-rotating ring is driven by the steering rod and the driving in the cockpit.
  • the rod is connected to the total distance rod, and the rotating ring is connected to the blade by a variable distance rod.
  • the technical problem mainly solved by the embodiments of the present application is how to control the flight of the aircraft without the automatic tilting device.
  • the application provides a flight control method for an aircraft, the method comprising:
  • the output speed difference of the drive unit controls the pitch and tilt motion of the aircraft.
  • the output rotational speed difference is a difference between a first rotational speed and a second rotational speed of the aircraft driven device that drives the asymmetric blade of the aircraft to rotate in a rotation surface thereof, wherein the first rotational speed Higher than the second rotational speed.
  • controlling the average rotational speed of the aircraft driving device to control the lifting motion of the aircraft in a direction perpendicular to the rotating surface of the asymmetric blade of the aircraft comprises:
  • Increasing the average output speed of the aircraft drive device to increase the blade lift of the aircraft increasing the speed of the aircraft in the direction perpendicular to the rotational plane of the asymmetric blade of the aircraft; reducing the average output speed of the aircraft drive device to reduce The blade lift of the small aircraft reduces the rate of ascent of the aircraft in a direction perpendicular to the plane of rotation of the asymmetric blade of the aircraft.
  • controlling the output rotational speed difference of the aircraft driving device to control the pitching motion and the tilting motion of the aircraft comprises:
  • the output rotational speed difference of the aircraft drive is reduced to reduce the tilt average angular acceleration of the aircraft, slowing down the pitching and tilting motion of the aircraft.
  • the application provides a flight control device for an aircraft, the flight control device comprising:
  • a speed control module for controlling an output average speed of the aircraft drive to control an upward movement of the aircraft in a direction perpendicular to a rotational plane of the asymmetric blade of the aircraft;
  • a rotational speed difference control module for controlling an output rotational speed difference of the aircraft driving device to control a pitching motion and a tilting motion of the aircraft.
  • the output rotational speed difference is a difference between a first rotational speed and a second rotational speed of the aircraft driven device that drives the asymmetric blade of the aircraft to rotate in a rotation surface thereof, wherein the first rotational speed Higher than the second rotational speed.
  • the rotation speed control module comprises: a rotation speed increasing unit for increasing an output average rotation speed of the aircraft driving device to increase the blade lift of the aircraft, and improving the direction of the aircraft in a direction perpendicular to the rotating surface of the asymmetric blade of the aircraft Rising speed; and speed A lowering unit for reducing the average output speed of the aircraft drive to reduce the blade lift of the aircraft and reduce the rate of ascent of the aircraft in a direction perpendicular to the rotational plane of the asymmetric blade of the aircraft.
  • a rotation speed increasing unit for increasing an output average rotation speed of the aircraft driving device to increase the blade lift of the aircraft, and improving the direction of the aircraft in a direction perpendicular to the rotating surface of the asymmetric blade of the aircraft Rising speed
  • speed A lowering unit for reducing the average output speed of the aircraft drive to reduce the blade lift of the aircraft and reduce the rate of ascent of the aircraft in a direction perpendicular to the rotational plane of the asymmetric blade of the aircraft.
  • the rotational speed difference control module includes: a rotational speed difference increasing unit configured to increase an output rotational speed difference of the aircraft driving device to increase a tilting average angular acceleration of the aircraft, and accelerate a pitching motion of the aircraft And a tilting movement; and a speed difference reducing unit for reducing an output speed difference of the aircraft driving device to reduce the tilting average angular acceleration of the aircraft, slowing down the pitching and tilting motion of the aircraft .
  • the present application provides an aircraft comprising a fuselage, an aircraft drive and a blade, the blade being an asymmetric blade; the aircraft further comprising:
  • At least one processor At least one processor
  • the memory stores instructions executable by the at least one processor, the instructions being executed by the at least one processor to enable the at least one processor to perform the flight control method.
  • the asymmetric blade comprises a single blade paddle, a size double blade paddle, a non-mirror symmetric double blade paddle or a three blade paddle.
  • the embodiment of the present application does not need to provide an automatic tilter, and controls the aircraft in the direction perpendicular to the asymmetrical blade rotation plane of the aircraft by changing the output average speed and the output speed difference of the aircraft driving device.
  • the lifting movement on the upper side, as well as the pitching and tilting movements of the aircraft, thereby changing the flight attitude of the aircraft simplifies the mechanical structure design of the aircraft, improves the mechanical structural strength of the aircraft, and reduces the aircraft failure rate.
  • FIG. 1 is a schematic structural view of a preferred embodiment of an aircraft provided by the present application.
  • FIG. 2 is a functional block diagram of a preferred embodiment of a flight control device for an aircraft provided by the present application
  • FIG. 3 is a flow chart of a preferred embodiment of a flight control method for an aircraft provided by the present application.
  • the aircraft 1 may include at least a body 10.
  • the body 10 is provided with, but not limited to, a processor 11, a memory 12, and an aircraft driving device 13 that are electrically connected to each other.
  • the aircraft 1 may also include a paddle 14 disposed on the fuselage 10.
  • the processor 11 is a control center of the aircraft 1 for connecting with other modules of the aircraft 1 to input and/or output data.
  • the processor 11 can be a Microprogrammed Control Unit (MCU), such as an STM32, or a Digital Signal Processor (DSP).
  • MCU Microprogrammed Control Unit
  • STM32 STM32
  • DSP Digital Signal Processor
  • the memory 12 is used to store various data generated during the flight of the aircraft 1, such as flight speed, flying height, and the like.
  • the memory 12 may be an internal memory of the aircraft 1, or may be a removable storage device such as a removable media card, an external USB flash drive, and other flash memory or storage devices.
  • the removable media card includes, but is not limited to, a TF (Trans-flash) card, a Secure Digital (SD) card, and a Compact Flash (CF) card.
  • the aircraft drive device 13 is used to drive the aircraft 1 to fly.
  • the aircraft drive device 13 may include an aircraft main drive and flight Sub-driver.
  • the aircraft main drive can drive the rotation of the paddle 14 and the pressure differential provided during rotation of the paddle 14 can provide lift to the aircraft 1.
  • both the aircraft main drive device and the aircraft sub-drive device may be motors.
  • the paddle 14 is used to provide lift for the flight of the aircraft 1.
  • the paddle 14 has an asymmetrical structure and is an asymmetric blade.
  • the blade 14 may be a single blade paddle, a size double blade paddle, a non-mirror symmetric double blade paddle or a three blade paddle or the like.
  • the aircraft 1 can be a small helicopter or a rotorcraft.
  • the aircraft when the aircraft 1 is a single rotorcraft, the aircraft may further include a tail rotor (not shown).
  • the tail rotor is used to balance the flight attitude of the single rotorcraft.
  • the aircraft sub-drive device may control the tail rotor, and the tail rotor is driven by the aircraft sub-drive device to balance a moment perpendicular to a direction of rotation of the blade 14.
  • the processor 11 can control the output average rotational speed of the aircraft driving device 13 to control the lifting movement of the aircraft 1 in a direction perpendicular to the rotational plane of the asymmetric blade 14 of the aircraft 1. And controlling the output rotational speed difference of the aircraft driving device 13 to control the pitching motion and the tilting motion of the aircraft 1.
  • the output rotational speed difference is the difference between the first rotational speed and the second rotational speed of the asymmetric blade 14 driving the aircraft 1 that is driven by the aircraft driving device 13 to rotate in one rotation of the rotating surface thereof.
  • the first rotational speed is higher than the second rotational speed.
  • the processor 11 controls the output average rotational speed of the aircraft driving device 13 to control the lifting motion of the aircraft 1 in a direction perpendicular to the rotational plane of the asymmetric blade 14 of the aircraft.
  • the output average rotational speed of the aircraft drive device 13 to increase the blade lift of the aircraft 1 to increase the ascending speed of the aircraft 1 in a direction perpendicular to the rotational plane of the asymmetric blade 14 of the aircraft;
  • the output average speed of the aircraft drive unit 13 is reduced to reduce the blade lift of the aircraft 1 to reduce the rate of rise of the aircraft 1 in a direction perpendicular to the plane of rotation of the asymmetric blade 14 of the aircraft 1.
  • the processor 11 controls an output rotational speed difference of the aircraft driving device 13 to control the pitching motion and the tilting motion of the aircraft 1 including: increasing the aircraft driving device Setting an output rotational speed difference to increase the tilting average angular acceleration of the aircraft 1, speeding up the pitching and tilting motion of the aircraft 1, and reducing the output rotational speed difference of the aircraft driving device 13 to reduce the The tilting average angular acceleration of the aircraft 1 slows down the pitching and tilting motion of the aircraft 1.
  • the aircraft 1 may further include a display device (not shown) for displaying the state of the aircraft 1 when it is in operation and data that needs to interact with the user, and the like.
  • the display device can be a liquid crystal display (LCD), an Organic Light-Emitting Diode (OLED), a touch display or other type of display.
  • the display device may be built in the aircraft 1 or externally connected to the aircraft 1.
  • the flight control device 120 can include one or more modules stored in the memory 12 and configured to be executed in the processor 11 to complete the application.
  • the flight control device 120 includes a rotational speed control module 121 and a rotational speed difference control module 122.
  • the module referred to in the present application is a program segment capable of performing a specific function, and is more suitable for describing the execution process of the software in the flight control device 120 than the program. Detailed functions of each module will be specifically described later.
  • the flight control device 120 is used to control the flight attitude of the aircraft 1, including controlling the ascent and descent of the aircraft 1, and the pitch and tilt of the aircraft 1.
  • the rotation speed control module 121 is configured to control the output average rotation speed of the aircraft driving device 13 to control the lifting movement of the aircraft 1 in a direction perpendicular to the rotating surface of the asymmetric blade 14 of the aircraft 1.
  • the rotational speed control die 121 may include a rotational speed increasing unit 1210 and a rotational speed reducing unit 1211.
  • the rotation speed increasing unit 1210 is configured to increase the output average rotation speed of the aircraft driving device 13 to increase the blade lift of the aircraft 1 to increase the rotation surface of the aircraft 1 perpendicular to the asymmetric blade 14 of the aircraft 1. The rate of rise in the direction.
  • the rotation speed reducing unit 1211 is for reducing the output average rotation speed of the aircraft driving device 13 to reduce the blade lift of the aircraft 1, and reducing the aircraft 1 to rotate in an asymmetrical blade 14 perpendicular to the aircraft 1. The rate of rise in the direction of the turn.
  • the rotational speed difference control module 122 is configured to control an output rotational speed difference of the aircraft driving device 13 to control the pitching motion and the tilting motion of the aircraft 1.
  • the output rotational speed difference is a difference between a first rotational speed and a second rotational speed of the asymmetrical blade 14 of the aircraft 1 driven by the aircraft driving device 13 that rotates in a rotating surface of the aircraft 1 , wherein the first rotational speed Higher than the second rotational speed.
  • the rotational speed difference control mode 122 may include a rotational speed difference increasing unit 1220 and a rotational speed difference reducing unit 1221.
  • the rotational speed difference increasing unit 1220 is configured to increase the output rotational speed difference of the aircraft driving device 13 to increase the tilting average angular acceleration and accelerate the pitching motion and the tilting motion of the aircraft 1.
  • the rotational speed difference reducing unit 1221 is configured to reduce the output rotational speed difference of the aircraft driving device 13 to reduce the tilting average angular acceleration and slow down the pitching motion and the tilting motion of the aircraft 1.
  • the calculation method of the average torque of the aircraft 1 and the tilting average angular acceleration is as follows.
  • the rotor solidity ⁇ is 0.1, because the single blade is used, so the main blade number B is 1, and the rotor rotation surface radius R is designed to be 0.2 m, then the main paddle length c is 0.0628 m.
  • the average lift coefficient is:
  • the average angular acceleration of the tilt is:
  • the moment of inertia of the aircraft 1 is estimated by a sphere:
  • ⁇ high 6000rpm
  • ⁇ low 5000rpm into the above equation, wherein, to gamma] is half the rotation speed ⁇ low angle of the coverage area, ⁇ high speed can be seen as a first, a second, as can be seen ⁇ low speed, then the The average angular acceleration of the tilt is:
  • FIG. 3 it is a flow chart of a preferred embodiment of a flight control method for an aircraft provided by the present application.
  • the flight control method of the aircraft may be performed by the flight control device 120.
  • the order of the steps in the flowchart may be changed according to different requirements, and some steps may be omitted or combined.
  • step S31 the flight control device 120 controls the output average rotational speed of the aircraft drive device 13 to control the upward movement of the aircraft 1 in a direction perpendicular to the rotational plane of the asymmetric blade 14 of the aircraft 1.
  • the flight control device 120 controls the output average rotational speed of the aircraft drive device 13 to control the aircraft 1 to be perpendicular to the aircraft 1
  • a specific embodiment of the lifting movement in the direction of the rotating surface of the asymmetric blade 14 may be: the flight control device 120 increases the average output speed of the aircraft driving device 13 to increase the blade lift of the aircraft 1 and improve the The speed of the aircraft 1 in the direction perpendicular to the plane of rotation of the asymmetric blade 14 of the aircraft 1; and/or the lowering of the average output speed of the aircraft drive 13 to reduce the blade lift of the aircraft 1
  • the rate of ascent of the aircraft 1 in a direction perpendicular to the plane of rotation of the asymmetric blade 14 of the aircraft 1 is described.
  • the upward and downward movement of the aircraft 1 in the direction perpendicular to the plane of rotation of the asymmetric blade 14 of the aircraft 1 can be controlled by controlling the average output rotational speed of the aircraft drive unit 13, as a result of the above derivation. It can be seen that the faster the output average speed is, the larger the blade lift force is, and the faster the aircraft 1 is ascending.
  • step S32 the flight control device 120 controls the output rotational speed difference of the aircraft driving device 13 to control the pitching motion and the tilting motion of the aircraft 1.
  • the output rotational speed difference is a difference between a first rotational speed and a second rotational speed of the asymmetric blade 14 of the aircraft 1 driven by the aircraft driving device 13 that rotates in a rotating surface of the aircraft 1 , wherein the first A rotational speed is higher than the second rotational speed.
  • the aircraft drive unit 13 drives the asymmetric blade 14 of the aircraft 1 to produce two speeds when it rotates one revolution of its rotating surface, namely a high speed first speed and a low speed second speed.
  • the specific embodiment of the flight control device 120 controlling the output rotational speed difference of the aircraft driving device 13 to control the pitching motion and the tilting motion of the aircraft 1 may be: the flight control device 120 Increasing the output rotational speed difference of the aircraft driving device 13 to increase the tilting average angular acceleration of the aircraft 1 , speeding up the pitching and tilting motion of the aircraft 1; and/or reducing the aircraft driving device 13
  • the rotational speed difference is output to reduce the tilting average angular acceleration of the aircraft 1, slowing down the pitching and tilting motion of the aircraft 1.
  • the pitch motion and the tilt motion of the aircraft 1 can be controlled by controlling the output speed difference of the aircraft driving device 13, according to the above-mentioned derivation
  • the formula can be concluded that the larger the output rotational speed difference is, the larger the tilt average angular acceleration is, the faster the pitch tilt angle of the aircraft 1 changes, and the aircraft 1 can achieve pitch and tilt after reaching the desired angle.
  • the calculation method of the average torque of the aircraft 1 and the average angular acceleration of the tilting is as described above, and details are not described herein again.
  • the aircraft 1 can be controlled to be perpendicular to the aircraft 1 by changing the output average speed and the output speed difference of the aircraft driving device 13 without providing an automatic tilter.
  • the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种飞行器(1)及其飞行控制方法和装置。其中飞行器(1)的飞行控制方法包括:控制飞行器驱动装置(13)的输出平均转速,以控制飞行器(1)在垂直于飞行器(1)的非对称桨叶(14)旋转面方向上的升降运动(S31);控制飞行器驱动装置(13)的输出转速差,以控制飞行器(1)的俯仰运动和倾转运动(S32)。无需设置自动倾斜器,通过改变飞行器驱动装置(13)的输出平均转速和输出转速差,以控制飞行器(1)在垂直于飞行器(1)的非对桨叶(14)旋转面方向上的升降运动,以及飞行器(1)的俯仰运动和倾转运动,从而改变飞行器(1)的飞行姿态。

Description

飞行器及其飞行控制方法和装置 技术领域
本申请涉及飞行技术领域,尤其涉及一种飞行器及其飞行控制方法和装置。
背景技术
现有技术中,直升机上通过自动倾斜器来操纵旋翼实现升降、前后、左右运动,从而控制直升机的升降、前后、左右飞行。所述自动倾斜器一般由类似轴承的旋转(外)环和不旋转(内)环组成,它通过万向接头或球铰套在旋翼轴上,不旋转环通过操纵拉杆与驾驶舱中的驾驶杆和总距杆相连,旋转环通过变距拉杆与桨叶相连。当所述直升机无倾斜时,各片桨叶在旋转时桨距保持恒定;当所述直升机被操纵倾斜时,则每片桨叶在旋转中周期性地改变桨距。变距拉杆转至倾斜器上位时桨距加大,桨叶向上挥舞;所述变距拉杆转至倾斜器下位时桨距减小,桨叶向下挥舞。这样就形成旋翼旋转面的倾斜,使旋翼合力倾斜,产生一水平分力。从而实现所述直升机的前后和左右方向的飞行运动。飞行员操纵(提或压)总距杆使自动倾斜器沿旋翼轴平行向上或向下滑动。各片桨叶的桨距将同时增大或减小,使旋翼的升力增大或减小,从而实现直升机上升或下降。
然而,自动倾斜器的存在无形增加了飞行器的机械结构的复杂性及飞行器的重量。
发明内容
本申请实施例主要解决的技术问题是如何在无自动倾斜装置的情况下控制飞行器的飞行。
为解决上述技术问题,本申请实施例采用的一个技术方案是:
本申请提供一种飞行器的飞行控制方法,该方法包括:
控制飞行器驱动装置的输出平均转速,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运动;及控制所述飞行器 驱动装置的输出转速差,以控制所述飞行器的俯仰运动和倾转运动。
优选地,所述输出转速差为所述飞行器驱动装置输出的驱动所述飞行器的非对称桨叶在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。
优选地,所述控制飞行器驱动装置的输出平均转速,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运动包括:
提高飞行器驱动装置的输出平均转速,以加大飞行器的桨叶升力,提高飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度;降低飞行器驱动装置的输出平均转速,以减小飞行器的桨叶升力,降低飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度。
优选地,所述控制所述飞行器驱动装置的输出转速差,以控制所述飞行器的俯仰运动和倾转运动包括:
增大所述飞行器驱动装置的输出转速差,以提高所述飞行器的倾转平均角加速度,加快所述飞行器的俯仰运动和倾转运动;
减小所述飞行器驱动装置的输出转速差,以降低所述飞行器的倾转平均角加速度,减慢所述飞行器的俯仰运动和倾转运动。
本申请提供一种飞行器的飞行控制装置,该飞行控制装置包括:
转速控制模块,用于控制飞行器驱动装置的输出平均转速,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运动;及
转速差控制模块,用于控制所述飞行器驱动装置的输出转速差,以控制所述飞行器的俯仰运动和倾转运动。
优选地,所述输出转速差为所述飞行器驱动装置输出的驱动所述飞行器的非对称桨叶在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。
优选地,所述转速控制模块包括:转速提高单元,用于提高飞行器驱动装置的输出平均转速,以加大飞行器的桨叶升力,提高飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度;及转速 降低单元,用于降低飞行器驱动装置的输出平均转速,以减小飞行器的桨叶升力,降低飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度。
优选地,所述转速差控制模块包括:转速差增大单元,用于增大所述飞行器驱动装置的输出转速差,以提高所述飞行器的倾转平均角加速度,加快所述飞行器的俯仰运动和倾转运动;及转速差减小单元,用于减小所述飞行器驱动装置的输出转速差,以降低所述飞行器的倾转平均角加速度,减慢所述飞行器的俯仰运动和倾转运动。
本申请提供一种飞行器,包括机身、飞行器驱动装置和桨叶,所述桨叶为非对称桨叶;所述飞行器还包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行所述飞行控制方法。
优选地,所述非对称桨叶包括单叶桨、大小双叶桨、非镜像对称双叶桨或三叶桨。
本申请实施例的有益效果是:本申请实施例无需设置自动倾斜器,通过改变飞行器驱动装置的输出平均转速和输出转速差,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运动,以及飞行器的俯仰运动和倾转运动,从而改变飞行器的飞行姿态,简化了飞行器的机械结构设计,提高了飞行器的机械结构强度,降低了飞行器故障率。
附图说明
一个或多个实施方式通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施方式的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请提供的一种飞行器较佳实施例的结构示意图;
图2是本申请提供的一种飞行器的飞行控制装置的较佳实施例的功能模块图;
图3是本申请提供的一种飞行器的飞行控制方法的较佳实施例的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
此外,下面所描述的本申请各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
参阅图1所示,是本申请实施例提供的一种飞行器的结构示意图。在本申请较佳实施例中,所述飞行器1至少可以包括机身10,所述机身10内设有,但不限于相互电性连接的处理器11、存储器12及飞行器驱动装置13。所述飞行器1还可以包括设置于所述机身10上的桨叶14。
在本实施方式中,所述处理器11为所述飞行器1的控制中心,用于与所述飞行器1的其他模块连接以输入及/或输出数据。所述处理器11可为微控制器(Microprogrammed Control Unit,MCU),例如STM32,或数据处理单元(Digital Signal Processor,DSP)。
所述存储器12用于存储所述飞行器1飞行过程中产生的各种数据,如飞行速度、飞行高度等。所述存储器12可为所述飞行器1的内部存储器,也可为可移除的存储装置,例如一可移除媒体卡,外置U盘,及其他闪存或存储设备。所述可移除媒体卡包括但不限于,TF(Trans‐flash)卡、安全数字(Secure Digital,SD)卡,微型快擦写存储(Compact Flash,CF)卡。
所述飞行器驱动装置13用于驱动所述飞行器1飞行。在本实施方式中,所述飞行器驱动装置13可以包括飞行器主驱动装置和飞行 器副驱动装置。所述飞行器主驱动装置可以驱动所述桨叶14的转动,在所述桨叶14转动过程中提供的压强差可以为所述飞行器1提供升力。在本实施方式中,所述飞行器主驱动装置和所述飞行器副驱动装置都可以是马达。
所述桨叶14用于为所述飞行器1的飞行提供升力。在本实施方式中,所述桨叶14具有非对称结构,为非对称桨叶。例如,所述桨叶14可以是单叶桨、大小双叶桨、非镜像对称双叶桨或三叶桨等。
所述飞行器1可以是小型直升机或者旋翼机。
在一实施例中,当所述飞行器1为一单旋翼机时,该飞行器还可以包括尾桨(图中未示出)。所述尾桨用于平衡所述单旋翼机的飞行姿态。所述飞行器副驱动装置可以控制所述尾桨,通过所述飞行器副驱动装置驱动所述尾桨来平衡垂直于所述桨叶14旋转面方向的力矩。
在本实施方式中,所述处理器11可以控制所述飞行器驱动装置13的输出平均转速,以控制所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的升降运动;及控制所述飞行器驱动装置13的输出转速差,以控制所述飞行器1的俯仰运动和倾转运动。
在本实施方式中,所述输出转速差为所述飞行器驱动装置13输出的驱动所述飞行器1的非对称桨叶14在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。
具体而言,所述处理器11控制所述飞行器驱动装置13的输出平均转速,以控制所述飞行器1在垂直于所述飞行器的非对称桨叶14旋转面方向上的升降运动包括:提高所述飞行器驱动装置13的输出平均转速,以加大所述飞行器1的桨叶升力,提高所述飞行器1在垂直于所述飞行器的非对称桨叶14旋转面方向上的上升速度;及降低所述飞行器驱动装置13的输出平均转速,以减小所述飞行器1的桨叶升力,降低所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的上升速度。
所述处理器11控制所述飞行器驱动装置13的输出转速差,以控制所述飞行器1的俯仰运动和倾转运动包括:增大所述飞行器驱动装 置13的输出转速差,以提高所述飞行器1的倾转平均角加速度,加快所述飞行器1的俯仰运动和倾转运动;及减小所述飞行器驱动装置13的输出转速差,以降低所述飞行器1的倾转平均角加速度,减慢所述飞行器1的俯仰运动和倾转运动。
在其他实施例中,所述飞行器1还可以包括显示装置(图中未示出),所述显示装置用于显示所述飞行器1运行时的状态及需要与用户交互的数据等。所述显示装置可为液晶显示屏(Liquid Crystal Display,LCD)、有机电激光显示屏(Organic Light‐Emitting Diode,OLED)、触摸显示屏或其他类型的显示屏。所述显示装置可以内置于所述飞行器1上,也可以外接于所述飞行器1。
参阅图2所示,是本申请实施例提供的一种飞行器的飞行控制装置的模块示意图。所述飞行控制装置120可以包括一个或多个模块,所述一个或多个模块存储在所述存储器12中,并被配置在所述处理器11中执行,以完成本申请。例如,所述飞行控制装置120包括转速控制模块121及转速差控制模块122。本申请所称的模块是能够完成一特定功能的程序段,比程序更适合用于描述软件在飞行控制装置120中的执行过程,关于各模块的详细功能将在后文中作具体描述。在本实施例中,所述飞行控制装置120用于控制所述飞行器1的飞行姿态,包括控制所述飞行器1的上升与下降、以及所述飞行器1的俯仰和倾转。
所述转速控制模块121,用于控制所述飞行器驱动装置13的输出平均转速,以控制所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的升降运动。在本实施方式中,所述转速控制模121可以包括转速提高单元1210和转速降低单元1211。所述转速提高单元1210用于提高所述飞行器驱动装置13的输出平均转速,以加大飞行器1的桨叶升力,提高所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的上升速度。所述转速降低单元1211用于降低飞行器驱动装置13的输出平均转速,以减小飞行器1的桨叶升力,降低所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋 转面方向上的上升速度。
所述转速差控制模块122用于控制所述飞行器驱动装置13的输出转速差,以控制所述飞行器1的俯仰运动和倾转运动。所述输出转速差为所述飞行器驱动装置13输出的驱动所述飞行器1的非对称桨叶14在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。
在本实施方式中,所述转速差控制模122可以包括转速差增大单元1220和转速差减小单元1221。所述转速差增大单元1220用于增大所述飞行器驱动装置13的输出转速差,以提高倾转平均角加速度,加快所述飞行器1的俯仰运动和倾转运动。所述转速差减小单元1221用于减小所述飞行器驱动装置13的输出转速差,以降低倾转平均角加速度,减慢所述飞行器1的俯仰运动和倾转运动。
在本实施方式中,所述飞行器1的平均力矩和所述倾转平均角加速度的计算方式如下所述。
以单叶直升机为例进行说明,设定飞行器1的以下参数:总质量为:m=1kg;其中,电池质量为:mbattery=300g;其他质量为:mbody=700g。飞行器悬停时马达转速为Ω,其中最大转速Ωmax=10000rpm,飞行器的主桨叶数为B;飞行器的主桨弦长(chord)为c;飞行器旋翼提供的推力为T;当飞行器悬停时旋翼提供的推力为Thover;飞行器桨叶平均升力系数为
Figure PCTCN2016103402-appb-000001
飞行器桨叶旋转面半径为R;空气密度为ρ=1.23kg/m3;桨叶攻角为α;倾转平均角加速度为
Figure PCTCN2016103402-appb-000002
雷诺数为Re;气流速度为v;特征长度为L;旋翼实度为σ;运动黏度为υ=μ/ρ(μ为流体动力黏度);重力加速为g;总体效率为η(取80%);力矩为τ;飞行器的转动惯量为I。
根据桨叶升力公式:
Figure PCTCN2016103402-appb-000003
Figure PCTCN2016103402-appb-000004
Figure PCTCN2016103402-appb-000005
其中,旋翼实度σ选择0.1,因为使用单叶桨,所以主桨叶数B为1,旋翼旋转面半径R设计为0.2米,则主桨弦长为c为0.0628米。当直升机悬停时升力为其重力:Thover=W=m*g;无刷马达转速输出为5000rpm(523.6rad/s)。那么,
平均升力系数为:
Figure PCTCN2016103402-appb-000006
叶尖雷诺数:
Figure PCTCN2016103402-appb-000007
以叶型NACA0012为例,
Figure PCTCN2016103402-appb-000008
攻角α=3°
Figure PCTCN2016103402-appb-000009
由此,可以得出:
Figure PCTCN2016103402-appb-000010
Figure PCTCN2016103402-appb-000011
Figure PCTCN2016103402-appb-000012
平均力矩:
Figure PCTCN2016103402-appb-000013
倾转平均角加速度为:
Figure PCTCN2016103402-appb-000014
这里以圆球估算飞行器1的转动惯量:
Figure PCTCN2016103402-appb-000015
代入上述公式可得倾转平均角加速度为:
Figure PCTCN2016103402-appb-000016
若取
Figure PCTCN2016103402-appb-000017
Ωhigh=6000rpm,Ωlow=5000rpm代入上式,其中,γ为以Ωlow转速转动所覆盖区域的角度的一半,Ωhigh可以看作为第一转速,Ωlow可以看作为第二转速,则所述倾转平均角加速度为:
Figure PCTCN2016103402-appb-000018
当直升机需要倾转
Figure PCTCN2016103402-appb-000019
的角度(即30°)时,只需要花
Figure PCTCN2016103402-appb-000020
即0.11s。
参阅图3所示,是本申请提供的一种飞行器的飞行控制方法较佳实施例的流程图。其中,该飞行器的飞行控制方法可以由飞行控制装置120来执行。根据不同需求,该流程图中步骤的顺序可以改变,某些步骤可以省略或合并。
步骤S31,所述飞行控制装置120控制所述飞行器驱动装置13的输出平均转速,以控制所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的升降运动。
在本实施方式中,所述飞行控制装置120控制所述飞行器驱动装置13的输出平均转速,以控制所述飞行器1在垂直于所述飞行器1 的非对称桨叶14旋转面方向上的升降运动的具体实施方式可以为:所述飞行控制装置120提高所述飞行器驱动装置13的输出平均转速,以加大飞行器1的桨叶升力,提高所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的上升速度;和/或,降低飞行器驱动装置13的输出平均转速,以减小飞行器1的桨叶升力,降低所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的上升速度。
在本实施方式中,可以通过控制飞行器驱动装置13的输出平均转速来控制飞行器1在垂直于飞行器1的非对称桨叶14旋转面方向上的升降运动,由于上述推导得出
Figure PCTCN2016103402-appb-000021
可见,输出平均转速越快则桨叶升力越大,进而飞行器1的上升速度也越快。
步骤S32,所述飞行控制装置120控制所述飞行器驱动装置13的输出转速差,以控制所述飞行器1的俯仰运动和倾转运动。
其中,所述输出转速差为所述飞行器驱动装置13输出的驱动所述飞行器1的非对称桨叶14在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。飞行器驱动装置13驱动所述飞行器1的非对称桨叶14在其旋转面旋转一周时会产生两种速度,即高速的第一转速和低速的第二转速。
在本实施方式中,所述飞行控制装置120控制所述飞行器驱动装置13的输出转速差,以控制所述飞行器1的俯仰运动和倾转运动的具体实施方式可以为:所述飞行控制装置120增大所述飞行器驱动装置13的输出转速差,以提高飞行器1的倾转平均角加速度,加快所述飞行器1的俯仰运动和倾转运动;和/或,减小所述飞行器驱动装置13的输出转速差,以降低飞行器1的倾转平均角加速度,减慢所述飞行器1的俯仰运动和倾转运动。
在本实施方式中,可以通过控制飞行器驱动装置13的输出转速差来控制飞行器1的俯仰运动和倾转运动,根据上述推导出的
Figure PCTCN2016103402-appb-000022
的公式,可以得出,输出转速差越大,倾转平均角加速度越大,则飞行器 1的俯仰倾转角度变化越快,到达所需角度后,飞行器1即可实现俯仰及倾转。
在本实施方式中,所述飞行器1平均力矩和所述倾转平均角加速度的计算方式如上文所述,这里不再赘述。
通过以上步骤S31至步骤S32可以在本申请无需设置自动倾斜器的情况下,通过改变所述飞行器驱动装置13的输出平均转速和输出转速差,以控制所述飞行器1在垂直于所述飞行器1的非对称桨叶14旋转面方向上的升降运动,以及所述飞行器1的俯仰运动和倾转运动,从而改变所述飞行器1的飞行姿态,简化了所述飞行器1的机械结构设计,提高了所述飞行器1的机械结构强度,降低了所述飞行器1的故障率。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read‐Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域 的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
最后所应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照以上较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。

Claims (10)

  1. 一种飞行器的飞行控制方法,其特征在于,包括:
    控制飞行器驱动装置的输出平均转速,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运动;
    控制所述飞行器驱动装置的输出转速差,以控制所述飞行器的俯仰运动和倾转运动。
  2. 如权利要求1所述的飞行器的飞行控制方法,其特征在于,所述输出转速差为所述飞行器驱动装置输出的驱动所述飞行器的非对称桨叶在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。
  3. 如权利要求1或2所述的飞行器的飞行控制方法,其特征在于,所述控制飞行器驱动装置的输出平均转速,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运动包括:
    提高飞行器驱动装置的输出平均转速,以加大飞行器的桨叶升力,提高飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度;降低飞行器驱动装置的输出平均转速,以减小飞行器的桨叶升力,降低飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度。
  4. 如权利要求1‐3任一项所述的飞行器的飞行控制方法,其特征在于,所述控制所述飞行器驱动装置的输出转速差,以控制所述飞行器的俯仰运动和倾转运动包括:
    增大所述飞行器驱动装置的输出转速差,以提高所述飞行器的倾转平均角加速度,加快所述飞行器的俯仰运动和倾转运动;
    减小所述飞行器驱动装置的输出转速差,以降低所述飞行器的倾转平均角加速度,减慢所述飞行器的俯仰运动和倾转运动。
  5. 一种飞行器的飞行控制装置,其特征在于,包括:
    转速控制模块,用于控制飞行器驱动装置的输出平均转速,以控制飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的升降运 动;
    转速差控制模块,用于控制所述飞行器驱动装置的输出转速差,以控制所述飞行器的俯仰运动和倾转运动。
  6. 如权利要求5所述的飞行器的飞行控制装置,其特征在于,所述输出转速差为所述飞行器驱动装置输出的驱动所述飞行器的非对称桨叶在其旋转面旋转一周中的第一转速与第二转速的差值,其中所述第一转速高于所述第二转速。
  7. 如权利要求5或6所述的飞行器的飞行控制装置,其特征在于,所述转速控制模块包括:
    转速提高单元,用于提高飞行器驱动装置的输出平均转速,以加大飞行器的桨叶升力,提高飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度;
    转速降低单元,用于降低飞行器驱动装置的输出平均转速,以减小飞行器的桨叶升力,降低飞行器在垂直于所述飞行器的非对称桨叶旋转面方向上的上升速度。
  8. 如权利要求5‐7任一项所述的飞行器的飞行控制装置,其特征在于,所述转速差控制模块包括:
    转速差增大单元,用于增大所述飞行器驱动装置的输出转速差,以提高所述飞行器的倾转平均角加速度,加快所述飞行器的俯仰运动和倾转运动;
    转速差减小单元,用于减小所述飞行器驱动装置的输出转速差,以降低所述飞行器的倾转平均角加速度,减慢所述飞行器的俯仰运动和倾转运动。
  9. 一种飞行器,其特征在于,包括机身、飞行器驱动装置和桨叶,所述桨叶为非对称桨叶;所述飞行器还包括:
    至少一个处理器;以及
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如 权利要求1‐4任一项所述的方法。
  10. 如权利要求9所述的飞行器,其特征在于,所述非对称桨叶包括单叶桨、大小双叶桨、非镜像对称双叶桨或三叶桨。
PCT/CN2016/103402 2016-10-26 2016-10-26 飞行器及其飞行控制方法和装置 WO2018076206A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103402 WO2018076206A1 (zh) 2016-10-26 2016-10-26 飞行器及其飞行控制方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/103402 WO2018076206A1 (zh) 2016-10-26 2016-10-26 飞行器及其飞行控制方法和装置

Publications (1)

Publication Number Publication Date
WO2018076206A1 true WO2018076206A1 (zh) 2018-05-03

Family

ID=62024216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/103402 WO2018076206A1 (zh) 2016-10-26 2016-10-26 飞行器及其飞行控制方法和装置

Country Status (1)

Country Link
WO (1) WO2018076206A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046060A1 (zh) * 2022-08-31 2024-03-07 亿航智能设备(广州)有限公司 一种航空器的控制制导方法、设备及计算机可读存储介质

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071998A (ja) * 1999-06-29 2001-03-21 Rokuro Hosoda 航空機および回転力伝達装置
CN1807184A (zh) * 2006-02-23 2006-07-26 上海交通大学 尾舵操控式旋翼飞行机器人
CN102126553A (zh) * 2010-01-12 2011-07-20 北京航空航天大学 一种垂直起降小型无人机
CN103448909A (zh) * 2013-09-17 2013-12-18 无锡振华机械有限公司 飞行器方向操纵机构
CN103950537A (zh) * 2014-05-13 2014-07-30 江苏艾锐泰克无人飞行器科技有限公司 变距飞行器的控制方法和控制装置
CN104627359A (zh) * 2015-02-17 2015-05-20 何春旺 多轴飞行器
CN204452929U (zh) * 2014-12-05 2015-07-08 上海交通大学 带操作舵面的倾转机身式混合多态飞行器
CN104843177A (zh) * 2015-04-30 2015-08-19 何春旺 飞行器
CN104925248A (zh) * 2015-06-04 2015-09-23 杭州锐翼科技有限公司 一种具有新型气动布局的多旋翼无人机及其电机控制方法
WO2016054147A1 (en) * 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Power management between a propulsor and a coaxial rotor of a helicopter
CN205499349U (zh) * 2016-03-23 2016-08-24 哈尔滨飞机工业集团有限责任公司 一种复合推力电动无人直升机
CN205569757U (zh) * 2016-04-26 2016-09-14 滨州学院 四旋翼反恐飞行器
CN106005385A (zh) * 2016-06-22 2016-10-12 北京航空航天大学 一种基于多旋翼操纵的油电混合共轴直升机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001071998A (ja) * 1999-06-29 2001-03-21 Rokuro Hosoda 航空機および回転力伝達装置
CN1807184A (zh) * 2006-02-23 2006-07-26 上海交通大学 尾舵操控式旋翼飞行机器人
CN102126553A (zh) * 2010-01-12 2011-07-20 北京航空航天大学 一种垂直起降小型无人机
CN103448909A (zh) * 2013-09-17 2013-12-18 无锡振华机械有限公司 飞行器方向操纵机构
CN103950537A (zh) * 2014-05-13 2014-07-30 江苏艾锐泰克无人飞行器科技有限公司 变距飞行器的控制方法和控制装置
WO2016054147A1 (en) * 2014-10-01 2016-04-07 Sikorsky Aircraft Corporation Power management between a propulsor and a coaxial rotor of a helicopter
CN204452929U (zh) * 2014-12-05 2015-07-08 上海交通大学 带操作舵面的倾转机身式混合多态飞行器
CN104627359A (zh) * 2015-02-17 2015-05-20 何春旺 多轴飞行器
CN104843177A (zh) * 2015-04-30 2015-08-19 何春旺 飞行器
CN104925248A (zh) * 2015-06-04 2015-09-23 杭州锐翼科技有限公司 一种具有新型气动布局的多旋翼无人机及其电机控制方法
CN205499349U (zh) * 2016-03-23 2016-08-24 哈尔滨飞机工业集团有限责任公司 一种复合推力电动无人直升机
CN205569757U (zh) * 2016-04-26 2016-09-14 滨州学院 四旋翼反恐飞行器
CN106005385A (zh) * 2016-06-22 2016-10-12 北京航空航天大学 一种基于多旋翼操纵的油电混合共轴直升机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024046060A1 (zh) * 2022-08-31 2024-03-07 亿航智能设备(广州)有限公司 一种航空器的控制制导方法、设备及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US10144509B2 (en) High performance VTOL aircraft
US20200010182A1 (en) Pivoting wing system for vtol aircraft
JP2019517412A5 (zh)
JP2019517412A (ja) 補完的な角度がついたロータを有する垂直離着陸用翼付き航空機
WO2020134136A1 (zh) 一种无人飞行器
EP2394914A1 (en) A rotorcraft with a coaxial rotor system
KR101715136B1 (ko) 수직 이착륙 무인기 및 이의 자세제어 방법
JP2006511399A (ja) ホバリング中に受動的に安定なローターと飛行体
CN106043696A (zh) 一种无人机飞行系统
WO2016028358A2 (en) High Performance VTOL Aircraft
CN106167092B (zh) 一种共轴直升机及其旋翼系统
CN107697279A (zh) 倾转尾部高速直升机
CN105966609B (zh) 一种具有可变距跷跷板式旋翼头的重型自转旋翼机混合动力跳飞系统
CN105197237A (zh) 一种垂直起降无人机
JP2019181965A (ja) 高速ドローン等航空機
CN104973241A (zh) 具有主副多旋翼结构的无人飞行器
CN205998126U (zh) 一种无人机飞行系统
CN204776020U (zh) 具有主副多旋翼结构的无人飞行器
CN105173076B (zh) 一种垂直起降无人机
CN107878747A (zh) 一种垂直起降的固定翼飞行器
CN208036606U (zh) 一种多自由度仿蜻蜓扑翼飞行器
KR101664899B1 (ko) 멀티콥터
WO2018076206A1 (zh) 飞行器及其飞行控制方法和装置
JP6618000B1 (ja) 電子部品及び当該電子部品を取り付けた飛行体
CN106428550A (zh) 一种倾转式无人机及其飞控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919765

Country of ref document: EP

Kind code of ref document: A1