WO2018074157A1 - Buffer member and link-type seismic tie comprising same - Google Patents

Buffer member and link-type seismic tie comprising same Download PDF

Info

Publication number
WO2018074157A1
WO2018074157A1 PCT/JP2017/034799 JP2017034799W WO2018074157A1 WO 2018074157 A1 WO2018074157 A1 WO 2018074157A1 JP 2017034799 W JP2017034799 W JP 2017034799W WO 2018074157 A1 WO2018074157 A1 WO 2018074157A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting portion
link
pair
boundary
outer diameter
Prior art date
Application number
PCT/JP2017/034799
Other languages
French (fr)
Japanese (ja)
Inventor
森川 昭二
清 相田
幸太郎 河村
邦宏 森下
基規 加藤
将樹 下野
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Publication of WO2018074157A1 publication Critical patent/WO2018074157A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/24Supporting, suspending, or setting arrangements, e.g. heat shielding

Definitions

  • the present invention relates to a buffer member and a link type seismic tie including the same.
  • a boiler apparatus that uses a boiler body in which a heat exchanger such as a economizer, an evaporator, and a superheater is mounted, suspended from an upper part of a support structure formed of a plurality of steel members.
  • a heat exchanger such as a economizer, an evaporator, and a superheater
  • the support structure bends in the horizontal direction starting from the portion embedded in the ground, and the boiler body supported by the support structure also shakes in the horizontal direction. End up. Therefore, a link type seismic tie (rest prevention structure) that is bridged in the horizontal direction between the boiler body and the support structure and suppresses the shake is provided in the boiler device.
  • the link-type seismic tie described in Patent Document 1 includes two shock-absorbing members (pins) whose center in the axial direction is attached to the boiler body side or the supporting steel frame side, and the two shock-absorbing members. And two parallel link members (connecting members) in which the upper ends and the lower ends are connected to each other.
  • Each of the two buffer members has a spindle-shaped portion formed so that the outer diameter gradually decreases from the central portion in the axial direction toward both ends, and extends from the end portion of the spindle-shaped portion to the distal end side in the axial direction.
  • a link joint portion slidably joined to each link member.
  • connection of a spindle-shaped part and a link junction part is discontinuous, and the joint is formed between both. For this reason, for example, when an external force is applied to the link type seismic tie due to an earthquake or strong wind, the stress tends to concentrate at the joint between the spindle-shaped part and the link joint part, improving the durability of the buffer member. There is a need to extend the service life.
  • an object of the present invention is to provide a buffer member capable of extending the service life and a link type seismic tie provided with the same.
  • a representative present invention is a buffer member pin-coupled to a pair of link type seismic ties, and is a shaft whose diameter decreases from the center in the axial direction toward both ends.
  • a main body, and a pair of link connecting bodies provided at both ends of the shaft main body and slidably coupled to the pair of link members, wherein the pair of link connecting bodies are respectively end portions of the shaft main body.
  • a connecting portion extending from the connecting portion extending in the axial direction, a pin coupling portion having a taper portion extending from the connecting portion and extending in the axial direction continuously from the end portion of the connecting portion;
  • the outer diameter at the central portion of the connecting portion is not more than the outer diameter at the boundary between the shaft body and the connecting portion, and is not more than the outer diameter at the boundary between the connecting portion and the tapered portion.
  • FIG. 3A is a schematic plan view showing a configuration example of a buffer member of a seismic tie according to an embodiment of the present invention
  • FIG. 3B is a schematic plan view showing a buffer member of a seismic tie according to a comparative example.
  • It is a graph which shows notionally the relation between the value of L2 / L1 and the ratio of the amount of energy absorption to the conventional structure.
  • It is a graph which shows notionally the relationship between the value of L2 / L1 and the ratio of the lifetime with respect to the conventional structure.
  • seismic tie 10 (hereinafter simply referred to as seismic tie 10) according to an embodiment of the present invention will be described below with reference to FIGS.
  • FIG. 1 is an overall configuration diagram illustrating an example of a boiler device 1 including a seismic tie 10 according to an embodiment.
  • a direction parallel to the ground on which the boiler device 1 is installed is referred to as a “horizontal direction”, and a direction orthogonal to the horizontal direction is referred to as a “vertical direction”.
  • the boiler device 1 is a large boiler device installed in a thermal power plant, for example.
  • the boiler device 1 includes a boiler body 11, a support structure 12 that supports the boiler body 11, and a plurality of seismic ties 10 disposed between the boiler body 11 and the support structure 12.
  • the boiler body 11 includes a furnace that burns fuel such as fossil fuel, and a heat exchanger such as a economizer, an evaporator, and a superheater, and is surrounded by a heat conductive wall. have.
  • the boiler body 11 is supported by the support structure 12 in a state of being suspended in the vertical direction from the upper part of the support structure 12 toward the ground side.
  • the support structure 12 is formed by combining a plurality of columnar members 120.
  • a steel member or the like can be used for each of the plurality of columnar members 120.
  • the plurality of seismic ties 10 are for suppressing horizontal shake of the boiler body 11 and the support structure 12 when an earthquake occurs, for example.
  • Each of the plurality of seismic ties 10 is a link type seismic tie that connects the boiler body 11 and the columnar member 120 in the horizontal direction.
  • this link type seismic tie 10 when horizontal relative displacement due to vibration occurs between the boiler body 11 and the support structure 12, vibration energy corresponding to the amount of displacement can be absorbed.
  • FIG. 2 is a schematic configuration diagram illustrating an example of the seismic tie 10 according to the embodiment.
  • FIG. 3A is a schematic plan view illustrating a configuration example of the buffer members 3a and 3b of the seismic tie 10 according to the embodiment
  • FIG. 3B is a schematic plan view illustrating the buffer member 9 of the seismic tie according to the comparative example.
  • FIG. 4 is a graph conceptually showing the relationship between the value of L2 / L1 and the ratio of energy absorption to the conventional structure (comparative example).
  • FIG. 5 is a graph conceptually showing the relationship between the value of L2 / L1 and the ratio of the lifetime to the conventional structure (comparative example).
  • the seismic tie 10 includes a pair of link members 2 a and 2 b extending along the horizontal direction and a pair arranged such that its own axial direction faces along a direction orthogonal to the horizontal direction.
  • the axial directions of the pair of buffer members 3 a and 3 b are arranged along a direction (vertical direction) orthogonal to the horizontal direction, but the present invention is not limited to this, and at least intersects the horizontal direction. What is necessary is just to arrange
  • Each of the pair of link members 2a and 2b is formed by integrating two steel members such as a steel plate as one set. Specifically, one end portions and the other end portions in the longitudinal direction (stretching direction) of the two steel materials are welded and integrated through a connecting plate inserted between the two steel materials. In addition, about the formation method of a pair of link member 2a, 2b, it is not necessarily restricted to this.
  • the pair of link members 2a and 2b are arranged side by side in the vertical direction as shown in FIG. And the one ends 201a and 201b in the extending direction of the pair of link members 2a and 2b are pin-coupled to one buffer member 3a by the connecting pin 4a, and the other ends 202a and 202b of the pair of link members 2a and 2b are connected to each other.
  • the other buffer member 3b is pin-connected by the connecting pin 4b. Accordingly, the pair of buffer members 3a and 3b connect the pair of link members 2a and 2b, respectively.
  • the left side in the horizontal direction is “one side” and the right side in the horizontal direction is “the other side”.
  • the link member positioned on the upper side in the vertical direction is appropriately referred to as the upper link member 2a
  • the link member positioned on the lower side in the vertical direction is appropriately referred to as the lower link member 2b.
  • One of the buffer members 3a is formed with an insertion hole 31a extending in a direction perpendicular to the axial direction (horizontal direction in FIG. 2) in the central portion in the axial direction.
  • the bracket 121 protruding from the side surface of the columnar member 120 toward the other side in the horizontal direction is inserted into the insertion hole 31a, so that one of the buffer members 3a is connected to the columnar member 120 (support structure 12). Yes.
  • the other buffer member 3b is formed with an insertion hole 31b extending in a direction perpendicular to the axial direction (horizontal direction in FIG. 2) in a central portion in the axial direction. And the other buffer member 3b is connected with the backstay 110 (boiler main body 11) by inserting a part of the backstay 110 attached to the outer surface of the boiler main body 11 through the insertion hole 31b.
  • the seismic tie 10 is connected to each of the boiler body 11 and the support structure 12 so as to be bridged in the horizontal direction between the boiler body 11 and the columnar member 120 of the support structure 12. Yes.
  • the pair of link members 2a and 2b are set so that the buckling strength (buckling strength) is larger than the maximum bending strength of each of the pair of buffer members 3a and 3b. Therefore, when vibration due to an earthquake or the like occurs, the pair of buffer members 3a and 3b are bent by the external force received from the boiler body 11 and the support structure 12 to absorb vibration energy. Since the pair of link members 2a and 2b has a tensile strength larger than the buckling strength, the strength comparison between the pair of buffer members 3a and 3b only needs to be compared with the buckling strength. .
  • each of the pair of buffer members 3 a and 3 b includes a shaft body 31 and a pair of link connectors 32 a and 32 b provided at both ends of the shaft body 31 in the axial direction. . Since the pair of buffer members 3a and 3b have the same configuration, the following description will be given by taking one buffer member 3a as an example.
  • the shaft body 31 is formed of an elastic-plastic member. As shown in FIG. 3A, the outer diameter of the shaft main body 31 is largest at the center CL in the axial direction (indicated by a one-dot chain line in FIG. 3A), and gradually decreases toward both ends in the axial direction. That is, the shaft main body 31 has a spindle shape with a diameter decreasing from the center CL in the axial direction toward both ends.
  • the pair of link connectors 32a and 32b includes a connecting portion 321 extending from the end portion of the shaft main body 31 to the distal end side in the axial direction, and a pin extending continuously from the end portion of the connecting portion 321 in the axial direction. And a coupling portion 322.
  • the connecting portion 321 serves as a so-called adjuster between the shaft body 31 and the pin coupling portion 322.
  • the pin coupling portion 322 is formed of an elastic member, and is pin-coupled to the one end 201b of the lower link member 2b via the connecting pin 4a. Thereby, the lower link connecting body 32b and the lower link member 2b of one buffer member 3a are slidably coupled around the connecting pin 4a.
  • a pin hole 325 for inserting the connection pin 4a is formed in the pin coupling portion 322.
  • the pin hole 325 penetrates in the direction orthogonal to the axial direction (the front and back direction of the paper surface in FIG. 3A), and is one form of a through hole that penetrates in the direction intersecting the axial direction.
  • the pin coupling portion 322 includes a tapered portion 323 that increases in diameter from the end portion of the coupling portion 321 toward the distal end side in the axial direction, an extending portion 324 that continuously extends from the end portion of the tapered portion 323 to the distal end, have.
  • the extending portion 324 is formed such that its outermost diameter is constant in the axial direction.
  • the pin coupling portion 322 is formed with a smooth surface 326 in which the periphery of the pin hole 325 is a plane perpendicular to the penetrating direction of the pin hole 325.
  • the smooth surface 326 is optional and does not necessarily have to be formed in the pin coupling portion 322.
  • the outer surface 31s of the shaft main body 31 and the outer surface 321s of the connecting portion 321 are connected by a curved surface.
  • the outer surface 321s of the connecting portion 321 and the outer surface 323s of the tapered portion 323 are connected by a curved surface.
  • the outer diameter D1 (hereinafter simply referred to as the outer diameter D1) at the center of the connecting portion 321 is greater than the outer diameter D2 (hereinafter simply referred to as the outer diameter D2) at the boundary B1 between the shaft body 31 and the connecting portion 321. Is smaller (D1 ⁇ D2) and smaller than an outer diameter D3 (hereinafter simply referred to as an outer diameter D3) at the boundary B2 between the connecting portion 321 and the tapered portion 323 (D1 ⁇ D3). Therefore, the outer surface 31s of the shaft body 31, the outer surface 321s of the connecting portion 321 and the outer surface 323s of the tapered portion 323 are smoothly continuous so as to draw an arc.
  • the link connector 92 does not have a connecting portion unlike the configuration of the buffer member 3a according to the present embodiment. Accordingly, the tapered portion 923 extends from the end portion of the shaft main body 91 toward the distal end side in the axial direction.
  • a joint J is formed between the shaft body 91 and the tapered portion 923.
  • the outer surface 91s of the shaft body 91 and the outer surface 923s of the tapered portion 923 are: It is clearly divided at the joint J. In this case, when an external force due to vibration is applied to the buffer member 9, stress concentrates on the joint J, and for example, a crack may occur from the joint J as shown in FIG. 3B.
  • the connecting portion 321 is provided between the shaft body 31 and the tapered portion 323, and the outer surface 31s of the shaft body 31, the outer surface 321s of the connecting portion 321 and the connecting portion 321 are provided. Since the outer surface 321 s is smoothly continuous, no joints that lead to breakage are formed. As a result, for example, the shock absorbing member 3a is less likely to be damaged by vibrations such as repeated earthquakes, and the service life can be extended.
  • the outer diameter D1 is not necessarily smaller than the outer diameter D2 (D1 ⁇ D2) and smaller than the outer diameter D3 (D1 ⁇ D3).
  • the outer diameter D1, the outer diameter D2, and the outer diameter D1 are not necessarily required.
  • the axial distance between the center of the pin hole 325 and the center CL of the shaft body 31 is L1 (hereinafter simply referred to as distance L1), and the axial length of the connecting portion 321 is obtained.
  • L1 hereinafter simply referred to as distance L1
  • L2 hereinafter simply referred to as length L2
  • vibration energy is absorbed by the buffer member 9 having the conventional structure shown in FIG. 3B.
  • the quantity ratio is between 0.9 and 1.0. Therefore, even if it has a connection part 321 like the buffer member 3a which concerns on this embodiment, the absorption amount of the vibration energy which the buffer member 3a absorbs falls significantly compared with the buffer member 9 of a conventional structure. There is no.
  • the ratio of the life to the buffer member 9 having the conventional structure is 1.0 or more. Therefore, the service life of the buffer member 3a according to the present embodiment is longer than the service life of the buffer member 9 having the conventional structure.
  • the ratio of the absorption amount of vibration energy to the buffer member 9 having the conventional structure shown in the graph of FIG. 4 becomes a value close to 1.0, and the conventional technology shown in the graph of FIG.
  • the life ratio of the structure to the buffer member 9 is 2.0 or more.
  • the seismic tie 10 including the pair of buffer members 3a and 3b satisfying 0.03 ⁇ L2 / L1 ⁇ 0.46 greatly reduces the amount of vibration energy absorbed by the pair of buffer members 3a and 3b. It is possible to extend the service life without this.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

The purpose is to extend the service life of a link-type seismic tie. A buffer member (3a) of a seismic tie (10) comprises a shaft body (31) and a pair of link connection bodies (32a, 32b) that are provided on both ends of the shaft body (31). Each of the link connection bodies (32a, 32b) has a connecting portion (321) that extends from the shaft body (31) toward the distal end in the axial direction, and a pin coupling portion (322) that is continuous to and extends from the connecting portion (321) in the axial direction and that has a tapered portion (323) that expands in diameter from the connecting portion (321). The outer diameter (D1) in the center of the connecting portion (321) is less than or equal to the outer diameter (D2) at the boundary between the shaft body (31) and the connecting portion (321) and is less than or equal to the outer diameter (D3) at the boundary between the connecting portion (321) and the tapered portion (323). At the boundary between the shaft body (31) and the connecting portion (321) and at the boundary between the connecting portion (321) and the tapered portion (323), the outer faces thereof are connected to each other by a curved face.

Description

緩衝部材及びそれを備えたリンク式サイスミックタイBuffer member and link type seismic tie including the same
 本発明は、緩衝部材及びそれを備えたリンク式サイスミックタイに関する。 The present invention relates to a buffer member and a link type seismic tie including the same.
 節炭器、蒸発器、及び過熱器等の熱交換器が内部に搭載されたボイラ本体を、複数の鉄骨部材で形成された支持構造体の上部から吊り下げて用いるボイラ装置が知られている。このボイラ装置では、例えば地震や強風等の外力が加わった場合、支持構造体は地中に埋設された部分を基点として水平方向に撓み、支持構造体に支持されたボイラ本体も水平方向に振れてしまう。そこで、ボイラ本体と支持構造体との間に水平方向に架け渡されて振れを抑制するリンク式のサイスミックタイ(振れ止め構造体)が、ボイラ装置に設けられている。 There is known a boiler apparatus that uses a boiler body in which a heat exchanger such as a economizer, an evaporator, and a superheater is mounted, suspended from an upper part of a support structure formed of a plurality of steel members. . In this boiler apparatus, for example, when an external force such as an earthquake or strong wind is applied, the support structure bends in the horizontal direction starting from the portion embedded in the ground, and the boiler body supported by the support structure also shakes in the horizontal direction. End up. Therefore, a link type seismic tie (rest prevention structure) that is bridged in the horizontal direction between the boiler body and the support structure and suppresses the shake is provided in the boiler device.
 例えば、特許文献1に記載されたリンク式サイスミックタイは、軸方向の中央部がボイラ本体側又は支持鉄骨側に取り付けられた2本の緩衝部材(ピン)と、これら2本の緩衝部材の上端同士及び下端同士をそれぞれ連結した平行な2本のリンク部材(連結部材)と、を備えている。2本の緩衝部材はそれぞれ、外径が軸方向の中央部から両端側に向かって漸次小さくなるように形成された紡錘形状部と、紡錘形状部の端部から軸方向の先端側に延在し、各リンク部材に摺動自在に接合されるリンク接合部と、を有している。 For example, the link-type seismic tie described in Patent Document 1 includes two shock-absorbing members (pins) whose center in the axial direction is attached to the boiler body side or the supporting steel frame side, and the two shock-absorbing members. And two parallel link members (connecting members) in which the upper ends and the lower ends are connected to each other. Each of the two buffer members has a spindle-shaped portion formed so that the outer diameter gradually decreases from the central portion in the axial direction toward both ends, and extends from the end portion of the spindle-shaped portion to the distal end side in the axial direction. And a link joint portion slidably joined to each link member.
 このリンク式サイスミックタイでは、連結部材の座屈強度が緩衝部材の最大曲げ強度よりも大きく設定されているため、緩衝部材がボイラ本体と支持構造体との間の相対変位を吸収して、ボイラ本体の水平方向の振れを抑制することができる。 In this link type seismic tie, since the buckling strength of the connecting member is set larger than the maximum bending strength of the buffer member, the buffer member absorbs the relative displacement between the boiler body and the support structure, The horizontal shake of the boiler body can be suppressed.
特開平1-155104号公報JP-A-1-155104
 しかしながら、特許文献1に記載のものでは、紡錘形状部とリンク接合部との接続が不連続であり、両者の間にはつなぎ目が形成されている。そのため、例えば地震や強風等によりリンク式サイスミックタイに外力が作用した場合には、紡錘形状部とリンク接合部との間のつなぎ目に応力が集中しやすく、緩衝部材の耐久性を改善して使用寿命を延ばすことが求められている。 However, in the thing of patent document 1, the connection of a spindle-shaped part and a link junction part is discontinuous, and the joint is formed between both. For this reason, for example, when an external force is applied to the link type seismic tie due to an earthquake or strong wind, the stress tends to concentrate at the joint between the spindle-shaped part and the link joint part, improving the durability of the buffer member. There is a need to extend the service life.
 そこで、本発明は、使用寿命を延ばすことが可能な緩衝部材、及びこれを備えたリンク式サイスミックタイを提供することを目的とする。 Therefore, an object of the present invention is to provide a buffer member capable of extending the service life and a link type seismic tie provided with the same.
 上記目的を達成するために、代表的な本発明は、リンク式サイスミックタイの一対のリンク部材同士にピン結合された緩衝部材であって、軸方向の中央から両端に向かうにつれて縮径する軸本体と、前記軸本体の両端に設けられ、前記一対のリンク部材と摺動自在に結合する一対のリンク接続体と、を備え、前記一対のリンク接続体は、それぞれ、前記軸本体の端部から前記軸方向の先端側に延在する連結部と、前記連結部の端部から連続して前記軸方向に延在すると共に、前記連結部から拡径するテーパ部を有するピン結合部と、を有し、前記連結部の中央部における外径は、前記軸本体と前記連結部との境界における外径以下であり、かつ、前記連結部と前記テーパ部との境界における外径以下であり、前記軸本体と前記連結部との境界では、前記軸本体の外面と前記連結部の外面とが曲面でつながっており、前記連結部と前記テーパ部との境界では、前記テーパ部の外面と前記連結部の外面とが曲面でつながっていることを特徴とする。 In order to achieve the above object, a representative present invention is a buffer member pin-coupled to a pair of link type seismic ties, and is a shaft whose diameter decreases from the center in the axial direction toward both ends. A main body, and a pair of link connecting bodies provided at both ends of the shaft main body and slidably coupled to the pair of link members, wherein the pair of link connecting bodies are respectively end portions of the shaft main body. A connecting portion extending from the connecting portion extending in the axial direction, a pin coupling portion having a taper portion extending from the connecting portion and extending in the axial direction continuously from the end portion of the connecting portion; And the outer diameter at the central portion of the connecting portion is not more than the outer diameter at the boundary between the shaft body and the connecting portion, and is not more than the outer diameter at the boundary between the connecting portion and the tapered portion. , Boundary between the shaft body and the connecting portion Then, the outer surface of the shaft body and the outer surface of the connecting portion are connected by a curved surface, and the outer surface of the tapered portion and the outer surface of the connecting portion are connected by a curved surface at the boundary between the connecting portion and the tapered portion. It is characterized by being.
 本発明によれば、上記の特徴により使用寿命を延ばすことができる。なお、上記した以外の課題、構成、及び効果は、以下の実施形態の説明により明らかにされる。 According to the present invention, the service life can be extended by the above features. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明の実施形態に係るサイスミックタイを備えたボイラ装置の一例を示す概略構成図である。It is a schematic structure figure showing an example of a boiler device provided with a seismic tie concerning an embodiment of the present invention. 本発明の実施形態に係るサイスミックタイの一例を示す概略構成図である。It is a schematic block diagram which shows an example of the seismic tie which concerns on embodiment of this invention. 図3Aは本発明の実施形態に係るサイスミックタイの緩衝部材の一構成例を示す概略平面図、図3Bは比較例に係るサイスミックタイの緩衝部材を示す概略平面図である。FIG. 3A is a schematic plan view showing a configuration example of a buffer member of a seismic tie according to an embodiment of the present invention, and FIG. 3B is a schematic plan view showing a buffer member of a seismic tie according to a comparative example. L2/L1の値と従来構造に対するエネルギー吸収量の比との関係を概念的に示すグラフである。It is a graph which shows notionally the relation between the value of L2 / L1 and the ratio of the amount of energy absorption to the conventional structure. L2/L1の値と従来構造に対する寿命の比との関係を概念的に示すグラフである。It is a graph which shows notionally the relationship between the value of L2 / L1 and the ratio of the lifetime with respect to the conventional structure.
 以下、本発明の実施形態に係るリンク式サイスミックタイ10(以下、単にサイスミックタイ10とする)について、図1~図5を参照して説明する。 A link type seismic tie 10 (hereinafter simply referred to as seismic tie 10) according to an embodiment of the present invention will be described below with reference to FIGS.
<ボイラ装置1の構成>
 まず、ボイラ装置1の全体構成について、図1を参照して説明する。
<Configuration of boiler device 1>
First, the whole structure of the boiler apparatus 1 is demonstrated with reference to FIG.
 図1は、実施形態に係るサイスミックタイ10を備えたボイラ装置1の一例を示す全体構成図である。なお、以下の説明において、ボイラ装置1が設置された地面に対して平行な方向を「水平方向」とし、この水平方向に直交する方向を「鉛直方向」とする。 FIG. 1 is an overall configuration diagram illustrating an example of a boiler device 1 including a seismic tie 10 according to an embodiment. In the following description, a direction parallel to the ground on which the boiler device 1 is installed is referred to as a “horizontal direction”, and a direction orthogonal to the horizontal direction is referred to as a “vertical direction”.
 ボイラ装置1は、例えば火力発電プラント内に設置される大型のボイラ装置である。このボイラ装置1は、ボイラ本体11と、ボイラ本体11を支持する支持構造体12と、ボイラ本体11及び支持構造体12の間に配置された複数のサイスミックタイ10と、を備えている。 The boiler device 1 is a large boiler device installed in a thermal power plant, for example. The boiler device 1 includes a boiler body 11, a support structure 12 that supports the boiler body 11, and a plurality of seismic ties 10 disposed between the boiler body 11 and the support structure 12.
 ボイラ本体11は、化石燃料等の燃料を燃焼させる火炉や、節炭器、蒸発器、及び過熱器等の熱交換器が内部に搭載され、その周囲を伝熱性の壁で囲んだ筐体構造を有している。ボイラ本体11は、支持構造体12の上部から地面側に向かって鉛直方向に吊り下げられた状態で支持構造体12に支持されている。 The boiler body 11 includes a furnace that burns fuel such as fossil fuel, and a heat exchanger such as a economizer, an evaporator, and a superheater, and is surrounded by a heat conductive wall. have. The boiler body 11 is supported by the support structure 12 in a state of being suspended in the vertical direction from the upper part of the support structure 12 toward the ground side.
 支持構造体12は、複数の柱状部材120が組み合わされて形成されている。複数の柱状部材120には、それぞれ、例えば鉄骨部材等を用いることができる。 The support structure 12 is formed by combining a plurality of columnar members 120. For each of the plurality of columnar members 120, for example, a steel member or the like can be used.
 複数のサイスミックタイ10は、例えば地震発生時等におけるボイラ本体11及び支持構造体12の水平方向の振れを抑制するためのものである。複数のサイスミックタイ10は、それぞれ、ボイラ本体11と柱状部材120との間を水平方向に接続するリンク式のサイスミックタイである。このリンク式のサイスミックタイ10では、ボイラ本体11と支持構造体12との間に振動による水平方向の相対変位が生じたとき、その変位量に応じた振動エネルギーを吸収することができる。 The plurality of seismic ties 10 are for suppressing horizontal shake of the boiler body 11 and the support structure 12 when an earthquake occurs, for example. Each of the plurality of seismic ties 10 is a link type seismic tie that connects the boiler body 11 and the columnar member 120 in the horizontal direction. In this link type seismic tie 10, when horizontal relative displacement due to vibration occurs between the boiler body 11 and the support structure 12, vibration energy corresponding to the amount of displacement can be absorbed.
<サイスミックタイ10の構成>
 次に、サイスミックタイ10の具体的な構成について、図2~図5を参照して説明する。
<Configuration of Seismic Thai 10>
Next, a specific configuration of seismic tie 10 will be described with reference to FIGS.
 図2は、実施形態に係るサイスミックタイ10の一例を示す概略構成図である。図3Aは、実施形態に係るサイスミックタイ10の緩衝部材3a,3bの一構成例を示す概略平面図であり、図3Bは、比較例に係るサイスミックタイの緩衝部材9を示す概略平面図である。図4は、L2/L1の値と従来構造(比較例)に対するエネルギー吸収量の比との関係を概念的に示すグラフである。図5は、L2/L1の値と従来構造(比較例)に対する寿命の比との関係を概念的に示すグラフである。 FIG. 2 is a schematic configuration diagram illustrating an example of the seismic tie 10 according to the embodiment. FIG. 3A is a schematic plan view illustrating a configuration example of the buffer members 3a and 3b of the seismic tie 10 according to the embodiment, and FIG. 3B is a schematic plan view illustrating the buffer member 9 of the seismic tie according to the comparative example. It is. FIG. 4 is a graph conceptually showing the relationship between the value of L2 / L1 and the ratio of energy absorption to the conventional structure (comparative example). FIG. 5 is a graph conceptually showing the relationship between the value of L2 / L1 and the ratio of the lifetime to the conventional structure (comparative example).
 図2に示すように、サイスミックタイ10は、水平方向に沿って延伸する一対のリンク部材2a,2bと、水平方向に直交する方向に沿って自身の軸方向が向くように配置された一対の緩衝部材3a,3bと、を備えている。なお、図2では、一対の緩衝部材3a,3bの軸方向が、水平方向に対して直交する方向(鉛直方向)に沿って配置されているが、これに限らず、少なくとも水平方向に交差する方向に沿って配置されていればよい。 As shown in FIG. 2, the seismic tie 10 includes a pair of link members 2 a and 2 b extending along the horizontal direction and a pair arranged such that its own axial direction faces along a direction orthogonal to the horizontal direction. Buffer members 3a and 3b. In FIG. 2, the axial directions of the pair of buffer members 3 a and 3 b are arranged along a direction (vertical direction) orthogonal to the horizontal direction, but the present invention is not limited to this, and at least intersects the horizontal direction. What is necessary is just to arrange | position along a direction.
 一対のリンク部材2a,2bは、それぞれ、例えば鋼板等の鋼材を2枚1組として一体化して形成されたものである。具体的には、2枚の鋼材の長手方向(延伸方向)の一端部同士及び他端部同士を、これら2枚の鋼材の間に挿入された連結板を介して溶接し、一体化する。なお、一対のリンク部材2a,2bの形成方法については、必ずしもこれに限られない。 Each of the pair of link members 2a and 2b is formed by integrating two steel members such as a steel plate as one set. Specifically, one end portions and the other end portions in the longitudinal direction (stretching direction) of the two steel materials are welded and integrated through a connecting plate inserted between the two steel materials. In addition, about the formation method of a pair of link member 2a, 2b, it is not necessarily restricted to this.
 一対のリンク部材2a,2bは、図2に示すように、鉛直方向に間を空けて並べて配置されている。そして、一対のリンク部材2a,2bの延伸方向の一端部201a,201b同士は連結ピン4aによって一方の緩衝部材3aとピン結合し、一対のリンク部材2a,2bの他端部202a,202b同士は連結ピン4bによって他方の緩衝部材3bとピン結合している。したがって、一対の緩衝部材3a,3bは、それぞれ、一対のリンク部材2a,2bの間を連結している。なお、図2において、水平方向の左側を「一方側」とし、水平方向の右側を「他方側」としている。 The pair of link members 2a and 2b are arranged side by side in the vertical direction as shown in FIG. And the one ends 201a and 201b in the extending direction of the pair of link members 2a and 2b are pin-coupled to one buffer member 3a by the connecting pin 4a, and the other ends 202a and 202b of the pair of link members 2a and 2b are connected to each other. The other buffer member 3b is pin-connected by the connecting pin 4b. Accordingly, the pair of buffer members 3a and 3b connect the pair of link members 2a and 2b, respectively. In FIG. 2, the left side in the horizontal direction is “one side” and the right side in the horizontal direction is “the other side”.
 以下の説明において、必要に応じて適宜、鉛直方向の上側に位置するリンク部材を上側リンク部材2aとし、鉛直方向の下側に位置するリンク部材を下側リンク部材2bとする。 In the following description, the link member positioned on the upper side in the vertical direction is appropriately referred to as the upper link member 2a, and the link member positioned on the lower side in the vertical direction is appropriately referred to as the lower link member 2b.
 一方の緩衝部材3aは、軸方向の中央部分に、軸方向に直交する方向(図2では水平方向)に延びる挿通孔31aが形成されている。そして、柱状部材120の側面から水平方向の他方側に向かって突出したブラケット121が挿通孔31aに挿通されることにより、一方の緩衝部材3aは柱状部材120(支持構造体12)と接続している。 One of the buffer members 3a is formed with an insertion hole 31a extending in a direction perpendicular to the axial direction (horizontal direction in FIG. 2) in the central portion in the axial direction. The bracket 121 protruding from the side surface of the columnar member 120 toward the other side in the horizontal direction is inserted into the insertion hole 31a, so that one of the buffer members 3a is connected to the columnar member 120 (support structure 12). Yes.
 同様に、他方の緩衝部材3bは、軸方向の中央部分に、軸方向に直交する方向(図2では水平方向)に延びる挿通孔31bが形成されている。そして、ボイラ本体11の外面に取り付けられたバックステー110の一部が挿通孔31bに挿通されることにより、他方の緩衝部材3bはバックステー110(ボイラ本体11)と接続している。 Similarly, the other buffer member 3b is formed with an insertion hole 31b extending in a direction perpendicular to the axial direction (horizontal direction in FIG. 2) in a central portion in the axial direction. And the other buffer member 3b is connected with the backstay 110 (boiler main body 11) by inserting a part of the backstay 110 attached to the outer surface of the boiler main body 11 through the insertion hole 31b.
 このようにして、サイスミックタイ10は、ボイラ本体11と支持構造体12の柱状部材120との間において、水平方向に架け渡されるようにボイラ本体11及び支持構造体12のそれぞれと接続している。 In this way, the seismic tie 10 is connected to each of the boiler body 11 and the support structure 12 so as to be bridged in the horizontal direction between the boiler body 11 and the columnar member 120 of the support structure 12. Yes.
 一対のリンク部材2a,2bは、それぞれ、座屈強度(座屈耐力)が一対の緩衝部材3a,3bそれぞれの最大曲げ強度よりも大きく設定されている。したがって、地震等による振動が発生した場合には、ボイラ本体11及び支持構造体12から受ける外力によって、一対の緩衝部材3a,3bが曲げられて振動エネルギーを吸収する。なお、一対のリンク部材2a,2bは、それぞれ、引張強度が座屈強度よりも大きいため、一対の緩衝部材3a,3bとの間における強度比較においては、座屈強度で比較検討をすれば足りる。 The pair of link members 2a and 2b are set so that the buckling strength (buckling strength) is larger than the maximum bending strength of each of the pair of buffer members 3a and 3b. Therefore, when vibration due to an earthquake or the like occurs, the pair of buffer members 3a and 3b are bent by the external force received from the boiler body 11 and the support structure 12 to absorb vibration energy. Since the pair of link members 2a and 2b has a tensile strength larger than the buckling strength, the strength comparison between the pair of buffer members 3a and 3b only needs to be compared with the buckling strength. .
 図2に示すように、一対の緩衝部材3a,3bは、それぞれ、軸本体31と、軸本体31の軸方向の両端に設けられた一対のリンク接続体32a,32bと、を有している。なお、一対の緩衝部材3a,3bは、いずれも同一の構成を有しているため、一方の緩衝部材3a側を例に挙げて、以下説明する。 As shown in FIG. 2, each of the pair of buffer members 3 a and 3 b includes a shaft body 31 and a pair of link connectors 32 a and 32 b provided at both ends of the shaft body 31 in the axial direction. . Since the pair of buffer members 3a and 3b have the same configuration, the following description will be given by taking one buffer member 3a as an example.
 軸本体31は、弾塑性を有する部材で形成されている。図3Aに示すように、軸本体31の外径は、軸方向の中央CL(図3Aにおいて一点鎖線で示す)でもっとも大きくなっており、軸方向の両端に向かうにつれて漸次小さくなっている。すなわち、軸本体31は、軸方向の中央CLから両端に向かうにつれて縮径する紡錘形状である。 The shaft body 31 is formed of an elastic-plastic member. As shown in FIG. 3A, the outer diameter of the shaft main body 31 is largest at the center CL in the axial direction (indicated by a one-dot chain line in FIG. 3A), and gradually decreases toward both ends in the axial direction. That is, the shaft main body 31 has a spindle shape with a diameter decreasing from the center CL in the axial direction toward both ends.
 一対のリンク接続体32a,32bは、それぞれ、軸本体31の端部から軸方向の先端側に延在する連結部321と、連結部321の端部から連続して軸方向に延在するピン結合部322と、を有している。連結部321は、軸本体31とピン結合部322との間において、いわゆるアジャスタの役割を担っている。 The pair of link connectors 32a and 32b includes a connecting portion 321 extending from the end portion of the shaft main body 31 to the distal end side in the axial direction, and a pin extending continuously from the end portion of the connecting portion 321 in the axial direction. And a coupling portion 322. The connecting portion 321 serves as a so-called adjuster between the shaft body 31 and the pin coupling portion 322.
 なお、一対のリンク接続体32a,32bは、いずれも同一の構成を有しているため、図2に示す一方の緩衝部材3aおいて、鉛直方向の下側に位置する下側リンク接続体32b側を例に挙げて、以下説明する。 Since the pair of link connectors 32a and 32b have the same configuration, the lower link connector 32b located on the lower side in the vertical direction in one buffer member 3a shown in FIG. The following will be described by taking the side as an example.
 ピン結合部322は、弾性を有する部材で形成されており、連結ピン4aを介して下側リンク部材2bの一端部201bとピン結合している。これにより、一方の緩衝部材3aの下側リンク接続体32bと下側リンク部材2bとが、連結ピン4aの回りに摺動自在に結合される。 The pin coupling portion 322 is formed of an elastic member, and is pin-coupled to the one end 201b of the lower link member 2b via the connecting pin 4a. Thereby, the lower link connecting body 32b and the lower link member 2b of one buffer member 3a are slidably coupled around the connecting pin 4a.
 ピン結合部322には、連結ピン4aを挿通させるためのピン孔325が形成されている。本実施形態では、ピン孔325は、軸方向に直交する方向(図3Aにおける紙面の表裏方向)に貫通しており、軸方向に交差する方向に貫通する貫通孔の一態様である。 A pin hole 325 for inserting the connection pin 4a is formed in the pin coupling portion 322. In the present embodiment, the pin hole 325 penetrates in the direction orthogonal to the axial direction (the front and back direction of the paper surface in FIG. 3A), and is one form of a through hole that penetrates in the direction intersecting the axial direction.
 ピン結合部322は、連結部321の端部から軸方向の先端側に向かうにつれて拡径するテーパ部323と、テーパ部323の端部から連続して先端まで延在する延在部324と、を有している。本実施形態では、延在部324は、その最外径が軸方向において一定に形成されている。 The pin coupling portion 322 includes a tapered portion 323 that increases in diameter from the end portion of the coupling portion 321 toward the distal end side in the axial direction, an extending portion 324 that continuously extends from the end portion of the tapered portion 323 to the distal end, have. In the present embodiment, the extending portion 324 is formed such that its outermost diameter is constant in the axial direction.
 また、本実施形態では、ピン結合部322には、ピン孔325の周囲がピン孔325の貫通方向に垂直な平面となる平滑面326が形成されている。なお、この平滑面326は任意であり、必ずしもピン結合部322に形成されている必要はない。 In the present embodiment, the pin coupling portion 322 is formed with a smooth surface 326 in which the periphery of the pin hole 325 is a plane perpendicular to the penetrating direction of the pin hole 325. The smooth surface 326 is optional and does not necessarily have to be formed in the pin coupling portion 322.
 図3Aにおいてその一部を拡大して示すように、軸本体31と連結部321との境界B1では、軸本体31の外面31sと連結部321の外面321sとが曲面でつながっている。同様に、連結部321とテーパ部323との境界B2では、連結部321の外面321sとテーパ部323の外面323sとが曲面でつながっている。 As shown in FIG. 3A with a part thereof enlarged, at the boundary B1 between the shaft main body 31 and the connecting portion 321, the outer surface 31s of the shaft main body 31 and the outer surface 321s of the connecting portion 321 are connected by a curved surface. Similarly, at the boundary B2 between the connecting portion 321 and the tapered portion 323, the outer surface 321s of the connecting portion 321 and the outer surface 323s of the tapered portion 323 are connected by a curved surface.
 そして、連結部321の中央部における外径D1(以下、単に外径D1とする)は、軸本体31と連結部321との境界B1における外径D2(以下、単に外径D2とする)よりも小さく(D1<D2)、かつ、連結部321とテーパ部323との境界B2における外径D3(以下、単に外径D3とする)よりも小さい(D1<D3)。したがって、軸本体31の外面31s、連結部321の外面321s、及びテーパ部323の外面323sは、円弧を描くように滑らかに連続している。 The outer diameter D1 (hereinafter simply referred to as the outer diameter D1) at the center of the connecting portion 321 is greater than the outer diameter D2 (hereinafter simply referred to as the outer diameter D2) at the boundary B1 between the shaft body 31 and the connecting portion 321. Is smaller (D1 <D2) and smaller than an outer diameter D3 (hereinafter simply referred to as an outer diameter D3) at the boundary B2 between the connecting portion 321 and the tapered portion 323 (D1 <D3). Therefore, the outer surface 31s of the shaft body 31, the outer surface 321s of the connecting portion 321 and the outer surface 323s of the tapered portion 323 are smoothly continuous so as to draw an arc.
 一方、図3Bに示すように、従来構造の一例である比較例に係る緩衝部材9では、本実施形態に係る緩衝部材3aの構成と異なり、リンク接続体92は連結部を有していない。したがって、軸本体91の端部から軸方向の先端側に向かってテーパ部923が延在している。 On the other hand, as shown in FIG. 3B, in the buffer member 9 according to the comparative example, which is an example of the conventional structure, the link connector 92 does not have a connecting portion unlike the configuration of the buffer member 3a according to the present embodiment. Accordingly, the tapered portion 923 extends from the end portion of the shaft main body 91 toward the distal end side in the axial direction.
 図3Bにおいてその一部を拡大して示すように、軸本体91とテーパ部923との間にはつなぎ目Jが形成されており、軸本体91の外面91sとテーパ部923の外面923sとは、つなぎ目Jを境として明確に分かれている。この場合において、緩衝部材9に振動による外力が加わると、つなぎ目Jに応力が集中し、例えば図3Bに示すようにつなぎ目Jから亀裂等が生じる可能性がある。 As shown in an enlarged view in FIG. 3B, a joint J is formed between the shaft body 91 and the tapered portion 923. The outer surface 91s of the shaft body 91 and the outer surface 923s of the tapered portion 923 are: It is clearly divided at the joint J. In this case, when an external force due to vibration is applied to the buffer member 9, stress concentrates on the joint J, and for example, a crack may occur from the joint J as shown in FIG. 3B.
 しかしながら、本実施形態に係る緩衝部材3aでは、軸本体31とテーパ部323との間に連結部321を設け、かつ、軸本体31の外面31s、連結部321の外面321s、及び連結部321の外面321sが滑らかに連続しているため、破損につながるつなぎ目が形成されていない。これにより、例えば繰り返し発生する地震等の振動によっても、緩衝部材3aは破損しにくくなり、使用寿命を延ばすことができる。 However, in the buffer member 3a according to the present embodiment, the connecting portion 321 is provided between the shaft body 31 and the tapered portion 323, and the outer surface 31s of the shaft body 31, the outer surface 321s of the connecting portion 321 and the connecting portion 321 are provided. Since the outer surface 321 s is smoothly continuous, no joints that lead to breakage are formed. As a result, for example, the shock absorbing member 3a is less likely to be damaged by vibrations such as repeated earthquakes, and the service life can be extended.
 なお、必ずしも、外径D1は、外径D2よりも小さく(D1<D2)、かつ、外径D3よりも小さい(D1<D3)必要はなく、例えば、外径D1、外径D2、及び外径D3が、すべて同じ大きさであってもよい(D1=D2=D3)。すなわち、少なくとも、外径D1は、外径D2以下であり(D1≦D2)、かつ、外径D3以下であればよい(D1≦D3)。 The outer diameter D1 is not necessarily smaller than the outer diameter D2 (D1 <D2) and smaller than the outer diameter D3 (D1 <D3). For example, the outer diameter D1, the outer diameter D2, and the outer diameter D1 are not necessarily required. The diameters D3 may all be the same size (D1 = D2 = D3). That is, at least the outer diameter D1 may be equal to or smaller than the outer diameter D2 (D1 ≦ D2) and equal to or smaller than the outer diameter D3 (D1 ≦ D3).
 また、図3Aに示すように、ピン孔325の中心と軸本体31の中央CLとの間における軸方向の距離をL1とし(以下、単に距離L1とする)、連結部321の軸方向の長さをL2としたとき(以下、単に長さL2とする)、距離L1と長さL2との間には、L2/L1≦0.42の関係が成り立つことが望ましい。 Further, as shown in FIG. 3A, the axial distance between the center of the pin hole 325 and the center CL of the shaft body 31 is L1 (hereinafter simply referred to as distance L1), and the axial length of the connecting portion 321 is obtained. When the thickness is L2 (hereinafter simply referred to as length L2), it is desirable that the relationship L2 / L1 ≦ 0.42 holds between the distance L1 and the length L2.
 図4のグラフに示すように、L2/L1≦0.42となるように、距離L1及び長さL2を設定した緩衝部材3aでは、図3Bに示す従来構造の緩衝部材9に対する振動エネルギーの吸収量の比が0.9~1.0の間となっている。したがって、本実施形態に係る緩衝部材3aのように連結部321を備えた場合であっても、緩衝部材3aが吸収する振動エネルギーの吸収量が従来構造の緩衝部材9と比べて大きく低下することがない。 As shown in the graph of FIG. 4, in the buffer member 3a in which the distance L1 and the length L2 are set so that L2 / L1 ≦ 0.42, vibration energy is absorbed by the buffer member 9 having the conventional structure shown in FIG. 3B. The quantity ratio is between 0.9 and 1.0. Therefore, even if it has a connection part 321 like the buffer member 3a which concerns on this embodiment, the absorption amount of the vibration energy which the buffer member 3a absorbs falls significantly compared with the buffer member 9 of a conventional structure. There is no.
 また、この場合において、図5のグラフに示すように、本実施形態に係る緩衝部材3aでは、従来構造の緩衝部材9に対する寿命の比が1.0以上となっている。したがって、本実施形態に係る緩衝部材3aの使用寿命は、従来構造の緩衝部材9の使用寿命の長さ以上となっている。 In this case, as shown in the graph of FIG. 5, in the buffer member 3a according to the present embodiment, the ratio of the life to the buffer member 9 having the conventional structure is 1.0 or more. Therefore, the service life of the buffer member 3a according to the present embodiment is longer than the service life of the buffer member 9 having the conventional structure.
 なお、距離L1と長さL2との間には、0.03≦L2/L1≦0.46の関係が成り立つことがより望ましい。この場合において、本実施形態に係る緩衝部材3aでは、図4のグラフに示す従来構造の緩衝部材9に対する振動エネルギーの吸収量の比が1.0に近い値となり、図5のグラフに示す従来構造の緩衝部材9に対する寿命の比が2.0以上となっている。 In addition, it is more desirable that the relationship of 0.03 ≦ L2 / L1 ≦ 0.46 is established between the distance L1 and the length L2. In this case, in the buffer member 3a according to the present embodiment, the ratio of the absorption amount of vibration energy to the buffer member 9 having the conventional structure shown in the graph of FIG. 4 becomes a value close to 1.0, and the conventional technology shown in the graph of FIG. The life ratio of the structure to the buffer member 9 is 2.0 or more.
 したがって、0.03≦L2/L1≦0.46となる一対の緩衝部材3a,3bを備えたサイスミックタイ10は、一対の緩衝部材3a,3bが吸収する振動エネルギーの吸収量を大きく低下させることなく、寿命を延ばすことが可能となる。 Therefore, the seismic tie 10 including the pair of buffer members 3a and 3b satisfying 0.03 ≦ L2 / L1 ≦ 0.46 greatly reduces the amount of vibration energy absorbed by the pair of buffer members 3a and 3b. It is possible to extend the service life without this.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
 2a,2b リンク部材
 3a,3b 緩衝部材
 10 サイスミックタイ(リンク式サイスミックタイ)
 11 ボイラ本体
 12 支持構造体
 31 軸本体
 31s,321s,323s 外面
 32 リンク接続体
 120 柱状部材
 201a,201b 一端部
 202a,202b 他端部
 321 連結部
 322 ピン結合部
 323 テーパ部
 325 ピン孔(貫通孔)
 B1,B2 境界
 D1,D2,D3 外径
2a, 2b Link member 3a, 3b Buffer member 10 Seismic tie (link type seismic tie)
DESCRIPTION OF SYMBOLS 11 Boiler main body 12 Support structure 31 Shaft main body 31s, 321s, 323s Outer surface 32 Link connection body 120 Columnar member 201a, 201b One end part 202a, 202b The other end part 321 Connection part 322 Pin coupling part 323 Taper part 325 Pin hole (through hole) )
B1, B2 boundary D1, D2, D3 Outer diameter

Claims (5)

  1.  リンク式サイスミックタイの一対のリンク部材同士にピン結合された緩衝部材であって、
     軸方向の中央から両端に向かうにつれて縮径する軸本体と、
     前記軸本体の両端に設けられ、前記一対のリンク部材と摺動自在に結合する一対のリンク接続体と、を備え、
     前記一対のリンク接続体は、それぞれ、
     前記軸本体の端部から前記軸方向の先端側に延在する連結部と、
     前記連結部の端部から連続して前記軸方向に延在すると共に、前記連結部から拡径するテーパ部を有するピン結合部と、を有し、
     前記連結部の中央部における外径は、前記軸本体と前記連結部との境界における外径以下であり、かつ、前記連結部と前記テーパ部との境界における外径以下であり、
     前記軸本体と前記連結部との境界では、前記軸本体の外面と前記連結部の外面とが曲面でつながっており、前記連結部と前記テーパ部との境界では、前記テーパ部の外面と前記連結部の外面とが曲面でつながっていることを特徴とするリンク式サイスミックタイの緩衝部材。
    A buffer member pin-coupled to a pair of link seismic ties,
    A shaft main body that decreases in diameter from the center in the axial direction toward both ends;
    A pair of link connectors provided at both ends of the shaft main body and slidably coupled to the pair of link members;
    Each of the pair of link connectors is respectively
    A connecting portion extending from the end portion of the shaft main body to the tip end side in the axial direction;
    A pin coupling portion having a taper portion extending continuously from the end portion of the coupling portion in the axial direction and having a diameter increased from the coupling portion;
    The outer diameter at the central portion of the connecting portion is not more than the outer diameter at the boundary between the shaft body and the connecting portion, and is not more than the outer diameter at the boundary between the connecting portion and the tapered portion,
    The outer surface of the shaft body and the outer surface of the connecting portion are connected by a curved surface at the boundary between the shaft body and the connecting portion, and the outer surface of the tapered portion and the outer surface of the tapered portion are connected at the boundary between the connecting portion and the tapered portion. A buffer type seismic tie cushioning member characterized in that the outer surface of the connecting portion is connected by a curved surface.
  2.  請求項1に記載のリンク式サイスミックタイの緩衝部材であって、
     前記連結部の前記中央部における外径は、前記軸本体と前記連結部との境界における外径よりも小さく、かつ、前記連結部と前記テーパ部との境界における外径よりも小さいことを特徴とするリンク式サイスミックタイの緩衝部材。
    The shock absorber of the link type seismic tie according to claim 1,
    An outer diameter at the central portion of the connecting portion is smaller than an outer diameter at a boundary between the shaft body and the connecting portion, and is smaller than an outer diameter at a boundary between the connecting portion and the tapered portion. The link type seismic tie cushioning member.
  3.  請求項1に記載のリンク式サイスミックタイの緩衝部材であって、
     前記ピン結合部には、前記軸方向に交差する方向に貫通する貫通孔が形成されており、
     前記貫通孔の中心と前記軸本体の中央との間における前記軸方向の距離をL1とし、前記連結部の前記軸方向の長さをL2としたとき、L2/L1≦0.42であることを特徴とするリンク式サイスミックタイの緩衝部材。
    The shock absorber of the link type seismic tie according to claim 1,
    The pin coupling portion is formed with a through hole penetrating in a direction intersecting the axial direction,
    When the axial distance between the center of the through hole and the center of the shaft body is L1, and the axial length of the connecting portion is L2, L2 / L1 ≦ 0.42. A shock absorber of a link type seismic tie.
  4.  請求項3に記載のリンク式サイスミックタイの緩衝部材であって、
     前記貫通孔の中心と前記軸本体の中央との間における前記軸方向の距離L1と、前記連結部の前記軸方向の長さL2との関係が、0.03≦L2/L1≦0.46であることを特徴とするリンク式サイスミックタイの緩衝部材。
    The link type seismic tie cushioning member according to claim 3,
    The relationship between the axial distance L1 between the center of the through hole and the center of the shaft main body and the axial length L2 of the connecting portion is 0.03 ≦ L2 / L1 ≦ 0.46. A link type seismic tie cushioning member characterized by being:
  5.  複数の柱状部材が組み合わされて形成された支持構造体と、前記支持構造体の上部から吊り下げられたボイラ本体との間に配置され、前記支持構造体及び前記ボイラ本体の水平方向の振れを抑えるためのリンク式サイスミックタイであって、
     前記水平方向に沿って延伸する一対のリンク部材と、
     前記水平方向に交差する方向に軸方向を有し、前記一対のリンク部材の延伸方向における一端部同士及び他端部同士をピン結合する一対の緩衝部材と、を備え、
     前記一対の緩衝部材は、それぞれ、
     前記軸方向の中央から両端に向かうにつれて縮径する軸本体と、
     前記軸本体の両端に設けられ、前記一対のリンク部材と摺動自在に結合する一対のリンク接続体と、を有し、
     前記一対のリンク接続体は、それぞれ、
     前記軸本体の端部から前記軸方向の先端側に延在する連結部と、
     前記連結部の端部から連続して前記軸方向に延在すると共に、前記連結部から拡径するテーパ部を有するピン結合部と、を有し、
     前記連結部の中央部における外径は、前記軸本体と前記連結部との境界における外径以下であり、かつ、前記連結部と前記テーパ部との境界における外径以下であり、
     前記軸本体と前記連結部との境界では、前記軸本体の外面と前記連結部の外面とが曲面でつながっており、前記連結部と前記テーパ部との境界では、前記テーパ部の外面と前記連結部の外面とが曲面でつながっていることを特徴とするリンク式サイスミックタイ。
    It is arranged between a support structure formed by combining a plurality of columnar members and a boiler body suspended from the upper part of the support structure, and the horizontal swing of the support structure and the boiler body is prevented. Link type seismic tie to suppress,
    A pair of link members extending along the horizontal direction;
    A pair of buffer members having an axial direction in a direction intersecting the horizontal direction and pin-bonding one end portions and the other end portions in the extending direction of the pair of link members;
    The pair of buffer members are respectively
    A shaft main body that decreases in diameter from the center in the axial direction toward both ends,
    A pair of link connectors provided at both ends of the shaft body and slidably coupled to the pair of link members;
    Each of the pair of link connectors is respectively
    A connecting portion extending from the end portion of the shaft main body to the tip end side in the axial direction;
    A pin coupling portion having a taper portion extending continuously from the end portion of the coupling portion in the axial direction and having a diameter increased from the coupling portion;
    The outer diameter at the central portion of the connecting portion is not more than the outer diameter at the boundary between the shaft body and the connecting portion, and is not more than the outer diameter at the boundary between the connecting portion and the tapered portion,
    The outer surface of the shaft body and the outer surface of the connecting portion are connected by a curved surface at the boundary between the shaft body and the connecting portion, and the outer surface of the tapered portion and the outer surface of the tapered portion are connected at the boundary between the connecting portion and the tapered portion. Link type seismic tie, characterized in that the outer surface of the connecting part is connected by a curved surface.
PCT/JP2017/034799 2016-10-19 2017-09-26 Buffer member and link-type seismic tie comprising same WO2018074157A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205150A JP6824684B2 (en) 2016-10-19 2016-10-19 Cushioning member and linked cysmic tie with it
JP2016-205150 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018074157A1 true WO2018074157A1 (en) 2018-04-26

Family

ID=62018584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/034799 WO2018074157A1 (en) 2016-10-19 2017-09-26 Buffer member and link-type seismic tie comprising same

Country Status (2)

Country Link
JP (1) JP6824684B2 (en)
WO (1) WO2018074157A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7242624B2 (en) * 2020-12-03 2023-03-20 三菱重工業株式会社 Elasto-plastic element, seismic tie with the same, and boiler support structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123901A (en) * 1987-11-09 1989-05-16 Electric Power Dev Co Ltd Boiler device
JPH01155104A (en) * 1987-12-14 1989-06-19 Babcock Hitachi Kk Boiler device
US20080271686A1 (en) * 2007-05-03 2008-11-06 Radke Edward F Link Type Seismic Tie For Boilers
WO2013141210A1 (en) * 2012-03-23 2013-09-26 バブコック日立株式会社 Seismic tie for boiler damping and earthquake-resistant boiler structure body using same
JP2015059685A (en) * 2013-09-18 2015-03-30 三菱日立パワーシステムズ株式会社 Seismic tie for vibration control of boiler, and boiler earthquake-proof structure using the same
JP2016084874A (en) * 2014-10-27 2016-05-19 大和ハウス工業株式会社 Shear damper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123901A (en) * 1987-11-09 1989-05-16 Electric Power Dev Co Ltd Boiler device
JPH01155104A (en) * 1987-12-14 1989-06-19 Babcock Hitachi Kk Boiler device
US20080271686A1 (en) * 2007-05-03 2008-11-06 Radke Edward F Link Type Seismic Tie For Boilers
WO2013141210A1 (en) * 2012-03-23 2013-09-26 バブコック日立株式会社 Seismic tie for boiler damping and earthquake-resistant boiler structure body using same
JP2015059685A (en) * 2013-09-18 2015-03-30 三菱日立パワーシステムズ株式会社 Seismic tie for vibration control of boiler, and boiler earthquake-proof structure using the same
JP2016084874A (en) * 2014-10-27 2016-05-19 大和ハウス工業株式会社 Shear damper

Also Published As

Publication number Publication date
JP6824684B2 (en) 2021-02-03
JP2018066509A (en) 2018-04-26

Similar Documents

Publication Publication Date Title
JP5787534B2 (en) Seismic structure
WO2018074157A1 (en) Buffer member and link-type seismic tie comprising same
CN107514068A (en) Double ranks surrender energy dissipating bracing members
JP2013057207A (en) Exposure type column base structure of iron frame column
CN108952288B (en) Installation method of double-torsion anti-buckling device of buckling-restrained brace
JP5744582B2 (en) Steel pipe combined perforated steel plate gibber
CN109594671B (en) Energy dissipation and shock absorption system of T-shaped lever mechanism cantilever truss
CN201292582Y (en) Light-duty three heavy metal circular tube flexion constrain support energy consuming machine
CN110284743A (en) A kind of Self-resetting metal bellows damper with limit function
JP4830498B2 (en) Double steel pipe brace material
CN109519025B (en) Energy dissipation and shock absorption system for cantilever truss of scissor supporting mechanism
JP4781058B2 (en) Building seismic control structure
CN108360904A (en) A kind of triangular-section shearing-type energy-consumption support
JP6809807B2 (en) Piping structure and boiler system
JP6805085B2 (en) An elasto-plastic element and a cysmic tie with it, and a support structure for the boiler
TWI744815B (en) Boiler plant
JP4572179B2 (en) So frame
CN208202744U (en) A kind of triangular-section shearing-type energy-consumption support
TWI606222B (en) Steam boiler
JP2014193484A (en) Elastic joint portion for slide block adapter
KR101589380B1 (en) Variable clamp system
CN210032181U (en) Buckling restrained brace
JP5236678B2 (en) Shaft coupling
CN107166096A (en) A kind of U-tube beam
CN205392760U (en) Cathode frame&#39;s connecting device and electrostatic precipitator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862345

Country of ref document: EP

Kind code of ref document: A1