WO2018072651A1 - 基于波束的多连接通信方法、终端设备及网络设备 - Google Patents

基于波束的多连接通信方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2018072651A1
WO2018072651A1 PCT/CN2017/106093 CN2017106093W WO2018072651A1 WO 2018072651 A1 WO2018072651 A1 WO 2018072651A1 CN 2017106093 W CN2017106093 W CN 2017106093W WO 2018072651 A1 WO2018072651 A1 WO 2018072651A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
network device
message
beams
information
Prior art date
Application number
PCT/CN2017/106093
Other languages
English (en)
French (fr)
Inventor
唐珣
柴丽
苗金华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17861618.1A priority Critical patent/EP3522664A4/en
Publication of WO2018072651A1 publication Critical patent/WO2018072651A1/zh
Priority to US16/389,443 priority patent/US20190246434A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/022Selective call receivers
    • H04W88/023Selective call receivers with message or information receiving capability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity

Definitions

  • the present invention relates to the field of high frequency wireless communications, and in particular, to a beam-based multi-connection communication method, a terminal device, and a network device.
  • the access network device may be a base station.
  • the transmission receiving point TRP
  • TRP transmission receiving point
  • the prior art uses a beamforming technique (ie, a multi-antenna processing technique) to form a narrow beam using multiple antennas to obtain a beam gain, which compensates for the loss of the path to some extent.
  • a beamforming technique ie, a multi-antenna processing technique
  • the A area is the low frequency coverage
  • the B area is the high frequency coverage
  • the C area is the narrow beam coverage
  • L is the cell boundary covered by the base station; the beam gain is higher due to the narrow beam, thus compensating for the high Frequency path loss.
  • multiple narrow beams need to be used. If each narrow beam has a width of 10°, 36 identical narrow beams will cover the entire cell.
  • the initial beam alignment between the terminal and the base station (ie, the initial beam connection between the terminal and the base station) is first completed by the random access procedure, that is, the terminal searches for a service beam between the terminal and the base station, and the service beam is received by the terminal.
  • the best beam of signal quality in all beams is received by the terminal.
  • the terminal needs to perform beam tracking. That is, the terminal measures the signal quality of all the beams in real time, and reports the measurement result to the base station.
  • the base station determines whether to switch the service beam. If the switch needs to be switched, The terminal is notified by an indication message.
  • the signal propagation path is generally a direct and a reflection path, which is susceptible to obstacles.
  • the service beam is blocked, the data between the terminal and the base station is interrupted.
  • the beam tracking mechanism of the terminal cannot continue to run.
  • the beam alignment can be performed again through the random access procedure, thereby increasing the signaling overhead of the system.
  • the present invention provides a beam-based multi-connection communication method, a terminal device, and a network device.
  • a network device base station
  • the system overhead of re-running beam communication recovery of the terminal device is reduced, and Avoid the interruption of data transmission between the network device and the terminal device, thereby ensuring normal communication between the network device and the terminal device.
  • a beam-based multi-connection communication method When a terminal device uses a first beam to communicate with a network device, the method includes: the terminal device establishes a communication connection with the network device by using the second beam, After reducing the interruption of the single beam communication, the terminal device re-executes the system overhead of beam communication recovery, and avoids the interruption of data transmission between the network device and the terminal device, thereby ensuring normal communication between the network device and the terminal device.
  • the first beam is a beam in the first beam pair
  • the first beam is a beam used by the terminal device
  • the second beam is a beam in the second beam pair
  • the second beam is used by the terminal device.
  • Beam Before the terminal device establishes communication with the network device by using the second beam, the method further includes: the terminal device uses the second beam receiving network device
  • a reference signal transmitted by each of the plurality of beams, the reference signal may be a synchronization signal.
  • the terminal device measures the signal quality of the multiple beams of the network device according to the reference signal, and determines, according to the measurement result, each of the plurality of second beams of the terminal device that matches each of the second beams of the network device.
  • a second beam such as the beam with the best signal quality, determines the second beam pair.
  • the process in which the UE performs measurement on multiple beams of the base station may be periodic to achieve measurement accuracy and real-time performance.
  • the terminal device establishes communication with the network device by using the second beam, specifically: the terminal device sends a random access preamble message to the network device by using the second beam, and the terminal device uses the second beam. And receiving, by the network device, a random access response message sent according to the random access preamble message.
  • the terminal device sends a first message to the network device according to the random access response message and using the second beam, where the first message includes the identifier information of the terminal device and the beam connection establishment request information.
  • the first message may be a MAC CE message or an RRC message, and the identifier information of the UE may be a C-RNTI.
  • the terminal device uses the second beam, and receives the first response message sent by the network device according to the identifier information of the terminal device and the beam connection establishment request information, so that the terminal device establishes a communication connection with the network device.
  • the first response message can include beam connection setup information.
  • the terminal device uses the second beam, and receives the first response message that is sent by the network device according to the identifier information of the terminal device and the beam connection establishment request information, and specifically includes: the terminal device uses the second beam, and the receiving network device uses the identifier information and the beam of the terminal device. Establishing beam connection establishment information for requesting information transmission to instruct the terminal device to establish a communication connection with the network device.
  • the method before the terminal device establishes communication with the network device by using the second beam, the method further includes:
  • the terminal device uses multiple beams to receive reference signals transmitted by multiple beams of the network device, and the reference signal may be a synchronization signal.
  • the terminal device measures the signal quality of the multiple beams of the network device according to the reference signal to obtain attribute information of the multiple beams, such as signal quality information.
  • the terminal device uses the first beam to send a measurement report to the network device, and the measurement report includes a measurement result of the signal quality of the plurality of beams of the network device.
  • the terminal device uses the first beam to receive a second message sent by the network device according to the measurement result, where the second message may be an RRC message, a media access control layer control element message, or a physical downlink control channel command.
  • the second message includes first indication information.
  • the terminal device determines the second beam pair according to the first indication information to ensure high quality of the signal transmitted between the terminal device and the network device.
  • the first indication information includes index information of the second beam of the plurality of beams of the network device, to indicate the second beam determined by the network device, and the terminal device determines the second beam pair according to the first indication information. Specifically, the terminal device determines the second beam pair according to the index information of the second beam.
  • the first indication information further includes instruction information, where the instruction information may include random access resource information
  • the terminal device establishes communication with the network device by using the second beam, specifically: the terminal device according to the instruction
  • the random access resource information in the information and the second beam is used to send a random access preamble message to the network device.
  • the terminal device uses the second beam, and receives the random access response message sent by the network device according to the random access preamble message, where the random access response message includes the second indication information.
  • the terminal device determines to establish a communication connection with the network device according to the second indication information.
  • a beam-based multi-connection communication method in which a communication connection (RRC connection) is not established between a terminal device and a network device, the method includes: the terminal device determines a plurality of first beam pairs, the first beam The first beam comprising the first beam of the terminal device and the network device. The terminal device uses each first beam to set the network The first message is sent, the first message includes the identifier information of the terminal device, and the first message may be an RRC message (such as an RRC request setup message) or a MAC CE message.
  • RRC connection a communication connection
  • the terminal device uses each first beam, receives a second message sent by the network device according to the identification information, and establishes a communication connection with the network device according to the second message, so as to reduce the interruption of the single beam communication, the terminal device resumes beam communication recovery.
  • System overhead and avoiding the interruption of data transmission between the network device and the terminal device, thereby ensuring normal communication between the network device and the terminal device.
  • the terminal device uses each of the first beams to receive a reference signal transmitted by each of the plurality of first beams of the network device.
  • the terminal device measures the signal quality of the plurality of first beams of the network device according to the reference signal, and the measurement process may be periodic to achieve timeliness and accuracy of the measurement result.
  • the terminal device sends a first message to the network device by using the second beam of the terminal device except the first beam, where the first message includes the identifier information of the terminal device and the index information of the first beam.
  • the terminal device uses each of the first beams to receive a second message sent by the network device according to the identification information and the index information of the first beam.
  • the second message is an RRC connection setup message, or the second message is a beam connection setup message.
  • the terminal device uses a plurality of the first beams, and receives a second message sent by the network device according to the identifier information, where the second message may be an RRC message (such as an RRC connection setup message) or a MAC CE message, for the RRC connection setup or
  • the establishing of the beam connection specifically includes: when the network device determines, according to the identifier information, that the working state of the terminal device is an idle state, the terminal device uses a first beam to receive the RRC connection setup message sent by the network device, so that the terminal device and the network device Establishing an RRC connection; or, when the network device determines, according to the identification information, that the working state of the terminal device is the connected state, or when the terminal device is in the idle state, but the network device recognizes that the RRC connection setup message has been sent to the terminal device, the terminal device The plurality of first beams are used to receive a beam connection setup message sent by
  • the terminal device establishes a communication connection with the network device according to the second message, and specifically includes: when the terminal device receives the RRC connection setup message sent by the network device, the terminal device establishes an RRC connection with the network device. Or, when the terminal device receives the beam connection setup message sent by the network device, the terminal device establishes a beam connection with the network device.
  • the method before the terminal device sends the first message to the network device by using the first beam, the method further includes: the terminal device sends the random access preamble message to the network device by using each of the first beams. .
  • the terminal device uses each first beam to receive a random access response message sent by the network device according to the random access preamble message.
  • the terminal device sends a random access preamble message to the network device by using each of the first beams, where the terminal device uses each first beam to send a random preamble access to the network device.
  • the message is used by the terminal device to send a random preamble access message to the network device in turn to implement the transmission timeliness of the terminal device and the network device.
  • a beam-based multi-connection communication method in a case where a network device uses a first beam to communicate with a terminal device, the method includes: the network device establishes a communication connection with the terminal device by using the second beam, To reduce the system overhead of the beam communication recovery after the single beam communication interruption, and to avoid the interruption of data transmission between the network device and the terminal device, thereby ensuring normal communication between the network device and the terminal device.
  • the first beam is a beam in the first beam pair
  • the first beam is a beam used by the network device
  • the second beam is a beam in the second beam pair
  • the second beam is used by the network device. Beam.
  • the method further includes: the network device transmitting the reference signal to the terminal device by using the multiple second beams, so that the terminal device performs signal quality on the multiple second beams Measurements (such as channel estimation) determine the second beam pair to achieve high quality transmission of signals between the terminal device and the network device.
  • the network device transmitting the reference signal to the terminal device by using the multiple second beams, so that the terminal device performs signal quality on the multiple second beams Measurements (such as channel estimation) determine the second beam pair to achieve high quality transmission of signals between the terminal device and the network device.
  • the network device establishes communication with the terminal device by using the second beam, and specifically includes: the network device uses the second beam to receive the random access preamble message sent by the terminal device.
  • the network device sends a random access response message to the terminal device according to the random access preamble message and using the second beam.
  • the network device uses the second beam to receive the first message sent by the terminal device according to the random access response message, where the first message includes the identifier information of the terminal device and the beam connection establishment request information.
  • the first message may be a MAC CE message or an RRC message, and the identifier information of the UE may be a C-RNTI.
  • the network device sends the first response message to the terminal device according to the identification information of the terminal device and the beam connection establishment request information, and uses the second beam, so that the network device establishes a communication connection with the terminal device by using the second beam.
  • the first response message may include beam connection setup information
  • the network device sends the first response message to the terminal device according to the identifier information of the terminal device and the beam connection establishment request information
  • the second device includes: the network device establishes the request information according to the identifier information of the terminal device and the beam connection, and uses the second The beam transmits beam connection establishment information to the terminal device.
  • the first response message may further include beam connection establishment rejection information or RRC establishment confirmation information.
  • the method before the network device establishes communication with the terminal device by using the second beam, the method further includes: the network device uses the multiple beams to send the reference signal to the terminal device, so that the terminal device has more network devices.
  • the signal quality of the beams is measured.
  • the network device uses the first beam to receive a measurement report sent by the terminal device, and the measurement report includes a measurement result of signal quality of multiple beams in multiple beams of the network device.
  • the network device After determining the second beam according to the measurement result, the network device sends the second message to the terminal device by using the first beam, where the second message includes the first indication information, so that the terminal device determines the second beam pair according to the first indication information.
  • the first indication information includes index information of the second beam of the network device, so that the terminal device determines the second beam pair according to the index information.
  • the first indication information further includes instruction information.
  • the instruction information may include random access resource information.
  • the network device establishes communication with the terminal device by using the second beam, and specifically includes: the network device uses the second beam, and receives the random access preamble message sent by the terminal device according to the random access resource information in the instruction information.
  • the network device sends a random access response message to the terminal device according to the random access preamble message and using the second beam, where the random access response message includes the second indication information, so that the terminal device determines to establish the network device according to the second indication information. Communication connection.
  • the fourth aspect provides a beam-based multi-connection communication method, where a communication connection (RRC connection) is not established between the terminal device and the network device, and the method includes:
  • the network device receives the first message that is sent by the terminal device after determining the multiple first beam pairs.
  • the first message may be an RRC message (such as an RRC request setup message) or a MAC CE message, where the first message includes the identifier information of the terminal device.
  • the network device sends a second message to the terminal device according to the identification information of the terminal device, so that the terminal device establishes a communication connection with the network device according to the second message, so as to reduce the system for resuming beam communication recovery after the single beam communication is interrupted. Overhead, and avoid the interruption of data transmission between network devices and terminal devices, thus ensuring network design Prepare normal communication with the terminal device.
  • the network device receives the first message sent by the terminal device after determining the multiple first beam pairs, specifically: the network device uses the first beam of the network device, and the receiving terminal device determines the plurality of first The first message sent by the pair of beams, the first beam of the network device is the beam in the first beam pair.
  • the method further includes: the network device uses the second beam of the network device, and receives the first message sent by the terminal device after determining the multiple first beam pairs, where the first message includes the identifier information of the terminal device. And the index information of the first beam of the terminal device in the first beam pair, the second beam of the network device is a beam other than the first beam; the network device sends the second message to the terminal device according to the identifier information of the terminal device, specifically including The network device sends a second message to the terminal device according to the identifier information of the terminal device and the index information of the first beam of the terminal device, so as to achieve flexibility of the multi-beam connection.
  • the second message may be an RRC message (such as an RRC Connection Setup message) or a MAC CE message, and the second message is used for RRC connection setup or beam connection setup.
  • the network device sends the second message to the terminal device according to the identifier information and using the multiple first beams, and specifically includes: when the network device determines, according to the identifier information, that the working state of the terminal device is an idle state, the network device uses a first beam to The terminal device sends an RRC connection setup message to enable the terminal device to establish an RRC connection with the network device.
  • the network device uses multiple The first beam sends a beam connection setup message to the terminal device, so that the terminal device establishes multiple beam connections with the network device.
  • the network device can identify the second beam of the network device according to the connection criterion of the network device.
  • the criterion may include ensuring that the signal quality is higher than a preset threshold, and/or the determined second beam does not belong to the same TRP as the first beam of the network device in the first communication connection (RRC connection), thereby ensuring good beam connection.
  • the signal quality can also avoid the phenomenon of signal synchronization caused by the same TRP, such as synchronous attenuation.
  • the network device uses a plurality of first beams, and before receiving the first message sent by the terminal device, the method further includes: the network device uses the multiple first beams, and receives the random preamble sent by the terminal device. Enter the message. The network device sends a random access response message to the terminal device according to the random access preamble message and using the plurality of first beams.
  • the network device uses the multiple first beams to receive the random access preamble message sent by the terminal device, and specifically includes: the network device uses multiple first beams, and simultaneously receives the random preamble sent by the terminal device. The access message is used; or the network device uses multiple first beams to receive the random preamble access message sent by the terminal device in order to implement the transmission timeliness of the terminal device and the network device.
  • a terminal device having a function of implementing the behavior of the terminal device in the method of the first aspect described above.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may further include a storage unit for storing instruction information and data information for the terminal device to communicate with the network device.
  • a terminal device having a function of implementing the behavior of the terminal device in the method of the second aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the terminal device may further include a storage unit for storing instruction information and data information for the terminal device to communicate with the network device.
  • a network device having a function of implementing the behavior of the network device in the method of the fourth aspect above.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device may further include a storage unit for storing instruction information and data information that the terminal device communicates with the network device.
  • a network device having a function of implementing the behavior of the network device in the method of the fifth aspect.
  • This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the network device may further include a storage unit for storing instruction information and data information that the terminal device communicates with the network device.
  • FIG. 1 is a schematic diagram of coverage of a base station in different frequency bands
  • FIG. 2 is a schematic diagram of multi-beam connection of a terminal according to an embodiment of the present invention.
  • 3A is a schematic diagram of a topology structure of an LTE communication system in the prior art
  • 3B is a schematic diagram of a topology structure of a 5G communication system in the prior art
  • FIG. 4 is a schematic diagram of a scanning process of an uplink beam and a downlink beam performed by a base station side in the prior art
  • FIG. 5 is a random access process of a terminal and a base station in the prior art
  • FIG. 6 is a signaling interaction diagram of a beam-based multi-connection communication method according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a MAC CE subheader according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a MAC CE payload part according to an embodiment of the present disclosure.
  • FIG. 9 is a signaling interaction diagram of another beam-based multi-connection communication method according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a random access response message according to an embodiment of the present disclosure.
  • FIG. 11 is a signaling interaction diagram of still another beam-based multi-connection communication method according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of still another terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of still another base station according to an embodiment of the present invention.
  • the beam communication method provided by the present invention is applied to a cellular communication network of a high frequency wireless communication scenario.
  • the techniques described in this disclosure may be applicable to Long Term Evolution (LTE) systems, or other wireless communication systems employing various radio access technologies, such as using code division multiple access, frequency division multiple access, time division multiple access. , Orthogonal Frequency Division Multiple Access, single carrier frequency division multiple access and other access technology systems.
  • LTE Long Term Evolution
  • OFD Orthogonal Frequency Division Multiple Access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • it can also be applied to the subsequent evolution system using the LTE system, such as the fifth generation 5G system or the new air (NR) system.
  • the terminal device to which the present invention relates may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices (WD), computing devices, or other processing devices connected to the wireless modem, and various Form of user equipment (English: user equipment, UE), mobile station (English: mobile station, MS), terminal (terminal), terminal equipment (English: terminal equipment) and so on.
  • the base station (BS) involved in the present invention is a network device deployed in a radio access network to provide a wireless communication function for a terminal.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like.
  • the name of a device having a base station function may be different, for example, in an LTE network, called an evolved Node B (English: evolved NodeB, eNB or eNodeB), in the first In the 5th generation 5G or NR network, it is called a new air node (English: new radio NodeB, NR-NB) and so on.
  • an evolved Node B English: evolved NodeB, eNB or eNodeB
  • a new air node English: new radio NodeB, NR-NB
  • the foregoing terminal devices in the present invention may be collectively referred to as a UE, and the foregoing network devices that provide wireless communication functions for the UE may be collectively referred to as a base station.
  • the eNB is used to expand the coverage by forming a narrow beam in the downlink direction, and can also receive signals in different directions through different beams in the uplink direction.
  • the eNB can support the transmission and reception of data using two or more beams at any one time.
  • the TRP is used to expand the coverage by forming a narrow beam in the downlink direction, and can also receive signals in different directions through different beams in the uplink direction.
  • the UE is configured to determine available beams by searching for reference information (such as a synchronization signal, or a pilot signal) sent by the eNB/TRP, and feed back the selection result to the eNB/TRP. Meanwhile, if multiple antennas are deployed on the UE side, a plurality of transmit and receive beams may be formed on the UE side using beamforming transmission and reception techniques. As shown in FIG. 2, the UE may communicate with multiple TRPs (such as TRP1 and TRP2) through multiple beams, or may communicate with one TRP (such as TRP1 or TRP2) through multiple beams. The UE can support the transmission and reception of data using two or more beams at any one time.
  • TRPs such as TRP1 and TRP2
  • TRP1 or TRP2 may communicate with one TRP (such as TRP1 or TRP2) through multiple beams.
  • the UE can support the transmission and reception of data using two or more beams at any one time.
  • the eNB there is at least one eNB under the control of a mobility management entity (MME), and there are multiple cells under each eNB, and the eNB can be used in each cell. Multiple transmit beams complete cell coverage to communicate with the UE.
  • MME mobility management entity
  • each TRP can form multiple beams, and TRP can use multiple transmissions in each cell.
  • the beam completes cell coverage to communicate with the UE.
  • the base station may perform time division/frequency division/wave division or The combination method is used to transmit or receive data.
  • the length of time used by each beam can be set separately, and can be one or more subframes, or one or more symbols.
  • the base station can complete coverage of the entire cell by means of time division multiplexing.
  • the base station has 8 beams, and the 8 beams are respectively identified by digital symbols 0-7; the horizontal axis is time axis, at time.
  • At least one uplink receiving subframe (English: uplink, UL) and at least one downlink receiving subframe (English: downlink, DL) on the axis; the beam represented by each digital symbol is sent to the UE in time, and each number The time period A to time period G occupied by the beam represented by the symbol is the same.
  • each symbol receives only data in the corresponding beam direction on a single uplink receiving subframe.
  • each symbol transmits only data in the corresponding beam direction on a single downlink transmission subframe.
  • the terminal UE uses the second beam to establish a beam communication connection with the base station, thereby establishing a multi-beam connection between the UE and the base station.
  • the terminal UE communicates with the base station by using the second beam in the second beam pair, where the first beam pair includes the terminal UE.
  • the second beam pair includes a second beam of the terminal UE and a second beam of the base station.
  • the communication connection may be a Radio Resource Control (RRC) connection established between the UE and the base station.
  • RRC Radio Resource Control
  • the process in which the terminal UE establishes a communication connection with the base station by using the first beam may be a random access procedure.
  • FIG. 5 is a signaling interaction diagram of a beam-based multi-connection communication method according to an embodiment of the present invention. As shown in FIG. 5, the method may include:
  • Step 510 The base station sends a reference signal to the UE by using multiple beams.
  • the reference signal may be a synchronization signal, and the synchronization signal is used by the UE to acquire downlink synchronization.
  • the indication message of the base station for example, the uplink resource allocated to the UE for transmitting data or control signaling, may be correctly obtained.
  • the base station sends a synchronization signal to the UE through multiple transmission beams, that is, one transmission beam transmits one synchronization signal, and the synchronization signals transmitted by each transmission beam may be the same or different.
  • each beam can also have a separate reference signal dedicated to channel estimation.
  • Step 520 The UE measures a reference signal of multiple beam transmissions of the base station, and determines a first beam pair.
  • the first beam pair includes a first transmit beam of the UE and a first receive beam of the base station.
  • the UE uses a plurality of local receiving beams to perform signal quality measurement on the reference signals transmitted by the multiple transmit beams sent by the base station, and selects a first transmit beam with the best signal quality as the transmit beam, and in multiple receive beams of the UE. A first receive beam with the best signal quality is selected as the receive beam.
  • the UE determines the first beam pair, which includes the first transmit beam of the UE and the first receive beam of the base station, and the reference signal obtained by using the beam pair has the best quality, that is, the optimal beam pair.
  • the signal quality can be measured by the reference signal receiving power (RSRP) of each beam or the reference signal receiving quality (RSRQ).
  • the optimal transmit beam of the UE forms an optimal uplink beam pair with the optimal receive beam of the base station; the optimal receive beam of the UE forms an optimal downlink beam pair with the optimal transmit beam of the base station.
  • the optimal uplink beam pair and the optimal downlink beam pair may be the same beam pair or different beam pairs.
  • the optimal uplink beam pair and the optimal downlink beam pair are the same beam pair.
  • the optimal uplink beam pair and the optimal downlink beam pair are different beam pairs, that is, the downlink optimal beam pair and the uplink optimal beam pair belonging to one beam connection are not the same pair of beams, and the uplink optimal beam is used.
  • the determination process of the pair can also be implemented in the random access process, and the present invention will not be described in detail.
  • channel reciprocity can be applied by default, and the scenario in which channel reciprocity cannot be applied has no substantial impact on the present invention and will not be described again.
  • Step 530 At the receiving moment of the first beam of the base station, the first uplink beam that the UE passes sends a random access preamble message to the base station.
  • the UE Before the step 530 is performed, after the UE completes the downlink synchronization and receives the system message sent by the base station to obtain the cell random access resource configuration, the UE randomly selects a preamble on any random access time-frequency resource.
  • the UE sends a random access preamble message to the base station through the first beam of the UE at the receiving moment of the first beam of the base station.
  • Step 540 The base station sends a random access response message to the UE by using the first beam at a sending moment of the first beam of the base station.
  • the base station Before performing step 540, the base station calculates a corresponding timing advance (TA) value according to the received random access preamble.
  • TA timing advance
  • the base station sends a random access response message to the base station by using the first beam, and the random access response message may include a TA value and an uplink grant permission (English: uplink grant, UL-Grant).
  • the TA value is used to implement UL synchronization
  • the UL-Grant is used to indicate UL transmission data of the UE.
  • Step 550 The first message sent by the UE sends a first message to the base station at the time of receiving the first beam of the base station, where the first message may include the identifier information of the UE.
  • the first message may be an RRC connection setup request message; the identifier information of the UE may be a Cell-Radio Network Temporary Identifier (C-RNTI).
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the UE sends an RRC connection setup request message to the base station according to the received resource indication and the TA value of the UL-Grant, and the identifier information of the UE may be included in the message, so that the base station identifies the UE.
  • the first message may include different content according to different downlink channel scenarios.
  • a beam connection establishment request For example, a beam connection establishment request, an RRC connection establishment request, or a reconstruction request.
  • Step 560 At the sending moment of the first beam of the base station, the base station sends a response message of the first message to the base station by using the first beam to establish a communication connection.
  • the response message of the first message may be an RRC connection setup acknowledgement message. After the UE receives the RRC connection setup acknowledgement message, the UE completes the establishment of the RRC connection with the base station.
  • the response message of the first message may include different content according to different uplink channel scenarios, or include different information according to different content of the first message.
  • the UE may send the maximum connection threshold of the UE to the base station, that is, the maximum number of beam connections that the UE can support.
  • the maximum connection threshold of the UE may be used as a reference value for the base station to determine whether the UE can also perform beam connection, or may be used as a reference value for the base station to determine whether the UE can perform beam connection replacement.
  • both the UE and the base station select to send the command information at the receiving time of the opposite beam.
  • FIG. 6 is a signaling interaction diagram of a beam-based multi-connection communication method according to an embodiment of the present invention, as shown in FIG. 6
  • the method can include:
  • Step 610 The base station sends a reference signal to the terminal UE by using each of the plurality of second beams.
  • the second beam of the base station refers to other beams than the first beam of the base station in the first beam pair.
  • the reference signal is used by the terminal UE for channel estimation.
  • Step 620 The terminal UE measures the signal quality of the multiple second beams of the base station according to the reference signal, and determines the second beam pair.
  • the terminal UE receives the reference signal using a plurality of second beams.
  • the UE performs channel estimation on the plurality of second beams by receiving the reference signals sent by each of the plurality of second beams of the base station, and acquires attribute information, such as signal quality information, of the plurality of second beams.
  • the terminal UE measures the signal quality of the multiple second beams of the base station according to the attribute information, and acquires the measurement result.
  • the UE determines, according to the measurement result, each second beam that matches each second beam of the base station from among the plurality of second beams of the UE.
  • the process of the UE performing measurement on multiple beams of the base station may be periodic or triggered by the base station.
  • the UE performs periodic measurement on multiple beams of the base station, in consideration of the accuracy and real-time performance of the measurement.
  • the terminal UE may determine the first beam pair by other means, which is not limited herein.
  • Step 630 The terminal UE sends a random access preamble message to the base station by using the second beam.
  • Step 640 The base station sends a random access response message to the terminal UE according to the random access preamble message and using the second beam.
  • Step 650 The terminal UE sends a first message to the base station according to the random access response message and using the second beam, where the first message may include the identifier information of the terminal UE and the beam setup request information.
  • the first message may be a MAC CE message or an RRC message, and the identifier information of the UE may be a C-RNTI.
  • the MAC CE message when the first message is a MAC CE message, the MAC CE message includes a message subheader and a payload part, and the UE may indicate the beam by reconfiguring a value of a logical channel identifier (LCID) in the MAC CE subheader structure.
  • LCID logical channel identifier
  • Information such as request establishment, beam setup confirmation, or beam setup rejection; the UE may also indicate information such as beam setup request, beam setup acknowledgement, or beam setup rejection by reconfiguring the payload structure of the MAC CE message.
  • the structure of the MAC CE subheader may include a reserved bit R field of one bit, an F2 field of one bit, an E field of one bit, and an LCID field of 5 bits.
  • F2 is a format field for indicating the length of the length field
  • E is an extension field
  • the extension field is a flag bit indicating whether there are other domains in the MAC header.
  • the UE may indicate information such as a beam setup request, a beam setup confirmation, or a beam setup rejection by selecting a value of the LCID corresponding to each index in the index value 01011-11000, and the specific correspondence is specified by the protocol.
  • the structure of the MAC CE payload portion may include two bits of reserved R bits and a newly added six-bit beam index bit.
  • the UE may indicate information such as a beam setup request, a beam setup acknowledgement, or a beam setup reject by increasing or decreasing the number of R bits; the beam index bit indicates a beam index to be connected.
  • the number of R bits of the MAC CE payload portion may be any number from 0 to 7. For example, if the R bit is 2 bits (ie, 2 bits), the beam index bit is 6 bits.
  • configuration process of the indication information may be the process shown in FIG. 7 and FIG. 8 above, or may be Other configuration procedures are required for the design, and the present invention is not limited herein.
  • the UE may carry the indication information in the RRC message, where the indication information is used to indicate information such as a beam connection establishment request, a beam connection establishment confirmation, or a beam connection establishment rejection.
  • Step 660 The base station sends a first response message to the UE according to the identifier information of the UE and the beam connection establishment request information, and uses the second beam to establish a second beam connection between the UE and the base station.
  • the first response message may include beam connection establishment confirmation information, beam connection establishment rejection information, or RRC establishment confirmation information.
  • the base station determines, according to the identity information of the UE, whether the UE has established an RRC connection with the base station.
  • the first response message sent by the base station to the UE includes beam setup request information, to indicate that the UE establishes an RRC connection with the base station.
  • the base station further identifies the second beam of the base station.
  • the base station may identify the second beam of the base station according to the connection criterion of the base station, and the criterion may include ensuring that the signal quality is higher than a preset threshold, and/or determining the second beam and the base station in the first communication connection (RRC connection)
  • the first beam does not belong to the same TRP, thus ensuring good signal quality after beam connection, and avoiding signal synchronization changes caused by the same TRP, such as synchronous attenuation.
  • the base station when the second beam is not the same TRP as the first beam in the first beam connection, the base station sends a first response message to the UE to indicate that the UE establishes a second beam connection with the base station;
  • the base station When the first beam of the second beam and the first beam connection (RRC connection) is the same TRP, the base station sends a first response message to the UE to indicate that the beam connection is established.
  • connection criterion of the base station may further include other types of information, such as attribute information of the UE, such as a maximum connection threshold of the UE. If the beam connection of the UE reaches the maximum connection threshold, the base station may choose to refuse to establish a new beam connection; or may choose to add a new beam connection by deleting the existing beam connection. If the beam connection of the UE does not reach the maximum connection threshold, the base station may choose to confirm the establishment of a new beam connection.
  • the foregoing method of the embodiment of the present invention is based on the fact that the terminal has established a communication connection (RRC connection) with the base station, and then the terminal UE triggers and establishes another multi-beam communication connection through the random access procedure.
  • RRC connection a communication connection
  • FIG. 9 is a signaling interaction diagram of another beam-based multi-connection communication method according to an embodiment of the present invention. As shown in FIG. 9, the method may include:
  • Step 910 The base station uses multiple beams to send a reference signal to the terminal UE.
  • the reference signal may be a synchronization signal, and the synchronization signal is used by the UE to acquire downlink synchronization.
  • the indication message of the base station for example, the uplink resource allocated to the UE for transmitting data or control signaling, may be correctly obtained.
  • the base station sends a synchronization signal to the UE through multiple transmission beams, that is, one transmission beam transmits one synchronization signal, and the synchronization signals transmitted by each transmission beam may be the same or different.
  • each beam can also have a separate reference signal dedicated to channel estimation.
  • Step 920 The terminal UE measures the signal quality of the multiple beams of the base station according to the reference signal.
  • the UE performs channel estimation on multiple beams by receiving reference signals transmitted by each of the plurality of beams of the base station, and acquires attribute information of multiple beams, such as signal quality information.
  • the terminal UE measures the signal quality of multiple beams of the base station according to the attribute information, and acquires the measurement result.
  • the process of the UE performing measurement on multiple beams of the base station may be periodic or triggered by the base station.
  • the UE performs periodic measurement on multiple beams of the base station, in consideration of the accuracy and real-time performance of the measurement.
  • Step 930 The terminal UE sends a measurement report to the base station by using the first beam, where the measurement report includes a measurement result of signal quality of multiple beams of the base station.
  • Step 940 The base station determines the second beam according to the measurement result.
  • the base station selects one beam from the other beams except the first beam as the second beam according to the measurement result measured by the terminal UE and according to a certain connection criterion.
  • the criterion may include ensuring that the signal quality of the beam is higher than a preset threshold, and/or determining that the second beam does not belong to the same TRP as the first beam of the base station in the first communication connection (RRC connection), thereby ensuring beam connection.
  • Good signal quality can also avoid signal synchronization changes caused by the same TRP, such as synchronous attenuation.
  • the terminal UE may determine the first beam pair by other means, and is not limited to the foregoing steps 910-step 940, which is not limited herein.
  • Step 950 The base station sends a first message to the terminal UE by using the first beam, where the first message includes first indication information.
  • the base station determines the second beam (the beam with better signal quality) according to the measurement result
  • the first message is sent to the UE, and the first message may include the first indication information.
  • the first message may be an RRC message (such as an RRC reconfiguration message (English: RRCConnectionReconfiguration)), a Media Access Control (MAC) layer control element (English: Media Access Control Control Element, MAC CE) message, or a physical downlink.
  • RRC message such as an RRC reconfiguration message (English: RRCConnectionReconfiguration)
  • MAC Media Access Control
  • MAC CE Media Access Control Element
  • PDCCH order Physical downlink control channel order
  • the base station when the first message is an RRC message, the base station carries the dedicated configuration information (English: rach-configdedicated) of the random access channel in the RRC message to indicate the dedicated random access preamble resource, and adds the first indication information
  • the first indication information may include instruction information such as beam setup request information.
  • the first indication information may further include index information of the second beam of the base station.
  • the MAC CE message when the first message is a MAC CE message, the MAC CE message includes a message subheader and a payload part, and the base station may indicate a dedicated random access preamble resource and a beam by configuring a value of a logical channel identifier (LCID).
  • the base station may also indicate the index information of the second beam of the base station by changing the field structure of the MAC CE payload part.
  • configuration process of the first indication information may be referred to the process shown in FIG. 7 and FIG. 8 , and other configuration processes may be adopted according to the design requirements, and the present invention is not limited herein.
  • the base station may indicate the second beam index of the base station by increasing the number of bits of the digital copyright unique identifier (DCI) in the PDCCH order message.
  • DCI digital copyright unique identifier
  • Table 1 is a comparison table between a beam index and a beam measurement sequence index according to an embodiment of the present invention.
  • the last time the UE reports the measurement result of the base station which includes 4 beams.
  • the order of the 4 beams in the measurement report is ⁇ beam 5, beam 3, beam 10, beam 8 ⁇ , if the base station indicates the beam index. If it is 0, the target receiving beam of the base station is beam 5. If the indicated beam index is 2, the target receiving beam of the base station is beam 10.
  • the first message may further include index information of the second beam, so that the UE determines to match the second beam of the base station.
  • the second beam may be used to indicate whether the base station sends the first message to the UE by using a transmit beam other than the selected second beam.
  • Step 960 The terminal UE determines the second beam pair according to the first indication information.
  • the terminal UE When the base station sends the first message to the terminal by using the second beam, the terminal UE identifies the second beam of the base station, and selects a second beam that matches the second beam of the base station from other beams except the first beam, thereby determining the first Two beam pairs.
  • the terminal UE determines the base station according to the first indication information in the first message, such as the index information of the second beam.
  • the second beam matches the second beam to determine the second beam pair.
  • Step 970 The terminal UE sends a random access preamble message to the base station.
  • the second message may further include instruction information, so that the UE generates a random access preamble message to the base station, thereby performing a random access procedure.
  • the instruction information may include random access resource information.
  • the terminal UE sends a random access preamble message to the base station according to the instruction information.
  • Step 980 The random access response message sent by the base station to the terminal UE according to the random access preamble message and using the second beam, where the random access response message includes the second indication information.
  • the second indication information may be used to indicate that the beam setup is successful.
  • the random access response message may be an RRC response message, a MAC CE response message, or a PDCCH order response message.
  • the base station may indicate by using a radio network temporary identifier (RNTI) in the random access response message.
  • RNTI radio network temporary identifier
  • the message body of the random access response message may include an R domain, a TA domain, a UL-Grant domain, and a Temporary Cell Radio Network Temporary Identifier (Temp C-RNTI) domain.
  • the Temp C-RNTI indicates the temporary C-RNTI used by the UE in the random access procedure.
  • the base station may indicate that the beam setup is successful by setting all the bits in at least one of the UL-Grant domain and the Temp C-RNTI domain to a certain value (for example, setting all the bits to 0). .
  • the base station may also set a plurality of bits in the UL-Grant domain and/or the Temp C-RNTI domain to a specific combination. According to the actual design requirements, the specific configuration process and manner of the message body in the random access response message by the base station are not limited herein.
  • the base station may also indicate by the information indicated by the C-RNTI, that is, the indication information may include the TA and the indication beam establishment success information.
  • Step 990 The terminal UE determines, according to the second indication information, that a communication connection is established with the base station, to implement the terminal UE and Multi-beam connection of the base station.
  • the foregoing method of the embodiment of the present invention is based on the fact that the terminal has established a communication connection (RRC connection) with the base station, and then the base station triggers and establishes another multi-beam communication connection according to the measurement result of the terminal UE and through the random access procedure.
  • RRC connection a communication connection
  • the UE and the base station can perform multi-connection communication of the beam by the method of the following embodiment.
  • Figure 11 is a signaling interaction diagram of another beam-based multi-connection communication method according to an embodiment of the present invention. As shown in Figure 11, the method may include:
  • Step 1110 The base station sends a reference signal to the terminal UE by using multiple first beams.
  • the reference signal is used by the terminal UE for channel estimation.
  • Step 1120 The terminal UE measures the signal quality of the multiple first beams of the base station according to the reference signal.
  • the terminal UE receives the reference signal using a plurality of first beams.
  • the UE performs channel estimation on the plurality of first beams by receiving a reference signal sent by each of the plurality of first beams of the base station, and acquires attribute information of the multiple first beams, such as signal quality information.
  • the terminal UE measures the signal quality of the multiple first beams of the base station according to the attribute information of the first beam, and acquires the measurement result.
  • the process of the UE performing measurement on multiple beams of the base station may be periodic or triggered by the base station.
  • the UE performs periodic measurement on multiple beams of the base station, in consideration of the accuracy and real-time performance of the measurement.
  • Step 1130 The terminal UE determines multiple first beam pairs according to the measurement result.
  • the first beam pair includes a first beam of the terminal UE and a first beam of the base station.
  • the terminal UE may determine the multiple first beam pairs by other means, and is not limited to the foregoing steps 1110 to 1130.
  • the embodiment of the present invention is not limited herein.
  • Step 1140 The terminal UE sends a first message to the base station by using each first beam, where the first message may include the identifier information of the terminal UE.
  • the first message may be an RRC message (such as an RRC request setup message), or a MAC CE message.
  • the UE before the UE sends the first message to the base station by using each first beam,
  • Step 1141 the UE uses each first beam.
  • a random access preamble message is sent to the base station.
  • Step 1142 The base station sends a random access response message to the UE according to the random access preamble message and using each first beam.
  • the UE uses each first beam to transmit an RRC message or a MAC CE message carrying the identity information of the UE to the base station.
  • Step 1143 The base station sends a second message to the UE according to the identifier information of the UE and using each first beam.
  • the second message may be an RRC message (such as an RRC Connection Setup message) or a MAC CE response message, and the second message is used for RRC connection setup or beam connection setup.
  • RRC message such as an RRC Connection Setup message
  • MAC CE response message a message that is used for RRC connection setup or beam connection setup.
  • the UE When the base station determines, according to the identifier information of the UE, that the working state of the UE is an idle state, the UE receives an RRC connection setup message sent by the base station; or
  • the UE receives the beam connection setup message sent by the base station.
  • Step 1144 The UE establishes a communication connection with the base station according to the second message.
  • the terminal UE When the terminal UE receives the RRC connection setup message sent by the base station, the terminal UE establishes an RRC connection with the base station; or
  • the terminal UE When the terminal UE receives the beam connection setup message sent by the base station, the terminal UE establishes a beam connection with the base station.
  • the foregoing method of the embodiment of the present invention is based on the fact that the terminal does not establish a communication connection (RRC connection) with the base station, that is, when the terminal UE is in an idle state, the terminal initiates multiple random access procedures, that is, the previous random process does not need to be completed. The next random access procedure is initiated, and the base station instructs the terminal to establish an RRC connection and a multi-beam establishing connection according to the connection state of the terminal.
  • RRC connection communication connection
  • the beam-based multi-connection communication method provided by the foregoing embodiment may establish, after the UE establishes an RRC connection with the terminal, establish at least one beam connection by using a random access procedure triggered by the base station or the UE, or when the UE and the terminal do not establish an RRC connection.
  • the establishment of at least one beam connection is completed as the random access procedure proceeds.
  • the multi-beam connection can reduce the system overhead of the UE to resume beam communication recovery after the single beam communication is interrupted, and avoid the phenomenon that the data transmission between the base station and the UE is interrupted, thereby ensuring normal communication between the base station and the UE.
  • the embodiment of the present invention further provides a terminal, where the terminal uses a first beam to communicate with the network device.
  • the terminal may include a processing unit 1210, a receiving unit 1220, and a transmitting unit 1230.
  • the processing unit 1210 is configured to establish a communication connection with the base station by using the second beam.
  • the receiving unit 1220 is configured to receive, by using the multiple second beams, a reference signal sent by each of the multiple beams of the base station.
  • the processing unit 1210 is further configured to measure signal quality of multiple beams of the base station according to the reference signal, and determine the second beam pair according to the measurement result.
  • the first beam is a beam in a first beam pair
  • the first beam is a beam used by the terminal
  • the second beam is a beam in a second beam pair
  • the second beam is a beam used by the terminal.
  • the sending unit 1230 is configured to send a random access preamble message to the base station by using the second beam.
  • the receiving unit 1220 is configured to receive, by using the second beam, a random access response message sent by the base station according to the random access preamble message.
  • the sending unit 1230 is further configured to send, according to the random access response message and using the second beam, a first message to the base station, where the first message includes identifier information of the base station and beam connection establishment request information.
  • the receiving unit 1220 is further configured to receive, by using the second beam, a first response message sent by the base station according to the identifier information of the terminal and the beam connection establishment request information, so that the terminal establishes a communication connection with the base station.
  • the first response message includes beam connection setup information.
  • the receiving unit 1220 is specifically configured to use the second beam to receive beam connection establishment information that is sent by the base station according to the identifier information of the terminal and the beam setup request information, to indicate that the terminal establishes a communication connection with the base station.
  • the receiving unit 1220 is further configured to receive, by using multiple local beams, a reference signal sent by multiple beams of the base station.
  • the processing unit 1210 is further configured to measure signal quality of multiple beams of the base station according to the reference signal.
  • the sending unit 1230 is further configured to send, by using the first beam, a measurement report to the base station, where the measurement report includes a measurement result of signal quality of multiple beams of the base station.
  • the receiving unit 1220 is further configured to receive, by using the first beam, a second message sent by the base station according to the measurement result, where The message includes first indication information;
  • the processing unit 1210 is further configured to determine the second beam pair according to the first indication information.
  • the first indication information includes index information of the second beam of the multiple beams of the base station, where
  • the processing unit 1210 is specifically configured to determine a second beam pair according to the index information of the second beam.
  • the first indication information further includes instruction information
  • the sending unit 1230 is further configured to send a random access preamble message to the base station according to the instruction information and using the second beam.
  • the receiving unit 1220 is further configured to receive, by using the second beam, a random access response message sent by the base station according to the random access preamble message, where the random access response message includes second indication information.
  • the processing unit 1210 is further configured to determine, according to the second indication information, that a communication connection is established with the network device.
  • the embodiment of the present invention further provides another terminal, where the terminal is in an idle state, corresponding to the beam-based multi-connection communication.
  • the terminal may include: a receiving unit 1310, a processing unit 1320, and a transmitting unit 1330.
  • the processing unit 1320 is configured to determine a plurality of first beam pairs, where the first beam pair includes a first beam of the terminal device and a first beam of the base station;
  • the sending unit 1330 is configured to send, by using each first beam, a first message to the base station, where the first message includes identifier information of the terminal.
  • the receiving unit 1310 is further configured to receive, by using each of the first beams, a second message that is sent by the base station according to the identifier information.
  • the processing unit 1320 is further configured to establish a communication connection with the base station according to the second message.
  • the receiving unit 1310 is further configured to receive, by using each beam of the terminal, a reference signal sent by each of the multiple beams of the base station;
  • the processing unit 1320 is specifically configured to determine multiple first beam pairs according to the reference signal.
  • the sending unit 1330 is further configured to send, by using a second beam of the terminal other than the first beam, a first message, where the first message includes the identifier information of the terminal and the index information of the first beam;
  • the receiving unit 1310 is further configured to receive, by using each of the first beams, a second message that is sent by the base station according to the identifier information and the index information of the first beam.
  • the second message is an RRC connection setup message, or the second message is a beam connection setup message.
  • the receiving unit 1310 is specifically configured to: when the processing unit 1320 determines, according to the identifier information, that the working state of the terminal is an idle state, the receiving unit 1310 uses a first beam to receive an RRC connection setup message sent by the base station, so that the processing unit 1320 establishes with the base station. RRC connection; or,
  • the processing unit 1320 determines that the working state of the terminal is the connected state according to the identification information
  • the receiving unit 1310 uses the multiple first beams to receive the beam connection setup message sent by the base station, so that the processing unit 1320 establishes multiple beam connections with the base station.
  • the processing unit 1320 when the receiving unit 1310 receives the RRC connection setup message sent by the base station, the processing unit 1320 establishes an RRC connection with the base station; or
  • the processing unit When the receiving unit 1310 receives the beam connection setup message sent by the base station, the processing unit establishes a beam connection with the base station. Pick up.
  • the sending unit 1330 uses each first beam before sending the first message to the base station.
  • the sending unit 1330 is further configured to send a random access preamble message to the base station by using each of the first beams.
  • the receiving unit 1310 is further configured to receive, by using each of the first beams, a random access response message sent by the base station according to the random access preamble message.
  • the sending unit 1330 is specifically configured to use each first beam to simultaneously send a random preamble access message to the base station. Alternatively, using each first beam, a random preamble access message is sent to the base station in turn.
  • the embodiment of the present invention further provides a base station, where the base station uses a first beam to communicate with the terminal.
  • the base station may include a processing unit 1410, a transmitting unit 1420, and a receiving unit 1430.
  • the processing unit 1410 is configured to establish a communication connection with the terminal by using the second beam.
  • the sending unit 1420 is configured to send a reference signal to the terminal by using the multiple second beams, so that the terminal measures the signal quality of the multiple second beams to determine the second beam pair.
  • the first beam is a beam in the first beam pair, and the first beam is a beam used by the base station;
  • the second beam is the beam in the second beam pair and the second beam is the beam used by the base station.
  • the receiving unit 1430 is configured to receive, by using the second beam, a random access preamble message sent by the terminal.
  • the sending unit 1420 is further configured to send a random access response message to the terminal according to the random access preamble message and using the second beam.
  • the receiving unit 1430 is further configured to receive, by using the second beam, a first message that is sent by the terminal according to the random access response message, where the first message includes identifier information of the terminal and beam connection establishment request information.
  • the sending unit 1420 is further configured to send the first response message to the terminal according to the identification information of the terminal and the beam connection establishment request information, and use the second beam, so that the processing unit 1410 establishes a communication connection with the terminal by using the second beam.
  • the first response message may include beam connection setup information.
  • the sending unit 1420 is specifically configured to send beam connection establishment information to the terminal according to the identification information of the terminal and the beam connection establishment request information and using the second beam.
  • the sending unit 1420 is further configured to use the first beam to send a reference signal to the terminal, so that the terminal measures the signal quality of the multiple beams of the base station.
  • the receiving unit 1430 is further configured to receive, by using the first beam, a measurement report sent by the terminal, where the measurement report includes a measurement result of signal quality of multiple beams of the base station.
  • the sending unit 1420 is further configured to send a second message to the terminal according to the measurement result and using the first beam, where the second message includes the first indication information, so that the terminal determines the second beam pair according to the first indication information.
  • the first indication information includes index information of the second beam of the base station, so that the terminal determines the second beam pair according to the index information.
  • the first indication information further includes instruction information.
  • the receiving unit 1420 is further configured to: use the second beam, and receive the random access preamble sent by the terminal according to the instruction information. Message.
  • the sending unit 1430 is further configured to send a random access response message to the terminal according to the random access preamble message and using the second beam, where the random access response message includes second indication information, so that the terminal determines, according to the second indication information,
  • the base station establishes a communication connection.
  • the embodiment of the present invention further provides another base station, which uses the first beam to communicate with the terminal.
  • the base station may include: a transmitting unit 1510 and a receiving unit 1520.
  • the receiving unit 1520 is configured to receive, by the terminal, a first message that is sent by the terminal after determining the multiple first beam pairs, where the first message includes the identifier information of the terminal;
  • the sending unit 1510 is configured to send, according to the identifier information, a second message to the terminal, so that the terminal establishes a communication connection with the terminal according to the second message.
  • the receiving unit 1520 is specifically configured to use the first beam of the base station, and the first message sent by the terminal after determining the multiple first beam pairs, where the first beam is a beam in the first beam pair.
  • the receiving unit 1520 is further configured to: use the second beam of the base station, and receive the first message that is sent by the terminal after determining the multiple first beam pairs, where the first message includes the identifier information of the terminal and the terminal in the first beam pair. Index information of the first beam, the second beam is a beam other than the first beam;
  • the sending unit 1510 is specifically configured to send a second message to the terminal according to the identifier information of the terminal and the index information of the first beam of the terminal.
  • the network device further includes: a processing unit 1530.
  • the second message is an RRC connection setup message, or the second message is a beam connection setup message.
  • the sending unit 1510 is specifically configured to: when the processing unit 1530 determines, according to the identifier information, that the working state of the terminal is an idle state, the sending unit 1510 sends an RRC connection setup message to the terminal by using a first beam, so that the terminal establishes with the processing unit 1530.
  • RRC connection or,
  • the sending unit 1510 uses a plurality of first beams to send a beam connection setup message to the terminal, so that the terminal establishes multiple beam connections with the processing unit 1530.
  • the receiving unit 1520 uses multiple first beams, before receiving the first message sent by the terminal,
  • the receiving unit 1520 is further configured to receive, by using the multiple first beams, a random preamble access message sent by the terminal.
  • the sending unit 1510 is further configured to send a random access response message to the terminal device according to the random access preamble message and using the multiple first beams.
  • the receiving unit 1520 is specifically configured to use the multiple first beams to receive the random preamble access message sent by the terminal. Alternatively, using multiple first beams, the random preamble access message sent by the terminal is sequentially received.
  • the terminal may include: a transmitter 1601, a receiver 1602, a processor 1603, and a modem processor 1605. .
  • the transmitter 1601 adjusts the output sample and generates an uplink signal, and the uplink signal is transmitted via an antenna to
  • the base station described in the above embodiment performs, for example, the communication procedure between the terminal and the base station in FIGS. 6, 9, and 11.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • the receiver 1602 adjusts the signal received from the antenna and provides input samples, for example, performing the communication steps between the terminal and the base station in FIGS. 6, 9, and 11.
  • encoder 1606 receives the traffic data and signaling messages to be transmitted on the uplink and processes (e.g., formats, codes, and interleaves) the traffic data and signaling messages.
  • Modulator 1607 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Demodulator 1609 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1608 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the terminal.
  • Encoder 1606, modulator 1607, demodulator 1609, and decoder 1608 may be implemented by a composite modem processor 1605.
  • the above devices are processed according to the radio access technology adopted by the base station (for example, access technologies of LTE, 5G and other evolved systems).
  • the terminal may further include: a memory 1604 for storing program codes and data for the terminal, and a processor 1603 for controlling and managing the actions of the terminal, for performing processing performed by the terminal in the above embodiment, for example, performing FIG. 6 and 9 and steps 620, 920, 960, 990, 1120, 1130 in FIG.
  • the embodiment of the present invention provides another base station.
  • the base station may include: a transceiver 1710 and a processor 1720.
  • the transceiver 1710 is configured to support communication between the base station and the terminal in the above embodiment, and to support radio communication between the terminal and other terminals.
  • the transceiver 1710 may include a transmitter 1711 and a receiver 1712.
  • the processor 1720 performs various functions for communicating with the terminal in FIGS. 6, 9, and 11.
  • the uplink signal from the terminal is received via the antenna, coordinated by the transceiver 1710, and further processed by the processor 1720 to recover the service data and signaling information transmitted by the terminal.
  • the traffic data and signaling messages are processed by the processor 1720, such as step 940 of Figure 9, and are mediated by the transceiver 1710 to generate a downlink signal and transmitted to the terminal via the antenna.
  • the base station may further include: a memory 1730 for storing program codes and data of the base station.
  • the communication unit 1740 is configured to support communication with other network entities, for example, to support communication between the base station and other communication network entities such as the core network.
  • the processor for executing the foregoing base station and terminal of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processing (DSP), and an application specific integrated circuit (English: Application-specific integrated circuit (ASIC), field-programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the memory may be a volatile memory (English: volatile memory), such as a random access memory (RAM), or a non-volatile memory (English: non-volatile memory), such as a read only memory.
  • volatile memory such as a random access memory (RAM)
  • non-volatile memory such as a read only memory.
  • ROM read-only memory
  • flash memory English: flash memory
  • hard disk English: hard disk drive, HDD
  • solid state drive SSD
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein can be implemented in hardware, a software module executed by a processor, or a combination of both.
  • the software instructions may be composed of corresponding software modules, which may be stored in random access memory, flash memory, read only memory, erasable programmable read-only memory (EPROM) memory, and electrical An erasable programmable read-only memory (EEPROM), a hard disk, a compact disc read-only memory (CD-ROM), or any other form known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment. Of course, the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明涉及一种基于波束的多连接通信方法、终端设备及网络设备。在基于波束的多连接通信的方法中,可以在终端设备与终端建立RRC连接之后,通过基站或终端设备触发的随机接入过程建立至少一个波束连接,也可以在终端设备空闲时时,随着随机接入过程的进行完成至少一个波束连接的建立,以降低单个波束通信中断后,终端设备重新进行波束通信恢复的系统开销,以及避免基站与终端设备间数据传输中断的现象,从而保证基站与终端设备的正常通信。

Description

基于波束的多连接通信方法、终端设备及网络设备 技术领域
本发明涉及高频无线通信领域,尤其涉及一种基于波束的多连接通信方法、终端设备及网络设备。
背景技术
在高频无线通信领域中,随着频率的增大会使无线信号路径损耗增大,小区覆盖范围减小,导致在相同的面积内需要部署更多接入网设备(接入网设备可以是基站或发射接收端点(英文:transmission reception point,TRP)),才能够保证覆盖,极大地增加网络部署成本,这就需要提供一种覆盖增强通信方法。
现有技术通过波束成形技术(即一种多天线处理技术),使用多个天线形成窄波束,获得波束增益,在一定程度上补偿路径的损耗。如图1所示,A区域为低频覆盖范围,B区域为高频覆盖范围,C区域为窄波束覆盖范围,L为基站覆盖的小区边界;由于窄波束的波束增益较高,从而补偿了高频的路径损耗。为了保证小区内的连续覆盖,需要使用多个窄波束,如若每个窄波束的宽度为10°,则36个相同的窄波束将覆盖整个小区。对于终端来说,首先通过随机接入过程完成终端和基站间的初始波束对齐(即终端和基站的初始波束连接),即终端搜索其与基站间的一个服务波束,服务波束是终端能接收到的所有波束中信号质量最好的波束。然后随着终端的移动、旋转和信道变化,终端还需要进行波束跟踪,即终端实时测量所有波束的信号质量,并将测量结果上报给基站,基站决定是否进行服务波束的切换,如果需要切换,就通过指示消息通知终端。
然而,高频通信信道变化剧烈,经常有信道质量大幅下降的情况发生,信号传播路径一般为直射和反射路径,容易受到障碍物影响。当服务波束发生阻塞时,导致终端和基站间的数据中断,终端的波束跟踪机制不能继续运行,只能再次通过随机接入过程重新进行波束对齐,从而增加系统的信令开销。
发明内容
本申请提供了一种基于波束的多连接通信方法、终端设备及网络设备,通过实现终端设备与网络设备(基站)间多波束的连接,降低了终端设备重新进行波束通信恢复的系统开销,以及避免网络设备与终端设备间数据传输中断的现象,从而保证网络设备与终端设备的正常通信。
第一方面,提供了一种基于波束的多连接通信方法,在终端设备使用第一波束与网络设备进行通信连接时,该方法包括:终端设备使用第二波束建立与网络设备的通信连接,以降低单个波束通信中断后,终端设备重新进行波束通信恢复的系统开销,以及避免网络设备与终端设备间数据传输中断的现象,从而保证网络设备与终端设备的正常通信。
在一个可选的实现中,第一波束是第一波束对中的波束,第一波束是终端设备使用的波束;第二波束是第二波束对中的波束,第二波束是终端设备使用的波束。终端设备使用第二波束建立与网络设备的通信之前,该方法还包括:终端设备使用第二波束接收网络设 备的多个波束中每个波束发送的参考信号,该参考信号可以是同步信号。终端设备根据参考信号,对网络设备的多个波束的信号质量进行测量,并根据测量结果,从终端设备的多个第二波束中,确定出与网络设备的每个第二波束匹配的每个第二波束(如信号质量最好的波束),确定第二波束对。其中UE对基站的多个波束进行测量的过程可以是周期性的,以实现测量的准确性与实时性。
在一个可选的实现中,终端设备使用第二波束建立与所述网络设备的通信,具体包括:终端设备使用第二波束,向网络设备发送随机接入前导码消息,终端设备使用第二波束,接收网络设备根据随机接入前导码消息发送的随机接入响应消息。终端设备根据随机接入响应消息并使用第二波束,向网络设备发送第一消息,第一消息包括终端设备的标识信息和波束连接建立请求信息。其中,第一消息是可以是MACCE消息,也可以是RRC消息,UE的标识信息可以是C-RNTI。
终端设备使用第二波束,接收网络设备根据终端设备的标识信息和波束连接建立请求信息发送的第一响应消息,以使终端设备与网络设备建立通信连接。
在一个可选的实现中,第一响应消息可以包括波束连接建立信息。终端设备使用第二波束,接收网络设备根据终端设备的标识信息和波束连接建立请求信息发送的第一响应消息,具体包括:终端设备使用第二波束,接收网络设备根据终端设备的标识信息和波束建立请求信息发送的波束连接建立信息,以指示终端设备与网络设备建立通信连接。
在一个可选的实现中,终端设备使用第二波束建立与网络设备的通信之前,该方法还包括:
终端设备使用多个波束,接收网络设备的多个波束发送的参考信号,参考信号可以是同步信号。终端设备根据参考信号,对网络设备的多个波束的信号质量进行测量,以获取多个波束的属性信息,如信号质量信息等。终端设备使用第一波束,向网络设备发送测量报告,测量报告包括网络设备的多个波束的信号质量的测量结果。终端设备使用第一波束,接收网络设备根据测量结果发送的第二消息,该第二消息可以是RRC消息、媒体访问控制层控制元素消息或物理下行控制信道命令。第二消息包括第一指示信息。终端设备根据第一指示信息,确定第二波束对,以保证终端设备与网络设备间传输信号的高质量。
在一个可选的实现中,第一指示信息包括网络设备的多个波束中第二波束的索引信息,以指示网络设备确定的第二波束,终端设备根据第一指示信息,确定第二波束对,具体包括:终端设备根据第二波束的索引信息,确定第二波束对。
在一个可选的实现中,第一指示信息还包括指令信息,该指令信息可以包括随机接入资源信息,终端设备使用第二波束建立与所述网络设备的通信,具体包括:终端设备根据指令信息中的随机接入资源信息并使用第二波束,向网络设备发送随机接入前导码消息。终端设备使用第二波束,接收网络设备根据随机接入前导码消息发送的随机接入响应消息,随机接入响应消息包括第二指示信息。终端设备根据第二指示信息,确定与网络设备建立通信连接。
第二方面,提供了一种基于波束的多连接通信方法,终端设备与网络设备间没有建立通信连接(RRC连接)的情况,该方法包括:终端设备确定多个第一波束对,第一波束对包括终端设备的第一波束和网络设备的第一波束。终端设备使用每个第一波束,向网络设 备发送第一消息,第一消息包括终端设备的标识信息,第一消息可以是RRC消息(如RRC请求建立消息),或MAC CE消息。终端设备使用每个第一波束,接收网络设备根据标识信息发送的第二消息,并根据第二消息,与网络设备建立通信连接,以降低单个波束通信中断后,终端设备重新进行波束通信恢复的系统开销,以及避免网络设备与终端设备间数据传输中断的现象,从而保证网络设备与终端设备的正常通信。
在一个可选的实现中,终端设备使用每个第一波束,接收网络设备的多个第一波束中每个波束发送的参考信号。终端设备根据参考信号,对网络设备的多个第一波束的信号质量进行测量,该测量过程可以是周期性的,以实现测量结果的时效性与准确性。
在一个可选的实现中,终端设备使用终端设备的除第一波束之外的第二波束,向网络设备发送第一消息,第一消息包括终端设备的标识信息和第一波束的索引信息;终端设备使用每个所述第一波束,接收网络设备根据标识信息和第一波束的索引信息发送的第二消息。
在一个可选的实现中,第二消息为RRC连接建立消息,或者第二消息为波束连接建立消息。终端设备使用多个所述第一波束,接收网络设备根据标识信息发送的第二消息,第二消息可以是RRC消息(如RRC连接建立消息),或MAC CE消息,以用于RRC连接建立或波束连接建立具体包括:当网络设备根据标识信息确定终端设备的工作状态为空闲状态时,终端设备使用一个第一波束,接收网络设备发送的所述RRC连接建立消息,以使终端设备与网络设备建立RRC连接;或者,当网络设备根据标识信息确定终端设备的工作状态为连接状态时,或当终端设备为空闲态,但是网络设备识别出已向终端设备发送了RRC连接建立消息时,终端设备使用多个第一波束,接收网络设备发送的波束连接建立消息,以使终端设备与网络设备建立多个波束连接。
在一个可选的实现中,终端设备根据第二消息,与网络设备建立通信连接,具体包括:当终端设备接收网络设备发送的RRC连接建立消息时,终端设备与网络设备建立RRC连接。或者,当终端设备接收网络设备发送的波束连接建立消息时,终端设备与网络设备建立波束连接。
在一个可选的实现中,终端设备使用每个第一波束,向网络设备发送第一消息之前,该方法还包括:终端设备使用每个第一波束,向网络设备发送随机接入前导码消息。终端设备使用每个第一波束,接收网络设备根据随机接入前导码消息发送的随机接入响应消息。
在一个可选的实现中,终端设备使用每个第一波束,向网络设备发送随机接入前导码消息,具体包括:终端设备使用每个第一波束,同时向网络设备发送随机前导码接入消息;或者,终端设备使用每个第一波束,依次向网络设备发送随机前导码接入消息,以实现终端设备与网络设备的传输时效性。
第三方面,提供了一种基于波束的多连接通信方法,在网络设备使用第一波束与终端设备通信连接的情况下,该方法包括:网络设备使用第二波束建立与终端设备的通信连接,以降低单个波束通信中断后,终端设备重新进行波束通信恢复的系统开销,以及避免网络设备与终端设备间数据传输中断的现象,从而保证网络设备与终端设备的正常通信。
在一个可选的实现中,第一波束是第一波束对中的波束,第一波束是网络设备使用的波束;第二波束是第二波束对中的波束,第二波束是网络设备使用的波束。
网络设备使用第二波束建立与终端设备的通信连接之前,该方法还包括:网络设备使用多个第二波束,向终端设备发送参考信号,以使终端设备对多个第二波束的信号质量进行测量(如进行信道估计),确定第二波束对,以实现终端设备与网络设备间信号的高质量传输。
在一个可选的实现中,网络设备使用第二波束建立与终端设备的通信,具体包括:网络设备使用第二波束,接收终端设备发送的随机接入前导码消息。网络设备根据随机接入前导码消息并使用第二波束,向终端设备发送随机接入响应消息。网络设备使用第二波束,接收终端设备根据随机接入响应消息发送的第一消息,第一消息包括终端设备的标识信息和波束连接建立请求信息。第一消息是可以是MAC CE消息,也可以是RRC消息,UE的标识信息可以是C-RNTI。
网络设备根据终端设备的标识信息和波束连接建立请求信息并使用第二波束,向终端设备发送第一响应消息,以使网络设备使用第二波束与终端设备建立通信连接。
在一个可选的实现中,第一响应消息可以包括波束连接建立信息,
网络设备根据终端设备的标识信息和波束连接建立请求信息并使用第二波束,向终端设备发送第一响应消息,具体包括:网络设备根据终端设备的标识信息和波束连接建立请求信息并使用第二波束,向终端设备发送波束连接建立信息。其中,第一响应消息还可以包括波束连接建立拒绝信息或RRC建立确认信息。
在一个可选的实现中,网络设备使用第二波束建立与终端设备的通信之前,该方法还包括:网络设备使用多个波束,向终端设备发送参考信号,以使终端设备对网络设备的多个波束的信号质量进行测量。网络设备使用第一波束,接收终端设备发送的测量报告,测量报告包括网络设备的多个波束中多个波束的信号质量的测量结果。网络设备根据测量结果确定第二波束后,使用第一波束向终端设备发送第二消息,第二消息包括第一指示信息,以使终端设备根据第一指示信息,确定第二波束对。
在一个可选的实现中,第一指示信息包括网络设备的第二波束的索引信息,以使终端设备根据索引信息,确定第二波束对。
在一个可选的实现中,第一指示信息还包括指令信息。该指令信息可以包括随机接入资源信息。网络设备使用第二波束建立与终端设备的通信,具体包括:网络设备使用第二波束,接收终端设备根据指令信息中随机接入资源信息发送的随机接入前导码消息。网络设备根据随机接入前导码消息并使用第二波束,向终端设备发送随机接入响应消息,随机接入响应消息包括第二指示信息,以使终端设备根据第二指示信息确定与网络设备建立通信连接。
第四方面,提供了一种基于波束的多连接通信方法,终端设备与网络设备间没有建立通信连接(RRC连接)的情况,该方法包括:
网络设备接收终端设备在确定多个第一波束对后发送的第一消息,第一消息可以是RRC消息(如RRC请求建立消息),或MAC CE消息,第一消息包括终端设备的标识信息;网络设备根据终端设备的标识信息,向终端设备发送第二消息,以使终端设备根据第二消息,与网络设备建立通信连接,以降低单个波束通信中断后,终端设备重新进行波束通信恢复的系统开销,以及避免网络设备与终端设备间数据传输中断的现象,从而保证网络设 备与终端设备的正常通信。
在一个可选的实现中,网络设备接收终端设备在确定多个第一波束对后发送的第一消息,具体包括:网络设备使用网络设备的第一波束,接收终端设备在确定多个第一波束对后发送的第一消息,网络设备的第一波束是第一波束对中的波束。
在一个可选的实现中,该方法还包括:网络设备使用网络设备的第二波束,接收终端设备在确定多个第一波束对后发送的第一消息,第一消息包括终端设备的标识信息和第一波束对中终端设备的第一波束的索引信息,网络设备的第二波束是除第一波束外的波束;网络设备根据终端设备的标识信息,向终端设备发送第二消息,具体包括:网络设备根据终端设备的标识信息和终端设备的第一波束的索引信息,向终端设备发送第二消息,以实现多波束连接的灵活性。
在一个可选的实现中,第二消息可以是RRC消息(如RRC连接建立消息),或MAC CE消息,第二消息用于RRC连接建立或波束连接建立。网络设备根据标识信息并使用多个第一波束,向终端设备发送第二消息,具体包括:当网络设备根据标识信息确定终端设备的工作状态为空闲状态时,网络设备使用一个第一波束,向终端设备发送RRC连接建立消息,以使终端设备与网络设备建立RRC连接。或者,当网络设备根据标识信息确定终端设备的工作状态为连接状态时,或当终端设备虽然为空闲态,但是网络设备识别出已向终端设备发送了RRC连接建立消息时,网络设备使用多个第一波束,向终端设备发送波束连接建立消息,以使终端设备与网络设备建立多个波束连接。其中,网络设备可以根据网络设备的连接准则,对网络设备的第二波束进行识别。该准则可以包括保证信号质量高于预置门限,和/或确定的第二波束与第一通信连接(RRC 连接)中网络设备的第一波束不属于同一个TRP,从而保证了波束连接后良好的信号质量,还可以避免同一个TRP引起的信号同步变化现象,如同步衰减。
在一个可选的实现中,网络设备使用多个第一波束,接收终端设备发送的第一消息之前,该方法还包括:网络设备使用多个第一波束,接收终端设备发送的随机前导码接入消息。网络设备根据随机接入前导码消息并使用多个第一波束,向终端设备发送随机接入响应消息。
在一个可选的实现中,网络设备使用多个第一波束,接收终端设备发送的随机接入前导码消息,具体包括:网络设备使用多个第一波束,同时接收终端设备发送的随机前导码接入消息;或者,网络设备使用多个第一波束,依次接收终端设备发送的随机前导码接入消息,以实现终端设备与网络设备的传输时效性。
第五方面,提供了一种终端设备,该终端设备具有实现上述第一方面的方法实际中终端设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
该终端设备还可以包括存储单元,以用于存储终端设备与网络设备通信的指令信息和数据信息。
第六方面,提供了一种终端设备,该终端设备具有实现上述第二方面的方法实际中终端设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该 硬件或软件包括一个或多个与上述功能相对应的模块。
该终端设备还可以包括存储单元,以用于存储终端设备与网络设备通信的指令信息和数据信息。
第七方面,提供了一种网络设备,该网络设备具有实现上述第四方面的方法实际中网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
该网络设备还可以包括存储单元,以用于存储终端设备与网络设备通信的指令信息和数据信息。
第八方面,提供了一种网络设备,该网络设备具有实现上述第五方面的方法实际中网络设备行为的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
该网络设备还可以包括存储单元,以用于存储终端设备与网络设备通信的指令信息和数据信息。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为一个基站在不同频段下的覆盖范围示意图;
图2为本发明实施例提供的终端的多波束连接示意图;
图3A为现有技术中LTE通信系统的拓扑结构示意图;
图3B为现有技术中5G通信系统的拓扑结构示意图;
图4为现有技术中基站侧进行上行波束和下行波束的扫描过程示意图;
图5为现有技术中终端与基站的随机接入过程;
图6为本发明实施例提供的一种基于波束的多连接通信方法的信令交互图;
图7为本发明实施例提供的MAC CE子头部分的结构示意图;
图8为本发明实施例提供的MAC CE载荷部分的结构示意图;
图9为本发明实施例提供的另一种基于波束的多连接通信方法的信令交互图;
图10为本发明实施例提供的随机接入响应消息的结构示意图;
图11为本发明实施例提供的再一种基于波束的多连接通信方法的信令交互图;
图12为本发明实施例提供的一种终端的结构示意图;
图13为本发明实施例提供的另一种终端的结构示意图;
图14为本发明实施例提供的一种基站的结构示意图;
图15为本发明实施例提供的另一种基站的结构示意图;
图16为本发明实施例提供的再一种终端的结构示意图;
图17为本发明实施例提供的再一种基站的结构示意图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
本发明提供的波束通信方法应用于高频无线通信场景的蜂窝通信网络中。本发明描述的技术可以适用于长期演进(英文:Long Term Evolution,LTE)系统,或其他采用各种无线接入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统,如第五代5G系统或新空口(英文:new radio,NR)系统等。
本发明中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本发明所涉及到的终端设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备(英文:wearable device,WD)、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(英文:user equipment,UE),移动台(英文:mobile station,MS),终端(terminal),终端设备(英文:terminal equipment)等等。本发明所涉及到的基站(英文:base station,BS)是一种部署在无线接入网中用以为终端提供无线通信功能的网络设备。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(英文:evolved NodeB,eNB或者eNodeB),在第五代5G或NR网络中,称为新空口基站(英文:new radio NodeB,NR-NB)等等。为方便描述,本发明中上述的终端设备可以统称为UE,上述为UE提供无线通信功能的网络设备可以统称为基站。
下面针对本发明实施例中用到的主要网元进行详细介绍:
eNB用于在下行方向上通过形成窄波束扩大覆盖范围,在上行方向上也可以通过不同波束接收不同方向的信号。该eNB可以支持在任一时刻使用两个或两个以上波束进行数据的发送和接收。
TRP用于在下行方向上通过形成窄波束扩大覆盖范围,在上行方向上也可以通过不同波束接收不同方向的信号。
UE用于通过搜索eNB/TRP发出的参考信息(如同步信号,或导频信号),确定可用波束,并将选择结果反馈给eNB/TRP。同时,如果在UE侧部署了多个天线,则在UE侧也可以使用波束形成的收发技术形成多个发送接收波束。如图2所示,UE可以通过多个波束与多个TRP(如TRP1与TRP2)通信,也可以通过多个波束与一个TRP(如TRP1或TRP2)通信。该UE可以支持在任一时刻使用两个或两个以上波束进行数据的发送和接收。
如图3A所示的LTE通信系统中,在一个移动管理实体(英文:mobile managenment entity,MME)的控制下有至少一个eNB,每个eNB下存在多个小区,在每个小区中eNB可以使用多个发送波束完成小区覆盖,从而达到与UE通信。
如图3B所示的5G或NR系统中,在一个NR-NB的控制下,可能存在一个或多个TRP,每个TRP都能形成多个波束,在每个小区中TRP可以使用多个发送波束完成小区覆盖,从而达到与UE通信。
进一步的,由于每个波束覆盖的面积有限,要完成一个小区的覆盖都要经过波束的扫描过程。当基站通过多个窄波束完成小区覆盖时,基站可以按照时分/频分/波分的方式或 其组合方式进行数据的发送或接收。对于时分方式,每个波束使用的时间长度可以单独设置,可以是一个或多个子帧,也可以是一个或多个符号。如图4所示,基站可以通过时分复用的方式完成整个小区的覆盖,该基站有8个波束,且该8个波束分别用数字符号0-7进行标识;横轴为时间轴,在时间轴上存在至少一个上行接收子帧(英文:uplink,UL)和至少一个下行接收子帧(英文:downlink,DL);每个数字符号代表的波束按时间的先后发给UE,并且每个数字符号代表的波束占用的时间段A至时间段G相同。当基站接收上行数据时,在一个单独的上行接收子帧上,每个符号只接收相应波束方向上的数据。当基站发送下行数据时,在一个单独的下行发送子帧上,每个符号只发送相应波束方向上的数据。
本发明实施例中终端UE使用第一波束与基站的通信连接后,再次使用第二波束建立与基站的波束通信连接,从而建立UE与基站间的多波束连接。
可选地,终端UE使用第一波束对中的第一波束与基站通信连接后,终端UE使用第二波束对中的第二波束与基站通信连接,其中,第一波束对包括终端UE的第一波束和基站的第一波束。第二波束对包括终端UE的第二波束和基站的第二波束。
该通信连接可以是UE与基站间建立的无线资源控制(英文:Radio Resource Control,RRC)连接。
可选地,终端UE使用第一波束与基站建立通信连接的过程可以是随机接入过程。
图5为本发明实施例提供的一种基于波束的多连接通信方法的信令交互图,如图5所示,该方法可以包括:
步骤510、基站通过多个波束向UE发送参考信号。
参考信号可以是同步信号,同步信号用于UE获取下行同步,在获得下行同步后,才能正确获得基站的指示消息,例如,分配给UE的传送数据或控制信令的上行链路资源。
基站通过多个发送波束向UE发送同步信号,即一个发送波束传输一个同步信号,且每个发送波束传输的同步信号可以相同或不同。除同步信号,各个波束也可以有单独的专用于信道估计的参考信号。
步骤520、UE对基站的多个波束传输的参考信号进行测量,确定第一波束对,第一波束对包括UE的第一发送波束和基站的第一接收波束。
UE使用本地多个接收波束对基站下发的多个发送波束中传输的参考信号进行信号质量测量,选择信号质量最好的一个第一发送波束作为发送波束,以及在UE的多个接收波束中选择信号质量最好的一个第一接收波束作为接收波束。由此UE确定第一波束对,该第一波束对包括UE的第一发送波束与基站的第一接收波束,采用这一波束对获得的参考信号质量最好,即最优波束对。其中,信号质量可以用每个波束的参考信号接收功率(英文:reference signal receiving power,RSRP)或参考信号接收质量(英文:reference signal receiving quality,RSRQ)的值来衡量。
可选地,UE的最优发送波束与基站的最优接收波束形成最优上行波束对;UE的最优接收波束与基站的最优发送波束形成最优下行波束对。其中,最优上行波束对和最优下行波束对可以是同一个波束对,也可以是不同波束对。
当满足信道互易性时,最优上行波束对和最优下行波束对是同一个波束对。当不满足 信道互易性时,最优上行波束对和最优下行波束对是不同的波束对,即属于一个波束连接中的下行最优波束对和上行最优波束对不是同一对波束,上行最优波束对的确定过程也可以在随机接入过程中实现,本发明不再详细描述。本发明后续描述中默认可以应用信道互易性,不能应用信道互易性的场景对于本发明没有实质影响,不再赘述。
步骤530、在基站的第一波束的接收时刻,UE通过的第一上行波束向基站发送随机接入前导码消息。
在执行步骤530之前,在UE完成下行同步,并接收基站发送的系统消息获得小区随机接入资源配置后,UE在任意的随机接入时频资源上随机选择一个前导码。
随后,UE在基站的第一波束的接收时刻,通过UE第一波束向基站发送随机接入前导码消息。
步骤540、在基站的第一波束的发送时刻,基站通过第一波束向UE发送随机接入响应消息。
在执行步骤540之前,基站根据收到的随机接入前导码,计算相应的定时提前(英文:timing advance,TA)值。
在基站的第一波束的发送时刻,基站通过第一波束向基站发送随机接入响应消息,随机接入响应消息可以包括TA值和上行调度许可(英文:uplink grant,UL-Grant)。其中,TA值用于实现UL同步,UL-Grant用于指示UE的UL发送数据。
步骤550、在基站的第一波束的接收时刻,UE通过的第一波束向基站发送第一消息,该第一消息中可以包括UE的标识信息。
第一消息可以是RRC连接建立请求消息;UE的标识信息可以是小区无线网络临时标识(英文:Cell-RadioNetworkTemporaryIdentifier,C-RNTI)。
UE根据接收到的UL-Grant的资源指示和TA值,在基站的第一波束的接收时刻,向基站发送RRC连接建立请求消息,该消息中可以包括UE的标识信息,以使基站识别出该UE。
需要说明的是,第一消息可以根据不同的下行信道场景包含不同的内容。比如波束连接建立请求、RRC连接建立请求,或重建请求等信息。
步骤560、在基站的第一波束的发送时刻,基站通过第一波束向基站发送第一消息的响应消息,以建立通信连接。
第一消息的响应消息可以是RRC连接建立确认消息,UE接收到RRC连接建立确认消息后,UE与基站完成RRC连接的建立。
需要说明的是,第一消息的响应消息可以根据不同的上行信道场景包含不同的内容,或根据第一消息的不同内容而包含不同的信息。
可选地,在终端UE使用第一波束与基站建立通信连接(RRC连接)之后,UE可以向基站发送该UE的最大连接阈值,即该UE能够支持的最大波束连接的个数。UE的最大连接阈值可以作为基站判断UE是否还可以进行波束连接的参考值,也可以作为基站判断UE是否可以进行波束连接替换的参考值。
需要说明的是,在本发明实施例UE确定波束对之后的信息交互过程中,UE与基站都会选择在对方波束的接收时刻发送指令信息。
图6为本发明实施例提供的一种基于波束的多连接通信方法的信令交互图,如图6所 示,该方法可以包括:
步骤610,基站使用多个第二波束中每个波束向终端UE发送参考信号。此处基站的第二波束是指除第一波束对中基站的第一波束之外的其他波束。
该参考信号用于终端UE进行信道估计。
步骤620,终端UE根据参考信号,对基站的多个第二波束的信号质量进行测量,确定第二波束对。
终端UE使用多个第二波束接收参考信号。UE通过接收基站的多个第二波束中每个波束发送的参考信号,对多个第二波束进行信道估计,获取多个第二波束的属性信息,如信号质量信息等。
终端UE根据属性信息,对基站的多个第二波束的信号质量进行测量,获取测量结果。
UE根据测量结果,从UE的多个第二波束中,确定出与基站的每个第二波束匹配的每个第二波束。
需要说明的是,UE对基站的多个波束进行测量的过程可以是周期性的,也可以是由基站触发的。优选的,考虑到测量的准确性与实时性,本发明实施例中UE对基站的多个波束进行周期性测量。
可以理解的是,终端UE还可以通过其他方式确定第一波束对,本发明实施例在此不做限定。
步骤630,终端UE使用第二波束,向基站发送随机接入前导码消息。
步骤640、基站根据随机接入前导码消息并使用第二波束,向终端UE发送随机接入响应消息。
步骤650、终端UE根据随机接入响应消息并使用第二波束,向基站发送第一消息,第一消息可以包括终端UE的标识信息和波束建立请求信息。
第一消息是可以是MAC CE消息,也可以是RRC消息,UE的标识信息可以是C-RNTI。
可选地,当第一消息是MAC CE消息时,该MAC CE消息包括消息子头和载荷部分,UE可以通过重新配置MAC CE子头结构中的逻辑信道标识(LCID)的值,来指示波束建立请求、波束建立确认或波束建立拒绝等信息;UE还可以通过重新配置MAC CE消息的载荷结构,来指示波束建立请求、波束建立确认或波束建立拒绝等信息
如图7所示,MAC CE子头部分的结构中可以包括一个比特的预留位R域、一个比特的F2域、一个比特的E域,和5个比特的LCID字段。其中,F2是格式域,用于指示长度域的长度,E是扩展域,扩展域是一个标志位,指示MAC头部中是否还有其他的域。UE可以通过选择索引值为01011-11000中的每个索引对应的LCID的值为来指示波束建立请求、波束建立确认或波束建立拒绝等信息,具体对应关系由协议规定。
如图8所示,MAC CE载荷部分的结构可以包括两个比特的预留R位和新增加的六个比特的波束索引位。UE可以通过配置增加或减少R位的个数来指示波束建立请求、波束建立确认或波束建立拒绝等信息;波束索引位指示待连接的波束索引。需要说明的是,根据通信需要,MAC CE载荷部分的R位的个数可以为0到7的任意数,例如若R位为2比特(即2位),则波束索引位为6比特。
需要说明的是,该指示信息的配置过程可以上述图7与图8所示的过程,也可以根据 设计需要采用其他的配置过程,本发明在此不做限定。
可选地,当第一消息是RRC消息时,UE可以通过在RRC消息中携带指示信息,该指示信息用于指示波束连接建立请求、波束连接建立确认或波束连接建立拒绝等信息。
步骤660、基站根据UE的标识信息和波束连接建立请求信息并使用第二波束,向UE发送的第一响应消息,以使UE与基站建立第二波束连接。
可选地,第一响应消息可以包括波束连接建立确认信息、波束连接建立拒绝信息或RRC建立确认信息。
基站根据UE的标识信息,判断UE与该基站是否已建立RRC连接。
若UE与该基站未建立RRC连接,则基站向UE发送的第一响应消息,第一响应消息包括波束建立请求信息,以指示使UE与基站建立RRC连接。
进一步的,若UE与该基站已建立RRC连接,则基站将进一步对基站的第二波束进行识别。基站可以根据基站的连接准则,对基站的第二波束进行识别,该准则可以包括保证信号质量高于预置门限,和/或确定的第二波束与第一通信连接(RRC连接)中基站的第一波束不属于同一个TRP,从而保证了波束连接后良好的信号质量,还可以避免同一个TRP引起的信号同步变化现象,如同步衰减。
可选地,当该第二波束与第一波束连接中的第一波束不是同一TRP时,基站向UE发送的第一响应消息,以指示使UE与基站建立第二波束连接;
当该第二波束与第一波束连接(RRC连接)中的第一波束是同一TRP时,基站向UE发送的第一响应消息,以指示波束连建立拒绝。
需要说明的是,基站的连接准则还可以包括其他类型信息,如UE的属性信息,如UE的最大连接阈值等。若UE的波束连接达到最大连接阈值,则基站可以选择拒绝建立新的波束连接;也可以选择通过删除已有的波束连接,添加新的波束连接。若UE的波束连接未达到最大连接阈值,则基站可以选择确认建立新的波束连接。
本发明实施例的上述方法是基于终端与基站已建立通信连接(RRC连接)的基础上,随后终端UE触发并通过随机接入过程建立其他多波束的通信连接。
图9为本发明实施例提供的另一种基于波束的多连接通信方法的信令交互图,如图9所示,该方法可以包括:
步骤910、基站使用多个波束,向终端UE发送参考信号。
参考信号可以是同步信号,同步信号用于UE获取下行同步,在获得下行同步后,才能正确获得基站的指示消息,例如,分配给UE的传送数据或控制信令的上行链路资源。
基站通过多个发送波束向UE发送同步信号,即一个发送波束传输一个同步信号,且每个发送波束传输的同步信号可以相同或不同。除同步信号,各个波束也可以有单独的专用于信道估计的参考信号。
步骤920、终端UE根据参考信号,对基站的多个波束的信号质量进行测量。
UE通过接收基站的多个波束中每个波束发送的参考信号,对多个波束进行信道估计,获取多个波束的属性信息,如信号质量信息等。
终端UE根据属性信息,对基站的多个波束的信号质量进行测量,获取测量结果。
需要说明的是,UE对基站的多个波束进行测量的过程可以是周期性的,也可以是由基站触发的。优选的,考虑到测量的准确性与实时性,本发明实施例中UE对基站的多个波束进行周期性测量。
步骤930、终端UE使用第一波束,向基站发送测量报告,测量报告包括基站的多个波束的信号质量的测量结果。
步骤940、基站根据测量结果,确定第二波束。
基站根据终端UE测量出的测量结果,并依据一定的连接准则,从除第一波束对外的其他波束中选择一个波束,作为第二波束。
该准则可以包括保证波束的信号质量高于预置门限,和/或确定的第二波束与第一通信连接(RRC连接)中基站的第一波束不属于同一个TRP,从而保证了波束连接后良好的信号质量,还可以避免同一个TRP引起的信号同步变化现象,如同步衰减。
可以理解的是,终端UE还可以通过其他方式确定第一波束对,不限于上述步骤910-步骤940的方式,本发明实施例在此不做限定。
步骤950、基站使用第一波束向终端UE发送第一消息,第一消息包括第一指示信息。
当基站根据测量结果确定出第二波束(信号质量较好的波束)时,向UE发送第一消息,第一消息可以包括第一指示信息。
该第一消息可以是RRC消息(如RRC重配置消息(英文:RRCConnectionReconfiguration))、媒体访问控制(Media Access Control,MAC)层控制元素(英文:Media Access Control Control Element,MAC CE)消息或物理下行控制信道命令(Physical downlink control channel order,PDCCH order)。
可选地,当第一消息是RRC消息时,基站在RRC消息中携带随机接入信道的专用配置信息(英文:rach-configdedicated)指示专用随机接入前导码资源,同时增加第一指示信息,该第一指示信息可以包括指令信息,如波束建立请求信息。第一指示信息还可以包括基站的第二波束的索引信息。
可选地,当第一消息是MAC CE消息时,该MAC CE消息包括消息子头和载荷部分,基站可以通过配置逻辑信道标识(LCID)的值,来指示专用随机接入前导码资源和波束建立请求等信息,基站还可以通过改变MAC CE载荷部分的字段结构来指示基站的第二波束的索引信息。
需要说明的是,该第一指示信息的配置过程可以参考图7与图8所示的过程,也可以根据设计需要采用其他的配置过程,本发明在此不做限定。
可选地,当第一消息是PDCCH order消息时,基站可以通过增加PDCCH order消息中的数字版权唯一标识符(英文:downlink control information,DCI)的比特位的数量,指示基站的第二波束索引信息和波束建立请求等信息。
需要说明的是,若上述各消息包括的波束索引可以是完整的波束索引,也可以是基站为了节省系统开销,采用最近一次UE波束测量结果中的顺序索引。表1为本发明实施例提供的一种波束索引与波束测量顺序索引的对照表。
表1
顺序索引 波束索引
0 波束5
1 波束3
2 波束10
3 波束8
如表1所示,UE最近一次上报基站的测量结果中包含4个波束,4个波束在测量报告中的顺序是{波束5,波束3,波束10,波束8},若基站指示的波束索引为0,则基站的目标接收波束为波束5,如果指示的波束索引为2,则基站的目标接收波束为波束10。
可选地,当基站通过除选择的第二波束以外的发送波束向UE发送第一消息时,第一消息还可以包括第二波束的索引信息,以使UE确定出与基站的第二波束匹配的第二波束。
步骤960、终端UE根据第一指示信息,确定第二波束对。
当基站使用第二波束向终端发送第一消息时,终端UE识别基站的第二波束,并从除第一波束外的其他波束中选择与基站的第二波束匹配的第二波束,从而确定第二波束对。
当基站通过除第一波束和确定的第二波束以外的发送波束向UE发送第一消息时,终端UE根据第一消息中的第一指示信息(如第二波束的索引信息),确定与基站的第二波束匹配的第二波束,从而确定第二波束对。
步骤970、终端UE向基站发送随机接入前导码消息。
可选地,第二消息还可以包括指令信息,以使UE向基站发生随机接入前导码消息,从而进行随机接入过程。该指令信息可以包括随机接入资源信息。
终端UE根据指令信息,向基站发送随机接入前导码消息。
步骤980、基站根据随机接入前导码消息并使用第二波束,向终端UE发送的随机接入响应消息,随机接入响应消息包括第二指示信息。
第二指示信息可以用于指示波束建立成功。该随机接入响应消息可以是RRC响应消息、MAC CE响应消息或PDCCH order响应消息。
可选地,在基站向UE发送随机接入响应消息之前,基站可以通过随机接入响应消息中的无线网络临时标识(英文:Radio Network Tempory Identity,RNTI)进行指示。如图10所示,随机接入响应消息的消息体可以包括R域、TA域、UL-Grant域和临时的小区无线网络临时标识(TemporaryCellRadioNetworkTemporaryIdentifier,Temp C-RNTI)域。Temp C-RNTI指示UE在随机接入过程中使用的临时C-RNTI。
可选地,基站可以通过将UL-Grant域和Temp C-RNTI域中的至少一个中的所有比特位都设为某一特定值(例如将所有比特位都设为0)来指示波束建立成功。或者,基站也可以将UL-Grant域和/或Temp C-RNTI域中的多个比特位设置为某一特定的组合。根据实际设计需要,基站对随机接入响应消息中消息体的具体配置过程与方式,本发明实施例在此不做限定。
或者,基站也可以通过C-RNTI指示的信息指示,即在指示信息中可以包含TA和指示波束建立成功信息。
步骤990、终端UE根据第二指示信息,确定与基站建立通信连接,以实现终端UE与 基站的多波束连接。
本发明实施例的上述方法是基于终端与基站已建立通信连接(RRC连接)的基础上,随后基站根据终端UE的测量结果触发并通过随机接入过程建立其他多波束的通信连接。
针对UE与基站间没有建立通信连接(RRC连接)的情况,UE与基站可以通过下面实施例的方法进行波束的多连接通信。
图11为本发明实施例提供的再一种基于波束的多连接通信方法的信令交互图,如图11所示,该方法可以包括:
步骤1110、基站使用多个第一波束,向终端UE发送参考信号。
该参考信号用于终端UE进行信道估计。
步骤1120、终端UE根据参考信号,对基站的多个第一波束的信号质量进行测量。
终端UE使用多个第一波束接收参考信号。UE通过接收基站的多个第一波束中每个波束发送的参考信号,对多个第一波束进行信道估计,获取多个第一波束的属性信息,如信号质量信息等。
终端UE根据第一波束的属性信息,对基站的多个第一波束的信号质量进行测量,获取测量结果。
需要说明的是,UE对基站的多个波束进行测量的过程可以是周期性的,也可以是由基站触发的。优选的,考虑到测量的准确性与实时性,本发明实施例中UE对基站的多个波束进行周期性测量。
步骤1130、终端UE根据测量结果,确定多个第一波束对。
第一波束对包括终端UE的第一波束和基站的第一波束。
可以理解的是,终端UE还可以通过其他方式确定多个第一波束对,不限于上述步骤1110-步骤1130的方式,本发明实施例在此不做限定。
步骤1140、终端UE使用每个第一波束,向基站发送第一消息,第一消息可以包括终端UE的标识信息。
第一消息可以是RRC消息(如RRC请求建立消息),或MAC CE消息。
可选地,在UE通过每个第一波束向基站发送第一消息之前,
步骤1141、UE使用每个第一波束。向基站发送随机接入前导码消息。
步骤1142、基站根据随机接入前导码消息并使用每个第一波束,向UE发送随机接入响应消息。
回到步骤1140,UE使用每个第一波束,向基站发送携带UE的标识信息的RRC消息或MAC CE消息。
步骤1143、基站根据UE的标识信息并使用每个第一波束,向UE发送第二消息。
第二消息可以是RRC消息(如RRC连接建立消息),或MAC CE响应消息,第二消息用于RRC连接建立或波束连接建立。
当基站根据UE的标识信息确定UE的工作状态为空闲状态时,UE接收基站发送的RRC连接建立消息;或者,
当基站根据标识信息确定UE的工作状态为已连接状态时,或当UE为空闲态,但基站识别出已经向UE发送了RRC连接建立消息时,UE接收基站发送的波束连接建立消息。
步骤1144、UE根据第二消息,与基站建立通信连接。
当终端UE接收基站发送的RRC连接建立消息时,终端UE与基站建立RRC连接;或者,
当终端UE接收基站发送的波束连接建立消息时,终端UE与基站建立波束连接。
本发明实施例的上述方法是基于终端与基站未建立通信连接(RRC连接)的基础上,即终端UE处于空闲状态时,终端发起多个随机接入过程,即不需要前一个随机过程结束就发起下一个随机接入过程,基站根据终端的连接状态,指示终端建立RRC连接和多波束建立连接。
上述实施例提供的基于波束的多连接通信方法可以在UE与终端建立RRC连接之后,通过基站或UE触发的随机接入过程建立至少一个波束连接,也可以在UE与终端未建立RRC连接时,随着随机接入过程的进行完成至少一个波束连接的建立。通过多波束连接可以降低单个波束通信中断后,UE重新进行波束通信恢复的系统开销,以及避免基站与UE间数据传输中断的现象,从而保证基站与UE的正常通信。
与上述基于波束的多连接通信对应的,本发明实施例还提供了一种终端,该终端使用第一波束与网络设备通信连接。如图12所示,该终端可以包括:处理单元1210,接收单元1220和发送单元1230。
处理单元1210,用于使用第二波束建立与基站的通信连接。
接收单元1220,用于使用多个第二波束,接收基站的多个波束中每个波束发送的参考信号。
处理单元1210,还用于根据参考信号,对基站的多个波束的信号质量进行测量,并根据测量结果,确定第二波束对。
第一波束是第一波束对中的波束,第一波束是终端使用的波束,第二波束是第二波束对中的波束,第二波束是终端使用的波束。
发送单元1230,用于使用第二波束,向基站发送随机接入前导码消息。
接收单元1220,用于使用第二波束,接收基站根据随机接入前导码消息发送的随机接入响应消息。
发送单元1230,还用于根据随机接入响应消息并使用第二波束,向基站发送第一消息,该第一消息包括基站的标识信息和波束连接建立请求信息。
接收单元1220,还用于使用第二波束,接收基站根据终端的标识信息和波束连接建立请求信息发送的第一响应消息,以使终端与基站建立通信连接。
可选地,第一响应消息包括波束连接建立信息。
接收单元1220,具体用于使用第二波束,接收基站根据终端的标识信息和波束建立请求信息发送的波束连接建立信息,以指示终端与基站建立通信连接。
可选地,接收单元1220,还用于使用本地的多个波束,接收基站的多个波束发送的参考信号。
处理单元1210,还用于根据参考信号,对基站的多个波束的信号质量进行测量。
发送单元1230,还用于使用第一波束,向基站发送测量报告,测量报告包括基站的多个波束的信号质量的测量结果。
接收单元1220,还用于使用第一波束,接收基站根据测量结果发送的第二消息,第二 消息包括第一指示信息;
处理单元1210,还用于根据第一指示信息,确定第二波束对。
可选地,第一指示信息包括基站的多个波束中第二波束的索引信息,
处理单元1210,具体用于根据第二波束的索引信息,确定第二波束对。
可选地,第一指示信息还包括指令信息,
发送单元1230,还用于根据指令信息并使用第二波束,向基站发送随机接入前导码消息。
接收单元1220,还用于使用第二波束,接收基站根据随机接入前导码消息发送的随机接入响应消息,随机接入响应消息包括第二指示信息。
处理单元1210,还用于根据第二指示信息,确定与网络设备建立通信连接。
该终端的各功能模块的功能,可以通过上述图6和图9中的各步骤来实现,因此,本发明上述实施例提供的终端的具体工作过程,在此不复赘述。
与上述基于波束的多连接通信对应的,本发明实施例还提供了另一种终端,该终端处于空闲状态。如图13所示,该终端可以包括:接收单元1310、处理单元1320和发送单元1330。
处理单元1320,用于确定多个第一波束对,第一波束对包括终端设备的第一波束和基站的第一波束;
发送单元1330,用于使用每个第一波束,向基站发送第一消息,该第一消息包括终端的标识信息。
接收单元1310,还用于使用每个第一波束,接收基站根据标识信息发送的第二消息。
处理单元1320,还用于根据第二消息,与基站建立通信连接。
可选地,接收单元1310,还用于使用终端的每个波束,接收基站的多个波束中每个波束发送的参考信号;
处理单元1320,具体用于根据参考信号,确定多个第一波束对。
可选地,发送单元1330,还用于使用终端的除第一波束之外的第二波束,向基站发送第一消息,第一消息包括终端的标识信息和第一波束的索引信息;
接收单元1310,还用于使用每个第一波束,接收基站根据标识信息和第一波束的索引信息发送的第二消息。
可选地,第二消息为RRC连接建立消息,或者第二消息为波束连接建立消息。
接收单元1310,具体用于当处理单元1320根据标识信息确定终端的工作状态为空闲状态时,接收单元1310使用一个第一波束,接收基站发送的RRC连接建立消息,以使处理单元1320与基站建立RRC连接;或者,
当处理单元1320根据标识信息确定终端的工作状态为连接状态时,接收单元1310使用多个第一波束,接收基站发送的波束连接建立消息,以使处理单元1320与基站建立多个波束连接。
可选地,当接收单元1310接收基站发送的RRC连接建立消息时,处理单元1320与基站建立RRC连接;或者,
当接收单元1310接收基站发送的波束连接建立消息时,处理单元与基站建立波束连 接。
可选地,发送单元1330使用每个第一波束,向基站发送第一消息之前,
发送单元1330,还用于使用每个第一波束,向基站发送随机接入前导码消息。
接收单元1310,还用于使用每个第一波束,接收基站根据随机接入前导码消息发送的随机接入响应消息。
可选地,发送单元1330,具体用于使用每个第一波束,同时向基站发送随机前导码接入消息。或者,使用每个第一波束,依次向基站发送随机前导码接入消息。
该终端的各功能模块的功能,可以通过上述图11中的各步骤来实现,因此,本发明上述实施例提供的终端的具体工作过程,在此不复赘述。
与上述基于波束的多连接通信方法对应的,本发明实施例还提供了一种基站,该基站使用第一波束与终端通信连接。如图14所示,该基站可以包括:处理单元1410、发送单元1420和接收单元1430。
处理单元1410,用于使用第二波束建立与终端的通信连接。
发送单元1420,用于使用多个第二波束,向终端发送参考信号,以使终端对多个第二波束的信号质量进行测量,确定第二波束对。
第一波束是第一波束对中的波束,第一波束是该基站使用的波束;
第二波束是第二波束对中的波束,第二波束是该基站使用的波束。
接收单元1430,用于使用第二波束,接收终端发送的随机接入前导码消息。
发送单元1420,还用于根据随机接入前导码消息并使用第二波束,向终端发送随机接入响应消息。
接收单元1430,还用于使用第二波束,接收终端根据随机接入响应消息发送的第一消息,第一消息包括终端的标识信息和波束连接建立请求信息。
发送单元1420,还用于根据终端的标识信息和波束连接建立请求信息并使用第二波束,向终端发送第一响应消息,以使处理单元1410使用第二波束与终端建立通信连接。
可选地,第一响应消息可以包括波束连接建立信息。
发送单元1420,具体用于根据终端的标识信息和波束连接建立请求信息并使用第二波束,向终端发送波束连接建立信息。
可选地,处理单元1410使用第二波束建立与终端的通信之前,
发送单元1420,还用于使用第一波束,向终端发送参考信号,以使终端对基站的多个波束的信号质量进行测量。
接收单元1430,还用于使用第一波束,接收终端发送的测量报告,测量报告包括基站的多个波束的信号质量的测量结果。
发送单元1420,还用于根据测量结果并使用第一波束,向终端发送第二消息,第二消息包括第一指示信息,以使终端根据第一指示信息,确定第二波束对。
可选地,第一指示信息包括基站的第二波束的索引信息,以使终端根据索引信息,确定第二波束对。
可选地,第一指示信息还包括指令信息。
接收单元1420,还用于使用第二波束,接收终端根据指令信息发送的随机接入前导码 消息。
发送单元1430,还用于根据随机接入前导码消息并使用第二波束,向终端发送随机接入响应消息,随机接入响应消息包括第二指示信息,以使终端根据第二指示信息确定与基站建立通信连接。
该基站的各功能模块的功能,可以通过上述图6和图9中的各步骤来实现,因此,本发明上述实施例提供的基站的具体工作过程,在此不复赘述。
与上述基于波束的多连接通信方法对应的,本发明实施例还提供了另一种基站,该基站使用第一波束与终端通信连接。如图15所示,该基站可以包括:发送单元1510和接收单元1520。
接收单元1520,用于接收终端在确定多个第一波束对后发送的第一消息,第一消息包括终端的标识信息;
发送单元1510,用于根据标识信息,向终端发送第二消息,以使终端根据第二消息,与终端建立通信连接。
可选地,接收单元1520,具体用于使用基站的第一波束,接收终端在确定多个第一波束对后发送的第一消息,第一波束是第一波束对中的波束。
可选地,接收单元1520,还用于使用基站的第二波束,接收终端在确定多个第一波束对后发送的第一消息,第一消息包括终端的标识信息和第一波束对中终端的第一波束的索引信息,第二波束是除第一波束外的波束;
发送单元1510,具体用于根据终端的标识信息和终端的第一波束的索引信息,向终端发送第二消息。
可选地,网络设备还包括:处理单元1530。
第二消息为RRC连接建立消息,或者第二消息为波束连接建立消息。
发送单元1510,具体用于:当处理单元1530根据标识信息确定终端的工作状态为空闲状态时,发送单元1510使用一个第一波束,向终端发送RRC连接建立消息,以使终端与处理单元1530建立RRC连接。或者,
当处理单元1530根据标识信息确定终端的工作状态为连接状态时,发送单元1510使用多个第一波束,向终端发送波束连接建立消息,以使终端与处理单元1530建立多个波束连接。
可选地,接收单元1520使用多个第一波束,接收终端发送的第一消息之前,
接收单元1520,还用于使用多个第一波束,接收终端发送的随机前导码接入消息。
发送单元1510,还用于根据随机接入前导码消息并使用多个第一波束,向终端设备发送随机接入响应消息。
可选地,接收单元1520,具体用于使用多个第一波束,同时接收终端发送的随机前导码接入消息。或者,使用多个第一波束,依次接收终端发送的随机前导码接入消息。
与上述图12和图13对应的,本发明实施例提供了再一种终端,如图16所示,该终端可以包括:发送器1601,接收器1602,处理器1603和调制解调处理器1605。
发送器1601调节该输出采样并生成上行链路信号,该上行链路信号经由天线发射给 上述实施例中所述的基站,例如执行图6、图9和图11中终端与基站间的通信步骤。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1602调节从天线接收的信号并提供输入采样,例如执行图6、图9和图11中终端与基站间的通信步骤。在调制解调处理器1605中,编码器1606接收要在上行链路上发送的业务数据和信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1607进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。解调器1609处理(例如,解调)该输入采样并提供符号估计。解码器1608处理(例如,解交织和解码)该符号估计并提供发送给终端的已解码的数据和信令消息。编码器1606、调制器1607、解调器1609和解码器1608可以由合成的调制解调处理器1605来实现。上述器件根据基站采用的无线接入技术(例如,LTE,5G及其他演进系统的接入技术)来进行处理。
终端还可以包括:存储器1604用于存储用于终端的程序代码和数据,处理器1603对终端的动作进行控制管理,用于执行上述实施例中由终端进行的处理,例如,执行图6、图9和图11中步骤620、920、960、990、1120、1130。
与上述图14和图15对应的,本发明实施例提供了再一种基站,如图17所示,该基站可以包括:收发器1710和处理器1720。
收发器1710用于支持基站与上述实施例中的终端之间收发消息,以及支持终端与其他终端之间进行无线电通信,收发器1710可以包括发送器1711和接收器1712。处理器1720执行图6、图9和图11中各种用于与终端通信的功能。在上行链路,来自终端的上行链路信号经由天线接收,由收发器1710进行调解,并进一步由处理器1720进行处理来恢复终端所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由处理器1720进行处理,例如图9中步骤940,并由收发器1710进行调解来产生下行链路信号,并经由天线发射给终端。
该基站还可以包括:存储器1730用于存储基站的程序代码和数据。通信单元1740用于支持与其他网络实体的通信,例如,用于支持基站与核心网等其他通信网络实体间进行通信。
需要说明的是,用于执行本发明上述基站和终端的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(英文:digital signal processing,DSP)、专用集成电路(英文:application-specific integrated circuit,ASIC),现场可编程门阵列(英文:field-programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
存储器可以是易失性存储器(英文:volatile memory),例如随机存取存储器(英文:random-access memory,RAM),也可以是非易失性存储器(英文:non-volatile memory),例如只读存储器(英文:read-only memory,ROM),快闪存储器(英文:flash memory),硬盘(英文:hard disk drive,HDD)或固态硬盘(英文:solid-state drive,SSD),还可以是上述种类的存储器的组合等等。
结合本文中所公开的实施例描述的方法或算法的步骤可以用硬件、处理器执行的软件模块,或者二者的结合来实施。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可擦除可编程只读寄存器(英文:erasable programmable read-only memory,EPROM)存储器、电可擦可编程只读存储器存储器(英文:electrically erasable programmable read-only memory,EEPROM)、硬盘、只读光盘(英文:compact disc read-only memory,CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (56)

  1. 一种基于波束的多连接通信方法,终端设备使用第一波束与网络设备通信连接,其特征在于,所述方法包括:
    所述终端设备使用第二波束建立与所述网络设备的通信连接。
  2. 根据权利要求1所述的方法,其特征在于,所述第一波束是第一波束对中的波束,所述第一波束是所述终端设备使用的波束;
    所述第二波束是第二波束对中的波束,所述第二波束是所述终端设备使用的波束;
    所述终端设备使用第二波束建立与所述网络设备的通信之前,所述方法还包括:
    所述终端设备使用所述第二波束接收所述网络设备的多个波束中每个波束发送的参考信号;
    所述终端设备根据所述参考信号,对所述网络设备的多个波束的信号质量进行测量;
    所述终端设备根据测量结果,确定所述第二波束对。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备使用第二波束建立与所述网络设备的通信,具体包括:
    所述终端设备使用所述第二波束,向所述网络设备发送随机接入前导码消息;
    所述终端设备使用所述第二波束,接收所述网络设备根据所述随机接入前导码消息发送的随机接入响应消息;
    所述终端设备根据所述随机接入响应消息并使用所述第二波束,向所述网络设备发送第一消息,所述第一消息包括所述终端设备的标识信息和波束连接建立请求信息;
    所述终端设备使用所述第二波束,接收所述网络设备根据所述终端设备的标识信息和所述波束连接建立请求信息发送的第一响应消息,以使所述终端设备与所述网络设备建立通信连接。
  4. 根据权利要求3所述的方法,其特征在于,所述第一响应消息包括波束连接建立信息,
    所述终端设备使用所述第二波束,接收所述网络设备根据所述终端设备的标识信息和所述波束连接建立请求信息发送的第一响应消息,具体包括:
    所述终端设备使用所述第二波束,接收所述网络设备根据所述终端设备的标识信息和所述波束建立请求信息发送的波束连接建立信息,以指示所述终端设备与所述网络设备建立通信连接。
  5. 根据权利要求2所述的方法,其特征在于,所述终端设备使用第二波束建立与所述网络设备的通信之前,所述方法还包括:
    所述终端设备使用多个波束,接收所述网络设备的多个波束发送的参考信号;
    所述终端设备根据所述参考信号,对所述网络设备的多个波束的信号质量进行测量;
    所述终端设备使用所述第一波束,向所述网络设备发送测量报告,所述测量报告包括所述网络设备的多个波束的信号质量的测量结果;
    所述终端设备使用所述第一波束,接收所述网络设备根据所述测量结果发送的第二消息,所述第二消息包括第一指示信息;
    所述终端设备根据所述第一指示信息,确定所述第二波束对。
  6. 根据权利要求5所述的方法,其特征在于,所述第一指示信息包括所述网络设备 的所述多个波束中第二波束的索引信息,
    所述终端设备根据所述第一指示信息,确定第二波束对,具体包括:
    所述终端设备根据所述第二波束的索引信息,确定所述第二波束对。
  7. 根据权利要求6所述的方法,其特征在于,所述第一指示信息还包括指令信息,
    所述终端设备使用第二波束建立与所述网络设备的通信,具体包括:
    所述终端设备根据所述指令信息并使用所述第二波束,向所述网络设备发送随机接入前导码消息;
    所述终端设备使用所述第二波束,接收所述网络设备根据所述随机接入前导码消息发送的随机接入响应消息,所述随机接入响应消息包括第二指示信息;
    所述终端设备根据所述第二指示信息,确定与所述网络设备建立通信连接。
  8. 一种基于波束的多连接通信方法,其特征在于,所述方法包括:
    终端设备确定多个第一波束对,所述第一波束对包括所述终端设备的第一波束和网络设备的第一波束;
    所述终端设备使用每个所述第一波束,向所述网络设备发送第一消息,所述第一消息包括所述终端设备的标识信息;
    所述终端设备使用每个所述第一波束,接收所述网络设备根据所述标识信息发送的第二消息;
    所述终端设备根据所述第二消息,与所述网络设备建立通信连接。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备确定多个第一波束对,具体包括:
    所述终端设备使用所述终端设备的每个波束,接收网络设备的多个波束中每个波束发送的参考信号;
    所述终端设备根据所述参考信号,确定多个第一波束对。
  10. 根据权利要求8所述的方法,其特征在于,终端设备确定多个第一波束对之后,所述方法还包括:
    所述终端设备使用所述终端设备的除所述第一波束之外的第二波束,向所述网络设备发送第一消息,所述第一消息包括所述终端设备的标识信息和所述第一波束的索引信息;
    所述终端设备使用每个所述第一波束,接收所述网络设备根据所述标识信息和所述第一波束的索引信息发送的第二消息。
  11. 根据权利要求8所述的方法,其特征在于,所述第二消息为RRC连接建立消息,或者所述第二消息为波束连接建立消息;
    所述终端设备使用多个所述第一波束,接收所述网络设备根据所述标识信息发送的第二消息,具体包括:
    当所述网络设备根据所述标识信息确定所述终端设备的工作状态为空闲状态时,所述终端设备使用一个所述第一波束,接收所述网络设备发送的所述RRC连接建立消息,以使所述终端设备与所述网络设备建立RRC连接;
    或者,
    当所述网络设备根据所述标识信息确定所述终端设备的工作状态为连接状态时,所述终端设备使用多个所述第一波束,接收所述网络设备发送的所述波束连接建立消息,以使 所述终端设备与所述网络设备建立多个波束连接。
  12. 根据权利要求11所述的方法,其特征在于,所述终端设备根据所述第二消息,与所述网络设备建立通信连接,具体包括:
    当所述终端设备接收所述网络设备发送的所述RRC连接建立消息时,所述终端设备与所述网络设备建立RRC连接;或者,
    当所述终端设备接收所述网络设备发送的所述波束连接建立消息时,所述终端设备与所述网络设备建立波束连接。
  13. 根据权利要求8所述的方法,其特征在于,所述终端设备使用每个所述第一波束,向所述网络设备发送第一消息之前,所述方法还包括:
    所述终端设备使用每个所述第一波束,向所述网络设备发送随机接入前导码消息;
    所述终端设备使用每个所述第一波束,接收所述网络设备根据所述随机接入前导码消息发送的随机接入响应消息。
  14. 根据权利要求13所述的方法,其特征在于,所述终端设备使用每个所述第一波束,向所述网络设备发送随机接入前导码消息,具体包括:所述终端设备使用每个所述第一波束,同时向所述网络设备发送随机前导码接入消息;或者,
    所述终端设备使用每个所述第一波束,依次向所述网络设备发送随机前导码接入消息。
  15. 一种基于波束的多连接通信方法,网络设备使用第一波束与终端设备通信连接,其特征在于,所述方法包括:
    所述网络设备使用第二波束建立与所述终端设备的通信连接。
  16. 根据权利要求15所述的方法,其特征在于,所述第一波束是第一波束对中的波束,所述第一波束是所述网络设备使用的波束;
    所述第二波束是第二波束对中的波束,所述第二波束是所述网络设备使用的波束;
    所述网络设备使用第二波束建立与所述终端设备的通信连接之前,所述方法还包括:
    所述网络设备使用多个所述第二波束,向所述终端设备发送参考信号,以使所述终端设备对多个所述第二波束的信号质量进行测量,确定所述第二波束对。
  17. 根据权利要求16所述的方法,其特征在于,所述网络设备使用第二波束建立与所述终端设备的通信,具体包括:
    所述网络设备使用所述第二波束,接收所述终端设备发送的随机接入前导码消息;
    所述网络设备根据所述随机接入前导码消息并使用所述第二波束,向所述终端设备发送随机接入响应消息;
    所述网络设备使用所述第二波束,接收所述终端设备根据所述随机接入响应消息发送的第一消息,所述第一消息包括所述终端设备的标识信息和波束连接建立请求信息;
    所述网络设备根据所述终端设备的标识信息和所述波束连接建立请求信息并使用第二波束,向所述终端设备发送第一响应消息,以使所述网络设备使用第二波束与所述终端设备建立通信连接。
  18. 根据权利要求17所述的方法,其特征在于,所述第一响应消息包括波束连接建立信息,
    所述网络设备根据所述终端设备的标识信息和所述波束连接建立请求信息并使用第 二波束,向所述终端设备发送第一响应消息,具体包括:
    所述网络设备根据所述终端设备的标识信息和所述波束连接建立请求信息并使用第二波束,向所述终端设备发送所述波束连接建立信息。
  19. 根据权利要求16所述的方法,其特征在于,所述网络设备使用第二波束建立与所述终端设备的通信之前,所述方法还包括:
    所述网络设备使用多个波束,向所述终端设备发送参考信号,以使所述终端设备对网络设备的多个波束的信号质量进行测量;
    所述网络设备使用所述第一波束,接收所述终端设备发送的测量报告,所述测量报告包括所述网络设备的多个波束中多个波束的信号质量的测量结果;
    所述网络设备根据所述测量结果确定所述第二波束后,使用所述第一波束,向所述终端设备发送第二消息,所述第二消息包括第一指示信息,以使所述终端设备根据所述第一指示信息,确定所述第二波束对。
  20. 根据权利要求19所述的方法,其特征在于,所述第一指示信息包括所述网络设备的第二波束的索引信息,以使所述终端设备根据所述索引信息,确定所述第二波束对。
  21. 根据权利要求20所述的方法,其特征在于,所述第一指示信息还包括指令信息,
    所述网络设备使用第二波束建立与所述终端设备的通信,具体包括:
    所述网络设备使用所述第二波束,接收所述终端设备根据所述指令信息发送的随机接入前导码消息;
    所述网络设备根据所述随机接入前导码消息并使用所述第二波束,向所述终端设备发送随机接入响应消息,所述随机接入响应消息包括第二指示信息,以使所述终端设备根据所述第二指示信息确定与所述网络设备建立通信连接。
  22. 一种基于波束的多连接通信方法,其特征在于,所述方法包括:
    网络设备接收终端设备在确定多个第一波束对后发送的第一消息,所述第一消息包括所述终端设备的标识信息;
    所述网络设备根据所述终端设备的标识信息,向所述终端设备发送第二消息,以使所述终端设备根据所述第二消息,与所述网络设备建立通信连接。
  23. 根据权利要求22所述的方法,其特征在于,所述网络设备接收终端设备在确定多个第一波束对后发送的第一消息,具体包括:
    所述网络设备使用所述网络设备的第一波束,接收所述终端设备在确定多个第一波束对后发送的第一消息,所述网络设备的第一波束是所述第一波束对中的波束。
  24. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    所述网络设备使用所述网络设备的第二波束,接收所述终端设备在确定多个第一波束对后发送的第一消息,所述第一消息包括所述终端设备的标识信息和所述第一波束对中所述终端设备的第一波束的索引信息,所述网络设备的第二波束是除所述第一波束外的波束;
    所述网络设备根据所述终端设备的标识信息,向所述终端设备发送第二消息,具体包括:
    所述网络设备根据所述终端设备的标识信息和所述终端设备的第一波束的索引信息,向所述终端设备发送第二消息。
  25. 根据权利要求22所述的方法,其特征在于,所述第二消息为RRC连接建立消息,或者所述第二消息为波束连接建立消息;
    所述网络设备根据所述标识信息并使用多个所述第一波束,向所述终端设备发送第二消息,具体包括:
    当所述网络设备根据所述标识信息确定所述终端设备的工作状态为空闲状态时,所述网络设备使用一个所述第一波束,向所述终端设备发送所述RRC连接建立消息,以使所述终端设备与所述网络设备建立RRC连接;
    或者,
    当所述网络设备根据所述标识信息确定所述终端设备的工作状态为连接状态时,所述网络设备使用多个所述第一波束,向所述终端设备发送所述波束连接建立消息,以使所述终端设备与所述网络设备建立多个波束连接。
  26. 根据权利要求25所述的方法,其特征在于,所述网络设备使用多个所述第一波束,接收所述终端设备发送的第一消息之前,所述方法还包括:
    所述网络设备使用多个所述第一波束,接收所述终端设备发送的随机前导码接入消息;
    所述网络设备根据所述随机接入前导码消息并使用多个所述第一波束,向所述终端设备发送随机接入响应消息。
  27. 根据权利要求26所述的方法,其特征在于,所述网络设备使用多个所述第一波束,接收所述终端设备发送的随机接入前导码消息,具体包括:
    所述网络设备使用多个所述第一波束,同时接收所述终端设备发送的随机前导码接入消息;或者,
    所述网络设备使用多个所述第一波束,依次接收所述终端设备发送的随机前导码接入消息。
  28. 一种终端设备,终端设备使用第一波束与网络设备通信连接,其特征在于,所述终端设备包括:
    处理单元,用于使用第二波束建立与所述网络设备的通信连接。
  29. 根据权利要求28所述的终端设备,其特征在于,所述终端设备还包括:接收单元,
    所述接收单元,用于使用多个所述第二波束,接收所述网络设备的多个波束中每个波束发送的参考信号;
    所述处理单元,还用于根据所述参考信号,对所述网络设备的多个波束的信号质量进行测量;
    根据测量结果,确定所述第二波束对;
    所述第一波束是第一波束对中的波束,所述第一波束是所述终端设备使用的波束;
    所述第二波束是第二波束对中的波束,所述第二波束是所述终端设备使用的波束。
  30. 根据权利要求29所述的终端设备,其特征在于,所述终端设备还包括:发送单元,
    所述发送单元,用于使用所述第二波束,向所述网络设备发送随机接入前导码消息;
    所述接收单元,用于使用所述第二波束,接收所述网络设备根据所述随机接入前导码 消息发送的随机接入响应消息;
    所述发送单元,还用于根据所述随机接入响应消息并使用所述第二波束,向所述网络设备发送第一消息,所述第一消息包括所述终端设备的标识信息和波束连接建立请求信息;
    所述接收单元,还用于使用所述第二波束,接收所述网络设备根据所述终端设备的标识信息和所述波束连接建立请求信息发送的第一响应消息,以使所述终端设备与所述网络设备建立通信连接。
  31. 根据权利要求30所述的终端设备,其特征在于,所述第一响应消息包括波束连接建立信息,
    所述接收单元,具体用于使用所述第二波束,接收所述网络设备根据所述终端设备的标识信息和所述波束建立请求信息发送的波束连接建立信息,以指示所述终端设备与所述网络设备建立通信连接。
  32. 根据权利要求29所述的终端设备,其特征在于,所述处理单元使用第二波束建立与所述网络设备的通信之前,
    所述接收单元,还用于使用多个波束,接收所述网络设备的多个波束发送的参考信号;
    所述处理单元,还用于根据所述参考信号,对所述网络设备的多个波束的信号质量进行测量;
    所述发送单元,还用于使用所述第一波束,向所述网络设备发送测量报告,所述测量报告包括所述网络设备的多个波束的信号质量的测量结果;
    所述接收单元,还用于使用所述第一波束,接收所述网络设备根据所述测量结果发送的第二消息,所述第二消息包括第一指示信息;
    所述处理单元,还用于根据所述第一指示信息,确定所述第二波束对。
  33. 根据权利要求32所述的终端设备,其特征在于,所述第一指示信息包括所述网络设备的所述多个波束中第二波束的索引信息,
    所述处理单元,具体用于根据所述索引信息,确定所述第二波束对。
  34. 根据权利要求33所述的终端设备,其特征在于,所述第一指示信息还包括指令信息,
    所述发送单元,还用于根据所述指令信息并使用所述第二波束,向所述网络设备发送随机接入前导码消息;
    所述接收单元,还用于使用所述第二波束,接收所述网络设备根据所述随机接入前导码消息发送的随机接入响应消息,所述随机接入响应消息包括第二指示信息;
    所述处理单元,还用于根据所述第二指示信息,确定与所述网络设备建立通信连接。
  35. 一种终端设备,其特征在于,所述终端设备包括:
    处理单元,用于确定多个第一波束对,所述第一波束对包括终端设备的第一波束和网络设备的第一波束;
    发送单元,用于使用每个所述第一波束,向所述网络设备发送第一消息,所述第一消息包括所述终端设备的标识信息;
    接收单元,还用于使用每个所述第一波束,接收所述网络设备根据所述标识信息发送的第二消息;
    所述处理单元,还用于根据所述第二消息,与所述网络设备建立通信连接。
  36. 根据权利要求35所述的终端设备,其特征在于,
    所述接收单元,还用于使用所述终端设备的每个波束,接收所述网络设备的多个波束中每个波束发送的参考信号;
    所述处理单元,具体用于根据所述参考信号,确定多个第一波束对。
  37. 根据权利要求35所述的终端设备,其特征在于,
    所述发送单元,还用于使用所述终端设备的除所述第一波束之外的第二波束,向所述网络设备发送第一消息,所述第一消息包括所述终端设备的标识信息和所述第一波束的索引信息;
    所述接收单元,还用于使用每个所述第一波束,接收所述网络设备根据所述标识信息和所述第一波束的索引信息发送的第二消息。
  38. 根据权利要求35所述的终端设备,其特征在于,所述第二消息为RRC连接建立消息,或者所述第二消息为波束连接建立消息;
    所述接收单元,具体用于当所述处理单元根据所述标识信息确定所述终端设备的工作状态为空闲状态时,所述接收单元使用一个所述第一波束,接收所述网络设备发送的所述RRC连接建立消息,以使所述处理单元与所述网络设备建立RRC连接;
    或者,
    当所述处理单元根据所述标识信息确定所述终端设备的工作状态为连接状态时,所述接收单元使用多个所述第一波束,接收所述网络设备发送的所述波束连接建立消息,以使所述处理单元与所述网络设备建立多个波束连接。
  39. 根据权利要求38所述的终端设备,其特征在于,
    当所述接收单元接收所述网络设备发送的所述RRC连接建立消息时,所述处理单元与所述网络设备建立RRC连接;或者,
    当所述接收单元接收所述网络设备发送的所述波束连接建立消息时,所述处理单元与所述网络设备建立波束连接。
  40. 根据权利要求35所述的终端设备,其特征在于,所述发送单元使用每个所述第一波束,向所述网络设备发送第一消息之前,
    所述发送单元,还用于使用每个所述第一波束,向所述网络设备发送随机接入前导码消息;
    所述接收单元,还用于使用每个所述第一波束,接收所述网络设备根据所述随机接入前导码消息发送的随机接入响应消息。
  41. 根据权利要求40所述的终端设备,其特征在于,所述发送单元,具体用于使用每个所述第一波束,同时向所述网络设备发送随机前导码接入消息;或者,
    使用每个所述第一波束,依次向所述网络设备发送随机前导码接入消息。
  42. 一种网络设备,网络设备使用第一波束与终端设备通信连接,其特征在于,所述网络设备包括:
    处理单元,用于使用第二波束建立与所述终端设备的通信连接。
  43. 根据权利要求42所述的网络设备,其特征在于,所述网络设备还包括:发送单 元,
    所述发送单元,用于使用多个所述第二波束,向所述终端设备发送参考信号,以使所述终端设备对多个所述第二波束的信号质量进行测量,确定第二波束对;
    所述第一波束是第一波束对中的波束,所述第一波束是所述网络设备使用的波束;
    所述第二波束是第二波束对中的波束,所述第二波束是所述网络设备使用的波束。
  44. 根据权利要求43所述的网络设备,其特征在于,所述网络设备还包括:接收单元,
    所述接收单元,用于使用所述第二波束,接收所述终端设备发送的随机接入前导码消息;
    所述发送单元,还用于根据所述随机接入前导码消息并使用所述第二波束,向所述终端设备发送随机接入响应消息;
    所述接收单元,还用于使用所述第二波束,接收所述终端设备根据所述随机接入响应消息发送的第一消息,所述第一消息包括所述终端设备的标识信息和波束连接建立请求信息;
    所述发送单元,还用于根据所述终端设备的标识信息和所述波束连接建立请求信息并使用第二波束,向所述终端设备发送第一响应消息,以使所述处理单元使用第二波束与所述终端设备建立通信连接。
  45. 根据权利要求44所述的网络设备,其特征在于,所述第一响应消息包括波束连接建立信息,
    所述发送单元,具体用于根据所述终端设备的标识信息和所述波束连接建立请求信息并使用第二波束,向所述终端设备发送所述波束连接建立信息。
  46. 根据权利要求43所述的网络设备,其特征在于,所述处理单元使用第二波束建立与所述终端设备的通信之前,
    所述发送单元,还用于使用多个波束,向所述终端设备发送参考信号,以使所述终端设备对网络设备的多个波束的信号质量进行测量;
    所述接收单元,还用于使用所述第一波束,接收所述终端设备发送的测量报告,所述测量报告包括所述网络设备的多个波束的信号质量的测量结果;
    所述发送单元,还用于根据所述测量结果并使用所述第一波束,向所述终端设备发送第二消息,所述第二消息包括第一指示信息,以使所述终端设备根据所述第一指示信息,确定所述第二波束对。
  47. 根据权利要求46所述的网络设备,其特征在于,所述第一指示信息包括所述网络设备的第二波束的索引信息,以使所述终端设备根据所述索引信息,确定所述第二波束对。
  48. 根据权利要求47所述的网络设备,其特征在于,所述第一指示信息还包括指令信息,
    所述接收单元,还用于使用所述第二波束,接收所述终端设备根据所述指令信息发送的随机接入前导码消息;
    所述发送单元,还用于根据所述随机接入前导码消息并使用所述第二波束,向所述终端设备发送随机接入响应消息,所述随机接入响应消息包括第二指示信息,以使所述终端 设备根据所述第二指示信息确定与所述网络设备建立通信连接。
  49. 一种网络设备,其特征在于,所述网络设备包括:
    接收单元,用于接收终端设备在确定多个第一波束对后发送的第一消息,所述第一消息包括所述终端设备的标识信息;
    发送单元,用于根据所述标识信息,向所述终端设备发送第二消息,以使所述终端设备根据所述第二消息,与所述网络设备建立通信连接。
  50. 根据权利要求43所述的网络设备,其特征在于,
    所述接收单元,具体用于使用所述网络设备的第一波束,接收所述终端设备在确定多个第一波束对后发送的第一消息,所述网络设备的第一波束是所述第一波束对中的波束。
  51. 根据权利要求43所述的网络设备,其特征在于,
    所述接收单元,还用于使用所述网络设备的第二波束,接收所述终端设备在确定多个第一波束对后发送的第一消息,所述第一消息包括所述终端设备的标识信息和所述第一波束对中所述终端设备的第一波束的索引信息,所述网络设备的第二波束是除所述第一波束外的波束;
    所述发送单元,具体用于根据所述标识信息和所述终端设备的第一波束的索引信息,向所述终端设备发送第二消息。
  52. 根据权利要求49所述的网络设备,其特征在于,所述网络设备还包括:处理单元,
    所述第二消息为RRC连接建立消息,或者所述第二消息为波束连接建立消息;
    所述发送单元,具体用于:当所述处理单元根据所述标识信息确定所述终端设备的工作状态为空闲状态时,所述发送单元使用一个所述第一波束,向所述终端设备发送所述RRC连接建立消息,以使所述终端设备与所述处理单元建立RRC连接;
    或者,
    当所述处理单元根据所述标识信息确定所述终端设备的工作状态为连接状态时,所述发送单元使用多个所述第一波束,向所述终端设备发送所述波束连接建立消息,以使所述终端设备与所述处理单元建立多个波束连接。
  53. 根据权利要求52所述的网络设备,其特征在于,所述接收单元使用多个所述第一波束,接收所述终端设备发送的第一消息之前,
    所述接收单元,还用于使用多个所述第一波束,接收所述终端设备发送的随机前导码接入消息;
    所述发送单元,还用于根据所述随机接入前导码消息并使用多个所述第一波束,向所述终端设备发送随机接入响应消息。
  54. 根据权利要求53所述的网络设备,其特征在于,所述接收单元,具体用于使用多个所述第一波束,同时接收所述终端设备发送的随机前导码接入消息;或者,
    使用多个所述第一波束,依次接收所述终端设备发送的随机前导码接入消息。
  55. 一种计算机可读存储介质,其特征在于,包括指令,当其在设备上运行时,使得该设备执行如权利要求1至27中任一项所述的方法。
  56. 一种装置,其特征在于,包括存储器、处理器及存储在存储器上并可在处理 器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1至27中任一项所述的方法。
PCT/CN2017/106093 2016-10-21 2017-10-13 基于波束的多连接通信方法、终端设备及网络设备 WO2018072651A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17861618.1A EP3522664A4 (en) 2016-10-21 2017-10-13 BEAM-BASED MULTI-LINK COMMUNICATION PROCESS, DEVICE DEVICE AND NETWORK DEVICE
US16/389,443 US20190246434A1 (en) 2016-10-21 2019-04-19 Beam-based multi-connection communication method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610921222.6 2016-10-21
CN201610921222.6A CN108377558A (zh) 2016-10-21 2016-10-21 基于波束的多连接通信方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/389,443 Continuation US20190246434A1 (en) 2016-10-21 2019-04-19 Beam-based multi-connection communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2018072651A1 true WO2018072651A1 (zh) 2018-04-26

Family

ID=62018223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106093 WO2018072651A1 (zh) 2016-10-21 2017-10-13 基于波束的多连接通信方法、终端设备及网络设备

Country Status (4)

Country Link
US (1) US20190246434A1 (zh)
EP (1) EP3522664A4 (zh)
CN (1) CN108377558A (zh)
WO (1) WO2018072651A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019228459A1 (zh) * 2018-05-30 2019-12-05 华为技术有限公司 通信方法、装置及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111867146B (zh) * 2019-04-30 2022-07-22 大唐移动通信设备有限公司 一种标识信息发送、接收方法、设备及装置
WO2021000295A1 (zh) * 2019-07-03 2021-01-07 北京小米移动软件有限公司 随机接入方法、装置、系统及存储介质
CN112469063A (zh) * 2019-09-06 2021-03-09 中兴通讯股份有限公司 数据传输系统及方法、装置、存储介质、电子装置
US20230189026A1 (en) * 2020-03-17 2023-06-15 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for measuring channel state information
WO2022191761A1 (en) * 2021-03-11 2022-09-15 Telefonaktiebolaget Lm Ericsson (Publ) Beam switching for wireless communication
CN115996394A (zh) * 2021-10-20 2023-04-21 华为技术有限公司 一种波束失败恢复的方法和通信装置
CN117687348B (zh) * 2024-02-04 2024-05-14 科扬环境科技有限责任公司 基于物联网的高可靠度的废气处理设备集群的控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881829A (zh) * 1998-07-21 2006-12-20 高通股份有限公司 用于减少多波束通信系统中呼叫丢失率的系统和方法
WO2014187322A1 (zh) * 2013-12-20 2014-11-27 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9414336B2 (en) * 2010-05-12 2016-08-09 Blackberry Limited System and method for defining a burst period
WO2012066011A1 (en) * 2010-11-15 2012-05-24 Research In Motion Limited Managing communications across a wireless network
US9585083B2 (en) * 2011-06-17 2017-02-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
KR101839386B1 (ko) * 2011-08-12 2018-03-16 삼성전자주식회사 무선 통신 시스템에서의 적응적 빔포밍 장치 및 방법
CN103228000B (zh) * 2012-01-31 2016-09-07 上海贝尔股份有限公司 用于维护多点协作的方法与装置
CN104782055B (zh) * 2012-08-31 2017-12-15 Lg电子株式会社 用于在无线通信系统中虚拟化天线的方法和装置
EP2892297A4 (en) * 2012-09-28 2015-08-12 Huawei Tech Co Ltd METHOD AND APPARATUS FOR CONFIGURING RESOURCES
CN109756252A (zh) * 2013-12-16 2019-05-14 华为技术有限公司 无线通信系统中调整波束宽度的方法和装置
KR101970625B1 (ko) * 2014-05-15 2019-08-13 후아웨이 테크놀러지 컴퍼니 리미티드 밀리미터 연결 구축 방법 및 장치
WO2016074195A1 (zh) * 2014-11-13 2016-05-19 华为技术有限公司 高频通信的信号同步方法及装置
KR102126323B1 (ko) * 2015-03-28 2020-06-24 후아웨이 테크놀러지 컴퍼니 리미티드 무선 액세스 방법 및 장치, 통신 시스템, 그리고 단말

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881829A (zh) * 1998-07-21 2006-12-20 高通股份有限公司 用于减少多波束通信系统中呼叫丢失率的系统和方法
WO2014187322A1 (zh) * 2013-12-20 2014-11-27 中兴通讯股份有限公司 Mimo波束赋形通信系统中波束识别方法、相关设备及系统
CN105556869A (zh) * 2015-05-12 2016-05-04 瑞典爱立信有限公司 用于波束选择的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522664A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019228459A1 (zh) * 2018-05-30 2019-12-05 华为技术有限公司 通信方法、装置及存储介质
US11690116B2 (en) 2018-05-30 2023-06-27 Huawei Technologies Co., Ltd. Communication method, communications apparatus, and storage medium

Also Published As

Publication number Publication date
EP3522664A1 (en) 2019-08-07
EP3522664A4 (en) 2019-10-09
CN108377558A (zh) 2018-08-07
US20190246434A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
EP3531787B1 (en) Wave beam-based multi-connection communication method, terminal device, and network device
WO2018072651A1 (zh) 基于波束的多连接通信方法、终端设备及网络设备
US11337126B2 (en) Multi-RAT sidelink communications
CN112425218B (zh) 用于通用无rach移动性的方法和系统
WO2016165128A1 (zh) 传输信息的方法、基站和用户设备
WO2011004748A1 (ja) 通信システム、移動局装置および基地局装置
WO2017005041A1 (zh) 一种数据通信方法和装置
KR102182636B1 (ko) 무선 통신 시스템에서 셀 정보 송수신 방법 및 장치
JP7333827B2 (ja) 直流成分の周波数領域の位置を決定するための方法および装置、記憶媒体、端末、ならびに基地局
CN113225801B (zh) 同步信号传输方法和设备
CN114557035A (zh) 切换命令中的有条件切换
CN114514771B (zh) 用于早期测量报告的增强过程
RU2724131C1 (ru) Способ обмена информацией о формировании луча и сетевое устройство
WO2018171626A1 (zh) 随机接入响应的方法和设备以及随机接入的方法和设备
WO2020103797A1 (zh) 无线通信的方法和装置
US10383038B2 (en) Apparatus and methods for providing and receiving system information in a wireless communications network
CN116325605A (zh) Tci状态列表更新方法、装置、设备及存储介质
CN109155953B (zh) 小区切换方法及装置
KR102308366B1 (ko) 멀티 빔 시스템에서 제어 채널의 탐지 범위를 확정하는 방법과 장치
CN105992191B (zh) 一种上行数据接收控制、接收、发送方法及装置
WO2024027220A9 (zh) 一种卫星网络中的同步方法及装置
RU2796633C1 (ru) Способ обнаружения отказа луча и оконечное устройство
KR102000567B1 (ko) 무선 통신 시스템에서 무선 백홀 링크 형성 장치 및 방법
CN110972104B (zh) V2x通信方法及装置
CN117336819A (zh) Ssb传输方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017861618

Country of ref document: EP

Effective date: 20190502