WO2018074106A1 - レーザリフトオフ装置及びレーザリフトオフ方法 - Google Patents

レーザリフトオフ装置及びレーザリフトオフ方法 Download PDF

Info

Publication number
WO2018074106A1
WO2018074106A1 PCT/JP2017/032916 JP2017032916W WO2018074106A1 WO 2018074106 A1 WO2018074106 A1 WO 2018074106A1 JP 2017032916 W JP2017032916 W JP 2017032916W WO 2018074106 A1 WO2018074106 A1 WO 2018074106A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
substrate
optical system
irradiation
region
Prior art date
Application number
PCT/JP2017/032916
Other languages
English (en)
French (fr)
Inventor
裕也 藤森
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2018074106A1 publication Critical patent/WO2018074106A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming

Definitions

  • the present invention relates to a laser lift-off device that peels off a layer to be peeled formed on a transparent substrate from the substrate, and more particularly, a laser lift-off device that enables peeling by suppressing the adhesion of contaminants to the peeled layer and This relates to the laser lift-off method.
  • a conventional laser lift-off device uses a laser from the back side of a translucent substrate on which a separation layer and a layer to be peeled are formed by laminating a light absorption layer made of amorphous silicon and a reflection layer made of a metal thin film. Light was irradiated to cause ablation in the light absorption layer, causing separation in the separation layer, and separating the layer to be separated from the substrate (for example, see Patent Document 1).
  • the irradiation intensity of the laser beam is controlled so as to be equal to or higher than the separation threshold necessary for causing ablation in the light absorption layer, and to be equal to or lower than the contamination threshold at which a large amount of contaminants are generated by the temperature increase of the light absorption layer.
  • the conventional laser lift-off apparatus has a problem that the process margin between the peeling threshold value and the contamination threshold value in the irradiation intensity of the laser beam becomes narrow, and it is difficult to suppress the contamination of the peeled layer.
  • an object of the present invention is to provide a laser lift-off device and a laser lift-off method that can cope with such problems and suppress the adhesion of a contaminant to the layer to be peeled off so as to be peeled off. .
  • a laser lift-off device moves a transparent substrate and a laser irradiation optical system for irradiating laser light while moving the back surface of the substrate to an irradiated region on the substrate surface.
  • the laser irradiation optical system is a laser beam having a different irradiation intensity with respect to the irradiated region.
  • it is configured to be able to irradiate a laser beam having a high intensity following irradiation of a laser beam having a low intensity.
  • the laser lift-off method according to the present invention is a laser lift-off method in which a layer to be peeled formed on the substrate is peeled off from the substrate by irradiating laser light from the back side of the transparent substrate with a laser irradiation optical system. While the substrate is moved relative to the laser irradiation optical system, the intensity of the laser beam having a lower intensity is irradiated following the irradiation of the laser beam having a different intensity with respect to the entire irradiated region of the substrate surface. Irradiates a large laser beam.
  • the main heating is performed by the irradiation of the laser beam having the high intensity following the preliminary heating by the irradiation of the laser beam having the low intensity.
  • a rapid temperature increase in the irradiated region can be suppressed. Therefore, it can suppress that a pollutant generate
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a laser lift-off device according to the present invention. It is a schematic diagram which shows one structural example of a to-be-peeled layer.
  • 2A and 2B are schematic views showing a configuration example of a light shielding mask, in which FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line OO in FIG. It is explanatory drawing which shows the light transmittance of the 1st and 2nd area
  • FIG. 1 is a schematic configuration diagram showing a first embodiment of a laser lift-off device according to the present invention.
  • This laser lift-off device peels a layer to be peeled formed on a transparent substrate from the substrate, and includes a transport means 1 and a laser irradiation optical system 2.
  • a gas is irradiated between the surface of the transparent substrate 3 that transmits visible light, such as glass (including quartz) or sapphire, and the layer to be peeled 4 by laser light irradiation.
  • the transparent substrate 3 that transmits visible light
  • the layer to be peeled 4 by laser light irradiation.
  • an amorphous silicon film containing hydrogen is provided as the sacrificial layer 5 that generates hydrogen will be described.
  • the transport means 1 holds a transparent substrate 3 having a peeled layer 4 formed on the surface and transports it in one direction (arrow A direction) at a constant speed, and applies a known substrate transport mechanism. Can do.
  • substrate 3 so that the said to-be-separated layer 4 side may become lower side is demonstrated.
  • a laser irradiation optical system 2 described later is disposed below the transport surface of the transport means 1.
  • a laser irradiation optical system 2 is provided above the conveying surface of the conveying means 1.
  • the laser irradiation optical system 2 irradiates the substrate 3 being conveyed by the conveying means 1 with laser light from the back side of the substrate 3. It is configured to be capable of irradiating a laser beam having a high intensity following the irradiation.
  • the laser irradiation optical system 2 includes a laser light source 6, a coupling optical system 7, a light shielding mask 8, and an objective lens 9 arranged in this order from upstream to downstream in the laser beam traveling direction. It is configured.
  • the laser light source 6 emits a pulse of laser light having a sufficient wavelength, for example, a wavelength selected from 100 nm to 1200 nm, having sufficient energy to raise the temperature of the sacrificial layer 5.
  • a sufficient wavelength for example, a wavelength selected from 100 nm to 1200 nm, having sufficient energy to raise the temperature of the sacrificial layer 5.
  • the coupling optical system 7 expands the beam diameter of the laser light emitted from the laser light source 6, makes the luminance distribution within the beam diameter uniform, and then irradiates the light shielding mask 8 described later with parallel light. It includes a beam expander, a photo integrator and a condenser lens.
  • the condenser lens may be a spherical lens that condenses in the orthogonal biaxial direction or a cylindrical lens that condenses in the uniaxial direction. In the case of a cylindrical lens, the lens is arranged so that its cylindrical axis intersects the substrate transport direction.
  • the light shielding mask 8 is a part that constitutes the technical feature of the present invention, and includes at least two regions having different light transmittances (in this embodiment, as shown in FIG. 3, the first region 10a and the second region In the case of having the area 10b, the opening window 10 having the substrate 10 in the substrate conveyance direction is provided, and the light transmittance of the opening window 10 is higher than that of the first area 10a upstream of the substrate conveyance direction indicated by the arrow A. Also, the second region 10b on the downstream side is formed to be lower.
  • the light shielding mask 8 is formed on a light shielding film 12 such as chromium (Cr) provided on a glass substrate 11 that transmits laser light such as quartz.
  • a rectangular opening window 10 having a long axis in a direction crossing the substrate transport direction (arrow A direction) is provided, and the first region 10a is completely opened, and the second region In 10b, the first region 10a is subjected to a light reduction process at a predetermined light reduction rate.
  • the intensity of the laser beam that passes through the first region 10a of the aperture window 10 and irradiates the irradiated region (sacrificial layer 5) on the substrate surface is equal to or higher than the peeling threshold and lower than the contamination threshold.
  • the intensity of the laser beam that passes through the second region 10b and irradiates the irradiated region is applied to be less than the peeling threshold.
  • the intensity of the laser light transmitted through the second region 10b is set to a value that is less than the peeling threshold and that allows a part of the gas contained in the sacrificial layer 5 to be released from the sacrificial layer 5.
  • This setting is appropriately determined to an appropriate value by experiment.
  • the dimming process of the second region 10b may be formed by changing the light transmittance so as to gradually increase from the downstream in the substrate transport direction. As shown in b), it may be formed in steps.
  • a specific example of the dimming process is that when the light transmittance is changed so as to increase gradually, for example, the slit width provided in the light shielding film 12 in the second region 10b is set to the first width. It is preferable that the first region 10a is formed so as to be gradually narrowed away from the region 10a. Alternatively, the arrangement area of the stripe-shaped or circular light-shielding film 12 in the second region 10b may be formed so as to gradually increase as the distance from the first region 10a increases, and a known technique is applied. can do.
  • the light shielding film 12 may be formed with a predetermined thickness so as to obtain a predetermined light transmittance.
  • the dimming process for the second region 1b is performed by setting the irradiation energy of the laser light transmitted through the first region 1a and the irradiation energy of the laser light transmitted through the second region 1b to be the same. May be.
  • the objective lens 9 reversely forms an image of the aperture window 10 of the light shielding mask 8 on the sacrificial layer 5 as an irradiated region. It may be a cylindrical lens that collects light in the direction. In the case of a cylindrical lens, the lens is arranged so that its cylindrical axis intersects the substrate transport direction.
  • the aperture window 10 of the light shielding mask 8 is inverted and imaged on the sacrificial layer 5 by the objective lens 9, as shown in FIG. 4A, the light transmittance of the second region 10b is transferred to the substrate.
  • the irradiation of the laser beam applied to the sacrificial layer 5 corresponding to the second region 10b gradually increases from the upstream side to the downstream side in the substrate transport direction.
  • the irradiation intensity of the laser beam applied to the sacrificial layer 5 is weaker on the upstream side in the substrate transport direction than on the downstream side.
  • a transparent substrate 3 in which a sacrificial layer 5 and a layer to be peeled 4 are laminated in this order on the substrate surface is held by the transport means 1 so that the substrate surface is on the transport surface side of the transport means 1, and the substrate 3 is shown in FIG.
  • the conveyance is started in the arrow A direction shown.
  • the sacrificial layer 5 is an amorphous silicon film containing hydrogen
  • an imaged means transmits the substrate 3 from the back side and photographs the irradiated region (sacrificial layer 5) on the substrate surface. Then, based on the photographed image, the control unit (not shown) detects the end of the irradiated region on the downstream side in the substrate transport direction.
  • the movement distance of the substrate 3 is calculated in the control means using this as a trigger. Then, the substrate 3 moves by a predetermined distance, and the end of the irradiated region on the downstream side in the substrate transport direction is an opening window 10 provided in the light shielding mask 8 as shown in FIG.
  • the laser light source 6 Pulse light is emitted at time intervals, and laser light is emitted from the laser light source 6.
  • the laser beam is expanded in beam diameter by the coupling optical system 7 and the intensity distribution is made uniform, and then converted into parallel light and applied to the light shielding mask 8.
  • the laser light applied to the light shielding mask 8 is emitted into the light shielding mask 8 after the cross-sectional shape of the beam is shaped into a stripe having a major axis in a direction intersecting the substrate transport direction by the opening window 10 of the light shielding mask 8. Then, the laser light emitted from the light shielding mask 8 passes through the transparent substrate 3 from the back surface side so as to be condensed by the objective lens 9 onto the irradiated region (sacrificial layer 5) on the substrate surface.
  • the intensity of the portion of the laser light emitted from the light shielding mask 8 that has passed through the second region 10b that has been subjected to the dimming process of the aperture window 10 is smaller than the strength of the portion that has passed through the first region 10a.
  • the substrate 3 is transported at a constant speed, and the laser light source 6 emits pulses at predetermined time intervals.
  • the conveyance speed of the substrate 3 is a portion corresponding to the second region 10b in the imaging of the opening window 10 of the light shielding mask 8 within the pulse emission time of at least one time (FIG. 5A). Is set so as to move by the same dimension as the width in the substrate transport direction.
  • FIG. 5 shows a case where the substrate 3 moves by the same dimension as the width of the preheating region in the substrate transport direction while the laser light source 6 emits light once.
  • FIG. 5 (a) shows the intensity distribution of the laser light applied to the irradiated region
  • FIGS. 5 (b) to (d) show the position of the irradiated region that changes with time as the substrate 3 is transported. ing.
  • the laser light source 6 becomes 1.
  • the second laser is emitted.
  • the substrate 3 moves by the same dimension as the width of the preheating region in the substrate transport direction. Therefore, the irradiated region is irradiated with the laser beam that has passed through the second region 10b of the opening window 10 in the end region 5a on the downstream side in the substrate transport direction, as shown in FIG.
  • the sacrificial layer 5 in the end region 5a of the irradiated region is only preliminarily heated. Does not peel off. At this time, as indicated by a broken line I in FIG. 6, part of the gas contained in the sacrificial layer 5 is released from the sacrificial layer 5. In this case, since the end region 5a is irradiated with the first (first shot) laser beam, n is zero in FIG.
  • the laser light source 6 is moved for the second time (second shot). Pulse light emission.
  • region is irradiated with the laser beam which passed the 1st area
  • the sacrificial layer 5 in the end region 5a of the irradiated region is subjected to main heating.
  • the remaining part or the remaining part of the gas contained in the sacrificial layer 5 is released, and the sacrificial layer 5 in the end region 5a can be peeled off.
  • the subsequent region 5b following the end region 5a of the irradiated region is preheated by receiving the first irradiation by the second pulsed laser beam that has passed through the second region 10b.
  • the entire irradiated region is preheated by the laser light that has passed through the second region 10b of the opening window 10, and then is heated by the laser light that has passed through the first region 10a.
  • the gas is released from the sacrificial layer 5 and the layer to be peeled 4 can be peeled off.
  • FIG. 7 is an explanatory diagram showing a laser lift-off method according to the prior art.
  • the intensity of the laser light applied to the irradiated region is set to be equal to or higher than the peeling threshold and lower than the contamination threshold.
  • the end of the irradiated region on the downstream side in the substrate transport direction matches the upstream end of the image of the aperture window 10 of the light shielding mask 8 in the substrate transport direction, and then the same.
  • the laser light source 6 emits the first pulse while moving the same dimension as the width of the preheating region of the present invention in the substrate transport direction.
  • the end region 5a on the downstream side in the substrate transport direction of the irradiated region is fully heated by the laser beam that has passed through the opening window 10, and gas is released from the sacrificial layer 5 in the end region 5a.
  • the end region 5a of the irradiated region is heated at once by a high-intensity laser beam having an irradiation intensity equal to or higher than the peeling threshold value and lower than the contamination threshold value.
  • a large amount of gas (hydrogen) is released from the sacrificial layer 5 at a time. Therefore, a part of the sacrificial layer 5 is also peeled off from the substrate 3 and attached to the peeled layer 4 due to a large amount of gas release, and the peeled layer 4 is contaminated.
  • FIG. 7D shows a state where the substrate 3 is further transported from the state of FIG. 7C and the laser light source 6 emits the second pulse.
  • the end region 5a of the irradiated region is heated by receiving the second laser irradiation.
  • the amount of gas released from the sacrificial layer 5 decreases as shown in FIG. This is because most of the gas contained in the sacrificial layer 5 is released by the first laser irradiation.
  • the succeeding region 5b following the end region 5a of the irradiated region is heated by receiving the first irradiation by the laser light pulsed at the second time, and a rapid temperature rise occurs in the following region 5b. A large amount of gas is released from the sacrificial layer 5. Thereby, similarly to the above, the part of the layer 4 to be peeled corresponding to the subsequent region 5b is contaminated.
  • the irradiated region is subjected to the main heating subsequent to the preheating, unlike the prior art, an abrupt temperature rise is suppressed, and the sacrificial layer 5 is temporarily removed.
  • the amount of released gas can be suppressed. Therefore, contamination of the layer to be peeled 4 can be suppressed, the contamination threshold can be increased, and the process margin PM of separation threshold ⁇ PM ⁇ contamination threshold can be widened.
  • the laser light source 6 emits pulses a plurality of times while the substrate 3 moves by the same dimension as the width in the substrate transport direction of the portion corresponding to the second region 10b. It may be.
  • the region corresponding to the second region 10b of the irradiated region is subjected to laser irradiation a plurality of times by the laser light that has passed through the second region 10b. Since the main heating is performed by the laser light that has passed through the first region 10a of the opening window 10 after the preliminary heating, a rapid temperature rise in the region is suppressed, and the amount of gas released from the region at a time is released. Is suppressed. Therefore, also in this case, contamination of the layer to be peeled 4 can be suppressed.
  • the laser irradiation optical system 2 includes the light shielding mask 8 provided with the opening window 10 having at least two regions having different light transmittances in the substrate transport direction.
  • the laser irradiation optical system 2 is composed of a plurality of laser irradiation optical systems that emit laser beams having different intensities arranged side by side in the substrate transport direction. Subsequent to the irradiation by the laser irradiation optical system that emits light, the laser irradiation optical system that emits laser light having a high intensity may be irradiated.
  • FIG. 8 is a schematic configuration diagram showing a second embodiment of the laser lift-off device according to the present invention.
  • the second embodiment is a laser lift-off device in which the first and second laser irradiation optical systems 2A and 2B are arranged side by side in the substrate transport direction, and the substrate is reciprocated to perform a lift-off operation.
  • the irradiation intensity of the laser irradiation optical system 2A is set to be lower than the irradiation intensity of the second laser irradiation optical system 2B.
  • the irradiation intensity of the second laser irradiation optical system 2B is reversed to the first laser.
  • Each laser irradiation optical system is controlled so that the irradiation intensity is lower than the irradiation intensity by the irradiation optical system 2A.
  • the laser irradiation optical system (for preheating) located upstream in the substrate transport direction controls the light emission of the laser light source so as to generate laser light with a low peak value and a wide pulse width.
  • the laser irradiation optical system (for heating) located on the downstream side in the direction is preferably controlled to emit light of a laser light source so as to generate laser light having a high peak value and a narrow pulse width.
  • the sacrificial layer 5 is provided between the layer to be peeled 4 and the substrate 3 .
  • the present invention is not limited to this, and the layer to be peeled 4 is, for example, a GaN layer.
  • the sacrificial layer 5 may be omitted as long as the interface with the substrate 3 is decomposed by laser light irradiation and can be peeled off.
  • the substrate 3 is transported with the laser irradiation optical system 2 fixed.
  • the substrate 3 is fixed and the laser irradiation optical system 2 or the first and second laser irradiation optical systems are fixed.
  • the systems 2A and 2B may be moved, or both may be moved in opposite directions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Laser Beam Processing (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

本発明は、透明な基板と、レーザ光を照射するレーザ照射光学系とを相対的に移動しながら、基板表面の犠牲層5に前記基板の裏面側からレーザ光を照射し、前記基板の表面に形成された被剥離層を剥離するレーザリフトオフ装置であって、前記レーザ照射光学系は、前記犠牲層5に対して、照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射に続いて強度の大きいレーザ光を照射可能に構成されたものである。

Description

レーザリフトオフ装置及びレーザリフトオフ方法
 本発明は、透明な基板上に形成された被剥離層を基板から剥離するレーザリフトオフ装置に関し、特に被剥離層に汚染物質が付着するのを抑制して剥離し得るようにするレーザリフトオフ装置及びレーザリフトオフ方法に係るものである。
 従来のレーザリフトオフ装置は、非晶質シリコンよりなる光吸収層と金属薄膜よりなる反射層との積層体である分離層及び被剥離層が積層形成された透光性の基板の裏面側からレーザ光を照射し、光吸収層にアブレーションを起こさせて、分離層に剥離を生ぜしめ、被剥離層を基板から離脱させるものとなっていた(例えば、特許文献1参照)。
 この場合、レーザ光の照射強度は、光吸収層にアブレーションを生じさせるのに必要な剥離閾値以上であり、光吸収層の温度上昇により大量の汚染物質が発生する汚染閾値以下となるように制御する必要がある。
特開平10-125929号公報
 しかし、このような従来のレーザリフトオフ装置においては、剥離閾値を超える大きさのレーザ光が一度に照射されるため、光吸収層に急激な温度上昇が生じて一時に大量の気体が発生し、その結果、光吸収層の一部も基板から剥離して被剥離層に付着し、被剥離層を汚染させるおそれがあった。このため、従来のレーザリフトオフ装置においては、上記汚染閾値が低くなっていた。
 したがって、従来のレーザリフトオフ装置においては、レーザ光の照射強度における剥離閾値から汚染閾値間のプロセスマージンが狭くなり、被剥離層の汚染を抑制するのが難しいという問題があった。
 そこで、本発明は、このような問題点に対処し、被剥離層に汚染物質が付着するのを抑制して剥離し得るようにするレーザリフトオフ装置及びレーザリフトオフ方法を提供することを目的とする。
 上記目的を達成するために、本発明によるレーザリフトオフ装置は、透明な基板と、レーザ光を照射するレーザ照射光学系とを相対的に移動しながら、基板表面の被照射領域に前記基板の裏面側からレーザ光を照射し、前記基板の表面に形成された被剥離層を剥離するレーザリフトオフ装置であって、前記レーザ照射光学系は、前記被照射領域に対して、照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射に続いて強度の大きいレーザ光を照射可能に構成されたものである。
 また、本発明によるレーザリフトオフ方法は、透明な基板の裏面側からレーザ照射光学系によりレーザ光を照射して前記基板上に形成された被剥離層を前記基板から剥離するレーザリフトオフ方法であって、前記基板を前記レーザ照射光学系に対して相対的に移動しながら、基板表面の全被照射領域に対して照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射に続いて強度の大きいレーザ光を照射するものである。
 本発明によれば、基板表面の全被照射領域に対して照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射による予備加熱に続いて強度の大きいレーザ光の照射による本加熱をするようにしているので、被照射領域の急激な温度上昇を抑えることができる。したがって、汚染物質が一気に発生して被剥離層を汚染するのを抑制することができる。
本発明によるレーザリフトオフ装置の第1の実施形態を示す概略構成図である。 被剥離層の一構成例を示す模式図である。 遮光マスクの一構成例を示す模式図であり、(a)は平面図、(b)は(a)のO-O線断面図である。 上記遮光マスクの開口窓の第1及び第2の領域の光透過率を示す説明図であり、(a)は第2の領域の光透過率が徐々に変化することを示し、(b)は第2の領域の光透過率が階段状に変化することを示している。 上記第1の実施形態によるレーザリフトオフ方法を示す説明図である。 犠牲層から放出される水素量について、本発明と従来技術とを比較して示すグラフである。 従来技術によるレーザリフトオフ方法を示す説明図である。 本発明によるレーザリフトオフ装置の第2の実施形態を示す概略構成図である。 上記第2の実施形態によるレーザリフトオフ方法を示す説明図である。
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明によるレーザリフトオフ装置の第1の実施形態を示す概略構成図である。このレーザリフトオフ装置は、透明な基板上に形成された被剥離層を基板から剥離するもので、搬送手段1と、レーザ照射光学系2と、を備えて構成されている。
 なお、ここでは、図2に示すように、ガラス(石英を含む)又はサファイア等の、可視光を透過する透明な基板3の表面と被剥離層4との間に、レーザ光の照射により気体を発生する犠牲層5として、例えば水素を含有するアモルファスシリコン膜が設けられている場合について説明する。
 上記搬送手段1は、表面に被剥離層4が形成された透明な基板3を保持して一方向(矢印A方向)に一定速度で搬送するものであり、公知の基板搬送機構を適用することができる。ここでは、上記搬送手段1は、上記被剥離層4側が下側となるように基板3を保持して搬送するものである場合について説明する。なお、被剥離層4が上側となるようにして基板3を搬送する場合には、後述のレーザ照射光学系2は、搬送手段1の搬送面の下側に配置される。
 上記搬送手段1の搬送面の上方には、レーザ照射光学系2が設けられている。このレーザ照射光学系2は、搬送手段1によって搬送中の基板3に対して該基板3の裏面側からレーザ光を照射するものであり、照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射に続いて強度の大きいレーザ光を照射可能に構成されている。
 詳細には、レーザ照射光学系2は、レーザ光源6と、カップリング光学系7と、遮光マスク8と、対物レンズ9とを、レーザ光の進行方向上流から下流に向かってこの順に配置して構成されている。
 上記レーザ光源6は、上記犠牲層5の温度を上昇させるのに十分なエネルギーを有する、例えば波長が100nm~1200nmのうちから選択された所望の波長のレーザ光をパルス発光するもので、エキシマレーザ、Nd-YAGレーザ、Arレーザ等である。
 上記カップリング光学系7は、レーザ光源6から放出されたレーザ光のビーム径を拡張すると共に、ビーム径内の輝度分布を均一にした後、後述の遮光マスク8に平行光を照射するようにしたもので、ビームエキスパンダ、フォトインテグレータ及びコンデンサレンズを含むものである。なお、コンデンサレンズは、直交2軸方向に集光する球面レンズであっても、1軸方向に集光するシリンドリカルレンズであってもよい。シリンドリカルレンズの場合には、レンズは、その円柱軸が上記基板搬送方向と交差するように配置される。
 上記遮光マスク8は、本発明の技術的特徴を成す部分であり、光透過率の異なる少なくとも二つの領域(本実施形態においては、図3に示すように、第1の領域10aと第2の領域10bとを有する場合について説明する。)を基板搬送方向に有する開口窓10を設けたもので、開口窓10の光透過率が矢印Aで示す基板搬送方向上流側の第1の領域10aよりも下流側の第2の領域10bの方が低くなるように形成されている。
 詳細には、上記遮光マスク8は、図3(b)に示すように石英等のレーザ光を透過するガラス基板11上に設けたクロム(Cr)等の遮光膜12に、同図(a)に示すように、例えば基板搬送方向(矢印A方向)と交差する方向に長軸を有する矩形状の開口窓10を設けたもので、第1の領域10aは完全に開口し、第2の領域10bは第1の領域10aに対して所定の減光率で減光処理が施されている。即ち、この減光処理は、上記開口窓10の第1の領域10aを透過し、基板表面の被照射領域(犠牲層5)に照射するレーザ光の強度が剥離閾値以上で、汚染閾値未満に設定されているとき、第2の領域10bを透過して被照射領域に照射するレーザ光の強度が剥離閾値未満となるように施される。
 より詳細には、第2の領域10bを透過するレーザ光の強度は、剥離閾値未満で且つ犠牲層5から該犠牲層5に含まれる気体の一部を放出可能な値に設定される。この設定は、適宜、実験により適切な値に決定される。
 第2の領域10bの減光処理は、図4(a)に示すように、基板搬送方向下流から上流に向かって光透過率が漸増するように変化させて形成してもよく、同図(b)に示すように、階段状に変化させて形成してもよい。
 上記減光処理の具体例は、図4(a)に示すように、光透過率を漸増するように変化させるときには、第2の領域10b内の遮光膜12に設けた、例えばスリット幅を第1の領域10aから離れるに従って徐々に狭くなるように変化させて形成するとよい。又は、第2の領域10b内のストライプ状又は円形状の遮光膜12の配置面積を第1の領域10aから離れるに従って徐々に広くなるように変化させて形成してもよく、公知の技術を適用することができる。
 また、図4(b)に示すように、光透過率を階段状に変化させるときには、所定の光透過率が得られるように、遮光膜12を所定の厚みに形成すればよい。
 なお、第2の領域1bの減光処理は、第1の領域1aを透過したレーザ光の照射エネルギーと第2の領域1bを透過したレーザ光の照射エネルギーとが同じになるよう設定して行ってもよい。
 上記対物レンズ9は、上記遮光マスク8の開口窓10を被照射領域としての上記犠牲層5に反転結像するものであり、直交2軸方向に集光する球面レンズであっても、1軸方向に集光するシリンドリカルレンズであってもよい。シリンドリカルレンズの場合には、レンズは、その円柱軸が上記基板搬送方向と交差するように配置される。
 このように、上記遮光マスク8の開口窓10が対物レンズ9により犠牲層5に反転結像されるから、図4(a)に示すように、第2の領域10bの光透過率が基板搬送方向下流側から上流側に向かって漸増するものである場合には、同図(a)の右側に示すように、第2の領域10bに対応して犠牲層5に照射されるレーザ光の照射強度は、基板搬送方向上流側から下流側に向かって漸増するものとなる。
 また、図4(b)に示すように開口窓10の光透過率が、階段状に変化するものである場合には、同図(b)の右側に示すように、開口窓10に対応して犠牲層5に照射されるレーザ光の照射強度は、基板搬送方向上流側の方が下流側よりも弱いものとなる。
 次に、このように構成されたレーザリフトオフ装置の動作、及び本装置を用いたレーザリフトオフ方法について説明する。
 基板表面に犠牲層5及び被剥離層4をこの順に積層形成した透明な基板3を基板表面が搬送手段1の搬送面側となるように搬送手段1に保持して、基板3を図1に示す矢印A方向に搬送を開始する。なお、ここでは、犠牲層5が水素を含有するアモルファスシリコン膜である場合について説明する。
 次に、レーザ照射光学系2に対して基板搬送方向上流側の位置で、図示省略の撮像手段により、上記基板3を裏面側から透過して基板表面の被照射領域(犠牲層5)を撮影し、その撮影画像に基づいて図示省略の制御手段で、上記被照射領域の基板搬送方向下流側の端部を検出する。
 被照射領域の基板搬送方向下流側の端部が検出されると、それをトリガーとして制御手段においては、基板3の移動距離が演算される。そして、基板3が予め定められた所定距離だけ移動して上記被照射領域の基板搬送方向下流側の端部が、図5(b)に示すように遮光マスク8に設けられた開口窓10の第2の領域10bの結像にて、基板搬送方向上流側端部(同図(a)に示す予備加熱領域の基板搬送方向上流側端部に相当)に合致すると、レーザ光源6が所定の時間間隔でパルス発光し、レーザ光源6からレーザ光が放出される。
 レーザ光は、カップリング光学系7によりビーム径が拡大され、強度分布が均一化された後、平行光とされて遮光マスク8に照射する。
 遮光マスク8に照射したレーザ光は、遮光マスク8の開口窓10によりビームの断面形状が基板搬送方向と交差する方向に長軸を有するストライプ状に整形されて遮光マスク8を射出する。そして、遮光マスク8を射出したレーザ光は、対物レンズ9により基板表面の被照射領域(犠牲層5)に集光されるように透明な基板3を裏面側から透過する。この場合、遮光マスク8を射出したレーザ光は、開口窓10の減光処理が施された第2の領域10bを通過した部分の強度が第1の領域10aを通過した部分の強度よりも小さくなる。
 基板3は一定の速度で搬送されており、レーザ光源6は、所定の時間間隔でパルス発光している。この場合、基板3の搬送速度は、少なくとも1回のパルス発光時間内に、基板3が遮光マスク8の開口窓10の結像において、第2の領域10bに対応した部分(図5(a)に示す予備加熱領域)の基板搬送方向の幅と同寸法だけ移動するように設定されている。
 図5は、レーザ光源6が1回発光する間に、基板3が上記予備加熱領域の基板搬送方向の幅と同寸法だけ移動する場合を示している。図5(a)は被照射領域に照射されるレーザ光の強度分布を示し、同図(b)~(d)は、基板3が搬送されることにより時間変化する被照射領域の位置を示している。
 図5(b)に示すように、基板3の被照射領域(犠牲層5)の基板搬送方向下流側端部が予備加熱領域の基板搬送方向上流側端部に合致すると、レーザ光源6が1回目のレーザ発光をする。この1回目のレーザ発光時間内に、基板3は、予備加熱領域の基板搬送方向の幅と同じ寸法だけ移動する。したがって、被照射領域は、同図(c)に示すように基板搬送方向下流側の端部領域5aが開口窓10の第2の領域10bを通過したレーザ光により照射される。この場合、第2の領域10bを通過するレーザ光の照射強度は、剥離閾値未満に設定されているため、被照射領域の上記端部領域5aの犠牲層5は、予備的に加熱されるだけで剥離しない。このとき、図6に破線Iで示すように、犠牲層5から該犠牲層5に含有される気体の一部が放出される。なお、この場合、端部領域5aには、1回目(1ショット目)のレーザ光の照射がなされるから、図6において、nはゼロとなる。
 引き続いて、基板3が搬送され、図5(d)に示すように被照射領域が予備加熱領域の基板搬送方向の幅と同じ寸法だけ移動すると、レーザ光源6が2回目(2ショット目)のパルス発光をする。これにより、被照射領域の上記端部領域5aが開口窓10の第1の領域10aを通過したレーザ光により照射される。即ち、これは、被照射領域の上記端部領域5aが図5(a)に示す加熱領域内に位置した状態である。この場合、第1の領域10aを通過するレーザ光の照射強度は、剥離閾値以上で、汚染閾値未満に設定されているため、被照射領域の上記端部領域5aの犠牲層5が本加熱され、該犠牲層5に含有される気体の残りの部分、若しくは残りの一部が放出され、同端部領域5aの犠牲層5が剥離可能となる。また、被照射領域の上記端部領域5aに続く後続領域5bは、上記第2の領域10bを通過した2回目のパルス発光のレーザ光により1回目の照射を受け、予備加熱される。
 以降、基板3の搬送に伴って、全被照射領域が開口窓10の第2の領域10bを通過したレーザ光により予備加熱された後、第1の領域10aを通過したレーザ光により本加熱される。このようにして、犠牲層5全面にレーザ光が照射されることにより、犠牲層5から気体が放出されて被剥離層4の剥離が可能となる。
 図7は従来技術によるレーザリフトオフ方法を示す説明図である。この場合、被照射領域に照射されるレーザ光の強度は、剥離閾値以上で、汚染閾値未満に設定されている。なお、ここでは、基板3が図5に示す本発明の場合と同じ速度で搬送されている場合について説明する。
 先ず、図7(b)に示すように、被照射領域の基板搬送方向下流側の端部が遮光マスク8の開口窓10の結像の基板搬送方向上流側端部に合致してから、同図(c)に示すように、本発明の上記予備加熱領域の基板搬送方向の幅と同じ寸法だけ移動する間に、レーザ光源6が1回目のパルス発光をする。これにより、被照射領域の基板搬送方向下流側の端部領域5aが開口窓10を通過したレーザ光により本加熱され、同端部領域5aの犠牲層5から気体が放出される。この場合、被照射領域の上記端部領域5aは、照射強度が剥離閾値以上で、汚染閾値未満の高強度のレーザ光により一度に本加熱されるため、同端部領域5aに急激な温度上昇が発生し、図6に実線Cで示すように、犠牲層5から大量の気体(水素)が一時に放出される。したがって、気体の大量放出により犠牲層5の一部も基板3から剥離して被剥離層4に付着し、被剥離層4を汚染することになる。
 図7(d)は、同図(c)の状態から基板3がさらに搬送され、レーザ光源6が2回目のパルス発光をした状態を示す。この場合、被照射領域の上記端部領域5aが2回目のレーザ照射を受けて本加熱される。このとき、犠牲層5から放出される気体の放出量は、図6に示すように、低下する。これは、犠牲層5に含まれる気体の大部分が1回目のレーザ照射により放出されるためである。
 なお、被照射領域の上記端部領域5aに続く後続領域5bは、2回目にパルス発光したレーザ光により1回目の照射を受けて本加熱され、同後続領域5bに急激な温度上昇が生じて犠牲層5から大量の気体が放出されることになる。これにより、上記と同様に、上記後続領域5bに対応した被剥離層4の部分が汚染することになる。
 このように、本発明によれば、被照射領域が予備加熱に続いて本加熱されるようになっているため、従来技術と違って、急激な温度上昇が抑えられ、犠牲層5から一時に放出される気体の放出量を抑制することができる。したがって、被剥離層4の汚染を抑制することができ、汚染閾値を上げて、剥離閾値≦PM≦汚染閾値のプロセスマージンPMを広げることができる。
 なお、基板3が遮光マスク8の開口窓10の結像において、第2の領域10bに対応した部分の基板搬送方向の幅と同寸法だけ移動する間にレーザ光源6が複数回パルス発光するようにしてもよい。この場合、遮光マスク8の開口窓10の結像にて、被照射領域の上記第2の領域10bに対応した領域が第2の領域10bを通過したレーザ光により複数回のレーザ照射を受けて予備加熱された後、開口窓10の第1の領域10aを通過したレーザ光により本加熱されるため、同領域の急激な温度上昇が抑えられ、同領域から一度に放出される気体の放出量が抑制される。したがって、この場合も被剥離層4の汚染を抑制することができる。
 また、上記実施形態においては、レーザ照射光学系2が光透過率の異なる少なくとも二つの領域を基板搬送方向に有する開口窓10を設けた遮光マスク8を備えている場合について説明したが、本発明はこれに限られず、レーザ照射光学系2は、基板搬送方向に並べて配置した強度の異なるレーザ光を発光する複数のレーザ照射光学系から成り、被照射領域に対して、強度の小さいレーザ光を発光するレーザ照射光学系による照射に続いて、強度の大きいレーザ光を発光するレーザ照射光学系により照射可能に構成されてもよい。
 図8は本発明によるレーザリフトオフ装置の第2の実施形態を示す概略構成図である。ここでは、第1の実施形態と異なる部分について説明する。
 第2の実施形態は、第1及び第2のレーザ照射光学系2A,2Bを基板搬送方向に並べて配置し、基板を往復搬送してリフトオフ動作を行うレーザリフトオフ装置であり、往路では、第1のレーザ照射光学系2Aによる照射強度を第2のレーザ照射光学系2Bによる照射強度よりも小さくして照射し、復路では逆に、第2のレーザ照射光学系2Bによる照射強度を第1のレーザ照射光学系2Aによる照射強度よりも小さくして照射するように、各レーザ照射光学系を制御している。
 この場合、図9に示すように、第1及び第2のレーザ照射光学系2A,2Bによる照射エネルギー(積分量)が同じになるように、レーザ光のピーク値とパルス幅を設定してもよい。例えば、基板搬送方向上流側に位置するレーザ照射光学系(予備加熱用)は、ピーク値が低く、パルス幅が広いレーザ光を発生するようにレーザ光源の発光を制御し、逆に、基板搬送方向下流側に位置するレーザ照射光学系(加熱用)は、ピーク値が高く、パルス幅が狭いレーザ光を発生するようにレーザ光源の発光を制御するとよい。これにより、予備加熱用レーザ照射で犠牲層5の水素濃度を低下させ、加熱用レーザ照射で気体の大量発生を抑制して剥離を行うことができる。
 なお、上記実施形態においては、被剥離層4と基板3との間に犠牲層5を有する場合について説明したが、本発明はこれに限られず、被剥離層4が、例えばGaN層のようにレーザ光の照射により基板3との界面が分解して剥離可能となるものであれば、犠牲層5はなくてもよい。
 また、上記実施形態においては、レーザ照射光学系2を固定した状態で基板3を搬送する場合について説明したが、基板3を固定してレーザ照射光学系2又は第1及び第2のレーザ照射光学系2A,2Bを移動してもよいし、両者を互いに反対方向に移動してもよい。
 1…搬送手段
 2…レーザ照射光学系
 2A…第1のレーザ照射光学系
 2B…第2のレーザ照射光学系
 3…基板
 4…被剥離層
 5…犠牲層
 6…レーザ光源
 8…遮光マスク
 10…開口窓
 10a…第1の領域
 10b…第2の領域
 

Claims (9)

  1.  透明な基板と、レーザ光を照射するレーザ照射光学系とを相対的に移動しながら、基板表面の被照射領域に前記基板の裏面側からレーザ光を照射し、前記基板の表面に形成された被剥離層を剥離するレーザリフトオフ装置であって、
     前記レーザ照射光学系は、前記被照射領域に対して、照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射に続いて強度の大きいレーザ光を照射可能に構成されたことを特徴とするレーザリフトオフ装置。
  2.  前記レーザ照射光学系は、光透過率の異なる少なくとも二つの領域を相対的な基板搬送方向に有する開口窓を設けた遮光マスクと、前記開口窓を前記被照射領域に反転結像するレンズとを備え、
     前記開口窓の光透過率は、相対的な前記基板搬送方向上流側の領域よりも下流側の領域の方が低いことを特徴とする請求項1記載のレーザリフトオフ装置。
  3.  前記少なくとも二つの領域の光透過率は、階段状に変化することを特徴とする請求項2記載のレーザリフトオフ装置。
  4.  相対的な前記基板搬送方向下流側の領域の光透過率は、相対的な前記基板搬送方向下流側から上流側に向かって漸増することを特徴とする請求項2記載のレーザリフトオフ装置。
  5.  前記レーザ照射光学系は、基板搬送方向に並べて配置した強度の異なるレーザ光を発光する複数のレーザ照射光学系から成り、前記被照射領域に対して、強度の小さいレーザ光を発光するレーザ照射光学系による照射に続いて、強度の大きいレーザ光を発光するレーザ照射光学系により照射可能に構成されたことを特徴とする請求項1記載のレーザリフトオフ装置。
  6.  前記基板と前記レーザ照射光学系とが相対的に往復搬送されるように構成され、
     前記レーザ照射光学系は、基板搬送方向に並べて配置した第1及び第2のレーザ照射光学系から成り、相対的な基板搬送方向上流側に位置するレーザ照射光学系による照射強度を下流側に位置するレーザ照射光学系による照射強度よりも小さくなるように、前記第1及び第2のレーザ照射光学系の照射強度を往路及び復路で反転させることを特徴とする請求項1記載のレーザリフトオフ装置。
  7.  前記基板と前記被剥離層との間には、前記レーザ光の照射により気体を発生する犠牲層が設けられていることを特徴とする請求項1~6のいずれか1項に記載のレーザリフトオフ装置。
  8.  透明な基板の裏面側からレーザ照射光学系によりレーザ光を照射して前記基板上に形成された被剥離層を前記基板から剥離するレーザリフトオフ方法であって、
     前記基板を前記レーザ照射光学系に対して相対的に移動しながら、基板表面の全被照射領域に対して照射強度の異なるレーザ光のうち、強度の小さいレーザ光の照射に続いて強度の大きいレーザ光を照射することを特徴とするレーザリフトオフ方法。
  9.  前記基板と前記被剥離層との間には、前記レーザ光の照射により気体を発生する犠牲層が設けられていることを特徴とする請求項8記載のレーザリフトオフ方法。
     
PCT/JP2017/032916 2016-10-18 2017-09-12 レーザリフトオフ装置及びレーザリフトオフ方法 WO2018074106A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016204263A JP2018065159A (ja) 2016-10-18 2016-10-18 レーザリフトオフ装置及びレーザリフトオフ方法
JP2016-204263 2016-10-18

Publications (1)

Publication Number Publication Date
WO2018074106A1 true WO2018074106A1 (ja) 2018-04-26

Family

ID=62018465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032916 WO2018074106A1 (ja) 2016-10-18 2017-09-12 レーザリフトオフ装置及びレーザリフトオフ方法

Country Status (3)

Country Link
JP (1) JP2018065159A (ja)
TW (1) TW201827152A (ja)
WO (1) WO2018074106A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454331A (zh) * 2019-08-27 2019-11-15 广州大学 一种激光调控系统及风机叶片安装方法
CN111146137A (zh) * 2019-12-30 2020-05-12 浙江清华柔性电子技术研究院 激光剥离方法及激光剥离装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2026427B1 (en) * 2019-09-10 2021-10-13 Tokyo Seimitsu Co Ltd Laser machining apparatus
KR20220114005A (ko) * 2019-12-12 2022-08-17 토레이 엔지니어링 컴퍼니, 리미티드 집광 렌즈의 높이 조정 방법 및 칩 전사 방법 그리고 집광 렌즈의 높이 조정 장치 및 칩 전사 장치
US11875967B2 (en) * 2020-05-21 2024-01-16 Applied Materials, Inc. System apparatus and method for enhancing electrical clamping of substrates using photo-illumination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231407A (ja) * 2005-02-22 2006-09-07 Samsung Sdi Co Ltd レーザ照射装置及びレーザ熱転写法
JP2010153876A (ja) * 2010-01-08 2010-07-08 Hitachi Displays Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
JP2011051011A (ja) * 2009-08-03 2011-03-17 Hamamatsu Photonics Kk レーザ加工方法及び半導体装置の製造方法
WO2017110121A1 (ja) * 2015-12-25 2017-06-29 鴻海精密工業股▲ふん▼有限公司 ラインビーム光源およびラインビーム照射装置ならびにレーザリフトオフ方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231407A (ja) * 2005-02-22 2006-09-07 Samsung Sdi Co Ltd レーザ照射装置及びレーザ熱転写法
JP2011051011A (ja) * 2009-08-03 2011-03-17 Hamamatsu Photonics Kk レーザ加工方法及び半導体装置の製造方法
JP2010153876A (ja) * 2010-01-08 2010-07-08 Hitachi Displays Ltd 半導体薄膜の改質方法、改質した半導体薄膜とその評価方法、およびこの半導体薄膜で形成した薄膜トランジスタ、並びにこの薄膜トランジスタを用いて構成した回路を有する画像表示装置
WO2017110121A1 (ja) * 2015-12-25 2017-06-29 鴻海精密工業股▲ふん▼有限公司 ラインビーム光源およびラインビーム照射装置ならびにレーザリフトオフ方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454331A (zh) * 2019-08-27 2019-11-15 广州大学 一种激光调控系统及风机叶片安装方法
CN111146137A (zh) * 2019-12-30 2020-05-12 浙江清华柔性电子技术研究院 激光剥离方法及激光剥离装置
CN111146137B (zh) * 2019-12-30 2023-04-18 浙江清华柔性电子技术研究院 激光剥离方法及激光剥离装置

Also Published As

Publication number Publication date
TW201827152A (zh) 2018-08-01
JP2018065159A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
WO2018074106A1 (ja) レーザリフトオフ装置及びレーザリフトオフ方法
US10337096B2 (en) Method for manufacturing deposition mask and deposition mask
JP5517308B2 (ja) マスクの製造方法、マスク及びマスクの製造装置
TW201840382A (zh) 剝離基板及雷射剝除方法
KR20130036317A (ko) 레이저 리프트 오프 방법 및 레이저 리프트 오프 장치
TWI669181B (zh) 光束塑形遮罩、雷射加工裝置及雷射加工方法
EP3776020B1 (en) System and method for ablation assisted nanostructure formation for graded index surfaces for optics
TW201706221A (zh) 疊層基板之加工方法及利用雷射光之疊層基板之加工裝置
JP2013532835A5 (ja)
KR20100110447A (ko) 레이저 직접 박막 패터닝 방법
WO2012002155A1 (ja) レーザリフトオフ方法及びレーザリフトオフ装置
TW201843001A (zh) 雷射剝除裝置及雷射剝除方法
JP2004012757A (ja) レーザ照射装置
CN112384323A (zh) 激光加工装置、激光加工方法以及成膜掩模的制造方法
WO2007029561A1 (ja) 露光装置
US10933624B2 (en) Photomask pellicle glue residue removal
TW200815937A (en) Exposure apparatus, removal method, and device manufacturing method
US11550231B2 (en) Apparatus for and method of in-situ particle removal in a lithography apparatus
JP2005152966A (ja) レーザー加工方法及び素材転写方法
EP3465778B1 (en) Method for performing delamination of a polymer film
KR20160047553A (ko) 방사선 소스 및 리소그래피 장치
JP4944705B2 (ja) 半導体装置の作製方法及び配線の作製方法
WO2020137400A1 (ja) レーザアニール装置
NL2022899A (en) Lithographic apparatus and method of cleaning
JPH0386385A (ja) レーザマーカ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862648

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17862648

Country of ref document: EP

Kind code of ref document: A1