WO2018073981A1 - 中継装置及び中継方法 - Google Patents

中継装置及び中継方法 Download PDF

Info

Publication number
WO2018073981A1
WO2018073981A1 PCT/JP2016/087187 JP2016087187W WO2018073981A1 WO 2018073981 A1 WO2018073981 A1 WO 2018073981A1 JP 2016087187 W JP2016087187 W JP 2016087187W WO 2018073981 A1 WO2018073981 A1 WO 2018073981A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
antenna
signal
relay
antennas
Prior art date
Application number
PCT/JP2016/087187
Other languages
English (en)
French (fr)
Inventor
孝則 滝井
将彦 南里
隆之 吉村
真規 野町
純平 ▲高▼城
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Priority to US15/508,909 priority Critical patent/US20190372636A1/en
Publication of WO2018073981A1 publication Critical patent/WO2018073981A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0805Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching
    • H04B7/0814Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with single receiver and antenna switching based on current reception conditions, e.g. switching to different antenna when signal level is below threshold
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present invention relates to a relay device and a relay method for relaying communication between a terminal device and a macro cell base station.
  • Patent Document 1 discloses a wireless communication system that is a relay device that relays communication between a wireless terminal and a base station and includes a relay device having a plurality of antennas.
  • the relay device uses a reception antenna predetermined for signal reception among a plurality of antennas in a downlink that is a transmission link from the base station to the relay device.
  • a transmission antenna predetermined for signal transmission among the plurality of antennas is used.
  • predetermined communication quality may not be maintained if the reception antenna and the transmission antenna used for signal transmission / reception between the relay apparatus and the base station are not appropriate. .
  • the predetermined communication quality of the signal between the relay apparatus and the base station is not maintained, and the communication speed of the entire communication system, communication reliability, etc. Including communication quality may be reduced.
  • the present invention has been made in view of the above circumstances, and in the case where the relay device relays communication between the terminal device and the macro cell base station, the relay device and the relay that can improve communication quality in both transmission and reception. It aims to provide a method.
  • the inventor of the present application diligently studied the selection of an antenna for improving communication quality in the relay device, and the combination of antennas in the relay device that provides a suitable signal reception state at a predetermined frequency is: Focusing on the fact that a suitable signal transmission situation can be created even in the transmission of signals using the same frequency, the present invention has been conceived.
  • a relay apparatus is a relay apparatus that relays communication between a terminal apparatus and a macro cell base station, and includes a plurality of selectable antennas that receive signals from the macro cell base station.
  • An antenna group, and an antenna selection unit that selects, from the antenna group, a plurality of antennas that form a beam for transmitting a signal to the macro cell base station based on a reception status of a signal received from the macro cell base station; .
  • the antenna selection unit may preferentially select an antenna having a high signal reception strength from the macro cell base station from the antenna group.
  • a relay method is a relay method for relaying communication between a terminal device and a macro cell base station, and is an antenna group including a plurality of antennas that can select a signal from the macro cell base station. And a step of selecting, from the antenna group, a plurality of antennas forming a beam for transmitting a signal to the macro cell base station based on a reception status of a signal received from the macro cell base station. ,including.
  • the relay device when the relay device relays communication between the terminal device and the macro cell base station, it is possible to improve communication quality in both transmission and reception.
  • the block diagram of the mobile communication system which concerns on one Embodiment.
  • the block diagram of the relay apparatus which concerns on one Embodiment.
  • the sequence diagram explaining the procedure of the antenna selection process which concerns on one Embodiment.
  • the conceptual diagram explaining the antenna selection process which concerns on one Embodiment.
  • FIG. 1 is a configuration diagram of a mobile communication system including a femtocell base station (relay device) according to an embodiment.
  • Mobile communication system 100 according to this embodiment is a mobile communication system of LTE (L ong T erm E volution ) scheme have been standardized by the exemplary 3GPP, a radio network (Radio Network), a core network ( Core Network). The configuration of the wireless network and the configuration of the core network will be described in order below.
  • LTE Long ong T erm E volution
  • the mobile communication system 100 includes a terminal device 10, a relay device 20, and a donor base station (macrocell base station) 30 as a configuration related to a wireless network.
  • the wireless network, the LTE scheme is called E-UTRAN (E volved U niversal T errestrial R adio A ccess N etwork).
  • the terminal device 10 is a device that communicates with the relay device 20 or the donor base station 30.
  • Terminal device 10 for example a smartphone, a mobile portable communication terminal such as a cellular phone, also called UE (U ser E quipment).
  • UE U ser E quipment
  • FIG. 1 the terminal device 10a that is located in the cell (communication range) formed by the relay device 20 and is connected to the terminal device 10a connected to the relay device 20 and the donor base station 30 is located in the donor base.
  • the terminal device 10b connected to the station 30 is shown.
  • the terminal device 10 a and the terminal device 10 b are collectively referred to as the terminal device 10.
  • the relay device 20 is movable and is a device that relays communication between the terminal device 10 a and the donor base station 30.
  • Relay device 20 is also called a ReNB (R epeater type eN ode B ), constitutes one of the nodes in a wireless network.
  • the relay device 20 includes an access node (Access Node) 22 and a relay node (Relay Node) 24.
  • the access node 22 establishes wireless communication with the terminal device 10a and provides a packet communication service (for example, voice packet communication service, multimedia service, etc.) to the terminal device 10a.
  • a packet communication service for example, voice packet communication service, multimedia service, etc.
  • Access node 22 is also referred to as a femto base station.
  • the wireless communication between the access node 22 and the terminal device 10a is also called an access link (AC: Access Link).
  • the cell formed by the access node 22 has a cell size smaller than that of the donor base station 30 and forms a communication area having a radius of several meters to several tens of meters.
  • the access node 22 establishes wireless communication with the donor base station 30 via the relay node 24.
  • the relay node 24 is also called a CPE (Customer Premises Equipment).
  • Wireless communication between the relay node 24 and the donor base station 30 is also referred to as a backhaul (BH).
  • BH backhaul
  • the access node 22 and the relay node 24 may be configured as separate nodes.
  • the relay node 24 plays a role as a relay device according to the present invention.
  • the relay device 20 includes an antenna group 25 including a plurality of selectable antennas 25A to 25H used when relaying communication between the terminal device 10a and the donor base station 30.
  • the relay device 20 includes eight antennas 25A to 25H, and transmits and receives signals while changing the combination of the eight antennas 25A to 25H.
  • the relay device 20 uses the antennas 25A, 25C, 25D, and 25G for transmission after selecting the antennas 25A, 25C, 25D, and 25G from the antenna group 25 based on the signal reception status of the antennas 25A to 25H. Configured to do.
  • the number of antennas included in the antenna group 25 may be plural, and the number is not limited.
  • the donor base station 30 establishes wireless communication with the access node 22 via the relay node 24.
  • the donor base station 30 is also referred to as Donor eNB (Donor eNode B ).
  • the donor base station 30 constructs a communication area having a radius of several hundred meters to several tens of kilometers.
  • the mobile communication system 100 As shown in FIG. 1, the mobile communication system 100, a configuration of the core network, the first core network EPC (E volved P acket C ore ) 40, Femto Core Network (Femto Core Network) 50 (communication control server ), And a second core network EPC60.
  • EPC E volved P acket C ore
  • Femto Core Network Femto Core Network
  • this embodiment demonstrates as what is provided with the 1st core network EPC40 and the 2nd core network EPC60, you may comprise the core network EPC by one.
  • the first core network EPC 40 is connected to the donor base station 30, for example, a function for managing the movement management, authentication, and packet communication data path setting processing of each terminal device 10 via the donor base station 30, and a wireless network It has a function to implement quality control.
  • the femto core network 50 is a network that performs various types of management regarding the relay device 20.
  • Femto Core Network 50 for example, is connected to the femto OAM (Femto O perations A dministration M aintenace) 52, it has a function of operation of the relay apparatus 20, the management, maintenance.
  • femto OAM Femto O perations A dministration M aintenace
  • the second core network EPC 60 is, for example, a call connection control function for providing a mobile communication service, a service control function, a contract subscriber in a wireless network from an external network such as the Internet 70, or a wireless network.
  • a function as an exchange for receiving a call to a subscriber who is roaming a function for managing movement management, authentication, and packet communication data path setting processing of each terminal device 10 in the second core network EPC 60, and quality management Etc., and a function for executing control based on communication policy control and charging rules.
  • FIG. 2 is a configuration diagram of a relay device according to an embodiment.
  • the relay device 20 exemplarily includes an information processing unit 201 that performs information processing for relaying communication between the terminal device 10 a and the donor base station 30, a reception signal level described below, and And a recording unit 203 that records the antenna selected by the antenna selection unit 207 described later in association with each other.
  • the information processing unit 201 functionally includes a reception status determination unit 205, an antenna selection unit 207, and a beam forming unit 209.
  • the reception status determination unit 205 determines the reception status of signals received by the antennas 25A to 25H from the donor base station 30 (macrocell base station). For example, the reception status determination unit 205 determines the signal reception status based on a predetermined physical quantity, for example, the level of the received signal level (reception strength). Specifically, as the received signal level, refer to at least one of RSRP (R eference S ignal R eceived P ower) and RSSI (R eceived S ignal S trength I ndicator).
  • RSRP Reference S ignal R eceived P ower
  • RSSI R eceived S ignal S trength I ndicator
  • RSRP is a basic parameter for evaluating the received signal level of the radio wave from the donor base station, and is an index whose level greatly varies depending on the combination of the selected antennas 25A to 25H. This is because the directivity related to transmission and reception of electromagnetic waves varies greatly depending on the combination of antennas 25A to 25H to be selected.
  • RSRP includes, in addition, the transmission power of the donor base station, the installation conditions of the base station including the orientation and height of the antennas 25A to 25H of the donor base station, the distance from the donor base station, the presence of obstacles, etc. Determined based on measurement environment.
  • RSSI is a basic parameter for evaluating the received signal level of the radio wave from the donor base station, similarly to RSRP. However, unlike the RSRP, the RSSI is a parameter that can be changed not only by the installation conditions and measurement environment of the donor base station but also by the traffic volume of the measurement target base station and surrounding base stations.
  • Reception status determining unit 205 as a physical quantity for further determining the receiving state, with additional reference to at least one of RSRQ (R eference S ignal R eceived Q uality) and SINR (S ignal to I nterference plus N oise power R atio)
  • RSRQ R eference S ignal R eceived Q uality
  • SINR SINR
  • RSRQ is one of indexes indicating the reception quality of radio waves from a donor base station, and is a parameter calculated by the ratio of RSRP and RSSI.
  • SINR is a parameter indicating the ratio of received signal power to interference and noise power in consideration of interference from neighboring donor base stations and other relay apparatuses.
  • the antenna selection unit 207 selects, from the antenna group 25, a plurality of antennas that form a beam for transmitting a signal to the donor base station 30 based on the reception status of the signal received from the donor base station 30. For example, the antenna selection unit 207 selects, from the antenna group 25, a plurality of antennas having high reception signal levels of signals received from the donor base station 30. According to the recognition of the present inventor, the combination of antennas selected so as to make the reception situation suitable in this way provides a suitable transmission situation even when transmitting electromagnetic waves of the same frequency.
  • the beam forming unit 209 forms a beam for transmitting a signal to the donor base station 30 using a plurality of antennas selected from the antenna group 25.
  • FIG. 3 is a sequence diagram illustrating a procedure of antenna selection processing of the relay device according to an embodiment.
  • FIG. 4 is a schematic diagram for explaining antenna selection processing of the relay device according to an embodiment.
  • FIG. 4A is a diagram illustrating downlink communication indicating transmission of signals from the donor base station 30 to the relay apparatus 20
  • FIG. 4B is a diagram illustrating signals transmitted from the relay apparatus 20 to the donor base station 30. It is a figure which shows the uplink communication which shows transmission.
  • the user of the mobile communication system can download the antenna selection processing application software according to the embodiment from a predetermined site of the network and execute it on the relay device 20, for example. Save it.
  • the user instructs execution of the antenna selection processing application software a program operation based on the antenna selection processing application software starts.
  • relay apparatus 20 receives a signal from donor base station 30 (macrocell base station) at antenna group 25 including a plurality of selectable antennas 25A to 25H. All of the antennas 25A to 25H can operate as reception antennas.
  • the antenna selection unit 207 illustrated in FIG. 2 selects the first antenna combination that receives a signal from the donor base station 30.
  • Step S3 The relay apparatus 20 receives a signal from the donor base station 30 using the first antenna combination selected by the antenna selection unit 207.
  • the reception status determination unit 205 determines the reception signal level (reception strength) of each first antenna combination.
  • the reception status determination unit 205 determines the level of the reception signal level of each of the first antenna combinations by comparing the reception signal levels of each of the first antenna combinations.
  • Step S5 The recording unit 203 illustrated in FIG. 2 records the reception status of the signal for each antenna combination when the signal is received in the first antenna combination selected by the antenna selection unit 207. Note that the recording unit 203 may be configured to record the reception status of the signal when the signal is received for each antenna.
  • Step S7 The antenna selection unit 207 determines whether there is another antenna combination. When the antenna selection unit 207 determines that there is another antenna combination (in the case of Yes), the process proceeds to step S9. When the antenna selection unit 207 determines that there is no other antenna combination (in the case of No), the process proceeds to step S11.
  • Step S9 When the antenna selection unit 207 determines that there is another antenna combination (Yes in step S7), the antenna selection unit 207 changes the first antenna combination selected in step S1. And a step returns to step S3 and performs the same process as the above. Specifically, in step S ⁇ b> 3, the relay apparatus 20 receives a signal from the donor base station 30 using another antenna combination changed by the antenna selection unit 207. The reception status determination unit 205 determines the reception status of signals received from the donor base station 30 by the changed combination of other antennas. In step S ⁇ b> 5, the recording unit 203 records the reception status of the signal when the signal is received by another antenna combination changed by the antenna selection unit 207 for each other antenna combination.
  • the antenna selection unit 207 repeatedly selects antenna combinations, the reception status determination unit 205 determines the reception status for each selected or changed antenna combination, and the recording unit 203 selects or changes The reception status of the selected or changed antenna combination is recorded for each selected antenna combination.
  • Step S11 If the antenna selection unit 207 determines that there is no other antenna combination (No in step S7), the antenna reception unit 207 has the best reception status based on the reception status of each antenna combination recorded in the recording unit 203.
  • a combination of antennas is selected from the antenna group 25.
  • the antenna selection unit 207 has an antenna 25A having a high received signal level (reception strength) of a signal from the donor base station 30. , 25D, 25F, and 25H are preferentially selected from the antenna group 25.
  • the antenna selection unit 207 has at least one of the antennas 25A, 25D, 25F, and 25H having a high reception signal level of the signal from the donor base station 30. Two or more may be selected from the antenna group 25, and it is not always necessary to select all of the antennas 25A, 25D, 25F, and 25H.
  • the beam forming unit 209 shown in FIG. 2 transmits a signal to the donor base station 30 using the plurality of selected antennas 25A, 25D, 25F, and 25H. To form a beam.
  • the beam forming unit 209 performs weighting for each of the selected transmission antennas 25A, 25D, 25F, and 25H, and performs beam forming.
  • the downlink indicating the transmission of the signal from the donor base station 30 to the relay apparatus 20, and the donor base station from the relay device 20 The same frequency is used in the uplink indicating transmission of signals to 30. Therefore, by determining the received signal level in downlink communication, it is possible to select a plurality of antennas for optimum beam forming in the uplink and estimate the weight of each of the plurality of antennas. it can.
  • a plurality of antennas that form a beam for transmitting a signal to the donor base station 30 based on the reception status of the signal received from the donor base station 30 are antennas. Select from group 25. Therefore, when the relay device 20 relays communication between the terminal device 10a and the donor base station 30, an optimal antenna is selected for signal transmission / reception between the relay device 20 and the donor base station 30, Signal transmission / reception is performed smoothly. Therefore, communication quality can be improved for both transmission and reception.
  • the LTE standard mobile communication system which is a communication standard related to mobile communication
  • the present invention is not limited to this, and other communication standards and future communication standards are established.
  • the present invention is also applicable. That is, depending on the reception antenna and transmission antenna used in the relay device, the predetermined communication quality of the signal between the relay device and the donor base station is not maintained, and includes the communication speed of the entire communication system, communication reliability, etc.
  • the present invention can be applied to any system in which communication quality may be degraded.
  • SYMBOLS 10 Terminal device, 20 ... Relay device, 22 ... Access node, 24 ... Relay node, 25 ... Antenna, 30 ... Donor base station (macrocell base station), 40 ... First core network EPC, 50 ... Femto core Network 60 ... Second core network EPC 100 ... Mobile communication system 201 ... Information processing unit 203 ... Recording unit 205 ... Reception status judging unit 207 ... Antenna selection unit 209 ... Beam forming unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

中継装置が端末装置とマクロセル基地局との間の通信を中継する場合において、送受信ともに通信品質を向上させることができる中継装置及び中継方法を提供すること。 端末装置10とマクロセル基地局との間の通信を中継する中継装置20は、マクロセル基地局からの信号を受信する選択可能な複数のアンテナで構成されたアンテナ群25と、マクロセル基地局から受信する信号の受信状況に基づいて、当該マクロセル基地局に対して信号を送信するためのビームを形成する複数のアンテナをアンテナ群25から選択するアンテナ選択部207と、を備える。

Description

中継装置及び中継方法
 本発明は、端末装置とマクロセル基地局との間の通信を中継する中継装置及び中継方法に関する。
 従来、建物内において、端末装置とマクロセル基地局との間の通信経路を確保するため、端末装置とマクロセル基地局との間に中継装置を介在させることが知られている。
 これに関して、特許文献1には、無線端末と基地局との間の通信を中継する中継装置であって、複数のアンテナを有する中継装置を備える無線通信システムが開示されている。
特開2014-30186号公報
 上記のような中継装置を備える無線通信システムにおいては、中継装置は、基地局から中継装置への送信リンクであるダウンリンクにおいて、複数のアンテナのうち信号の受信用として予め定められた受信アンテナを使用し、中継装置から基地局への送信リンクであるアップリンクにおいて、当該複数のアンテナのうち信号の送信用として予め定められた送信アンテナを使用していた。
 しかしながら、このような無線通信システムにおいては、中継装置と基地局との間の信号の送受信に用いられる受信アンテナ及び送信アンテナが適切なものでない場合は、所定の通信品質が維持されない可能性がある。このように、中継装置において用いられる受信アンテナ及び送信アンテナによっては、中継装置と基地局との間の信号の所定の通信品質が維持されず、通信システム全体の通信速度や通信の信頼性等を含む通信品質が低下するおそれがある。
 本発明は、上記の事情に鑑みてなされたものであり、中継装置が端末装置とマクロセル基地局との間の通信を中継する場合において、送受信ともに通信品質を向上させることができる中継装置及び中継方法を提供することを目的とする。
 上記目的に鑑み、本願発明者は、中継装置における通信品質を向上させるためのアンテナの選択について鋭意研究したところ、所定の周波数において好適な信号の受信状況を提供する中継装置におけるアンテナの組み合わせは、同じ周波数を用いる信号の送信においても好適な信号の送信状況を作りえることに着目し、本願発明に想到した。
 本発明の一態様に係る中継装置は、端末装置とマクロセル基地局との間の通信を中継する中継装置であって、マクロセル基地局からの信号を受信する選択可能な複数のアンテナで構成されたアンテナ群と、前記マクロセル基地局から受信する信号の受信状況に基づいて、当該マクロセル基地局に対して信号を送信するためのビームを形成する複数のアンテナを前記アンテナ群から選択するアンテナ選択部と、を備える。
 上記中継装置において、前記アンテナ選択部は、前記マクロセル基地局からの信号の受信強度が高いアンテナを前記アンテナ群から優先的に選択してもよい。
 本発明の一態様に係る中継方法は、端末装置とマクロセル基地局との間の通信を中継する中継方法であって、マクロセル基地局からの信号を選択可能な複数のアンテナで構成されたアンテナ群において受信するステップと、前記マクロセル基地局から受信する信号の受信状況に基づいて、当該マクロセル基地局に対して信号を送信するためのビームを形成する複数のアンテナを前記アンテナ群から選択するステップと、を含む。
 本発明によれば、中継装置が端末装置とマクロセル基地局との間の通信を中継する場合において、送受信ともに通信品質を向上させることができる。
一実施形態に係る移動体通信システムの構成図。 一実施形態に係る中継装置の構成図。 一実施形態に係るアンテナ選択処理の手順を説明するシーケンス図。 一実施形態に係るアンテナ選択処理を説明する概念図。
 以下、図面を参照して、本発明に係る一つの実施形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。すなわち、本発明は、その趣旨を逸脱しない範囲で種々変形して実施することができる。また、一連の図面の記載において、同一または類似の部分には同一または類似の符号を付して表している。
 〔移動体通信システムの構成〕
 図1は、一実施形態に係るフェムトセル基地局(中継装置)を含む移動体通信システムの構成図である。本実施形態に係る移動体通信システム100は、例示的に3GPPにより規格されているLTE(ong erm volution)方式の移動体通信システムであり、無線ネットワーク(Radio Network)と、コアネットワーク(Core Network)と、を備える。無線ネットワークの構成、及び、コアネットワークの構成について、以下において順に説明する。
 (無線ネットワークの構成)
 図1に示すように、移動体通信システム100は、無線ネットワークに係る構成として、端末装置10、中継装置20、及びドナー基地局(マクロセル基地局)30を備える。なお、無線ネットワークは、LTE方式では、E-UTRAN(volved niversal errestrial adio ccess etwork)と呼ばれている。
 端末装置10は、中継装置20又はドナー基地局30と通信する装置である。端末装置10は、例えばスマートフォン、携帯電話等の移動携帯通信端末であり、UE(ser quipment)とも呼ばれる。図1には、中継装置20が形成するセル(通信可能範囲)に在圏し、中継装置20に接続している端末装置10aと、ドナー基地局30が形成するセルに在圏し、ドナー基地局30に接続している端末装置10bとが示されている。以下、端末装置10aと端末装置10bとを総称するときには端末装置10と表記する。
 中継装置20は、移動可能であり、端末装置10aとドナー基地局30との間の通信を中継する装置である。中継装置20は、ReNB(epeater type eNode)とも呼ばれ、無線ネットワークにおける一つのノードを構成する。
 中継装置20は、アクセス・ノード(Access Node)22とリレー・ノード(Relay Node)24とを含んで構成される。
 アクセス・ノード22は、端末装置10aとの無線通信を確立し、端末装置10aに対しパケット通信サービス(例えば音声パケット通信サービス、マルチメディアサービス等)を提供する。アクセス・ノード22は、フェムト基地局とも呼ばれる。アクセス・ノード22と端末装置10aとの間の無線通信を、アクセスリンク(AC:Access Link)とも呼ぶ。アクセス・ノード22が形成するセルは、そのセルサイズがドナー基地局30よりも小規模であり、半径数メートルから数十メートルの通信エリアを構築する。
 アクセス・ノード22は、リレー・ノード24を介してドナー基地局30との間で無線通信を確立する。リレー・ノード24は、CPE(Customer Premises Equipment)とも呼ばれる。リレー・ノード24とドナー基地局30との間の無線通信を、バックホール(BH:Backhaul)とも呼ぶ。
 なお、アクセス・ノード22とリレー・ノード24とは、別個のノードとして構成されていてもよい。別個に構成した場合、リレー・ノード24が本発明に係る中継装置としての役割を担うこととなる。
 中継装置20は、端末装置10aとドナー基地局30との間の通信を中継する際に用いられる選択可能な複数のアンテナ25A~25Hで構成されたアンテナ群25を備える。例えば、中継装置20は、8本のアンテナ25A~25Hを備え、当該8本のアンテナ25A~25Hの組合せを変更しながら、信号の送受信を実行する。具体的に、中継装置20は、各アンテナ25A~25Hの信号の受信状況に基づきアンテナ群25からアンテナ25A、25C、25D、25Gを選択したら、送信においてもアンテナ25A、25C、25D、25Gを使用するように構成される。なお、アンテナ群25に含まれるアンテナの本数は、複数であればよく、その数に制限はない。
 ドナー基地局30は、リレー・ノード24を介してアクセス・ノード22との間で無線通信を確立する。ドナー基地局30は、Donor eNB(Donor eNode)とも呼ばれる。ドナー基地局30は、半径数百メートルから十数キロメートルの通信エリアを構築する。
 (コアネットワークの構成)
 図1に示すように、移動体通信システム100は、コアネットワークに係る構成として、第1コアネットワークEPC(volved acket ore)40、フェムト・コアネットワーク(Femto Core Network)50(通信制御サーバ)、及び第2コアネットワークEPC60を備える。なお、本実施形態では、第1コアネットワークEPC40と第2コアネットワークEPC60とを備えるものとして説明するが、コアネットワークEPCは一つで構成してもよい。
 第1コアネットワークEPC40は、例えば、ドナー基地局30に接続し、ドナー基地局30を介して個々の端末装置10の移動管理、認証、パケット通信データ経路の設定処理を管理する機能、及び無線ネットワークにおける品質管理を実施する機能を有する。
 フェムト・コアネットワーク50は、中継装置20に関する各種の管理を行うネットワークである。フェムト・コアネットワーク50は、例えば、フェムトOAM(Femto perations dministration aintenace)52に接続され、中継装置20の運用、管理、保守を行う機能を有する。
 第2コアネットワークEPC60は、例えば、移動通信サービスを提供するために呼の接続を制御することやサービスを制御する機能、インターネット70等の外部のネットワークから無線ネットワーク内の契約加入者、又は無線ネットワーク内にローミング中の加入者に対する呼を受ける交換局としての機能、第2コアネットワークEPC60内で個々の端末装置10の移動管理、認証、パケット通信データ経路の設定処理を管理する機能、及び品質管理等の通信ポリシー制御や課金規約に基づく制御を実行する機能を有する。
 図2は、一実施形態に係る中継装置の構成図である。図2に示すように、中継装置20は、例示的に、端末装置10aとドナー基地局30との間の通信を中継するための情報処理を行う情報処理部201と、後述する受信信号レベル及び後述するアンテナ選択部207が選択したアンテナを関連付けて記録する記録部203と、を備える。情報処理部201は、機能的に、受信状況判断部205と、アンテナ選択部207と、ビーム形成部209と、を備える。
 受信状況判断部205は、アンテナ25A~25Hがドナー基地局30(マクロセル基地局)から受信する信号の受信状況を判断する。例えば、受信状況判断部205は、所定の物理量、例えば、受信信号レベル(受信強度)の高低に基づいて信号の受信状況を判断する。具体的には、受信信号レベルとして、RSRP(eference ignal eceived ower)及びRSSI(eceived ignal trength ndicator)の少なくとも一方を参照する。
 RSRPは、ドナー基地局からの電波の受信信号レベルを評価する基本的なパラメータであり、選択されたアンテナ25A~25Hの組み合わせによって、大きくレベルが変動する指標である。選択するアンテナ25A~25Hの組み合わせによって、電磁波の送受信に関する指向性が大きく変動するからである。RSRPとしては、その他、ドナー基地局の送信電力、ドナー基地局のアンテナ25A~25Hの向きや高さ等を含む基地局の設置条件や、ドナー基地局からの距離、障害物の有無等を含む測定環境に基づいて決定される。RSSIは、RSRPと同様に、ドナー基地局からの電波の受信信号レベルを評価する基本的なパラメータである。しかしながら、RSSIは、RSRPとは異なり、ドナー基地局の設置条件や測定環境だけではなく、測定対象基地局や周辺基地局のトラフィック量によっても変化し得るパラメータである。
 受信状況判断部205は、さらに受信状況を判断する物理量として、RSRQ(eference ignal eceived uality)及びSINR(ignal to nterference plus oise power atio)の少なくとも一方を更に参照して、信号の受信状況を判断してもよい。
 RSRQは、ドナー基地局からの電波の受信品質を表す指標の1つであり、RSRPとRSSIとの比によって計算されるパラメータである。SINRは、周辺のドナー基地局や他の中継装置からの干渉を考慮した受信信号電力対干渉および雑音電力比を示すパラメータである。
 アンテナ選択部207は、ドナー基地局30から受信する信号の受信状況に基づいて、当該ドナー基地局30に対して信号を送信するためのビームを形成する複数のアンテナをアンテナ群25から選択する。例えば、アンテナ選択部207は、ドナー基地局30から受信する信号の受信信号レベルの高い複数のアンテナをアンテナ群25から選択する。本願発明者の認識によれば、このようにして受信状況を好適にするように選択されたアンテナの組み合わせは同一周波数の電磁波の送信時においても好適な送信状況を提供する。
 ビーム形成部209は、アンテナ群25から選択された複数のアンテナを用いてドナー基地局30に対して信号を送信するためのビームを形成する。
 〔アンテナ選択処理〕
 図3及び図4を用いて、一実施形態に係る、中継装置のアンテナ選択処理を説明する。図3は、一実施形態に係る、中継装置のアンテナ選択処理の手順を説明するシーケンス図である。図4は、一実施形態に係る、中継装置のアンテナ選択処理を説明するための概略図である。図4(A)は、ドナー基地局30から中継装置20への信号の送信を示すダウンリンク通信を示す図であり、図4(B)は、中継装置20からドナー基地局30への信号の送信を示すアップリンク通信を示す図である。
 当該アンテナ選択処理フローにおいて、前提として、移動体通信システムのユーザは、例えば、ネットワークの所定のサイトから、一実施形態に係るアンテナ選択処理アプリケーションソフトウェアをダウンロードし、中継装置20に実行可能なように保存しておく。そして、ユーザによりアンテナ選択処理アプリケーションソフトウェアの実行が指示されると、アンテナ選択処理アプリケーションソフトウェアに基づくプログラム動作が開始する。
 (図3のステップS1)
 図4(A)に示すように、中継装置20は、ドナー基地局30(マクロセル基地局)からの信号を選択可能な複数のアンテナ25A~25Hで構成されたアンテナ群25において受信する。アンテナ25A~25Hのすべてが受信アンテナとして動作可能である。図2に示すアンテナ選択部207は、ドナー基地局30からの信号を受信する最初のアンテナの組合せを選択する。
 (ステップS3)
 中継装置20は、アンテナ選択部207により選択された最初のアンテナの組合せを用いてドナー基地局30からの信号を受信する。
 図2に示す受信状況判断部205は、アンテナ選択部207により選択された最初のアンテナの組合せがドナー基地局30から受信する信号の受信状況を判断する。例えば、受信状況判断部205は、最初のアンテナの組合せそれぞれの受信信号レベル(受信強度)を判断する。受信状況判断部205は、最初のアンテナの組合せそれぞれの受信信号レベルを比較することで、最初のアンテナの組合せそれぞれの受信信号レベルの高低を判断する。
 (ステップS5)
 図2に示す記録部203は、アンテナ選択部207により選択された最初のアンテナの組合せにおいて信号を受信した際の信号の受信状況をアンテナの組合せごとに記録する。なお、記録部203は、信号を受信した際の信号の受信状況をアンテナごとに記録するように構成されてもよい。
 (ステップS7)
 アンテナ選択部207は、他のアンテナの組合せが有るか否かを判断する。アンテナ選択部207が他のアンテナの組合せが有ると判断する場合(Yesの場合)、ステップS9に進む。アンテナ選択部207が他のアンテナの組合せがないと判断する場合(Noの場合)、ステップS11に進む。
 (ステップS9)
 アンテナ選択部207は、他のアンテナの組合せが有ると判断する場合(ステップS7においてYesの場合)、ステップS1において選択した最初のアンテナの組合せを変更する。そして、ステップは、ステップS3に戻り、上記同様の処理を実行する。具体的には、ステップS3においては、中継装置20は、アンテナ選択部207により変更された他のアンテナの組合せを用いてドナー基地局30からの信号を受信する。受信状況判断部205は、変更された他のアンテナの組合せがドナー基地局30から受信する信号の受信状況を判断する。ステップS5においては、記録部203は、アンテナ選択部207により変更された他のアンテナの組合せにおいて信号を受信した際の信号の受信状況を当該他のアンテナの組合せごとに記録する。
 このように、アンテナ選択部207は、アンテナの組合せの選択を繰り返し行い、受信状況判断部205は、選択又は変更されたアンテナの組合せごとに受信状況を判断し、記録部203は、選択又は変更されたアンテナの組合せごとに、選択又は変更されたアンテナの組合せの受信状況を記録する。
 (ステップS11)
 アンテナ選択部207は、他のアンテナの組合せがないと判断する場合(ステップS7においてNoの場合)、記録部203に記録されたアンテナの組合せごとの受信状況に基づいて、最良の受信状況であったアンテナの組合せをアンテナ群25から選択する。例えば、図4(A)と、図4(B)の四角枠Cと、に示すように、アンテナ選択部207は、ドナー基地局30からの信号の受信信号レベル(受信強度)が高いアンテナ25A、25D、25F、25Hをアンテナ群25から優先的に選択する。
 アンテナ選択部207は、ドナー基地局30に対して信号を送信するためのビームを形成するために、ドナー基地局30からの信号の受信信号レベルが高いアンテナ25A、25D、25F、25Hのうち少なくとも二つ以上をアンテナ群25から選択すればよく、必ずしも、アンテナ25A、25D、25F、25Hの全てを選択する必要はない。
 図4(B)の四角枠Cに示すように、図2に示すビーム形成部209は、選択された複数のアンテナ25A、25D、25F、25Hを用いてドナー基地局30に対して信号を送信するためのビームを形成する。ビーム形成部209は、選択された複数の送信アンテナ25A、25D、25F、25Hごとに重み付けを行い、ビーム形成を行う。
 例えば、LTEのTDD(ime ivision uplex)(時分割複信)方式においては、ドナー基地局30から中継装置20への信号の送信を示すダウンリンク、及び、中継装置20からドナー基地局30への信号の送信を示すアップリンクで同一の周波数を使用する。よって、ダウンリンク通信において、受信信号レベルを判断することによって、アップリンクにおける最適なビーム形成のための複数のアンテナを選択することができ、且つ、当該複数のアンテナそれぞれの重みを推定することができる。
 〔効果〕
 以上説明したように、一実施形態によれば、ドナー基地局30から受信する信号の受信状況に基づいて、ドナー基地局30に対して信号を送信するためのビームを形成する複数のアンテナをアンテナ群25から選択する。よって、中継装置20が端末装置10aとドナー基地局30との間の通信を中継する場合において、中継装置20とドナー基地局30との間の信号の送受信にとって最適なアンテナが選択されるので、信号の送受信が円滑に実施される。したがって、送受信ともに通信品質を向上させることができる。
 〔他の実施形態〕
 上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。
 上記実施形態では、移動体通信に関する通信規格であるLTE規格の移動体通信システムを例示して説明したが、これに限定されず、他の通信規格や将来的に制定される通信規格に対しても本発明を適用可能である。すなわち、中継装置において用いられる受信アンテナ及び送信アンテナによっては、中継装置とドナー基地局との間の信号の所定の通信品質が維持されず、通信システム全体の通信速度や通信の信頼性等を含む通信品質が低下するおそれがあるシステムであれば、本発明を適用可能である。本発明に係る中継方法を適用することによって、中継装置が端末装置とドナー基地局との間の通信を中継する場合において、送受信ともに通信品質を向上させることができるという作用効果が期待できる。
10…端末装置、20…中継装置、22…アクセス・ノード、24…リレー・ノード、25…アンテナ、30…ドナー基地局(マクロセル基地局)、40…第1コアネットワークEPC、50…フェムト・コアネットワーク、60…第2コアネットワークEPC、100…移動体通信システム、201…情報処理部、203…記録部、205…受信状況判断部、207…アンテナ選択部、209…ビーム形成部
 

Claims (3)

  1.  端末装置とマクロセル基地局との間の通信を中継する中継装置であって、
     マクロセル基地局からの信号を受信する選択可能な複数のアンテナで構成されたアンテナ群と、
     前記マクロセル基地局から受信する信号の受信状況に基づいて、当該マクロセル基地局に対して信号を送信するためのビームを形成する複数のアンテナを前記アンテナ群から選択するアンテナ選択部と、
    を備える、
    中継装置。
  2.  前記アンテナ選択部は、前記マクロセル基地局からの信号の受信強度が高いアンテナを前記アンテナ群から優先的に選択する、
     請求項1に記載の中継装置。
  3.  端末装置とマクロセル基地局との間の通信を中継する中継方法であって、
     マクロセル基地局からの信号を選択可能な複数のアンテナで構成されたアンテナ群において受信するステップと、
     前記マクロセル基地局から受信する信号の受信状況に基づいて、当該マクロセル基地局に対して信号を送信するためのビームを形成する複数のアンテナを前記アンテナ群から選択するステップと、
    を含む、
    中継方法。
     
     
     
     
PCT/JP2016/087187 2016-10-20 2016-12-14 中継装置及び中継方法 WO2018073981A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/508,909 US20190372636A1 (en) 2016-10-20 2016-12-14 Relay apparatus and relay method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016205689A JP2018067816A (ja) 2016-10-20 2016-10-20 中継装置及び中継方法
JP2016-205689 2016-10-20

Publications (1)

Publication Number Publication Date
WO2018073981A1 true WO2018073981A1 (ja) 2018-04-26

Family

ID=62019216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087187 WO2018073981A1 (ja) 2016-10-20 2016-12-14 中継装置及び中継方法

Country Status (3)

Country Link
US (1) US20190372636A1 (ja)
JP (1) JP2018067816A (ja)
WO (1) WO2018073981A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6548853B1 (ja) * 2018-10-22 2019-07-24 三菱電機株式会社 無線中継装置および無線通信システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113286366B (zh) * 2020-02-20 2023-03-10 上海华为技术有限公司 波束管理方法,波束管理系统以及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109644A (ja) * 2008-10-30 2010-05-13 Kyocera Corp 無線中継装置および無線中継方法
JP2011061632A (ja) * 2009-09-11 2011-03-24 Sony Corp 中継局装置、基地局装置、移動局装置および無線通信システム
JP2012204893A (ja) * 2011-03-24 2012-10-22 Nec Access Technica Ltd 無線装置及び無線装置の無線干渉軽減方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173406B2 (ja) * 2003-05-29 2008-10-29 京セラ株式会社 無線装置および通信制御方法
JP2014233004A (ja) * 2013-05-29 2014-12-11 京セラ株式会社 中継装置及び通信制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109644A (ja) * 2008-10-30 2010-05-13 Kyocera Corp 無線中継装置および無線中継方法
JP2011061632A (ja) * 2009-09-11 2011-03-24 Sony Corp 中継局装置、基地局装置、移動局装置および無線通信システム
JP2012204893A (ja) * 2011-03-24 2012-10-22 Nec Access Technica Ltd 無線装置及び無線装置の無線干渉軽減方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6548853B1 (ja) * 2018-10-22 2019-07-24 三菱電機株式会社 無線中継装置および無線通信システム
WO2020084672A1 (ja) * 2018-10-22 2020-04-30 三菱電機株式会社 無線中継装置および無線通信システム

Also Published As

Publication number Publication date
US20190372636A1 (en) 2019-12-05
JP2018067816A (ja) 2018-04-26

Similar Documents

Publication Publication Date Title
Xu et al. Opportunistic coexistence of LTE and WiFi for future 5G system: Experimental performance evaluation and analysis
US9918268B2 (en) Communication control device, communication control method, radio communication system, base station, and terminal device
Khandekar et al. LTE-advanced: Heterogeneous networks
JP5427139B2 (ja) 基地局及びセルラ無線通信システム
KR101870832B1 (ko) 무선 통신 시스템에서 제1 기지국 및 제2 기지국을 작동시키는 방법, 무선 통신 시스템의 제1 기지국 및 제2 기지국
KR101871620B1 (ko) 무선 통신 시스템에서 이동국 및 기지국을 작동시키는 방법, 무선 통신 시스템의 이동국 및 기지국
US8849340B2 (en) Methods and devices for reducing interference in an uplink
US8929881B2 (en) Radio communication system, small cell base station, radio terminal, transmission power control method, and allocation control method
EP2566261A2 (en) Small base station and uplink power control method thereof
US20110086641A1 (en) Methods for Enhancing Performance of Open-Access and Closed-Access Femtocells
US8396505B2 (en) Radio communication system, network side device, small cell base station, and transmission power control method
EP2688338B1 (en) Apparatuses, methods and computer programs for a mobile transceiver and a base station transceiver
KR102296164B1 (ko) 무선 통신 시스템에서 안테나 파라미터를 최적화하기 위한 장치 및 방법
US20120134284A1 (en) Methods and Nodes in a Wireless Communication Network
EP2556704A1 (en) Method and arrangement in a wireless network for determining an uplink received power target value
Athanasiadou et al. Automatic location of base-stations for optimum coverage and capacity planning of LTE systems
EP2485543A1 (en) Wireless communication system, large cell base station and communication control method
KR20120049535A (ko) 무선 통신 시스템에서 레인징 신호를 이용한 상향 링크 전력 제어 방법 및 장치
WO2018073981A1 (ja) 中継装置及び中継方法
JP4482058B1 (ja) 無線通信システム、ネットワーク側装置、小セル基地局、送信電力制御方法
WO2018073980A1 (ja) 中継装置及び中継方法
CN103416091B (zh) 用于移动辅助反向链路干扰管理的装置和方法
CN104038986A (zh) 处理基地台的选择的方法及其通信装置
EP2836004A1 (en) Methods and apparatuses for determining a policy for reporting a cell performance indicator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16919344

Country of ref document: EP

Kind code of ref document: A1