WO2018074177A1 - 通信制御装置、通信制御方法及びコンピュータプログラム - Google Patents

通信制御装置、通信制御方法及びコンピュータプログラム Download PDF

Info

Publication number
WO2018074177A1
WO2018074177A1 PCT/JP2017/035342 JP2017035342W WO2018074177A1 WO 2018074177 A1 WO2018074177 A1 WO 2018074177A1 JP 2017035342 W JP2017035342 W JP 2017035342W WO 2018074177 A1 WO2018074177 A1 WO 2018074177A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
altitude
wireless communication
difference
reference point
Prior art date
Application number
PCT/JP2017/035342
Other languages
English (en)
French (fr)
Inventor
匠 古市
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to MX2019004335A priority Critical patent/MX2019004335A/es
Priority to JP2018546219A priority patent/JP6988814B2/ja
Priority to RU2019110994A priority patent/RU2737003C2/ru
Priority to US16/336,232 priority patent/US10863446B2/en
Priority to CN201780063154.7A priority patent/CN109891952B/zh
Priority to EP17862831.9A priority patent/EP3531754B1/en
Priority to SG11201901920UA priority patent/SG11201901920UA/en
Publication of WO2018074177A1 publication Critical patent/WO2018074177A1/ja
Priority to ZA201901988A priority patent/ZA201901988B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/241TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account channel quality metrics, e.g. SIR, SNR, CIR, Eb/lo
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/386TPC being performed in particular situations centralized, e.g. when the radio network controller or equivalent takes part in the power control

Definitions

  • the present disclosure relates to a communication control device, a communication control method, and a computer program.
  • wireless systems such as cellular networks, wireless LAN (Local Area Network), TV broadcasting systems, satellite communication systems, and PMSE (Program Making Special Events) have become widespread.
  • wireless LAN Local Area Network
  • TV broadcasting systems TV broadcasting systems
  • satellite communication systems satellite communication systems
  • PMSE Program Making Special Events
  • frequency sharing is being studied as one of the measures to mitigate future depletion of frequency resources.
  • a mechanism for making a frequency channel assigned to a certain radio system temporarily used by another radio system has been studied. Such a mechanism is sometimes referred to as secondary use of frequency.
  • a system to which a frequency channel is preferentially assigned is called a primary system, and a system that secondary uses the frequency channel is called a secondary system.
  • Patent Document 1 discloses a technique for suppressing a case where communication by a base station causes interference by assigning a frequency according to the position of the base station.
  • ECC the Electronic
  • TVWS TV White Space
  • CEPT European Postal Telecommunications Commission
  • Communication Commission the European Postal Telecommunications Commission
  • the present disclosure proposes a new and improved communication control apparatus, communication control method, and computer program capable of calculating the maximum allowable transmission power appropriately and with a small calculation load.
  • the configuration includes a plurality of wireless communication devices that share an altitude of a reference point for calculating interference power including information about height in the first wireless system and a frequency assigned to the first wireless system.
  • an altitude difference calculation unit that calculates a difference from an altitude of one of the wireless communication devices in the second wireless system, and the one or more wireless communication devices in which the difference is less than a predetermined value as interference sources, the reference
  • a power calculator that determines a maximum allowable transmission power of the second radio system so that a cumulative interference level due to communication of the interference source that may occur at a point satisfies an allowable interference level of the first radio system;
  • a communication control device is provided.
  • the altitude of the reference point for calculating interference power including information about the height in the first wireless system and the plurality of wireless communication devices sharing the frequency assigned to the first wireless system.
  • the difference between the altitude of one of the wireless communication devices is calculated, and at least one of the wireless communication devices whose difference is lower than a predetermined value is used as an interference source at the reference point. Determining a maximum allowable transmission power of the second wireless system such that a cumulative interference level due to communication of the interference source that may occur satisfies an allowable interference level of the first wireless system.
  • a plurality of radios sharing the altitude of the reference point for calculating interference power including information about the height in the first radio system and the frequency assigned to the first radio system in the computer. Calculating a difference from an altitude of one of the wireless communication devices in a second wireless system including communication devices, and using one or more wireless communication devices having the difference lower than a predetermined value as an interference source, Determining a maximum allowable transmission power of the second wireless system such that a cumulative interference level due to communication of the interference source that may occur at a reference point satisfies an allowable interference level of the first wireless system; A computer program is provided for execution.
  • Embodiment of the present disclosure [1.1. Overview] Before describing the embodiment of the present disclosure in detail, an outline of the embodiment of the present disclosure will be described.
  • ECC Report 186 for the purpose of protecting the primary system, three types of interference margin setting methods for calculating the maximum allowable transmission power of the secondary system are defined.
  • the three types of interference margin setting methods are Fixed / Predetermined margin method, Flexible margin method, and Flexible minimized margin method.
  • interference margin setting methods are all intended to distribute the allowable interference amount to a plurality of wireless communication devices so as to satisfy the allowable interference amount.
  • ECC Report 186 stipulates a method for calculating the maximum allowable transmission power of the secondary system for the purpose of protecting the primary system from harmful cumulative interference as one of the guidelines.
  • the effectiveness of the ECC Report 186 is shown by computer simulation, but this simulation only assumes that the Master WSD operates, and considers the Slave WSD that communicates by connecting to the Master WSD. It has not been calculated. Although it is easy to calculate with the calculation method stipulated in ECC Report 186 in consideration of Slave WSD, the following events may occur when considering Slave WSD.
  • the interference margin is calculated more than necessary by considering all the Slave WSD, and the allowable transmission power for both Master WSD and Slave WSD may be significantly reduced.
  • the transmission power allowed for both Master WSD and Slave WSD may be significantly reduced, as in the case of the fixed margin method, as in the case of the fixed margin method.
  • the calculation is performed so that the excess margin generated by the fixed margin method and the flexible margin method is suppressed and the transmission power allowed by the WSD is maximized. Is very big. In addition, if calculation is performed taking into account not only Master WSD but also Slave WSD, the calculation load may become so large that it cannot be ignored.
  • the above calculation method is based on the premise that the location information of Slave WSD is fixed.
  • the Slave WSD may move, and ETSI EN 301 598 also defines an operation mode in which the location information of the Slave WSD is not obligatory. In practice, it is difficult to calculate the maximum allowable transmission power in consideration of the Slave WSD operating in such an operation mode.
  • the present disclosure has intensively studied a simple method for calculating the maximum allowable transmission power that has a small calculation load and does not require the location information of the Slave WSD.
  • the present disclosure determines whether the WSD becomes an interference source based on the information of the WSD, and calculates the maximum allowable transmission power based on the determination result, It came to devise a technique for calculating the maximum allowable transmission power easily with a small calculation load.
  • FIG. 1 is an explanatory diagram showing a logical architecture assumed in the embodiment of the present disclosure. Each function in FIG. 1 will be described.
  • Database function is a logical entity that retains information related to the communication device of the secondary system, information related to the primary business system (primary system), and manages information of the communication device of the secondary system.
  • the Geo-location function is a logical entity that uses the information related to the location of the communication device of the secondary system to calculate an operation parameter that is recommended for the communication device of the secondary system or that must be observed.
  • the Device Control function performs conversion so that the message notified from the Database function or Geo-location function, or the message notified from the secondary system communication device to the Database function or Geo-location function can be mutually understood, or the secondary It is a logical entity that can change the operating parameters of the communication device of the system.
  • Interface function is a logical entity corresponding to the communication part of each logical entity described above.
  • Communication function is an entity corresponding to a communication path between the above-described logical entities.
  • FIG. 2 is an explanatory diagram showing an implementation example based on the logical architecture shown in FIG.
  • FIG. 2 shows an implementation example of GLDB (Geo-location database) and WSD.
  • GLDB consists of Database function, Geo-location function, and Interface function corresponding to the communication part of those logical entities.
  • a communication device (WSD: White Space Device) that performs communication using a television broadcast frequency is composed of an interface function corresponding to a communication unit of a device control function and a device control function.
  • FIG. 3 is an explanatory diagram showing an implementation example based on the logical architecture shown in FIG.
  • FIG. 3 shows an implementation example of the network coexistence technology (IEEE 802.19.1) for the UK TVWS system.
  • the third-party TVWS database consists of a Database function, a Geo-location function, and an Interface function corresponding to the communication part of those logical entities.
  • Regulatory Database consists of Interface function corresponding to the communication part of Database function and Database function.
  • White Space Device consists of Interface function corresponding to the communication part of Device Control function and Device Control function.
  • FIG. 4 is an explanatory diagram showing an implementation example based on the logical architecture shown in FIG.
  • FIG. 4 shows an example in which a wireless access point controls stationery devices, and corresponds to, for example, a relationship between a base station and a user terminal in a cellular system.
  • the wireless access point includes a Database function, a Geo-location function, and an Interface function corresponding to the communication unit of those logical entities.
  • a stationary device consists of an Interface function corresponding to the communication part of Device Control function and Device Control function.
  • FIG. 5 is an explanatory diagram showing an implementation example based on the logical architecture shown in FIG.
  • FIG. 5 shows an example in which an autonomous distributed wireless access point acquires information from a database installed on the network, and arbitrarily calculates and sets its own operating parameters based on the acquired information. It is.
  • a (self-supporting) wireless access point includes a Device function, a Geo-location function, and an Interface function corresponding to the communication unit of those logical entities.
  • Database consists of Database function and Interface function corresponding to Database function communication part.
  • implementation form is not limited to these, and any implementation form may be used as long as at least functional modifications and applications of the minimum configuration of the logical architecture shown in FIG. 1 are incorporated. It may be something like this.
  • FIG. 6 is an explanatory diagram illustrating a configuration example of the communication control device according to the embodiment of the present disclosure.
  • a configuration example of the communication control apparatus according to the embodiment of the present disclosure will be described with reference to FIG.
  • the communication control device 100 includes an altitude difference calculation unit 110 and a power calculation unit 120.
  • the altitude difference calculation unit 110 is a secondary system composed of a plurality of wireless communication devices that share the altitude of a reference point for calculating interference power including information about the height in the primary system and the frequency assigned to the primary system. The difference from the altitude of the wireless communication device at is calculated. A method of calculating the difference in elevation by the altitude difference calculation unit 110 will be described in detail later.
  • the power calculation unit 120 determines the maximum allowable transmission power of the secondary system so as to satisfy the allowable interference level of the primary system based on whether the altitude difference calculated by the altitude difference calculation unit 110 satisfies a predetermined standard. calculate. Specifically, the power calculation unit 120 uses a wireless communication device in one or more secondary systems in which the difference in altitude calculated by the altitude difference calculation unit 110 is lower than a predetermined value as an interference source, and the interference source that can occur at the reference point. The maximum allowable transmission power of the secondary system is determined so that the cumulative interference level due to communication satisfies the allowable interference level of the primary system.
  • the communication control apparatus 100 may correspond to, for example, a Geo-location function in the logical architecture illustrated in FIG.
  • the communication control apparatus 100 has such a configuration, and determines whether the WSD becomes an interference source based on the WSD altitude information, and determines the maximum allowable based on the determination result. By calculating the transmission power, the calculation load is small and the maximum allowable transmission power can be easily calculated.
  • the ECC Report 186 defines the following calculation formula as a calculation method based on the path loss value calculated based on the distance from the reference point position.
  • the left side in the following equation corresponds to the transmission power value of the communication device, and the right side is the calculated value of the maximum allowable transmission power of the communication device.
  • a path gain value m G_dB is obtained by adding the reference point coupling gain (antenna gain between (ECC Report 186 in the television receiver and the wireless microphone position) and a communication device or the like wherein an antenna gain, etc. In -m G_dB Path loss value).
  • IM There are three types of calculation methods that can be used to calculate the IM.
  • the cumulative interference given to the primary system from multiple WSDs satisfies the allowable value.
  • the three types of methods are Fixed margin based calculation, Flexible margin based calculation, and Flexible minimized margin based calculation.
  • a method for appropriately calculating transmission power by utilizing the height information and the terrain information of the place where the WSD is located is provided.
  • FIG. 7 is an explanatory diagram showing that the interference power varies depending on the reference point and the topography of the WSD.
  • the reference point shown in FIG. 7 is the position of the primary system such as a wireless microphone in the frequency sharing scenario.
  • the linear distance between the reference point and the WSD is the same, but the height relationship differs depending on the topography. Accordingly, in the case of the left example in FIG. 7, the interference that the WSD gives to the reference point is reduced, but in the case of the right example, the interference that the WSD gives to the reference point is increased. This is because, generally, when the transmission point is higher than the reception point, the radio wave tends to fly in the downward direction, so interference is likely to occur, and in the opposite case, it is difficult to fly upward. This is because strong interference is unlikely to occur. In addition, when the heights of the reference point and the WSD are different, there is a high possibility that the opponent cannot see through the terrain, and it is considered that stronger interference is less likely to occur particularly when the transmission point is lower than the reception point.
  • the WSD when performing transmission power control in consideration of cumulative interference, the WSD is fatal to the reference point from the topography and the ground height (elevation) in the positional relationship between the reference point and the WSD.
  • the WSD is taken into consideration in the transmission power control considering the accumulated interference.
  • the WSD is not included in the transmission power control considering the accumulated interference.
  • FIG. 8 is a flowchart illustrating an operation example of the communication control apparatus 100 according to the embodiment of the present disclosure.
  • FIG. 8 shows when performing transmission power control after determining whether or not WSD causes fatal interference with the reference point by comparing the height between the reference point and WSD. It is an example of operation
  • FIG. 8 shows when performing transmission power control after determining whether or not WSD causes fatal interference with the reference point by comparing the height between the reference point and WSD. It is an example of operation
  • the communication control device 100 When performing communication power control, the communication control device 100 first collects WSD height information (elevation) (step S101), and then collects reference point height information (elevation) (step S102).
  • the height information collection in steps S101 and S102 is performed by, for example, the height difference calculation unit 110. Note that the execution order of steps S101 and S102 may be reversed.
  • the height information of the WSD may be notified from the WSD, or the information stored in the Database function may be used.
  • the reference point for transmission power calculation may be obtained from the Regulatory database if it is a wireless microphone or the like. Further, if a specific position is designated as the reference point, that position may be used.
  • the communication control device 100 determines whether to consider the WSD from which the height information was collected in step S101 in transmission power control based on the collected height information. (Step S103). The determination may be performed by the power calculation unit 120 based on the difference between the elevation of the WSD and the reference point calculated by the altitude difference calculation unit 110, or the WSD and the reference point calculated by the altitude difference calculation unit 110. The altitude difference calculation unit 110 may perform this based on the difference in altitude.
  • the communication control apparatus 100 uses the above-described determination formula when determining in step S103. As a result of the determination in step S103, when it is determined that the WSD for which height information has been collected in step S101 is considered for transmission power control (Yes in step S103), the communication control apparatus 100 uses the WSD information as the power calculation unit 120. (For example, it is sent to Geo-location function) (step S104). As a result of the determination in step S103, when it is determined that the WSD for which height information has been collected in step S101 is not considered for transmission power control (No in step S103), the communication control apparatus 100 skips the process in step S104.
  • the power calculation unit 120 calculates the maximum allowable transmission power of the secondary system at an arbitrary timing (step S105). And the communication control apparatus 100 notifies a calculation result to all the WSD used as the object of transmission power control (step S106).
  • the notification of the calculation result may be any method. Further, the communication control apparatus 100 may notify the transmission power information itself or may notify information obtained by processing the transmission power information.
  • the communication control apparatus 100 determines whether or not the WSD becomes an interference source based on the WSD altitude information by executing the above-described series of operations, and determines the determination result. By calculating the maximum allowable transmission power based on this, the calculation load is small and the maximum allowable transmission power can be easily calculated.
  • ETSI EN 301 598 defines an operation mode in which Slave WSD, which communicates by connecting to Master WSD, can operate without a positioning function such as GNSS (Global Navigation Satellite System) ( Generic operation) Therefore, it is extremely difficult to implement the transmission power control considering the cumulative interference including the generic operation Slave WSD.
  • GNSS Global Navigation Satellite System
  • transmission power control that takes into account accumulated interference is enabled by the following method, including the generic operation Slave WSD.
  • the first method is to make the Geo-location function recognize the number of Slave WSDs (number per Master WSD).
  • This method may be performed in any way.
  • the Master WSD may count the number of Slave WSDs to serve and notify the Geo-location function of the counted number of Slave WSDs.
  • Master WSD may count the number of Slave WSD based on this information.
  • the number of Slave WSDs may be counted for each frequency channel.
  • Master WSD sets a coefficient according to the channel separation width, and the number processed by this coefficient is Slave.
  • the communication control apparatus 100 uses the finally recognized number of Slave WSDs for transmission power control considering the accumulated interference.
  • the transmission power control at this time is a fixed margin method or a flexible margin method.
  • the second method is to determine whether or not to consider Slave WSD in cumulative interference based on the altitude of the serving Master WSD.
  • the Slave WSD is considered to be mostly in the vicinity of the serving Master WSD, so even if the Slave WSD cannot acquire location information and altitude information, if there is information about the elevation of the Master WSD, The idea is to use that information.
  • the above-described determination formula is modified as follows.
  • the communication control device 100 changes the judgment formula in this way, so that even if the Slave WSD cannot acquire position information and altitude information, if the Master WSD satisfies the conditions, the Slave WSD that the Master WSD serves can also be changed. It is possible to take transmission power control into consideration.
  • FIG. 9 is an explanatory diagram showing an example of the positional relationship between the two points of the reference point and the WSD.
  • the WSD shown in FIG. 9 can be an interference source at the reference point.
  • the reference point cannot be seen from where the WSD is. Therefore, in the method of comparing the heights of the reference point and the WSD, a WSD that is actually very unlikely to be an interference source is taken into consideration for transmission power control.
  • the communication control apparatus 100 roughly grasps the path between the WSD and the reference point as follows.
  • the communication control device 100 divides the map into arbitrary sections.
  • the way of dividing is not limited to a specific pattern.
  • the communication control apparatus 100 may use the Ordnance Survey National Grid (OSNG).
  • OSNG Ordnance Survey National Grid
  • the communication control apparatus 100 may use a unit of division determined in advance by the government, such as an address.
  • the communication control apparatus 100 sets height information for each section.
  • This height information may be either an average value, a maximum value, or a minimum value of the altitude in each section. In this case, the height information is preferably the maximum value of the altitude in each section.
  • the communication control apparatus 100 may set height information using the height of the structure. Note that if there is information on a height that is predetermined in administrative terms, the communication control apparatus 100 may set the height information using that information. In addition, if there is reliable data published by any organization regardless of public or private, the communication control apparatus 100 may set the height information using the information.
  • the communication control device 100 may consider the height of the reference determined for each Clutter class.
  • FIG. 10 is an explanatory diagram showing an example of setting height information for each section in the sectioned map.
  • the communication control device 100 maps each of the WSD and the reference point to the partitioned map, and acquires the height information set in the partition. Furthermore, the communication control apparatus 100 acquires height information in a section existing between the WSD and the reference point.
  • the communication control apparatus 100 performs these operations. Based on the height information, it is determined whether WSD can be an interference source.
  • the communication control apparatus 100 does not consider the WSD in the control of transmission power, Otherwise consider.
  • the communication control device 100 determines whether the height of the section between the WSD and the reference point is more than an arbitrary value than the height of either the WSD or the reference point, but the linear distance is not less than an arbitrary value. If the height of the section between the WSD and the reference point is not more than an arbitrary value than the height of either the WSD or the reference point, but the linear distance is not less than an arbitrary value, the communication control device 100 The WSD is not considered in transmission power control, otherwise it is considered.
  • FIG. 11 is an explanatory diagram showing an example of a method of comparing the height between the WSD and the reference point.
  • the communication control apparatus 100 acquires the height information of the sections indicated by reference numerals r11 and r12 in FIG. If the height of the section indicated by the reference numerals r11 and r12 is higher than the height of either the WSD or the reference point by an arbitrary value or more, the communication control apparatus 100 does not consider the WSD in transmission power control. , Otherwise consider.
  • the communication control device 100 WSD is not considered in transmission power control, otherwise it is considered.
  • the communication control apparatus 100 has a plurality of sections to be considered. In such a case, the communication control apparatus 100 may make the determination with reference to only the height of any one section, or may refer to the heights of all the sections to be considered. When the determination is performed with reference to only the height of any one of the sections, the communication control apparatus 100 may select the one having the highest height from all the sections to be considered.
  • the communication control apparatus 100 that controls the transmission power of the WSD using the elevation of the WSD and the elevation of the reference point.
  • the communication control apparatus 100 controls the transmission power of the WSD using the height of the WSD and the height of the reference point, thereby easily calculating the maximum allowable transmission power with a small calculation load. It becomes possible to do.
  • a second radio composed of a plurality of radio communication devices sharing the altitude of a reference point for calculating interference power including information about the height in the first radio system and the frequency assigned to the first radio system
  • An altitude difference calculation unit for calculating a difference from an altitude of the one wireless communication device in the system; With one or more wireless communication devices having the difference less than a predetermined value as an interference source, a cumulative interference level due to communication of the interference source that can occur at the reference point satisfies an allowable interference level of the first wireless system.
  • a power calculator for determining a maximum allowable transmission power of the second wireless system;
  • a communication control device for determining a maximum allowable transmission power of the second wireless system.
  • the communication control device according to (1), wherein the second wireless system includes a master wireless communication device and a slave wireless communication device connected to the master wireless communication device.
  • the altitude difference calculation unit calculates a difference between an altitude of the reference point and an altitude of the master wireless communication apparatus.
  • the power control unit according to (3), wherein when the difference is less than a predetermined value, the master wireless communication device and the slave wireless communication device are interference sources.
  • the altitude difference calculation unit calculates a difference between the first elevation and the second elevation in each of the first geographic region and the second geographic region where the one wireless communication device is located,
  • the communication control device according to any one of (1) to (4), wherein the power calculation unit uses the wireless communication device whose difference is less than a predetermined value as an interference source.
  • the power calculation unit further uses the information on the altitude of the geographic area between the first geographic area and the second geographic area as an interference source for the wireless communication device whose difference is less than a predetermined value.
  • the communication control device according to (5), which determines whether or not.
  • the power calculation unit further determines whether to use the wireless communication device whose difference is less than a predetermined value as an interference source using distance information between the reference point and the one wireless communication device.
  • the communication control device according to (5).
  • a second radio composed of a plurality of radio communication devices sharing the altitude of a reference point for calculating interference power including information about the height in the first radio system and the frequency assigned to the first radio system Calculating a difference from an altitude of one of the wireless communication devices in the system; With one or more wireless communication devices having the difference less than a predetermined value as an interference source, a cumulative interference level due to communication of the interference source that can occur at the reference point satisfies an allowable interference level of the first wireless system.
  • a second radio composed of a plurality of radio communication devices sharing the altitude of a reference point for calculating interference power including information about the height in the first radio system and the frequency assigned to the first radio system Calculating a difference from an altitude of one of the wireless communication devices in the system; With one or more wireless communication devices having the difference less than a predetermined value as an interference source, a cumulative interference level due to communication of the interference source that can occur at the reference point satisfies an allowable interference level of the first wireless system. Determining a maximum allowable transmission power of the second wireless system; A computer program that executes

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】適切に、かつ計算負荷が少ない最大許容送信電力の算出が可能な通信制御装置を提供する。 【解決手段】第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出する高度差算出部と、前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定める電力算出部と、を備える、通信制御装置が提供される。

Description

通信制御装置、通信制御方法及びコンピュータプログラム
 本開示は、通信制御装置、通信制御方法及びコンピュータプログラムに関する。
 近年、セルラーネットワーク、無線LAN(Local Area Network)、TV放送システム、衛星通信システム、及びPMSE(Program Making Special Events)等の、多種多様な無線システムが普及している。各々の無線システムを正常に動作させるために、各々の無線システム間で干渉が生じないよう、利用する周波数リソースが管理されることが望ましい。このことは、ひとつの無線システムに含まれる局所的なネットワーク間に関しても同様である。
 周波数リソースの管理に関して、将来の周波数リソースの枯渇を緩和するための対策の1つとして、周波数共用が検討されている。例えば、ある無線システムに割り当てられた周波数チャネルを、他の無線システムに一時的に利用させるための仕組みが検討されている。このような仕組みは、周波数の二次利用とも称される場合がある。一般的に、周波数チャネルが優先的に割り当てられているシステムは一次システム(Primary System)、当該周波数チャネルを二次利用するシステムは二次システム(Secondary System)と呼ばれる。
 周波数リソースの管理を適切に行うための技術は多数開発されている。例えば、下記特許文献1では、基地局の位置に応じて周波数を割り当てることにより、基地局による通信が干渉の原因となる場合を抑制する技術が開示されている。
特許第5679033号公報
 2013年に欧州郵便電気通信主管庁会議(CEPT)により発行された、TV放送周波数帯における地理的な未利用周波数帯を活用するTV White Space(TVWS)システムの法制化ガイドラインとなるECC(the Electronic Communication Commission) Report 186では、ガイドラインの1つとして、一次システムを有害な累積干渉から保護することを目的とした、二次システムの最大許容送信電力の算出方法が規定されている。しかし、二次システムの構成によっては、ECC Report 186で規定されている方法では適切に最大許容送信電力を算出できない場合がある。
 そこで、本開示では、適切に、かつ計算負荷が少ない最大許容送信電力の算出が可能な、新規かつ改良された通信制御装置、通信制御方法及びコンピュータプログラムを提案する。
 本開示によれば、第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出する高度差算出部と、前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定める電力算出部と、を備える、通信制御装置が提供される。
 また本開示によれば、第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出することと、前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定めることと、を含む、通信制御方法が提供される。
 また本開示によれば、コンピュータに、第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出することと、前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定めることと、を実行させる、コンピュータプログラムが提供される。
 以上説明したように本開示によれば、適切に、かつ計算負荷が少ない最大許容送信電力の算出が可能な、新規かつ改良された通信制御装置、通信制御方法及びコンピュータプログラムを提供することができる。
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本開示の実施の形態において想定される論理アーキテクチャを示す説明図である。 図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。 図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。 図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。 図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。 同実施の形態に係る通信制御装置の構成例を示す説明図である。 基準点及びWSDの地形によって干渉電力が異なることを示す説明図である。 同実施の形態に係る通信制御装置100の動作例を示す流れ図である。 基準点及びWSDの2地点の位置関係の例を示す説明図である。 区画化された地図における、それぞれの区画への高さ情報の設定例を示す説明図である。 WSDと基準点との高さの比較方法の例を示す説明図である。
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、説明は以下の順序で行うものとする。
 1.本開示の実施の形態
  1.1.概要
  1.2.システムモデル例
  1.3.構成例
  1.4.動作例
 2.まとめ
 <1.本開示の実施の形態>
 [1.1.概要]
 本開示の実施の形態について詳細に説明する前に、本開示の実施の形態の概要について説明する。
 ECC Report 186では、一次システムの保護を目的として、二次システムの最大許容送信電力を算出するための干渉マージン設定方法が3種類規定されている。その3種類の干渉マージン設定方法は、Fixed/Predetermined margin method、Flexible margin method、Flexible minimized margin methodである。
 この3種類の干渉マージン設定方法は、いずれも、許容干渉量を満たすよう,複数の無線通信装置に許容できる与干渉量を配分することが目的である。
 またECC Report 186には、ガイドラインの1つとして、一次システムを有害な累積干渉から保護することを目的とした、二次システムの最大許容送信電力の算出方法が規定されている。ECC Report 186には、計算機シミュレーションによってその有効性が示されているが、本シミュレーションでは、Master WSDが動作することだけを想定しており、Master WSDに接続して通信を行うSlave WSDを考慮した計算はされていない。ECC Report 186で規定されている計算方法でSlave WSDを考慮した計算を行うことは容易であるが、Slave WSDを考慮することで以下のような事象が発生することが考えられる。
 Fixed margin methodを使用した場合では、全てのSlave WSDを考慮することで必要以上に干渉マージンが計算され、Master WSD、Slave WSD共に許容される送信電力が大幅に低下してしまう恐れがある。
 Flexible margin methodを使用した場合では、Fixed margin methodほどではないが、Fixed margin methodの場合と同じようにMaster WSD、Slave WSD共に許容される送信電力が大幅に低下してしまう恐れがある。
 Flexible minimized margin methodを使用した場合では、元々、Fixed margin methodやFlexible margin methodで発生する余剰マージンを抑え、WSDに許容される送信電力が最大となるように計算を行うが、その反面、計算量が非常に大きい。またMaster WSDだけでなくSlave WSDまで考慮に入れて計算を行うとなると、その計算負荷は無視できないほど大きくなってしまう恐れがある。
 また、上述の計算方法はSlave WSDの位置情報が固定であることが前提である。しかし、実際にはSlave WSDは移動することが考えられる上に、ETSI EN 301 598においては、Slave WSDの位置情報取得が義務付けられていないオペレーションモードも規定されている。そのようなオペレーションモードで動作するSlave WSDを考慮して最大許容送信電力の算出を行うことは現実的には困難となっている。
 従って、位置情報取得が義務付けられていないオペレーションモードで動作しうるSlave WSDも存在することを前提とした、計算負荷が小さく、かつSlave WSDの位置情報を必要としない、簡易な最大許容送信電力の算出方法が求められる。
 そこで本件開示者は、上述の点に鑑み、計算負荷が小さく、かつSlave WSDの位置情報を必要としない、簡易な最大許容送信電力の算出方法について鋭意検討を行った。その結果、本件開示者は、以下で説明するように、WSDの情報に基づいてそのWSDが干渉源となるかどうかを判定し、その判定結果に基づいて最大許容送信電力を算出することで、計算負荷が小さく、簡易に最大許容送信電力を算出する技術を考案するに至った。
 以上、本開示の実施の形態の概要について説明した。続いて、本開示の実施の形態について詳細に説明する。
 [1.2.システムモデル例]
 まずは、本開示の実施の形態のシステムモデルを説明する。最初に、本開示の実施の形態において想定される論理アーキテクチャを説明する。
 図1は、本開示の実施の形態において想定される論理アーキテクチャを示す説明図である。図1のそれぞれの機能(function)について説明する。
 Database functionは、二次システムの通信装置に関する情報、一次業務システム(一次システム)に関する情報等の保持や、二次システムの通信装置の情報管理を行う論理エンティティである。
 Geo-location functionは、二次システムの通信装置の位置に係る情報を用いて、二次システムの通信装置に推奨される、または順守が必須となる動作パラメータの計算を行う論理エンティティである。
 Device Control functionは、Database functionもしくはGeo-location functionから通知されるメッセージ、またはDatabase functionもしくはGeo-location functionへ二次システムの通信装置から通知するメッセージを相互に理解できるよう変換を行ったり、二次システムの通信装置の動作パラメータの変更等を実施したりすることが可能な論理エンティティである。
 Interface functionは、上記の各論理エンティティの通信部に相当する論理エンティティである。そして、Communication functionは、上記の各論理エンティティ間の通信路に相当するエンティティである。
 以上、本開示の実施の形態において想定される論理アーキテクチャを説明した。次に、このような構成となる論理アーキテクチャに基づいた実装例を説明する。
 図2は、図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。図2に示したのは、GLDB(Geo-location database)及びWSDの実装例である。図2に示したように、GLDBは、Database function並びにGeo-location function、及び、それらの論理エンティティの通信部に相当するInterface functionからなる。テレビ放送の周波数を利用して通信を行う通信装置(WSD;White Space Device)は、図2に示したように、Device Control function及びDevice Control functionの通信部に相当するInterface functionからなる。
 図3は、図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。図3に示したのは、英国のTVWSシステムに対するネットワーク共存技術(IEEE 802.19.1)の実装例である。図3に示したように、サードパーティーのTVWS databaseは、Database function並びにGeo-location function、及び、それらの論理エンティティの通信部に相当するInterface functionからなる。Regulatory Databaseは、Database function及びDatabase functionの通信部に相当するInterface functionからなる。White Space Deviceは、Device Control function及びDevice Control functionの通信部に相当するInterface functionからなる。
 図4は、図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。図4に示したのは、無線アクセスポイントがステーショナリデバイスの制御を行う例であり、例えば、セルラシステムの基地局-ユーザ端末間の関係に相当する。図4に示したように、無線アクセスポイントは、Database function並びにGeo-location function、及び、それらの論理エンティティの通信部に相当するInterface functionからなる。ステーショナリデバイスは、Device Control function及びDevice Control functionの通信部に相当するInterface functionからなる。
 図5は、図1に示した論理アーキテクチャに基づいた実装例を示す説明図である。図5に示したのは、自律分散型の無線アクセスポイントがネットワーク上に設置されたデータベースから情報を取得し、取得した情報に基づいて任意に自身の動作パラメータを計算し、設定するような例である。図5に示したように、(自立的な)無線アクセスポイントは、Device function並びにGeo-location function、及び、それらの論理エンティティの通信部に相当するInterface functionからなる。データベースは、Database function及びDatabase functionの通信部に相当するInterface functionからなる。
 以上、4つの実装例について説明したが、実装の形態はこれらに限られず、図1に示した論理アーキテクチャの最小構成の変形や応用が少なくとも機能的に組み込まれていれば、実装の形態はどのようなものであってもよい。
 以下の説明では、Geo-location functionに係る実施の形態について説明を行う。また、以下の説明では、TV周波数帯における周波数共用シナリオを想定するが、上記実施形態で示した通り、実際にはTV周波数帯における周波数共用シナリオには限られない。
 以上、本開示の実施の形態のシステムモデルを説明した。続いて、本開示の実施の形態に係る通信制御装置の構成例を説明する。
 [1.3.構成例]
 図6は、本開示の実施の形態に係る通信制御装置の構成例を示す説明図である。以下、図6を用いて本開示の実施の形態に係る通信制御装置の構成例について説明する。
 図6に示したように、本開示の実施の形態に係る通信制御装置100は、高度差算出部110と、電力算出部120と、を含んで構成される。
 高度差算出部110は、一次システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、一次システムに割り当てられた周波数を共用する複数の無線通信装置から構成される二次システムにおける無線通信装置の標高との差を算出する。高度差算出部110による、標高の差の算出方法については、後に詳述する。
 電力算出部120は、高度差算出部110が算出した標高の差が所定の基準を満たしているかどうかに基づいて、一次システムの許容干渉レベルを満たすよう、二次システムの最大許容可能送信電力を算出する。具体的には、電力算出部120は、高度差算出部110が算出した標高の差が所定値を下回る1以上の二次システムにおける無線通信装置を干渉源として、基準点において生じうる干渉源の通信による累積的な干渉レベルが一次システムの許容可能干渉レベルを満たすよう、二次システムの最大許容可能送信電力を定める。
 本開示の実施の形態に係る通信制御装置100は、図1に示した論理アーキテクチャにおいて、例えば、Geo-location functionに相当しうる。
 本開示の実施の形態に係る通信制御装置100は、係る構成を有することにより、WSDの高度の情報に基づいてそのWSDが干渉源となるかどうかを判定し、その判定結果に基づいて最大許容送信電力を算出することで、計算負荷が小さく、簡易に最大許容送信電力を算出することが可能となる。
 以上、本開示の実施の形態に係る通信制御装置の構成例を説明した。続いて、本開示の実施の形態に係る通信制御装置の動作例を説明する。
 [1.4.動作例]
 本開示の実施の形態に係る通信制御装置の動作例について説明する前に、位置情報に基づく許容可能送信電力の算出方法として、基準点の位置との距離に基づいて算出されるパスロス値を基に許容可能送信電力を算出する方法について説明する。
 ECC Report 186には、基準点の位置との距離に基づいて算出されるパスロス値を基に計算する方法として、以下のような計算式が規定されている。下記数式における左辺が通信装置の送信電力値に相当し、右辺が通信装置の許容可能最大送信電力の計算値となる。式中のmG_dBが基準点(ECC Report 186ではテレビ受信機やワイヤレスマイクの位置)と通信装置間のカップリングゲイン(アンテナゲイン等を加味したパスゲイン値であり、-mG_dBでアンテナゲイン等を加味したパスロス値)となる。
Figure JPOXMLDOC01-appb-M000001
 IMの計算方法としては,複数のWSDから一次システムへ与える累積干渉(Aggregate interference)が許容値を満たすような3種類の方法が記載されている。その3種類の方法は、Fixed margin based calculation、Flexible margin based calculation、Flexible minimized margin based calculationである。
 この計算方法に限らず,複数のWSDが一次システムへ与える累積干渉(Aggregate interference)が許容値を満たすようにWSDの動作パラメータを算出する際に重要となるのは、どのWSDを計算の考慮に入れるべきか、という点である。もちろん、全てのWSDを考慮して計算してもよいが、WSDの位置によっては一次システムへ与える干渉を無視できる場合もあり、そのような干渉を無視できるWSDまで考慮に入れてしまうと、GLDBの計算負荷が増大する要因となる。また上記の計算方法によっては、WSDの数に基づいてIM、すなわち送信電力が算出されるため、逆に干渉に寄与しないWSDにとっては過度に送信電力が制限されてしまうことになってしまう。
 そこで本実施形態では、WSDが位置している場所の高さ情報および地形情報を活用して、適切に送信電力を算出する方法を提供する。
 まず本実施形態のポイントとなる性質について説明する。図7は、基準点及びWSDの地形によって干渉電力が異なることを示す説明図である。図7に示した基準点とは、周波数共用シナリオにおいては、例えばワイヤレスマイクなどの一次システムの位置となる。
 図7の2つの例では、ともに基準点とWSDとの間の直線距離は同じであるが、高さ関係が地形によって異なっている。これによって、図7の左の例の場合はWSDが基準点に与える干渉が小さくなるが、右の例の場合には,WSDが基準点に与える干渉は大きくなる。これは、一般に送信地点が受信地点より高い場合には、電波は下の方向に飛びやすい性質があるために干渉が発生しやすく、逆の場合には、上の方向に飛びにくい性質があるために強い干渉は発生しにくいからである。また、基準点とWSDとの高さが異なる場合には、地形によって相手を見通せなくなる可能性が高く、特に送信地点が受信地点より低い場合にはより強い干渉が発生しにくいと考えられる。
 従って、本実施形態では、累積干渉を考慮した送信電力制御を行う際に、基準点とWSDとの位置関係において、地形およびそれぞれの地上高(標高)から、WSDが基準点に対して致命的な干渉を与えると判定される場合に、累積干渉を考慮した送信電力制御の考慮に当該WSDを入れるものとする。WSDが基準点に対して致命的な干渉を与えない判定される場合、累積干渉を考慮した送信電力制御の考慮に当該WSDを入れないものとする。
 本開示の実施の形態に係る通信制御装置100の具体的な動作例を説明する。
 (1)2地点間の高さの比較によって判定する例
 まず、単純に基準点とWSDとの2地点間の高さの比較によって判定する例を説明する。上述したように、一般に送信地点が受信地点より高い場合には、電波は下の方向に飛びやすい性質があるために干渉が発生しやすく、逆の場合には、上の方向に飛びにくい性質があるために強い干渉は発生しにくい。従って通信制御装置100は、累積干渉を考慮した送信電力制御の考慮にWSDを入れるかどうかを、例えば以下の式によって判定しても良い。下記の式におけるΔhは、任意のマージン値である。
Figure JPOXMLDOC01-appb-M000002
 図8は、本開示の実施の形態に係る通信制御装置100の動作例を示す流れ図である。図8に示したのは、基準点とWSDとの2地点間の高さの比較によってWSDが基準点に対して致命的な干渉を与えるか否かを判定した上で送信電力制御を行う際の、通信制御装置100の動作例である。以下、図8を用いて本開示の実施の形態に係る通信制御装置100の動作例について説明する。
 通信制御装置100は、送信電力制御を行う際に、まずWSDの高さ情報(標高)を収集し(ステップS101)、続いて基準点の高さ情報(標高)を収集する(ステップS102)。ステップS101、S102の高さ情報の収集は、例えば高度差算出部110が行う。なお、ステップS101、S102の実行順序は逆でも構わない。
 なお、WSDの高さ情報は、WSDから通知されるものであってもよいし、Database functionで記憶している情報を利用してもよい。送信電力計算の基準点については、それがワイヤレスマイクなどであれば,Regulatory databaseから取得されるものであってもよい。また基準点として特定の位置が指定されているのであれば、その位置を利用してもよい。
 WSD及び基準点の高さ情報を収集すると、続いて通信制御装置100は、収集した高さ情報に基づいて、ステップS101で高さ情報を収集したWSDを送信電力制御で考慮するかどうかを判定する(ステップS103)。当該判定は、高度差算出部110が算出した、WSD及び基準点の標高の差に基づいて、電力算出部120が行っても良いし、高度差算出部110が算出した、WSD及び基準点の標高の差に基づいて、高度差算出部110が行ってもよい。
 通信制御装置100は、ステップS103の判定に際して、上述した判定式を用いる。ステップS103の判定の結果、ステップS101で高さ情報を収集したWSDを送信電力制御に考慮すると判定した場合は(ステップS103、Yes)、通信制御装置100は、そのWSDの情報を電力算出部120(例えばGeo-location function)に送る(ステップS104)。ステップS103の判定の結果、ステップS101で高さ情報を収集したWSDを送信電力制御に考慮しないと判定した場合は(ステップS103、No)、通信制御装置100は、ステップS104の処理をスキップする。
 高さ情報を収集したWSDを送信電力制御に考慮するかしないかに関わらず、電力算出部120は、任意のタイミングで、二次システムの最大許容可能送信電力を計算する(ステップS105)。そして通信制御装置100は、送信電力制御の対象となる全てのWSDへ計算結果を通知する(ステップS106)。計算結果の通知はいかなる方法であってもよい。また、通信制御装置100は、送信電力の情報そのものを通知しても良く、送信電力の情報を加工した情報を通知してもよい。
 本開示の実施の形態に係る通信制御装置100は、上述の一連の動作を実行することで、WSDの高度の情報に基づいてそのWSDが干渉源となるかどうかを判定し、その判定結果に基づいて最大許容送信電力を算出することで、計算負荷が小さく、簡易に最大許容送信電力を算出することが可能となる。
 続いて2地点間の高さの比較によって判定する例の応用例を説明する。ETSI EN 301 598においては、Master WSDに接続して通信を行うSlave WSDが、GNSS(Global Navigation Satellite System)のような位置測位機能を具備することなく動作が可能なオペレーションモードが規定されている(Generic operationと称する)。従って、累積干渉を考慮する送信電力制御においては、Generic operationのSlave WSDを含めて実施することが極めて難しい。
 そこで本実施形態では、以下のような方法によって、Generic operationのSlave WSDを含めて、累積干渉を考慮する送信電力制御を可能とする.
 1つ目の方法は、Geo-location functionにSlave WSDの数(1台のMaster WSDあたりの数)を認識させる方法である。この方法はどのように行われても良い。例えば、Master WSDが、サーブするSlave WSDの数をカウントし、カウントしたSlave WSDの数をGeo-location functionへ通知してもよい。または例えば、Database functionにSlave WSDに関する情報が記録されていれば、Master WSDは、この情報を基にSlave WSDの数をカウントしてもよい。また、このSlave WSDの数は、周波数チャネルごとにカウントされてもよい。また、例えば、基準点で累積干渉が発生しうる周波数チャネルと異なるチャネルを利用している場合、Master WSDは、チャネルの離隔幅に応じた係数を設定し、この係数によって加工された数をSlave WSDの数としてもよい。すなわち、Slave WSDの数は、干渉の計算に寄与可能な数であれば何でもよい。そして通信制御装置100は、最終的に認識したSlave WSDの数を、累積干渉を考慮する送信電力制御に利用する。この際の送信電力の制御は、Fixed margin methodまたはFlexible margin methodである。
 2つ目の方法は、サーブしているMaster WSDの標高によってSlave WSDを累積干渉に考慮するかどうかを判断する方法である。Slave WSDは、サーブしているMaster WSDの周辺にいることが殆どであると考えられるから、仮にSlave WSDが位置情報や高度情報を取得できなくても、Master WSDの標高の情報があれば、その情報を用いるという考え方である。この方法を採る場合、上述した判定式を下記のように変形する。
Figure JPOXMLDOC01-appb-M000003
 通信制御装置100は、このように判定式を変更することで、仮にSlave WSDが位置情報や高度情報を取得できなくても、Master WSDが条件を満たせば、そのMaster WSDがサーブするSlave WSDも送信電力制御の考慮に入れることが出来る。
 (2)2点を結ぶ区間内の地形を考慮して判定する例
 基準点及びWSDの2地点の高さの比較によって、WSDを送信電力制御の考慮に入れるかどうかを判定する例を示したが、その方法では有効ではない場合も考えられる。
 図9は、基準点及びWSDの2地点の位置関係の例を示す説明図である。図9に示した例のように、基準点とWSDとの間に小高い丘があるような場合を考える。基準点及びWSDの2地点の高さを比較する方法では、図9に示したWSDが基準点における干渉源となり得る。しかし、実際には基準点とWSDとの間に小高い丘があるので、WSDのある場所からは基準点が見通せない。そのため、基準点及びWSDの2地点の高さを比較する方法では、実際には干渉源となる可能性が極めて小さいWSDが送信電力制御の考慮に入れられてしまう。
 一方で、WSDと基準点との間の経路の地形を完璧に把握して送信電力制御の判断を行うことは、計算負荷等の観点から現実的でない。そこで本実施形態に係る通信制御装置100は、以下のようにしてWSDと基準点との間の経路を大まかに把握する。
 例えば、通信制御装置100は、地図を任意の区画に区切る。その区切り方は特定のパターンに限定されるものではない。例えば英国であれば、通信制御装置100はOrdnance Survey National Grid(OSNG)を利用してもよい。また例えば、通信制御装置100は、住所などの行政上あらかじめ決められた区画単位を利用しても良い。
 通信制御装置100は、地図を任意の区画に区切ると、その区画毎に高さ情報を設定する。この高さ情報は、それぞれの区画内の標高の平均値、最大値、または最小値のいずれかであってもよい。この場合、高さ情報は、それぞれの区画内の標高の最大値が望ましい。それぞれの区画においてビル等の構造物が存在する場合、通信制御装置100は、その構造物の高さを利用して高さ情報を設定してもよい。なお、行政上あらかじめ決められた高さの情報があれば、通信制御装置100は、その情報を用いて高さ情報を設定してもよい。また、官民問わず、いずれかの組織が公開する信頼性のあるデータが存在するならば、通信制御装置100は、その情報を用いて高さ情報を設定してもよい。また、UK Planning Model(参考:http://downloads.bbc.co.uk/rd/pubs/whp/whp-pdf-files/WHP048.pdf)のようにClutter Dataが利用可能な場合、通信制御装置100は、Clutter classごとに決められているリファレンスの高さを考慮してもよい。
 図10は、区画化された地図における、それぞれの区画への高さ情報の設定例を示す説明図である。
 そして、通信制御装置100は、WSDと基準点のそれぞれを、区画化された地図にマッピングし、その区画において設定されている高さ情報を取得する。さらに、通信制御装置100は、WSDと基準点の間に存在する区画における高さ情報を取得する。
 このように、WSDと基準点のそれぞれが位置する区画において設定されている高さ情報と、WSDと基準点の間に存在する区画における高さ情報を取得すると、通信制御装置100は、これらの高さ情報に基づいて、WSDが干渉源となり得るかどうか判定する。
 例えば、WSDと基準点の間の区画の高さが、WSDと基準点いずれかの高さよりも任意の値以上高ければ、通信制御装置100は、そのWSDを送信電力の制御において考慮せず、そうでなければ考慮する。
 また、WSDと基準点の間の区画の高さが、WSDと基準点いずれかの高さよりも任意の値以下ではあるが、直線距離が任意の値以上であれば、通信制御装置100は、そのWSDを送信電力の制御において考慮せず、そうでなければ考慮する。
 図11は、WSDと基準点との高さの比較方法の例を示す説明図である。例えば図11のように基準点およびWSDが位置している場合、通信制御装置100は、この図11における符号r11、r12で示した区画の高さ情報を取得する。そして、その符号r11、r12で示した区画の高さが、WSDと基準点いずれかの高さよりも任意の値以上高ければ、通信制御装置100は、そのWSDを送信電力の制御において考慮せず、そうでなければ考慮する。また符号r11、r12で示した区画の高さが、WSDと基準点いずれかの高さよりも任意の値以下ではあるが、直線距離が任意の値以上であれば、通信制御装置100は、そのWSDを送信電力の制御において考慮せず、そうでなければ考慮する。
 図11に示した例の場合、通信制御装置100が考慮すべき区画が複数に渡る。このような場合においては、通信制御装置100は、いずれか1つの区画の高さのみを参照して判定を行っても良く、考慮すべき全ての区画の高さを参照しても良い。いずれか1つの区画の高さのみを参照して判定を行う場合、通信制御装置100は、考慮すべき全ての区画の中から高さが最も高いものを選択してもよい。
 <2.まとめ>
 以上説明したように本開示の実施の形態によれば、WSDの標高と基準点の標高とを用いてWSDの送信電力の制御を行う通信制御装置100が提供される。本開示の実施の形態に係る通信制御装置100は、WSDの標高と基準点の標高とを用いてWSDの送信電力の制御を行うことで、計算負荷が小さく、簡易に最大許容送信電力を算出することが可能となる。
 各装置に内蔵されるCPU、ROMおよびRAMなどのハードウェアを、上述した各装置の構成と同等の機能を発揮させるためのコンピュータプログラムも作成可能である。また、該コンピュータプログラムを記憶させた記憶媒体も提供されることが可能である。また、機能ブロック図で示したそれぞれの機能ブロックをハードウェアまたはハードウェア回路で構成することで、一連の処理をハードウェアまたはハードウェア回路で実現することもできる。
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
 なお、以下のような構成も本開示の技術的範囲に属する。
(1)
 第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出する高度差算出部と、
 前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定める電力算出部と、
を備える、通信制御装置。
(2)
 前記第2の無線システムは、マスタ無線通信装置と、マスタ無線通信装置に接続するスレーブ無線通信装置とで構成される、前記(1)に記載の通信制御装置。
(3)
 前記高度差算出部は、前記基準点の標高と前記マスタ無線通信装置の標高との差を算出する、前記(2)に記載の通信制御装置。
(4)
 前記電力算出部は、前記差が所定値を下回る場合、前記マスタ無線通信装置及び前記スレーブ無線通信装置を干渉源とする、前記(3)に記載の通信制御装置。
(5)
 前記高度差算出部は、一の前記無線通信装置が位置する第1の地理領域及び第2の地理領域のそれぞれにおける第1の標高と第2の標高との差を算出し、
 前記電力算出部は、前記差が所定値を下回る前記無線通信装置を干渉源とする、前記(1)~(4)のいずれかに記載の通信制御装置。
(6)
 前記電力算出部は、さらに、前記第1の地理領域及び前記第2の地理領域の間の地理領域の標高の情報を用いて、前記差が所定値を下回る前記無線通信装置を干渉源とするかどうか判断する、前記(5)に記載の通信制御装置。
(7)
 前記電力算出部は、さらに、前記基準点と一の前記無線通信装置との間の距離情報を用いて、前記差が所定値を下回る前記無線通信装置を干渉源とするかどうか判断する、前記(5)に記載の通信制御装置。
(8)
 第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出することと、
 前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定めることと、
を含む、通信制御方法。
(9)
 コンピュータに、
 第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出することと、
 前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定めることと、
を実行させる、コンピュータプログラム。
 100  通信制御装置

Claims (9)

  1.  第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出する高度差算出部と、
     前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定める電力算出部と、
    を備える、通信制御装置。
  2.  前記第2の無線システムは、マスタ無線通信装置と、マスタ無線通信装置に接続するスレーブ無線通信装置とで構成される、請求項1に記載の通信制御装置。
  3.  前記高度差算出部は、前記基準点の標高と前記マスタ無線通信装置の標高との差を算出する、請求項2に記載の通信制御装置。
  4.  前記電力算出部は、前記差が所定値を下回る場合、前記マスタ無線通信装置及び前記スレーブ無線通信装置を干渉源とする、請求項3に記載の通信制御装置。
  5.  前記高度差算出部は、一の前記無線通信装置が位置する第1の地理領域及び第2の地理領域のそれぞれにおける第1の標高と第2の標高との差を算出し、
     前記電力算出部は、前記差が所定値を下回る前記無線通信装置を干渉源とする、請求項1に記載の通信制御装置。
  6.  前記電力算出部は、さらに、前記第1の地理領域及び前記第2の地理領域の間の地理領域の標高の情報を用いて、前記差が所定値を下回る前記無線通信装置を干渉源とするかどうか判断する、請求項5に記載の通信制御装置。
  7.  前記電力算出部は、さらに、前記基準点と一の前記無線通信装置との間の距離情報を用いて、前記差が所定値を下回る前記無線通信装置を干渉源とするかどうか判断する、請求項5に記載の通信制御装置。
  8.  第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出することと、
     前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定めることと、
    を含む、通信制御方法。
  9.  コンピュータに、
     第1の無線システムにおける高さに関する情報を含む干渉電力算出のための基準点の標高と、第1の無線システムに割り当てられた周波数を共用する複数の無線通信装置から構成される第2の無線システムにおける、一の前記無線通信装置の標高との差を算出することと、
     前記差が所定値を下回る1以上の前記無線通信装置を干渉源として、前記基準点において生じうる前記干渉源の通信による累積的な干渉レベルが前記第1の無線システムの許容可能干渉レベルを満たすよう、前記第2の無線システムの最大許容可能送信電力を定めることと、
    を実行させる、コンピュータプログラム。
PCT/JP2017/035342 2016-10-20 2017-09-28 通信制御装置、通信制御方法及びコンピュータプログラム WO2018074177A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2019004335A MX2019004335A (es) 2016-10-20 2017-09-28 Dispositivo de control de comunicacion, metodo de control de comunicacion, y programa de computadora.
JP2018546219A JP6988814B2 (ja) 2016-10-20 2017-09-28 通信制御装置、通信制御方法及びコンピュータプログラム
RU2019110994A RU2737003C2 (ru) 2016-10-20 2017-09-28 Устройство управления связью, способ управления связью и компьютерная программа
US16/336,232 US10863446B2 (en) 2016-10-20 2017-09-28 Communication control device and communication control method
CN201780063154.7A CN109891952B (zh) 2016-10-20 2017-09-28 通信控制设备、通信控制方法和计算机程序
EP17862831.9A EP3531754B1 (en) 2016-10-20 2017-09-28 Communication control device, communication control method, and computer program
SG11201901920UA SG11201901920UA (en) 2016-10-20 2017-09-28 Communication control device, communication control method, and computer program
ZA201901988A ZA201901988B (en) 2016-10-20 2019-03-29 Communication control device, communication control method, and computer program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016206026 2016-10-20
JP2016-206026 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018074177A1 true WO2018074177A1 (ja) 2018-04-26

Family

ID=62018524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035342 WO2018074177A1 (ja) 2016-10-20 2017-09-28 通信制御装置、通信制御方法及びコンピュータプログラム

Country Status (10)

Country Link
US (1) US10863446B2 (ja)
EP (1) EP3531754B1 (ja)
JP (1) JP6988814B2 (ja)
CN (1) CN109891952B (ja)
MX (1) MX2019004335A (ja)
RU (1) RU2737003C2 (ja)
SG (1) SG11201901920UA (ja)
TW (1) TWI746659B (ja)
WO (1) WO2018074177A1 (ja)
ZA (1) ZA201901988B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230671A1 (ja) * 2018-06-01 2019-12-05 ソニー株式会社 無線装置、端末、方法およびコンピュータプログラム
EP3806519A4 (en) * 2018-05-30 2021-08-11 Sony Group Corporation COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL METHOD AND COMPUTER PROGRAM
EP3952385A4 (en) * 2019-03-29 2022-04-27 Sony Group Corporation COMMUNICATION CONTROL DEVICE, COMMUNICATION DEVICE AND COMMUNICATION CONTROL METHOD

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114339712B (zh) * 2021-12-29 2024-05-07 广州艾美网络科技有限公司 无线麦克风的配对方法和装置、无线麦克风管理系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161281A1 (ja) * 2012-04-24 2013-10-31 日本電気株式会社 無線システムにおける周波数管理装置および周波数管理方法
WO2015159411A1 (ja) * 2014-04-17 2015-10-22 富士通株式会社 周波数割り当て装置、周波数割り当て方法及び無線通信システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA03009756A (es) * 2001-04-24 2004-06-30 Qualcomm Inc Metodo y aparato para estimar la posicion de una terminal con base en un codigo de identificacion para fuentes de transmision.
US7668530B2 (en) * 2005-04-01 2010-02-23 Adaptix, Inc. Systems and methods for coordinating the coverage and capacity of a wireless base station
US8041380B2 (en) * 2007-04-26 2011-10-18 Lingna Holdings Pte., Llc Power control in cognitive radio systems based on spectrum sensing side information
US8660498B2 (en) 2009-06-29 2014-02-25 Motorola Solutions, Inc. Method for database driven channel quality estimation in a cognitive radio network
CN102783199B (zh) 2010-03-01 2015-12-09 日本电气株式会社 无线通信装置、无线通信系统、干扰引起控制方法、存储介质和控制装置
WO2011158502A1 (ja) 2010-06-18 2011-12-22 日本電気株式会社 無線制御装置、第二送信局送信電力決定方法およびプログラム
JP5821952B2 (ja) * 2010-09-22 2015-11-24 日本電気株式会社 無線局、与干渉推定方法、無線通信システム、およびコンピュータプログラム
JP5821208B2 (ja) * 2010-10-29 2015-11-24 ソニー株式会社 通信制御装置、通信制御方法、通信装置、通信方法及び通信システム
JP6256468B2 (ja) * 2013-06-28 2018-01-10 富士通株式会社 制御装置及び制御方法
ES2879901T3 (es) * 2013-08-21 2021-11-23 Sony Group Corp Aparato de control de la comunicación y aparato de comunicación inalámbrica
CN104427509B (zh) * 2013-09-06 2020-04-24 中兴通讯股份有限公司 一种确定发射功率的方法、装置及系统
JP5679033B2 (ja) 2013-10-30 2015-03-04 ソニー株式会社 管理サーバ、および情報処理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161281A1 (ja) * 2012-04-24 2013-10-31 日本電気株式会社 無線システムにおける周波数管理装置および周波数管理方法
WO2015159411A1 (ja) * 2014-04-17 2015-10-22 富士通株式会社 周波数割り当て装置、周波数割り当て方法及び無線通信システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MIYAGI, TOSHIFUMI: "An Efficient Zone Design for WIPAS using Vertical Service Area Division Method", PROCEEDINGS OF THE 2009 IEICE COMMUNICATIONS SOCIETY CONFERENCE, 15 September 2009 (2009-09-15), pages 467, XP009513514 *
See also references of EP3531754A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3806519A4 (en) * 2018-05-30 2021-08-11 Sony Group Corporation COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL METHOD AND COMPUTER PROGRAM
US11516679B2 (en) 2018-05-30 2022-11-29 Sony Corporation Communication control device, communication control method, and computer program
WO2019230671A1 (ja) * 2018-06-01 2019-12-05 ソニー株式会社 無線装置、端末、方法およびコンピュータプログラム
US11477660B2 (en) 2018-06-01 2022-10-18 Sony Corporation Wireless device, terminal, method, and computer program
JP7409303B2 (ja) 2018-06-01 2024-01-09 ソニーグループ株式会社 無線装置、端末、方法およびコンピュータプログラム
EP3952385A4 (en) * 2019-03-29 2022-04-27 Sony Group Corporation COMMUNICATION CONTROL DEVICE, COMMUNICATION DEVICE AND COMMUNICATION CONTROL METHOD
US11832288B2 (en) 2019-03-29 2023-11-28 Sony Group Corporation Communication control device, communication device, and communication control method

Also Published As

Publication number Publication date
JP6988814B2 (ja) 2022-01-05
CN109891952A (zh) 2019-06-14
TW201817268A (zh) 2018-05-01
SG11201901920UA (en) 2019-04-29
RU2737003C2 (ru) 2020-11-24
TWI746659B (zh) 2021-11-21
RU2019110994A (ru) 2020-10-12
EP3531754B1 (en) 2021-09-08
ZA201901988B (en) 2019-10-30
MX2019004335A (es) 2019-07-15
US20190261282A1 (en) 2019-08-22
JPWO2018074177A1 (ja) 2019-08-22
EP3531754A1 (en) 2019-08-28
EP3531754A4 (en) 2019-10-23
CN109891952B (zh) 2022-07-01
US10863446B2 (en) 2020-12-08
RU2019110994A3 (ja) 2020-10-12

Similar Documents

Publication Publication Date Title
WO2018074177A1 (ja) 通信制御装置、通信制御方法及びコンピュータプログラム
EP2321965B1 (en) Method and system enabling use of white space radio spectrum using digital broadcast signals
EP2747489B1 (en) Available spectrum determination method and device
US11516679B2 (en) Communication control device, communication control method, and computer program
US11234135B2 (en) Automated frequency coordination for shared spectrum wireless systems
CN103974261A (zh) 无线通信系统中的设备和方法
CN105657718A (zh) 无线电资源管理系统和无线电资源管理方法
US11943631B2 (en) Spectrum device, wireless communication system, wireless communication method and storage medium
US11252574B2 (en) Automated frequency coordination for shared spectrum wireless systems
Lysko et al. FSL based estimation of white space availability in UHF TV bands in Bergvliet, South Africa
WO2019230671A1 (ja) 無線装置、端末、方法およびコンピュータプログラム
AU2017344591B2 (en) Communication controller, communication control method, and computer program
US20220240100A1 (en) Station placement designing assistance apparatus, station placement designing assistance method and program
Nekovee Quantifying the TV white spaces spectrum opportunity for cognitive radio access
Denkovska et al. DTT performance degradation in presence of coexisting LTE network interference
US10251069B1 (en) Method and system for allocating frequency ranges to plurality of networks
Otermat Analysis of the FM radio spectrum for secondary licensing of low-power short-range cognitive Internet-of-Things devices via cognitive radio
CN104980937A (zh) 共存环境信息处理方法及装置
Gepko Technical configuration of TV White Space Devices
Jin et al. A Novel Approach to Reduce the Storage Amount and Load of Geolocation Database
Gepko Technical configuration of portable REF operating on the secondary basis in TV white spaces
Gepko Technical Configuration of Portable/Mobile TV White Space Devices: A Conceptual View

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018546219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017862831

Country of ref document: EP

Effective date: 20190520