WO2013141210A1 - Seismic tie for boiler damping and earthquake-resistant boiler structure body using same - Google Patents

Seismic tie for boiler damping and earthquake-resistant boiler structure body using same Download PDF

Info

Publication number
WO2013141210A1
WO2013141210A1 PCT/JP2013/057679 JP2013057679W WO2013141210A1 WO 2013141210 A1 WO2013141210 A1 WO 2013141210A1 JP 2013057679 W JP2013057679 W JP 2013057679W WO 2013141210 A1 WO2013141210 A1 WO 2013141210A1
Authority
WO
WIPO (PCT)
Prior art keywords
seismic
boiler
pin
support frame
tie
Prior art date
Application number
PCT/JP2013/057679
Other languages
French (fr)
Japanese (ja)
Inventor
清 相田
幸太郎 河村
泰治 築地
佑一 樋吉
Original Assignee
バブコック日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社 filed Critical バブコック日立株式会社
Publication of WO2013141210A1 publication Critical patent/WO2013141210A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/12Vibration-dampers; Shock-absorbers using plastic deformation of members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/024Structures with steel columns and beams
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H7/00Construction or assembling of bulk storage containers employing civil engineering techniques in situ or off the site
    • E04H7/02Containers for fluids or gases; Supports therefor
    • E04H7/04Containers for fluids or gases; Supports therefor mainly of metal

Definitions

  • the present invention mainly relates to a seismic structure of a large boiler for a thermal power plant, and more particularly to a seismic tie which is a vibration absorber installed in the boiler.
  • FIG. 15 is a side view of the boiler seismic structure
  • FIG. 16 is a schematic diagram showing the layout of the main piping that is piped between the boiler body, the boiler building, the turbine building, the boiler building and the turbine building
  • FIG. 17 is each layer of the support frame.
  • FIG. 18 is a perspective view showing the structure of a conventional seismic tie
  • FIG. 19 is a diagram showing the structure of a spindle-type pin in the conventional seismic tie
  • FIG. 20 is a seismic tie. It is a figure explaining the principle of the energy absorption by a tie.
  • the support frame 7 is composed of a combination of a plurality of steel columns 1 arranged in the vertical direction and a plurality of main beams 2 arranged in the vertical direction. Since the boiler body 4 is thermally stretched in the vertical direction during operation, the boiler body 4 is suspended from the upper portion of the support frame 7 by suspension bolts 3 so as not to restrain this thermal elongation.
  • the main beam 2 means a seismic beam arranged in the horizontal direction.
  • the main beam 2 (hereinafter also referred to as a beam or a steel beam) is arranged in a plurality of stages along the height direction from the ground 32.
  • the uppermost part for hanging the boiler body 4 with the first layer from the foundation part of the support frame 7 to the lowermost main beam 2 and the second layer from the lowermost main beam 2 to the next main beam 2 A plurality of layer structures are formed up to the main beam 2, and up to the seventh layer is formed in the example of FIG.
  • FIG. 17 (1) is a cross-sectional view as viewed from FIG. 15A-A
  • FIG. 17 (2) is a cross-sectional view as viewed from FIG. 15B-B
  • FIG. 17 (3) is a cross-sectional view as viewed from FIG. 17 (5) is a cross-sectional view from FIG. 15E-E
  • FIG. 17 (6) is a cross-sectional view from FIG. 15F-F
  • FIG. 17 (7) is a cross-sectional view from FIG. It is sectional drawing seen from.
  • a seismic tie 6 is provided between the boiler body 4 and the support frame 7 in order to absorb the vibration energy of both during the earthquake.
  • seismic ties 6 are respectively installed on the upper part of the first layer, the upper part of the second layer, the upper part of the fourth layer, the upper part of the fifth layer, and the upper part of the sixth layer. Yes.
  • a total of 14 seismic ties 6 are used.
  • FIG. 18 is a perspective view showing the structure of a seismic tie applied to a boiler seismic structure related to the prior art.
  • An example of the structure of the seismic tie 6 having the spindle type pin 6B shown in FIG. 18 is disclosed in, for example, Patent Document 1 below.
  • the seismic tie 6 is connected to the boiler body 4 and the support frame 7 through a pressure bearing 6C.
  • the seismic tie 6 is configured by hinge-joining a spindle type pin 6B (soft steel material) and a link 6A (rigid steel material).
  • the steady-state structure spanned between the boiler body and the supporting steel frame is composed of two parallel links and a pin material coupled to the link.
  • a spindle shape is formed in which the pin diameter is gradually reduced from the central portion toward both ends (see FIGS. 18 and 19).
  • FIG. 19 shows the structure of the spindle-type pin 6B and the bearing portion 6C in the seismic tie 6 disclosed in Patent Document 1.
  • 19 (1) is a front view of the spindle-type pin 6B and the bearing section 6C
  • FIG. 19 (2) is a cross-sectional view taken along line CC in FIG. 19 (1)
  • FIG. 19 (3) is FIG. 19 (1) D. It is sectional drawing on the -D line.
  • the pin 6B has a so-called spindle type (rugby ball type) in which the cross section becomes smaller in the axial direction from the bearing portion 6C.
  • spindle type rugby ball type
  • the cross section of the bearing section 6C CC cross section
  • DD cross section the cross section of the other part
  • FIG. 20 is a diagram for explaining the principle of energy absorption by the seismic tie related to the prior art and the present invention.
  • the relationship between the reaction force Fi of the seismic tie and the displacement ⁇ i in the conventional structure of the spindle type pin shown in FIG. This is indicated by the solid line in FIG.
  • the area surrounded by the solid line corresponds to the vibration energy absorption amount.
  • a solid line passing through the origin of coordinates is a line for explaining the first gradient described later.
  • the first gradient of the pin material in the seismic tie shown in FIG. 20 (the gradient when the pin material in the seismic tie is elastic) is increased, and the second gradient (the seismic tie). It is necessary to reduce the gradient when the pin material is plastic (the pin material 6 has elastic-plastic characteristics).
  • the present invention increases the vibration energy absorption performance of the boiler body by using a seismic tie that achieves both an increase in the secondary moment of section and an expansion of the plastic stress area.
  • the objective is to provide a boiler seismic structure that reduces the seismic load acting on the frame.
  • an object of the present invention is to provide a sikumi tie that increases the vibration energy absorption performance at the time of an earthquake and minimizes damage to equipment such as piping in consideration of the speed of restoration work after the earthquake.
  • a boiler damping structure that reduces a seismic load acting on a boiler building that is a support frame of the boiler body.
  • the first means of the present invention is: A support frame composed of a plurality of steel columns and steel beams and a boiler body supported by being suspended from the steel beam above the support frame are connected, and the relative displacement during the earthquake between the support frame and the boiler body is used. It is intended for seismic ties that absorb the vibration energy of earthquakes.
  • the seismic tie includes a link material that is an elastic member and a pin material that is an elastic-plastic member in a direction perpendicular to the link material, and a structure in which both ends of the link material and the pin material are hinged to each other.
  • the pin member has a bearing portion having a circular cross-sectional shape at the axial center of the pin member, and has a substantially spindle shape in which the outer diameter gradually decreases from the bearing portion toward the hinge coupling portion.
  • the bearing portion of the pin material is connected to the support frame and the boiler body,
  • the substantially spindle shape is characterized by a structure formed by a web portion and a flange portion installed on the outer edge side of the web portion.
  • the substantially spindle shape is a structure formed by a web plate and a flange plate installed on the outer edge side of the web plate,
  • the web plate has a shape in which both sides of the web plate are symmetrically arranged in the axial direction of the pin material around the axis of the pin material,
  • the ratio of the cross-sectional area of the flange plate to the cross-sectional area of the web plate is 1.3 to 1.7 in the cross section in the axial direction of the pin material and the direction perpendicular to the axis of the pin material.
  • a third means of the present invention is the first or second means,
  • the cross-sectional shape of both sides is made symmetrical with respect to the axis of the pin material on which the reaction force to the bearing portion of the seismic tie with respect to the relative displacement at the time of the earthquake is applied.
  • the fourth means of the present invention is: A support frame comprising a plurality of steel columns and steel beams and having a plurality of layered structures, a boiler body supported by being suspended from a steel beam above the support frame, and connecting the support frame and the boiler body
  • the seismic tie is a seismic tie of any one of the first to third means, The seismic tie is provided at least in a layer corresponding to the position of the center of gravity of the boiler seismic structure.
  • the fifth means of the present invention is: A support frame comprising a plurality of steel columns and steel beams and having a plurality of layer structures, a boiler having a furnace, a side wall portion and a rear wall portion, and supported by being suspended from a steel beam above the support frame
  • a boiler seismic structure with a main body and a seismic tie connecting the support frame and the boiler body
  • the seismic tie is a seismic tie of any one of the first to third means,
  • the seismic tie is installed between the furnace and the support frame and between the rear wall part and the support frame.
  • the pin structure having the spindle-shaped cutting portion in the seismic tie is configured by the web portion and the flange portion, and the cross-sectional area of the flange portion is appropriately set by setting the cross-sectional area of the flange portion with respect to the cross-sectional area of the web portion.
  • the seismic tie absorbs the vibration energy of the boiler body by the seismic tie, and the seismic load acting on the support frame can be reduced by coexisting the increase of the next moment and the expansion of the plastic stress area.
  • the weight of the support frame can be reduced in the case of a new boiler, and the earthquake resistance can be improved in the case of an existing boiler.
  • FIG. 1 It is a front view which shows the structure of the pin material in the seismic tie which concerns on embodiment of this invention. It is a perspective view which shows the structure of the pin material in the seismic tie which concerns on this embodiment. It is the side view and top view which show the other structure of the pin material in the seismic tie which concerns on this embodiment. It is a figure which shows the web board which shows the other structure of the pin material in the seismic tie which concerns on this embodiment, a flange board, a fixed board, and a bearing part part. It is a figure which shows the cross-sectional shape of a pin axis
  • FIG. 4 is a view showing a cross-sectional shape in a direction perpendicular to the pin axis at each part (EE cut to JJ cut part) in the pin axis direction in another structure of the pin member shown in FIG. 3; It is a figure which shows the cross-sectional shape of the pin-axis perpendicular
  • FIGS. 15 and 18 a plurality of seismic ties 6 according to the present embodiment are installed between the boiler body 4 and a support frame (also referred to as a boiler building) 7.
  • 5 absorbs the seismic energy generated by 5 and controls the boiler body 4 and the supporting frame 7.
  • the boiler building 7 composed of the steel column 1 and the steel beam 2, the boiler body 4 suspended from the boiler building 7, and the boiler body 4 to the turbine building 30 are arranged.
  • the overall structure including the installed main pipe 24 the necessity of seismic tie as an earthquake response will be explained.
  • FIG. 16 shows the boiler body 4 including the furnace 20, the side wall portion 21, the rear wall portion 22, and the penthouse portion 23, the boiler building 7 that is a support frame, the turbine building 30, and the boiler building 7 and the turbine building 30. It is the schematic which shows the whole structure of the main piping 24 arrange
  • FIGS. 15 to 18 and 20 are diagrams showing configurations for explaining the conventional technique, but are fundamental techniques applied also in the present embodiment.
  • a large boiler used in a thermal power plant is a boiler building 7 (also referred to as a support frame 7) that has a steel structure in which the boiler body is usually composed of a combination of a plurality of steel columns 1 and steel beams 2. ) Is suspended from the uppermost steel beam 2.
  • the boiler body has a casing structure surrounded by a heat transfer wall (also referred to as a peripheral wall), and burns by supplying combustion air together with fuel such as fossil fuel by a burner provided on the heat transfer wall.
  • a furnace 20 that is communicated with the upper portion of the furnace 20 and provided in a horizontal direction, a flow path (also referred to as a side wall 21) through which combustion exhaust gas generated by combustion flows, and a combustion exhaust gas that is provided in communication with the flow path Consists of a flow path (also referred to as rear wall portion 22) that flows downward.
  • a suspended superheater or reheater is provided in the combustion exhaust gas flow path at the upper part of the furnace 20, and a high-temperature combustion exhaust gas from the furnace 20, for example, about 1400 ° C to 1500 ° C, a superheater, and reheat Heat exchange is performed with water vapor or water flowing through the inside of the vessel and the peripheral wall. Also in the side wall 21, the combustion exhaust gas exchanges heat with water vapor or water flowing inside the peripheral wall, and becomes a combustion exhaust gas of about 1000 ° C. to 1100 ° C., for example, and flows into the rear wall portion 22.
  • a horizontal type superheater, a reheater, and a economizer are provided in the combustion exhaust gas flow path, and the flue gas from the side wall portion 21 is superheater, reheater, and economizer.
  • Heat exchange is performed between water vapor or water flowing through the inside of the vessel and the peripheral wall, and the combustion exhaust gas becomes, for example, about 300 ° C. to 400 ° C.
  • a penthouse portion 23 that is insulated from the furnace 20, the side wall portion 21 and the rear wall portion 22 by a ceiling wall and a seal structure.
  • a container header is provided. Steam heated to a high temperature by the superheater or the reheater is connected to the main header via the header in the penthouse section 23.
  • the turbine building 30 is provided separately from the boiler building 7.
  • an exhaust gas duct is provided in communication with the outside of the boiler building 7 from below or behind the rear wall portion 22.
  • Environmental devices such as a denitration device, a dust removal device and a desulfurization device, and a heat exchanger are provided in the exhaust gas duct path. After the combustion exhaust gas from the rear wall portion 22 reaches about 50 ° C. at the desulfurization device outlet, Eventually released from the chimney to the atmosphere.
  • the main water supply pipe that supplies water to the boiler body 4 and the like are connected to the vicinity of the turbine building 30 from the boiler body 4 through the boiler building 7.
  • the main steam pipe and the reheat steam pipe are spring hangers provided in the boiler building 7, the turbine building 30, and the steel structure between them in the path from the boiler body to the turbine building 30 via the boiler building 7. It is hung on the support support, so that it can cope with the thermal expansion of the piping in each structure.
  • the exhaust gas duct is provided with an expansion structure at the exit from the boiler building 7 or the like, so that it can cope with the thermal expansion of the boiler body.
  • a seismic tie 6 is used between the boiler body 4 and the boiler building 7 to absorb vibration energy by plastic deformation in addition to elastic deformation.
  • FIG. 15 shows a side view for explaining the boiler seismic structure.
  • a boiler body 4 is suspended in a boiler building 7 which is a support frame composed of a steel beam 2 and a steel column 1.
  • the important components of the boiler seismic structure are particularly referred to as the main steel column 1 and the main steel beam 2.
  • the boiler body 4 is suspended and supported by the uppermost main steel beam 2a via the suspension bolts 3, and is thermally stretched in the vertical direction downward from the suspension support portion during operation.
  • a slide or an expansion allowance is provided so that an arbitrary position of the suspension support portion is set as a reference point for moving in the horizontal direction, and horizontal movement is possible.
  • the main steel beam 2 is arranged in a horizontal direction in the boiler building and constitutes an important component of the boiler seismic structure, and a plurality of main steel beams 2 are horizontally arranged in the height direction from the ground (also referred to as a foundation) 32. Arranged in the direction.
  • the boiler seismic structure is referred to as the first layer from the base to the bottom main steel beam 2 from the bottom, and the second layer from the bottom main steel beam 2 to the next main steel beam 2, A plurality of layer structures are formed up to the main steel beam 2 from which the main body 4 is suspended.
  • a boiler seismic structure composed of the first layer to the seventh layer is formed.
  • the main body 4 and the main body 4 are connected to the main body 4 in a plurality of layers to absorb the vibration energy of the main body 4 during an earthquake.
  • a seismic tie 6 is provided as a structure.
  • One seismic tie 6 is normally connected to the main steel column 1, but can be connected to the main steel beam 2 if the rigidity is high.
  • the other of the seismic ties 6 is usually provided with a structure that restrains a peripheral wall called a back step so as to surround the furnace of the boiler body 4 (see FIG. 18), and is connected via the back step.
  • one seismic tie 6 is connected to the main steel column 1 at the same height as the main steel beam 2, and the other is connected to a backsteer (not shown). It is connected to.
  • the reason why the seismic tie 6 is connected to the main steel column 1 at the same level as the main steel beam 2 is that the rigidity on the boiler building side is the highest because both are provided. by.
  • FIG. 17 is a plan view of the arrangement of seismic ties 6 in FIG.
  • a total of 14 seismic ties 6 are arranged in the BB to GG cross sections shown in FIGS. 10 on the furnace side and 4 on the rear wall side.
  • the angle of attachment of each seismic tie 6 to the steel column 1 is, for example, 30 ° to 45 ° (the angle at which the long seismic tie 6 shown in FIG. 17 abuts the steel column 1). It corresponds to any displacement direction on the plane.
  • it has a structure that can cope with thermal expansion (up and down movement) of the boiler body.
  • the seismic energy due to the seismic load 5 is absorbed by the seismic tie 6 to control the boiler structure of the boiler body 4 and the boiler building 7.
  • FIG. 18 shows a conventional example of seismic tie 6.
  • seismic tie 6 consists of two rigid steel materials such as a steel plate as a set and welded at one end in the length direction. Between the two steel members in the vertical direction on the upper and lower ends of the link member 6A and the one in the upper and lower ends of the link member 6A. It is composed of two spindle-type soft steel materials (referred to as pin material 6B) that are inserted and arranged, and both ends of the pin material 6B and both ends of the link material 6A are hinged by small-diameter round steel (pins). is doing.
  • pin material 6B spindle-type soft steel materials
  • connection member is provided for each of the support portions 6C provided at the center of the two pin members 6B, one of which is connected to the steel column 1 of the support frame 7 via the support portion 6C, and the other is connected to the back support. It is connected. That is, the seismic tie 6 is configured by hinge-connecting a pin 6B (relatively flexible steel material) and a link 6A (rigid steel material) with a pin (see Patent Document 1 described above).
  • FIG. 19 shows the pin material 6B used in the seismic tie having the conventional structure described in FIG.
  • This pin material 6B has a so-called spindle type (rugby ball type) in which the cross section becomes smaller as it is separated from the pressure bearing portion 6C provided in the central portion in the axial direction of the pin material in the axial direction.
  • the cross section (CC cross section) of the bearing section 6C and the cross section of other portions (DD cross section) are concentric circles.
  • the relationship between the seismic tie reaction force Fi and displacement ⁇ i in this conventional structure is shown by the solid line in FIG.
  • the rhombus area surrounded by the solid line corresponds to the amount of vibration energy absorbed during an earthquake.
  • the relative displacement between the boiler body 4 and the boiler building 7 becomes a displacement ⁇ i acting on the seismic tie, and a reaction force Fi is generated on the seismic tie due to this displacement.
  • the maximum displacement is the maximum relative displacement that displaces within a range in which the main pipe 24 or the like is not damaged.
  • the main displacement is the same as the boiler body 4.
  • the piping 24 is arbitrarily set in consideration of the relative displacement that exceeds the displacement absorption amount by the spring hanger or the like on the boiler building 7 side and does not interfere with the boiler building 7.
  • the solid line in FIG. 20 shows the state of the reaction force that acts on the displacement of the seismic tie during an earthquake. It is at the origin before the start of displacement and increases to the right according to the displacement on the right side. This gradient is referred to as a first gradient, and the reaction force increases due to elastic deformation. As the displacement progresses, the elastic deformation changes to plastic deformation, and the gradient from this is called the second gradient. This second gradient continues until the displacement reaches the maximum displacement (15 cm).
  • the direction of the reaction force is reversed, that is, the same as the first direction, and progresses until it changes to plastic deformation in parallel with the first gradient by elastic deformation. It will go up to the maximum displacement (15 cm) with a gradient.
  • the embodiment of the present invention provides the above-described compatible structure, which will be described below.
  • the seismic tie 6 is connected to the boiler body 4 and the support frame 7 via a pressure bearing 6C (see FIG. 18), and is relative to the support frame 7 and the boiler body 4 at the time of an earthquake. It is made of steel that absorbs vibration energy using displacement.
  • the seismic tie 6 has a specific structure in which two links 6A that are two elastic members are provided in the horizontal direction with respect to the direction in which the relative displacement occurs, and two in the direction perpendicular to the direction in which the relative displacement occurs.
  • the pin 6B which is an elastic-plastic member, is provided, and the link 6A and the end of the pin 6B are hinged.
  • the feature of the present invention is that, in general, the pin material 16 in the seismic tie 6 has a specific structure shown in FIGS. 1 to 7 described below.
  • the pin material 16 relating to the present embodiment has a circular cross-sectional shape of the pin bearing portion 16C provided at the center in the axial direction. This is because the seismic tie 6 is connected to the boiler body 4 and the support frame 7 so as to be freely rotatable when the boiler body 4 is thermally expanded.
  • the diameter of the pin bearing portion 16C of the pin material 16 is about 1.5 times the upper limit of the spindle type bearing portion 6C shown in FIG.
  • the pin member 16 relating to the present embodiment shown in FIGS. 1 and 2 is in the axial direction as shown in FIGS. 1, 2, 5, and 7 with respect to the spindle-shaped pin 6B shown in FIG.
  • the both sides are partially cut (turned through) with the axis as a symmetric center line to form the web portion 16W, and the flange portions 16F are formed on both ends of the web portion 16W.
  • Fi shown in FIG. 1 indicates an axis on which the reaction force of the seismic tie 6 acts.
  • the direction of the reaction force to the pin support portion 16C of the seismic tie 6 attached to the boiler body 4 and the support frame 7 shown in FIG. 18 is the reaction force of the pin spindle-shaped cutting portion 16B shown in FIG.
  • the pin 16B having the structure shown in FIGS. 1 and 2 is attached to the link 6A so as to be an axis on which Fi acts, that is, so that the flat processed surface of the cutting portion 16B is symmetrical with the reaction force Fi interposed therebetween. Install and install.
  • FIG. 5 (1) is a cross-sectional view taken along the line EE of FIG. 1, showing the cross-sectional shape of the bearing portion 16C.
  • 5 (2) is a cross-sectional view taken along line FF in FIG. 1
  • FIG. 5 (3) is a cross-sectional view taken along line GG in FIG. 1
  • FIG. 5 (4) is taken along line HH in FIG.
  • the cross-sectional view shows the cross-sectional shape of the pin spindle-shaped cutting portion 16B.
  • each part is vertically symmetric about the axis 1001 on which the reaction force Fi of the seismic tie acts.
  • the plate thickness tw of the cross-sectional shape of the web portion 16 ⁇ / b> W of the pin material 16 is a constant thickness in the axial direction of the pin spindle-shaped cutting portion 16 ⁇ / b> B.
  • the dimension tF of the flange portion 16F in the direction perpendicular to the pin axis is also a fixed length in the pin axis direction.
  • the pin spindle-shaped cutting portion 16B is characterized by a web portion 16W (a plate-like body) having a constant thickness tw in the cross-sectional shape of the pin spindle-shaped cutting portion 16B.
  • the width direction dimension decreases as the distance from the pin bearing part 16C increases, and the flange part in which spindle pins remain at both ends of the web part 16W 16F.
  • the ratio of the cross-sectional area (AF) of the flange portion 16F to the cross-sectional area (Aw) of the web portion 16W is 1.3 to 1.7 (the technical significance of the cross-sectional area ratio is shown in FIG. 5). (Which will be described later in the description).
  • the structure of the pin 16B having the cut shape and the cross-sectional area ratio of the spindle type pin described above is an optimal cross-sectional shape obtained by the present inventor through a parameter survey.
  • FIG. 7 shows the parameters of the cross-sectional shape of the pin spindle-shaped cutting portion 16B according to this embodiment. These parameters are the area AF of the cross-section flange portion 16F and the area Aw of the cross-section web portion 16W shown in the following equation.
  • FIG. 7 (2) shows a portion in the vicinity of the area AF of the flange portion shown in FIG. 7 (1).
  • Aw tw ⁇ H (2)
  • FIG. 7 (2) shows a portion in the vicinity of the area AF of the flange portion shown in FIG. 7 (1). With reference to FIG. 7 (2), the area A F of the flange portion shown in Expression (1) will be described below.
  • 1/2 ⁇ r 2 ⁇ ⁇ is a fan-shaped area Az
  • r 2 ⁇ cos ( ⁇ / 2) ⁇ sin ( ⁇ / 2) is a triangular area AT.
  • the area AF of the flange portion is obtained by subtracting the triangular area AT from the fan-shaped area Az.
  • the radius r, the web portion height H, and the angle ⁇ are obtained by using the diameter D and the flange portion thickness tF.
  • the pin material structure that increases the amount of energy absorption corresponds to the cross-sectional area (Aw) of the web section 16W having a cut cross-sectional shape on both sides in the pin axial direction of the spindle type pin. It can be seen that the ratio (AF / Aw) of the cross-sectional area (AF) of the flange portion 16F is 1.3 to 1.7.
  • the seismic tie according to the present embodiment and the boiler seismic structure using the same have the following characteristics.
  • (1) In order to make the seismic tie free to rotate during the thermal expansion of the boiler, the cross-sectional shape of the pressure bearing portion provided at the axial center point of the pin material is circular.
  • the diameter of the bearing portion of the pin material is 1.5 times or less than that of the conventional structure due to geometric restrictions on the attachment of the seismic tie.
  • (3) The cross-sectional shape of the pin material other than the bearing portion is I-shaped, and the ratio of the area of the flange portion to the area of the I-shaped web portion is 1.3 to 1.7.
  • the cross-sectional shape having the characteristics (1) to (3) above is the optimal cross-sectional shape obtained by the inventors through a parameter survey (repetition of numerical analysis by changing parameters).
  • FIG. 7 shows the parameters of the cross-sectional shape of the pin material. These parameters are the area A F of the cross-section flange portion and the area Aw of the web portion shown in the following equation.
  • a F 1/2 ⁇ r 2 ⁇ ⁇ r 2 ⁇ cos ( ⁇ / 2) ⁇ sin ( ⁇ / 2) (6)
  • Aw tw ⁇ H (7)
  • the radius r, the web portion height H, and the angle ⁇ are obtained by using the diameter D and the flange portion thickness tF.
  • the conventional region where the amount of vibration energy absorption increases is the region where A F / A w is 1.3 to 1.7.
  • the ratio of the area of the flange portion to the area of the I-shaped web portion in the pin structure that increases vibration energy absorption is 1.3 to 1.7.
  • FIG. 3 is a view showing another structure of the pin material in the seismic tie according to the present embodiment
  • FIG. 3 (1) is a side view of the pin structure
  • FIG. 3 (2) is a plan view of the pin structure.
  • the structure of the pin material according to this embodiment is as follows.
  • the web plate 2001, the flange plate 2002, the plate 2003 for fixing these plates, and the bearing part component 2004 are assembled into a spindle type. This is a welded structure.
  • FIGS. 4 (1) to 4 (6) The web plate 2001, the flange plate 2002, the fixed plate 2003, and the bearing part component 2004 are shown in FIGS. 4 (1) to 4 (6), respectively.
  • 4 (1) is a plan view of the web plate 2001
  • FIG. 4 (2) is a plan view of the flange plate 2002
  • FIG. 4 (3) is a side view of the flange plate 2002
  • FIG. 4 (4) is a cross section of the fixed plate 2003.
  • 4 and FIG. 4 (5) are side views of the fixing plate 2003
  • FIG. 4 (6) is a partial plan view of the bearing section component 2004.
  • FIG. 6 (1) is a cross-sectional view taken along line EE in FIG. 3 (1), and shows the cross-sectional shape of the bearing portion 16C.
  • FIG. 6 (2) is a cross-sectional view taken along line FF in FIG. 3 (1), and shows a cross-sectional shape of the spindle portion support 16B.
  • 6 (3) is a cross-sectional view taken along the line II of FIG. 3 (1), and
  • FIG. 6 (4) is a cross-sectional view taken along the line JJ of FIG. 3 (1).
  • each part is bilaterally symmetric about the axis on which the reaction force Fi of the seismic tie acts.
  • FIG. 9 is a diagram showing a quarter division model of the seismic tie finite element analysis model according to the present embodiment
  • FIG. 10 is a quarter division model of the seismic tie finite element analysis model according to the present embodiment. It is a figure showing the boundary conditions.
  • the finite element analysis model (FEM model) of the pins 6B and 16B is a model in which the pin materials are divided into 1/4 in consideration of the symmetry of the shape of the pins 6B and 16B.
  • FIG. 10 shows the boundary conditions of these models, and the finite element analysis was performed with the completely fixed point in FIG. 10 as the reaction force detection point and the displacement input point repeatedly applied with the displacement shown in FIG.
  • the load displacement curve obtained as a result of the implementation is shown in FIG.
  • the vibration energy absorption area surrounded by the load displacement curve (dotted line) 102 of the seismic tie according to the present embodiment as compared with the vibration energy absorption area surrounded by the load displacement curve (solid line) 101 of the conventional structure. It can be seen that is increasing.
  • the stress distribution (Mises stress distribution) at the maximum reaction force point in this load displacement curve is shown in FIGS.
  • FIG. 12 in the illustrated example, there are high stresses at the upper and lower outer edge portions of the pin 6 ⁇ / b> B, and there is a low stress portion in the form of a belt at the central shaft portion.
  • FIG. 13 in the illustrated example, a portion with high stress appears in a bowl shape from the outer edge side of the pin 16 ⁇ / b> B toward the central axis, and a moderate level of stress appears at the central axial portion.
  • the small stress difference (leveling of the stress distribution) in the seismic tie having the pins 16B according to the present embodiment leads to a reduction in the second gradient (gradient during plasticity) of the seismic tie (FIG. 20). See description).
  • FIG. 14 shows a lateral load during an earthquake when the seismic tie according to the present embodiment is applied to the boiler body 4.
  • Lateral load layer shear force
  • the seismic tie adopting the pin 16B having the spindle-shaped cutting portion configuration including the web portion 16W and the flange portion 16F shown in this embodiment is installed.
  • FIG. 18 The attachment direction of the boiler body of the seismic tie and the steel column is shown in FIG. 18 in which the link material is provided parallel to the height direction, and the pin material is provided in the vertical direction, that is, the axial direction of the steel column.
  • the pin is connected to both ends by pins, and the supporting members of the pin material connected to the boiler body and the support member connected to the steel column are shown as being rotatably mounted around the axis of the pin material.
  • FIG. 15 shows a side view of a boiler seismic structure using a seismic tie according to the present embodiment.
  • a portion 8 surrounded by a dotted line indicates a layer corresponding to the position of the center of gravity of the boiler seismic structure composed of the boiler body 4 and the support frame 7.
  • the seismic tie 6 according to the present embodiment is provided between the furnace 20 and the support frame 7, and By providing both between the rear wall part 22 and the support frame 7, it can be set as the boiler structure which improved earthquake resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

Provided is a seismic tie for increasing the vibration-absorbing performance of a boiler body and reducing the seismic load acting on a support structure. A seismic tie disposed between the support structure comprising a plurality of pillars and joists and a boiler body suspended from an upper joist has a hinge joint structure comprising an elastic-member link and an elasto-plastic member pin (16). The pin (16) has a circular-sectioned bearing section (16C) in the center, and a pin spindle-shaped cut-processed section (16B) comprising: a web section (16W), in which a spindle-shaped pin, the diameter of which becomes gradually smaller toward the hinge joint area, is partially cut-processed; and a flange section (16F) existing at the outer edge of the web section. The web section (16W) is configured such that both side sections are cut into a plate shape in the axial direction of the pin, and the ratio of the sectional area of the flange section to the sectional area of the web section in a section perpendicular to the pin axis direction is 1.3 to 1.7.

Description

ボイラ制振用のサイスミックタイおよびこれを用いたボイラ耐震構造体Seismic tie for boiler vibration control and boiler seismic structure using the same
 本発明は、主に火力発電プラント用大型ボイラの耐震構造に係り、特にボイラに設置される振動吸収装置であるサイスミックタイに関する。 The present invention mainly relates to a seismic structure of a large boiler for a thermal power plant, and more particularly to a seismic tie which is a vibration absorber installed in the boiler.
 主に火力発電プラントに用いられる大型ボイラは、通常、垂直方向に複数配置される鉄骨柱と上下方向に複数配置される主梁との組合せにより構成される支持架構の上部から、ボイラ本体が吊下げられた構造である。 Large boilers mainly used in thermal power plants usually suspend the boiler body from the upper part of a support frame composed of a combination of steel columns arranged in the vertical direction and main beams arranged in the vertical direction. It is a lowered structure.
 従来から採用されており、且つ本発明の実施形態にも関わるボイラの耐震構造について、図15~図20を用いて説明する。図15はボイラ耐震構造の側面図、図16はボイラ本体、ボイラ建屋、タービン建屋、ボイラ建屋とタービン建屋の間に配管される主配管の配置関係を示す概略図、図17は支持架構の各層でのサイスミックタイの配置関係を示す図、図18は従来のサイスミックタイの構造を示す斜視図、図19は従来のサイスミックタイにおける紡錘型ピンの構造を示す図、図20はサイスミックタイによるエネルギー吸収の原理を説明する図である。 A description will be given of a seismic structure of a boiler that has been conventionally employed and also relates to an embodiment of the present invention, with reference to FIGS. FIG. 15 is a side view of the boiler seismic structure, FIG. 16 is a schematic diagram showing the layout of the main piping that is piped between the boiler body, the boiler building, the turbine building, the boiler building and the turbine building, and FIG. 17 is each layer of the support frame. FIG. 18 is a perspective view showing the structure of a conventional seismic tie, FIG. 19 is a diagram showing the structure of a spindle-type pin in the conventional seismic tie, and FIG. 20 is a seismic tie. It is a figure explaining the principle of the energy absorption by a tie.
 例えば図15に示すように、支持架構7は垂直方向に複数配置される鉄骨柱1と、上下方向に複数配置される主梁2との組合せにより構成される。ボイラ本体4は運転中に上下方向に熱伸びするため、この熱伸びを拘束しないようにするために、ボイラ本体4は吊りボルト3により支持架構7の上部から吊下げられている。 For example, as shown in FIG. 15, the support frame 7 is composed of a combination of a plurality of steel columns 1 arranged in the vertical direction and a plurality of main beams 2 arranged in the vertical direction. Since the boiler body 4 is thermally stretched in the vertical direction during operation, the boiler body 4 is suspended from the upper portion of the support frame 7 by suspension bolts 3 so as not to restrain this thermal elongation.
 ここで主梁2とは、水平方向に配置する耐震用の梁を意味する。主梁2(以下、梁または鉄骨梁と称することもある)は、地面32からの高さ方向に沿って複数段に配置される。下方から順に支持架構7の基礎部分から最下部の主梁2までを第1層、最下部の主梁2から次の主梁2までを第2層として、ボイラ本体4を吊下げる最上部の主梁2まで複数の層構造を成し、図15の例では第7層まで形成されている。 Here, the main beam 2 means a seismic beam arranged in the horizontal direction. The main beam 2 (hereinafter also referred to as a beam or a steel beam) is arranged in a plurality of stages along the height direction from the ground 32. In order from the bottom, the uppermost part for hanging the boiler body 4 with the first layer from the foundation part of the support frame 7 to the lowermost main beam 2 and the second layer from the lowermost main beam 2 to the next main beam 2 A plurality of layer structures are formed up to the main beam 2, and up to the seventh layer is formed in the example of FIG.
 図17(1)は図15A-Aから見た断面図、図17(2)は図15B-B図17(3)は図15C-Cから見た断面図、図17(4)は図15D-Dから見た断面図、図17(5)は図15E-Eから見た断面図、図17(6)は図15F-Fから見た断面図、図17(7)は図15G-Gから見た断面図である。 17 (1) is a cross-sectional view as viewed from FIG. 15A-A, FIG. 17 (2) is a cross-sectional view as viewed from FIG. 15B-B, FIG. 17 (3) is a cross-sectional view as viewed from FIG. 17 (5) is a cross-sectional view from FIG. 15E-E, FIG. 17 (6) is a cross-sectional view from FIG. 15F-F, and FIG. 17 (7) is a cross-sectional view from FIG. It is sectional drawing seen from.
 図15ならびに図17に示すボイラ耐震構造において、ボイラ本体4と支持架構7の間には、地震時における両者の振動エネルギーを吸収するためにサイスミックタイ6が設けられている。具体的には図15に示すように、第1層の上部、第2層の上部、第4層の上部、第5層の上部、第6層の上部にそれぞれサイスミックタイ6が設置されている。本例の場合図17に示すように、合計で14個のサイスミックタイ6が用いられている。 15 and 17, a seismic tie 6 is provided between the boiler body 4 and the support frame 7 in order to absorb the vibration energy of both during the earthquake. Specifically, as shown in FIG. 15, seismic ties 6 are respectively installed on the upper part of the first layer, the upper part of the second layer, the upper part of the fourth layer, the upper part of the fifth layer, and the upper part of the sixth layer. Yes. In this example, as shown in FIG. 17, a total of 14 seismic ties 6 are used.
 図18は、従来技術に関するボイラ耐震構造に適用されるサイスミックタイの構造を示す斜視図である。図18に示す紡錘型ピン6Bを有するサイスミックタイ6の構造例は、例えば下記の特許文献1に開示されている。 FIG. 18 is a perspective view showing the structure of a seismic tie applied to a boiler seismic structure related to the prior art. An example of the structure of the seismic tie 6 having the spindle type pin 6B shown in FIG. 18 is disclosed in, for example, Patent Document 1 below.
 このサイスミックタイ6は支圧部6Cを介して、ボイラ本体4及び支持架構7に連結されている。サイスミックタイ6は、紡錘型ピン6B(柔な鋼材)と、リンク6A(剛な鋼材)をヒンジ結合して構成される。この特許文献1によると、ボイラ本体と支持鉄骨との間に掛け渡された振れ止め構造体は、平行な2本のリンクとこのリンクに結合されたピン材とから構成され、このピン材は、中央部から両端に向かって漸次、ピン径を小さくする紡錘型形状を構成することが開示されている(図18と図19を参照)。 The seismic tie 6 is connected to the boiler body 4 and the support frame 7 through a pressure bearing 6C. The seismic tie 6 is configured by hinge-joining a spindle type pin 6B (soft steel material) and a link 6A (rigid steel material). According to this Patent Document 1, the steady-state structure spanned between the boiler body and the supporting steel frame is composed of two parallel links and a pin material coupled to the link. In addition, it is disclosed that a spindle shape is formed in which the pin diameter is gradually reduced from the central portion toward both ends (see FIGS. 18 and 19).
 図19に、特許文献1に開示されたサイスミックタイ6の内で紡錘型ピン6Bと支圧部6Cの構造を示す。図19(1)は紡錘型ピン6Bと支圧部6Cの正面図、図19(2)は図19(1)C-C線上の断面図、図19(3)は図19(1)D-D線上の断面図である。 FIG. 19 shows the structure of the spindle-type pin 6B and the bearing portion 6C in the seismic tie 6 disclosed in Patent Document 1. 19 (1) is a front view of the spindle-type pin 6B and the bearing section 6C, FIG. 19 (2) is a cross-sectional view taken along line CC in FIG. 19 (1), and FIG. 19 (3) is FIG. 19 (1) D. It is sectional drawing on the -D line.
 このピン6Bは、支圧部6Cから軸方向に断面が小さくなる、いわゆる紡錘型(ラグビーボール型)となっている。断面形状は、支圧部6Cにおける断面(C-C断面)、及びその他の部分の断面(D-D断面)が円形となっている。 The pin 6B has a so-called spindle type (rugby ball type) in which the cross section becomes smaller in the axial direction from the bearing portion 6C. As for the cross-sectional shape, the cross section of the bearing section 6C (CC cross section) and the cross section of the other part (DD cross section) are circular.
 図20は、従来技術及び本発明に関するサイスミックタイによるエネルギー吸収の原理を説明する図であるが、図19に示す紡錘型ピンの従来構造におけるサイスミックタイの反力Fiと変位δiの関係を図20の実線で表す。この実線で囲まれる面積が、振動エネルギー吸収量に相当する。なお、図20において座標の原点を通る実線は後述する第1勾配を説明するための線である。 FIG. 20 is a diagram for explaining the principle of energy absorption by the seismic tie related to the prior art and the present invention. The relationship between the reaction force Fi of the seismic tie and the displacement δi in the conventional structure of the spindle type pin shown in FIG. This is indicated by the solid line in FIG. The area surrounded by the solid line corresponds to the vibration energy absorption amount. In FIG. 20, a solid line passing through the origin of coordinates is a line for explaining the first gradient described later.
 ボイラ構造物の場合、ボイラ本体と支持架構の相対変位がサイスミックタイに作用する変位δiとなり、この作用によってサイスミックタイに反力Fiが発生する。地震時に配管に損傷が生じないようにするため、実機におけるサイスミックタイの変位δiを最大値(図20で、最大変位δi、max=15cm)以下に抑える必要がある。 In the case of a boiler structure, the relative displacement between the boiler body and the support frame becomes a displacement δi that acts on the seismic tie, and this action generates a reaction force Fi on the seismic tie. In order to prevent damage to the piping during an earthquake, it is necessary to suppress the seismic tie displacement δi in the actual machine to a maximum value (maximum displacement δi, max = 15 cm in FIG. 20) or less.
特許第2572403号公報Japanese Patent No. 2572403
 ここで、サイスミックタイによるエネルギー吸収の原理について図20を用いて説明する。実線で示す図19に示す紡錘型ピンの従来構造における最大変位(δi、max=15cm)、最大反力Fi、maxを超えない条件下で、振動エネルギー吸収量の最大値は、図20に示す点線(図20で、目標と記載)で示す矩形の面積である。 Here, the principle of energy absorption by seismic tie will be described with reference to FIG. The maximum value of the vibration energy absorption amount is shown in FIG. 20 under the condition that the maximum displacement (δi, max = 15 cm) and the maximum reaction force Fi, max in the conventional structure of the spindle type pin shown in FIG. It is a rectangular area indicated by a dotted line (denoted as a target in FIG. 20).
 この矩形面積に極力近づけるように、実線で示す紡錘型ピンの従来構造による振動吸収エネルギー面積を広げるような構造が望まれる。従来構造からエネルギー吸収性能を増加するには、図20に示すサイスミックタイにおけるピン材の第1勾配(サイスミックタイにおけるピン材が弾性時の勾配)を増加させ、第2勾配(サイスミックタイにおけるピン材が塑性時の勾配)を低減する必要がある(ピン材6は弾塑性特性を有している)。 It is desirable to have a structure that expands the vibration absorption energy area by the conventional structure of the spindle type pin indicated by the solid line so as to be as close as possible to this rectangular area. In order to increase the energy absorption performance from the conventional structure, the first gradient of the pin material in the seismic tie shown in FIG. 20 (the gradient when the pin material in the seismic tie is elastic) is increased, and the second gradient (the seismic tie). It is necessary to reduce the gradient when the pin material is plastic (the pin material 6 has elastic-plastic characteristics).
 上述した第1勾配の増加には、従来構造よりも断面2次モーメントを増加する必要があり、第2勾配の低減には、塑性応力面積部分を広げてかつその応力分布を平準化する必要がある。 In order to increase the first gradient described above, it is necessary to increase the second moment of section as compared with the conventional structure. To reduce the second gradient, it is necessary to widen the plastic stress area and level the stress distribution. is there.
 上述の施策として、断面2次モーメントを増加するように従来構造におけるピン材6の直径を大きくすると、断面積も増加してしまい塑性応力面積が低減するため、エネルギー吸収増加につながらない。この逆に、塑性応力面積部分を広げるため、サイスミックタイの直径を小さくすると、断面2次モーメントが減少するため、エネルギー吸収増加につながらない。このように、断面2次モーメントを増加することと塑性応力面積部分を広げることには相反関係にあるため、両者を両立する構造を見出すことは非常に困難な課題であった。 As described above, when the diameter of the pin member 6 in the conventional structure is increased so as to increase the moment of inertia of the cross section, the cross sectional area is increased and the plastic stress area is reduced, which does not lead to an increase in energy absorption. On the contrary, if the seismic tie diameter is reduced in order to widen the plastic stress area, the secondary moment of the cross section is reduced, which does not lead to an increase in energy absorption. Thus, since there is a reciprocal relationship between increasing the moment of inertia of the cross section and expanding the plastic stress area, it has been a very difficult task to find a structure in which both are compatible.
 換言すると、サイスミックタイにおけるピン材の直径を大きくすると、断面2次モーメントが増加し第1勾配の上昇で変位に対する反力が強くなりエネルギー吸収増加となるが、一方で、ピン材における内部応力の高低分布差が大きくなり応力分布平準化とならず塑性応力面積が少なくなって第2勾配が上昇するためエネルギー吸収増加につながらない(後述する図12と図13の説明を参照)。 In other words, when the diameter of the pin material in the seismic tie is increased, the second moment of the cross section is increased, and the reaction force against the displacement is increased due to the rise in the first gradient, resulting in an increase in energy absorption. The difference in height distribution becomes large, the stress distribution is not leveled, the plastic stress area is reduced, and the second gradient is increased, so that energy absorption is not increased (see the explanation of FIGS. 12 and 13 described later).
 本発明は、上述の課題を解決すべく断面2次モーメントの増加と塑性応力面積部分の拡大の両立を図るサイスミックタイを採用することによって、ボイラ本体の振動エネルギーの吸収性能を増加し、支持架構に作用する地震荷重を低減するボイラ耐震構造を提供することにある。 In order to solve the above-mentioned problems, the present invention increases the vibration energy absorption performance of the boiler body by using a seismic tie that achieves both an increase in the secondary moment of section and an expansion of the plastic stress area. The objective is to provide a boiler seismic structure that reduces the seismic load acting on the frame.
 付け加えると、本発明の課題は、地震時の振動エネルギーの吸収性能を増加し、かつ地震後の復旧作業の迅速化を考慮して配管など装置への被害を最小限にするサイスミクタイを提供すること、およびボイラ本体の支持架構であるボイラ建屋に作用する地震荷重を低減するボイラ制振構造体を提供することである。これにより地震時の振動エネルギーの吸収性能をサイスミックタイにより増加することができるので、従来のように支持架構の剛性を増加する必要が無く、新設ボイラの場合は支持架構であるボイラ建屋に使用する鉄骨重量を低減することができる。また、既設ボイラの場合は耐震性を向上したボイラ耐震構造体を提供することができる。 In addition, an object of the present invention is to provide a sikumi tie that increases the vibration energy absorption performance at the time of an earthquake and minimizes damage to equipment such as piping in consideration of the speed of restoration work after the earthquake. And a boiler damping structure that reduces a seismic load acting on a boiler building that is a support frame of the boiler body. As a result, the vibration energy absorption performance during an earthquake can be increased by seismic ties, so there is no need to increase the rigidity of the support frame as in the past, and in the case of a new boiler, it is used for the boiler building that is the support frame Steel weight can be reduced. In the case of an existing boiler, it is possible to provide a boiler seismic structure with improved seismic resistance.
 前記課題を解決するために、本発明の第1の手段は、
 複数の鉄骨柱と鉄骨梁からなる支持架構と、該支持架構の上部の鉄骨梁から吊り下げて支持されるボイラ本体とを接続し、前記支持架構と前記ボイラ本体の地震時の相対変位を利用して地震の振動エネルギーを吸収するサイスミックタイを対象とするものである。
In order to solve the above problems, the first means of the present invention is:
A support frame composed of a plurality of steel columns and steel beams and a boiler body supported by being suspended from the steel beam above the support frame are connected, and the relative displacement during the earthquake between the support frame and the boiler body is used. It is intended for seismic ties that absorb the vibration energy of earthquakes.
 そして、前記サイスミックタイは、弾性部材であるリンク材と、該リンク材に垂直方向に弾塑性部材であるピン材とからなり、前記リンク材と前記ピン材の両端部を互いにヒンジ結合した構造を有し、
 前記ピン材は、該ピン材の軸方向の中央部に断面形状が円形の支圧部を有するとともに、該支圧部から前記ヒンジ結合の部位に向かって外径を漸次小とする略紡錘形状を有し、
 前記ピン材の支圧部は、前記支持架構と前記ボイラ本体に連結されており、
 前記略紡錘形状は、ウエブ部と該ウエブ部の外縁側に設置するフランジ部とで形成した構造を特徴とするものである。
The seismic tie includes a link material that is an elastic member and a pin material that is an elastic-plastic member in a direction perpendicular to the link material, and a structure in which both ends of the link material and the pin material are hinged to each other. Have
The pin member has a bearing portion having a circular cross-sectional shape at the axial center of the pin member, and has a substantially spindle shape in which the outer diameter gradually decreases from the bearing portion toward the hinge coupling portion. Have
The bearing portion of the pin material is connected to the support frame and the boiler body,
The substantially spindle shape is characterized by a structure formed by a web portion and a flange portion installed on the outer edge side of the web portion.
 本発明の第2の手段は前記第1の手段において、
 前記略紡錘形状は、ウエブ板と該ウエブ板の外縁側に設置したフランジ板とで形成した構造であり、
 前記ウエブ板は、前記ピン材の軸を中心としてピン材の軸方向にウエブ板の両側部を対称に配置した形状であり、
 前記ピン材の軸方向と前記ピン材の軸に対して垂直方向の断面において、前記ウエブ板の断面積に対する前記フランジ板の断面積の比が1.3~1.7であることを特徴とするものである。
According to a second means of the present invention, in the first means,
The substantially spindle shape is a structure formed by a web plate and a flange plate installed on the outer edge side of the web plate,
The web plate has a shape in which both sides of the web plate are symmetrically arranged in the axial direction of the pin material around the axis of the pin material,
The ratio of the cross-sectional area of the flange plate to the cross-sectional area of the web plate is 1.3 to 1.7 in the cross section in the axial direction of the pin material and the direction perpendicular to the axis of the pin material. To do.
 本発明の第3の手段は前記第1または第2の手段において、
 地震時の相対変位に対するサイスミックタイの前記支圧部への反力が作用するピン材の軸に対して両側部の断面形状を対称形としたことを特徴とするものである。
A third means of the present invention is the first or second means,
The cross-sectional shape of both sides is made symmetrical with respect to the axis of the pin material on which the reaction force to the bearing portion of the seismic tie with respect to the relative displacement at the time of the earthquake is applied.
 前記課題を解決するために、本発明の第4の手段は、
 複数の鉄骨柱と鉄骨梁とからなり且つ複数の層構造を有する支持架構と、該支持架構の上部の鉄骨梁から吊り下げて支持されるボイラ本体と、前記支持架構と前記ボイラ本体を接続するサイスミックタイを備えたボイラ耐震構造体において、
 前記サイスミックタイが前記第1ないし第3のいずれかの手段のサイスミックタイであって、
 該サイスミックタイを、前記ボイラ耐震構造体の重心位置に相当する層に少なくとも設けたことを特徴とするものである。
In order to solve the above-mentioned problem, the fourth means of the present invention is:
A support frame comprising a plurality of steel columns and steel beams and having a plurality of layered structures, a boiler body supported by being suspended from a steel beam above the support frame, and connecting the support frame and the boiler body In a boiler seismic structure with seismic ties,
The seismic tie is a seismic tie of any one of the first to third means,
The seismic tie is provided at least in a layer corresponding to the position of the center of gravity of the boiler seismic structure.
 前記課題を解決するために、本発明の第5の手段は、
 複数の鉄骨柱と鉄骨梁とからなり且つ複数の層構造を有する支持架構と、火炉と側壁部と後部壁部を有し、前記該支持架構の上部の鉄骨梁から吊り下げて支持されるボイラ本体と、前記支持架構と前記ボイラ本体を接続するサイスミックタイを備えたボイラ耐震構造体において、
 前記サイスミックタイが前記第1ないし第3のいずれかの手段のサイスミックタイであって、
 前記火炉と後部壁部を有する前記支持架構の層には、前記火炉と前記支持架構の間、ならびに前記後部壁部と前記支持架構の間の両方に前記サイスミックタイを設置したことを特徴とするものである。
In order to solve the above-mentioned problem, the fifth means of the present invention is:
A support frame comprising a plurality of steel columns and steel beams and having a plurality of layer structures, a boiler having a furnace, a side wall portion and a rear wall portion, and supported by being suspended from a steel beam above the support frame In a boiler seismic structure with a main body and a seismic tie connecting the support frame and the boiler body,
The seismic tie is a seismic tie of any one of the first to third means,
In the layer of the support frame having the furnace and the rear wall part, the seismic tie is installed between the furnace and the support frame and between the rear wall part and the support frame. To do.
 本発明によれば、サイスミックタイにおける紡錘形状切断加工部をもつピン構造をウエブ部とフランジ部で構成し、ウエブ部の断面積に対するフランジ部の断面積を適宜に設定することで、断面2次モーメントの増加と塑性応力面積部分の拡大の両立を図って、サイスミックタイでボイラ本体の振動エネルギーを吸収して支持架構に作用する地震荷重を低減することができる。 According to the present invention, the pin structure having the spindle-shaped cutting portion in the seismic tie is configured by the web portion and the flange portion, and the cross-sectional area of the flange portion is appropriately set by setting the cross-sectional area of the flange portion with respect to the cross-sectional area of the web portion. The seismic tie absorbs the vibration energy of the boiler body by the seismic tie, and the seismic load acting on the support frame can be reduced by coexisting the increase of the next moment and the expansion of the plastic stress area.
 また、地震荷重の低減によって、新設ボイラの場合は支持架構の軽量化を達成でき、既設ボイラの場合はその耐震性を向上することができる。 Also, by reducing the seismic load, the weight of the support frame can be reduced in the case of a new boiler, and the earthquake resistance can be improved in the case of an existing boiler.
本発明の実施形態に係るサイスミックタイにおけるピン材の構造を示す正面図である。It is a front view which shows the structure of the pin material in the seismic tie which concerns on embodiment of this invention. 本実施形態に係るサイスミックタイにおけるピン材の構造を示す斜視図である。It is a perspective view which shows the structure of the pin material in the seismic tie which concerns on this embodiment. 本実施形態に係るサイスミックタイにおけるピン材の他の構造を示す側面図と平面図である。It is the side view and top view which show the other structure of the pin material in the seismic tie which concerns on this embodiment. 本実施形態に係るサイスミックタイにおけるピン材の他の構造を示すウエブ板、フランジ板、固定板、支圧部部品を示す図である。It is a figure which shows the web board which shows the other structure of the pin material in the seismic tie which concerns on this embodiment, a flange board, a fixed board, and a bearing part part. 図1に示すピン材におけるピン軸方向の各部位でのピン軸垂直方向の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a pin axis | shaft perpendicular | vertical direction in each site | part of the pin axis direction in the pin material shown in FIG. 図3に示すピン材の他の構造におけるピン軸方向の各部位(E-E切断~J-J切断部位)でのピン軸垂直方向の断面形状を示す図である。FIG. 4 is a view showing a cross-sectional shape in a direction perpendicular to the pin axis at each part (EE cut to JJ cut part) in the pin axis direction in another structure of the pin member shown in FIG. 3; 本実施形態に関するピン材におけるピン軸垂直方向の断面形状とその寸法関係を示す図である。It is a figure which shows the cross-sectional shape of the pin-axis perpendicular | vertical direction in the pin material regarding this embodiment, and its dimensional relationship. 本実施形態に係るサイスミックタイの振動エネルギー吸収量と、ピン材のウエブ部断面積に対するフランジ部断面積の比の関係を示す図である。It is a figure which shows the relationship between the vibration energy absorption amount of the seismic tie which concerns on this embodiment, and the ratio of the flange part cross-sectional area with respect to the web part cross-sectional area of a pin material. 本実施形態に係るサイスミックタイの有限要素解析モデルの1/4分割モデルを示す図である。It is a figure which shows the 1/4 division | segmentation model of the finite element analysis model of the seismic tie which concerns on this embodiment. 本実施形態に係るサイスミックタイの有限要素解析モデルの1/4分割モデルの境界条件を表す図である。It is a figure showing the boundary condition of the 1/4 division | segmentation model of the finite element analysis model of the seismic tie which concerns on this embodiment. 本実施形態に係るサイスミックタイの有限要素解析モデルの解析結果である荷重変位曲線を示す図である。It is a figure which shows the load displacement curve which is an analysis result of the finite element analysis model of the seismic tie which concerns on this embodiment. 従来技術に関するサイスミックタイの有限要素解析モデルの解析結果である荷重変位曲線における最大反力点における応力分布を示す図である。It is a figure which shows the stress distribution in the maximum reaction force point in the load displacement curve which is an analysis result of the finite element analysis model of the seismic tie regarding a prior art. 本実施形態に係るサイスミックタイの有限要素解析モデルの解析結果である荷重変位曲線における最大反力点における応力分布を示す図である。It is a figure which shows the stress distribution in the maximum reaction force point in the load displacement curve which is an analysis result of the finite element analysis model of the seismic tie which concerns on this embodiment. 本実施形態に係るサイスミックタイをボイラ本体に適用した場合の水平方向の地震荷重について、従来技術と比較しながら、ボイラ支持架構の高さ方向の分布で表す図である。It is a figure showing by the distribution of the height direction of a boiler support frame about the horizontal seismic load at the time of applying the seismic tie which concerns on this embodiment to a boiler main body, compared with a prior art. ボイラ本体と、支持架構の柱及び主梁と、サイスミックタイとを備えたボイラ耐震構造の側面図である。It is a side view of the boiler seismic structure provided with the boiler main body, the column and main beam of the support frame, and the seismic tie. ボイラ本体、ボイラ建屋、タービン建屋、ボイラ建屋とタービン建屋間に配設される主配管の配置関係を示す概略図である。It is the schematic which shows the arrangement | positioning relationship of the main piping arrange | positioned between a boiler main body, a boiler building, a turbine building, a boiler building, and a turbine building. 支持架構の各層でのサイスミックタイの配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of the seismic tie in each layer of a support frame. 従来技術のボイラ耐震構造に適用されるサイスミックタイの全体構造を示す斜視図である。It is a perspective view which shows the whole structure of the seismic tie applied to the boiler earthquake proof structure of a prior art. 従来技術のサイスミックタイにおける紡錘型ピンと支圧部の構造を示す図である。It is a figure which shows the structure of the spindle-type pin and bearing part in the seismic tie of a prior art. サイスミックタイによるエネルギー吸収の原理を説明する図である。It is a figure explaining the principle of energy absorption by seismic tie.
 本発明の実施形態に係るサイスミックタイについて、図面を参照しながら以下説明する。本実施形態に係るサイスミックタイ6は、図15と図18に示すように、ボイラ本体4と支持架構(ボイラ建屋とも称する)7の間に複数設置されており、サイスミックタイ6で地震荷重5による地震エネルギーを吸収してボイラ本体4と支持架構7を制振するものである。 The seismic tie according to the embodiment of the present invention will be described below with reference to the drawings. As shown in FIGS. 15 and 18, a plurality of seismic ties 6 according to the present embodiment are installed between the boiler body 4 and a support frame (also referred to as a boiler building) 7. 5 absorbs the seismic energy generated by 5 and controls the boiler body 4 and the supporting frame 7.
 ここで、本実施形態に係るサイスミックタイ6について、鉄骨柱1と鉄骨梁2からなるボイラ建屋7と、ボイラ建屋7に吊り下げられたボイラ本体4と、ボイラ本体4からタービン建屋30へ配設された主配管24を含めた全体構造からみて、地震時対応としてのサイスミックタイの必要性を敷衍して説明する。 Here, for the seismic tie 6 according to the present embodiment, the boiler building 7 composed of the steel column 1 and the steel beam 2, the boiler body 4 suspended from the boiler building 7, and the boiler body 4 to the turbine building 30 are arranged. In view of the overall structure including the installed main pipe 24, the necessity of seismic tie as an earthquake response will be explained.
 図16は、火炉20、側壁部21、後部壁部22及びペントハウス部23からなるボイラ本体4と、支持架構であるボイラ建屋7と、タービン建屋30と、ボイラ建屋7とタービン建屋30の間に配設される主配管24の全体構成を示す概略図である。なお、図15~図18、図20は、従来技術を説明するための構成を示す図ではあるが、本実施形態においても適用される基盤的な技術である。 FIG. 16 shows the boiler body 4 including the furnace 20, the side wall portion 21, the rear wall portion 22, and the penthouse portion 23, the boiler building 7 that is a support frame, the turbine building 30, and the boiler building 7 and the turbine building 30. It is the schematic which shows the whole structure of the main piping 24 arrange | positioned. FIGS. 15 to 18 and 20 are diagrams showing configurations for explaining the conventional technique, but are fundamental techniques applied also in the present embodiment.
 図16において、火力発電プラントに用いられる大型ボイラは、そのボイラ本体が通常、複数の鉄骨柱1と鉄骨梁2との組合せにより構成される鉄骨構造であるボイラ建屋7(支持架構体7とも称する)の最上部の鉄骨梁2から吊下げられている。 In FIG. 16, a large boiler used in a thermal power plant is a boiler building 7 (also referred to as a support frame 7) that has a steel structure in which the boiler body is usually composed of a combination of a plurality of steel columns 1 and steel beams 2. ) Is suspended from the uppermost steel beam 2.
 ボイラ本体は周囲を伝熱壁(周壁とも称する)で囲まれた筐体構造を成しており、前記伝熱壁に設けたバーナ等により化石燃料等の燃料と共に燃焼用空気を供給して燃焼させる火炉20と、該火炉20の上部に連通して水平方向に設けられ、燃焼により生じた燃焼排ガスが流れる流路(側壁部21とも称する)と、該流路に連通して設けられ燃焼排ガスが下降流となり流れる流路(後部壁部22とも称する)とからなる。 The boiler body has a casing structure surrounded by a heat transfer wall (also referred to as a peripheral wall), and burns by supplying combustion air together with fuel such as fossil fuel by a burner provided on the heat transfer wall. A furnace 20 that is communicated with the upper portion of the furnace 20 and provided in a horizontal direction, a flow path (also referred to as a side wall 21) through which combustion exhaust gas generated by combustion flows, and a combustion exhaust gas that is provided in communication with the flow path Consists of a flow path (also referred to as rear wall portion 22) that flows downward.
 火炉20の上部には吊下げ型の過熱器や再熱器が燃焼排ガス流路内に設けられており、火炉20からの例えば約1400℃~1500℃の高温の燃焼排ガスと過熱器、再熱器および周壁の内部を流通する水蒸気または水との間で熱交換を行う。側壁部21においても燃焼排ガスは周壁の内部を流通する水蒸気または水との間で熱交換を行い、例えば約1000℃~1100℃の燃焼排ガスとなり後部壁部22に流入する。 A suspended superheater or reheater is provided in the combustion exhaust gas flow path at the upper part of the furnace 20, and a high-temperature combustion exhaust gas from the furnace 20, for example, about 1400 ° C to 1500 ° C, a superheater, and reheat Heat exchange is performed with water vapor or water flowing through the inside of the vessel and the peripheral wall. Also in the side wall 21, the combustion exhaust gas exchanges heat with water vapor or water flowing inside the peripheral wall, and becomes a combustion exhaust gas of about 1000 ° C. to 1100 ° C., for example, and flows into the rear wall portion 22.
 後部壁部22においては横置き型の過熱器、再熱器、節炭器が同じく燃焼排ガス流路内に設けられており、側壁部21からの燃焼排ガスは過熱器、再熱器、節炭器および周壁の内部を流通する水蒸気または水との間で熱交換を行い、例えば約300℃~400℃の燃焼排ガスとなる。 In the rear wall portion 22, a horizontal type superheater, a reheater, and a economizer are provided in the combustion exhaust gas flow path, and the flue gas from the side wall portion 21 is superheater, reheater, and economizer. Heat exchange is performed between water vapor or water flowing through the inside of the vessel and the peripheral wall, and the combustion exhaust gas becomes, for example, about 300 ° C. to 400 ° C.
 ボイラ本体4(図15参照)の最上部には、天井壁およびシール構造により火炉20、側壁部21および後部壁部22の内部とは断熱遮断されたペントハウス部23があり、過熱器や再熱器の管寄せが設けられている。過熱器や再熱器で高温となった蒸気はペントハウス部23内の管寄せを経由して管寄せに連通して設けられた主蒸気管や再熱蒸気管(これらをまとめて主配管24と称する)を介して、ボイラ建屋7とは別に独立して設けられたタービン建屋30側に伸延される。 At the uppermost portion of the boiler body 4 (see FIG. 15), there is a penthouse portion 23 that is insulated from the furnace 20, the side wall portion 21 and the rear wall portion 22 by a ceiling wall and a seal structure. A container header is provided. Steam heated to a high temperature by the superheater or the reheater is connected to the main header via the header in the penthouse section 23. The turbine building 30 is provided separately from the boiler building 7.
 また、後部壁部22の下部または後方からボイラ建屋7の外部に連通して排ガスダクトが設けられている。排ガスダクトの経路内には脱硝装置、除塵装置および脱硫装置などの環境装置や熱交換器が設けられており、後部壁部22からの燃焼排ガスは脱硫装置出口で約50℃となった後、最終的に煙突から大気へ放出される。 Further, an exhaust gas duct is provided in communication with the outside of the boiler building 7 from below or behind the rear wall portion 22. Environmental devices such as a denitration device, a dust removal device and a desulfurization device, and a heat exchanger are provided in the exhaust gas duct path. After the combustion exhaust gas from the rear wall portion 22 reaches about 50 ° C. at the desulfurization device outlet, Eventually released from the chimney to the atmosphere.
 この他、図16には図示していないが、ボイラ本体4からボイラ建屋7を経てタービン建屋30近傍に連通しているものとしてはボイラ本体4への給水を供給する主給水管などがある。主蒸気管や再熱蒸気管はボイラ本体からボイラ建屋7を経由してタービン建屋30に至る経路において、ボイラ建屋7内、タービン建屋30内および両者間の鉄骨構造物に設けられたスプリングハンガなどの支持サポートに吊下げられており、各構造物における配管の熱伸びに対応できるようにしている。また、排ガスダクトはボイラ建屋7からの出口部などにエクスパンション構造が設けられており、ボイラ本体の熱伸びに対応できるようにしている。 In addition, although not shown in FIG. 16, the main water supply pipe that supplies water to the boiler body 4 and the like are connected to the vicinity of the turbine building 30 from the boiler body 4 through the boiler building 7. The main steam pipe and the reheat steam pipe are spring hangers provided in the boiler building 7, the turbine building 30, and the steel structure between them in the path from the boiler body to the turbine building 30 via the boiler building 7. It is hung on the support support, so that it can cope with the thermal expansion of the piping in each structure. Further, the exhaust gas duct is provided with an expansion structure at the exit from the boiler building 7 or the like, so that it can cope with the thermal expansion of the boiler body.
 これらの配管やダクトは少なくともボイラ本体4(図15参照)の熱伸びには対応可能に設計されているが、振幅の大きな地震時の対応には限界がある。特に、ボイラ本体4とボイラ建屋7間においては、地震時のボイラ本体4とボイラ建屋7との干渉を防止するためボイラ本体4とボイラ建屋7との相対変位量には制限があり、仮に制限を越えた変位が生じた場合には主配管24等の破損が生じるため、地震後の復旧に多大の時間を要することになる。 These pipes and ducts are designed to be compatible with at least the thermal expansion of the boiler body 4 (see FIG. 15), but there is a limit to the response to an earthquake with a large amplitude. In particular, the relative displacement between the boiler body 4 and the boiler building 7 is limited between the boiler body 4 and the boiler building 7 in order to prevent interference between the boiler body 4 and the boiler building 7 during an earthquake. When the displacement exceeding 1 is generated, the main pipe 24 and the like are damaged, so that it takes a long time to recover after the earthquake.
 このためボイラ本体4とボイラ建屋7間には弾性変形に加えて塑性変形により振動エネルギーを吸収するサイスミックタイ6を用いて対応する。 Therefore, a seismic tie 6 is used between the boiler body 4 and the boiler building 7 to absorb vibration energy by plastic deformation in addition to elastic deformation.
 図15に、ボイラ耐震構造体を説明するための側面図を示す。図15において鉄骨梁2と鉄骨柱1から成る支持架構であるボイラ建屋7内に、ボイラ本体4が吊下げられている。ここでは鉄骨柱1と鉄骨梁2との内でボイラ耐震構造体の重要構成部品については特に主鉄骨柱1と主鉄骨梁2と称することとする。 FIG. 15 shows a side view for explaining the boiler seismic structure. In FIG. 15, a boiler body 4 is suspended in a boiler building 7 which is a support frame composed of a steel beam 2 and a steel column 1. Here, among the steel column 1 and the steel beam 2, the important components of the boiler seismic structure are particularly referred to as the main steel column 1 and the main steel beam 2.
 ボイラ本体4は吊りボルト3を介して最上部の主鉄骨梁2aに吊下げ支持されており、運転中に吊下げ支持部を起点として上下方向を下向きに非拘束で熱伸びする。また、図示していないが、吊下げ支持部の任意の位置を水平方向に移動する基準点として設定し、水平移動を可能とするようにスライドやエキスパンション代を設けている。 The boiler body 4 is suspended and supported by the uppermost main steel beam 2a via the suspension bolts 3, and is thermally stretched in the vertical direction downward from the suspension support portion during operation. Although not shown, a slide or an expansion allowance is provided so that an arbitrary position of the suspension support portion is set as a reference point for moving in the horizontal direction, and horizontal movement is possible.
 ここで、主鉄骨梁2は、ボイラ建屋において水平方向に配置されておりボイラ耐震構造体の重要構成部品を成しており、地面(基礎部とも称する)32からの高さ方向に複数が水平方向に配置されている。ボイラ耐震構造体は、下から順に基礎部から最下部の主鉄骨梁2までを第1層、最下部の主鉄骨梁2から次の主鉄骨梁2までを第2層と称しており、ボイラ本体4を吊下げる主鉄骨梁2まで複数の層構造を成している。図15の例では第1層から第7層までからなるボイラ耐震構造体が形成されている。 Here, the main steel beam 2 is arranged in a horizontal direction in the boiler building and constitutes an important component of the boiler seismic structure, and a plurality of main steel beams 2 are horizontally arranged in the height direction from the ground (also referred to as a foundation) 32. Arranged in the direction. The boiler seismic structure is referred to as the first layer from the base to the bottom main steel beam 2 from the bottom, and the second layer from the bottom main steel beam 2 to the next main steel beam 2, A plurality of layer structures are formed up to the main steel beam 2 from which the main body 4 is suspended. In the example of FIG. 15, a boiler seismic structure composed of the first layer to the seventh layer is formed.
 複数の層構造からなるボイラ耐震構造体であるボイラ建屋7では複数層において主鉄骨柱1または主鉄骨梁2のいずれかとボイラ本体4とを接続してボイラ本体4の地震時の振動エネルギーを吸収する構造体であるサイスミックタイ6が設けられている。なお、サイスミックタイ6の一方は、通常は主鉄骨柱1に接続されているが、剛性が高ければ主鉄骨梁2に接続することも可能である。また、サイスミックタイ6の他方は、通常、ボイラ本体4の火炉を取り囲むようにバックステと称する周壁を拘束する構造体が設けてあり(図18参照)、バックステを介して接続される。 In the boiler building 7, which is a boiler seismic structure composed of a plurality of layers, the main body 4 and the main body 4 are connected to the main body 4 in a plurality of layers to absorb the vibration energy of the main body 4 during an earthquake. A seismic tie 6 is provided as a structure. One seismic tie 6 is normally connected to the main steel column 1, but can be connected to the main steel beam 2 if the rigidity is high. In addition, the other of the seismic ties 6 is usually provided with a structure that restrains a peripheral wall called a back step so as to surround the furnace of the boiler body 4 (see FIG. 18), and is connected via the back step.
 図15において、サイスミックタイ6は、一方が主鉄骨梁2と同じ高さ位置で主鉄骨柱1に接続され、他方が図示していないバックステに接続されており、バックステを介してボイラ本体4に連結されている。このように、サイスミックタイ6の主鉄骨柱1への接続位置を主鉄骨梁2と同じレベルにしたのは、両者が設けられていることによりボイラ建屋側の剛性が最も高い部分となることによる。 In FIG. 15, one seismic tie 6 is connected to the main steel column 1 at the same height as the main steel beam 2, and the other is connected to a backsteer (not shown). It is connected to. As described above, the reason why the seismic tie 6 is connected to the main steel column 1 at the same level as the main steel beam 2 is that the rigidity on the boiler building side is the highest because both are provided. by.
 また、図15において、サイスミックタイ6は、第1層の上部、第2層の上部、第4層の上部、第5層の上部、第6層の上部に設置されている。図15におけるサイスミックタイ6の配置を平面表示したものが図17である。図15と図17に示すB-B断面~G-G断面に全14個のサイスミックタイ6が配置されている。火炉側に10個、後部壁部側に4個である。また、各サイスミックタイ6の鉄骨柱1への取り付け角度は例えば30度~45度としており(図17に示す長尺形状のサイスミックタイ6が鉄骨柱1に当接する角度)、ボイラ本体の平面上のあらゆる変位方向に対応できるようにしている。なおまた、ボイラ本体の熱伸び(上下移動)に対しても対応できる構造になっている。このように、サイスミックタイ6により地震荷重5による地震エネルギーを吸収してボイラ本体4とボイラ建屋7とのボイラ構造物を制振する。 Further, in FIG. 15, the seismic tie 6 is installed at the upper part of the first layer, the upper part of the second layer, the upper part of the fourth layer, the upper part of the fifth layer, and the upper part of the sixth layer. FIG. 17 is a plan view of the arrangement of seismic ties 6 in FIG. A total of 14 seismic ties 6 are arranged in the BB to GG cross sections shown in FIGS. 10 on the furnace side and 4 on the rear wall side. The angle of attachment of each seismic tie 6 to the steel column 1 is, for example, 30 ° to 45 ° (the angle at which the long seismic tie 6 shown in FIG. 17 abuts the steel column 1). It corresponds to any displacement direction on the plane. In addition, it has a structure that can cope with thermal expansion (up and down movement) of the boiler body. Thus, the seismic energy due to the seismic load 5 is absorbed by the seismic tie 6 to control the boiler structure of the boiler body 4 and the boiler building 7.
 図18にはサイスミックタイ6の従来例を示しており、これによると、サイスミックタイ6は、鋼板などの剛な鋼材2枚を1組として長さ方向の端部を溶接して1枚の板状にしたもの(リンク材6Aと称する)をボイラの高さ方向に上下1組ずつ平行に配置したものと、リンク材6Aの上下の両端部にそれぞれ垂直方向に鋼材2枚の間に差し込んで配置した紡錘型の柔な2本の鋼材(ピン材6Bと称する)と、から構成され、ピン材6Bの両端部とリンク材6Aの両端部を小径の丸鋼(ピン)によりヒンジ接続している。 FIG. 18 shows a conventional example of seismic tie 6. According to this, seismic tie 6 consists of two rigid steel materials such as a steel plate as a set and welded at one end in the length direction. Between the two steel members in the vertical direction on the upper and lower ends of the link member 6A and the one in the upper and lower ends of the link member 6A. It is composed of two spindle-type soft steel materials (referred to as pin material 6B) that are inserted and arranged, and both ends of the pin material 6B and both ends of the link material 6A are hinged by small-diameter round steel (pins). is doing.
 また、2本のピン材6Bの中央部に設けた支圧部6Cにそれぞれ接続部材を設け、一方を支圧部6Cを介して、支持架構7の鉄骨柱1に連結し、他方をバックステに連結している。すなわち、サイスミックタイ6は、ピン6B(比較的柔軟な鋼材)と、リンク6A(剛性のある鋼材)をピンによりヒンジ結合して構成されている(上述した特許文献1を参照)。 In addition, a connection member is provided for each of the support portions 6C provided at the center of the two pin members 6B, one of which is connected to the steel column 1 of the support frame 7 via the support portion 6C, and the other is connected to the back support. It is connected. That is, the seismic tie 6 is configured by hinge-connecting a pin 6B (relatively flexible steel material) and a link 6A (rigid steel material) with a pin (see Patent Document 1 described above).
 図19に、図18で説明した従来構造のサイスミックタイに使用されているピン材6Bを示す。このピン材6Bは、ピン材の軸方向の中央部に設けた支圧部6Cから軸方向に離間するに従い断面が小さくなる、いわゆる紡錘型(ラグビーボール型)となっており、断面形状は、支圧部6Cにおける断面(C-C断面)、及びその他の部分の断面(D-D断面)とは同心円形となっている。 FIG. 19 shows the pin material 6B used in the seismic tie having the conventional structure described in FIG. This pin material 6B has a so-called spindle type (rugby ball type) in which the cross section becomes smaller as it is separated from the pressure bearing portion 6C provided in the central portion in the axial direction of the pin material in the axial direction. The cross section (CC cross section) of the bearing section 6C and the cross section of other portions (DD cross section) are concentric circles.
 この従来構造におけるサイスミックタイの反力Fiと変位δiの関係を、図20中の実線で示す。この実線で囲まれる菱形の面積が、地震時の振動エネルギー吸収量に相当する。 The relationship between the seismic tie reaction force Fi and displacement δi in this conventional structure is shown by the solid line in FIG. The rhombus area surrounded by the solid line corresponds to the amount of vibration energy absorbed during an earthquake.
 次に、本発明の実施形態におけるボイラ耐震構造物の場合について説明する。ボイラ本体4とボイラ建屋7との相対変位がサイスミックタイに作用する変位δiとなり、この変位によってサイスミックタイに反力Fiが発生する。 Next, the case of the boiler seismic structure in the embodiment of the present invention will be described. The relative displacement between the boiler body 4 and the boiler building 7 becomes a displacement δi acting on the seismic tie, and a reaction force Fi is generated on the seismic tie due to this displacement.
 地震時に図16で示した主配管24等に損傷が生じないようにするため、実機におけるサイスミックタイの変位δiを最大値(最大変位とも称する)以下に抑える必要がある。 In order to prevent damage to the main pipe 24 shown in FIG. 16 during an earthquake, it is necessary to suppress the seismic tie displacement δi in the actual machine to a maximum value (also referred to as the maximum displacement) or less.
 すなわち最大変位は主配管24等が損傷しない範囲で変位する最大の相対変位となり、ボイラ本体4とボイラ建屋7とが地震時の振動により相対変位したときに、ボイラ本体4と同じ変位をする主配管24がボイラ建屋7側でのスプリングハンガー等による変位吸収量を超えてボイラ建屋7に干渉する相対変位以下になるように考慮して任意に設定する。 That is, the maximum displacement is the maximum relative displacement that displaces within a range in which the main pipe 24 or the like is not damaged. When the boiler body 4 and the boiler building 7 are relatively displaced by vibration during an earthquake, the main displacement is the same as the boiler body 4. The piping 24 is arbitrarily set in consideration of the relative displacement that exceeds the displacement absorption amount by the spring hanger or the like on the boiler building 7 side and does not interfere with the boiler building 7.
 ここでは、最大変位δi,maxを15cmと仮定して、サイスミックタイによる地震時の振動エネルギー吸収の原理について、図20を用いて以下に説明する。 Here, assuming that the maximum displacement δi, max is 15 cm, the principle of vibration energy absorption during an earthquake by seismic tie will be described with reference to FIG.
 図20の実線は、地震時のサイスミックタイが変位に対して作用する反力の状態を示したものである。変位開始前は原点にあり、右側の変位に応じて右上がりに増加する。この勾配を第1勾配と称し、弾性変形により反力が増加する。変位が進むと弾性変形から塑性変形へとなり、ここからの勾配を第2勾配と称する。この第2勾配は変位が最大変位(15cm)に達するまで続く。 The solid line in FIG. 20 shows the state of the reaction force that acts on the displacement of the seismic tie during an earthquake. It is at the origin before the start of displacement and increases to the right according to the displacement on the right side. This gradient is referred to as a first gradient, and the reaction force increases due to elastic deformation. As the displacement progresses, the elastic deformation changes to plastic deformation, and the gradient from this is called the second gradient. This second gradient continues until the displacement reaches the maximum displacement (15 cm).
 次に、変位が右から左に方向を変えると反力の方向が逆になり、弾性変形により前記最大変位から連続して第1勾配と平行に逆進し、原点まで戻らない位置で塑性変形となり、左側の変位に対して第2勾配と平行に最大変位(-15cm)に達するまで進む。 Next, when the displacement changes direction from right to left, the direction of the reaction force is reversed, and the elastic deformation causes the plastic deformation at a position where it continuously moves backward from the maximum displacement in parallel with the first gradient and does not return to the origin. The process proceeds until the maximum displacement (−15 cm) is reached in parallel with the second gradient with respect to the displacement on the left side.
 さらに変位が左から右に方向を変えると反力の方向がまた逆、すなわち最初の方向と同じになり、弾性変形により第1勾配と平行に塑性変形に変わるまで進み、塑性変形後は第2勾配で最大変位(15cm)まで進むことになる。 Further, when the displacement changes direction from left to right, the direction of the reaction force is reversed, that is, the same as the first direction, and progresses until it changes to plastic deformation in parallel with the first gradient by elastic deformation. It will go up to the maximum displacement (15 cm) with a gradient.
 このように、断面2次モーメントを増加することと塑性応力面積部分を広げることには相反関係にあるため、両者を両立させる構造を見出すことには非常に困難な課題が伴うものであった。本発明の実施形態ではこのような課題を解決するために、上述した両立する構造を提供するものであり、以下に説明する。 Thus, since there is a reciprocal relationship between increasing the moment of inertia of the cross section and expanding the plastic stress area, finding a structure that achieves both is accompanied by a very difficult problem. In order to solve such a problem, the embodiment of the present invention provides the above-described compatible structure, which will be described below.
 本実施形態に係るサイスミックタイ6は、支圧部6C(図18を参照)を介して、ボイラ本体4及び支持架構7に連結されていて、地震時の支持架構7とボイラ本体4の相対変位を利用して振動エネルギーを吸収する鋼製のものである。 The seismic tie 6 according to the present embodiment is connected to the boiler body 4 and the support frame 7 via a pressure bearing 6C (see FIG. 18), and is relative to the support frame 7 and the boiler body 4 at the time of an earthquake. It is made of steel that absorbs vibration energy using displacement.
 サイスミックタイ6の具体的構造としては、相対変位の発生する方向に対して水平方向に2本の弾性部材であるリンク6Aを設け、かつ相対変位の発生する方向に対して垂直方向に2本の弾塑性部材であるピン6Bを設け、リンク6Aとピン6Bの端部をヒンジ結合した構造である。 The seismic tie 6 has a specific structure in which two links 6A that are two elastic members are provided in the horizontal direction with respect to the direction in which the relative displacement occurs, and two in the direction perpendicular to the direction in which the relative displacement occurs. The pin 6B, which is an elastic-plastic member, is provided, and the link 6A and the end of the pin 6B are hinged.
 本発明の特徴は、概して云えば、サイスミックタイ6におけるピン材16が、以下に説明する図1~図7に示す具体的構造を備えていることにある。 The feature of the present invention is that, in general, the pin material 16 in the seismic tie 6 has a specific structure shown in FIGS. 1 to 7 described below.
 ここで、本実施形態に関するピン材16はその軸方向の中央部に設けたピン支圧部16Cの断面形状が円形である。この理由は、ボイラ本体4の熱膨張時に、ボイラ本体4と支持架構7に対してサイスミックタイ6を回転自由にして連結するためである。そして、ピン材16のピン支圧部16Cの直径が、図19に示す紡錘型の支圧部6Cに比べて、サイスミックタイの取り付け上の制約から1.5倍程度を上限としている。 Here, the pin material 16 relating to the present embodiment has a circular cross-sectional shape of the pin bearing portion 16C provided at the center in the axial direction. This is because the seismic tie 6 is connected to the boiler body 4 and the support frame 7 so as to be freely rotatable when the boiler body 4 is thermally expanded. The diameter of the pin bearing portion 16C of the pin material 16 is about 1.5 times the upper limit of the spindle type bearing portion 6C shown in FIG.
 さらに、図1と図2に示す本実施形態に関するピン材16は、図19に示す紡錘型形状ピン6Bに対して、図1、図2、図5、図7に示すように、その軸方向にその軸を対称中心線としてその両側面を部分的に切断加工して(刳り貫いて)ウエブ部16Wを形成し、且つそのウエブ部16Wの両端部にフランジ部16Fを残存形成した構造である。図1に示すFiは、サイスミックタイ6の反力が作用する軸を示す。 Further, the pin member 16 relating to the present embodiment shown in FIGS. 1 and 2 is in the axial direction as shown in FIGS. 1, 2, 5, and 7 with respect to the spindle-shaped pin 6B shown in FIG. In this structure, the both sides are partially cut (turned through) with the axis as a symmetric center line to form the web portion 16W, and the flange portions 16F are formed on both ends of the web portion 16W. . Fi shown in FIG. 1 indicates an axis on which the reaction force of the seismic tie 6 acts.
 ここで、図18に示すボイラ本体4と支持架構7に取り付けられたサイスミックタイ6のピン支圧部16Cへの反力の方向が、図5に示すピン紡錘形状切断加工部16Bの反力Fiの作用する軸となるように、すなわち、切断加工部16Bの平板状加工面が反力Fiを挟んで対称形となるように、図1と図2に示す構造のピン16Bをリンク6Aに取り付けて設置する。 Here, the direction of the reaction force to the pin support portion 16C of the seismic tie 6 attached to the boiler body 4 and the support frame 7 shown in FIG. 18 is the reaction force of the pin spindle-shaped cutting portion 16B shown in FIG. The pin 16B having the structure shown in FIGS. 1 and 2 is attached to the link 6A so as to be an axis on which Fi acts, that is, so that the flat processed surface of the cutting portion 16B is symmetrical with the reaction force Fi interposed therebetween. Install and install.
 図5(1)は図1のE-E線上の断面図で、支圧部16Cの断面形状を示している。また、図5(2)は図1のF-F線上の断面図、図5(3)は図1のG-G線上の断面図、図5(4)は図1のH-H線上の断面図で、ピン紡錘形状切断加工部16Bの断面形状を示している。 FIG. 5 (1) is a cross-sectional view taken along the line EE of FIG. 1, showing the cross-sectional shape of the bearing portion 16C. 5 (2) is a cross-sectional view taken along line FF in FIG. 1, FIG. 5 (3) is a cross-sectional view taken along line GG in FIG. 1, and FIG. 5 (4) is taken along line HH in FIG. The cross-sectional view shows the cross-sectional shape of the pin spindle-shaped cutting portion 16B.
 この図5(1)~(4)に示されているように、各部の断面形状は、サイスミックタイの反力Fiが作用する軸1001を中心にして上下対称である。 As shown in FIGS. 5 (1) to (4), the cross-sectional shape of each part is vertically symmetric about the axis 1001 on which the reaction force Fi of the seismic tie acts.
 図2と図5と図7において、本実施形態の構成例として、ピン材16のウエブ部16Wの断面形状の板厚twはピン紡錘形状切断加工部16Bの軸方向において一定の厚さであり、フランジ部16Fのピン軸垂直方向の寸法tFもピン軸方向において一定の長さとなっている。 2, 5, and 7, as a configuration example of the present embodiment, the plate thickness tw of the cross-sectional shape of the web portion 16 </ b> W of the pin material 16 is a constant thickness in the axial direction of the pin spindle-shaped cutting portion 16 </ b> B. The dimension tF of the flange portion 16F in the direction perpendicular to the pin axis is also a fixed length in the pin axis direction.
 また、本実施形態に関するピン紡錘形状切断加工部16Bの特徴は、図7に示すように、ピン紡錘形状切断加工部16Bの断面形状が一定の厚さtwをもつウエブ部16W(板状体であり、さらにピン支圧部16Cから遠ざかるにしたがって幅方向寸法(図7の図示例で左右方向の寸法)が小さくなるもの)と、このウエブ部16Wの両端部に紡錘型ピンの残存したフランジ部16Fとを有する形状になっている。 Further, as shown in FIG. 7, the pin spindle-shaped cutting portion 16B according to this embodiment is characterized by a web portion 16W (a plate-like body) having a constant thickness tw in the cross-sectional shape of the pin spindle-shaped cutting portion 16B. In addition, the width direction dimension (the dimension in the left-right direction in the example shown in FIG. 7) decreases as the distance from the pin bearing part 16C increases, and the flange part in which spindle pins remain at both ends of the web part 16W 16F.
 且つ、ウエブ部16Wの断面積(Aw)に対するフランジ部16Fの断面積(AF)の比(AF/Aw)が1.3~1.7である構造(断面積比の技術的意義は図5の説明で後述する)を呈することである。 Further, the ratio of the cross-sectional area (AF) of the flange portion 16F to the cross-sectional area (Aw) of the web portion 16W (AF / Aw) is 1.3 to 1.7 (the technical significance of the cross-sectional area ratio is shown in FIG. 5). (Which will be described later in the description).
 上述した紡錘型ピンの切断形状と断面積比を有するピン16Bの構造は、本発明者がパラメータサーベイを実施して得た最適な断面形状である。 The structure of the pin 16B having the cut shape and the cross-sectional area ratio of the spindle type pin described above is an optimal cross-sectional shape obtained by the present inventor through a parameter survey.
 図7に、本実施形態に関するピン紡錘形状切断加工部16Bの断面形状のパラメータを示す。このパラメータとは、下式に示す断面フランジ部16Fの面積AF、断面ウエブ部16Wの面積Awである。 FIG. 7 shows the parameters of the cross-sectional shape of the pin spindle-shaped cutting portion 16B according to this embodiment. These parameters are the area AF of the cross-section flange portion 16F and the area Aw of the cross-section web portion 16W shown in the following equation.
 AF=1/2×r×θ-r×cos(θ/2)×sin(θ/2)…(1)
 Aw=tw×H…(2)
 図7(1)のフランジ部の面積AFの近傍部分を抜き出したものを、図7(2)に示す。 
 図7(2)を用い、式(1)に示すフランジ部の面積AFについて以下に説明する。
A F = 1/2 × r 2 × θ−r 2 × cos (θ / 2) × sin (θ / 2) (1)
Aw = tw × H (2)
FIG. 7 (2) shows a portion in the vicinity of the area AF of the flange portion shown in FIG. 7 (1).
With reference to FIG. 7 (2), the area A F of the flange portion shown in Expression (1) will be described below.
  式(1)中において、1/2×r×θは扇型の面積Azであり、r×cos(θ/2)×sin(θ/2)は三角形面積ATである。この扇型の面積Azから三角形の面積ATを引いたものが、フランジ部の面積AFとなる。 
 ここに、半径r、ウエブ部高さH、角度θは、直径D、フランジ部厚tFを用いて
 r=D/2…(3)
 H=r-tF…(4)
 θ=2×cos-1(H/r)…(5)
 ここで、ウエブ部面積Awに対するフランジ部面積AFの比(AF/Aw)をパラメータとして、図19に示す従来構造に対する本実施形態の振動エネルギー吸収量の増加に役立つAF/Awをパラメータサーベイした結果を図8に示す。図8に示すように、従来構造に対する振動エネルギー吸収量が急激に増加する領域は、AF/Awが1.3~1.7の領域である。
In the formula (1), 1/2 × r 2 × θ is a fan-shaped area Az, and r 2 × cos (θ / 2) × sin (θ / 2) is a triangular area AT. The area AF of the flange portion is obtained by subtracting the triangular area AT from the fan-shaped area Az.
Here, the radius r, the web portion height H, and the angle θ are obtained by using the diameter D and the flange portion thickness tF. R = D / 2 (3)
H = r-tF (4)
θ = 2 × cos −1 (H / r) (5)
Here, as a parameter, the ratio of the flange area AF to the web area Aw (AF / Aw) is a parameter, and the result of a parameter survey of AF / Aw useful for increasing the vibration energy absorption amount of the present embodiment with respect to the conventional structure shown in FIG. Is shown in FIG. As shown in FIG. 8, the region where the vibrational energy absorption amount with respect to the conventional structure increases rapidly is a region where AF / Aw is 1.3 to 1.7.
 以上のように、エネルギー吸収量を増加するピン材構造は、図2と図7に示すように、紡錘型ピンのピン軸方向両側面の切断断面形状のウエブ部16Wの断面積(Aw)に対するフランジ部16Fの断面積(AF)の比(AF/Aw)が1.3~1.7であることがわかる。 As described above, the pin material structure that increases the amount of energy absorption, as shown in FIGS. 2 and 7, corresponds to the cross-sectional area (Aw) of the web section 16W having a cut cross-sectional shape on both sides in the pin axial direction of the spindle type pin. It can be seen that the ratio (AF / Aw) of the cross-sectional area (AF) of the flange portion 16F is 1.3 to 1.7.
 次に、本発明の実施形態に係るサイスミックタイにおけるピン材の他の構造について、図3、図4、図6を参照して以下説明する。本実施形態に係るサイスミックタイ及びこれを用いたボイラ耐震構造体は下記の特徴を有する。 
(1)ボイラの熱膨張時に、サイスミックタイを回転自由とするため、ピン材の軸方向の中央点に設けた支圧部の断面形状が円形である。 
(2)サイスミックタイの取付上の幾何制約から、ピン材の支圧部の直径が、従来構造の1.5倍以下である。 
(3)ピン材の支圧部以外の断面形状がI型形状であり、I型形状ウエブ部の面積に対してフランジ部の面積の比が、1.3~1.7である。
Next, another structure of the pin material in the seismic tie according to the embodiment of the present invention will be described below with reference to FIGS. 3, 4, and 6. The seismic tie according to the present embodiment and the boiler seismic structure using the same have the following characteristics.
(1) In order to make the seismic tie free to rotate during the thermal expansion of the boiler, the cross-sectional shape of the pressure bearing portion provided at the axial center point of the pin material is circular.
(2) The diameter of the bearing portion of the pin material is 1.5 times or less than that of the conventional structure due to geometric restrictions on the attachment of the seismic tie.
(3) The cross-sectional shape of the pin material other than the bearing portion is I-shaped, and the ratio of the area of the flange portion to the area of the I-shaped web portion is 1.3 to 1.7.
 上記(1)~(3)の特徴を有する断面形は、発明者らがパラメータサーベイ(パラメータを変えての数値解析の繰り返し)を実施して得た最適な断面形状である。 The cross-sectional shape having the characteristics (1) to (3) above is the optimal cross-sectional shape obtained by the inventors through a parameter survey (repetition of numerical analysis by changing parameters).
 図7にピン材の断面形のパラメータを示す。このパラメータとは、下式に示す断面フランジ部の面積AF、ウエブ部の面積Awである。 
 AF=1/2×r×θ-r×cos(θ/2)×sin(θ/2)…(6)
 Aw=tw×H…(7) 
ここに、半径r、ウエブ部高さH、角度θは、直径D、フランジ部厚tFを用いて
 r=D/2…(8)
 H=r-tF…(9)
 θ=2×cos-1(H/r)…(10)
 ここで、ウエブ部面積Awに対するフランジ部面積AFの比(AF/Aw)をパラメータとして、図19に示す従来構造に対する本実施形態の振動エネルギー吸収量の増加に役立つAF/Awをパラメータサーベイした結果を図8に示す。
FIG. 7 shows the parameters of the cross-sectional shape of the pin material. These parameters are the area A F of the cross-section flange portion and the area Aw of the web portion shown in the following equation.
A F = 1/2 × r 2 × θ−r 2 × cos (θ / 2) × sin (θ / 2) (6)
Aw = tw × H (7)
Here, the radius r, the web portion height H, and the angle θ are obtained by using the diameter D and the flange portion thickness tF. R = D / 2 (8)
H = r-tF (9)
θ = 2 × cos −1 (H / r) (10)
Here, as a parameter, the ratio of the flange area AF to the web area Aw (AF / Aw) is a parameter, and the result of a parameter survey of AF / Aw useful for increasing the vibration energy absorption amount of the present embodiment with respect to the conventional structure shown in FIG. Is shown in FIG.
 図8に示すように、従来における振動エネルギー吸収量が増加する領域は、AF/Awが1.3~1.7の領域であることがわかる。以上のように、振動エネルギー吸収を増加するピン構造は、I型形状ウエブ部の面積に対するフランジ部の面積の比が1.3~1.7であることがわかる。 As shown in FIG. 8, it can be seen that the conventional region where the amount of vibration energy absorption increases is the region where A F / A w is 1.3 to 1.7. As described above, it can be seen that the ratio of the area of the flange portion to the area of the I-shaped web portion in the pin structure that increases vibration energy absorption is 1.3 to 1.7.
 図3は本実施形態に係るサイスミックタイにおけるピン材の他の構造を示す図であり、図3(1)はピン構造の側面図、図3(2)はピン構造の平面図である。 FIG. 3 is a view showing another structure of the pin material in the seismic tie according to the present embodiment, FIG. 3 (1) is a side view of the pin structure, and FIG. 3 (2) is a plan view of the pin structure.
 図3、図6に示すように、本実施形態に関するピン材の構造は、ウエブ板2001、フランジ板2002、これらの板を固定するための板2003、支圧部構成部品2004を紡錘型に組み立て、溶接して成る構造である。 As shown in FIG. 3 and FIG. 6, the structure of the pin material according to this embodiment is as follows. The web plate 2001, the flange plate 2002, the plate 2003 for fixing these plates, and the bearing part component 2004 are assembled into a spindle type. This is a welded structure.
 ウエブ板2001、フランジ板2002、固定板2003、支圧部構成部品2004を、各々、図4(1)~図4(6)に示す。図4(1)はウエブ板2001の平面図、図4(2)はフランジ板2002の平面図、図4(3)はフランジ板2002の側面図、図4(4)は固定板2003の断面図、図4(5)は固定板2003の側面図、図4(6)は支圧部構成部品2004の一部平面図を示す。 The web plate 2001, the flange plate 2002, the fixed plate 2003, and the bearing part component 2004 are shown in FIGS. 4 (1) to 4 (6), respectively. 4 (1) is a plan view of the web plate 2001, FIG. 4 (2) is a plan view of the flange plate 2002, FIG. 4 (3) is a side view of the flange plate 2002, and FIG. 4 (4) is a cross section of the fixed plate 2003. 4 and FIG. 4 (5) are side views of the fixing plate 2003, and FIG. 4 (6) is a partial plan view of the bearing section component 2004.
 図6(1)は図3(1)のE-E線上の断面図で、支圧部16Cの断面形状を示している。 図6(2)は図3(1)のF-F線上の断面図で、紡錘部支16Bの断面形状を示している。図6(3)は図3(1)のI-I線上の断面図、図6(4)は図3(1)のJ-J線上の断面図である。 FIG. 6 (1) is a cross-sectional view taken along line EE in FIG. 3 (1), and shows the cross-sectional shape of the bearing portion 16C. FIG. 6 (2) is a cross-sectional view taken along line FF in FIG. 3 (1), and shows a cross-sectional shape of the spindle portion support 16B. 6 (3) is a cross-sectional view taken along the line II of FIG. 3 (1), and FIG. 6 (4) is a cross-sectional view taken along the line JJ of FIG. 3 (1).
 図6(1)~(4)に示されているように、各部の断面形状は、サイスミックタイの反力Fiが作用する軸を中心にして左右対称である。 As shown in FIGS. 6 (1) to (4), the cross-sectional shape of each part is bilaterally symmetric about the axis on which the reaction force Fi of the seismic tie acts.
 図3(1)、図6(1)及び図6(2)に示す支圧部16Cとピン16Bに記載のサイスミックタイ反力Fiが作用する軸と、図18に示す反力Fiの方向が一致するように、支圧部16Cとピン16Bが図18に示すサイスミックタイ6に設置される。 The shaft on which the seismic tie reaction force Fi described in FIG. 3 (1), FIG. 6 (1), and FIG. 6 (2) is applied, and the direction of the reaction force Fi shown in FIG. Are supported on the seismic tie 6 shown in FIG.
 次に、本発明の実施形態に係るサイスミックタイの振動エネルギー吸収量について、図9~図13を参照しながら、有限要素解析で評価した結果を以下に説明する。図9は本実施形態に係るサイスミックタイの有限要素解析モデルの1/4分割モデルを示す図であり、図10は本実施形態に係るサイスミックタイの有限要素解析モデルの1/4分割モデルの境界条件を表す図である。 Next, the result of evaluating the vibration energy absorption amount of the seismic tie according to the embodiment of the present invention by the finite element analysis will be described with reference to FIGS. FIG. 9 is a diagram showing a quarter division model of the seismic tie finite element analysis model according to the present embodiment, and FIG. 10 is a quarter division model of the seismic tie finite element analysis model according to the present embodiment. It is a figure showing the boundary conditions.
 図9に示すように、ピン6B、16Bの有限要素解析モデル(FEMモデル)は、ピン6B、16Bの形状の対称性を考慮し、それらのピン材を1/4に分割したモデルである。また、図10にはこれらのモデルの境界条件を示し、図10における完全固定点を反力の検出点とし、変位の入力点に図10に示す繰り返し変位を与えて有限要素解析を実施した。 As shown in FIG. 9, the finite element analysis model (FEM model) of the pins 6B and 16B is a model in which the pin materials are divided into 1/4 in consideration of the symmetry of the shape of the pins 6B and 16B. FIG. 10 shows the boundary conditions of these models, and the finite element analysis was performed with the completely fixed point in FIG. 10 as the reaction force detection point and the displacement input point repeatedly applied with the displacement shown in FIG.
 その実施の結果得られた荷重変位曲線を図11に示す。図11に示すように、従来構造による荷重変位曲線(実線)101で囲まれる振動エネルギー吸収面積に比べて、本実施形態によるサイスミックタイの荷重変位曲線(点線)102で囲まれる振動エネルギー吸収面積が大きくなっていることが分かる。この荷重変位曲線における最大反力点における応力分布(ミーゼス応力分布)を図12と図13に示している。 The load displacement curve obtained as a result of the implementation is shown in FIG. As shown in FIG. 11, the vibration energy absorption area surrounded by the load displacement curve (dotted line) 102 of the seismic tie according to the present embodiment as compared with the vibration energy absorption area surrounded by the load displacement curve (solid line) 101 of the conventional structure. It can be seen that is increasing. The stress distribution (Mises stress distribution) at the maximum reaction force point in this load displacement curve is shown in FIGS.
 図12に示す従来構造における応力分布に着目すると、ピン6Bの中心軸部に低応力部が現れ、ピン6Bの外縁側に高応力部が現れて、それらの応力の差が大きい。これに対して、図13に示す本実施形態による応力分布に着目すると、ピン16Bの外縁側に高応力部が現れるとともにピン16Bの中心軸部で中応力部が現れ、それらの応力の差が小さく、ピン16Bの応力分布が平準化していることが分かる。 When paying attention to the stress distribution in the conventional structure shown in FIG. 12, a low stress portion appears in the central axis portion of the pin 6B, and a high stress portion appears on the outer edge side of the pin 6B, and the difference between the stresses is large. On the other hand, paying attention to the stress distribution according to the present embodiment shown in FIG. 13, a high stress portion appears on the outer edge side of the pin 16B, and a middle stress portion appears on the central axis portion of the pin 16B, and the difference between these stresses is It can be seen that the stress distribution of the pin 16B is leveled.
 なお、図12において、図示例で、ピン6Bの上と下の外縁部で応力が高く、その中心軸部で帯状に応力の低い部分が存在する。また、図13において、図示例で、ピン16Bの外縁側から中心軸に向かって椀状に応力の高い部分が現れ、中心軸部で応力の中程度が現れている。このように、本実施形態によるピン16Bを有するサイスミックタイにおける応力差が小さいこと(応力分布の平準化)は、サイスミックタイの第2勾配(塑性時の勾配)の低減につながる(図20の説明を参照)。 In FIG. 12, in the illustrated example, there are high stresses at the upper and lower outer edge portions of the pin 6 </ b> B, and there is a low stress portion in the form of a belt at the central shaft portion. In FIG. 13, in the illustrated example, a portion with high stress appears in a bowl shape from the outer edge side of the pin 16 </ b> B toward the central axis, and a moderate level of stress appears at the central axial portion. As described above, the small stress difference (leveling of the stress distribution) in the seismic tie having the pins 16B according to the present embodiment leads to a reduction in the second gradient (gradient during plasticity) of the seismic tie (FIG. 20). See description).
 本実施形態によるサイスミックタイをボイラ本体4に適用した場合の地震時の横方向荷重を図14に示す。本実施形態に示す紡錘形状切断加工部(ウエブ部16Wとフランジ部16Fからなる構成)をもつピン16Bを採用したサイスミックタイが設置された支持架構7の地震時の横方向荷重(層せん断力)は、図19に示す紡錘型ピン6Bを用いた従来構造よりも低減される。サイスミックタイによる振動エネルギー吸収量を増加すれば、支持架構7の地震時の横方向荷重が低減でき、ひいては支持架構の軽量化及び耐震性向上につながる。 FIG. 14 shows a lateral load during an earthquake when the seismic tie according to the present embodiment is applied to the boiler body 4. Lateral load (layer shear force) at the time of earthquake of the support frame 7 on which the seismic tie adopting the pin 16B having the spindle-shaped cutting portion (configuration including the web portion 16W and the flange portion 16F) shown in this embodiment is installed. ) Is reduced as compared with the conventional structure using the spindle type pin 6B shown in FIG. If the amount of vibration energy absorbed by the seismic tie is increased, the lateral load during the earthquake of the support frame 7 can be reduced, which leads to a reduction in the weight of the support frame and an improvement in earthquake resistance.
 なお、サイスミックタイのボイラ本体と鉄骨柱との取り付け方向は、図18ではリンク材を高さ方向に平行に設け、それとは垂直方向、すなわち、鉄骨柱の軸方向にピン材を設け、両者を両端でピンにより接続し、ピン材の支圧部をそれぞれボイラ本体に接続したバックステと鉄骨柱に接続した支持部材にピン材の軸周りに回転自在に取り付けた例を示しているが、ピン材の支圧部での剛性の確保のためバックステの補強と、ボイラ本体が鉄骨柱に対して熱伸びしたときのスライド構造等の変位吸収する構造とすれば、これを90度回転させた方向としたものでも構わない。 The attachment direction of the boiler body of the seismic tie and the steel column is shown in FIG. 18 in which the link material is provided parallel to the height direction, and the pin material is provided in the vertical direction, that is, the axial direction of the steel column. The pin is connected to both ends by pins, and the supporting members of the pin material connected to the boiler body and the support member connected to the steel column are shown as being rotatably mounted around the axis of the pin material. In order to secure the rigidity at the bearing section of the material, if the structure is to absorb the displacement such as the slide structure when the boiler body is thermally expanded with respect to the steel column, the direction rotated 90 degrees It does not matter if
 図15に本実施形態に係るサイスミックタイを用いたボイラ耐震構造体の側面図を示す。図15において点線で囲まれた部分8はボイラ本体4と支持架構7からなるボイラ耐震構造体の重心位置に相当する層を示す。この重心位置の相当層8に本実施形態に係るサイスミックタイ6を設けることにより耐震性を向上したボイラ構造体とすることができる。 FIG. 15 shows a side view of a boiler seismic structure using a seismic tie according to the present embodiment. In FIG. 15, a portion 8 surrounded by a dotted line indicates a layer corresponding to the position of the center of gravity of the boiler seismic structure composed of the boiler body 4 and the support frame 7. By providing the seismic tie 6 according to the present embodiment in the equivalent layer 8 at the center of gravity, a boiler structure with improved earthquake resistance can be obtained.
 また、図15と図16において、ボイラ本体が火炉20と後部壁部22とを有する層に対しては、本実施形態に係るサイスミックタイ6を、火炉20と支持架構7の間、及び、後部壁部22と支持架構7の間の両方に設けることにより、耐震性を向上したボイラ構造体とすることができる。 Further, in FIGS. 15 and 16, for the layer in which the boiler body has the furnace 20 and the rear wall portion 22, the seismic tie 6 according to the present embodiment is provided between the furnace 20 and the support frame 7, and By providing both between the rear wall part 22 and the support frame 7, it can be set as the boiler structure which improved earthquake resistance.
 1 支持架構の柱(鉄骨柱)
 2 支持架構の梁(鉄骨梁)
 3 吊りボルト
 4 ボイラ本体
 5 地震荷重
 6 サイスミックタイ
 6A リンク(リンク材)
 6B 紡錘型ピン
 6C 支圧部
 7 支持架構(ボイラ建屋)
 8 ボイラ耐震構造の重心位置に相当する層
 9 ボイラ鉛直部の最下部
 16 ピン材
 16B ピン材の紡錘形状切断加工部
 16C ピン支圧部
 16D リンクとのピン連結部
 16F ピン材のフランジ部
 16W ピン材のウエブ部
 20 火炉
 21 側壁部
 22 後部壁部
 23 ペントハウス部
 24 主配管
 30 タービン建屋
 32 地面
 102 本実施形態による荷重変位曲線
 201 ホッパ部
 1001 サイスミックタイ反力Fiが作用する軸
 2001 ウエブ板
 2002 フランジ板
 2003 固定板
 2004 支圧部構成部品
1 Column of support frame (steel column)
2 Supporting frame beam (steel beam)
3 Suspension bolt 4 Boiler body 5 Seismic load 6 Seismic tie 6A Link (link material)
6B Spindle type pin 6C Bearing section 7 Support frame (boiler building)
8 Layer corresponding to the position of the center of gravity of the boiler seismic structure 9 Bottom part of the vertical part of the boiler 16 Pin material 16B Spindle-shaped cutting part of the pin material 16C Pin bearing part 16D Pin connection part with the link 16F Pin part flange part 16W Pin Material web part 20 Furnace 21 Side wall part 22 Rear part wall part 23 Penthouse part 24 Main piping 30 Turbine building 32 Ground 102 Load displacement curve according to the present embodiment 201 Hopper part 1001 Shaft 2001 on which seismic tie reaction force Fi acts 2001 Web plate 2002 Flange plate 2003 Fixed plate 2004 Bearing part component

Claims (5)

  1.  複数の鉄骨柱と鉄骨梁からなる支持架構と、該支持架構の上部の鉄骨梁から吊り下げて支持されるボイラ本体とを接続し、前記支持架構と前記ボイラ本体の地震時の相対変位を利用して地震の振動エネルギーを吸収するサイスミックタイにおいて、
     該サイスミックタイは、弾性部材であるリンク材と、該リンク材に垂直方向に弾塑性部材であるピン材とからなり、前記リンク材と前記ピン材の両端部を互いにヒンジ結合した構造を有し、
     前記ピン材は、該ピン材の軸方向の中央部に断面形状が円形の支圧部を有するとともに、該支圧部から前記ヒンジ結合の部位に向かって外径を漸次小とする略紡錘形状を有し、
     前記ピン材の支圧部は、前記支持架構と前記ボイラ本体に連結されており、
     前記略紡錘形状は、ウエブ部と該ウエブ部の外縁側に設置するフランジ部とで形成した構造である
     ことを特徴とするサイスミックタイ。
    A support frame composed of a plurality of steel columns and steel beams and a boiler body supported by being suspended from the steel beam above the support frame are connected, and the relative displacement during the earthquake between the support frame and the boiler body is used. In seismic ties that absorb the vibration energy of earthquakes,
    The seismic tie includes a link material that is an elastic member and a pin material that is an elastic-plastic member in a direction perpendicular to the link material, and has a structure in which both ends of the link material and the pin material are hinged to each other. And
    The pin member has a bearing portion having a circular cross-sectional shape at the axial center of the pin member, and has a substantially spindle shape in which the outer diameter gradually decreases from the bearing portion toward the hinge coupling portion. Have
    The bearing portion of the pin material is connected to the support frame and the boiler body,
    The substantially spindle shape has a structure formed by a web portion and a flange portion installed on the outer edge side of the web portion.
  2.  請求項1に記載のサイスミックタイおいて、
     前記略紡錘形状は、ウエブ板と該ウエブ板の外縁側に設置したフランジ板とで形成した構造であり、
     前記ウエブ板は、前記ピン材の軸を中心としてピン材の軸方向にウエブ板の両側部を対称に配置した形状であり、
     前記ピン材の軸方向と前記ピン材の軸に対して垂直方向の断面において、前記ウエブ板の断面積に対する前記フランジ板の断面積の比が1.3~1.7である
     ことを特徴とするサイスミックタイ。
    In the seismic tie according to claim 1,
    The substantially spindle shape is a structure formed by a web plate and a flange plate installed on the outer edge side of the web plate,
    The web plate has a shape in which both sides of the web plate are symmetrically arranged in the axial direction of the pin material around the axis of the pin material,
    The ratio of the cross-sectional area of the flange plate to the cross-sectional area of the web plate is 1.3 to 1.7 in the cross section in the axial direction of the pin material and the direction perpendicular to the axis of the pin material. Seismic Thailand to do.
  3.  請求項1または2に記載のサイスミックタイにおいて、
     地震時の相対変位に対するサイスミックタイの前記支圧部への反力が作用するピン材の軸に対して両側部の断面形状を対称形としたことを特徴とするサイスミックタイ。
    In the seismic tie according to claim 1 or 2,
    A seismic tie characterized in that the cross-sectional shape of both sides is symmetrical with respect to the axis of the pin material on which the reaction force of the seismic tie to the bearing section against relative displacement during an earthquake acts.
  4.  複数の鉄骨柱と鉄骨梁とからなり且つ複数の層構造を有する支持架構と、該支持架構の上部の鉄骨梁から吊り下げて支持されるボイラ本体と、前記支持架構と前記ボイラ本体を接続するサイスミックタイを備えたボイラ耐震構造体において、
     前記サイスミックタイが請求項1ないし3のいずれか1項に記載のサイスミックタイであって、
     該サイスミックタイを、前記ボイラ耐震構造体の重心位置に相当する層に少なくとも設けたことを特徴とするボイラ耐震構造体。
    A support frame comprising a plurality of steel columns and steel beams and having a plurality of layered structures, a boiler body supported by being suspended from a steel beam above the support frame, and connecting the support frame and the boiler body In a boiler seismic structure with seismic ties,
    The seismic tie is the seismic tie according to any one of claims 1 to 3,
    A boiler seismic structure characterized in that the seismic tie is provided at least in a layer corresponding to the position of the center of gravity of the boiler seismic structure.
  5.  複数の鉄骨柱と鉄骨梁とからなり且つ複数の層構造を有する支持架構と、火炉と側壁部と後部壁部を有し、前記該支持架構の上部の鉄骨梁から吊り下げて支持されるボイラ本体と、前記支持架構と前記ボイラ本体を接続するサイスミックタイを備えたボイラ耐震構造体において、
     前記サイスミックタイが請求項1ないし3のいずれか1項に記載のサイスミックタイであって、
     前記火炉と後部壁部を有する前記支持架構の層には、前記火炉と前記支持架構の間、ならびに前記後部壁部と前記支持架構の間の両方に前記サイスミックタイを設置したことを特徴とするボイラ耐震構造体。
    A support frame comprising a plurality of steel columns and steel beams and having a plurality of layer structures, a boiler having a furnace, a side wall portion and a rear wall portion, and supported by being suspended from a steel beam above the support frame In a boiler seismic structure with a main body and a seismic tie connecting the support frame and the boiler body,
    The seismic tie is the seismic tie according to any one of claims 1 to 3,
    In the layer of the support frame having the furnace and the rear wall part, the seismic tie is installed between the furnace and the support frame and between the rear wall part and the support frame. Boiler seismic structure.
PCT/JP2013/057679 2012-03-23 2013-03-18 Seismic tie for boiler damping and earthquake-resistant boiler structure body using same WO2013141210A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012067518 2012-03-23
JP2012-067518 2012-03-23
JP2012-195298 2012-09-05
JP2012195298A JP5843732B2 (en) 2012-03-23 2012-09-05 Seismic tie for boiler vibration control and boiler seismic structure using the same

Publications (1)

Publication Number Publication Date
WO2013141210A1 true WO2013141210A1 (en) 2013-09-26

Family

ID=49222667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057679 WO2013141210A1 (en) 2012-03-23 2013-03-18 Seismic tie for boiler damping and earthquake-resistant boiler structure body using same

Country Status (3)

Country Link
JP (1) JP5843732B2 (en)
CL (1) CL2014002507A1 (en)
WO (1) WO2013141210A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059685A (en) * 2013-09-18 2015-03-30 三菱日立パワーシステムズ株式会社 Seismic tie for vibration control of boiler, and boiler earthquake-proof structure using the same
JP2018066509A (en) * 2016-10-19 2018-04-26 三菱日立パワーシステムズ株式会社 Buffer member and link type seismic tie having the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155104A (en) * 1987-12-14 1989-06-19 Babcock Hitachi Kk Boiler device
JPH02122904U (en) * 1989-03-08 1990-10-09
JPH07119911A (en) * 1993-10-25 1995-05-12 Babcock Hitachi Kk Supporting structure for boiler

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155104A (en) * 1987-12-14 1989-06-19 Babcock Hitachi Kk Boiler device
JPH02122904U (en) * 1989-03-08 1990-10-09
JPH07119911A (en) * 1993-10-25 1995-05-12 Babcock Hitachi Kk Supporting structure for boiler

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015059685A (en) * 2013-09-18 2015-03-30 三菱日立パワーシステムズ株式会社 Seismic tie for vibration control of boiler, and boiler earthquake-proof structure using the same
JP2018066509A (en) * 2016-10-19 2018-04-26 三菱日立パワーシステムズ株式会社 Buffer member and link type seismic tie having the same
WO2018074157A1 (en) * 2016-10-19 2018-04-26 三菱日立パワーシステムズ株式会社 Buffer member and link-type seismic tie comprising same

Also Published As

Publication number Publication date
JP5843732B2 (en) 2016-01-13
CL2014002507A1 (en) 2015-07-10
JP2013224730A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5042234B2 (en) Method and apparatus for supporting a boiler wall for power generation
CN105351626A (en) Novel supporting hanger system for heat primary air channel on outlet of thermal power plant air preheater
WO2013141210A1 (en) Seismic tie for boiler damping and earthquake-resistant boiler structure body using same
JP2007107785A (en) Installation method of boiler equipment
JP2007107789A (en) Installation method of boiler equipment
JP6122744B2 (en) Seismic tie for boiler vibration control and boiler seismic structure using the same
CN205424099U (en) Novel gallows system in air heater of thermal power factory export wind channel of heat
JP6809807B2 (en) Piping structure and boiler system
JPH05508003A (en) fluidized bed vessel frame
TWI744815B (en) Boiler plant
JP5000249B2 (en) Waste heat recovery boiler
TWI706110B (en) System and method for supporting a boiler load
JP4909395B2 (en) Building seismic control structure
JP6805085B2 (en) An elasto-plastic element and a cysmic tie with it, and a support structure for the boiler
JP4076014B2 (en) Waste heat recovery boiler and its installation method
JP6837865B2 (en) Vibration control building
JP5931599B2 (en) Marine boiler structure, superheater header support method for marine boiler and marine boiler
JP6130256B2 (en) Vibration control device
JP5111034B2 (en) Damping structure of exhaust heat recovery boiler
JP7492359B2 (en) Boiler and power plant equipped with same
JP5992322B2 (en) Circulating fluidized bed boiler
JPH0311524Y2 (en)
JP5863363B2 (en) Turbine building seismic isolation structure
JP6233584B2 (en) Waste heat recovery boiler
Cao et al. Factors Affecting Steam Generator Tube Bow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13765155

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014002507

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: IDP00201406313

Country of ref document: ID

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13765155

Country of ref document: EP

Kind code of ref document: A1