WO2018072646A1 - 一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法 - Google Patents

一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法 Download PDF

Info

Publication number
WO2018072646A1
WO2018072646A1 PCT/CN2017/106042 CN2017106042W WO2018072646A1 WO 2018072646 A1 WO2018072646 A1 WO 2018072646A1 CN 2017106042 W CN2017106042 W CN 2017106042W WO 2018072646 A1 WO2018072646 A1 WO 2018072646A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleic acid
tween
lipid nanoparticle
antisense oligonucleic
cholesterol
Prior art date
Application number
PCT/CN2017/106042
Other languages
English (en)
French (fr)
Inventor
程光
陈文忠
秦利利
Original Assignee
南京绿叶制药有限公司
南京爱赛克纳米生物医药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京绿叶制药有限公司, 南京爱赛克纳米生物医药有限公司 filed Critical 南京绿叶制药有限公司
Priority to JP2019541841A priority Critical patent/JP6986563B2/ja
Priority to EP17862277.5A priority patent/EP3527229B1/en
Priority to US16/342,871 priority patent/US20190328763A1/en
Publication of WO2018072646A1 publication Critical patent/WO2018072646A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1135Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against oncogenes or tumor suppressor genes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/24Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing atoms other than carbon, hydrogen, oxygen, halogen, nitrogen or sulfur, e.g. cyclomethicone or phospholipids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/31Chemical structure of the backbone
    • C12N2310/315Phosphorothioates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/3212'-O-R Modification

Definitions

  • the present invention relates to the field of biotechnology, and in particular to a lipid nanoparticle for inhibiting bcl-2 antisense oligonucleic acid and a preparation method thereof.
  • Antisense oligonucleic acids generally consist of 18-22 nucleotides, selectively bind to target messenger RNA by the principle of base pairing, thereby blocking or inhibiting the function of specific messenger RNA, and regulating the protein of the subsequent target gene. expression.
  • Bcl-2 is a gene that inhibits apoptosis. This gene promotes cell division, expansion, differentiation and high expression in most tumor cells, so tumors can be up-regulated by up-regulating this gene. Limit the purpose of growth and diffusion.
  • G3139 is an antisense oligonucleic acid consisting of 18 nucleotides. The nucleic acid sequence is 5'-TCT CCC AGC GTG CGC CAT-3', which can be combined with the messenger RNA encoding bcl-2 by the principle of base complementary pairing. Thereby, the expression of the bcl-2 gene and the downstream protein is preferably inhibited.
  • the lipid nanoparticle membrane material of the prior art does not combine the Tween compound with a polyethylene glycol (PEG) derivative such as TPGS, if Tween is used alone: Tween has a shorter PEG chain, Short-chain PEG can increase the repellency between the nanoparticles to prevent their aggregation and reduce stability.
  • PEG polyethylene glycol
  • polyethylene glycol (PEG) derivatives such as TPGS can be used alone: although TPGS has a long PEG chain, it can avoid the recognition of the phagocytic system to a certain extent, is not phagocytized by phagocytic cells, and loses its long cycle time. However, if there are many TPGS, the nanoparticles will be difficult to effectively be taken up by the target tumor cells because of the steric hindrance effect.
  • the antisense oligonucleic acid of G3139 most of the previous modifications are phosphorothioate (PS). Although this modification can improve the stability of antisense oligonucleic acid to some extent, it is related to messenger.
  • PS phosphorothioate
  • the object of the present invention is to overcome the above technical deficiencies, and to provide an improvement of the stability of the nanoparticles themselves, thereby promoting the release of the drug in the tumor tissue and reducing the possibility of degradation, while improving the resistance of the antisense oligonucleic acid to the nuclease.
  • Sex a drug that improves the matching accuracy and binding ability of messenger RNA.
  • a lipid nanoparticle for inhibiting bcl-2 antisense oligonucleic acid which is a lipid nanoparticle prepared by coating a piece of antisense oligonucleic acid with a membrane material,
  • the nucleic acid sequence is 5'-TCT CCC AGC GTG CGC CAT-3', also known as G3139; or 5' UCU CCC AGC GTG CGC CAU 3'.
  • the membrane material comprises a cationic lipid, a neutral phospholipid, a cholesterol, a Tween, a polyethylene glycol derivative, and the molar ratio thereof is (25-35): (40-50): (15 25): ( 1-5 ): ( 1-5).
  • the cationic lipid comprises: DOTAP, DOTMA, DDAB, DODMA;
  • the neutral phospholipids include: Egg PC, D0PC, DSPC, DPPC, DMPC;
  • the Tween temperature includes: Tween -20, Tween-40, Tween-60, Tween-80;
  • the polyethylene glycol derivatives include: mPEG-DPPE, mPEG_DMPE, mPEG_DSPE, TPGS, mPEG_cholesterol.
  • the molecular weight of PEG in the polyethylene glycol derivative is 550-5000. In a further technical solution, the polyethylene glycol derivative has a PEG molecular weight of 550, 750, 1000, 2000, 3000, 5000.
  • the polyethylene glycol (PEG) derivative is a hydrophilic polyethylene glycol (PEG) chain or a methylated polyethylene glycol chain (mPEG) linked to a phospholipid bilayer a substance formed on the hydrophobic structure;
  • the hydrophobic structure is cholesterol, vitamin E, dipalmitoyl phosphatidylethanolamine (DPPE), dimyristoyl phosphatidylethanolamine (DMPE), dimyristoyl glycerol (DMG), Or structural analogs.
  • the Tween is Tween-80.
  • the antisense oligonucleic acid 5' UCU CCC AGC GTG CGC CAU 3' is modified by 2'-0-Methyl modification of the first three nucleotides at both ends thereof, and the entire chain is carried out. Phosphorothioate modification; or phosphorothioate modification of the entire chain of the antisense oligonucleic acid 5'-TCT CCC AGC GTG CGC CAT-3'.
  • a method for preparing a lipid nanoparticle for inhibiting bcl-2 antisense oligonucleic acid wherein the preparation method of the lipid nanoparticle is a stepwise dilution method of ethanol, and the specific steps are as follows:
  • step (4) removing the ethanol obtained from step (4) with an ultrafiltration or dialysis device to remove ethanol and free uncoated antisense oligonucleic acid;
  • the product obtained in the step (5) is filtered and sterilized through a filter or a filter element having a pore diameter of 0.22 ⁇ m or less to obtain a lipid nanoparticle.
  • the high salt solution is a NaCl solution
  • the mixture in the step (4) is a NaCl solution
  • the NaCl concentration is 0.1-1M.
  • the mixed solution has a NaCl concentration of 0.3-0.4 M, preferably 0.3 M.
  • the molecular weight of the ultrafiltration or dialysis device is 10,000 -
  • the membrane material is DOTAP, Egg PC, cholesterol, Tween 80, TPGS in a molar ratio of 25:45:20:5:5.
  • the membrane material is D0TMA, Egg PC, cholesterol, Tween 80, TPGS in a molar ratio of 30:45:20:5:5.
  • the membrane material is D0TAP, DSPC, cholesterol, Tween 80, TPGS in a molar ratio of 30:50:20:5:5.
  • the membrane material is D0TAP, Egg PC, cholesterol, Tween 80, mPEG2000-DPPE in a molar ratio of 30:45:20:5:5.
  • DOTAP 1,2-dioleyloxy-3-trimethylaminopropionium chloride
  • Egg PC Egg yolk egg phosphatidylcholine
  • DPPC dipalmitate phosphatidylcholine
  • Egg PC Egg yolk egg phosphatidylcholine
  • DPPC dipalmitate phosphatidylcholine
  • DMPC dimyristoyl phosphatidylcholine
  • DPPE dipalmitoyl phosphatidylethanolamine
  • DMPE Dimyristoyl phosphatidylethanolamine
  • the thiophosphoric acid modification is that an unbridged oxygen atom in the phosphoric acid group is replaced by a sulfur atom, as shown in the following figure, which has less influence on the structure of the entire oligonucleic acid chain, and greatly improves various kinds of The resistance of nucleases.
  • the present invention has the following significant advantages:
  • the nanoparticle membrane material of the present invention uses a double PEGylation reagent (Tween and polyethylene glycol derivative) for the first time, which can improve the stability of the nanoparticle itself to a certain extent, and promote the release and reduction of the drug in the tumor tissue. The possibility of being degraded.
  • a double PEGylation reagent Teween and polyethylene glycol derivative
  • Tween is often used as a PEGylation reagent in the preparation of nano-formulations.
  • the Tween series has short-chain PEG, and the Tween series such as Tween 20/40/60/80 can improve the nano-particles in nano-formulations.
  • the repulsion makes them less prone to aggregation, which can improve the stability of the nano-preparation to a certain extent, and the growth of the long-term storage particle size is small.
  • Polyethylene glycol derivatives such as TPGS can be used as a component of another commonly used nano-preparation.
  • a longer PEG chain can promote the circulation of nanoparticles in the blood, avoiding the loss of absorption by reticuloendothelial cells or phagocytic cells. The role can avoid the identification of the immune system to a certain extent, improve the long cycle time, and the longer PEG chain will affect the cell intake to a certain extent.
  • the present invention combines the two, a combination of a longer PEG chain and a shorter Tween, and a combination of these two PEGylation reagents, we have found that the antisense oligonucleic acid-encapsulated nanoparticles can be effectively enhanced in plasma. Stability, long cycle times, target cell release, and degradation of genes in target cells.
  • Tween 80 in the 27-day 4 degree stability test the particle size of the nano-formulation changed from 126nm to 181nm, the stability is most obvious
  • Tween 20 In the 27-day stability test of 27 degrees the particle size of the nano-formulation changed from 99.8 nm to 274.2 nm, and the stability was good;
  • the membrane material of the lipid nanoparticle in the invention comprises a cationic lipid, a phospholipid, a cholesterol, a Tween, a polyethylene glycol derivative and is combined according to a certain ratio, so that the prepared nanomembrane material can effectively reduce the cost and be stable.
  • Good sex, high cell acceptance, is a good nanocarrier.
  • G3139 is subjected to double chemical modification of 2'-O-Methyl (2'-O-Me) and P thiophosphoric acid (PS), and the first three nucleotides at both ends are subjected to 2'-O-Me Modification, which can improve the stability of G3139 oligonucleic acid in plasma to some extent, and the whole chain undergoes phosphorothioate modification.
  • This RNA/DNA/RNA structure can promote the function of RNase H to specific target messenger RNA sequences. Degradation, to a certain extent, improve its resistance to nucleases and improve the matching accuracy and binding ability with messenger RNA.
  • the lipid nanoparticles of the present invention have a good blocking effect on tumor cell growth and specific target genes, and particularly have a good blocking effect against KB cervical cancer cells.
  • the high salt solution is added during the preparation process of the invention to dissociate the free oligonucleic acid adsorbed on the surface of the nanoparticle, and the larger particle size generated by the adsorption of the oligonucleic acid is reduced, and is precipitated.
  • the oligonucleic acid can be removed in the next step of dialysis.
  • the preparation method of the lipid nanoparticle in the invention adopts the ethanol stepwise dilution method, and the unequal volume on-line mixing method used in the prior art is complicated, and two pumps and different types of liquid storage tanks are needed, Suitable for industrial production.
  • the present invention compares the two systems to achieve dynamic balance and promotes the stability of the subsequent suspension system.
  • FIG. 1 is a stability test chart of the Tween series and the TPGS composition of the present invention at 27 days;
  • FIG. 2 is a diagram showing the regulation of gene level (Bcl-2) G3139 in KB cancer cells;
  • Figure 3 is a graph showing the regulation of gene level (Bcl-2) G3139 in A549 lung cancer cells;
  • Figure 4 is a graph showing the regulation of gene level (Bcl-2) G3139 in LNCaP prostate cancer cells;
  • Figure 5 is a graph showing the tumor inhibition rate;
  • Figure 6 is a survival test chart.
  • a method for preparing lipid nanoparticles for inhibiting bcl-2 antisense oligonucleic acid the specific steps are as follows:
  • the mixture obtained in the step (4) was subjected to removal of ethanol and free antisense oligonucleic acid by an ultrafiltration device having a molecular weight cut off of 10,000 daltons.
  • a method for preparing lipid nanoparticles for inhibiting bcl-2 antisense oligonucleic acid the specific steps are as follows:
  • DOTMA, DOPC, cholesterol, Tween 40, mPEG550-DPPE in a molar ratio of 35:40:15:1:1 is dissolved in 80% ethanol to obtain a mixed ethanol solution;
  • antisense oligonucleic acid 5' UCU CCC AGC GTG CGC CAU 3 'The whole chain is thiophosphorylated, both ends are modified by 2 ' -0-Me, and dissolved in PBS buffer (IX pH 7) to obtain antisense oligonucleic acid solution;
  • a method for preparing a lipid nanoparticle for inhibiting bcl-2 antisense oligonucleic acid the specific steps are as follows:
  • the particle size and encapsulation efficiency of the third group were significantly better than those of the other two groups under the same conditions of other components, and the potentials remained basically the same.
  • the third group was selected for the optimal prescription for the following screening.
  • the third group performs the following screening for the optimal prescription.
  • the particle size and encapsulation efficiency of the third group were significantly better than those of the other two groups under the same conditions of other components, and the potentials remained basically the same.
  • the third group was selected for the optimal prescription for the following screening.
  • DOTMA/Egg PC/Cholesterol/Tween 80/TPGS 30:45:20:5:5
  • DOTAP/DSPC/Cholesterol/Tween 80/TPGS 30:50:20:5:5
  • Example 1 The free 2'-O-Me modified G3139 and 2'-O-Me modified G3139 lipid nanoparticles in the table, indicating that the entire chain is modified with phosphorothioate and Three nucleic acids were subjected to 2, -O-Me modified G3139 ( 5 ' -UCU CCC AGC GTG CGC CAU-3 ' ); free G3139 and G3139 lipid nanoparticles, indicating G3139 for phosphorothioate modification of the entire chain
  • Blank nanoparticles represent lipid nanoparticles coated by a film material to form a content-free material.
  • a concentration test of paclitaxel (PTX) concentration gradient (1 nmol/L-100 ⁇ /L) and the concentration of each group of antisense oligonucleic acids ( ⁇ ⁇ ) were performed for each concentration group, and Incubate in an environment of 37 degrees and 5% carbon dioxide.
  • cancer cells such as A549 cells, KB cancer cells, and LNCaP prostate cancer cells
  • RPMI1640 medium containing 10% fetal bovine serum to allow cells to grow overnight to achieve an 80% plating rate.
  • the lipid nanoparticles modified by 2'-0-Me had a down-regulation of 71.87% of the gene level compared with the other experimental groups at the level of bcl-2.
  • the down-regulation was largely reduced, while the free drug group (3, 4) was unable to enter the cell due to the lack of a drug delivery system, with only a weak down-regulation (11.25% and 6.71%).
  • the blank nanoparticles could not be down-regulated due to the absence of drugs.
  • the lipid nanoparticles modified by 2'-0-Me had a down-regulation of 78.78% of the gene level and a significant degree of down-regulation at the level of bcl-2 compared with the other experimental groups.
  • the free drug group (3, 4) could not enter the cell due to the lack of a drug delivery system, and only weakly down-regulated (6.85% and 5.11%).
  • the blank nanoparticles could not be down-regulated due to the absence of drugs.
  • each group of tumor-bearing mice will be given different kinds of drugs by tail vein, which are 2'-0-Me modified G3139 lipid nanoparticles, G3139 lipid nanoparticles, free G3139. , free 2'-0-Me modified G3139, paclitaxel injection, normal saline. Once every three days, continue to administer for three weeks.
  • the therapeutic components were 6 groups of ten tumor-bearing mice per group.
  • the size of the tumor will be measured by the vernier caliper to measure the length and width of the tumor.
  • the volume of the tumor is determined by the following formula:
  • Tumor volume ( 31 /6) *length (mm) * (width) 2 (4)
  • the actual tumor size reaches 1500 mm3, it will be removed from the treatment group and euthanized with carbon dioxide asphyxiation.
  • the volume of tumors in each experimental group after the end of the treatment period is an indication of anti-tumor activity.
  • Figures 5 and 6 are graphs of the tumor inhibition rate test and the survival test.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medical Informatics (AREA)
  • Dispersion Chemistry (AREA)
  • Oncology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明公开了一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法。所述脂质纳米粒是由膜材料包裹一段反义寡聚核酸制成,所述的核酸序列为5'-TCT CCC AGC GTG CGC CAT-3',或5'UCU CCC AGC GTG CGC CAU 3'。

Description

一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒及其制 备方法 技术领域
本发明涉及生物技术领域,具体涉及一种抑制 bcl-2的反义寡聚核酸的脂质 纳米粒及其制备方法。
背景技术
反义寡聚核酸一般由 18-22核苷酸组成,通过碱基互补配对的原则选择性与 靶信使 RNA结合, 从而阻断或抑制特定的信使 RNA的功能, 并调控后续的靶 基因的蛋白的表达。
Bcl-2是一种抑制细胞凋亡的基因, 此种基因可以促进细胞的分裂, 扩增, 分化并在大多数肿瘤细胞中都有较高的表达,所以肿瘤可通过上调此基因而达到 无限制的生长和扩散的目的。 G3139是一段由 18个核苷酸组成的反义寡聚核酸, 核酸序列为 5'-TCT CCC AGC GTG CGC CAT-3', 可通过碱基互补配对的原则和 编码 bcl-2的信使 RNA结合,从而较好的抑制 bcl-2基因以及下游的蛋白的表达。 然而, 根据之前文献报道, 大多数反义寡聚核酸缺乏适合的递药系统, 借助本身 的功能很难进入细胞内而发挥作用, 它们也与靶信使 RNA有较弱的结合作用, 很难长时间保持抑制结合作用,并且大多数反义寡聚核酸在血浆中的核酸酶的作 用下易降解而失去治疗作用。 G3139 虽然经历多年的临床试验有一定的疗效, 最终因为疗效不能打到美国 F D A的标准而未能获得批准。
现有技术中的脂质纳米粒膜材料并没有将吐温 (Tween)化合物和聚乙二醇 (PEG) 衍生物例如 TPGS结合的情形, 如果单独使用 Tween: Tween具有较短 的 PEG链, 这样短链的 PEG可以增加纳米粒之间的排斥性, 以防止其聚集而降 低稳定性。 另一方面, 由于缺少了长链 PEG嵌合在纳米粒表面, 这种纳米制剂 容易被吞噬细胞吞噬而失去作用, 因为吐温很容易在全身循环中丢失。
再例如单独使用聚乙二醇 (PEG) 衍生物例如 TPGS: 虽然 TPGS有着较长 的 PEG链, 可以在一定程度上躲避吞噬系统的识别, 不被吞噬细胞吞噬而失去 作用, 增加长循环时间, 然而如果有很多的 TPGS, 纳米粒会很难有效的被靶 肿瘤细胞摄取, 因为存在空间位阻效应。 对于 G3139 这种反义寡聚核酸来说, 之前的修饰大多数为硫代磷酸 (PS)化 的,这种修饰虽然在一定程度上可以提高反义寡聚核酸的稳定性,但是其与信使
RNA的结合能力、强度以及匹配度都大大的减弱了。
发明内容
1.发明要解决的技术问题
本发明的目的在于克服上述技术不足, 提供了一种提高纳米微粒本身稳定 性, 从而促进药物在肿瘤组织的释放并且减小被降解的可能性, 同时提高反义寡 聚核酸对核酸酶的抵抗性、 提高与信使 RNA 的匹配准确性与结合能力的药物。
2.技术方案
为达到上述目的, 本发明提供的技术方案为: 一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 是由膜材料包裹一段反义寡 聚核酸制成的脂质纳米粒, 所述的核酸序列为 5'-TCT CCC AGC GTG CGC CAT-3' , 又名 G3139; 或 5' UCU CCC AGC GTG CGC CAU 3' 。
进一步的技术方案, 所述的膜材料包括阳离子类脂、 中性磷脂、 胆固醇、 吐 温、聚乙二醇衍生物, 其摩尔比为 ( 25-35 ): (40-50 ): ( 15-25): ( 1-5 ): ( 1-5)。
进一步的技术方案, 所述的阳离子类脂包括: DOTAP、 DOTMA、 DDAB、 DODMA ;
所述的中性磷脂包括: Egg PC、 D0PC、 DSPC、 DPPC、 DMPC;
所述的吐温包括: 吐温 -20、 吐温 -40、 吐温 -60、 吐温 -80;
所述的聚乙二醇衍生物包括: mPEG-DPPE、 mPEG_DMPE、 mPEG_DSPE、 TPGS、 mPEG_cholesterol。
进一步的技术方案, 所述的聚乙二醇衍生物中 PEG的分子量是 550-5000。 进一步的技术方案,所述的聚乙二醇衍生物的 PEG分子量为 550、 750、 1000、 2000、 3000、 5000。
进一步的技术方案,所述的聚乙二醇(PEG)衍生物是亲水的聚乙二醇(PEG) 链或甲基化聚乙二醇链 (mPEG) 连接到一个可以嵌入磷脂双分子层的疏水结构 上所形成的物质; 所述的疏水结构为胆固醇, 维生素 E, 二棕榈酸磷脂酰乙醇胺 (DPPE),二肉豆蔻酰基磷脂酰乙醇胺 (DMPE), 二肉豆蔻酰甘油(DMG),或结构类 似物。
进一步的技术方案, 所述的吐温为吐温 -80。 进一步的技术方案,所述的反义寡聚核酸 5' UCU CCC AGC GTG CGC CAU 3'的修饰为对其两端的前三个核苷酸进行 2'-0-Methyl修饰, 并对全链进行硫代 磷酸 修饰; 或者对反义寡聚核酸 5'-TCT CCC AGC GTG CGC CAT-3'的全链进 行硫代磷酸修饰。
一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒的制备方法,所述的脂质纳米 粒的制备方法为乙醇逐级稀释法, 具体步骤如下:
(1) 将阳离子类脂、 中性磷脂、 胆固醇、 吐温、 聚乙二醇衍生物按照一定 的摩尔比溶解于 80%的乙醇中, 得混合乙醇溶液; 将修饰后的反义寡聚核酸溶解 在 PBS缓冲液中, 得到反义寡聚核酸的 PBS溶液;
(2) 将得到的混合乙醇溶液和反义寡聚核酸的 PBS溶液等体积进行混合以 得到 40%的终乙醇浓度混合液;
(3)将步骤 (2)所得的 40%的终乙醇浓度混合液进一步用 PBS溶液等体积 稀释; 重复将终乙醇浓度混合液用 PBS溶液等体积稀释,直至得到乙醇终浓度低 于 5%的制剂混合液;
(4)向步骤(3)得到的制剂混合液加入高盐溶液,得到含有高盐的混合液;
(5)将步骤(4)得到的混合液用超滤或透析装置去除乙醇和游离未包裹的 反义寡聚核酸;
(6) 将步骤 (5) 得到的产品通过孔径小于或等于 0.22微米的滤膜或滤芯 滤芯进行过滤除菌, 即得脂质纳米粒。
进一步的技术方案,所述的 PBS缓冲液不含有 DNA酶和 RNA酶,所述的步骤 (1) 中的 PBS缓冲液的规格为 1Χ ρΗ=7, 所述的步骤 (3) 中的 PBS缓冲液的规 格为 IX pH=7.4。
进一步的技术方案, 所述的高盐溶液为 NaCl 溶液, 步骤 (4) 中的混合液
NaCl浓度为 0.1-1M。
进一步的技术方案, 所述的混合液的 NaCl浓度为 0.3-0.4M, 优选的 0.3M。 进一步的技术方案, 所述的超滤或透析装置的截留量分子量为 10,000 -
100, 000道尔顿。
进一步的技术方案, 所述的膜材料为摩尔比为 25:45:20:5:5的 DOTAP、 Egg PC、 胆固醇、 Tween80、 TPGS。 进一步的技术方案,所述的膜材料为摩尔比为 30:45:20:5:5的 D0TMA、 Egg PC、 胆固醇、 Tween 80、 TPGS。
进一步的技术方案, 所述的膜材料为摩尔比为 30:50:20:5:5 的 D0TAP、 DSPC、 胆固醇、 Tween 80、 TPGS。
进一步的技术方案, 所述的膜材料为摩尔比为 30:45:20:5:5的 D0TAP、 Egg PC、 胆固醇、 Tween 80、 mPEG2000-DPPE。
DOTAP: 1, 2-二油氧基 -3-三甲基胺基丙垸氯化盐
D0TMA: 1, 2-二氧基十八碳烯 -3-三甲基胺基丙垸氯化盐
DDAB: 双十二垸基二甲基溴化胺
D0DMA: 1, 2-二氧基十八碳烯 -3-二甲基胺基丙垸
Egg PC: 蛋黄卵磷脂酰胆碱
D0PC: 二油酰磷脂酰胆碱
DSPC: 二硬脂酰磷脂酰胆碱
DPPC: 二棕榈酸磷脂酰胆碱
D0TMA: 1, 2-二氧基十八碳烯 -3-三甲基胺基丙垸 氯化盐
DDAB: 双十二垸基二甲基溴化胺
D0DMA: 1, 2-二氧基十八碳烯 -3-二甲基胺基丙垸
Egg PC: 蛋黄卵磷脂酰胆碱
D0PC: 二油酰磷脂酰胆碱
DSPC: 二硬脂酰磷脂酰胆碱
DPPC: 二棕榈酸磷脂酰胆碱
DMPC: 二肉豆蔻酰基磷脂酰胆碱
DPPE : 二棕榈酸磷脂酰乙醇胺
DMPE : 二肉豆蔻酰基磷脂酰乙醇胺
TPGS: 琥珀酸酯
所述的硫代磷酸修饰是磷酸基团中的一个未桥接的氧原子由硫原子替代,如 下图,对整个寡聚核酸链的结构影响较小, 而在很大程度上提高了对各种核酸酶 的抵抗型。
Figure imgf000007_0001
5 '-3' Phosphodiester linkage 5'-3' Phosphor othiosrte linkage
3.有益效果
与现有技术相比, 本发明具有如下显著优点:
1、 本发明的纳米微粒膜材料首次使用双重聚乙二醇化试剂 (吐温和聚乙二 醇衍生物), 可以在一定程度提高纳米粒本身的稳定性, 促进药物在肿瘤组织的 释放和减小被降解的可能性。
吐温作为聚乙二醇化试剂常常被利用到纳米制剂的制备中,吐温系列具有短 链的 PEG, 吐温系列例如吐温 20/40/60/80在纳米制剂中可提高纳米粒之间的排 斥作用, 使它们不易于聚集, 可以在一定程度上提高纳米制剂的稳定性, 长期存 放粒径增长较小。
聚乙二醇衍生物例如 TPGS, 可以作为另一种常用的纳米制剂的组分, 有着 较长的 PEG链可以促进纳米粒在血液中的循环, 躲避被网状内皮细胞或吞噬细 胞摄取而失去作用, 可以在一定程度上躲避免疫系统的识别, 提高长循环时间, 较长的 PEG链又会在一定程度影响细胞的摄取。
本发明将两者结合, 较长的 PEG链和较短的吐温相结合, 这两种聚乙二醇 化试剂的组合,我们发现可以有效的提高反义寡聚核酸包裹的纳米粒在血浆中的 稳定性、 长循环时间、 靶细胞释放以及对靶细胞内基因的降解效力。
2、 本发明中吐温系列与 TPGS组合物在 27天 4 度的稳定性测试, 如图 1 所示, 在一个月的周期中, 纳米制剂的粒径变化较小, 说明了吐温能够保持制剂 整体稳定性。
具体实验数据如下: 吐温 80在 27天 4 度的稳定性测试中, 纳米制剂的粒 径由 126nm变为 181nm , 稳定性最为明显; 吐温 20 在 27 天 4 度的稳定性测试中, 纳米制剂的粒径由 99.8nm变为 274.2nm , 稳定性较好;
吐温 40在 27天 4 度的稳定性测试中, 纳米制剂的粒径由 138.5nm变为 305.9nm , 稳定性较好;
吐温 60 在 27 天 4 度的稳定性测试中, 纳米制剂的粒径由 76.7nm变为 218.6nm , 稳定性较好。
3、 本发明中脂质纳米粒的膜材料包括阳离子类脂、 磷脂、 胆固醇、 吐温、 聚乙二醇衍生物并按照一定比例结合起来,使得制备成的纳膜材料能够有效减少 成本, 稳定性好, 细胞接受度高, 是一种很好的纳米载体。
4、 本发明中对 G3139 进行 2' -O-Methyl (2' -O-Me) 禾 P 硫代磷酸 (PS) 的 双重化学修饰, 两端的前三个核苷酸进行 2' -O-Me修饰, 可在一定程度上提高 G3139 寡聚核酸在血浆中的稳定性, 而全链进行硫代磷酸修饰, 这种 RNA/DNA/RNA的结构可以促进 RNase H 的功能对特定的靶信使 RNA序列进 行降解,在一定程度上提高其对核酸酶的抵抗性并提高与信使 RNA 的匹配准确 性与结合能力。
当两端进行三个核苷酸 2' -O-Me修饰时, 可极大的提高 G3139反义寡聚核 酸的稳定性而又不影响其对靶基因的识别与降解。 然而当二个 (G3139-GAP-L PS-2) 或者四个核苷酸 (G3139-GAP-L Ps-4) 被 2, -O-Me 修饰 的时候, 并未产生如此效果, 本发明提供的方案具有修饰效果好, 容易送达目的 位点, 起到很好的阻断作用。
5、 本发明的脂质纳米粒, 对肿瘤细胞的生长以及特定的靶基因有很好的阻 断效果, 特别是针对 KB 宫颈癌细胞具有很好的阻断效果。
6、 本发明的制备过程中加入高盐溶液可以解离吸附在纳米粒表面的游离的 寡聚核酸,减小了由于寡聚核酸的吸附作用所产生的较大粒径, 而被沉降下来的 寡聚核酸可以在后一步的透析中除去。
7、 本发明中脂质纳米粒的制备方法采用乙醇逐级稀释法, 而现有技术中采 用的不等体积在线混合的方法比较复杂, 需要用两个泵及不同型号的储液罐, 不 适合工业化生产。本发明相较于现有技术从动力学的角度来说, 比较利于两体系 达到动态平衡, 促进之后混悬体系的稳定性。 附图说明
图 1为本发明的吐温系列与 TPGS组合物在 27天 4 度的稳定性测试图; 图 2为 KB癌细胞中基因水平 (Bcl-2) G3139调控试验图;
图 3为 A549 肺癌细胞中基因水平 (Bcl-2) G3139调控试验图;
图 4为 LNCaP前列腺癌症细胞中基因水平 (Bcl-2) G3139调控试验图; 图 5为抑瘤率试验图;
图 6为生存试验图。
具体实施方式
下面示意性的对本发明及其实施方式进行了描述, 该描述没有限制性, 附图 中所示的也只是本发明的实施方式之一, 实际的结构并不局限于此。所以, 如果 本领域的普通技术人员受其启示,在不脱离本发明创造宗旨的情况下, 不经创造 性的设计出与该技术方案相似的结构方式及实施例, 均应属于本发明的保护范 围。
实施例 1
一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒的制备方法,具体步骤如下:
(1) 将摩尔比为 25:45:20:5:5的 D0TAP、 Egg PC、 胆固醇、 Tween 80、 TPGS 溶解于 80%的乙醇中,得混合乙醇溶液;将反义寡聚核酸 5'-TCT CCCAGC GTG CGC CAT-3'全链为硫代磷酸化溶解在 PBS缓冲液( IX pH=7) 中, 得 到反义寡聚核酸溶液;
(2) 将得到的混合乙醇溶液和反义寡聚核酸溶液等体积进行混合以得到 40% 的终乙醇浓度混合液;
(3) 将步骤 (2) 所得的 40%的终乙醇浓度混合液进一步用 PBS溶液等体积稀 释; 重复将终乙醇浓度混合液用 PBS溶液 (IX pH=7.4) 等体积稀释, 直 至得到乙醇终浓度低于 5%的制剂混合液;
(4) 向步骤 (3) 得到的制剂混合液中加入高盐溶液, 得到浓度为 0.1M混合 液, 以解离结合在纳米粒表面的游离的寡聚核酸。
(5) 将步骤 (4) 得到的混合液通过截留分子量为 10000道尔顿的超滤装置去 除乙醇和游离的反义寡聚核酸。
(6) 将步骤(5)得到的产品通过孔径为 0.22微米的滤膜或滤芯进行过滤除菌, 即得脂质纳米粒。 实施例 2
一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒的制备方法,具体步骤如下:
(1) 将摩尔比为 35:40: 15: 1:1 的 DOTMA、 DOPC、 胆固醇、 Tween 40、 mPEG550-DPPE 溶解于 80%的乙醇中,得混合乙醇溶液;将反义寡聚核酸 5' UCU CCC AGC GTG CGC CAU 3 '全链为硫代磷酸化, 两端被 2 ' -0-Me 修饰, 溶解在 PBS缓冲液 (IX pH=7) 中, 得到反义寡聚核酸溶液;
(2) 将得到的混合乙醇溶液和反义寡聚核酸溶液等体积进行混合以得到 40% 的终乙醇浓度混合液;
(3) 将步骤 (2) 所得的 40%的终乙醇浓度混合液进一步用 PBS溶液等体积稀 释; 重复将终乙醇浓度混合液用 PBS溶液 (IX pH=7.4) 等体积稀释, 直 至得到乙醇终浓度低于 5%的制剂混合液;
(4) 向步骤 (3) 得到的制剂混合液加入高盐溶液, 得到终浓度为 0.3M 的含 有高盐的混合液;
(5) 将步骤(4)得到的混合液通过截留分子量为 50000道尔顿的超滤装置去 除乙醇和游离的反义寡聚核酸;
(6) 将步骤(5)得到的产品通过孔径为 0.2微米的滤膜或滤芯进行过滤除菌, 即得脂质纳米粒。 实施例 3
一种抑制 bcl-2 的反义寡聚核酸的脂质纳米粒的制备方法, 具体步骤如 下:
(1) 将摩尔比为 30:50:25:3:3 的 DDAB 、 DSPC 、 胆固醇、 Tween 60、 mPEG3000-DPPE溶解于 80%的乙醇中, 得混合乙醇溶液; 将反义寡聚核酸 5 ' UCU CCC AGC GTG CGC CAU 3 '全链为硫代磷酸化,两端被 2 ' -0-Me 修饰溶解在 PBS缓冲液 (IX pH=7) 中, 得到反义寡聚核酸溶液;
(2) 将得到的混合乙醇溶液和反义寡聚核酸溶液等体积进行混合以得到 40% 的终乙醇浓度混合液; ( 3 ) 将步骤 (2 ) 所得的 40%的终乙醇浓度混合液进一步用 PBS溶液等体积稀 释; 重复将终乙醇浓度混合液用 PBS溶液 (IX pH=7. 4) 等体积稀释, 直 至得到乙醇终浓度低于 5%的制剂混合液;
( 4) 向步骤 (3 ) 得到的制剂混合液加入高盐溶液, 得到终浓度为 1M 的含有 高盐的混合液;
( 5 ) 将步骤(4)得到的混合液通过截留分子量为 100000道尔顿的超滤装置去 除乙醇和游离反义寡聚核酸;
( 6 ) 将步骤(5 )得到的产品通过孔径为 0. 22微米的滤膜或滤芯进行过滤除菌, 即得脂质纳米粒。 实施例 4
(1) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:50:20:5:5
(2) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=30:50:20:5:5
(3) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=35:50:20:5:5
Figure imgf000011_0001
通过调整 DOTAP阳性磷脂的摩尔比例, 进行单因素实验, 我们发现在其他 组分不变的条件下第一组的粒径和包封率都明显优于另外两组,电位基本保持一 致, 进而我们选定第一组为最优处方进行以下的筛选。
(1) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:40:20:5:5
(2) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:5
(3) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:50:20:5:5
Figure imgf000011_0002
通过调整 Egg PC磷脂的摩尔比例, 进行单因素实验, 我们发现在其他组分 不变的条件下第二组的粒径和包封率都明显优于另外两组, 电位基本保持 进而我们选定第二组为最优处方进行以下的筛选。
(1) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45: 15:5:5
(2) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:5
(3) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:25:5:5
Figure imgf000012_0001
通过调整胆固醇的摩尔比例,进行单因素实验,我们发现在其他组分不变的 条件下第二组的粒径和包封率都明显优于另外两组, 电位基本保持一致,进而我 们选定第二组为最优处方进行以下的筛选。
(1) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20: l :5
(2) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:3:5
(3) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:5
Figure imgf000012_0002
通过调整 Tween 80的摩尔比例, 进行单因素实验, 我们发现在其他组分不 变的条件下第三组的粒径和包封率都明显优于另外两组, 电位基本保持一致, 进 而我们选定第三组为最优处方进行以下的筛选。
(1) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5: l
(2) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:3
(3) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:5
Figure imgf000012_0003
通过调整 TPGS的摩尔比例, 进行单因素实验, 我们发现在其他组分不变的 条件下第三组的粒径和包封率都明显优于另外两组, 电位基本保持一致,进而我 们选定第三组为最优处方进行以下的筛选。
(1) DOTMA/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:5
(2) DOTMA/Egg PC/胆固醇 /Tween 80/TPGS=30:45:20:5:5
(3) DOTMA/Egg PC/胆固醇 /Tween 80/TPGS=35:45:20:5:5
Figure imgf000013_0001
除此之外, 我们还筛选了其他潜在的磷脂, 通过调整 DOTMA 阳性磷脂的 摩尔比例,进行单因素实验,我们发现在其他组分不变的条件下第二组的粒径和 包封率都明显优于另外两组, 电位基本保持一致,进而我们选定第二组为最优处 方进行以下的筛选。
(1) DOTAP/DSPC/胆固醇 /Tween 80/TPGS=30:40:20:5:5
(2) DOTAP/DSPC/胆固醇 /Tween 80/TPGS=30:45:20:5:5
(3) DOTAP/DSPC/胆固醇 /Tween 80/TPGS=30:50:20:5:5
Figure imgf000013_0002
通过调整 DSPC磷脂的摩尔比例, 进行单因素实验,我们发现在其他组分不 变的条件下第三组的粒径和包封率都明显优于另外两组, 电位基本保持一致, 进 而我们选定第三组为最优处方进行以下的筛选。
(1) DOTAP/Egg PC/胆固醇 /Tween 80/DPPE-mPEG2000=30:45:20:5: 1
(2) DOTAP/Egg PC/胆固醇 /Tween 80/DPPE-mPEG2000=30:45:20:5:3
(3) DOTAP/Egg PC/胆固醇 /Tween 80/DPPE-mPEG2000=30:45:20:5:5
Figure imgf000013_0003
134.5 6.63 87.3%
135.8 7.90 91.4%
通过调整 DPPE-mPEG2000的摩尔比例, 进行单因素实验, 我们发现在其他 组分不变的条件下第三组的粒径和包封率都明显优于另外两组,电位基本保持一 致。
经过以上各处方的组成以及比例的筛选, 我们可以得出结论以 (1 ) DOTAP/Egg PC/胆固醇 /Tween 80/TPGS=25:45:20:5:5此处方组成及比例有着较小 和稳定粒径以及包封率, 正电位也是比较适中的。 另外, DOTMA/Egg PC/胆固 醇 /Tween 80/TPGS=30:45:20:5:5 , DOTAP/DSPC/ 胆 固 醇 /Tween 80/TPGS=30:50:20:5:5 , DOTAP/Egg PC/ 胆 固 醇 /Tween 80/-mPEG2000-DPPE=30:45:20:5:5 也是其他组分组成中在粒径, 电位, 包封率, 稳定性上较为优选的比例。 我们将以这些比例以及处方组成进行进一步分析试 验。 下面是针对实施例 1中的进行试验: 表格中的游离的 2' -O-Me修饰 G3139 和 2' -O-Me修饰 G3139 脂质纳米粒, 表示对全链进行硫代磷酸修饰和对前三 个核酸进行 2, -O-Me修饰的 G3139 ( 5 ' -UCU CCC AGC GTG CGC CAU- 3 ' ); 游离的 G3139和 G3139 脂质纳米粒, 表示对全链进行硫代磷酸修饰的 G3139
( 5, -TCT CCC AGC GTG CGC CAT-3, );
空白纳米粒表示由膜材料包裹形成无内容物的脂质纳米粒。
1、 A549肺癌细胞毒性试验
( 1 ) 我们将 A549 细胞铺在 96孔板中以 RPMI1640培养液 10%胎牛血清 让细胞生长一夜以达到 60-70%的铺板率。
(2)第二天对每个浓度组进行了多个紫杉醇 (PTX)浓度梯度(1 nmol/L-100 μιηοΙ/L) 以及各组反义寡聚核酸浓度 (ΙΟ μιηοΙ ) 的毒性试验, 并孵育在 37度 和 5%的二氧化碳的环境下。
( 3 ) 在不同的时间点 24h, 48h, 72h加入 20ul 的 MTS试剂 (新型的四唑 化合物), 在 490nm波长处进行检测, 结果如下表:
疗效组 24h 的 48h 的 72h 的 IC50(nmol/L) IC50(nmol/L) IC50(nmol/L) 紫杉醇 (PTX)单独 75.6 28.5 17.85
ΡΤΧ 十 游离的 68.4 19.4 10.73
2'-0-Me修饰 G3139
PTX 十 游离的 65.6 17.3 13.5
G3139
PTX 十 空白纳米粒 88.4 31.5 15.9
PTX 十 G3139 脂质 57.6 11.5** 9.9
纳米粒
PTX 十 2'-0-Me 修 73.5 8.53*** η
饰 G3139 脂质纳米粒
**代表 ρ<0.01, ***〈代表 ρ<0.001
本实验中各实验组均进行了不同浓度的紫杉醇(ΡΤΧ) 的治疗, 而不同的反 义寡聚核酸组的浓度是固定为 lOumol/L以显示其化学致敏作用。 我们发现在对 癌症细胞治疗后的 48h, G3139脂质纳米粒 2'-0-Me修饰 G3139 脂质纳米粒可 以在一定程度上对癌症细胞起到化学致敏的作用如再配伍紫杉醇,可以在很大程 度上提高对癌症细胞的杀伤作用, 并且具有统计学意义。
2、 基因水平 (Bcl-2) G3139调控试验
我们通过设计不同的实验样品组,我们测定各种 G3139剂型对一系列不同的 癌细胞 (包括 A549癌细胞、 KB癌细胞、 LNCap前列腺癌细胞) 的 bcl_2的水平 的调控效果, β -actin作为一个内参对照基因, 他不会随着药物调控作用的改 变而改变, bcl-2是我们的目标基因, 通过观察它的上下调作用而确定药物是否 发挥作用。
( 1 ) 我们将将癌细胞, 例如 A549 细胞、 KB癌细胞、 LNCaP前列腺癌症 细胞铺在 6孔板中以含有 10%胎牛血清的 RPMI1640培养液让细胞生长一夜以达 到 80%的铺板率。
( 2 ) 将最终浓度为 luM的 G3139浓度的制剂加入到肿瘤细胞培养液中, 制 剂分为以下六组,分别是 2'-0-Me修饰 G3139 脂质纳米粒, G3139 脂质纳米粒, 游离的 G3139,游离的 2'-0-Me修饰 G3139,空白脂质纳米粒,培养液对照组。 ( 3 ) 在 37度和 5%的二氧化碳的环境下孵育 4h后, 细胞将被转移到新鲜 的培养液中, 继续培养 48h。 按照标准方法收集细胞, 裂解, 提出 RNA。
(4) 我们将分析各组的 bcl-2 信使 RNA的水平使用 Real-Time -PCR技术, 按照试剂供应商的标准方法, 最终可以定量 bcl-2在各组治疗之后的表达情况。
1 ) KB癌细胞
我们通过设计不同的样品组,我们对 KB癌细胞里的 bcl-2的水平进行调控, 试验结果如下表和图 2所示, β -actin是一个内参对照基因, 他不会随着药物调 控作用的改变而改变, bcl-2 是我们的目标基因, 通过观察它的上下调作用而确 定药物是否发挥作用。
Figure imgf000016_0001
由上表和图 2表明, 经过 2'-0-Me修饰的脂质纳米粒有着 67.71%的基因水 平的下调和别的实验组相比较在 bcl-2的水平上有很大程度的下调, 而游离药物 组(3,4)由于缺乏递药系统而无法进入细胞内, 只有微弱的下调作用(4.69% 和 10.96%), 空白纳米粒由于没有药物所以无法产生下调作用。
A549肺癌细胞
试验结果如下表和图 3 :
Figure imgf000016_0002
100% .09% 如上表和图 3所示, 经过 2'-0-Me修饰的脂质纳米粒有着 71.87%的基因水 平的下调和别的实验组相比较在 bcl-2的水平上有很大程度的下调, 而游离药物 组(3, 4)由于缺乏递药系统而无法进入细胞内,只有微弱的下调作用(11.25%和 6.71%), 空白纳米粒由于没有药物所以无法产生下调作用。
3 ) LNCaP前列腺癌症细胞
试验结果如下表和图 4:
Figure imgf000017_0001
如上表和图 4所示, 经过 2'-0-Me修饰的脂质纳米粒有着 78.78%的基因水 平的下调和别的实验组相比较在 bcl-2的水平上有很大程度的下调, 而游离药物 组(3, 4)由于缺乏递药系统而无法进入细胞内, 只有微弱的下调作用(6.85%和 5.11%), 空白纳米粒由于没有药物所以无法产生下调作用。
3、 KB细胞异位接种小鼠体内肿瘤模型药效学以及生存曲线试验
( 1 ) 5* 106的 KB癌症细胞将被接种到裸鼠的右侧背部, 让其生长 1-2周至 平均 150mm3的可见肿瘤。
(2)当肿瘤达到预计大小时, 每组荷瘤鼠将被尾静脉给予不同的种类的药 物, 分别是 2'-0-Me修饰 G3139 脂质纳米粒, G3139 脂质纳米粒, 游离的 G3139, 游离的 2'-0-Me修饰 G3139, 紫杉醇注射液, 生理盐水。 每三天给一 次, 持续给药三周。 治疗组分为 6组, 每组十只荷瘤鼠。
( 3 ) 肿瘤的大小将由游标卡尺量出肿瘤的长和宽, 肿瘤的体积是由以下的 公式得出:
肿瘤体积= ( 31 /6) *长 (mm) * (宽) 2 (4)当实际肿瘤大小到达 1500mm3时, 将移出治疗组, 以二氧化碳窒息进 行安乐死。
治疗周期结束后各实验组肿瘤的体积是对抗肿瘤活性的一种指示。
图 5和图 6为抑瘤率试验和生存试验的图表。
从图 5和图 6可以看出, KB癌症细胞异位接种裸鼠的药效学以及生存曲线 的角度上, 我们可以看出 2'-0-Me修饰的 G3139 脂质纳米粒与紫杉醇配伍有 着非常好的抑瘤效果以及长时间的荷瘤鼠生存时间,这从一定角度上说明了在次 直至纳米粒在提高了药效的同时, 也没有产生很大程度的毒副作用。

Claims

权 利 要 求 书
1. 一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特征在于, 该脂质纳米粒是 由膜材料包裹一段反义寡聚核酸制成,所述的核酸序列为 5'-TCT CCC AGC GTG CGC CAT-3' , 5' UCU CCC AGC GTG CGC CAU 3' 。
2. 根据权利要求 1所述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特 征在于, 所述的膜材料包括阳离子类脂、 中性磷脂、 胆固醇、 吐温、 聚乙二醇衍 生物, 其摩尔比为 ( 25-35 ) : ( 40-50) : ( 15-25 ): ( 1-5 ) : ( 1-5)。
3. 根据权利要求 2所述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特 征在于: 所述的阳离子类脂包括: DOTAP、 DOTMA、 DDAB、 DODMA ; 所述的中性磷脂包括: Egg PC、 D0PC、 DSPC、 DPPC、 DMPC;
所述的吐温包括: 吐温 -20、 吐温 -40、 吐温 -60、 吐温 -80;
所述的聚乙二醇衍生物包括: mPEG-DPPE、 mPEG_DMPE、 mPEG-DSPE、 TPGS、 mPEG_cholesterol。
4. 根据权利要求 2或 3所述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特征在于, 所述的聚乙二醇衍生物中 PEG包括单甲基聚乙二醇, 其分子量为 550-5000
5. 根据权利要求 4所述的一种抑制 bcl-2 的反义寡聚核酸的脂质纳米粒, 其特 征在于,所述的聚乙二醇衍生物是亲水的聚乙二醇链或甲基化聚乙二醇链连接到 一个可以嵌入磷脂双分子层的疏水结构上所形成的物质;所述的疏水结构为胆固 醇, 维生素 E, 二棕榈酸磷脂酰乙醇胺,二肉豆蔻酰基磷脂酰乙醇胺, 二肉豆蔻 酰甘油或结构类似物。
6. 根据权利要求 3所述的一种抑制 bcl-2 的反义寡聚核酸的脂质纳米粒, 其特 征在于, 所述的吐温为吐温 -80。
7. 根据权利要求 1所述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特 征在于,对所述的反义寡聚核酸 5' UCU CCC AGC GTG CGC CAU 3'的修饰为对 其两端的前三个核酸进行 2'-0-Me修饰,并对全链进行硫代磷酸修饰; 或者对反 义寡聚核酸 5'-TCT CCC AGC GTG CGC CAT-3'的全链进行硫代磷酸修饰。
8. 一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒的制备方法, 其特征在于, 所 述的脂质纳米粒的制备方法为乙醇逐级稀释法, 具体步骤如下:
( 1 ) 将阳离子类脂、 中性磷脂、 胆固醇、 吐温、 聚乙二醇衍生物, 按照一定的 摩尔比溶解于 80%的乙醇中, 得混合乙醇溶液; 将修饰后的反义寡聚核酸 溶解在 PBS缓冲液中, 得到反义寡聚核酸的 PBS溶液;
( 2 ) 将得到的混合乙醇溶液和反义寡聚核酸的 PBS 溶液等体积进行混合以得 到 40%的终乙醇浓度混合液;
( 3 ) 将步骤 (2 ) 所得的 40%的终乙醇浓度混合液进一步用 PBS溶液等体积稀 释; 重复将终乙醇浓度混合液用 PBS溶液等体积稀释,直至得到乙醇终浓 度低于 5%的制剂混合液;
( 4) 向步骤 (3 ) 得到的制剂混合液加入高盐溶液, 得到含有高盐的混合液;
( 5 ) 将步骤 (4) 得到的混合液用超滤或透析装置去除乙醇和游离未被包裹的 寡聚核酸;
( 6 ) 将步骤 (5 ) 得到的产品通过孔径小于或等于 0. 22微米的滤膜或滤芯进行 过滤除菌, 即得脂质纳米粒。
9. 根据权利要求 8 中所述的脂质纳米粒的制备方法, 其特征在于, 所述的 PBS 缓冲液不含有 DNA酶和 RNA酶,所述的步骤( 1 )中的 PBS缓冲液的规格为 IX pH=7, 所述的步骤 (3 ) 中的 PBS缓冲液的规格为 IX pH=7. 4。
10. 根据权利要求 8中所述的脂质纳米粒的制备方法, 其特征在于,所述的高盐 溶液为 NaCl溶液, 步骤 (4) 中的混合液 NaCl浓度为 0. 1-1M。
11. 根据权利要求 10中所述的脂质纳米粒的制备方法, 其特征在于, 所述的混 合液的浓度为 0. 3-0. 4M。
12. 根据权利要求 8中所述的脂质纳米粒的制备方法, 其特征在于,所述的超滤 或透析装置的截留量分子量为 10, 000 - 100, 000道尔顿。
13. 根据权利要求 3述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特征 在于,所述的膜材料为摩尔比为 25:45:20:5:5的 DOTAP、 Egg PC、胆固醇、 Tween 80、 TPGS。
14. 根据权利要求 3述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒,其特征 在于,所述的膜材料为摩尔比为 30:45:20:5:5的 DOTMA、Egg PC、胆固醇、 Tween 80、 TPGS。
15. 根据权利要求 3述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特征 在于, 所述的膜材料为摩尔比为 30:50:20:5:5的 DOTAP、 DSPC、胆固醇、 Tween 80、 TPGS。
16. 根据权利要求 3述的一种抑制 bcl-2的反义寡聚核酸的脂质纳米粒, 其特征 在于,所述的膜材料为摩尔比为 30:45:20:5:5的 DOTAP、 Egg PC、胆固醇、 Tween 80、 mPEG2000-DPPE。
PCT/CN2017/106042 2016-10-17 2017-10-13 一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法 WO2018072646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019541841A JP6986563B2 (ja) 2016-10-17 2017-10-13 bcl−2を抑制するアンチセンスオリゴヌクレオチドの脂質ナノ粒子及びその調製方法
EP17862277.5A EP3527229B1 (en) 2016-10-17 2017-10-13 Lipid nanoparticle of antisense oligonucleic acid for inhibiting bcl-2 and preparation method therefor
US16/342,871 US20190328763A1 (en) 2016-10-17 2017-10-13 A lipid nanoparticle for carrying antisense oligonucleotides inhibiting bcl-2 and method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610903392.1 2016-10-17
CN201610903392.1A CN107951862B (zh) 2016-10-17 2016-10-17 一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法

Publications (1)

Publication Number Publication Date
WO2018072646A1 true WO2018072646A1 (zh) 2018-04-26

Family

ID=61953853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/106042 WO2018072646A1 (zh) 2016-10-17 2017-10-13 一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法

Country Status (5)

Country Link
US (1) US20190328763A1 (zh)
EP (1) EP3527229B1 (zh)
JP (1) JP6986563B2 (zh)
CN (2) CN112587504B (zh)
WO (1) WO2018072646A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105720A3 (en) * 2019-11-29 2021-07-22 Oxular Limited Pharmaceutical compositions and formulations for the treatment of retinoblastoma

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109432443B (zh) * 2018-10-29 2021-06-25 华东师范大学 CT/荧光双模态成像荷载siRNA的纳米粒及制备方法和应用
CN114159407A (zh) * 2021-11-30 2022-03-11 桂林医学院 用于治疗急性骨髓性白血病的自组装纳米基因靶向传递系统的制备
CN114306369B (zh) * 2021-12-23 2023-12-26 北京悦康科创医药科技股份有限公司 一种硫代寡核苷酸注射液及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215820A (zh) * 2008-11-17 2011-10-12 安龙制药公司 用于核酸输送系统的可释放融合脂质

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498407B2 (en) * 2001-11-09 2009-03-03 Georgetown University Vascular endothelial cell growth inhibitor, VEGI-192a
ES2665464T3 (es) * 2003-03-28 2018-04-25 Sigmoid Pharma Limited Forma de dosificación oral sólida que contiene microcápsulas sin costuras
JP4623426B2 (ja) * 2003-05-30 2011-02-02 日本新薬株式会社 オリゴ核酸担持複合体、当該複合体を含有する医薬組成物
US20060051405A1 (en) * 2004-07-19 2006-03-09 Protiva Biotherapeutics, Inc. Compositions for the delivery of therapeutic agents and uses thereof
WO2006034348A2 (en) * 2004-09-17 2006-03-30 Isis Pharmaceuticals, Inc. Enhanced antisense oligonucleotides
US7404969B2 (en) * 2005-02-14 2008-07-29 Sirna Therapeutics, Inc. Lipid nanoparticle based compositions and methods for the delivery of biologically active molecules
US8101741B2 (en) * 2005-11-02 2012-01-24 Protiva Biotherapeutics, Inc. Modified siRNA molecules and uses thereof
KR100807060B1 (ko) * 2007-08-28 2008-02-25 고려대학교 산학협력단 신규한 양이온성 지질, 그의 제조 방법 및 그를 포함하는전달체
CA2710983A1 (en) * 2007-12-27 2009-10-01 The Ohio State University Research Foundation Lipid nanoparticle compositions and methods of making and using the same
TW201004658A (en) * 2008-07-31 2010-02-01 Enzon Pharmaceuticals Inc Nanoparticle compositions for nucleic acids delivery system
TW201019969A (en) * 2008-11-17 2010-06-01 Enzon Pharmaceuticals Inc Branched cationic lipids for nucleic acids delivery system
ES2649896T3 (es) * 2010-07-06 2018-01-16 Glaxosmithkline Biologicals Sa Emulsiones catiónicas de aceite en agua
EP2584040A1 (en) * 2011-10-17 2013-04-24 Pharmahungary 2000 Kft. Compounds for treatment of ischemic injury
BR112014027834A2 (pt) * 2012-05-23 2017-08-08 Univ Ohio State composições de nanopartícula lipídica para entrega de oligonucleotídeos antissenso

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102215820A (zh) * 2008-11-17 2011-10-12 安龙制药公司 用于核酸输送系统的可释放融合脂质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHENG, XINWEI ET AL.: "The Role of Helper Lipids in Lipid Nanoparticles (LNPs) Designed for Oligonucleotide Delivery", ADVANCED DRUG DELIVERY REVIEWS, vol. 99, pages 129 - 137, XP029445785, DOI: doi:10.1016/j.addr.2016.01.022 *
MEYER, O. ET AL.: "Cationic Liposomes Coated with Polyethylene Glycol As Carriers for Oligonucleotides", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 273, no. 25, pages 15621 - 15627, XP000858874, DOI: doi:10.1074/jbc.273.25.15621 *
See also references of EP3527229A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021105720A3 (en) * 2019-11-29 2021-07-22 Oxular Limited Pharmaceutical compositions and formulations for the treatment of retinoblastoma
GB2606887A (en) * 2019-11-29 2022-11-23 Oxular Ltd Pharmaceutical compositions and formulations for the treatment of retinoblastoma

Also Published As

Publication number Publication date
EP3527229B1 (en) 2024-07-03
CN112587504B (zh) 2022-10-18
JP2019535808A (ja) 2019-12-12
CN107951862B (zh) 2021-03-12
CN112587504A (zh) 2021-04-02
EP3527229A4 (en) 2020-11-04
JP6986563B2 (ja) 2021-12-22
EP3527229C0 (en) 2024-07-03
EP3527229A1 (en) 2019-08-21
US20190328763A1 (en) 2019-10-31
CN107951862A (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
CN114099533A (zh) 核酸药物递送系统、制备方法、药物组合物和应用
Hsu et al. Cationic lipid nanoparticles for therapeutic delivery of siRNA and miRNA to murine liver tumor
Ding et al. A self-assembled RNA-triple helix hydrogel drug delivery system targeting triple-negative breast cancer
WO2018072646A1 (zh) 一种抑制bcl-2的反义寡聚核酸的脂质纳米粒及其制备方法
JP5923177B2 (ja) 新規な遺伝子伝達用組成物
AU2016275046A1 (en) Use of exosomes for the treatment of disease
KR101870316B1 (ko) 음이온성 약물을 함유하는 고분자 미셀의 제조방법
EP2892505B1 (en) Lipid assemblies comprising anionic lysolipids and use thereof
CN103768086A (zh) 寡核苷酸螯合物的用途
WO2018072644A1 (zh) 一种脂质纳米粒膜材料组合物
KR20190127277A (ko) mRNA 전달용 고분자 나노입자 조성물 및 그 제조방법
US8598138B2 (en) Amphiphilic nucleotide cochleate compositions and methods of using the same
Malik et al. Advances in nanoparticle-based delivery of next generation peptide nucleic acids
Ma et al. Bioinspired Spatiotemporal Management toward RNA Therapies
EP3634386A1 (en) Cationic liquid crystalline nanoparticles
WO2023233159A1 (en) Therapeutic compounds and compositions
JP2023039115A (ja) 物質送達キャリア及び組成物
KR101949507B1 (ko) Kras를 표적으로 하는 핵산 함유 약제학적 조성물 및 그 제조방법
KR102259513B1 (ko) 음이온성 약물 함유 약제학적 조성물의 동결건조 조성물 및 방법
Yu et al. Nucleic acid-based nanotherapeutics for treating sepsis and associated organ injuries
WO2024153955A1 (en) Therapeutic compositions and methods
Ghoshal Cationic Lipid Nanoparticles for Therapeutic Delivery of siRNA and miRNA to Murine Liver Tumor
CN118634207A (zh) 一种雾化吸入用核酸-脂质纳米粒及其制备方法和应用
WO2024153954A1 (en) Therapeutic compositions and methods
CN115120736A (zh) 一种多功能基因载体及其在递送miRNA中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17862277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017862277

Country of ref document: EP