WO2018072647A1 - Procédé et système utilisés par un véhicule articulé à essieux multiples suivant une ligne de voie centrale - Google Patents

Procédé et système utilisés par un véhicule articulé à essieux multiples suivant une ligne de voie centrale Download PDF

Info

Publication number
WO2018072647A1
WO2018072647A1 PCT/CN2017/106045 CN2017106045W WO2018072647A1 WO 2018072647 A1 WO2018072647 A1 WO 2018072647A1 CN 2017106045 W CN2017106045 W CN 2017106045W WO 2018072647 A1 WO2018072647 A1 WO 2018072647A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane line
steering
front wheel
heading
Prior art date
Application number
PCT/CN2017/106045
Other languages
English (en)
Chinese (zh)
Inventor
许峻峰
李晓光
袁希文
肖磊
彭京
蒋小晴
刘小聪
张陈林
朱田
Original Assignee
中车株洲电力机车研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车株洲电力机车研究所有限公司 filed Critical 中车株洲电力机车研究所有限公司
Priority to NZ752017A priority Critical patent/NZ752017B2/en
Publication of WO2018072647A1 publication Critical patent/WO2018072647A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/002Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits computing target steering angles for front or rear wheels

Definitions

  • the invention relates to the field of multi-axis steering vehicle control, and in particular to a multi-axis steering vehicle tracking central lane line steering control method and system.
  • Multi-axle steering rubber wheel train is a new type of urban public passenger transport vehicle. Its characteristics are that the rubber wheel is trackless, shares the right to the road with the traditional car, and no longer travels along the fixed track. It not only has the advantages of flexible bus driving, low construction and maintenance cost, but also has the advantage of large transportation capacity, and overcomes the infrastructure construction of subway, light rail, tram and other vehicles and the high cost of vehicle purchase. It requires a special power system and The shortcomings of the track fit design.
  • the multi-axle rubber wheel train canceled the rail. Instead, it was driven by the rubber wheel and the car to follow the ground marking line.
  • the ground marking line was flexible, so that the vehicle did not need to travel along the fixed track, and the infrastructure was greatly reduced. Cost has a greater operational advantage than trams.
  • the tram does not need to be manually controlled to turn, multi-axis steering rubber train requires the driver to constantly adjust the steering wheel to track the ground marking line (central lane line, white double dotted line) in real time, long-term driving, will inevitably cause driver fatigue. Therefore, how to invent a device for automatically recognizing a central lane line and realizing a lane keeping function of a multi-axis steering vehicle, thereby reducing driver fatigue, is an urgent problem to be solved.
  • the technical problem to be solved by the present invention is that, in view of the technical problems existing in the prior art, the present invention provides a method for ensuring that the vehicle effectively tracks the central lane line during the automatic driving process, and realizes automatic follow-up and automatic maintenance of the vehicle to the central lane line.
  • the technical solution proposed by the present invention is: a multi-axis steering vehicle tracking central lane line steering control method, comprising the following steps:
  • the visual heading deviation is obtained by the lane recognition visual system of the vehicle.
  • the heading estimate is calculated by calculating a longitudinal position within a preset time period of the vehicle The ratio of the shift to the turning radius of the vehicle is determined.
  • the turning radius of the vehicle is obtained by acquiring a distance between the front and rear axles of the vehicle and a steering angle of the front wheel, and according to a turning radius of the vehicle, a distance between the front and rear axles of the vehicle, and a steering angle of the front wheel.
  • the triangle relationship is determined.
  • the incremental PID algorithm in the step S2 is as shown in the formula (1).
  • ⁇ u is the increment of the steering angle of the front wheel of the vehicle
  • e(k) is the first Equivalent heading deviation at k sampling moments
  • is the visual heading deviation, Estimated for the heading.
  • the present invention also provides a multi-axis steering vehicle tracking central lane line steering control system, including a lane line visual recognition module, a data acquisition unit, a decision control unit, and an execution unit; the lane line visual recognition module Means for identifying lane lines and providing visual heading deviation information to the decision control unit; the data acquisition unit is configured to collect and provide the decision unit with speed information of the vehicle and front wheel steering angle information of the vehicle; The control unit is configured to calculate a heading predicted amount according to the speed information and the front wheel steering angle information provided by the data collecting unit, and calculate a desired front wheel steering angle of the vehicle according to the heading predicted amount and the visual heading deviation, and Providing the desired front wheel steering angle to an execution unit; the execution unit controls vehicle steering based on the desired front wheel steering angle.
  • a lane line visual recognition module Means for identifying lane lines and providing visual heading deviation information to the decision control unit
  • the data acquisition unit is configured to collect and provide the decision unit with speed information of the vehicle and front wheel steering angle information of the vehicle
  • the control unit
  • the lane line visual recognition module includes a camera and an image processing system; the camera is configured to acquire a lane line image, and the image processing system analyzes the lane line image to obtain the vision Heading deviation.
  • the data acquisition unit includes a front wheel steering angle sensor and a vehicle speed sensor; the front wheel steering angle sensor is configured to acquire front wheel steering angle information of the vehicle, and the vehicle speed sensor is configured to acquire a speed of the vehicle information.
  • the decision control unit further includes a manual driving mode, and when the manual driving mode is turned on, the decision control unit does not provide the desired front wheel steering angle to the execution unit.
  • the data acquisition unit further includes a torque sensor for acquiring an external force applied to the steering wheel of the vehicle and transmitting the external force to the decision control unit; the decision control unit according to the external force Turn on manual driving mode.
  • the invention has the advantages that the invention can ensure that the vehicle effectively tracks the central lane line during the automatic driving process, realizes the automatic following and automatic maintenance of the vehicle to the central lane line, thereby improving driving safety and reducing driving.
  • the working intensity of the driver is the same.
  • FIG. 1 is a schematic flow chart of a specific embodiment of the present invention.
  • FIG. 2 is a schematic view showing the arrangement of a tracking center lane line system according to the present invention.
  • FIG. 3 is a schematic diagram of heading estimation and previewing of the present invention.
  • Figure 4 is a schematic view of the central lane line of the present invention.
  • FIG. 5 is a schematic diagram of a 2-DOF heading estimation model of the vehicle of the present invention.
  • FIG. 6 is a schematic diagram of a flow chart for calculating the steering angle of the front wheel according to the present invention.
  • FIG. 7 is a schematic structural diagram 1 of a tracking center lane line steering control system according to the present invention.
  • FIG. 8 is a schematic structural diagram 2 of a tracking center lane steering control system according to the present invention.
  • the multi-axis steering vehicle of the present embodiment tracks the central lane line steering control method, and the steps are: S1. acquiring the visual heading deviation and the heading prediction amount of the vehicle; S2. according to the visual heading deviation and the heading prediction amount.
  • the vehicle front wheel steering is controlled by an incremental PID algorithm that calculates the desired front wheel steering angle of the vehicle.
  • the lateral distance deviation yL of the preview point and the lane line center, the heading angle ⁇ , the road curvature and the like are calculated, and the desired corner of the front wheel is determined, and Sended to the steering execution unit to cause the vehicle to follow the desired path.
  • the visual heading deviation is acquired by the lane recognition visual system of the vehicle.
  • the lane recognition visual system acquires the central lane line image information by using a monocular camera through a camera module mounted on the front of the vehicle, and analyzes and processes the image information through the image processing system to obtain a vehicle center and lane line. Information such as lateral distance deviation, heading deviation, and road curvature are then converted to the heading angle deviation between the pre-pick point and the vehicle centerline.
  • the pre-peep point by setting the pre-peep point to a certain position in front of the vehicle, the internal consistency between the lane line automatic tracking control and the driver's manual steering is realized, so that the present invention recognizes the visual heading of the vision system according to the lane line.
  • the deviation has a driver's driving behavior characteristic for the steering control of the vehicle.
  • the heading prediction and preview in the lane recognition visual system are shown in Figure 3, where XOY is the ground coordinate system, xoy is the vehicle coordinate system, p is the pre-peep point, d is the preview distance, and y1 is the estimated deviation. f(d) is the distance deviation of the preview.
  • the lane image acquired by the camera is processed to accurately confirm the lane.
  • the controller obtains the heading deviation according to the desired heading and the actual heading of the vehicle. Calculating the amount of control, and when the actuator performs this control amount, it has to go through a sampling period, which is the actual heading of the vehicle has changed, that is, there is a sampling period lag when the control quantity is executed, and the present invention adopts the heading prediction method. By predicting the trend of the vehicle's heading in advance, the control deviation is included, and the trend of the heading can influence the output of the controller to better achieve the tracking of the central lane line.
  • the heading estimate is determined by calculating the ratio of the longitudinal displacement in the preset time period of the vehicle to the turning radius of the vehicle.
  • the two-degree-of-freedom heading prediction model (half model) of the vehicle is shown in FIG. 5.
  • the sampling period T of the controller is a preset time period, and the vehicle heading is in a control period.
  • Amount of change Can be expressed as shown in equation (2),
  • Equation (2) For the heading estimate, v is the longitudinal speed of the vehicle, T is the sampling period of the controller, and R is the turning radius of the vehicle.
  • the turning radius of the vehicle is obtained by acquiring the distance between the front and rear axles of the vehicle and the steering angle of the front wheel, and calculating according to the triangular relationship between the turning radius of the vehicle, the distance between the front and rear axles of the vehicle, and the steering angle of the front wheel.
  • G is the center of gravity of the vehicle
  • R is the turning radius of the vehicle
  • a is the distance from the center of gravity of the vehicle to the front axle
  • b is the distance from the center of gravity of the vehicle to the rear axle
  • ⁇ f is the steering angle of the front wheel of the vehicle.
  • a + b is the distance between the front and rear axles of the vehicle. Since the vehicle steering center O is perpendicular to the line of the vehicle and the direction of the wheel, in the right triangle in FIG. 6, it is determined that the equation (3) is established according to the triangular relationship,
  • the incremental PID algorithm in step S2 is as shown in the formula (1).
  • ⁇ u is the increment of the steering angle of the front wheel of the vehicle
  • e(k) is the first Equivalent heading deviation at k sampling moments
  • is the visual heading deviation, Estimated for heading.
  • the multi-axis steering vehicle of this embodiment tracks the central lane line steering control system, including the vehicle.
  • a lane line visual recognition module is used to identify the lane line and provide visual heading deviation information to the decision control unit;
  • the data acquisition unit is configured to collect and provide to the decision unit The speed information of the vehicle and the front wheel steering angle information of the vehicle;
  • the decision control unit is configured to calculate the heading forecast amount according to the speed information and the front wheel steering angle information provided by the data collecting unit, and calculate the vehicle according to the heading forecast amount and the visual heading deviation
  • the front wheel steering angle is desired and the desired front wheel steering angle is provided to the execution unit;
  • the execution unit controls the vehicle steering based on the desired front wheel steering angle.
  • the lane line visual recognition module includes a camera and an image processing system; the camera is configured to acquire a lane line image, and the image processing system analyzes and processes the lane line image to obtain a visual heading deviation.
  • the data acquisition unit includes a front wheel steering angle sensor and a vehicle speed sensor; the front wheel steering angle sensor is used to acquire front wheel steering angle information of the vehicle, and the vehicle speed sensor is used to acquire speed information of the vehicle.
  • the decision control unit further includes a manual driving mode, and when the manual driving mode is turned on, the decision control unit does not provide the desired front wheel steering angle to the executing unit.
  • the data acquisition unit further includes a torque sensor for acquiring an external force applied to the steering wheel of the vehicle and transmitting the external force to the decision control unit; and the decision control unit turns on the manual driving mode according to the external force.
  • the decision control unit can also obtain the manual driving mode on signal through the human-machine interaction interface connected thereto.
  • the decision control unit includes a computer communication interface through which the computer is connected to the decision control unit, and the control program is written by the CAN communication, and the change of each parameter can also be monitored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

La présente invention concerne un procédé et un système utilisés par un véhicule articulé à essieux multiples qui suit une ligne de voie centrale. Le procédé comprend les étapes consistant à : S1. acquérir un écart de navigation visuelle et une estimation de navigation d'un véhicule ; et S2. calculer, en fonction de l'écart de navigation visuelle et de l'estimation de navigation du véhicule, et à l'aide d'un algorithme PID incrémentiel, un angle de braquage de roue avant attendu du véhicule, et commander une roue avant du véhicule pour changer de direction. Le système comprend : un module d'identification de ligne de voie, une unité d'acquisition de données, une unité de commande de détermination et une unité d'exécution. Le système présente les avantages de permettre à un véhicule de suivre efficacement, dans un processus de conduite automatique, une ligne de voie centrale, de mettre en œuvre un suivi automatique et une commande automatique du véhicule par rapport à la ligne de voie centrale, d'améliorer une conduite sûre et de réduire l'intensité de travail d'un conducteur.
PCT/CN2017/106045 2016-10-19 2017-10-13 Procédé et système utilisés par un véhicule articulé à essieux multiples suivant une ligne de voie centrale WO2018072647A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ752017A NZ752017B2 (en) 2016-10-19 2017-10-13 Method and system utilized by multi-axle articulated vehicle tracking central lane line

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610910594.9A CN107933686B (zh) 2016-10-19 2016-10-19 一种多轴转向车辆跟踪中央车道线转向控制方法及系统
CN201610910594.9 2016-10-19

Publications (1)

Publication Number Publication Date
WO2018072647A1 true WO2018072647A1 (fr) 2018-04-26

Family

ID=61928973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106045 WO2018072647A1 (fr) 2016-10-19 2017-10-13 Procédé et système utilisés par un véhicule articulé à essieux multiples suivant une ligne de voie centrale

Country Status (3)

Country Link
CN (1) CN107933686B (fr)
CL (1) CL2019001024A1 (fr)
WO (1) WO2018072647A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110673593A (zh) * 2018-07-03 2020-01-10 杭州海康威视数字技术股份有限公司 车辆控制方法和装置
CN112362069A (zh) * 2020-11-16 2021-02-12 浙江大学 一种模块化自动驾驶算法开发验证系统和验证方法
CN112965373A (zh) * 2021-02-02 2021-06-15 上海华测导航技术股份有限公司 一种农用和矿用铰接式车辆路径跟踪控制方法
CN113624520A (zh) * 2021-07-29 2021-11-09 东风汽车集团股份有限公司 一种基于机器视觉技术的实时计算车辆不足转向梯度系数的系统、方法及介质
CN114355924A (zh) * 2021-12-28 2022-04-15 北京理工大学 一种改进型纯跟踪路径跟踪方法
CN114906173A (zh) * 2022-06-30 2022-08-16 电子科技大学 一种基于两点预瞄驾驶员模型的自动驾驶决策方法
US11447374B2 (en) 2016-09-15 2022-09-20 Terex Australia Pty Ltd Crane counterweight and suspension

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108549392A (zh) * 2018-05-31 2018-09-18 南京铁道职业技术学院 一种控制车辆转动角度的方法
CN108909716B (zh) * 2018-07-02 2020-07-03 奇瑞汽车股份有限公司 车辆控制方法及装置
CN109283926A (zh) * 2018-08-16 2019-01-29 郑州轻工业学院 一种基于程序方位角的车辆沿车道线自动驾驶的方法
CN112277787A (zh) * 2019-07-23 2021-01-29 中车株洲电力机车研究所有限公司 一种智轨电车的虚拟轨道自适应照明装置及方法
CN112577501B (zh) * 2019-09-29 2024-03-05 中车株洲电力机车研究所有限公司 一种轨迹标识装置以及一种救援工程车
CN110861643A (zh) * 2019-10-18 2020-03-06 中国第一汽车股份有限公司 一种无人驾驶车辆单向隧道通行方法及无人驾驶车辆
CN111966104A (zh) * 2020-08-21 2020-11-20 上海电气集团智能交通科技有限公司 一种基于磁钉的融合导航车辆自动驾驶系统及方法
CN112092825B (zh) * 2020-08-31 2022-04-29 英博超算(南京)科技有限公司 一种基于机器学习的车道保持方法
CN115593510A (zh) * 2022-11-30 2023-01-13 禾多科技(北京)有限公司(Cn) 车辆的控制方法及装置、存储介质及电子装置
CN117519190B (zh) * 2023-11-30 2024-04-26 上海联适导航技术股份有限公司 一种新的铰接车辆控制方法
CN118230274A (zh) * 2024-05-24 2024-06-21 深圳魔视智能科技有限公司 视觉感知摄像头车道线真值对标方法、装置、设备及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346993B2 (ja) * 2003-08-26 2009-10-21 富士重工業株式会社 車両の誘導制御装置
JP4402647B2 (ja) * 2005-01-07 2010-01-20 本田技研工業株式会社 車線逸脱量推定装置
CN101778753A (zh) * 2007-08-15 2010-07-14 沃尔沃技术公司 用于支持车辆的车道保持的操作方法和系统
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
CN103183028A (zh) * 2012-01-02 2013-07-03 福特全球技术公司 用于机动车辆的车道保持方法
CN103640622A (zh) * 2013-11-13 2014-03-19 南京航空航天大学 一种基于驾驶员模型的汽车方向智能控制方法及控制系统
CN104442814A (zh) * 2014-10-31 2015-03-25 重庆长安汽车股份有限公司 基于偏差预测算法的车道保持及自动对中系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1775601A (zh) * 2005-11-18 2006-05-24 吉林大学 车辆行驶轨迹预估及车道偏离评价方法
KR101962890B1 (ko) * 2012-03-02 2019-08-01 현대모비스 주식회사 차량 센서 오프셋 보정 시스템 및 그 방법
CN105835870B (zh) * 2016-03-28 2019-03-08 乐视生态汽车(浙江)有限公司 车辆行驶控制方法、装置及计算机设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4346993B2 (ja) * 2003-08-26 2009-10-21 富士重工業株式会社 車両の誘導制御装置
JP4402647B2 (ja) * 2005-01-07 2010-01-20 本田技研工業株式会社 車線逸脱量推定装置
CN101778753A (zh) * 2007-08-15 2010-07-14 沃尔沃技术公司 用于支持车辆的车道保持的操作方法和系统
CN102358287A (zh) * 2011-09-05 2012-02-22 北京航空航天大学 一种用于车辆自动驾驶机器人的轨迹跟踪控制方法
CN103183028A (zh) * 2012-01-02 2013-07-03 福特全球技术公司 用于机动车辆的车道保持方法
CN103640622A (zh) * 2013-11-13 2014-03-19 南京航空航天大学 一种基于驾驶员模型的汽车方向智能控制方法及控制系统
CN104442814A (zh) * 2014-10-31 2015-03-25 重庆长安汽车股份有限公司 基于偏差预测算法的车道保持及自动对中系统和方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11447374B2 (en) 2016-09-15 2022-09-20 Terex Australia Pty Ltd Crane counterweight and suspension
CN110673593A (zh) * 2018-07-03 2020-01-10 杭州海康威视数字技术股份有限公司 车辆控制方法和装置
CN112362069A (zh) * 2020-11-16 2021-02-12 浙江大学 一种模块化自动驾驶算法开发验证系统和验证方法
CN112965373A (zh) * 2021-02-02 2021-06-15 上海华测导航技术股份有限公司 一种农用和矿用铰接式车辆路径跟踪控制方法
CN112965373B (zh) * 2021-02-02 2024-05-31 上海华测导航技术股份有限公司 一种农用和矿用铰接式车辆路径跟踪控制方法
CN113624520A (zh) * 2021-07-29 2021-11-09 东风汽车集团股份有限公司 一种基于机器视觉技术的实时计算车辆不足转向梯度系数的系统、方法及介质
CN113624520B (zh) * 2021-07-29 2023-05-16 东风汽车集团股份有限公司 一种基于机器视觉技术的实时计算车辆不足转向梯度系数的系统、方法及介质
CN114355924A (zh) * 2021-12-28 2022-04-15 北京理工大学 一种改进型纯跟踪路径跟踪方法
CN114355924B (zh) * 2021-12-28 2023-10-13 北京理工大学 一种改进型纯跟踪路径跟踪方法
CN114906173A (zh) * 2022-06-30 2022-08-16 电子科技大学 一种基于两点预瞄驾驶员模型的自动驾驶决策方法
CN114906173B (zh) * 2022-06-30 2023-07-21 电子科技大学 一种基于两点预瞄驾驶员模型的自动驾驶决策方法

Also Published As

Publication number Publication date
CL2019001024A1 (es) 2019-10-25
CN107933686A (zh) 2018-04-20
NZ752017A (en) 2020-10-30
CN107933686B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
WO2018072647A1 (fr) Procédé et système utilisés par un véhicule articulé à essieux multiples suivant une ligne de voie centrale
CN107963126B (zh) 一种多轴转向车辆大曲率自动驾驶转向控制方法
CN109520498B (zh) 一种用于虚拟轨道车辆的虚拟道岔系统及方法
CN106740811B (zh) 弯道自动转向系统及基于该系统的弯道的自动转向方法
WO2020143288A1 (fr) Système de prise de décision de véhicule autonome dans des conditions de fonctionnement complexes et procédé associé de planification de trajectoire
CN112298353B (zh) 用于校准方向盘中性位置的系统和方法
CN108922177B (zh) 一种无人驾驶车辆通过交叉路口时速度控制系统及方法
WO2020029462A1 (fr) Système de conduite autonome pour véhicule électrique
CN106681327B (zh) 一种大惯性电动客车的智能驾驶横纵向解耦控制方法及系统
CN105329238B (zh) 一种基于单目视觉的自动驾驶汽车换道控制方法
WO2019196334A1 (fr) Système et procédé de commande d'auto-entraînement, serveur informatique et véhicule à auto-entraînement
CN108482370B (zh) 一种商用车车道保持系统及其控制策略设计
CN110293970B (zh) 一种自动驾驶汽车的行驶控制方法、装置及汽车
CN111891125B (zh) 一种基于扭矩控制的车道偏离主动纠偏方法
CN108058706B (zh) 一种车道保持系统及方法
CN105197010A (zh) 辅助泊车系统以及辅助泊车控制方法
CN107161075A (zh) 一种基于自动驾驶的转向信号灯自动控制方法及系统
CN110389589A (zh) 智能驾驶车辆避障系统及方法
CN114435470B (zh) 自动倒车控制方法、装置、车辆和存储介质
CN114162123B (zh) 一种自动成列行驶车辆系统及控制方法
JP2022547414A (ja) モータ車両の移動を予測的に制御するためのデバイス
WO2019065564A1 (fr) Dispositif de commande de conduite automatique et procédé
CN106774366A (zh) 一种仿生无人车控制系统及其控制方法
CN203739886U (zh) 一种基于eps的主动式车道保持的装置
CN111103882A (zh) 一种无人驾驶电动汽车的自主跟车控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17861380

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17861380

Country of ref document: EP

Kind code of ref document: A1