WO2018074783A1 - 배가스 처리장치 및 처리방법 - Google Patents
배가스 처리장치 및 처리방법 Download PDFInfo
- Publication number
- WO2018074783A1 WO2018074783A1 PCT/KR2017/011350 KR2017011350W WO2018074783A1 WO 2018074783 A1 WO2018074783 A1 WO 2018074783A1 KR 2017011350 W KR2017011350 W KR 2017011350W WO 2018074783 A1 WO2018074783 A1 WO 2018074783A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- exhaust
- exhaust gas
- trolley
- circulation
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B21/00—Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
- F27B21/06—Endless-strand sintering machines
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/16—Sintering; Agglomerating
- C22B1/20—Sintering; Agglomerating in sintering machines with movable grates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B21/00—Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
- F27B21/02—Sintering grates or tables
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/001—Extraction of waste gases, collection of fumes and hoods used therefor
- F27D17/002—Details of the installations, e.g. fume conduits or seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/04—Circulating atmospheres by mechanical means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D7/00—Forming, maintaining, or circulating atmospheres in heating chambers
- F27D7/06—Forming or maintaining special atmospheres or vacuum within heating chambers
Definitions
- the present invention relates to a flue gas treatment apparatus and a treatment method, and more particularly to a flue gas treatment apparatus and treatment method that can suppress or prevent the interference between the flue gas flow due to the negative pressure difference for each section of the facility.
- Sintered ore is a blast furnace charge made from ferrous ore, limestone, powdered coke and anthracite. In blast furnace operation for the production of molten iron, sinter ore is charged with iron ore and coke into the blast furnace.
- a sintered ore manufacturing process is a process of sintering fine iron ore to a size suitable for blast furnace use.
- a sintered ore manufacturing process includes the process of preparing a compounding raw material, and the process of manufacturing a compounding raw material into a sintered ore. Among them, a process of manufacturing the blended raw material into a sintered ore is usually performed in a sintering machine.
- the process of manufacturing the blended raw material into sintered ore is carried out as follows. While moving the sinter bogie in the extending direction of the sintering machine, charge the compounding raw material to a certain height on the sintering bogie, ignite the surface layer of the compounding raw material to generate a combustion zone, and use the exhaust gas treatment device to air down the sintering bogie. Is forcedly aspirated to move the combustion zone downward and sinter the blended raw materials. Thereafter, the sintered blended raw material such as sintered ore is crushed and cooled through a crusher and a cooler provided in the light distribution section of the sintering machine, classified into a particle size of 5 mm to 50 mm suitable for blast furnace use, and then transferred to the blast furnace.
- the sensible heat of the flue gas can be recycled to the sinter to reduce the energy required for sintering.
- four sinters were converted into on-strand cooling sinterers, and the air of the cooling section of the sinter was recycled and used as sintering air.
- Kita Kyushu and Kashima have also applied the sintered flue gas circulation technology to circulate the flue gas of the cooler to the sinter.
- NKK installed a second blower to recycle the exhaust gas recovered by the second blower to the light distribution side of the sintering machine in order to increase the suction capacity for the purpose of improving productivity of the Fukuyama 4 sinter.
- the method of improving the sensible heat recovery of the system was applied.
- the above cases are examples of applying the sintered flue gas circulation technology to the sintering machine operation for the purpose of reducing the amount of exhaust gas by transferring the sensitized flue gas to the sintered bed or the ignition furnace and for reducing the amount of exhaust gas.
- NSC's Kitakyushu III sintering in 1992 reduced the amount of exhaust gas by 28% by improving the equipment to minimize the amount of emissions while maintaining productivity and quality.
- EOS emission Optimized Sintering
- Application to the Hoogovens sintering plant in the Netherlands reduced emissions by about 40%.
- a method for increasing the sintered ore there is a method of increasing the blower capacity of the exhaust gas treatment device to increase the amount of sintered air and a method of increasing the amount of sintered air by increasing the image area of the sintering machine. At this time, if the blower capacity of the flue gas treatment device is increased, the structure for cleaning the flue gas must also be increased, and the maintenance cost of the flue gas treatment device is further increased.
- POSCO's Pohang 4 sintering has expanded the image area of the sintering machine to introduce sintered flue gas circulation technology and to increase the sintered ore in response to the increased demand for sintered ore due to the expansion of the blast furnace contents and the high feed-through ratio operation.
- a blower for exhaust gas circulation was additionally installed in the exhaust gas treatment device.
- the added blower was configured to circulate to the rear end of the sintered layer with less oxygen consumption after suctioning the exhaust gas at a high pressure with the portion where the ventilation resistance of the sintered layer is the largest suction position of the exhaust gas.
- the exhaust gas sucked into the added blower is circulated and supplied to the upper portion of the sintered layer, the total amount of the exhaust gas can be maintained. Therefore, even if the image area of Pohang 4 sinter is increased and a blower is added, the existing structure related to the flue-gas cleaning of the flue-gas treatment apparatus can be used as it is.
- Patent Document 1 KR10-2002-0014877 A
- Patent Document 2 KR10-2016-0079240 A
- Non-Patent Document 1 F.W. Kinsey, Dravo co.,, "Design parameters for strand cooling", AIME, vol. 34, Ironmaking proceeding, p85, (1975)
- Non-Patent Document 2 D. Schlebusch, F. Cappel, "Optimization of pollution control in sinter plant", 6-th International symposium on agglomeration, p403-408, Nagoya, Japan, (1993)
- the present invention provides a flue gas treatment apparatus and treatment method that can suppress or prevent the interference between the flow of flue gas due to the negative pressure difference for each section of the facility.
- the present invention provides a flue gas treatment apparatus and treatment method that can improve the operating efficiency of the facility by suppressing or preventing interference between the flue gas flow of the facility.
- An exhaust gas treating apparatus has a suction having a circulation region and an exhaust region, which extend along a traveling direction of the trolley at a lower portion of the trolley which moves a plurality of sections and is capable of processing raw materials, and which are distinguished from each other. part; And a blocking part provided at a boundary between the circulation area and the exhaust area so as to seal a gap between the bogie and the suction part.
- the suction unit includes a plurality of windboxes arranged along a driving direction of the trolley, wherein the plurality of windboxes are connected to upper ends adjacent to each other in a direction in which the suction unit extends, and the blocking unit includes the plurality of windboxes. It may be installed at the upper end portion of the box that is in contact with each other of the wind box contacting the boundary with the boundary between the circulation region and the exhaust region.
- An interval between an upper surface of the blocking unit and a lower surface of the bogie may be greater than 0 and less than or equal to 100 mm within an error range.
- An exhaust gas treating apparatus is disposed in a circulation region and an exhaust region separated from each other at a lower portion of a bogie that is capable of processing a raw material while moving a plurality of sections, and is arranged along the running direction of the bogie. And a plurality of windboxes, wherein an upper end of some of the windboxes disposed adjacent to a boundary between the circulation area and the exhaust area may protrude from the upper ends of the other windboxes.
- the partial windbox may include a first windbox positioned in the circulation region and a second windbox positioned in the exhaust region with the boundary therebetween, and an upper end portion of the first windbox and the second windbox in contact with each other. May be located within a distance of more than 0 and 100 mm or less from the lower surface of the bogie.
- a blocking part installed at an upper end portion of the first windbox and the second windbox in contact with the bogie to seal the gap between the bogie and the windbox at the boundary.
- the blocking unit of the exhaust gas treatment device according to the embodiments of the present invention, the blocking unit body extending in a direction crossing the running direction of the bogie; And a flap protruding from the body of the blocking part in the traveling direction of the vehicle.
- the flap may be formed above or below the blocking body, or between the upper and lower portions of the blocking body.
- the flap may be located in at least one of the circulation zone and the exhaust zone.
- the flap may be located in a region having a lower negative pressure among the circulation region and the exhaust region.
- the blocking unit may further include at least one rib protruding from the upper surface of the flap.
- the rib may extend in a direction crossing the traveling direction of the trolley or the traveling direction of the trolley. When a plurality of the ribs are formed, some of the plurality of ribs may extend in a traveling direction of the trolley, and the rest of the plurality of ribs may extend in a direction crossing the traveling direction of the trolley.
- the blocking part may further include a tip protruding downward from the end of the flap in a direction from the blocking body toward the end of the flap.
- the cross-sectional width of the upper end of the wind box facing the flap is 1, the total protruding length of the flap and the tip in the traveling direction of the bogie may be greater than 0 and less than 2/3.
- Exhaust gas treatment method the step of charging the raw material into the bogie to move a plurality of sections and heat treatment; Sucking the inside of the trolley by using a suction unit which extends along a running direction of the trolley and has a circulation zone and an exhaust zone that are separated from each other under the trolley; And suppressing backflow of the exhaust gas of the region having a lower negative pressure among the circulation region and the exhaust region to the gap side between the bogie and the suction part.
- the upper side of the plurality of wind boxes arranged in the running direction of the bogie in the bottom of the bogies, the upper side of the some wind box in contact with each other with the boundary of the exhaust gas circulation region and the exhaust zone in between Install a block at the end.
- the exhaust gas is discharged between the bogie and the windbox by using the cut-off part in the circulation zone of the flue gas and the region with the low negative pressure. The flow back to the gap side can be suppressed or prevented from flowing into a region having a large negative pressure.
- the blocking portion may be further provided at the upper end of the above-mentioned some windboxes in contact with each other.
- the windbox on the side of the circulating region of the exhaust gas and the exhaust region is in contact with each other and the exhaust gas flow of the windbox on the edge of the circulating region of the exhaust gas interferes with each other, and the windbox on the side with the lower negative pressure is relatively smaller. It is possible to suppress or prevent the occurrence of reverse flow of flue gas in the reactor.
- the efficiency of both the circulating flow and the exhaust flow of the exhaust gas can be improved, and the overall exhaust gas flow rate can be improved.
- the efficiency of sintered ore manufacturing operation can be improved, and high-quality sintered ore can be manufactured.
- FIG. 1 is a schematic diagram of a raw material processing facility according to an embodiment of the present invention.
- Figure 2 is a schematic diagram showing an exhaust gas treatment apparatus according to an embodiment of the present invention.
- FIG 3 is a schematic view of a blocking unit according to a first modified example of the embodiment of the present invention.
- FIG 4 is a schematic view of a blocking unit according to a second modified example of the embodiment of the present invention.
- FIG 5 is a schematic view of a blocking unit according to a third modified example of the embodiment of the present invention.
- FIG. 6 is a schematic view of a blocking unit according to a fourth modified example of the embodiment of the present invention.
- FIG. 7 is a schematic view of a blocking unit according to a fifth modified example of the embodiment of the present invention.
- FIG. 8 is a schematic diagram of an exhaust gas flow in a suction unit according to a comparative example of the present invention.
- FIG. 9 is a graph showing the results of numerical analysis of the exhaust gas flow in the suction unit according to the comparative example and the embodiment of the present invention.
- FIG. 11 is a table illustrating a result of a reduced modeling experiment on a flue gas flow in a suction unit according to a comparative example and an embodiment of the present invention.
- 'top' and 'bottom' refer to the upper part and the lower part, respectively, as part of a component.
- 'top' and 'below' refer to a space in which the upper and lower parts of the component directly and in direct contact with each other act.
- the present invention relates to a flue gas treatment apparatus and method that can suppress or prevent the occurrence of flow interference between the circulated and exhaust flow in the flue gas flow of the sintering machine by the negative pressure difference for each section of the equipment, for example, the negative pressure difference between the windboxes. It is about.
- the embodiment will be described in detail based on the sintered ore manufacturing operation of the steel mill.
- the present invention can also be utilized to control the flue gas flow of various treatment facilities.
- FIG. 1 is a schematic diagram of a raw material processing facility to which the flue gas treatment apparatus according to an embodiment of the present invention is applied
- FIG. 2 is a schematic view showing a suction unit and a blocking unit of the flue gas treatment apparatus according to an embodiment of the present invention.
- 3 to 7 are schematic views illustrating various modifications of the blocking unit according to the exemplary embodiment of the present invention.
- 3 is a schematic diagram of a blocking unit according to a first modified example of the embodiment of the present invention
- FIG. 4 is a schematic diagram of a blocking unit according to a second modified example of the embodiment of the present invention
- FIG. 5 is a third diagram of an embodiment of the present invention.
- 6 is a schematic view of a blocking unit according to a modification
- FIG. 6 is a schematic view of a blocking unit according to a fourth modification of the embodiment of the present invention
- FIG. 7 is a schematic view of a blocking unit according to a fifth modification of the embodiment of the present invention.
- a raw material processing facility includes a bogie 10, a raw material hopper 21, an upper light hopper 22, an ignition furnace 30, and an exhaust gas treatment device 400. do.
- the raw material processing facility may be, for example, a sintering machine capable of circulating at least a portion of the exhaust gas generated in the plurality of sections while being able to heat the raw materials by charging the raw materials in order.
- a sintering machine capable of circulating at least a portion of the exhaust gas generated in the plurality of sections while being able to heat the raw materials by charging the raw materials in order.
- it may be a downward suction sintering machine having an exhaust gas circulation structure.
- the truck 10 may be installed to process a raw material while moving a plurality of sections.
- the trolley 10 may be provided in plural and may be continuously arranged in the extending direction of the raw material processing facility and may be coupled to each other, and the plurality of sections may be installed to travel in the direction in which the plurality of sections are arranged.
- the trolley 10 may be opened to an upper side thereof, and a space in which raw materials are loaded and heat treated is formed in the space therein.
- the raw material may be charged in the inside of the cart 10.
- the trolley 10 may be provided with a grate bar on a lower surface of the bottom 11, for example, in a lattice structure, and may communicate with a wind box, which will be described later, by the lattice structure. It can be sucked downward by the windbox.
- the trolley 10 may form a conveying path on the upper side, and may form a conveying path on the lower side.
- the trolley 10 travels in one direction along the conveyance path, heat-processes the raw material loaded therein in one direction, and distributes the sintered ore which has been heat-treated to the crushing unit (not shown) while entering the return path.
- the return path may be rotated by traveling the return path in one direction opposite to the one direction.
- the transport path may include a plurality of sections.
- the plurality of sections include a charging section in which the raw material hopper 21 and the upper light hopper 22 are positioned, an ignition section in which the ignition furnace 30 is located, and a sintering section located on the opposite side of the charging section, centering on the ignition section. And, based on the direction in which the raw material may be continuously arranged in the order of charging section, ignition section and sintering section.
- the charging section may be located at an upstream side of the transport path, which is one edge that is relatively preceded with respect to the direction in which the raw material moves among the two edges of the transport path.
- the raw material is loaded in the trolley 10 to form a raw material layer in the trolley 10.
- the ignition section may be provided extending in the movement direction of the raw material on the downstream side of the charging section that follows the charging section relative to the direction in which the raw material moves.
- an upper portion hereinafter referred to as an upper layer
- the sintering section is a section for sintering and cooling the raw material layer while moving the combustion zone formed in the upper layer loaded on the bogie 10 to the lower part of the raw material layer (hereinafter referred to as 'lower layer'), and igniting with respect to the direction in which the raw material moves. It can be located relative to the interval.
- the bogie 10 may be heat-treated while moving the raw materials in the order of the charging section, the ignition section, and the sintering section to manufacture the sintered ore.
- the raw material hopper 21 is a hopper in which raw materials are stored, and is located on one side, for example, a charging section, on the trolley 10.
- the raw material hopper 21 may be provided with a charging chute and a drum feeder in the lower opening, and may be charged by vertically segregating the raw material in the trolley 10.
- the raw material may include a blended raw material for producing sintered ore.
- the raw material may be prepared by mixing and humidifying the iron source, the subsidiary material, and the solid fuel, and then granulating the granular material to the order of several mm.
- the iron source is an iron source having an iron component, and may include iron ore and iron ore
- the secondary raw material may include limestone as a secondary raw material containing calcium carbonate
- the solid fuel may be fine coal coke and anthracite as a coal-based solid fuel. It may include.
- the upper light hopper 22 may be provided on the upstream side of the charging section ahead of the raw material hopper 21 in the moving direction of the raw material.
- the upper light may be provided by selectively sintering ore having a particle size of, for example, 8 mm to 15 mm in the sintered ore.
- the upper light is charged in the inside of the trolley 10 before the raw material, and serves to prevent the raw material from adhering to the bottom of the trolley 10 or the raw material is lost to the gap of the bottom 11.
- the ignition furnace 30 may be located on the trolley 10 spaced apart in the direction in which the trolley 10 travels in the raw material hopper 21, for example, on one side on the trolley 10 where the raw material hopper 21 is located.
- the trolley 10 may be positioned on the ignition section of the transport path spaced apart by a predetermined distance in the traveling direction.
- the ignition furnace 30 may be formed so as to spray the flame downward, and serves to ignite by applying a flame to the upper layer. At this time, the flame may be complexed to the solid fuel contained in the upper layer.
- Exhaust gas treatment apparatus 400 according to an embodiment of the present invention a plurality of sections at least a portion of the exhaust gas sucked to the lower side of the bogie 10 while sucking the inside of the bogie 10 for processing the raw material moving a plurality of sections It can be formed to circulate in.
- the exhaust gas treating apparatus 400 may include a suction unit, a blocking unit 413, an exhaust pipe 420, an exhaust gas circulation unit, and an exhaust gas exhaust unit.
- the suction unit may extend along the driving direction of the trolley 10 under the trolley 10.
- the suction unit may extend in the driving direction of the trolley 10 while surrounding the lower portion of the trolley 10.
- the suction unit may include a plurality of windboxes 410 arranged along the driving direction of the trolley 10.
- the plurality of windboxes 410 may be connected to upper ends adjacent to each other in the direction in which the suction unit extends.
- the plurality of windboxes 410 communicate with the inside of the bogie 10 through the bottom 11 of the bogie 10, and form a negative pressure therein to suck the inside of the bogie 10 downward, thereby allowing the inside of the raw material layer to be absorbed.
- the combustion zone can be moved from the upper layer to the lower layer to sinter the raw material. In the above-described process, the exhaust gas is collected in the plurality of windboxes 410.
- the trolley 10 passing through the ignition furnace 30 passes through the suction part while traveling in one direction.
- a suction force in the downward direction is generated inside the trolley 10 by the suction portion.
- the combustion zone is moved downward while outside air on the trolley 10 is sucked downward while passing through the inside of the trolley 10.
- the trolley 10 passes one point in the sintering section, the combustion zone reaches the bottom 11 of the trolley 10 to complete the sintering of the raw material layer, and then the trolley 10 moves to the end point of the transfer path. While the sintered ore is cooled, the light may be distributed in the light distribution unit provided at the end point of the transport path.
- the plurality of windboxes 410 are spaced apart from the bottom 11 of the trolley 10 by a predetermined gap to prevent collision with the trolley 10 while sucking the inside of the moving trolley 10 downward.
- the plurality of windboxes 410 may include the bottom 11 of the trolley 10. Spaced apart). That is, the plurality of windboxes 410 have a structure in which upper ends adjacent to each other and in contact with each other are spaced apart from the bottom 11 of the trolley 10 by a predetermined interval.
- the suction unit may have a circulation region and an exhaust region that are separated from each other, and the plurality of wind boxes 410 may include the wind boxes 411 disposed in the circulation region and the wind boxes 412 disposed in the exhaust region. It can be divided into.
- the circulation region may be an inner region of the suction part that contacts the point from one point in the sintering section to another point in the sintering section.
- one point in the sintering section described above may include a point at which the combustion zone in the raw material layer reaches the bottom 11 of the trolley 10 so that the sintering of the raw material layer is completed.
- the other point in the aforementioned sintering section may include another point at which the airflow resistance value of the sintered raw material layer starts to be lower than a predetermined value.
- the exhaust region may include an inner region of the suction portion that contacts the point from which the transfer path starts to one point in the above-described sintering section, and an inner region of the suction portion that contacts the other point within the above-mentioned sintering section to the point where the transfer path ends. Can be. That is, the exhaust region may be the remaining region in the suction portion except the circulation region.
- the sintering section may be divided in various ways according to the needs of the operation.
- the above-described separation of the circulating region and the exhaust region illustrates one of several methods of circulating the exhaust gas.
- the circulating region and the exhaust region may be variously selected and distinguished from each other. Can be circulated.
- the vent pipe 420 may be provided in plural and spaced apart in a direction in which the suction part extends to communicate with the lower part of the suction part, and in detail, may be mounted through the lower parts of the plurality of wind boxes 410.
- the vent pipe 420 may be divided into the vent pipes 421 mounted to the wind boxes 411 disposed in the circulation area and the vent pipes 422 mounted to the wind boxes 412 disposed in the exhaust area. .
- the exhaust gas circulation part may be connected to the vent pipes 421 mounted at one side of the plurality of vent pipes 420, for example, the wind boxes 411 of the circulation area, and the other side may be opened at a predetermined position on the plurality of sections.
- the exhaust gas circulation unit may circulate the exhaust gas sucked in the portion where the airflow resistance of the sintered raw material layer is greatest to a predetermined position on the plurality of sections.
- the other side of the exhaust gas circulation portion may be opened between the above-mentioned one point of the sintering section and the end point of the transfer path, it may be opened on the downstream side rather than the above-mentioned one point of the sintering section.
- the other side of the exhaust gas circulation portion may be opened at various positions on the plurality of sections in addition to the positions described above.
- a description will be given with reference to the structure of the exhaust gas circulation unit for circulating the exhaust gas sucked in the portion where the airflow resistance of the sintered raw material layer is the largest on the downstream side of the sintering section.
- the exhaust gas circulation unit may include a circulation pipe 430, a circulation blower 451, and a hood 460.
- the circulation pipe 430 has a passage therein, one end of which is connected to the vent pipes 421 mounted to the wind boxes 411 of the circulation region in contact with a portion of the sintered raw material layer having a large ventilation resistance. May be connected to the hood 460.
- the circulating blower 451 is, for example, a blower for exhaust gas circulation, and is mounted on one side of the circulation pipe 430 to form a flow of exhaust gas from one end of the circulation pipe 430 toward the other end. By this flow, the exhaust gas circulation flow may be formed in the windboxes 411 of the circulation region.
- the hood 460 may extend on the trolley 10 in the traveling direction of the trolley 10, and may be extended between the end points of the transfer paths at one point of the sintering section.
- the hood 460 may be opened downward to face the trolley 10 and communicate with the other end of the circulation pipe 430.
- the hood 460 may receive the exhaust gas from the circulation pipe 430 and circulate while supplying it to the bogie 10.
- vent pipes 422 not connected to the exhaust gas circulation part of the plurality of vent pipes 420 may be connected to the exhaust gas exhaust part. Flue gas collected in the windboxes 412 in the exhaust area may be exhausted to the atmosphere through the exhaust gas exhaust.
- the exhaust gas exhaust part may be connected to the vent pipes 422 mounted on one side of the plurality of vent pipes 420, for example, the wind boxes 412 of the exhaust area, and the other side thereof may be opened in the atmosphere.
- the exhaust gas exhaust may exhaust the exhaust gas collected in the windboxes 412 of the exhaust region.
- the exhaust gas exhaust unit may include an exhaust chamber 440, a dust collector 470, a main blower 452, and an exhaust port 480.
- the exhaust chamber 440 may have a passage therein, one end of which may be connected to the vent pipes 422 mounted to the windboxes 412 of the exhaust area, and the other end thereof may be connected to the exhaust port 480.
- the main blower 452 is, for example, a blower for exhaust gas exhaust, which is mounted at one side of the exhaust chamber 440 to form a flow of exhaust gas from one end of the exhaust chamber 440 toward the other end. By this flow, an exhaust gas exhaust stream may be formed in the windboxes 412 of the exhaust region.
- the exhaust gas contains pollutants such as dust, nitrogen oxides and sulfur oxides
- the dust collector 470 is provided on the other side of the exhaust chamber 440 preceding the main blower 452 in the exhaust gas flow direction to filter the pollutants. Is installed.
- a crushing unit (not shown) is provided at the downstream end of the sintering section.
- the sintered ore distributed in the trolley 10 may be crushed to a predetermined particle size in the crushing unit, and then sorted in a screen (not shown), and may be supplied to another process such as blast furnace operation, used as top light, or reused as a raw material according to the particle size.
- the main blower 452 and the circulation blower 451 have different suction positions and suction areas. That is, the main blower 452 and the circulating blower 451 are different from the position and number of the wind box to be sucked.
- the air permeability of the raw material layer in) is also different. Due to these differences, the working pressure of the main blower 452 and the circulation blower 451 is different.
- the negative pressure applied by the main blower 452 to the windboxes 412 of the exhaust area and the negative pressure applied by the circulation blower 451 to the windboxes 411 of the circulation area are different,
- the amount of flue gas is also different.
- the magnitude of the negative pressure applied by the circulation blower 451 to the windboxes 411 of the circulation area may be greater than the magnitude of the negative pressure applied by the main blower 452 to the windboxes 412 of the exhaust area. Of course, this may be applied oppositely. In other words, the negative pressure in the exhaust region may be greater.
- the exhaust gas in the region having a low negative pressure may flow back to the region having a high negative pressure. That is, interference between the exhaust gas flows at the boundary between the circulation region and the exhaust region where the negative pressures are different may cause reverse flow of the exhaust gas toward the higher negative pressure.
- the reversed flue gas may be introduced into a region having a high negative pressure through a gap between the bottom 11 of the bogie 10 and the suction part.
- a blocking part at the boundary between the circulation area and the exhaust area. 413 can be provided to seal the gap between the trolley 10 and the suction part.
- the blocking unit 413 may extend in a direction intersecting the travel direction of the trolley 10 to form a block shape, for example.
- the blocking unit 413 may be installed at upper ends of the plurality of windboxes 410 that are in contact with each other of the windboxes that contact the boundary with the boundary between the circulation area and the exhaust area interposed therebetween.
- the interval between the upper surface of the blocking portion 413 and the lower surface of the cart 10 may be greater than 0 and less than or equal to 100 mm within an error range.
- the error range may be a mechanical or electronic error range of the measuring means, and the structural collision between them in consideration of structural deformation of the bottom 11 and the blocking portion 413 of the bogie 10. It can mean the least amount of play that can be prevented.
- the blocking portion 413 may narrow the gap between the bottom 11 of the bogie 10 and the upper end of the windbox at the boundary between the exhaust and circulation regions. That is, the effect that the above-mentioned gap is sealed by the blocking part 413 can be achieved, and therefore, it can prevent that a flow outflows from the low side to the high side. And in the remaining positions without the blocking portion 413, the exhaust gas can freely enter and exit through the gap between the bottom 11 of the bogie 10 and the upper end of the wind box, thereby allowing the exhaust gas in each of the exhaust and circulation regions. Aspiration can be formed stably.
- the blocking unit 413 according to an embodiment of the present invention can be implemented in various forms, including the following modifications.
- the blocking part 413A according to the first modified example of the embodiment of the present invention includes a blocking part body 413 ′ and a bogie 10 extending in a direction crossing the traveling direction of the bogie 10. It may include a flap 414 of the plate or wing shape protruding to the blocking body 413 'in the driving direction of the. In this case, the flap 414 may be formed on the blocking body 413 ′.
- the flap 414 forms a flow blocking surface on the windbox in which the flap 414 is located, thereby directly preventing the exhaust gas from flowing backward from the exhaust region on the lower side of the negative pressure to the circulation region on the side of the higher negative pressure. That is, the flap 414 has a significant meaning in terms of hydrodynamics, which will be described below when numerically analyzing the exhaust gas flow inside the suction unit according to the embodiment of the present invention and the comparative example and explaining the result. do.
- the flap 414 receives the raw material falling through the bottom 11 of the trolley 10 to the upper surface to further narrow the gap between the trolley and the suction portion, thereby more effectively forming a boundary between the exhaust region and the circulation region. You can also seal.
- the blocking portion 413C according to the third modified example of the embodiment may have a different height between the blocking portion 413A and the flap 414 according to the first modified example. That is, the blocking part 413C according to the third modification includes the blocking part body 413 ′ extending in the direction crossing the traveling direction of the trolley 10 and the blocking body 413 in the traveling direction of the trolley 10. It may include a flap 414 of the plate or wing shape protruding from the bottom of ').
- the flap 414 is formed on top or bottom of the blocking body 413 'or, although not shown in the figures, varying heights between the top and bottom of the blocking body 413'. Can be formed on.
- the flap 414 may be located in at least one of the circulation area and the exhaust area, and in this case, the flap 414 may be located in the area where the negative pressure is smaller.
- the flap 414 can be located in the area
- the blocking part 413B according to the second modified example of the present invention may include a pair of flaps 414 positioned in both the circulation region and the exhaust region. That is, the blocking unit 413B according to the second modification includes a blocking unit body 413 ′ extending in a direction crossing the traveling direction of the trolley 10, and a blocking unit body 413 in the traveling direction of the trolley 10. And a pair of flaps 414, which are protruded to a), are located in both the circulation zone and the exhaust zone, and have a plate or wing shape.
- the embodiment of the present invention may further have various modified examples including a flap 414 located only in a region having a greater negative pressure among the circulation region and the exhaust region in addition to the above-described modified examples.
- the flap 414 according to the modified examples of the present invention may be located in at least one of the circulation region and the exhaust region.
- the protruding length of the flap when the cross-sectional width of the upper end of the windbox facing the flap 414 is 1, the protruding length of the flap may be greater than 0 and less than 2/3.
- the protruding length of the flap 414 exceeds 2/3 with respect to the cross-sectional width 1 of the upper end of the windbox facing the flap 414, the effect of preventing backflow of the exhaust gas increases, but the wind facing the flap 414 This is because the flue gas flow that has to flow into the box may deteriorate.
- the blocking part 413D according to the fourth modification of the present invention may further include at least one rib 415 protruding from the top surface of the flap 414. That is, the blocking part 413D which concerns on the 4th modification of this invention is the blocking part body 413 'extended in the direction which cross
- a flap 414 protruding from the 413 ′, and at least one rib 415 protruding from the upper surface of the flap 414 may be included.
- the flap 414 is disposed in the exhaust area, and is shown as a structure that protrudes from the lower portion of the blocking body 413 ', in addition, the flap 414 according to the fourth modification of the present invention It may be arranged in the circulation zone or in the exhaust zone and the circulation zone, respectively. In addition, the above-described flap 414 may be formed to protrude at various positions, including the upper and lower portions of the blocking body 413 'and therebetween.
- a plurality of ribs 415 may be formed to extend in a direction crossing the traveling direction of the trolley or the traveling direction of the trolley. At this time, the plurality of ribs 415 may be partially extended in the traveling direction of the trolley, and the remaining portions may extend in the direction crossing the traveling direction of the trolley to form a lattice structure. By using this structure, the raw material falling on the upper surface of the flap 414 can be used to suppress or prevent backflow of the exhaust gas.
- the rib 415 described above may suppress the exhaust gas from being biased from the low pressure side to the high pressure side while acting as a resistance to the flow of the exhaust gas flowing through the upper surface of the flap 414.
- the blocking portion 414E protrudes downward from the blocking body 413 ′ to the end of the flap 414 in a direction toward the end of the flap 414.
- a tip 416 may be further formed. That is, the blocking portion 414E is a flap protruding from the blocking body 413 'extending in the direction crossing the traveling direction of the trolley 10 and the blocking body 413' in the traveling direction of the trolley 10. 414, the blocking body 413 ′ may include a tip 416 protruding downward from the end of the flap 414 in a direction toward the end of the flap 414.
- the tip 461 may prevent the collision with the bottom 11 of the trolley while smoothly securing the flow blocking area of the wind box under the flap 414.
- the cross-sectional width of the upper end of the windbox facing the flap 414 is 1, the total protruding length of the flap 414 and tip 416 in the travel direction of the bogie may be greater than 0 and less than 2/3.
- the structure of the blocking unit according to the above-described modifications may be variously modified by being crossed or combined with each other.
- the structure of the suction unit may be modified as follows.
- the plurality of windboxes provided in the exhaust gas treatment device are arranged in a circulation area and an exhaust area separated from each other at a lower part of a bogie that is capable of processing raw materials while moving a plurality of sections, and are arranged along a running direction of the bogie.
- an upper end portion of some of the wind boxes disposed adjacent to the boundary between the circulation area and the exhaust area among the plurality of wind boxes may protrude upward from the upper ends of the other wind boxes.
- some windboxes include a first windbox positioned in the circulation region and a second windbox positioned in the exhaust region with the boundary between the exhaust region and the circulation region interposed therebetween.
- the upper end that abuts may protrude upward to be located within a distance of greater than 0 and 100 mm or less from the bottom of the bogie.
- the gap between the bogie and the windbox at the boundary between the exhaust zone and the circulation zone is sealed.
- a windshield may be provided at the upper end of the windbox.
- the configuration and manner of the blocking unit may be the same or similar to the configuration and manner of the blocking unit according to the embodiment of the present invention, and the remaining components of the exhaust gas treatment device may be similar or the same as the configuration of the embodiment.
- the blocking unit according to the second embodiment of the present invention may be implemented in various forms including various modifications.
- the configuration and method of the blocking unit of the modified example of the second embodiment of the present invention may be the same or similar to the configuration and method of the blocking unit according to the modified examples of the embodiment of the present invention described above.
- FIG 8 is a schematic view showing the exhaust gas flow inside the suction unit according to a comparative example of the present invention. At this time, there is no structure of the blocking portion in the suction portion according to the comparative example of the present invention, and the gap between the suction portion and the bogie exceeds 100 mm, for example, as in the prior art.
- exhaust gas may flow back at a boundary between an exhaust region and a circulation region.
- a part of the exhaust gas passing through the raw material layer may also be biased into the circulation region on the high negative pressure side.
- the exhaust gas suction amount of the main blower connected to the exhaust region is reduced, resulting in a decrease in operating efficiency. Can be.
- the conventional sintering machine has a gap sufficient for the exhaust gas to move between the windbox and the bogie as shown in FIG. If the sinter exhaust gas circulation technology is applied to the sinter of this structure and the image area of the sinter is enlarged, an additional blower must be installed instead of a single blower. When a plurality of blowers are added and operated in this way, the exhaust gas flows back into the above-described gap, thereby reducing the efficiency of the exhaust gas treatment. In a sintering machine using a plurality of blowers, there is no exhaust gas movement between windboxes connected to different blowers, so that the exhaust gas treatment can be effectively performed.
- Embodiments of the present invention and modifications thereof can efficiently treat the exhaust gas in a structure using two or more blowers using the blocking unit.
- the blocking unit according to an embodiment of the present invention, in the case of the comparative example and the embodiment of the present invention will be numerically analyzed for the exhaust gas flow in the suction unit and the result will be described.
- FIG. 9 is a graph showing the results of numerical analysis of the exhaust gas flow in the suction unit according to the comparative example and the embodiment of the present invention.
- FIG. 9 (a) is a result of numerical analysis of the internal exhaust gas flow in the suction section at the boundary between the exhaust region and the circulation region according to the comparative example of the present invention
- FIG. 9 (b) shows the exhaust gas according to the embodiment of the present invention.
- FIG. 9C shows a blocking body having one flap and a blocking body according to the first modification of the modified examples of the present invention.
- (a) to (c) of FIG. 9 are flow analysis results obtained by calculating flue gas flow changes depending on the presence of the blocking body and the flap.
- the pressure difference between the main blower and the circulating blower was 200 mmAq, and the flue gas flow change was analyzed under the condition that the circulating blower had a higher negative pressure.
- the exhaust gas in the exhaust region flows backward and is forced into the circulation region. You can check it.
- the cutoff portion should be spaced apart from the lower surface of the trolley by a predetermined interval, and the flow of exhaust gas on the cutoff portion biased from the inside of the raw material layer may flow into the circulation region side through the top surface of the cutoff portion.
- the flap of the exhaust gas on the blocking portion is unbiased by using the structure of the flap. Separated and flowed well.
- the blocking unit according to the modified examples of the present invention may further include a flap to more effectively suppress the backflow of the exhaust gas.
- the flap of the blocking portion or the modified example of the embodiment interferes with the flow of the exhaust gas, the change in the exhaust gas amount in the structure of the blocking body and the flap through the reduced model experiment was measured.
- FIG. 10 is a photograph of a result of a reduced modeling experiment on the exhaust gas flow in the suction unit according to the comparative example and the embodiment of the present invention.
- (A) of FIG. 10 is a result of a reduced modeling experiment on the structure of the comparative example of the present invention
- FIG. 10 (b) is a result of a reduced modeling experiment according to an embodiment of the present invention
- FIG. It is a result of a reduced modeling experiment for the blocking part having one flap according to the first modified example of the modified examples of the present invention.
- the extension length of the flap was experimented to be 2/3 based on the cross-sectional width 1 of the upper end of the windbox.
- the reduction modeling experiment for example, a model in which the aspirator internal structure corresponding to the comparative example, the embodiment, and the modification of the present invention is geometrically reduced may be prepared, and the sintering conditions of the sintering machine may be used in various ways. As such, specific descriptions are omitted.
- FIG. 11 is a table illustrating a result of a reduced modeling experiment on an exhaust gas flow in a suction unit according to a comparative example and an embodiment of the present disclosure.
- the comparative example is a result of the reduced modeling experiment on the structure of the comparative example of the present invention
- Example 1 is the result of the reduced modeling experiment according to the embodiment of the present invention
- Example 2 is the first of the modified examples of the present invention. This is the result of a reduced modeling experiment on a breaker body having a breaker body and one flap of the first modified example.
- Example 1 Based on the results of the comparative example, it can be seen from Example 1 that the flow rate of the flue gas was well maintained in Example 1 having a structure with a blocking part, and the flow rate of flue gas flowing into the circulation region in Example 2 having a flap was 12. % Increase, and the total flow rate increased by 11%. That is, it can be confirmed that the flow rate of the exhaust gas can be maintained while suppressing the flow interference in the structure with the blocking portion, and it can be confirmed that the suppression of the flow interference and the increase of the exhaust gas flow rate can be achieved in the structure having the blocking portion with the flap.
- the reason why the total exhaust gas flow rate and the exhaust gas flow rate of the circulation region increase together is as follows. As the flow interference between the exhaust region and the circulation region is effectively suppressed or prevented by the flap, exhaust gas can be sufficiently sucked in the raw material layer on the circulation region having a relatively high ventilation resistance.
- the negative pressure in the circulation region can act on all or most of the raw material layer on the circulation region with a large ventilation resistance without interfering with the exhaust region, thereby increasing the exhaust gas flow rate in the circulation region and smoothly exhaust gas in the exhaust region. Since it can be aspirated, the flow rate of the exhaust gas can increase before.
- Exhaust gas treatment method the process of heat-treating and moving a plurality of sections by loading the raw material into the bogie, the process of sucking the inside of the bogie by using the suction unit, the negative pressure of the circulation zone and the exhaust zone is smaller And suppressing back flow of the flue gas in the region to the gap side between the bogie and the suction part.
- the process of suppressing the backward flow of the exhaust gas of the region having the lower negative pressure among the circulation region and the exhaust region to the gap side between the bogie and the suction portion in more detail, using a blocking portion provided at the boundary between the circulation region and the exhaust region.
- the exhaust gas of the region having a lower negative pressure among the circulation region and the exhaust region may be prevented from flowing back to the gap side between the bogie and the suction part.
- raw materials are prepared in a raw material hopper.
- the raw material may be prepared by mixing and humidifying the iron ore, limestone, powdered coke and anthracite, assembling them to a few millimeters of particle size, and charging them into the raw material hopper.
- the sintered ore having a predetermined particle size may be screened with the upper light, and charged into the upper light hopper to prepare.
- the raw material is charged to the trolley and heat treated while moving a plurality of sections.
- This process includes a process of driving a trolley in a direction in which a plurality of sections are arranged, a process of charging raw materials into a trolley using a raw material hopper; Ignition of the raw material in the ignition furnace to form a combustion zone in the inside of the bogie, it may include the step of sintering the raw material while moving the combustion zone from the top of the bogie to the bottom.
- the upper light is input to the bottom of the bogie in the charging section of the plurality of sections while driving the bogie along the transport path in the direction in which the plurality of sections are arranged,
- the raw material is added to the upper surface of the upper light to form a raw material layer.
- the raw material layer When the raw material layer is formed, the raw material layer is moved in the order of the ignition period and the sintering period, and in the ignition period, the raw material layer is ignited to form a combustion zone, and in the sintering period, about 1300 while the combustion zone is moved from the upper layer to the lower layer of the raw material layer.
- the raw material layer is heat treated at a high temperature of 1 ° C. to 1400 ° C. and sintered into sintered ore.
- the inside of the trolley is sucked by using the suction unit, a part of the exhaust gas being sucked is circulated to the trolley and the rest is exhausted.
- the suction unit extends along the running direction of the bogie to the lower portion of the bogie, and has a circulating region and an exhaust region which are separated from each other, may be the above-described suction unit of the exhaust gas treatment apparatus according to an embodiment of the present invention.
- a step of suppressing backflow of the exhaust gas of the region having a lower negative pressure among the circulation zone and the exhaust zone to the gap side between the trolley and the suction unit is included.
- the reverse flow of the exhaust gas can be suppressed by using a blocking portion provided at the boundary between the circulation region and the exhaust region.
- the sintered ore charged into the bogie and completed sintering is distributed to the crushing part at the end of the conveying path, crushed to a predetermined particle size at the crushing part, and then sorted on the screen and supplied to another blast furnace operation according to the particle size, It can be used as the top light or can be classified as semi-glow and reused as raw material.
- a gap may be sealed at the boundary between the exhaust area and the circulation area to seal the gap between the bogie and the windbox.
- the blocking portion has a flap or a flap and ribs, the total flow rate of the exhaust gas and the exhaust gas flow rate circulated can be increased, thereby increasing the efficiency of the operation. It can be further improved and a high quality sintered ore can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
본 발명은 복수의 구간을 이동하며 원료를 처리 가능하게 설치되는 대차의 하부에 상기 대차의 주행 방향을 따라 연장되고, 서로 구분되는 순환 영역 및 배기 영역을 가지는 흡인부; 및 상기 대차와 흡인부 간의 간극을 실링하도록, 상기 순환 영역과 배기 영역의 경계에 설치되는 차단부;를 포함하는 배가스 처리장치 및 이에 적용되는 배가스 처리방법으로서, 설비의 구간별 부압 차이에 의한 배가스 흐름 간의 간섭을 억제 또는 방지할 수 있는 배가스 처리장치 및 처리방법이 제시된다.
Description
본 발명은 배가스 처리장치 및 처리방법에 관한 것으로, 더욱 상세하게는 설비의 구간별 부압 차이에 의한 배가스 흐름 간의 간섭을 억제 또는 방지할 수 있는 배가스 처리장치 및 처리방법에 관한 것이다.
소결광은 분철광석, 석회석, 분코크스 및 무연탄 등을 원료로 하여 제조되는 고로 장입물이다. 용선 생산을 위한 고로 조업 시, 소결광은 고로의 내부에 철광석 및 코크스와 함께 장입된다. 소결광 제조 공정은 미립의 분철광석을 소결하여 고로 사용에 적합한 크기로 제조하는 공정이다. 소결광 제조 공정은 배합 원료를 준비하는 과정과, 배합 원료를 소결광으로 제조하는 과정을 포함한다. 그중 배합 원료를 소결광으로 제조하는 과정은 통상적으로 소결기에서 수행된다.
배합 원료를 소결광으로 제조하는 과정은 다음과 같이 수행된다. 소결 대차를 소결기의 연장 방향으로 이동시키면서, 소결 대차상에 배합 원료를 일정 높이로 장입하고, 배합 원료의 표층을 점화하여 연소대를 생성하고, 배가스 처리장치를 이용하여 소결 대차의 하방으로 공기를 강제 흡인하여 연소대를 하방으로 이동시키며 배합 원료를 소결한다. 이후, 소결이 완료된 배합 원료 예컨대 소결광은 소결기의 배광 구간에 마련된 파쇄기 및 냉각기를 거쳐 파쇄 및 냉각되고, 고로 사용에 적합한 5㎜ 내지 50㎜ 의 입도로 분급되어 고로로 이송된다.
한편, 소결기의 기능 향상과 에너지 저감을 위한 소결 배가스순환 기술은 미국의 Kinsey가 1975년도 AIME에 발표하여 주목을 끌었다. 이 발표에서 소결기의 길이를 연장하여 소결기에 냉각기를 합한 형태인 on-strand cooling 소결기가 제시되었고, 소결부와 냉각부를 두 영역으로 가정하여 분할 흡인하면서 냉각부에서 배출되는 고온의 배가스를 소결부의 공기로 순환하여 사용하는 에너지 저감형 소결 모형이 함께 제시되었다. 이후, 일본 및 유럽에서 이와 유사한 연구나 특허가 1970년대와 1980년대에 걸쳐 다수 발표되거나 출원되었다.
소결 배가스순환 기술을 소결기 조업에 적용하면 배가스의 현열을 소결에 재활용하여 소결에 필요한 에너지를 저감 할 수 있다. 제1차 오일쇼크 이후 1984년도 와카야마에서는 4소결을 on-strand cooling 소결기로 개조한 후, 소결기의 냉각부 공기를 재순환시켜 소결용 공기로 사용하였다. 또한, 기타규슈와 가시마 등에서도 냉각기의 배가스를 소결기에 순환하는 소결 배가스순환 기술을 적용하였다. 그리고 1991년도 NKK에서는 후쿠야마 4소결의 생산성 향상을 목적으로 흡인 능력을 증대하기 위하여, 제2 블로어를 설치한 후 제2 블로어가 회수하는 배가스를 소결기의 배광부측에 재순환시킴으로써, 여기에 설치된 보일러의 현열 회수 능력을 더불어 향상시키는 방식을 적용하였다.
이상의 사례들은 배가스 현열을 소결층 또는 점화로에 전달하여 에너지를 저감하는 것을 목적으로 하면서 배출 가스량의 저감을 부수적인 목적으로 하여, 소결 배가스순환 기술을 소결기 조업에 적용한 사례들이다.
한편, 환경 정책에 의한 규제가 강화됨에 따라 최근에는 황산화물(SOx)과 질소산화물(NOx) 등의 처리 설비에 대한 투자비 및 운영비가 원가 부담으로 작용하고 있다. 이에, 각국의 제철소에서는 소결기에서 배출되는 배가스량을 최대한 재활용하여, 공해방지 설비에 대한 투자비를 줄이면서, 에너지를 저감함으로써 온실가스 규제에 대처하고 있다.
예컨대 1992년도 NSC의 기타큐슈 3소결은 생산성 및 품질을 유지하면서 배출 가스량을 최대한 줄이도록 설비를 개선하여 28% 의 배가스량을 저감하였고, 1994년도 독일 Lurgi는 EOS(Emission Optimized Sintering)를 개발한 후 이를 네덜란드의 Hoogovens 소결공장에 적용함으로써 약 40% 의 배가스량를 저감하였다. 이 사례들은 국제적 환경 규제에 대비한 것이나 기술의 완성 상태는 아니다.
또한, 1994년도 NSC의 후쯔 프로세스 연구소, 오스트리아 Voest-Alpine, 호주 BHP 및 이탈리아 CSM(Centro Sviluppo Materiali) 등에서 소결공정을 환경 친화형 공정으로 개선하려는 연구를 진행하고 있고, 스미토모에서는 On-strand cooling 소결기에 원료층을 상단과 하단의 두 개의 단으로 분류 장입하여 각각을 점화 소결함으로써 상단의 배가스를 하단의 소결에 재사용하는 이단점화 소결법을 연구 중에 있다.
한편, 소결광의 증산을 위한 방안으로, 배가스 처리장치의 블로어 능력을 증대하여 소결 풍량을 증가시키는 방안과 소결기의 화상면적을 확대하여 소결 풍량을 증가시키는 방안이 있다. 이때, 배가스 처리장치의 블로어 능력을 증대하면 배가스의 청정을 위한 구조도 증설해야 되고, 배가스 처리장치의 유지비가 더 들게 된다.
따라서, POSCO의 포항 4소결은 소결 배가스순환 기술을 도입하면서, 고로 내용적 확대와 고출선비 조업으로 인한 소결광의 수요 증대에 대응하여 소결광을 증산하기 위한 목적으로, 소결기의 화상면적을 확대하였고, 이에 의한 소결 풍량 증가에 대응하여 배가스 처리장치에 배가스 순환을 위한 블로어를 추가 설치하였다.
이때, 추가된 블로어는 소결층의 통기저항이 가장 큰 부분을 배가스의 흡인 위치로 하여 이 위치의 배가스를 고압으로 흡인한 후 비교적 산소의 소모가 덜한 소결층의 후단으로 순환시키도록 구성되었다. 한편, 추가된 블로어로 흡인된 배가스는 소결층 상부로 순환 공급되기 때문에, 배가스의 총량이 유지될 수 있다. 따라서, 포항 4소결의 화상면적을 증가시키고 블로어를 추가하더라도, 배가스 처리장치의 배가스 청정과 관련된 기존의 구조를 그대로 사용할 수 있다.
(선행기술문헌)
(특허문헌)
(특허문헌 1) KR10-2002-0014877 A
(특허문헌 2) KR10-2016-0079240 A
(비특허문헌)
(비특허문헌 1) F.W. Kinsey, Dravo co., , "Design parameters for strand cooling", AIME, vol.34, Ironmaking proceeding, p85, (1975)
(비특허문헌 2) D. Schlebusch, F. Cappel, "Optimization of pollution control in sinter plant", 6-th International symposium on agglomeration, p403-408, Nagoya, Japan, (1993)
본 발명은 설비의 구간별 부압 차이에 의한 배가스의 흐름 간의 간섭을 억제 또는 방지할 수 있는 배가스 처리장치 및 처리방법을 제공한다.
본 발명은 설비의 배가스 흐름 간의 간섭을 억제 또는 방지하여 설비의 조업 효율을 향상시킬 수 있는 배가스 처리장치 및 처리방법을 제공한다.
본 발명의 실시 형태에 따른 배가스 처리장치는, 복수의 구간을 이동하며 원료를 처리 가능하게 설치되는 대차의 하부에 상기 대차의 주행 방향을 따라 연장되고, 서로 구분되는 순환 영역 및 배기 영역을 가지는 흡인부; 및 상기 대차와 흡인부 간의 간극을 실링하도록, 상기 순환 영역과 배기 영역의 경계에 설치되는 차단부;를 포함한다.
상기 흡인부는 상기 대차의 주행 방향을 따라 배열되는 복수개의 윈드박스를 포함하고, 상기 복수개의 윈드박스는 상기 흡인부가 연장된 방향으로 서로 이웃하는 상측 단부들이 각각 연접하며, 상기 차단부는 상기 복수개의 윈드박스 중 상기 순환 영역과 배기 영역의 경계를 사이에 두고 상기 경계에 접하는 일부 윈드박스의 서로 연접하는 상측 단부에 설치될 수 있다.
상기 차단부의 상면과 상기 대차의 하면 간의 간격은 오차 범위 내에서 0 초과 100㎜ 이하일 수 있다.
본 발명의 다른 실시 형태에 따른 배가스 처리장치는, 복수의 구간을 이동하며 원료를 처리 가능하게 설치되는 대차의 하부에서 서로 구분된 순환 영역과 배기 영역에 배치되고, 상기 대차의 주행 방향을 따라 배열되는 복수개의 윈드박스;를 포함하고, 상기 복수개의 윈드박스 중, 상기 순환 영역과 배기 영역의 경계에 인접하여 배치되는 일부 윈드박스의 상측 단부는 나머지 윈드박스들의 상측 단부보다 돌출될 수 있다.
상기 일부 윈드박스는 상기 경계를 사이에 두고 상기 순환 영역에 위치하는 제1 윈드박스 및 상기 배기 영역에 위치하는 제2 윈드박스를 포함하고, 상기 제1 윈드박스와 제2 윈드박스가 접하는 상측 단부는 상기 대차의 하면에서 0 초과 100㎜ 이하의 거리 내에 위치할 수 있다.
상기 경계에서 상기 대차와 상기 일부 윈드박스 간의 간극을 실링하도록, 상기 제1 윈드박스와 제2 윈드박스가 접하는 상측 단부에 설치되는 차단부;를 포함할 수 있다.
본 발명의 실시 형태들에 따른 배가스 처리장치의 상기 차단부는, 상기 대차의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체; 상기 대차의 주행 방향으로 상기 차단부 몸체에 돌출 형성되는 플랩;을 포함할 수 있다.
상기 플랩은 상기 차단부 몸체의 상부 또는 하부에 형성되거나, 상기 차단부 몸체의 상부와 하부 사이에 형성될 수 있다. 상기 플랩은 상기 순환 영역 및 배기 영역 중 적어도 하나의 영역에 위치할 수 있다. 상기 플랩은 상기 순환 영역 및 배기 영역 중 부압이 더 작은 영역에 위치할 수 있다. 상기 플랩과 마주보는 윈드박스의 상측 단부의 단면 너비가 1 이면, 상기 플랩의 돌출 길이는 0 초과 2/3 이하일 수 있다.
상기 차단부는, 상기 플랩의 상면에 돌출 형성되는 적어도 하나의 리브;를 더 포함할 수 있다. 상기 리브는 상기 대차의 주행 방향 또는 상기 대차의 주행 방향에 교차하는 방향으로 연장될 수 있다. 상기 리브가 복수개 형성되면, 상기 복수개의 리브는 일부가 상기 대차의 주행 방향으로 연장되고, 나머지가 상기 대차의 주행 방향에 교차하는 방향으로 연장될 수 있다.
상기 차단부는, 상기 차단부 몸체에서 상기 플랩의 단부를 향하는 방향으로 상기 플랩의 단부에 하향 경사지게 돌출 형성되는 팁;을 더 포함할 수 있다. 상기 플랩과 마주보는 윈드박스의 상측 단부의 단면 너비가 1 이면, 상기 대차의 주행 방향으로 상기 플랩과 팁의 전체 돌출 길이는 0 초과 2/3 이하일 수 있다.
본 발명의 실시 형태에 따른 배가스 처리방법은, 대차에 원료를 장입하여 복수의 구간을 이동시키며 열처리하는 과정; 상기 대차의 하부에 상기 대차의 주행 방향을 따라 연장되고, 서로 구분되는 순환 영역과 배기 영역을 가지는 흡인부를 이용하여, 상기 대차의 내부를 흡인하는 과정; 및 상기 순환 영역과 배기 영역 중 부압이 더 작은 영역의 배가스가 상기 대차와 흡인부 간의 간극 측으로 역류하는 것을 억제하는 과정;을 포함한다.
상기 순환 영역과 배기 영역의 경계에 마련된 차단부를 이용하여, 상기 배가스가 역류하는 것을 억제할 수 있다.
본 발명의 실시 형태들에 따르면, 설비의 구간별 부압 차이에 의한 배가스의 흐름들 간의 간섭을 억제하거나 방지할 수 있고, 설비의 조업 효율을 향상시킬 수 있다.
예컨대 제철소의 소결광 제조 조업에 적용되면, 대차 하부에 대차의 주행 방향으로 배열된 복수개의 윈드박스 중 배가스의 순환 영역과 배기 영역의 경계를 사이에 두고 이 경계에 접하는 일부 윈드박스의 서로 연접하는 상측 단부에 차단부를 설치한다. 그리고 대차에 원료를 장입하여 복수의 구간을 이동시키며 열처리하면서 대차의 내부를 하방으로 흡인하는 동안, 이 차단부를 이용하여 배가스의 순환 영역과 배기 영역 중 부압이 작은 영역의 배가스가 대차와 윈드박스 간의 간극 측으로 역류하여 부압이 큰 영역에 유입되는 것을 억제 또는 방지할 수 있다.
또는, 대차 하부에 대차의 주행 방향으로 배열된 복수개의 윈드박스 중 배가스의 순환 영역과 배기 영역의 경계를 사이에 두고 이 경계에 접하는 일부 윈드박스의 서로 연접하는 상측 단부를 나머지 윈드박스들의 상측 단부보다 상측으로 돌출시킨다. 이때, 상술한 일부 윈드박스의 서로 접하는 상측 단부에 차단부가 더 설치될 수도 있다. 그리고 대차에 원료를 장입하여 복수의 구간을 이동시키며 열처리하면서 대차의 내부를 하방으로 흡인하는 동안, 상기의 일부 윈드박스의 돌출된 상측 단부 또는 차단부를 이용하여 배가스가 순환되는 영역과 배기되는 영역 중 부압이 작은 영역의 배가스가 대차와 윈드박스 간의 간극 측으로 역류하여 부압이 큰 영역에 유입되는 것을 억제 또는 방지할 수 있다.
이에 의하여, 배가스의 순환 영역과 배기 영역의 경계에 접하면서 배가스의 순환 영역 가장자리에 놓인 윈드박스와 배가스의 배기 영역 가장자리에 놓인 윈드박스의 배가스 흐름이 서로 간섭받으면서 상대적으로 부압이 작은 쪽의 윈드박스에서 배가스의 역류가 발생하는 것을 억제하거나 방지할 수 있다. 따라서, 배가스의 순환 흐름 및 배기 흐름의 효율을 모두 향상시킬 수 있으며, 전체 배가스 유량을 향상시킬 수 있다. 결국, 소결광 제조 조업의 효율을 향상시킬 수 있어 고품질의 소결광을 제조할 수 있다.
도 1은 본 발명의 실시 예에 따른 원료 처리설비의 개략도이다.
도 2는 본 발명의 실시 예에 따른 배가스 처리장치를 도시한 개략도이다.
도 3은 본 발명의 실시 예의 제1 변형 예에 따른 차단부의 개략도이다.
도 4는 본 발명의 실시 예의 제2 변형 예에 따른 차단부의 개략도이다.
도 5는 본 발명의 실시 예의 제3 변형 예에 따른 차단부의 개략도이다.
도 6은 본 발명의 실시 예의 제4 변형 예에 따른 차단부의 개략도이다.
도 7은 본 발명의 실시 예의 제5 변형 예에 따른 차단부의 개략도이다.
도 8은 본 발명의 비교 예에 따른 흡인부의 배가스 흐름의 개략도이다.
도 9는 본 발명의 비교 예와 실시 예에 따른 흡인부의 배가스 흐름을 수치해석하여 그 결과를 도시한 그래프이다.
도 10은 본 발명의 비교 예와 실시 예에 따른 흡인부의 배가스 흐름에 대한 축소 모델링 실험의 결과를 촬영한 사진이다.
도 11은 본 발명의 비교 예와 실시 예에 따른 흡인부의 배가스 흐름에 대한 축소 모델링 실험의 결과를 도시한 표이다.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.
본 발명의 실시 예를 설명하기 위한 용어 중, '상부'와 '하부'는 구성 요소의 일부분으로서 윗부분과 아랫부분을 각각 지칭한다. 또한, '상에'와 '하에'는 구성 요소의 상부와 하부에 직간접적으로 접하여 작용을 미치는 공간을 지칭한다.
본 발명은 설비의 구간별 부압 차이 예컨대 윈드박스들 간의 부압 차이에 의해 소결기의 배가스 흐름 중 순환되는 흐름과 배기되는 흐름 간에 유동 간섭이 발생하는 것을 억제하거나 방지할 수 있는 배가스 처리장치 및 방법에 관한 것이다. 이하, 제철소의 소결광 제조 조업을 기준으로 하여 실시 예를 상세하게 살명한다. 물론, 본 발명은 다양한 처리 설비의 배가스 흐름 제어에도 활용될 수 있다.
한편, 본 발명의 실시 예를 설명함에 있어, 본 발명의 이해가 명확하도록 본 발명의 실시 예에 따른 원료 처리설비를 먼저 설명한 후, 이를 기반으로 본 발명의 실시 예에 따른 배가스 처리장치 및 배가스 처리방법을 상세하게 설명한다.
도 1은 본 발명의 실시 예에 따른 배가스 처리장치가 적용된 원료 처리설비의 개략도이고, 도 2는 본 발명의 실시 예에 따른 배가스 처리장치의 흡인부 및 차단부를 도시한 개략도이다.
또한, 도 3 내지 도 7은 본 발명의 실시 예에 따른 차단부의 변형 예들을 다양하게 도시한 개략도이다. 이때, 도 3은 본 발명의 실시 예의 제1 변형 예에 따른 차단부의 개략도이고, 도 4는 본 발명의 실시 예의 제2 변형 예에 따른 차단부의 개략도이고, 도 5는 본 발명의 실시 예의 제3 변형 예에 따른 차단부의 개략도이고, 도 6은 본 발명의 실시 예의 제4 변형 예에 따른 차단부의 개략도이며, 도 7은 본 발명의 실시 예의 제5 변형 예에 따른 차단부의 개략도이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 원료 처리설비는, 대차(10), 원료 호퍼(21), 상부광 호퍼(22), 점화로(30) 및 배가스 처리장치(400)를 포함한다.
원료 처리설비는 예컨대 원료를 장입받아 복수의 구간을 따라 순서대로 이동시키며 열처리할 수 있으면서, 복수의 구간에서 발생하는 배가스의 적어도 일부를 복수의 구간 중 적어도 일부에 순환시킬 수 있는 소결기일 수 있다. 예컨대 배가스 순환 구조를 가지는 하방흡입식의 소결기일 수 있다.
대차(10)는 복수의 구간을 이동하며 원료를 처리 가능하게 설치될 수 있다. 대차(10)는 복수개 구비되어 원료 처리설비의 연장 방향으로 연속하여 배열되며 서로 결합될 수 있으며, 복수의 구간이 배열된 방향으로 주행 가능하게 설치될 수 있다. 대차(10)는 내부가 상측으로 개방될 수 있고, 이 내부의 공간에 원료가 적재되어 열처리되는 공간이 형성된다. 대차(10)의 내부에 원료가 낙하 장입될 수 있다.
대차(10)는 하부면 예컨대 바닥(11)에 그레이트 바(grate bar)가 예컨대 격자 구조로 마련될 수 있고, 이 격자 구조에 의하여 대차(10)의 내부가 후술하는 윈드박스에 연통할 수 있고, 윈드박스에 의해 하방으로 흡인될 수 있다.
대차(10)는 상부측에 이송경로를 형성할 수 있고, 하부측에 회송경로를 형성할 수 있다. 대차(10)는 이송경로를 따라 일 방향으로 주행하며, 내부에 적재된 원료를 일 방향으로 이동시키면서 열처리하고, 회송경로로 진입하면서 열처리가 완료된 소결광을 파쇄부(미도시)에 배광한 후, 일 방향의 반대 방향으로 회송경로를 주행하여 이송경로로 회차될 수 있다.
이송경로는 복수의 구간을 포함할 수 있다. 복수의 구간은, 원료 호퍼(21)와 상부광 호퍼(22)가 위치하는 장입 구간, 점화로(30)가 위치하는 점화 구간 및 점화 구간을 중심으로 장입 구간의 반대측에 위치하는 소결 구간을 포함하며, 원료가 이동하는 방향을 기준으로 장입 구간, 점화 구간 및 소결 구간의 순서로 연속하여 배열될 수 있다.
장입 구간은 이송경로의 양측 가장자리 중 원료가 이동하는 방향에 대해 상대적으로 선행하는 일측 가장자리인 이송경로의 상류측에 위치할 수 있다. 장입 구간에서 대차(10)의 내부에 원료가 적재되어 대차(10)의 내부에 원료층이 형성된다. 점화 구간은 원료가 이동하는 방향에 대해 장입 구간에 상대적으로 후행하는 장입 구간의 하류 측에 원료의 이동 방향으로 연장되어 마련될 수 있다. 점화 구간에서 대차(10) 내부에 적재된 원료층의 상부(이하 상부층)가 점화된다.
소결 구간은 대차(10)에 적재된 상부층에 형성된 연소대를 원료층의 하부(이하, '하부층'이라고 함)으로 이동시키면서 원료층을 소결 및 냉각시키는 구간이며, 원료가 이동하는 방향에 대해 점화 구간에 상대적으로 후행하여 위치할 수 있다. 대차(10)는 장입 구간, 점화 구간 및 소결 구간의 순서로 원료를 이동시키면서 열처리하여 소결광을 제조할 수 있다.
원료 호퍼(21)는 내부에 원료가 저장되는 호퍼이고, 대차(10) 상의 일측 예컨대 장입 구간 상에 위치한다. 원료 호퍼(21)는 하측 개구에 장입 슈트와 드럼 피더가 마련될 수 있고, 원료를 대차(10) 내에 수직 편석시켜 장입할 수 있다.
원료는 소결광 제조용 배합 원료를 포함할 수 있다. 예컨대 원료는 철 공급원, 부원료 및 고체 연료를 혼합 및 조습한 후 조립하여 수 ㎜ 정도의 입도로 마련할 수 있다. 이때, 철 공급원은 철 성분을 가지는 철 공급원으로서, 철광석과 분철광석을 포함할 수 있고, 부원료는 탄산칼슘을 함유하는 부원료로서 석회석을 포함할 수 있고, 고체 연료는 석탄계 고체 연료로서 미분 코크스 및 무연탄을 포함할 수 있다.
상부광 호퍼(22)는 원료의 이동 방향으로 원료 호퍼(21)보다 선행하여 장입 구간의 상류 측에 구비될수 있다. 상부광은 소결광 중 예컨대 8㎜ 내지 15㎜ 입도의 소결광을 선별하여 마련할 수 있다. 상부광은 원료보다 먼저 대차(10)의 내부에 장입되어, 대차(10)의 바닥에 원료가 부착되거나 바닥(11)의 틈새로 원료가 유실되는 것을 방지하는 역할을 한다.
점화로(30)는 원료 호퍼(21)에서 대차(10)가 주행하는 방향으로 이격되어 대차(10) 상에 위치할 수 있고, 예컨대 원료 호퍼(21)가 위치하는 대차(10) 상의 일측에서 대차(10)가 주행하는 방향으로 소정 거리 이격되어 이송경로의 점화 구간 상에 위치할 수 있다. 점화로(30)는 하측으로 화염을 분사 가능하게 형성될 수 있고, 상부층에 화염을 인가하여 착화시키는 역할을 한다. 이때, 화염은 상부층에 함유된 고체 연료에 착화될 수 있다.
본 발명의 실시 예에 따른 배가스 처리장치(400)는 복수의 구간을 이동하며 원료를 처리하는 대차(10)의 내부를 흡인하면서 대차(10)의 하방으로 흡인되는 배가스의 적어도 일부를 복수의 구간에 순환시킬 수 있게 형성될 수 있다.
도 1 및 도 2를 참조하면, 본 발명의 실시 예에 따른 배가스 처리장치(400)는, 흡인부, 차단부(413), 통기관(420), 배가스 순환부 및 배가스 배기부를 포함할 수 있다.
흡인부는 대차(10)의 하부에 대차(10)의 주행 방향을 따라 연장될 수 있다. 예컨대 흡인부는 대차(10)의 하부를 감싸면서 대차(10)의 주행 방향으로 연장될 수 있다. 흡인부는 대차(10)의 주행 방향을 따라 배열되는 복수개의 윈드박스(410)를 포함할 수 있다. 복수개의 윈드박스(410)는 흡인부가 연장된 방향으로 서로 이웃하는 상측 단부들이 각각 연접할 수 있다. 복수개의 윈드박스(410)는 대차(10)의 바닥(11)을 통하여 대차(10)의 내부에 연통하며, 내부에 부압을 형성하여 대차(10)의 내부를 하방으로 흡인하면서, 원료층 내의 연소대를 상부층에서 하부층으로 이동시켜, 원료를 소결시킬 수 있다. 상술한 과정에서 배가스가 복수개의 윈드박스(410) 내부에 수집된다.
점화로(30)를 통과한 대차(10)는 일 방향으로 주행하면서 흡인부 상을 통과하게 된다. 흡인부에 의해 대차(10)의 내부에 하측 방향으로의 흡인력이 발생된다. 이 흡인력에 의해, 대차(10) 상의 외기가 대차(10)의 내부를 통과하며 하방으로 흡인되면서 연소대가 하측으로 이동된다. 대차(10)가 소결 구간 내의 일 지점을 통과할 때 연소대가 대차(10)의 바닥(11)에 이르게 되어 원료층의 소결이 완료되고, 이후부터 이송경로의 종료 지점까지 대차(10)가 이동하면서 소결광이 냉각되고, 이송경로의 종료 지점에 마련된 배광부에서 배광될 수 있다.
복수개의 윈드박스(410)는 이동 중인 대차(10)의 내부를 하방으로 흡입하면서 대차(10)와 충돌되는 것을 방지하기 위해 대차(10)의 바닥(11)에서 소정의 간극을 두고 이격된다. 이 외에도, 각 구간을 지나는 동안 각 구간의 여러 지점들에서 소결 상태에 따라 통기저항이 다른 대차(10)의 내부를 효과적으로 흡인하기 위하여 복수개의 윈드박스(410)는 대차(10)의 바닥(11)에서 소정의 간극을 두고 이격된다. 즉, 복수개의 윈드박스(410)는 서로 이웃하며 접하는 상측 단부들이 대차(10)의 바닥(11)에서 소정 간격 이격된 구조이다.
한편, 흡인부는 내부에 서로 구분되는 순환 영역 및 배기 영역을 가질 수 있고, 복수개의 윈드박스(410)는 순환 영역에 배치되는 윈드박스(411)들과 배기 영역에 배치되는 윈드박스(412)들로 구분될 수 있다.
순환 영역은 소결 구간 내의 일 지점 이후부터 소결 구간 내의 타 지점까지에 접하는 흡인부의 내부 영역일 수 있다. 이때, 상술한 소결 구간 내의 일 지점은 원료층 내의 연소대가 대차(10)의 바닥(11)에 이르게 되어 원료층의 소결이 완료되는 일 지점을 포함할 수 있다. 상술한 소결 구간 내의 타 지점은 소결된 원료층의 통기저항값이 소정의 값보다 낮아지기 시작하는 타 지점을 포함할 수 있다.
배기 영역은 이송경로가 시작되는 지점부터 상술한 소결 구간 내의 일 지점까지에 접하는 흡인부의 내부 영역과, 상술한 소결 구간 내의 타 지점부터 이송경로가 종료되는 지점까지에 접하는 흡인부의 내부 영역을 포함할 수 있다. 즉, 배기 영역은 순환 영역을 제외한 흡인부 내의 나머지 영역일 수 있다.
한편, 상술한 소결 구간 내의 일 지점과 타 지점은 발명을 설명하기 위한 일 예시이고, 소결 구간은 조업 상의 필요에 따라 다양한 방식으로 구분될 수 있다. 그리고 상술한 순환 영역과 배기 영역의 구분은 배가스를 순환시키는 여러 방식들 중 하나의 방식을 예시한 것으로, 이 외에도 순환 영역과 배기 영역은 다양하게 선택되어 서로 구분될 수 있으며, 다양한 방식으로 배가스를 순환시킬 수 있다.
차단부(413)를 설명하기에 앞서, 본 발명의 이해가 명확하도록 본 발명의 실시 예에 따른 배가스 처리장치(400)의 통기관(420), 배가스 순환부 및 배가스 배기부를 먼저 설명한다.
통기관(420)은 복수개 구비되며 흡인부가 연장된 방향을 따라 이격되어 흡인부의 하부에 연통할 수 있고, 상세하게는 복수개의 윈드박스(410)의 하부를 관통하여 장착될 수 있다. 통기관(420)은 순환 영역에 배치된 윈드박스(411)들에 장착되는 통기관(421)들과, 배기 영역에 배치된 윈드박스(412)들에 장착되는 통기관(422)들로 구분될 수 있다.
배가스 순환부는 일측이 복수개의 통기관(420) 중 일부 예컨대 순환 영역의 윈드박스들(411)에 장착된 통기관들(421)에 연결되고, 타측이 복수의 구간 상의 소정 위치에 개방될 수 있다. 배가스 순환부는 소결된 원료층의 통기저항이 가장 큰 부분에서 흡인된 배가스를 복수의 구간 상의 소정 위치에 순환시킬 수 있다.
이때, 배가스 순환부의 타측은 소결 구간의 상술한 일 지점과 이송경로의 종료 지점 사이에서 개방될 수 있는데, 소결 구간의 상술한 일 지점보다는 하류 측에서 개방될 수 있다. 이는, 배가스 순환부의 타측이 비교적 산소의 소모가 덜한 소결 구간의 하류 측에서 개방되는 것을 의미한다. 물론, 배가스 순환부의 타측은 상술한 위치 외에도 복수의 구간 상의 다양한 위치에서 개방될 수 있다. 이하에서는 소결된 원료층의 통기저항이 가장 큰 부분에서 흡인된 배가스를 소결 구간의 하류 측에 순환시키는 배가스 순환부의 구조를 기준으로 설명한다.
배가스 순환부는, 순환관(430), 순환 블로어(451) 및 후드(460)를 포함할 수 있다. 순환관(430)은 내부에 통로가 구비되고, 소결된 원료층의 통기저항이 큰 부분에 접하는 순환 영역의 윈드박스들(411)에 장착된 통기관들(421)에 일단이 연결되고, 타단이 후드(460)에 연결될 수 있다. 순환 블로어(451)는 예컨대 배가스 순환용의 송풍기로서, 순환관(430)의 일측에 장착되어 순환관(430)의 일단에서 타단을 향하는 배가스의 흐름을 형성한다. 이 흐름에 의하여, 순환 영역의 윈드박스들(411)에 배가스 순환 흐름이 형성될 수 있다.
후드(460)는 대차(10) 상에 대차(10)의 주행 방향으로 연장될 수 있는데, 소결 구간의 상술한 일 지점에서 이송경로의 종료 지점 사이에 위치하도록 연장될 수 있다. 후드(460)는 내부가 하측으로 개방되어 대차(10)를 마주보고, 순환관(430)의 타단에 연통할 수 있다. 후드(460)는 순환관(430)에서 배가스를 전달받아 대차(10)상에 공급하면서 순환시킬 수 있다.
복수개의 통기관(420) 중 배가스 순환부에 연결되지 않은 통기관들(422)은 배가스 배기부에 연결될 수 있다. 배기 영역의 윈드박스들(412)에서 수집되는 배가스는 배가스 배기부를 통하여 대기 중에 배기될 수 있다.
배가스 배기부는 일측이 복수개의 통기관(420) 중 나머지 예컨대 배기 영역의 윈드박스들(412)에 장착된 통기관들(422)에 연결되고, 타측이 대기 중에 개방될 수 있다. 배가스 배기부는 배기 영역의 윈드박스(412)들에 수집되는 배가스를 배기할 수 있다. 배가스 배기부는, 배기 챔버(440), 집진기(470), 메인 블로어(452) 및 배기구(480)를 포함할 수 있다.
배기 챔버(440)는 내부에 통로가 구비되고, 일단이 배기 영역의 윈드박스들(412)에 장착된 통기관들(422)에 연결되고, 타단이 배기구(480)에 연결될 수 있다. 메인 블로어(452)는 예컨대 배가스 배기용의 송풍기로서, 배기 챔버(440)의 일측에 장착되어, 배기 챔버(440)의 일단에서 타단을 향하는 배가스의 흐름을 형성할 수 있다. 이 흐름에 의하여, 배기 영역의 윈드박스들(412)에 배가스 배기 흐름이 형성될 수 있다. 한편, 배가스에는 분진이나 질소산화물 및 황산화물 등의 오염 물질이 함유되는데, 오염 물질을 여과하기 위하여 배가스 흐름 방향으로 메인 블로어(452)에 선행하는 배기 챔버(440)의 타측에 집진기(470)가 설치된다.
파쇄부(미도시)는 소결 구간의 하류 측 단부에 마련된다. 대차(10)에서 배광되는 소결광은 파쇄부에서 소정 입도로 파쇄된 후 스크린(미도시)에서 선별되어 그 입도에 따라 타공정 예컨대 고로 조업으로 공급되거나 상부광으로 사용되거나 원료로 재사용될 수 있다.
한편, 메인 블로어(452)와 순환 블로어(451)는 흡인 위치 및 흡인 면적이 다르다. 즉, 메인 블로어(452)와 순환 블로어(451)는 흡인해야 하는 윈드박스의 위치와 개수가 다르다. 또한, 메인 블로어(452)에 연결된 윈드박스들(412) 상을 통과하는 대차(10) 내의 원료층의 통기성과, 순환 블로어(451)에 연결된 윈드박스들(411) 상을 통과하는 대차(10) 내의 원료층의 통기성도 서로 다르다. 이러한 차이점들에 의하여 메인 블로어(452)와 순환 블로어(451)는 작동 압력이 다르다.
이에, 메인 블로어(452)가 배기 영역의 윈드박스들(412)에 인가하는 부압과 순환 블로어(451)가 순환 영역의 윈드박스들(411)에 인가하는 부압의 크기가 다르고, 각각에서 흡인하는 배가스의 양도 다르다. 예컨대 순환 블로어(451)가 순환 영역의 윈드박스들(411)에 인가하는 부압의 크기가 메인 블로어(452)가 배기 영역의 윈드박스들(412)에 인가하는 부압의 크기보다 클 수 있다. 물론, 이는 서로 반대로 적용될 수도 있다. 즉, 배기 영역의 부압이 더 클 수도 있다.
이같은 경우, 부압이 낮은 영역의 배가스가 역류하여 부압이 높은 영역으로 흐를 수 있다. 즉, 부압이 서로 다른 순환 영역과 배기 영역의 경계에서 배가스 흐름 간에 간섭이 발생하여 부압이 높은 쪽으로 배가스의 역류가 발생할 수 있다. 역류된 배가스는 대차(10)의 바닥(11)과 흡인부 간의 간극을 통하여, 부압이 높은 영역으로 유입될 수 있다.
이같이 메인 블로어(452)와 순환 블로어(451) 간의 작동 압력 또는 흡인력의 차이에 의하여 흡인부 내의 배기 영역과 순환 영역의 경계에서 순환 블로어(451)가 메인 블로어(452)의 작동에 간섭함에 따라, 배기 영역으로 배기되어야 하는 배가스의 일부가 부압 차이에 의해 고부압의 순환 영역으로 역류하여 메인 블로어(452)측의 배가스 흡인량이 감소한다. 이를 메인 블로어(452)와 순환 블로어(451) 간의 유동 간섭이라 한다.
본 발명의 실시 예에서는 흡인부 내의 배기 영역과 순환 영역의 경계에서 메인 블로어(452)와 순환 블로어(451) 간의 유동 간섭이 발생하는 것을 억제 또는 방지하고자, 순환 영역과 배기 영역의 경계에 차단부(413)를 설치하여 대차(10)와 흡인부 간의 간극을 실링할 수 있다.
도 2를 참조하면, 차단부(413)는 대차(10)의 주행 방향에 교차하는 방향으로 연장되어 예컨대 블록 형상으로 형성될 수 있다. 차단부(413)는 복수개의 윈드박스(410) 중 순환 영역과 배기 영역의 경계를 사이에 두고 상기 경계에 접하는 일부 윈드박스의 서로 연접하는 상측 단부에 설치될 수 있다.
이때, 차단부(413)의 상면과 대차(10)의 하면 간의 간격은 오차 범위 내에서 0 초과 100㎜ 이하일 수 있다. 여기서, 오차 범위라 함은 측정 수단의 기계적인 또는 전자적인 오차 범위일 수도 있고, 대차(10)의 바닥(11)과 차단부(413)의 구조적인 변형 등을 고려하여 이들 간의 구조적인 충돌을 방지할 수 있는 최소한의 유격을 의미할 수 있다.
차단부(413)에 의해 배기 영역과 순환 영역의 경계에서 대차(10)의 바닥(11)과 윈드박스의 상측 단부 간의 간극이 좁아질 수 있다. 즉, 차단부(413)에 의해 상술한 간극이 실링되는 효과를 달성할 수 있으며, 따라서, 부압이 낮은 쪽에서 높은 쪽으로 흐름이 유출되는 것을 방지할 수 있다. 그리고 차단부(413)가 없는 나머지 위치들에서는 대차(10)의 바닥(11)과 윈드박스의 상측 단부 간의 간극을 통하여 배가스가 자유롭게 출입할 수 있고, 이에 의하여 배기 영역과 순환 영역 각각에서 배가스의 흡인이 안정적으로 형성될 수 있다.
한편, 본 발명의 실시 예에 따른 차단부(413)는 하기의 변형 예들을 포함하여 다양한 형식으로 구현될 수 있다.
도 3을 참조하면, 본 발명의 실시 예의 제1 변형 예에 따른 차단부(413A)는, 대차(10)의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체(413'), 대차(10)의 주행 방향으로 차단부 몸체(413')에 돌출 형성되는 판 또는 날개 형상의 플랩(414)을 포함할 수 있다. 이때, 플랩(414)은 차단부 몸체(413')의 상부에 형성될 수 있다.
플랩(414)은 플랩(414)이 위치한 윈드박스 상에 유동 차단면을 형성하여, 부압이 낮은 쪽인 배기 영역에서 부압이 높은 쪽인 순환 영역으로 배가스가 역류하는 것을 직접적으로 막아줄 수 있다. 즉, 플랩(414)은 유체역학적인 측면에서 상당한 의미를 가지며, 이는 이하에서 본 발명의 실시 예와 비교 예에 따른 흡인부 내부의 배가스 흐름을 수치해석하여 그 결과를 설명할 때 함께 설명하기로 한다.
또한, 플랩(414)은 대차(10)의 바닥(11)을 통과하여 낙하되는 원료를 상부면으로 받아서 대차와 흡인부 간의 간극을 더 좁혀 줄 수 있어, 배기 영역과 순환 영역 간의 경계를 더욱 효과적으로 실링할 수도 있다.
도 5를 참조하면, 본 발명의 실시 예의 제3 변형 예에 따른 차단부(413C)는 상술한 제1 변형 예의 차단부(413A)와 플랩(414)의 형성 높이가 다를 수 있다. 즉, 제3 변형 예에 따른 차단부(413C)는, 대차(10)의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체(413'), 대차(10)의 주행 방향으로 차단부 몸체(413')의 하부에 돌출 형성되는 판 또는 날개 형상의 플랩(414)을 포함할 수 있다.
이처럼, 본 발명의 여러 변형 예들에서 플랩(414)은 차단부 몸체(413')의 상부 또는 하부에 형성되거나, 도면에 도시하지 않았으나, 차단부 몸체(413')의 상부와 하부 사이의 다양한 높이에 형성될 수 있다.
도 3 및 도 5를 참조하면, 플랩(414)은 순환 영역 및 배기 영역 중 적어도 일 영역에 위치할 수 있는데, 이때, 두 영역 중 부압이 더 작은 영역에 위치할 수 있다. 또한, 후술하는 제4 변형 예의 차단부(413D) 및 제5 변형 예의 차단부(413E)의 경우에도, 플랩(414)이 순환 영역 및 배기 영역 중 부압이 더 작은 영역에 위치할 수 있다. 즉, 본 발명의 제1, 제3, 제4, 및 제5 변형 예들은 부압이 작은 영역인 배기 영역 측에 위치하는 플랩(414)을 예시한다.
반면, 도 4를 참조하면, 본 발명의 제2 변형 예에 따른 차단부(413B)는 순환 영역과 배기 영역에 모두 위치하는 한 쌍의 플랩(414)을 포함할 수 있다. 즉, 제2 변형 예에 따른 차단부(413B)는, 대차(10)의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체(413'), 대차(10)의 주행 방향으로 차단부 몸체(413')에 돌출 형성되고, 순환 영역과 배기 영역 모두 위치하며, 판 또는 날개 형상을 가지는 한 쌍의 플랩(414)을 포함할 수 있다.
물론, 본 발명의 실시 예는 상술한 변형 예들 외에도 순환 영역과 배기 영역 중 부압이 더 큰 영역에만 위치하는 플랩(414)을 포함하는 다양한 변형 예들을 더 가질 수 있다. 이처럼, 본 발명의 변형 예들에 따른 플랩(414)은 순환 영역 및 배기 영역 중 적어도 일 영역에 위치할 수 있다.
한편, 본 발명의 변형 예들에 따르면 플랩(414)과 마주보는 윈드박스의 상측 단부의 단면 너비가 1 이면, 플랩의 돌출 길이는 0 초과 2/3 이하일 수 있다. 플랩(414)의 돌출 길이가 플랩(414)과 마주보는 윈드박스의 상측 단부의 단면 너비 1에 대하여 2/3를 넘어서게 되면 배가스의 역류를 방지하는 효과는 커지지만 플랩(414)과 마주보는 윈드박스로 유입되어야 하는 배가스 흐름이 악화될 수도 있기 때문이다.
도 6을 참조하면, 본 발명의 제4 변형 에에 따른 차단부(413D)는, 플랩(414)의 상면에 돌출 형성되는 적어도 하나의 리브(415)를 더 포함할 수 있다. 즉, 본 발명의 제4 변형 에에 따른 차단부(413D)는, 대차(10)의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체(413'), 대차(10)의 주행 방향으로 차단부 몸체(413')에 돌출 형성되는 플랩(414), 플랩(414)의 상면에 돌출 형성되는 적어도 하나의 리브(415)를 포함할 수 있다.
이때, 도면에는 플랩(414)이 배기 영역에 배치되고, 차단부 몸체(413')의 하부에 돌출 형성되는 구조로 도시되었으나, 이 외에도, 본 발명의 제4 변형 예에 따른 플랩(414)은 순환 영역에 배치되거나, 배기 영역과 순환 영역에 각각 배치될 수도 있다. 또한, 상술한 플랩(414)은 차단부 몸체(413')의 상부와 하부와 그 사이를 포함하여 다양한 위치에 돌출 형성될 수도 있다.
한편, 리브(415)는 복수개 형성되어 대차의 주행 방향 또는 대차의 주행 방향에 교차하는 방향으로 연장될 수 있다. 이때, 복수개의 리브(415)는 일부가 대차의 주행 방향으로 연장되고, 나머지가 대차의 주행 방향에 교차하는 방향으로 연장되어 격자 구조를 이룰 수 있다. 이 구조를 이용하여 플랩(414)의 상면에 낙하되는 원료를 담아 이를 배가스의 역류 억제 또는 방지에 활용할 수 있다.
또한, 상술한 리브(415)는 플랩(414)의 상면을 타고 흐르는 배가스의 흐름에 저항 역할을 하면서 배가스가 저부압측에서 고부압측으로 편중되는 것을 억제해줄 수 있다.
도 7을 참조하면, 본 발명의 제5 변형 예에 따른 차단부(414E)는, 차단부 몸체(413')에서 플랩(414)의 단부를 향하는 방향으로 플랩(414)의 단부에 하향 경사지게 돌출 형성되는 팁(416)을 더 포함할 수 있다. 즉, 차단부(414E)는 대차(10)의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체(413'), 대차(10)의 주행 방향으로 차단부 몸체(413')에 돌출 형성되는 플랩(414), 차단부 몸체(413')에서 플랩(414)의 단부를 향하는 방향으로 플랩(414)의 단부에 하향 경사지게 돌출 형성되는 팁(416)을 포함할 수 있다.
팁(461)에 의하여 플랩(414) 하측 윈드박스의 유동 차단 면적을 원활하게 확보하면서 대차의 바닥(11)과의 충돌을 방지할 수 있다. 예컨대 플랩(414)과 마주보는 윈드박스의 상측 단부의 단면 너비가 1 이면, 대차의 주행 방향으로 플랩(414)과 팁(416)의 전체 돌출 길이는 0 초과 2/3 이하일 수 있다.
상술한 변형 예들에 따른 차단부의 구조는 서로 교차되거나 결합되어 다양하게 변형될 수 있다.
한편, 본 발명의 다른 실시 예(제2 실시 예)에 따른 배가스 처리장치는 흡인부의 구조가 하기의 형식과 같이 변형될 수 있다. 예컨대 배가스 처리장치에 구비되는 복수개의 윈드박스는, 복수의 구간을 이동하며 원료를 처리 가능하게 설치되는 대차의 하부에서 서로 구분된 순환 영역과 배기 영역에 배치되고, 대차의 주행 방향을 따라 배열되는데, 이때, 복수개의 윈드박스 중 순환 영역과 배기 영역의 경계에 인접하여 배치되는 일부 윈드박스의 상측 단부가 나머지 윈드박스들의 상측 단부보다 상측으로 돌출되는 구조일 수 있다.
즉, 일부 윈드박스는 배기 영역과 순환 영역의 경계를 사이에 두고 순환 영역에 위치하는 제1 윈드박스와 배기 영역에 위치하는 제2 윈드박스를 포함하는데, 제1 윈드박스와 제2 윈드박스가 접하는 상측 단부는 대차의 하면에서 0 초과 100㎜ 이하의 거리 내에 위치하도록 상측으로 돌출될 수 있다.
한편, 이 경우에도 배기 영역과 순환 영역의 경계에서 대차와 윈드박스 간의 간극, 더욱 상세하게는, 배기 영역과 순환 영역의 경계에서 대차와 일부 윈드박스 간의 간극을 실링하도록, 제1 윈드박스와 제2 윈드박스가 접하는 상측 단부에 차단부가 설치될 수도 있다. 여기서, 차단부의 구성 및 방식은 본 발명의 실시 예에 따른 차단부의 구성 및 방식이 동일하게 또는 유사하게 적용될 수 있고, 배가스 처리장치의 나머지 구성들도 실시 예의 구성과 유사 또는 동일할 수 있다.
또한, 본 발명의 제2 실시 예에 따른 차단부도 다양한 변형 예들을 포함하여 다양한 형식으로 구현될 수 있다. 이때, 본 발명의 제2 실시 예의 변형 예들의 차단부의 구성과 방식은 앞서 설명한 본 발명의 실시 예의 변형 예들에 따른 차단부의 구성과 방식이 동일 또는 유사하게 적용될 수 있다.
도 8은 본 발명의 비교 예에 따른 흡인부 내부의 배가스 흐름을 도시한 개략도이다. 이때, 본 발명의 비교 예에 따른 흡인부의 내부에는 차단부의 구조가 없고, 흡인부와 대차 간의 간극이 예컨대 종래와 같이 100㎜ 를 넘게 된다.
도 8을 참조하면, 우선, 본 발명의 비교 예의 구조 예컨대 차단부가 없는 구조는 배기 영역과 순환 영역의 경계에서 배가스가 역류할 수 있다. 또한, 원료층을 통과 중인 배가스의 일부도 고부압측인 순환 영역으로 편중될 수 있다.. 이 같이 유동 간섭이 일어날 경우, 배기 영역에 연결된 메인 블로어의 배가스 흡인량이 감소하게 되어 조업 효율이 저하될 수 있다.
예를 들어, 종래의 소결기는 도 8과 같이 윈드박스와 대차 사이에 배가스가 이동하기 충분한 간극이 있다. 이 구조의 소결기에 소결 배가스순환 기술을 적용하면서 소결기의 화상면적을 확대하게 되면, 단일 블로어로 배가스 처리를 감당하기 못하고 추가 블로어를 설치해야 한다. 이처럼 블로어가 추가되어 복수개로 운용되면, 상술한 간극으로 배가스가 역류하여 배가스 처리의 효율이 저하될 수 있다. 복수개의 블로어를 운용하는 소결기에서 서로 다른 블로어에 연결된 윈드박스들 간에 배가스 이동이 없어야 효과적으로 배가스 처리를 할 수 있다.
본 발명의 실시 예 및 그 변형 예들은 차단부를 이용하여 블로어를 두 개 이상 사용하는 구조에서 배가스를 효율적으로 처리할 수 있다. 본 발명의 실시 예에 따른 차단부의 효과를 설명하기 위하여 이하에서는 본 발명의 비교 예 및 실시 예의 경우에서 흡인부 내의 배가스 흐름을 수치해석하고 그 결과를 설명한다.
도 9는 본 발명의 비교 예 및 실시 예에 따른 흡인부 내부의 배가스 흐름을 수치해석하여 그 결과를 도시한 그래프이다. 도 9의 (a)는 본 발명의 비교 예에 따른 배기 영역과 순환 영역의 경계에서의 흡인부 내부 배가스 흐름을 수치해석한 결과이고, 도 9의 (b)는 본 발명의 실시 예에 따른 배기 영역과 순환 영역의 경계에서의 흡인부 내부 배가스 흐름을 수치해석한 결과이고, 도 9의 (c)는 본 발명의 변형 예들 중 제1 변형 예에 따른 차단부 몸체와 하나의 플랩을 가지는 차단부에 대한 배기 영역과 순환 영역의 경계에서의 흡인부 내부 배가스 흐름을 수치해석한 결과이다.
즉, 도 9의 (a) 내지 (c)는 차단부 몸체와 플랩의 유무에 따른 배가스 흐름 변화를 계산한 유동 해석 결과이다. 이때, 메인 블로어와 순환 블로어 간의 압력차이는 200mmAq로 하였고, 순환 블로어가 더 높은 부압인 조건에서 배가스 흐름 변화를 해석하였다. 도 9의 (a)와 (b)를 대비하면, 본 발명의 비교 예의 경우 배기 영역의 배가스가 역류하여 순환 영역으로 강제 유입되는 것을 확인할 수 있고, 본 발명의 실시 예에서 배가스 역류가 해소된 것을 확인할 수 있다.
이때, 순환 영역으로의 배가스 역류 현상이 많이 해소되었지만, 차단부 상의 배가스가 일부 순환 영역측으로 편중되는 것을 볼 수 있다. 이때, 이같은 배가스의 흐름은 대차의 내부에서부터 시작될 수 있는데, 이는 원료층이 공극을 가진 층이어서 공극을 통해 원료층 내 배가스가 순환 영역으로 쉽게 편중될 수 있기 때문이다.
한편, 대차는 계속 주행하기 때문에 차단부가 대차의 하면에 소정 간격 이격되어 있어야 되고, 원료층의 내에서부터 편중된 차단부 상의 배가스의 흐름이 차단부의 상면을 타고 순환 영역 측으로 유입될 수 있다. 본 발명의 변형 예들에서 이를 억제 혹은 방지하고자, 차단부에 플랩을 마련하고, 플랩을 대차의 주행 방향으로 연장시킨 후, 이 플랩의 구조를 이용하여 차단부 상의 배가스 흐름이 편중되지 않고 각각의 영역으로 분리되며 잘 흐르게 하였다.
도 9의 (b) 및 (c)를 대비하면, 차단부 몸체만 있는 경우보다 차단부가 플랩을 가진 구조에서 배가스의 역류가 잘 억제되는 것을 확인할 수 있다. 즉, 본 발명의 변형 예들에 따른 차단부는 플랩을 더 구비하여, 배가스의 역류를 더욱 효과적으로 억제할 수 있다. 이처럼 본 발명의 실시 예와 그 변형 예들은 배가스의 역류를 효과적으로 억제함을 알 수 있다. 한편, 실시 예의 차단부나 변형 예들의 플랩이 배가스의 흐름을 방해하는지의 여부를 알기 위해, 축소모델실험을 통해서 차단부 몸체와 플랩의 구조에서 배가스량의 변화를 측정하였다.
도 10은 본 발명의 비교 예 및 실시 예에 따른 흡인부 내부의 배가스 흐름에 대한 축소 모델링 실험의 결과를 촬영한 사진이다. 도 10의 (a)는 본 발명의 비교 예의 구조에 대한 축소 모델링 실험의 결과이고, 도 10의 (b)는 본 발명의 실시 예에 따른 축소 모델링 실험의 결과이고, 도 10의 (c)는 본 발명의 변형 예들 중 제1 변형 예에 따른 하나의 플랩을 가지는 차단부에 대한 축소 모델링 실험 결과이다.
이때, 플랩의 연장 길이는 윈드박스의 상측 단부의 단면 너비 1을 기준으로 2/3이 되도록 하여 실험을 실시하였다. 한편, 축소 모델링 실험의 경우, 예컨대 본 발명의 비교 예와 실시 예 및 변형 예에 각각 해당하는 흡인기 내부 구조를 기하학적으로 축소한 모형을 마련하고, 소결기의 소결 조건을 이용하여 다양한 방식으로 실시할 수 있으므로, 구체적인 설명을 생략한다.
축소 모델링의 실험 결과를 도 11에 도시하였다. 도 11은 본 발명의 비교 예 및 실시 예에 따른 흡인부 내부의 배가스 흐름에 대한 축소 모델링 실험의 결과를 도시한 표이다. 도 11에서 비교예는 본 발명의 비교 예의 구조에 대한 축소 모델링 실험의 결과이고, 실시예 1은 본 발명의 실시 예에 따른 축소 모델링 실험의 결과이고, 실시예 2는 본 발명의 변형 예들 중 제1 변형 예의 차단부 몸체와 하나의 플랩을 가지는 차단부에 대한 축소 모델링 실험의 결과이다.
이들 결과를 보면 비교예의 결과를 기준으로, 차단부가 있는 구조인 실시예1에서 배가스의 유량이 잘 유지되는 것을 확인할 수 있고, 플랩이 있는 구조인 실시예 2에서 순환 영역으로 흐르는 배가스의 유량이 12% 증가하고, 전체 유량이 11% 증가한 것을 확인할 수 있다. 즉, 차단부가 있는 구조에서 유동 간섭을 억제하면서 배가스의 유량을 유지할 수 있음을 확인할 수 있고, 차단부가 플랩을 가지는 구조에서 유동 간섭의 억제와 배가스 유량 증가를 달성 가능함을 확인할 수 있다.
한편, 플랩이 있는 경우에 전체 배가스 유량과 순환 영역의 배가스 유량이 함께 증가한 이유는 다음과 같다. 플랩에 의해 배기 영역과 순환 영역의 유동 간섭이 효과적으로 억제 또는 방지됨에 따라, 상대적으로 통기저항이 큰 순환 영역상의 원료층에서 배가스를 충분하게 흡인할 수 있다.
즉, 순환 영역의 부압이 배기 영역에 간섭되지 않고 통기저항이 큰 순환 영역상의 원료층에 전부 또는 대부분 작용할 수 있고, 이에 순환 영역의 배가스 유량이 증가함을 물론이고, 배기 영역에서도 배가스가 원활하게 흡인될 수 있기 때문에, 전에 배가스의 유량이 증가할 수 있다.
이하, 본 발명의 실시 예들에 따른 배가스 처리장치가 적용되는 배가스 처리방법을 설명한다. 본 발명의 실시 예에 따른 배가스 처리방법은, 대차에 원료를 장입하여 복수의 구간을 이동시키며 열처리하는 과정, 흡인부를 이용하여 대차의 내부를 흡인하는 과정, 순환 영역과 배기 영역 중 부압이 더 작은 영역의 배가스가 대차와 흡인부 간의 간극 측으로 역류하는 것을 억제하는 과정을 포함한다.
이때, 상술한 순환 영역과 배기 영역 중 부압이 더 작은 영역의 배가스가 대차와 흡인부 간의 간극 측으로 역류하는 것을 억제하는 과정은, 더욱 상세하게는, 순환 영역과 배기 영역의 경계에 마련된 차단부를 이용하여, 순환 영역과 배기 영역 중 부압이 더 작은 영역의 배가스가 대차와 흡인부 간의 간극 측으로 역류하는 것을 억제하는 과정일 수 있다.
우선, 원료 호퍼에 원료를 준비한다. 이때 원료는 분철광석, 석회석, 분코크스 및 무연탄을 혼합 및 조습하고, 이를 수 ㎜ 입도로 조립하여 마련하고, 원료 호퍼에 장입하여 준비할 수 있다. 이때, 소정 입도의 소결광을 상부광으로 선별하고, 이를 상부광 호퍼에 장입하여 준비할 수 있다.
이후, 대차에 원료를 장입하여 복수의 구간을 이동시키면서 열처리한다.
이 과정은, 복수의 구간이 배열된 방향으로 대차를 주행시키는 과정, 원료 호퍼를 이용하여 대차에 원료를 장입하는 과정; 점화로로 원료를 점화하여 대차의 내부에 연소대를 형성하는 과정, 연소대를 대차의 상부에서 하부로 이동시키면서 원료를 소결하는 과정을 포함할 수 있다.
상세하게는, 원료와 상부광이 각각의 호퍼에 마련되면, 복수의 구간이 배열된 방향으로 이송경로를 따라 대차를 주행시키면서 복수의 구간 중 장입 구간에서 대차의 바닥에 상부광을 투입한 후, 상부광의 상면에 원료를 투입하여 원료층을 형성한다.
원료층이 형성되면 원료층을 점화 구간과 소결 구간의 순서로 이동시키면서, 점화 구간에서 원료층을 점화하여 연소대를 형성하고, 소결 구간에서 연소대를 원료층의 상부층에서 하부층으로 이동시키면서 약 1300℃ 내지 1400℃ 의 고온으로 원료층을 열처리하여 소결광으로 소결한다.
상술한 열처리 과정과 함께, 흡인부를 이용하여 대차의 내부를 흡인하고, 흡인되는 배가스의 일부를 대차에 순환시키고 나머지를 배기한다. 한편, 흡인부는 대차의 하부에 대차의 주행 방향을 따라 연장되고, 서로 구분되는 순환 영역과 배기 영역을 가지는 흡인부로서, 본 발명의 실시 예에 따른 배가스 처리장치의 상술한 흡인부일 수 있다. 이 과정에 의해 연소대가 원료층의 상부에서 하부로 이동하여 원료가 소결될 수 있다.
대차의 내부를 흡인하는 과정과 함께, 순환 영역과 배기 영역 중 부압이 더 작은 영역의 배가스가 대차와 흡인부 간의 간극 측으로 역류하는 것을 억제하는 과정을 포함한다. 이때, 순환 영역과 배기 영역의 경계에 마련된 차단부를 이용하여 배가스가 역류하는 것을 억제할 수 있다.
또한, 상술한 바와 같이, 차단부를 이용하여 배가스가 역류하는 것을 억제하는 과정에서. 차단부의 상면에 돌출 형성된 적어도 하나의 리브를 이용하여 차단부의 상면을 타고 흐르는 배가스의 흐름을 더욱 효과적으로 억제할 수 있다.
한편, 실시 예에 따른 차단부와 그 변형 예들에 따른 차단부 몸체와 플랩과 리브에 의하여 배가스의 역류가 억제되거나 방지되는 과정 및 방식은 상기에서 여러 번 설명하였으므로, 설명의 중복을 피하기 위하여, 그 설명을 생략한다.
대차의 내부에 장입되어 소결이 완료된 소결광은 이송경로의 종료 지점에서 파쇄부로 배광되고, 파쇄부에서 소정의 입도로 파쇄된 후, 스크린에서 선별되어 그 입도에 따라 타공정인 고로 조업으로 공급되거나, 상부광으로 선별 사용되거나, 반광으로 분류되어 원료로 재사용될 수 있다.
본 발명의 실시 예에서는 배기 영역과 순환 영역의 경계에 차단부를 배치하여 대차와 윈드박스 간의 간극을 실링할 수 있다. 이에 따라, 소결광을 제조하면서 배가스를 순환시키는 중에 배기 영역과 순환 영역의 경계에서 이들 영역의 부압 차이에 의하여 배가스가 역류하는 것을 억제하거나 방지할 수 있다. 이에, 조업 중 배가스 유량을 안정적으로 확보할 수 있다.
또한, 본 발명의 변형 예들의 경우, 차단부가 플랩을 가지거나 플랩과 리브를 가지는 구조이고, 이에 의해 배가스의 전체 유량과 순환되는 배가스 유량이 모두 증가하는 효과를 가질 수 있기 때문에, 조업의 효율이 더욱 향상될 수 있고, 고품질의 소결광을 얻을 수 있다.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이며, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 제시된 구성과 방식들은 서로 결합하거나 교차 적용되어 다양한 형태로 변형될 것이고, 이의 변형 예들을 본 발명의 범주로 볼 수 있음을 주지해야 한다. 결국, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.
Claims (18)
- 복수의 구간을 이동하며 원료를 처리 가능하게 설치되는 대차의 하부에 상기 대차의 주행 방향을 따라 연장되고, 서로 구분되는 순환 영역 및 배기 영역을 가지는 흡인부; 및상기 대차와 흡인부 간의 간극을 실링하도록, 상기 순환 영역과 배기 영역의 경계에 설치되는 차단부;를 포함하는 배가스 처리장치.
- 청구항 1에 있어서,상기 흡인부는 상기 대차의 주행 방향을 따라 배열되는 복수개의 윈드박스를 포함하고,상기 복수개의 윈드박스는 상기 흡인부가 연장된 방향으로 서로 이웃하는 상측 단부들이 각각 연접하며,상기 차단부는 상기 복수개의 윈드박스 중 상기 순환 영역과 배기 영역의 경계를 사이에 두고 상기 경계에 접하는 일부 윈드박스의 서로 연접하는 상측 단부에 설치되는 배가스 처리장치.
- 청구항 2에 있어서,상기 차단부의 상면과 상기 대차의 하면 간의 간격은 오차 범위 내에서 0 초과 100㎜ 이하인 배가스 처리장치.
- 복수의 구간을 이동하며 원료를 처리 가능하게 설치되는 대차의 하부에서 서로 구분된 순환 영역과 배기 영역에 배치되고, 상기 대차의 주행 방향을 따라 배열되는 복수개의 윈드박스;를 포함하고,상기 복수개의 윈드박스 중, 상기 순환 영역과 배기 영역의 경계에 인접하여 배치되는 일부 윈드박스의 상측 단부는 나머지 윈드박스들의 상측 단부보다 돌출되는 배가스 처리장치.
- 청구항 4에 있어서,상기 일부 윈드박스는 상기 경계를 사이에 두고 상기 순환 영역에 위치하는 제1 윈드박스 및 상기 배기 영역에 위치하는 제2 윈드박스를 포함하고,상기 제1 윈드박스와 제2 윈드박스가 접하는 상측 단부는 상기 대차의 하면에서 0 초과 100㎜ 이하의 거리 내에 위치하는 배가스 처리장치.
- 청구항 5에 있어서,상기 경계에서 상기 대차와 상기 일부 윈드박스 간의 간극을 실링하도록, 상기 제1 윈드박스와 제2 윈드박스가 접하는 상측 단부에 설치되는 차단부;를 포함하는 배가스 처리장치.
- 청구항 1 내지 청구항 3 및 청구항 6 중 어느 하나에 있어서,상기 차단부는,상기 대차의 주행 방향에 교차하는 방향으로 연장되는 차단부 몸체;상기 대차의 주행 방향으로 상기 차단부 몸체에 돌출 형성되는 플랩;을 포함하는 배가스 처리장치.
- 청구항 7에 있어서,상기 플랩은 상기 차단부 몸체의 상부 또는 하부에 형성되거나, 상기 차단부 몸체의 상부와 하부 사이에 형성되는 배가스 처리장치.
- 청구항 7에 있어서,상기 플랩은 상기 순환 영역 및 배기 영역 중 적어도 일 영역에 위치하는 배가스 처리장치.
- 청구항 7에 있어서,상기 플랩은 상기 순환 영역 및 배기 영역 중 부압이 더 작은 영역에 위치하는 배가스 처리장치.
- 청구항 7에 있어서,상기 플랩과 마주보는 윈드박스의 상측 단부의 단면 너비가 1 이면, 상기 플랩의 돌출 길이는 0 초과 2/3 이하인 배가스 처리장치.
- 청구항 7에 있어서,상기 차단부는,상기 플랩의 상면에 돌출 형성되는 적어도 하나의 리브;를 더 포함하는 배가스 처리장치.
- 청구항 12에 있어서,상기 리브는 상기 대차의 주행 방향 또는 상기 대차의 주행 방향에 교차하는 방향으로 연장되는 배가스 처리장치.
- 청구항 13에 있어서,상기 리브가 복수개 형성되면, 상기 복수개의 리브는 일부가 상기 대차의 주행 방향으로 연장되고, 나머지가 상기 대차의 주행 방향에 교차하는 방향으로 연장되는 배가스 처리장치.
- 청구항 7에 있어서,상기 차단부는,상기 차단부 몸체에서 상기 플랩의 단부를 향하는 방향으로 상기 플랩의 단부에 하향 경사지게 돌출 형성되는 팁;을 더 포함하는 배가스 처리장치.
- 청구항 15에 있어서,상기 플랩과 마주보는 윈드박스의 상측 단부의 단면 너비가 1 이면, 상기 대차의 주행 방향으로 상기 플랩과 팁의 전체 돌출 길이는 0 초과 2/3 이하인 배가스 처리장치.
- 대차에 원료를 장입하여 복수의 구간을 이동시키며 열처리하는 과정;상기 대차의 하부에 상기 대차의 주행 방향을 따라 연장되고, 서로 구분되는 순환 영역과 배기 영역을 가지는 흡인부를 이용하여, 상기 대차의 내부를 흡인하는 과정; 및상기 순환 영역과 배기 영역 중 부압이 더 작은 영역의 배가스가 상기 대차와 흡인부 간의 간극 측으로 역류하는 것을 억제하는 과정;을 포함하는 배가스 처리방법.
- 청구항 17에 있어서,상기 순환 영역과 배기 영역의 경계에 마련된 차단부를 이용하여, 상기 배가스가 역류하는 것을 억제하는 배가스 처리방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019542336A JP2019534951A (ja) | 2016-10-18 | 2017-10-13 | 排ガスの処理装置及び処理方法 |
CN201780064145.XA CN109844435B (zh) | 2016-10-18 | 2017-10-13 | 废气处理装置和处理方法 |
EP17862388.0A EP3531052A4 (en) | 2016-10-18 | 2017-10-13 | EXHAUST GAS TREATMENT SYSTEM AND PROCESSING METHOD |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2016-0135152 | 2016-10-18 | ||
KR1020160135152A KR101796083B1 (ko) | 2016-10-18 | 2016-10-18 | 배가스 처리장치 및 처리방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018074783A1 true WO2018074783A1 (ko) | 2018-04-26 |
Family
ID=60386342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/011350 WO2018074783A1 (ko) | 2016-10-18 | 2017-10-13 | 배가스 처리장치 및 처리방법 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3531052A4 (ko) |
JP (1) | JP2019534951A (ko) |
KR (1) | KR101796083B1 (ko) |
CN (1) | CN109844435B (ko) |
TW (1) | TWI663323B (ko) |
WO (1) | WO2018074783A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113318564A (zh) * | 2020-02-29 | 2021-08-31 | 美坚(深圳)制罐科技有限公司 | 金属桶加工工艺 |
JP2022533381A (ja) * | 2019-05-17 | 2022-07-22 | 秦皇▲島▼新特科技有限公司 | 焼結排煙ガスの脱硝処理方法及び機器 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0663704B2 (ja) * | 1987-11-17 | 1994-08-22 | 日立造船株式会社 | 焼結機 |
JPH0712879Y2 (ja) * | 1988-05-17 | 1995-03-29 | 日立造船株式会社 | 焼結機におけるウィンドボックスシール装置 |
JP2000065483A (ja) * | 1998-08-20 | 2000-03-03 | Kawasaki Steel Corp | 焼結機における焼結パレット |
KR20020014877A (ko) | 2000-08-19 | 2002-02-27 | 이구택 | 액화천연가스를 이용한 배가스 순환식 철광석 소결장치 및그 방법 |
KR101611365B1 (ko) * | 2014-08-19 | 2016-04-14 | 주식회사 포스코 | 누풍 방지 실링플랩 |
KR20160062288A (ko) * | 2014-11-24 | 2016-06-02 | 주식회사 포스코 | 소결장치 및 소결방법 |
KR20160079240A (ko) | 2014-12-26 | 2016-07-06 | 주식회사 포스코 | 소결 장치 및 이를 이용한 소결광 제조 방법 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2235261A (en) * | 1939-08-15 | 1941-03-18 | American Smelting Refining | Method and apparatus for sintering |
FR1353700A (fr) * | 1963-02-12 | 1964-02-28 | Metallgesellschaft Ag | Procédé et appareil pour le durcissement de granules ou <<pellets>> par calcination |
JPS59189287A (ja) * | 1983-04-12 | 1984-10-26 | 日立造船株式会社 | 排ガス処理装置を有する焼結機のシ−ル方法 |
JPS60149878A (ja) * | 1984-01-17 | 1985-08-07 | 川崎製鉄株式会社 | 焼結機 |
JPH0552697U (ja) * | 1991-12-16 | 1993-07-13 | 新日本製鐵株式会社 | 焼結機漏風防止装置 |
JPH07305120A (ja) * | 1994-05-10 | 1995-11-21 | Nippon Steel Corp | 排ガス循環焼結方法および循環ガスフード |
JPH11281261A (ja) * | 1998-03-31 | 1999-10-15 | Kawasaki Steel Corp | 焼結機の給排側に設置されるエアシール装置 |
CN101024143A (zh) * | 2007-01-12 | 2007-08-29 | 中冶长天国际工程有限责任公司 | 一种烧结烟气循环富集脱硫的方法及装置 |
CN202041082U (zh) * | 2011-04-01 | 2011-11-16 | 北京首钢国际工程技术有限公司 | 一种带式机风箱端部及隔断密封装置 |
CN202709739U (zh) * | 2012-06-08 | 2013-01-30 | 上海梅山钢铁股份有限公司 | 一种烧结机点火负压控制装置 |
-
2016
- 2016-10-18 KR KR1020160135152A patent/KR101796083B1/ko active IP Right Grant
-
2017
- 2017-10-13 CN CN201780064145.XA patent/CN109844435B/zh active Active
- 2017-10-13 WO PCT/KR2017/011350 patent/WO2018074783A1/ko unknown
- 2017-10-13 JP JP2019542336A patent/JP2019534951A/ja active Pending
- 2017-10-13 EP EP17862388.0A patent/EP3531052A4/en not_active Withdrawn
- 2017-10-17 TW TW106135485A patent/TWI663323B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0663704B2 (ja) * | 1987-11-17 | 1994-08-22 | 日立造船株式会社 | 焼結機 |
JPH0712879Y2 (ja) * | 1988-05-17 | 1995-03-29 | 日立造船株式会社 | 焼結機におけるウィンドボックスシール装置 |
JP2000065483A (ja) * | 1998-08-20 | 2000-03-03 | Kawasaki Steel Corp | 焼結機における焼結パレット |
KR20020014877A (ko) | 2000-08-19 | 2002-02-27 | 이구택 | 액화천연가스를 이용한 배가스 순환식 철광석 소결장치 및그 방법 |
KR101611365B1 (ko) * | 2014-08-19 | 2016-04-14 | 주식회사 포스코 | 누풍 방지 실링플랩 |
KR20160062288A (ko) * | 2014-11-24 | 2016-06-02 | 주식회사 포스코 | 소결장치 및 소결방법 |
KR20160079240A (ko) | 2014-12-26 | 2016-07-06 | 주식회사 포스코 | 소결 장치 및 이를 이용한 소결광 제조 방법 |
Non-Patent Citations (3)
Title |
---|
D. SCHLEBUSCH; F. CAPPEL: "Optimization of pollution control in sinter plant", 6-TH INTERNATIONAL SYMPOSIUM ON AGGLOMERATION, 1993, pages 403 - 408 |
F.W. KINSEY; DRAVO CO.: "Design parameters for strand cooling", AIME, vol. 34, 1975, pages 85 |
See also references of EP3531052A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022533381A (ja) * | 2019-05-17 | 2022-07-22 | 秦皇▲島▼新特科技有限公司 | 焼結排煙ガスの脱硝処理方法及び機器 |
JP7277612B2 (ja) | 2019-05-17 | 2023-05-19 | 秦皇▲島▼新特科技有限公司 | 焼結排煙ガスの脱硝処理方法及び機器 |
CN113318564A (zh) * | 2020-02-29 | 2021-08-31 | 美坚(深圳)制罐科技有限公司 | 金属桶加工工艺 |
Also Published As
Publication number | Publication date |
---|---|
EP3531052A1 (en) | 2019-08-28 |
EP3531052A4 (en) | 2019-08-28 |
KR101796083B1 (ko) | 2017-11-10 |
CN109844435A (zh) | 2019-06-04 |
JP2019534951A (ja) | 2019-12-05 |
TW201819756A (zh) | 2018-06-01 |
TWI663323B (zh) | 2019-06-21 |
CN109844435B (zh) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101413515B1 (ko) | 소결 기계에서의 소결을 위한 프로세스 | |
CN101124434B (zh) | 用于循环流化床反应器的旋风式分离器旁路 | |
WO2018074783A1 (ko) | 배가스 처리장치 및 처리방법 | |
WO2016099010A1 (ko) | 소결기 및 소결방법 | |
WO2016080650A1 (ko) | 소결장치 및 소결방법 | |
WO2017086534A1 (ko) | 원료 처리 설비 및 이를 이용한 원료 처리 방법 | |
RU2244016C2 (ru) | Способ рециркуляции отходов с использованием процесса производства чугуна на основе угля | |
WO2018101645A1 (ko) | 통기성 측정기 및 소결 장치 | |
WO2017078429A1 (ko) | 원료 장입 장치 및 방법 | |
KR101866868B1 (ko) | 소결기의 기체 연료 공급 장치 | |
KR101841961B1 (ko) | 소결 장치 및 방법 | |
WO2018021634A1 (ko) | 소결 장치 및 이를 이용한 소결광 제조 방법 | |
US3973762A (en) | Sintering process and apparatus | |
KR20000011757U (ko) | 소결광 냉각장치 | |
KR100406358B1 (ko) | 배가스재순환식철광석2층소결방법및그장치 | |
WO2019107980A1 (ko) | 품질 예측 장치 및 방법 | |
CA1047256A (en) | Process for cooling sinter on the strand | |
JP2000226618A (ja) | 焼結鉱クーラの廃熱回収方法及び焼結鉱クーラ | |
KR100226884B1 (ko) | 배기가스 순환식 철광석 소결방법 및 그 장치 | |
RU2448144C2 (ru) | Установка сухого тушения кокса | |
KR101949702B1 (ko) | 소결 장치 | |
WO2018097674A1 (ko) | 소결광 제조 설비 | |
KR100205468B1 (ko) | 배기가스 순환식 철광석 소결장치 | |
WO2019124790A1 (ko) | 소결광 제조 장치 및 방법 | |
SU1767318A1 (ru) | Устройство дл агломерации руд и концентратов |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17862388 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019542336 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017862388 Country of ref document: EP Effective date: 20190520 |